Options
2001
Journal Article
Title
Local iterative Monte Carlo analysis of electron-electron interaction in short-channel Si-MOSFETs
Abstract
The effects of electron-electron interaction on the electron distribution, substrate current, and gate current in short n-channel metal-oxide-semiconductor field-effect transistors (MOSFETs) are studied using the local iterative Monte Carlo (LIMC) approach. The complete distribution function is always available at each step of this approach and with reduced noise with respect to standard Monte Carlo (MC) simulation. Therefore, electron-electron interaction can be evaluated efficiently using scattering rates, allowing one to examine hot carrier effects that may play an important role for device reliability and characterization. Results for MOSFETs with channel length as short as 25 mn show that electron-electron interaction leads to an increase of the high energy tail of the electron distributions at the transition from channel to drain. The electron density around 3 eV is significantly increased even if the applied voltage is in the 1.0 V range.