• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. A data-based certification approach for additively manufactured metal aircraft components
 
  • Details
  • Full
Options
May 3, 2025
Journal Article
Title

A data-based certification approach for additively manufactured metal aircraft components

Abstract
The aviation industry is changing towards more sustainable production, service and maintenance of aircraft. Additionally, more and diverse aircraft are developed, especially considering UAVs and VTOLs. This results in more diverse components. Additive manufacturing (AM) comes in handy to tackle those challenges. Due to the various parameters which influence the component’s properties, the qualification process is very complex. No specific qualification is available among the existing AM part integrators. This paper proposes a data-driven component evaluation process for the certification of aerostructures, considering all available data i.e., design, manufacturing and post-treatment data. Machine learning (ML) algorithms are used to predict the physical properties of components based on the data generated by monitoring their production. Necessary training data comprises non-destructive (NDT) and destructive tests (DT), whereas the quality assurance (QA) in a production environment works just with NDT data. Here a platform is presented that implements the processes necessary to guide a user through the certification process of an AM component made of AlSi10Mg, produced using laser powder bed fusion (LPBF).
Author(s)
Neumann, Gregor
Technische Universität Dresden  
Schwarz, Hannes
IMA Materialforschung und Anwendungstechnik
Groh, Wolfram
Technische Universität Dresden  
Winkler, Kai
Fraunhofer-Institut für Verkehrs- und Infrastruktursysteme IVI  
Rümmler, Christin
Technische Universität Dresden  
Hähnel, Falk
Technische Universität Dresden  
Holfeld, Denise  
Fraunhofer-Institut für Verkehrs- und Infrastruktursysteme IVI  
Nebel, Silvio
IMA Materialforschung und Anwendungstechnik
Markmiller, Johannes
Technische Universität Dresden  
Journal
Progress in additive manufacturing  
Project(s)
Numerische Methoden zur Vorhersage strukturmechanischer Eigenschaften additiv gefertigter Luftfahrzeugbauteile unter Berücksichtigung von Imperfektionen  
Funder
Bundesministerium für Wirtschaft und Energie  
Open Access
DOI
10.1007/s40964-025-01107-3
Additional full text version
Landing Page
Language
English
Fraunhofer-Institut für Verkehrs- und Infrastruktursysteme IVI  
Keyword(s)
  • machine learning

  • data-based

  • certification

  • quality assurance

  • additive manufacturing

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024