• English
  • Deutsch
  • Log In
    Password Login
    or
  • Research Outputs
  • Projects
  • Researchers
  • Institutes
  • Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. k-Maxoids Clustering
 
  • Details
  • Full
Options
2015
Conference Paper
Titel

k-Maxoids Clustering

Abstract
We explore the idea of clustering according to extremal rather than to central data points. To this end, we introduce the notion of the maxoid of a data set and present an algorithm for k-maxoids clustering which can be understood as a variant of classical k-means clustering. Exemplary results demonstrate that extremal cluster prototypes are more distinctive and hence more interpretable than central ones.
Author(s)
Bauckhage, Christian
Sifa, Rafet
Hauptwerk
LWA 2015 Workshops: KDML, FGWM, IR, and FGDB. Proceedings. Online resource
Konferenz
Conference "Learning, Knowledge, Adaptation" (LWA) 2015
Workshop on Knowledge Discovery, Data Mining and Machine Learning (KDML) 2015
Workshop "Information Retrieval" (IR) 2015
Workshop on Knowledge and Experience Management (FGWM) 2015
Thumbnail Image
Externer Link
Externer Link
Language
English
google-scholar
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Send Feedback
© 2022