• English
  • Deutsch
  • Log In
    Password Login
    or
  • Research Outputs
  • Projects
  • Researchers
  • Institutes
  • Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. A combined experimental and atomistic investigation of PTFE double tansfer film formation and lubrication in rolling point contacts
 
  • Details
  • Full
Options
2021
Journal Article
Titel

A combined experimental and atomistic investigation of PTFE double tansfer film formation and lubrication in rolling point contacts

Abstract
Solid lubricants such as polytetrafluoroethylene (PTFE) are used in rolling-element bearings (REBs) when conventional lubrication (i.e. by fluids or greases) cannot be applied owing to extreme operating conditions (e.g. high temperatures or vacuum). Often a double transfer film mechanism is used with a cage acting as a lubricant reservoir resupplying the REB with solid lubricant by cage wear. An increase in service life of such bearings requires a better understanding of the transfer processes in the sliding and rolling contacts. Here, we investigate the effect of PTFE resupply on friction and lubricant film formation in a steel/steel and steel/glass rolling contact by tribometry and classical molecular dynamics (MD). A ball-on-disk tribometer is enhanced by a pin-on-disk sliding contact that transfers PTFE to the disk. The experiment allows simultaneous in situ measurement of friction and film thickness by white light interferometry in the rolling point contact. Increasing the pin load results in an increased PTFE film thickness in the rolling contact accompanied by a significant decrease in friction. To elucidate the observed film transfer and friction mechanism, sliding MD simulations with a newly developed density-functional-based, non-reactive force field for PTFE-lubricated iron oxide surfaces are performed. A strong adhesion of PTFE chains to iron oxide drives transfer film formation, whilst shear-induced chain alignment within PTFE results in reduced friction. The simulations reveal an anti-correlation between PTFE film thickness and friction coefficient-in agreement with the experiments. These investigations are a first step towards methods to control PTFE transfer film formation in REBs.
Author(s)
Goeldel, Stephan von
RWTH Aachen University
Reichenbach, Thomas
Fraunhofer-Institut für Werkstoffmechanik IWM
König, Florian
RWTH Aachen University
Mayrhofer, Leonhard
Fraunhofer-Institut für Werkstoffmechanik IWM
Moras, Gianpietro
Fraunhofer-Institut für Werkstoffmechanik IWM
Jacobs, Georg
RWTH Aachen University
Moseler, Michael
Fraunhofer-Institut für Werkstoffmechanik IWM
Zeitschrift
Tribology letters
Project(s)
Mechanismen der Graphitschmierung in Wälzkontakten
Funding(s)
SPP 2074
Funder
Deutsche Forschungsgemeinschaft DFG
Thumbnail Image
DOI
10.1007/s11249-021-01508-9
Externer Link
Externer Link
Language
English
google-scholar
Fraunhofer-Institut für Werkstoffmechanik IWM
Tags
  • molecular dynamics

  • polytetrafluoroethylene (PTFE)

  • rolling point contac

  • solid lubrication

  • white light interferometry

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Send Feedback
© 2022