• English
  • Deutsch
  • Log In
    Password Login
    or
  • Research Outputs
  • Projects
  • Researchers
  • Institutes
  • Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. Skill-based Programming of Force-controlled Assembly Tasks using Deep Reinforcement Learning
 
  • Details
  • Full
Options
2020
Journal Article
Titel

Skill-based Programming of Force-controlled Assembly Tasks using Deep Reinforcement Learning

Abstract
The selection of parameters for force-controlled assembly tasks remains a time consuming process. Skill-based approaches offer a guidance in parameter space, but still require expert knowledge to tune the parameters accordingly. Recently, Deep Reinforcement Learning algorithms have been used more frequently to learn the parameters of complex assembly tasks. For the industrial application of Reinforcement Learning, it is crucial to increase the training efficiency. Most approaches are based on engineered force-controllers or contact-models and focus on one specific robot. In this paper, we propose a framework, using state-of-the-art model-free algorithms and manipulation skills to learn force and position parameters in a simulation environment.
Author(s)
Lämmle, Arik
Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA
König, Thomas
Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA
El-Shamouty, Mohamed
Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA
Huber, Marco
Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA
Zeitschrift
Procedia CIRP
Konferenz
Conference on Manufacturing Systems (CMS) 2020
Thumbnail Image
DOI
10.1016/j.procir.2020.04.153
Externer Link
Externer Link
Language
English
google-scholar
Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA
Tags
  • Bestärkendes Lernen

  • deep learning

  • force control

  • Montageautomatisierung

  • Roboterprogrammierung

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Send Feedback
© 2022