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ABSTRACT 
Cloud networking is a new technology which integrates network 
provisioning with the existing cloud service provisioning models. 
This integration allows service providers to provision network 
resources together with network performance guarantees as a part 
of their service offering. However, the introduction of multiple 
providers and service levels introduces many security challenges. 
One such challenge is identity management, especially 
authentication of different entities. This paper presents an analysis 
of a management scheme deployed in a simulated cloud network 
test bed. Our results show that this scheme is faster than binary 
and erasure encoding schemes. The scheme uses an N-ary 
approach and thus allows the placement of n entities at each level, 
unlike the binary scheme which is restricted to two entities.    

Categories and Subject Descriptors 
C.2.4, D.2.12, D.4.6, D.4.8, and E.3 

General Terms 
Algorithms, Design, Measurement, Performance, and Security 

Keywords 
Cloud networking, Security architecture, Authentication, Identity 
management, Trust management, Privacy 

1. INTRODUCTION 
The entire computing and information technology 

management service ecosystem, ranging from small and medium 
enterprises to large-scale conglomerates, has witnessed a 
paradigm shift in their service delivery and provisioning models 
during the last decade. Fuelled by the exponentially increasing 
costs involved in procuring and maintaining resources, 
organizations have shifted their resources into the “cloud”. This 
has reduced the initial and maintenance expenditures for the 
information technology (IT) organizations, and revolutionized the 
entire IT ecosystem. Different flavors of clouds exist in the cloud 
ecosystem: Software-as-a-Service (SaaS), Platform-as-a-Service 

(PaaS), and Infrastructure-as-a-Service (IaaS). However, each of 
these service provisioning models shares a common dependability 
problem due to the lack of guaranteed network resource 
provisioning between the end-user and the resources allocated to 
the cloud tenant. 

The European Scalable and Adaptive Internet soLutions 
(SAIL) project [1] focuses on developing a new service 
provisioning model called Network-as-a-Service (NaaS) which 
shall ensure virtualized, elastic, dynamic, and on-demand network 
resources provisioned to the end-user/tenant. The SAIL project 
has developed a networking-as-a-service provisioning 
infrastructure utilizing a cloud network (CloNe) architecture [2], 
at its core to implement the NaaS model. Similar to other service 
provisioning models, CloNe also suffers from a number of 
security flaws (an exhaustive list of these is given by Schoo et al. 
[3]). It is important to carry out an in-depth security analysis of 
the cloud network architecture to compile a list of relevant 
security requirements and goals. One of the identified challenges 
for cloud network architectures is the integration of a secure and 
efficient key management module [29,30].  

This paper explains the design, deployment, and 
analysis of an N-ary tree based key management algorithm which 
provides the underlying mechanism for an overall identity 
management function for the CloNe security architecture. This N-
ary scheme allows the placement of n entities at each level, unlike 
the binary scheme [31] which is restricted to two entities. The 
main contribution of this paper is the deployment and analysis of 
the key management mechanism in our simulated cloud network 
test environment, which demonstrates the feasibility and 
performance of the proposed identity management function 
deployed in the overall CloNe architecture.  

The remainder of this paper is organized as follows: 
Section 2 covers the related works pertaining to cloud security 
architecture and key management algorithms. Section 3 elaborates 
the CloNe architecture and the CloNe security architecture and 
depicts the interaction sequence between the supporting security 
functions. Section 4 explains the N-ary tree based key 
management algorithm, its placement in the CloNe security 
architecture, a sample interaction sequence, and our analysis 
results. Section 5 summarizes these results and compares them 
with the state of the art. Section 6 gives some and suggests future 
work. 

2. RELATED WORK 
There are numerous key management and key 

distribution schemes described in the literature [9, 18-20]. In 
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many of these existing key management schemes, different groups 
of users obtain a new multicast key for every new session update. 
Among the various schemes for key distribution, the Maximum 
Distance Separable (MDS) [21] method utilizes error control 
coding techniques for distributing re-keying information. In MDS, 
the keys are obtained based on Erasure decoding functions [22] in 
order for each of the group members to compute the relevant 
session keys. In this method the Group center (GC) constructs a 
non-systematic MDS code C over the Galois Field GF(q) and a 
secure one-way hash function H(.) whose co-domain is GF(q). 
The GC generates n message symbols by sending the code words 
into an Erasure decoding function. The first message symbol is 
considered a session key, out of the n messages symbols, and the 
group members are not provided this particular key by the GC. 
Group members are given the (n-1) message symbols and they 
compute a code word for each of them. Each of the group 
members uses this code word and the remaining (n-1) message 
symbols to compute the session key. The main limitation of this 
mechanism is its computation and storage complexity. The 
computational complexity is lr+(n-1)m where lr is the size of r bit 
random number used in the mechanism and m is the number of 
message symbols to be sent from the GC to group members. If 
lr=m=l, computation complexity is nl. The storage complexity is 
given by [log2L]+t bits for each member. Where, L is the number 
of levels of the tree. Hence, GC has to store n ([log2L]+t ) bits. 

The data embedding mechanism proposed by Trappe, et 
al. in [23] is used to transmit re-keying message by embedding the 
re-keying information in the multimedia data. In this mechanism, 
the computation complexity is O(log n). The storage complexity is 
directly proportional to the value of O(n) for the server machine 
and O(log n) for group members. This technique is used to update 
and maintain keys in secure multimedia multicast communication. 
The biggest limitation of this mechanism is that a new key called 
embedding key has to be provided to the group members in 
addition to the original keys, which increases the overhead. 

Key management using key graphs as proposed by 
Wong, Gouda, and Lam [24] creates secure groups from basic key 
management graphs mechanism using a star based method and a 
tree based method. The mechanism is not scalable due to its 
excessive overhead. A new group keying method called the One-
way Function Tree (OFT) algorithm has been proposed by 
McGrew and Sherman [25] uses one-way functions to compute a 
tree of keys. In this method keys are computed up the tree, from 
the leaves to the root reducing re-keying broadcasts to only 
approximately log n keys. The main limitation of this approach is 
its higher space complexity as compared to [23]. 

Trappe and Song proposed a Parametric One Way 
Function (POWF) [20] based binary tree key management 
scheme. In this scheme, a session key Ks is attached to the tree 
below the root node. Each node in the tree is assigned a Key 
Encrypting Key (KEK) which is an Internal Key (IK). Each user 
is assigned to a leaf and is given the IKs of the nodes from this 
leaf to the root node. If a balanced tree is complete, i.e., where all 
the leaf nodes have members associated with them, then it is 
necessary to generate a new layer of nodes when adding new 
members. However, when a user wants to join the group, the keys 
on the path from their assigned leaf node to the root and also the 
session key must be changed. These new keys are generated by 
GC. If a user departs from the group, then all the keys from this 
user’s assigned leaf node to the root node become invalid. These 
keys must be updated and distributed using a bottom up or top 
down approach. The complexity of storage can be substantially 
reduced if the numbers of multiplications are reduced. Some of 
the key management schemes proposed in [26-28] are distributed 

key management approaches which are characterized by having 
no group controller. The group key can be generated either in a 
contributory fashion, where all members contribute their own 
share to computation of the group key, or generated by one 
member. 

In this paper, we propose a customized key management 
mechanism which reduces the computational complexity of key 
generation and distribution; and at the same time increases the 
overall security by providing a larger key space. This mechanism 
is more apt for a cloud networking environment which needs to 
survive the failure of the GC.  

3. CloNe ARCHITECTURE 
The CloNe architecture is a multi-tier, multi-domain 

service provisioning model which provisions virtualized, elastic, 
dynamic, and on-demand network resources to the end-
user/tenant. The virtualized network resource is referred to as a 
Flash Network Slice (FNS). Use of FNSs provides dynamic 
network resource provisioning capabilities in a heterogeneous 
multi-operator and heterogeneous network environment. CloNe 
has been designed to concretize the abstract requirements of a 
FNS and to ensure that the requested resource is correctly 
deployed on the underlying resource set. CloNe has an inherent 
three layer model consisting of its respective set of roles, a 
collection of interfaces which allow the participating entities and 
different security/management modules to communicate, and the 
various modules themselves. A detailed description of the CloNe 
architecture is given in [2]. Figure 1 shows an abstract view of 
this architecture. 

Each infrastructure service user makes an abstract 
resource request to the infrastructure service through the 
infrastructure service interface. The infrastructure service employs 
an infrastructure service controller at its core. This controller is 
responsible for carrying out the goal translation and the decision 
making. The goal translation module implements the translation 
of abstract user requests into concrete resource specifications 
which can be deployed by the infrastructure provider on their 
infrastructure. Moreover, each goal translation module is 
responsible for generating multiple plausible (pareto-optimal) [5] 
resource configurations while considering the multiple objectives 
specified by each participating entity in the CloNe infrastructure. 
A pareto-optimal solution is defined as a solution whereby none 
of the participating entities can experience a better result, without 
ensuring that at least one other entity experiences a reduction in 
their performance. Therefore, there is a clear need for a decision 
maker to select the best possible pareto-optimal solution which 
defines the actual resource configuration to be deployed on the 
resource set.  

If the infrastructure service accepts a user’s request, it 
carries out an intermediate goal translation with the help of 
supporting management and security modules, and then delegates 
the translated request to one or more distributed infrastructure 
service components by using the infrastructure service interface. 
Either the request can be completely fulfilled by a single 
distributed infrastructure service components or it will be 
distributed over multiple components. In the former case, the 
distributed infrastructure service component might decide to 
collaborate with additional distributed infrastructure service 
components, if it is unable to satisfy the resource request in its 
entirety. In such a case, the interactions would take place through 
the distributed control plane (DCP) interface. 

Each distributed infrastructure service component 
operates within its individual administrative domain. Each domain 
is administered by an infrastructure provider, who has complete 



 

 

control of all the resources in that domain. In order to assist the 
entire goal translation process, the infrastructure employs 
supporting management modules including a resource 
management and a fault management module. The resource 
management module keeps track of the usage and health of the 
underlying physical and virtual resources, and is responsible for 
monitoring their utilization and mapping the requested virtual 

resources onto the available physical resource set at its disposal. It 
is supported by a fault management module, which is responsible 
for monitoring faults, and providing the necessary inputs to the 
resource management and overall goal translation modules. 
However, as covered earlier, the cloud network architecture has 
its own set of problems [3], which has led to the development of a 
CloNe security architecture [4]. 

3.1 CloNe SECURITY ARCHITECTURE  
The essential requirement of the security architecture is 

to translate the security requirements specified by the tenant into 
concrete resource constraints. Additional (security) requirements 
may also be provided by the different entities in the architecture. 
This security goal translation has been integrated in the overall 
goal translation function described by Bjurling et al. [6] and 
deployed in the CloNe architecture.  

The resource configurations defined at the end of the 
translation process is deployed by the infrastructure provider, and 
the translation process is assisted by the different security 
modules depicted in Figure 2. The various security functions 
include an access control policy function, an auditing and 
assurance function, an identity management function, and the 
central security goal translation function (which forms the 

backbone of the overall security architecture). The access control 
policy function is responsible for determining access control 
policies for each infrastructure service user, and will require a 
suitable access control policy model to define those policies.  

To support the access control policy function, an 
identity management function has been defined to perform the 
authentication checks of the varied entities in the infrastructure, 

and to ensure that only authorized parties are provided access to 
resources and/or services. Access control policies can only be 
successfully deployed in a system when the identities of the 
participating entities can be ascertained with a high probability. 
Therefore, a well- defined identity management function is 
indispensable to a system which wants to implement an access 
control policy model.  Additional desirable features included in 
this identity management function include a compliance module, a 
federated identity management module, and an authorization and 
use profile management module.  

A proposed improvement to the overall CloNe security 
architecture includes a backbone key management algorithm (to 
support the identity management function). The following Section 
5 will cover design and deployment details concerning a key 
management algorithm. The core algorithms have been 
customized and deployed in the CloNe infrastructure, and its 
evaluation results and comparisons with other 
algorithms/mechanisms are described in the respective sections.   

4. KEY MANAGEMENT 
The respective security functions and their interactions 

with the security goal translation function are depicted in Figure 
2. The access control policy function aids the different entities in 

 
Figure 1: CloNe architecture 



 

 

the CloNe environment to set and implement access control 
policies on the underlying resources, with respect to each 
infrastructure service user. The access control policies may either 
be directly specified by entities with specific roles (such as the 
tenant or infrastructure service user, infrastructure service or the 
infrastructure provider) or could be indirectly derived from the 
security goals specified by any of these entities described above. 

The auditing and assurance function checks whether the 
parameter constraints, which have been defined by the goal 
translation function and need to be realized on the underlying 
hardware resources, have indeed been fulfilled or not. The 
auditing mechanism is periodically executed, but could also be 
invoked upon request and/or need. The participating entities might 
want to verify whether all the security mechanisms functioned 
properly during a specific interval of time, especially in the event 
of a security breach.  The assurance function is responsible for 
assuring the infrastructure service user or other entities of the 
properties of entities/resources it is communicating with.  

The identity management solution provides five 
functions to support the overall security goal translation function. 
The functions are: identity provisioning, authentication, federated 
identity management, authorization and user profile management, 
and compliance. Identity provisioning promotes the secure and 

efficient management of provisioning and deprovisioning of user 
identities. Authentication allows credential management, strong 
authentication and optionally a choice of the desired strength of 
authentication on the fly, delegated authentication, and managed 
trust across all entities involved in the architecture. 

Federated identity management empowers the cloud 
tenant to authenticate themselves using their desired identity 
provider. Therefore, an exchange of identity attributes takes place 
between identity providers and service providers. Authorization 
and user profile management is useful for setting up access 
control policies and trusted user profiles. Information regarding 
access control policies has to be decided between the 
infrastructure service, identity provider (someone who manages 
the identities of infrastructure service users and authenticates 
them as and when needed), and sometimes the infrastructure 
service user. The identity provider maintains user profiles in 
tandem with the infrastructure service user himself. The policy 
information is then decided upon between the service provider 
and tenant. Finally, compliance ensures that the CloNe 
architecture is compliant with the regulations specified by 
different organizations/regions and that it satisfies the enterprise 
and/or country audit and compliance requirements.  

 
Figure 2: CloNe security architecture 



 

 

The remainder of this section describes the deployment 
of the key management scheme proposed by Vijaykumar et al [9]. 
This scheme aids in authenticating the participating entities, 
namely infrastructure service, distributed infrastructure service 
components across multiple infrastructure provider boundaries, 
and the infrastructure providers. The scheme offers a more 
efficient method of authenticating the participating entities (as it 
has lower time complexity than binary and erasure encoding 
methods) in the architecture, and it utilizes a larger key space 
which improves the overall security of the identity management 
function. 

4.1 Simple test bed  
We have created a simple test bed using two computers with 
similar hardware (CPU: Intel Pentium i7-2720QM (6 m cache, 
2.20Ghz), RAM 8 GB, NIC: Intel Ultimate-N 6300 (802.11 
a/b/g/n) Half Mini Card, Hard Drive: Seagate 500GB) connected 
with a cross over cable. Each physical computer hosted five 
virtual machines with Proxmox VE 1.8, an Open source 
virtualization environment. Each VM was running Ubuntu 10.10. 
We used IPv4 as the communication protocol stack. Proxmox VE 
uses a bridged networking model. These bridges are similar to 
physical network switches, but implemented in software on the 
underlying Proxmox VE host. All VMs share a single bridge, thus 
it was as if virtual network cables from each guest were all 
plugged into a single physical switch. To avoid cross VM 
communication, VLANs (implementing IEEE 802.1q) are used to 
separate the networks as if each VM were separately connected to 
the underlying physical system. Quagga, a network routing 
software suite was installed in each physical machine to enable 
inter-VLAN communication. The Apache Hadoop 1.0.0 

framework was also installed in each VM. Each VM can act as a 
master or a slave depending on the deployed application. The 
master node can use resources of one or more slaves at any given 
time. Each VM has to authenticate every other VM before sharing 
resources. Even if a VM belongs to the same logical rack, they 
authenticate each other and communications are routed through 
the virtual router whose routing daemon is running on the 
underlying physical machine. 

4.2 Key computation protocol 
 The key management algorithm proposed by 
Vijaykumar et al. [9] can be deployed in both hierarchical and 
distributed scenarios. In the hierarchical scenario, the value of n 
needs to be fixed, as this defines the number of child nodes each 
node can have. This is an improvement over a binary tree-based 
key management scheme, where the value of n is fixed as 2. The 
hierarchical scenario includes a GC, which can have up to n child 
nodes. The GC will in turn have up to n sub-group heads. Each 
sub-group head will have up to n child nodes (virtual machines). 
Each virtual machines creates their own public-private key pairs 
according to the following formulae as described in [9]: 

 ��� 	= 	 �
�(	�)��	� (1)  

In equation 1, node i choses a private key Ki and creates 
the corresponding public key PKi. �(��) specifies the  
Euler’s totient value of the private key Ki. Additionally, y and p 
are public parameters of the chosen group over which the 
cryptographic operations are carried out.  

After the computation of the public key, each node 
exchanges their public key with the other group members, and 
together they create the private key for the group. Creating a 

 
 

Figure 3: Key management function in CloNe security architecture 

 



 

 

public key pair for the group (sub-group head or GC) is not 
necessary, as there are no group based signatures (hence no need 
for an asymmetric key pair) required in this method. The 
messages exchanged between the group members only need to be 
encrypted with the same group private key being used both for 
encryption and decryption. As a result this method of encrypting 
and decrypting group messages will be faster than schemes that 
utilize an asymmetric key management method [33].  

The public key exchange as described in [9] is used to 
createa group key for an N-ary tree with n equal to 2. The value if 
n is set to 2 to keep the example simple. We will assume that the 
GC is denoted by node k.  If node i has a public key Ki and node j 
has a public key K,, then node i sends its public key to node j and 
vice versa. Equation (2) explains how equation (1) can be used by 
node i to compute the public key PKj. 

 ��� = ���
�(	�) =	 (��(	�))�(	�)mod	p (2)  

Node i receives the public key (PKj) of node j and it 
knows its own private key, namely Ki. Similarly, equation 3 
describes the creation of the group key by node j.  

 ��� = ���
�(	�) =	 (��(	�))�(	�)mod	p (3)  

Node j receives the public key of node i, while it knows 
its own private key, namely Kj. Clearly the value obtained from 
equations (2) and (3) must be same. Thus, this step can be 
repeated throughout the entire N-ary tree, and then the child nodes 
can collaborate to compute the group key.   

For the distributed scenario, there is no GC or sub-group 
head. Therefore, the group key will be created by the group 
members by exchanging their public keys, and there is only a 
single level of child nodes.  

4.3 Sample interaction 
The key management function is integrated with the 

identity management function, and allows the latter to carry out 
authentication, authorization, and compliance. The access control 
policy function sets and implements access control policies for the 
individual entities participating in the CloNe infrastructure, but 
the majority of access control policies focus on defining access 
control for the infrastructure service users.  The key management 
algorithm generates, distributes, and resets keys amongst the 
participating entities, namely the infrastructure service, 
distributed infrastructure service, and virtual machines. Multicast 
communication is an effective routing technology that reduces 
network traffic and improves application throughput, especially in 
data center networks [34, 35, 36]. For this reason, it is important 
to deploy a key management system which supports the 
authentication of CloNe entities (virtual machines and data center 
resources) involved in multicast communication. As we will show 
later the key management scheme proposed by VijayKumar et al. 
is faster than binary and erasure encoding schemes with the same 
key space, and it is an excellent choice for multicast (as described 
in subsection 4.2).  This key management scheme allows the 
different CloNe entities to send encrypted messages to authorized 
parties. This is extremely important for a scenario whereby virtual 
machines from two different administrative domains are involved 
in the same provisioned service. In such a scenario, it is extremely 
important that virtual machines from either administrative domain 
which are not involved in the provisioning should not be able to 
decrypt these messages. Moreover, multicast offers an appropriate 
communication mechanism for two of the proposed use cases for 
CloNe, namely video distribution and enterprise in the cloud. 

In the remainder of this section we will consider a 
sample interaction in which the user makes a resource request of 

the infrastructure service, and the latter carries out a (security) 
goal translation, and then delegates the translated resource 
configurations to the set of distributed infrastructure service 
components. In such a case, a session is initiated and keys are 
generated for each user of the group, in this case the infrastructure 
service, distributed infrastructure service components, and the 
virtual machines required for the service provisioning. Keys are 
generated only for the group-users that are required in satisfying 
this service provisioning request. However, ensuring that only the 
required virtual machines have been allotted keys is a 
responsibility of the hypervisor deployed at the data centers of 
each infrastructure provider, and this has not been analyzed in 
this paper. The leaf nodes (virtual machines) generate their 
respective session keys, and together collaborate using the 
mechanism described in subsection 4.2 to create a sub-group key 
(for the distributed infrastructure service). The sub-group head 
(i.e., the distributed infrastructure service) collaborates with the 
leaf nodes to create the key for the GC (in this case the 
infrastructure service) using the mechanism described in 
subsection 4.2. Therefore, each lower layer node will know the 
keys of all the nodes lying between it and the GC. If a node leaves 
the group, then the group should compute new keys for all 
members lying between the deleted member and the GC. Properly 
removing departing nodes is an important requirement, because 
virtual machines might be switched off and restarted due to 
technical faults and/or overload. In addition, new virtual machines 
may be assigned for the service (i.e., provisioned), and thus new 
keys have to be generated during the group join and leave 
operations in order to ensure forward and backward secrecy. 
Therefore, as soon as a virtual machine leaves the group, the 
remaining group members (i.e., the remaining virtual machine 
instances) will compute new keys for the sub-group head 
(distributed infrastructure service) and the GC (infrastructure 
service). Similarly, when a new member joins an existing service 
provisioning instance, new keys will be also generated. As noted 
earlier in this subsection, authenticating the identity of authorized 
virtual machines is the responsibility of the individual hypervisor 
instances and has not been covered in this paper.  

4.4 Analysis results 
In addition to the deployment details of the key 

management algorithm, it is equally important to describe the 
performance of the key management algorithm in the CloNe 
environment. The time taken for generating keys for various key 
distribution methods with respect to the chosen key management 
algorithm are covered in [9]. In our work we have carried out 
additional tests to determine the key computation times with 
varying group sizes, when the algorithm was deployed in the 
simple test bed of the CloNe infrastructure described in subsection 
4.1. The tests were carried out using a binary tree-based key 
management scheme, an N-ary tree-based key management 
scheme, and an erasure encoding scheme all implemented using 
JAVA programs in order to obtain results consistent with the 
original simulation results presented in [9]. In the N-ary tree-
based key management scheme as the key size increases in terms 
of the number of bits, the key space also increases. Consider the 
case of an N-ary tree when the key size is 1 byte, the intruder 
needs 100 attempts to decipher the message without knowing the 
secret key. While in a binary tree based key management system, 
only 10 attempts are needed. Therefore, the N-ary key 
management system provides 10 times greater security than the 
binary key management system. This is explained in more detail 
along with a mathematical proof in [9]. Table 1 shows a 
comparison between binary tree based key management and N-ary 



 

 

based key management method, where the key size is taken as the 
major parameter. 

Table 1: Comparison of key space 

 
 
Table 2 shows the number of multicast messages which need to be 
sent from the GC to the different group members, in order to 
recover the sub-group key and session key. These results prove 
that the N-ary method takes fewer re-keying messages, in 
comparison with the binary key management schemes. A 
mathematical proof is described in [9]. For the results in Table 2 
we have chosen n as 3 , in general for g messages the group size is 
ng. However, a disadvantage of the N-ary based key management 
scheme is that the value of n can not be modified without 
constructing a new tree using the new value of n. Thus, if n = 3, 
then at each level a node can only have a maximum of 3 children 
nodes. 

Moreover, the graphical results shown in figures 4 and 5 
provide additional performance results for the different key 
management algorithms. Figure 4 compares the key computation 
results obtained from an N-ary tree-based key management 
scheme with the binary tree-based method, as well as the erasure 
encoding method [10]. When the group size is 600, then the key 
computation time taken by the GC in the N-ary case is 11 ms, 
which is smaller than the time for a binary tree based key 
management scheme and slightly smaller than for the erasure 
encoding scheme. 

 

Table 2: Comparison of number of multicast messages 

 
 

 
Figure 4: Key computation time of various key distribution 

schemes at group center 

 
The following evaluation result shows that N-ary tree-based key 
management scheme needs fewer re-keying messages to recover a 
sub-group key and session key. When the group size is 243, and 
when we have a group-leave scenario, then only 5 messages need 
to be sent in the N-ary method for renewing the sub-group and 
session key while 8 messages are required in the binary tree 
scheme. The results in Figure 5 compare N-ary based key 
distribution scheme with the two approaches. From this figure we 
observe that when the group size is 600, the time taken in 
recovering a key is 4ms in the N-ary approach, which is 1 ms 
better than the erasure encoding scheme and 3 ms better then the 
binary tree based. Key recovery involves re-keying message 
exchanges which are explained in detail in [9].  

 

 
Figure 5 Key generation time of various key distribution 

schemes at group center 

 
Both the analysis results presented in [9] and in this 

section highlight the efficacy of the N-ary tree based key 
management algorithm for the CloNe infrastructure. The analysis 
results in this paper prove that the N-ary key management scheme 
is both faster and has a larger key space than either the binary-tree 
based or the erasure encoding scheme. Therefore, the proposed  
N-ary key management algorithm could be successfully deployed 
in the CloNe security architecture, as it is more efficient and 
secure than binary-tree based and erasure encoding scheme. 



 

 

5. RESULTS AND COMPARISON 
 In this paper, an N-ary tree based key distribution 
protocol was customized and deployed into a simple testbed 
mimicking the CloNe architecture. The chosen key management 
algorithm can be deployed both in a centralized or a distributed 
setting, and provides a larger key space and lower computational 
complexity than either binary or erasure encoding schemes. The 
key management algorithm allows virtual machines to efficiently 
distribute keys within an administrative domain (a single 
administrative area of an infrastructure provider) with few 
number of message exchanges as compared to the binary tree-
based scheme. Moreover, the algorithm can function without an 
external GC in a distributed setting, thus, authentication and key 
distribution can occur among the virtual machines even in the 
absence of an infrastructure service component.   

The access control policy function and the identity 
management function, especially its authentication and 
authorization functionalities, are greatly enhanced by a secure and 
lightweight key management algorithm [31]. Moreover, due to the 
low computational requirements of the N-ary algorithm, the 
computational load is reduced in comparison to the other two 
algorithms, which results in increased performance of the CloNe 
(security) architecture. Minimizing the load on these resources is 
extremely important because the underlying resources are utilized 
concurrently (potentially by many users), increased load would 
lead to unpredictable resource utilization (as resources can not be 
utilized unless the request to be allocated them can be fulfilled). In 
such a scenario, it is extremely important that the security and 
management modules should be lightweight and avoid adding 
undue load on the resource set. 

6. CONCLUSION AND FUTURE WORK 
In this paper, the customization and deployment of an 

N-ary tree based centralized key distribution protocol for the 
CloNe architecture has been proposed and evaluated. This key 
management algorithm is a collaborative key computation scheme 
and supports the authentication module of the identity 
management function of the CloNe security architecture. The 
results obtained show that the key computation time of the 
algorithm is reduced considerably when compared with similar 
key management algorithms that exist in the literature. Moreover, 
the use of this N-ary based key management algorithm reduces the 
rekeying cost during member join and leave operations.  Finally, 
this key management algorithm is capable of functioning without 
an external GC (infrastructure service component) in a distributed 
environment. Future extensions to this work include integration of 
the key management algorithm and the authentication module 
with the access control policy function and auditing and assurance 
function. Additionally, we need to add code so that the underlying 
hypervisor can authenticate the identity of authorized virtual 
machines. 
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