

N-ary tree based key distribution in a Network as a Service provisioning
model

Anand Kannan1 and Gerald Q.
Maguire, Jr2

School of Information and
Communication Technology

KTH, Royal Institute of Technology
Stockholm, Sweden

E-mail: {anandk1,maguire2}
@kth.se

Ayush Sharma, Volker Fusenig,
and Peter Schoo

Fraunhofer Research Institution
for Applied & Integrated Security

Parkring 4, 85748 Garching, Germany

Email:
{firstname.lastname}@aisec.fra

unhofer.de

ABSTRACT
Cloud networking is a new technology which integrates network
provisioning with the existing cloud service provisioning models.
This integration allows service providers to provision network
resources together with network performance guarantees as a part
of their service offering. However, the introduction of multiple
providers and service levels introduces many security challenges.
One such challenge is identity management, especially
authentication of different entities. This paper presents an analysis
of a management scheme deployed in a simulated cloud network
test bed. Our results show that this scheme is faster than binary
and erasure encoding schemes. The scheme uses an N-ary
approach and thus allows the placement of n entities at each level,
unlike the binary scheme which is restricted to two entities.

Categories and Subject Descriptors
C.2.4, D.2.12, D.4.6, D.4.8, and E.3

General Terms
Algorithms, Design, Measurement, Performance, and Security

Keywords
Cloud networking, Security architecture, Authentication, Identity
management, Trust management, Privacy

1. INTRODUCTION
The entire computing and information technology

management service ecosystem, ranging from small and medium
enterprises to large-scale conglomerates, has witnessed a
paradigm shift in their service delivery and provisioning models
during the last decade. Fuelled by the exponentially increasing
costs involved in procuring and maintaining resources,
organizations have shifted their resources into the “cloud”. This
has reduced the initial and maintenance expenditures for the
information technology (IT) organizations, and revolutionized the
entire IT ecosystem. Different flavors of clouds exist in the cloud
ecosystem: Software-as-a-Service (SaaS), Platform-as-a-Service

(PaaS), and Infrastructure-as-a-Service (IaaS). However, each of
these service provisioning models shares a common dependability
problem due to the lack of guaranteed network resource
provisioning between the end-user and the resources allocated to
the cloud tenant.

The European Scalable and Adaptive Internet soLutions
(SAIL) project [1] focuses on developing a new service
provisioning model called Network-as-a-Service (NaaS) which
shall ensure virtualized, elastic, dynamic, and on-demand network
resources provisioned to the end-user/tenant. The SAIL project
has developed a networking-as-a-service provisioning
infrastructure utilizing a cloud network (CloNe) architecture [2],
at its core to implement the NaaS model. Similar to other service
provisioning models, CloNe also suffers from a number of
security flaws (an exhaustive list of these is given by Schoo et al.
[3]). It is important to carry out an in-depth security analysis of
the cloud network architecture to compile a list of relevant
security requirements and goals. One of the identified challenges
for cloud network architectures is the integration of a secure and
efficient key management module [29,30].

This paper explains the design, deployment, and
analysis of an N-ary tree based key management algorithm which
provides the underlying mechanism for an overall identity
management function for the CloNe security architecture. This N-
ary scheme allows the placement of n entities at each level, unlike
the binary scheme [31] which is restricted to two entities. The
main contribution of this paper is the deployment and analysis of
the key management mechanism in our simulated cloud network
test environment, which demonstrates the feasibility and
performance of the proposed identity management function
deployed in the overall CloNe architecture.

The remainder of this paper is organized as follows:
Section 2 covers the related works pertaining to cloud security
architecture and key management algorithms. Section 3 elaborates
the CloNe architecture and the CloNe security architecture and
depicts the interaction sequence between the supporting security
functions. Section 4 explains the N-ary tree based key
management algorithm, its placement in the CloNe security
architecture, a sample interaction sequence, and our analysis
results. Section 5 summarizes these results and compares them
with the state of the art. Section 6 gives some and suggests future
work.

2. RELATED WORK
There are numerous key management and key

distribution schemes described in the literature [9, 18-20]. In

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ICACCI'12, August 3-5, 2012, Chennai, T. Nadu, India.
Copyright 2012 ACM 978-1-4503-1196-0/12/0010…$10.00.

many of these existing key management schemes, different groups
of users obtain a new multicast key for every new session update.
Among the various schemes for key distribution, the Maximum
Distance Separable (MDS) [21] method utilizes error control
coding techniques for distributing re-keying information. In MDS,
the keys are obtained based on Erasure decoding functions [22] in
order for each of the group members to compute the relevant
session keys. In this method the Group center (GC) constructs a
non-systematic MDS code C over the Galois Field GF(q) and a
secure one-way hash function H(.) whose co-domain is GF(q).
The GC generates n message symbols by sending the code words
into an Erasure decoding function. The first message symbol is
considered a session key, out of the n messages symbols, and the
group members are not provided this particular key by the GC.
Group members are given the (n-1) message symbols and they
compute a code word for each of them. Each of the group
members uses this code word and the remaining (n-1) message
symbols to compute the session key. The main limitation of this
mechanism is its computation and storage complexity. The
computational complexity is lr+(n-1)m where lr is the size of r bit
random number used in the mechanism and m is the number of
message symbols to be sent from the GC to group members. If
lr=m=l, computation complexity is nl. The storage complexity is
given by [log2L]+t bits for each member. Where, L is the number
of levels of the tree. Hence, GC has to store n ([log2L]+t) bits.

The data embedding mechanism proposed by Trappe, et
al. in [23] is used to transmit re-keying message by embedding the
re-keying information in the multimedia data. In this mechanism,
the computation complexity is O(log n). The storage complexity is
directly proportional to the value of O(n) for the server machine
and O(log n) for group members. This technique is used to update
and maintain keys in secure multimedia multicast communication.
The biggest limitation of this mechanism is that a new key called
embedding key has to be provided to the group members in
addition to the original keys, which increases the overhead.

Key management using key graphs as proposed by
Wong, Gouda, and Lam [24] creates secure groups from basic key
management graphs mechanism using a star based method and a
tree based method. The mechanism is not scalable due to its
excessive overhead. A new group keying method called the One-
way Function Tree (OFT) algorithm has been proposed by
McGrew and Sherman [25] uses one-way functions to compute a
tree of keys. In this method keys are computed up the tree, from
the leaves to the root reducing re-keying broadcasts to only
approximately log n keys. The main limitation of this approach is
its higher space complexity as compared to [23].

Trappe and Song proposed a Parametric One Way
Function (POWF) [20] based binary tree key management
scheme. In this scheme, a session key Ks is attached to the tree
below the root node. Each node in the tree is assigned a Key
Encrypting Key (KEK) which is an Internal Key (IK). Each user
is assigned to a leaf and is given the IKs of the nodes from this
leaf to the root node. If a balanced tree is complete, i.e., where all
the leaf nodes have members associated with them, then it is
necessary to generate a new layer of nodes when adding new
members. However, when a user wants to join the group, the keys
on the path from their assigned leaf node to the root and also the
session key must be changed. These new keys are generated by
GC. If a user departs from the group, then all the keys from this
user’s assigned leaf node to the root node become invalid. These
keys must be updated and distributed using a bottom up or top
down approach. The complexity of storage can be substantially
reduced if the numbers of multiplications are reduced. Some of
the key management schemes proposed in [26-28] are distributed

key management approaches which are characterized by having
no group controller. The group key can be generated either in a
contributory fashion, where all members contribute their own
share to computation of the group key, or generated by one
member.

In this paper, we propose a customized key management
mechanism which reduces the computational complexity of key
generation and distribution; and at the same time increases the
overall security by providing a larger key space. This mechanism
is more apt for a cloud networking environment which needs to
survive the failure of the GC.

3. CloNe ARCHITECTURE
The CloNe architecture is a multi-tier, multi-domain

service provisioning model which provisions virtualized, elastic,
dynamic, and on-demand network resources to the end-
user/tenant. The virtualized network resource is referred to as a
Flash Network Slice (FNS). Use of FNSs provides dynamic
network resource provisioning capabilities in a heterogeneous
multi-operator and heterogeneous network environment. CloNe
has been designed to concretize the abstract requirements of a
FNS and to ensure that the requested resource is correctly
deployed on the underlying resource set. CloNe has an inherent
three layer model consisting of its respective set of roles, a
collection of interfaces which allow the participating entities and
different security/management modules to communicate, and the
various modules themselves. A detailed description of the CloNe
architecture is given in [2]. Figure 1 shows an abstract view of
this architecture.

Each infrastructure service user makes an abstract
resource request to the infrastructure service through the
infrastructure service interface. The infrastructure service employs
an infrastructure service controller at its core. This controller is
responsible for carrying out the goal translation and the decision
making. The goal translation module implements the translation
of abstract user requests into concrete resource specifications
which can be deployed by the infrastructure provider on their
infrastructure. Moreover, each goal translation module is
responsible for generating multiple plausible (pareto-optimal) [5]
resource configurations while considering the multiple objectives
specified by each participating entity in the CloNe infrastructure.
A pareto-optimal solution is defined as a solution whereby none
of the participating entities can experience a better result, without
ensuring that at least one other entity experiences a reduction in
their performance. Therefore, there is a clear need for a decision
maker to select the best possible pareto-optimal solution which
defines the actual resource configuration to be deployed on the
resource set.

If the infrastructure service accepts a user’s request, it
carries out an intermediate goal translation with the help of
supporting management and security modules, and then delegates
the translated request to one or more distributed infrastructure
service components by using the infrastructure service interface.
Either the request can be completely fulfilled by a single
distributed infrastructure service components or it will be
distributed over multiple components. In the former case, the
distributed infrastructure service component might decide to
collaborate with additional distributed infrastructure service
components, if it is unable to satisfy the resource request in its
entirety. In such a case, the interactions would take place through
the distributed control plane (DCP) interface.

Each distributed infrastructure service component
operates within its individual administrative domain. Each domain
is administered by an infrastructure provider, who has complete

control of all the resources in that domain. In order to assist the
entire goal translation process, the infrastructure employs
supporting management modules including a resource
management and a fault management module. The resource
management module keeps track of the usage and health of the
underlying physical and virtual resources, and is responsible for
monitoring their utilization and mapping the requested virtual

resources onto the available physical resource set at its disposal. It
is supported by a fault management module, which is responsible
for monitoring faults, and providing the necessary inputs to the
resource management and overall goal translation modules.
However, as covered earlier, the cloud network architecture has
its own set of problems [3], which has led to the development of a
CloNe security architecture [4].

3.1 CloNe SECURITY ARCHITECTURE
The essential requirement of the security architecture is

to translate the security requirements specified by the tenant into
concrete resource constraints. Additional (security) requirements
may also be provided by the different entities in the architecture.
This security goal translation has been integrated in the overall
goal translation function described by Bjurling et al. [6] and
deployed in the CloNe architecture.

The resource configurations defined at the end of the
translation process is deployed by the infrastructure provider, and
the translation process is assisted by the different security
modules depicted in Figure 2. The various security functions
include an access control policy function, an auditing and
assurance function, an identity management function, and the
central security goal translation function (which forms the

backbone of the overall security architecture). The access control
policy function is responsible for determining access control
policies for each infrastructure service user, and will require a
suitable access control policy model to define those policies.

To support the access control policy function, an
identity management function has been defined to perform the
authentication checks of the varied entities in the infrastructure,

and to ensure that only authorized parties are provided access to
resources and/or services. Access control policies can only be
successfully deployed in a system when the identities of the
participating entities can be ascertained with a high probability.
Therefore, a well- defined identity management function is
indispensable to a system which wants to implement an access
control policy model. Additional desirable features included in
this identity management function include a compliance module, a
federated identity management module, and an authorization and
use profile management module.

A proposed improvement to the overall CloNe security
architecture includes a backbone key management algorithm (to
support the identity management function). The following Section
5 will cover design and deployment details concerning a key
management algorithm. The core algorithms have been
customized and deployed in the CloNe infrastructure, and its
evaluation results and comparisons with other
algorithms/mechanisms are described in the respective sections.

4. KEY MANAGEMENT
The respective security functions and their interactions

with the security goal translation function are depicted in Figure
2. The access control policy function aids the different entities in

Figure 1: CloNe architecture

the CloNe environment to set and implement access control
policies on the underlying resources, with respect to each
infrastructure service user. The access control policies may either
be directly specified by entities with specific roles (such as the
tenant or infrastructure service user, infrastructure service or the
infrastructure provider) or could be indirectly derived from the
security goals specified by any of these entities described above.

The auditing and assurance function checks whether the
parameter constraints, which have been defined by the goal
translation function and need to be realized on the underlying
hardware resources, have indeed been fulfilled or not. The
auditing mechanism is periodically executed, but could also be
invoked upon request and/or need. The participating entities might
want to verify whether all the security mechanisms functioned
properly during a specific interval of time, especially in the event
of a security breach. The assurance function is responsible for
assuring the infrastructure service user or other entities of the
properties of entities/resources it is communicating with.

The identity management solution provides five
functions to support the overall security goal translation function.
The functions are: identity provisioning, authentication, federated
identity management, authorization and user profile management,
and compliance. Identity provisioning promotes the secure and

efficient management of provisioning and deprovisioning of user
identities. Authentication allows credential management, strong
authentication and optionally a choice of the desired strength of
authentication on the fly, delegated authentication, and managed
trust across all entities involved in the architecture.

Federated identity management empowers the cloud
tenant to authenticate themselves using their desired identity
provider. Therefore, an exchange of identity attributes takes place
between identity providers and service providers. Authorization
and user profile management is useful for setting up access
control policies and trusted user profiles. Information regarding
access control policies has to be decided between the
infrastructure service, identity provider (someone who manages
the identities of infrastructure service users and authenticates
them as and when needed), and sometimes the infrastructure
service user. The identity provider maintains user profiles in
tandem with the infrastructure service user himself. The policy
information is then decided upon between the service provider
and tenant. Finally, compliance ensures that the CloNe
architecture is compliant with the regulations specified by
different organizations/regions and that it satisfies the enterprise
and/or country audit and compliance requirements.

Figure 2: CloNe security architecture

The remainder of this section describes the deployment
of the key management scheme proposed by Vijaykumar et al [9].
This scheme aids in authenticating the participating entities,
namely infrastructure service, distributed infrastructure service
components across multiple infrastructure provider boundaries,
and the infrastructure providers. The scheme offers a more
efficient method of authenticating the participating entities (as it
has lower time complexity than binary and erasure encoding
methods) in the architecture, and it utilizes a larger key space
which improves the overall security of the identity management
function.

4.1 Simple test bed
We have created a simple test bed using two computers with
similar hardware (CPU: Intel Pentium i7-2720QM (6 m cache,
2.20Ghz), RAM 8 GB, NIC: Intel Ultimate-N 6300 (802.11
a/b/g/n) Half Mini Card, Hard Drive: Seagate 500GB) connected
with a cross over cable. Each physical computer hosted five
virtual machines with Proxmox VE 1.8, an Open source
virtualization environment. Each VM was running Ubuntu 10.10.
We used IPv4 as the communication protocol stack. Proxmox VE
uses a bridged networking model. These bridges are similar to
physical network switches, but implemented in software on the
underlying Proxmox VE host. All VMs share a single bridge, thus
it was as if virtual network cables from each guest were all
plugged into a single physical switch. To avoid cross VM
communication, VLANs (implementing IEEE 802.1q) are used to
separate the networks as if each VM were separately connected to
the underlying physical system. Quagga, a network routing
software suite was installed in each physical machine to enable
inter-VLAN communication. The Apache Hadoop 1.0.0

framework was also installed in each VM. Each VM can act as a
master or a slave depending on the deployed application. The
master node can use resources of one or more slaves at any given
time. Each VM has to authenticate every other VM before sharing
resources. Even if a VM belongs to the same logical rack, they
authenticate each other and communications are routed through
the virtual router whose routing daemon is running on the
underlying physical machine.

4.2 Key computation protocol
 The key management algorithm proposed by
Vijaykumar et al. [9] can be deployed in both hierarchical and
distributed scenarios. In the hierarchical scenario, the value of n
needs to be fixed, as this defines the number of child nodes each
node can have. This is an improvement over a binary tree-based
key management scheme, where the value of n is fixed as 2. The
hierarchical scenario includes a GC, which can have up to n child
nodes. The GC will in turn have up to n sub-group heads. Each
sub-group head will have up to n child nodes (virtual machines).
Each virtual machines creates their own public-private key pairs
according to the following formulae as described in [9]:

 ��� 	= 	 �
�(�)��	� (1)

In equation 1, node i choses a private key Ki and creates
the corresponding public key PKi. �(��) specifies the
Euler’s totient value of the private key Ki. Additionally, y and p
are public parameters of the chosen group over which the
cryptographic operations are carried out.

After the computation of the public key, each node
exchanges their public key with the other group members, and
together they create the private key for the group. Creating a

Figure 3: Key management function in CloNe security architecture

public key pair for the group (sub-group head or GC) is not
necessary, as there are no group based signatures (hence no need
for an asymmetric key pair) required in this method. The
messages exchanged between the group members only need to be
encrypted with the same group private key being used both for
encryption and decryption. As a result this method of encrypting
and decrypting group messages will be faster than schemes that
utilize an asymmetric key management method [33].

The public key exchange as described in [9] is used to
createa group key for an N-ary tree with n equal to 2. The value if
n is set to 2 to keep the example simple. We will assume that the
GC is denoted by node k. If node i has a public key Ki and node j
has a public key K,, then node i sends its public key to node j and
vice versa. Equation (2) explains how equation (1) can be used by
node i to compute the public key PKj.

 ��� = ���
�(�) =	 (��(�))�(�)mod	p (2)

Node i receives the public key (PKj) of node j and it
knows its own private key, namely Ki. Similarly, equation 3
describes the creation of the group key by node j.

 ��� = ���
�(�) =	 (��(�))�(�)mod	p (3)

Node j receives the public key of node i, while it knows
its own private key, namely Kj. Clearly the value obtained from
equations (2) and (3) must be same. Thus, this step can be
repeated throughout the entire N-ary tree, and then the child nodes
can collaborate to compute the group key.

For the distributed scenario, there is no GC or sub-group
head. Therefore, the group key will be created by the group
members by exchanging their public keys, and there is only a
single level of child nodes.

4.3 Sample interaction
The key management function is integrated with the

identity management function, and allows the latter to carry out
authentication, authorization, and compliance. The access control
policy function sets and implements access control policies for the
individual entities participating in the CloNe infrastructure, but
the majority of access control policies focus on defining access
control for the infrastructure service users. The key management
algorithm generates, distributes, and resets keys amongst the
participating entities, namely the infrastructure service,
distributed infrastructure service, and virtual machines. Multicast
communication is an effective routing technology that reduces
network traffic and improves application throughput, especially in
data center networks [34, 35, 36]. For this reason, it is important
to deploy a key management system which supports the
authentication of CloNe entities (virtual machines and data center
resources) involved in multicast communication. As we will show
later the key management scheme proposed by VijayKumar et al.
is faster than binary and erasure encoding schemes with the same
key space, and it is an excellent choice for multicast (as described
in subsection 4.2). This key management scheme allows the
different CloNe entities to send encrypted messages to authorized
parties. This is extremely important for a scenario whereby virtual
machines from two different administrative domains are involved
in the same provisioned service. In such a scenario, it is extremely
important that virtual machines from either administrative domain
which are not involved in the provisioning should not be able to
decrypt these messages. Moreover, multicast offers an appropriate
communication mechanism for two of the proposed use cases for
CloNe, namely video distribution and enterprise in the cloud.

In the remainder of this section we will consider a
sample interaction in which the user makes a resource request of

the infrastructure service, and the latter carries out a (security)
goal translation, and then delegates the translated resource
configurations to the set of distributed infrastructure service
components. In such a case, a session is initiated and keys are
generated for each user of the group, in this case the infrastructure
service, distributed infrastructure service components, and the
virtual machines required for the service provisioning. Keys are
generated only for the group-users that are required in satisfying
this service provisioning request. However, ensuring that only the
required virtual machines have been allotted keys is a
responsibility of the hypervisor deployed at the data centers of
each infrastructure provider, and this has not been analyzed in
this paper. The leaf nodes (virtual machines) generate their
respective session keys, and together collaborate using the
mechanism described in subsection 4.2 to create a sub-group key
(for the distributed infrastructure service). The sub-group head
(i.e., the distributed infrastructure service) collaborates with the
leaf nodes to create the key for the GC (in this case the
infrastructure service) using the mechanism described in
subsection 4.2. Therefore, each lower layer node will know the
keys of all the nodes lying between it and the GC. If a node leaves
the group, then the group should compute new keys for all
members lying between the deleted member and the GC. Properly
removing departing nodes is an important requirement, because
virtual machines might be switched off and restarted due to
technical faults and/or overload. In addition, new virtual machines
may be assigned for the service (i.e., provisioned), and thus new
keys have to be generated during the group join and leave
operations in order to ensure forward and backward secrecy.
Therefore, as soon as a virtual machine leaves the group, the
remaining group members (i.e., the remaining virtual machine
instances) will compute new keys for the sub-group head
(distributed infrastructure service) and the GC (infrastructure
service). Similarly, when a new member joins an existing service
provisioning instance, new keys will be also generated. As noted
earlier in this subsection, authenticating the identity of authorized
virtual machines is the responsibility of the individual hypervisor
instances and has not been covered in this paper.

4.4 Analysis results
In addition to the deployment details of the key

management algorithm, it is equally important to describe the
performance of the key management algorithm in the CloNe
environment. The time taken for generating keys for various key
distribution methods with respect to the chosen key management
algorithm are covered in [9]. In our work we have carried out
additional tests to determine the key computation times with
varying group sizes, when the algorithm was deployed in the
simple test bed of the CloNe infrastructure described in subsection
4.1. The tests were carried out using a binary tree-based key
management scheme, an N-ary tree-based key management
scheme, and an erasure encoding scheme all implemented using
JAVA programs in order to obtain results consistent with the
original simulation results presented in [9]. In the N-ary tree-
based key management scheme as the key size increases in terms
of the number of bits, the key space also increases. Consider the
case of an N-ary tree when the key size is 1 byte, the intruder
needs 100 attempts to decipher the message without knowing the
secret key. While in a binary tree based key management system,
only 10 attempts are needed. Therefore, the N-ary key
management system provides 10 times greater security than the
binary key management system. This is explained in more detail
along with a mathematical proof in [9]. Table 1 shows a
comparison between binary tree based key management and N-ary

based key management method, where the key size is taken as the
major parameter.

Table 1: Comparison of key space

Table 2 shows the number of multicast messages which need to be
sent from the GC to the different group members, in order to
recover the sub-group key and session key. These results prove
that the N-ary method takes fewer re-keying messages, in
comparison with the binary key management schemes. A
mathematical proof is described in [9]. For the results in Table 2
we have chosen n as 3 , in general for g messages the group size is
ng. However, a disadvantage of the N-ary based key management
scheme is that the value of n can not be modified without
constructing a new tree using the new value of n. Thus, if n = 3,
then at each level a node can only have a maximum of 3 children
nodes.

Moreover, the graphical results shown in figures 4 and 5
provide additional performance results for the different key
management algorithms. Figure 4 compares the key computation
results obtained from an N-ary tree-based key management
scheme with the binary tree-based method, as well as the erasure
encoding method [10]. When the group size is 600, then the key
computation time taken by the GC in the N-ary case is 11 ms,
which is smaller than the time for a binary tree based key
management scheme and slightly smaller than for the erasure
encoding scheme.

Table 2: Comparison of number of multicast messages

Figure 4: Key computation time of various key distribution

schemes at group center

The following evaluation result shows that N-ary tree-based key
management scheme needs fewer re-keying messages to recover a
sub-group key and session key. When the group size is 243, and
when we have a group-leave scenario, then only 5 messages need
to be sent in the N-ary method for renewing the sub-group and
session key while 8 messages are required in the binary tree
scheme. The results in Figure 5 compare N-ary based key
distribution scheme with the two approaches. From this figure we
observe that when the group size is 600, the time taken in
recovering a key is 4ms in the N-ary approach, which is 1 ms
better than the erasure encoding scheme and 3 ms better then the
binary tree based. Key recovery involves re-keying message
exchanges which are explained in detail in [9].

Figure 5 Key generation time of various key distribution

schemes at group center

Both the analysis results presented in [9] and in this

section highlight the efficacy of the N-ary tree based key
management algorithm for the CloNe infrastructure. The analysis
results in this paper prove that the N-ary key management scheme
is both faster and has a larger key space than either the binary-tree
based or the erasure encoding scheme. Therefore, the proposed
N-ary key management algorithm could be successfully deployed
in the CloNe security architecture, as it is more efficient and
secure than binary-tree based and erasure encoding scheme.

5. RESULTS AND COMPARISON
 In this paper, an N-ary tree based key distribution
protocol was customized and deployed into a simple testbed
mimicking the CloNe architecture. The chosen key management
algorithm can be deployed both in a centralized or a distributed
setting, and provides a larger key space and lower computational
complexity than either binary or erasure encoding schemes. The
key management algorithm allows virtual machines to efficiently
distribute keys within an administrative domain (a single
administrative area of an infrastructure provider) with few
number of message exchanges as compared to the binary tree-
based scheme. Moreover, the algorithm can function without an
external GC in a distributed setting, thus, authentication and key
distribution can occur among the virtual machines even in the
absence of an infrastructure service component.

The access control policy function and the identity
management function, especially its authentication and
authorization functionalities, are greatly enhanced by a secure and
lightweight key management algorithm [31]. Moreover, due to the
low computational requirements of the N-ary algorithm, the
computational load is reduced in comparison to the other two
algorithms, which results in increased performance of the CloNe
(security) architecture. Minimizing the load on these resources is
extremely important because the underlying resources are utilized
concurrently (potentially by many users), increased load would
lead to unpredictable resource utilization (as resources can not be
utilized unless the request to be allocated them can be fulfilled). In
such a scenario, it is extremely important that the security and
management modules should be lightweight and avoid adding
undue load on the resource set.

6. CONCLUSION AND FUTURE WORK
In this paper, the customization and deployment of an

N-ary tree based centralized key distribution protocol for the
CloNe architecture has been proposed and evaluated. This key
management algorithm is a collaborative key computation scheme
and supports the authentication module of the identity
management function of the CloNe security architecture. The
results obtained show that the key computation time of the
algorithm is reduced considerably when compared with similar
key management algorithms that exist in the literature. Moreover,
the use of this N-ary based key management algorithm reduces the
rekeying cost during member join and leave operations. Finally,
this key management algorithm is capable of functioning without
an external GC (infrastructure service component) in a distributed
environment. Future extensions to this work include integration of
the key management algorithm and the authentication module
with the access control policy function and auditing and assurance
function. Additionally, we need to add code so that the underlying
hypervisor can authenticate the identity of authorized virtual
machines.

7. ACKNOWLEDGEMENTS
The authors would like to express their gratitude to the

European Commission for its funding through the “Scalable and
Adaptive Internet Solutions”, SAIL Project (FP7-ICT-2009-5-
257448). We would like to thank Sathyanarayanan Rangarajan,
Rajyadeep Dhunagana, and Ingmar Schoen from Fraunhofer
AISEC, Munich for their valuable comments and suggestions
regarding the CloNe architecture and its supporting security
functions.

8. REFERENCES
[1] Edwall, T. Scalable & Adaptive Internet Solutions
(SAIL).Report, 2011.

[2] Murray, P. et al. D-5.2 (D-D.1) Cloud Network architecture
Description. Report. 2011.

[3] Schoo, P., Fusenig, V., Souza, V., Melo, M., Murray, P.,
Debar, H., Medhioub, H., and Zeghlache, D. Challenges for cloud
networking security,” in Mobile Networks and Management, ser.
Lecture Notes of the Institute for Computer Sciences, Social
Informatics and Telecommunications Engineering. Springer
Berlin Heidelberg. 2010.
[4] Fusenig V. and Sharma, A. Security architecture for cloud
networking. In Proceedings of the 2012 International Conference
on Networking and Computing, ICNC 2012.IEEE Computer
Society, 2012.
[5] Chengyi Sun, Wanzhen Wang, and Gao X. Z. Scored Pareto-
MEC for multi-objective optimization. In Proceedings of the 2005
IEEE Mid-Summer Workshop on Soft Computing in Industrial
Applications. 2005. SMCia/05, 2005, pp. 105– 110.

[6] Bjurling, B., Steinert, R., and Gillblad, D. Translation of
probabilistic QoS in hierarchical and decentralized settings.
APNOMS 2011, pp. 1-8.
[7] Abou El Kalam, A., El Baida, R., Balbiani, P., Benferhat, S.,
Cuppens, F., Deswarte, Y., Miège, A., Saurel C., and Trouessin G.
Organization Based Access Control. In IEEE 4th International
Workshop on Policies for Distributed Systems and Networks
(Policy 2003), Lake Come, Italy, June 4-6, 2003.

[9] Vijayakumar, P., Bose, S., Kannan, A., and Siva Subramanian,
S. A Secure Key Distribution Protocol for Multicast
Communication. Communications in Computer and Information
Science, Springer, Vol 140, pp. 249–257, 2011.
[10] Somekh-Baruch, A. and Merhav, N. Exact Random Coding
Exponents for Erasure Decoding. Information Theory, IEEE
Transactions, vol.57, no.10, pp.6444-6454, Oct. 2011
doi: 10.1109/TIT.2011.2165826

[18] Li, M., Poovendran, R., and Berenstein, C. Design of secure
multicast key management schemes with communication budget
constrain. IEEE communications Letters, 6(2002), pp. 108-110.

[19] Poovendran, R. and Baras, J. S. An information-theoretic
approach for design and analysis of rooted-tree-based multicast
key management schemes. IEEE Transactions on Information
Theory. 47(2001), pp. 2824–2834.

[20] Trappe, W., Song, J., Radhapoovendran, and Ray Liu, K. J.

Key management and distribution for secure multimedia
multicast. IEEE transactions on Multimedia. 5(2003), pp .544-557

[21] Blaum, M., Bruck, J., and Vardy, A. MDS array codes with
independent parity symbol. IEEE Transactions on Information
Theory, 42(1996), pp. 529-542.

[22] Xu, L. and Huang, C. Computation-efficient multicast key
distribution. IEEE Transactions on Parallel and Distributed
Systems.19 (2008), pp .1-10.

[23] Trappe, W., Song, J., Poovendran, R., and Liu, K.J.R. Key
distribution for secure multimedia multicasts via data embedding.
IEEE International Conference on Acoustics, Speech, and Signal
Processing, Maryland University, College Park, MD ,2001.

[24] Wong, C., Gouda, M., and Lam, S. Secure group
communications using key graphs. IEEE/ACM Transactions on
Networking. 8(2000), pp.16-30.

[25] McGrew, D. A., and Sherman, A. T. Key establishment in
large dynamic groups using one-way function trees.
Cryptographic Technologies Group, TIS Labs at Network
Associates, (1998), pp.6-12, [Online]. Available: draft-balenson-
groupkeymgmt-oft-00.txt.

[26] Shi. H. and He, M. A communication-efficient key
agreement Protocol in Ad hoc Networks. IEEE International
Conference on Wireless Networks, Communications and Mobile
Computing,China, 2005.

[27] Seba, H., Tigrine, F., and Kheddouci, H. A tree-based group
key agreement scheme for secure multicast increasing efficiency
of rekeying in leave operation. IEEE Symposium on Computers
and Communications, Bourg-en-Bresse, France, 2009.

[28] Ramkumar, M. The subset keys and identity tickets (SKIT)
key distribution scheme. IEEE Transactions on Information
Forensics And Security. (2010), pp.39-51

[29] Bennani, N., Damiani, E., and Cimato, S. Toward Cloud-
Based Key Management for Outsourced Databases. In
Proceedings of Computer Software and Applications Conference
Workshops (COMPSACW), 2010 IEEE 34th Annual, 2010, pp.
232–236.

[30] Lei, S., Zishan, D., and Jindi, G. Research on Key
Management Infrastructure in Cloud Computing Environment. In
9th International Conference on Grid and Cooperative
Computing (GCC), 2010, pp. 404–407.

[31] Kambourakis, G., Konstantinou, E., and Gritzalis, S. Binary
tree based public-key management for Mobile Ad Hoc Networks.
In Proceedings of IEEE International Symposium on Wireless
Communication Systems. 2008. ISWCS ’08, 2008, pp. 687–692.

[32] Striki, M. and Baras, J.S. Towards integrating key
distribution with entity authentication for efficient, scalable and
secure group communication in MANETs. Communications, 2004
IEEE International Conference on , vol.7, pp. 4377- 4381, 20-24
June 2004 doi: 10.1109/ICC.2004.1313374
URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=
1313374&isnumber=29132

[33] Simmons, G. J. Symmetric and Asymmetric Encryption.
ACM Comput. Survev. 11, 4 (December 1979), 305-330 doi:
10.1145/356789.356793
URL:http://doi.acm.org/10.1145/356789.356793

[34] Li, D., Li, Y., Wu, J., Su, S., and Yu, J. ESM: Efficient and
Scalable Data Center Multicast Routing. Networking, IEEE/ACM
Transactions on , no.99, pp.1, 0 doi:10.1109/TNET.2011.2169985
URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=
6045301&isnumber=4359146

[35] Li, D., Xu, M., Zhao, M. C., Guo, C., Zhang, Y., and Wu,
M.Y. RDCM: Reliable data center multicast. INFOCOM, 2011
Proceedings IEEE , pp.56-60, 10-15 April 2011
doi: 10.1109/INFCOM.2011.5935228
URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=
5935228&isnumber=5934870

[36] Li, D., Cui H., Hu, Y., Xia, Y., and Wang, X. Scalable data
center multicast using multi-class Bloom Filter. 19th IEEE
International Conference on Network Protocols (ICNP), 2011,
pp.266-275, 17-20 Oct. 2011 doi:10.1109/ICNP.2011.6089061
URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=
6089061&isnumber=6089029

