
The Trouble With Security Requirements
Sven Türpe

Fraunhofer Institute for Secure Information Technology SIT
Darmstadt, Germany

Email: sven.tuerpe@sit.fraunhofer.de

Abstract—Manifold approaches to security requirements en-
gineering have been proposed, yet there is no consensus how
to elicit, analyze, or express security needs. This perspective
paper systematizes the problem space of security requirements
engineering. Security needs result from the interplay of three
dimensions: threats, security goals, and system design. Elemen-
tary statements can be made in each dimension, but such one-
dimensional requirements remain partial and insufficient. To
understand security needs, one has to analyze their interaction.
Distinct analysis tasks arise for each pair of dimensions and are
supported by different techniques: risk analysis, as in CORAS,
between threats and security goals; security design, as exemplified
by the framework of Haley et al., between goals and design;
and security design analysis, such as Microsoft’s threat modeling
technique with data flow diagrams and STRIDE, between design
and threats. All three perspectives are necessary to develop secure
systems. Security requirements engineering must iterate through
them, because threats determine the relevance of security goals,
security design seeks ways to fulfill them, and design choices
themselves influence threats and security goals.

Index Terms—Computer security, requirements engineering,
system analysis and design, security risk, threat model, vulnera-
bility, information security, software design, solution design

I. INTRODUCTION

Security requirements define the difference between a func-
tional but vulnerable system and one that can withstand ma-
licious interference and abuse in its operational environment.
Regardless of their functional correctness and their fulfillment
of other requirements, software and systems are by default
vulnerable to attacks. To make them less vulnerable, the
development process needs to shape their security proper-
ties by adding security mechanisms and implementing them
correctly, by observing security principles, and by avoiding
defects attackers could exploit. Security requirements guide
this design, implementation, and verification work.

The literature describes a smorgasbord of approaches, tech-
niques, and notations for security requirements engineering
and related tasks [1]–[5]. Alas, the various proposals can
apparently not even agree on a common definition what a
security requirement is [3], let alone a common general ap-
proach. Moreover, industry practitioners have developed their
own set of tools and techniques to identify security concerns
early during development [6]–[10].

Security requirements are often considered non-
functional [11] and one can even find complaints about
functional expressions of security requirements in terms of
security mechanisms [12]. Empirical evidence suggests that
non-functional requirements tend to be discovered by software

architects rather than being specified by stakeholders [13].
Nevertheless, some proposed approaches treat security
requirements as something to be elicited from stakeholders
and passed to architects and designers. Techniques grown in
the software industry [6], [8], on the other hand, are focused
on design and design review by developers.

This paper aims to connect some of the dots and proposes
a metamodel of security requirements engineering. Instead
of a fine-grained conceptual model of security, as applied in
some of the literature [1], [14], we use a broader brush here
and argue that security needs have three essential dimensions.
The first is threats, as security needs do not arise in benign
environments where no actors with malicious intent exist. The
second is stakeholder goals. Threats imply security needs only
inasmuch as their consequences collide with the goals of a
system’s stakeholders. The third dimension is the design of the
system, particularly its security design. It shapes the system’s
security properties and vulnerabilities, which determine how
threats can or cannot cause undesired consequences.

Statements concerning security needs can be made in each
dimension independent of the others, but analysis is necessary
to validate such statements, to derive design choices, and to
verify development results. With threats and goals one can
reason about risks—possible and likely consequences of un-
mitigated threats for the goals of a system and its stakeholders.
CORAS [15] is an example of a risk analysis technique.
Between goals and design we find security requirements
engineering in a narrower sense, aiming to prepare and verify
design decisions. An example is the security requirements
engineering framework by Haley et al. [16]. Finally, between
design and threats one reasons about possible interactions
between adversaries and a system. Microsoft’s threat modeling
technique with data flow diagrams (DFD) and STRIDE [6]
represents this type of analysis.

All three types of analyses are necessary to understand
security needs and build secure systems. The requirements
engineering and development process has to iterate through
them. This is in part a consequence of the Twin Peaks
model [17] and in part one of adaptive adversaries reacting
to design choices. Instead of merely adapting the Twin Peaks
model for security [18], it should therefore be extended to
include threat models as a third peak.

Regardless of its focus and approach, security requirements
engineering entails some epistemic challenges. First, adver-
saries influence the success or failure of a security design,
but other than legitimate stakeholders they are not available

S. Türpe, "The Trouble with Security Requirements," 2017 IEEE 25th International Requirements Engineering Conference (RE), 
Lisbon, Portugal, 2017, pp. 122-133. doi: 10.1109/RE.2017.13
© IEEE, http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8048898&isnumber=8048874



for requirements engineering activities. Second, security itself
is complex, and security requirements techniques have to
deal with this complexity. Third, reasoning about security,
as required in the three requirements analysis tasks, is hard.
Future research might take on these challenges.

II. SECURITY AS A DESIGN OBJECTIVE

Security is not simply a set of features or a functional
component to be added to a system. Security is rather a cross-
cutting concern to be considered throughout development.
Security needs of a system arise from the expected presence of
threats in its operational environment: “Security engineering
is about building systems to remain dependable in the face of
malice, error or mischance” [19]. Threats can be intentional
(“malice”) or unintentional (“error or mischance”). In a nar-
rower sense, security deals primarily with intentional threats
caused by intelligent adversaries, which actively pursue their
respective agenda and are harder to fend off than unintentional
accidents.

A. From Policy Enforcement to Security Development

In its early days, computer security aimed to solve a straight-
forward problem in a simple setting: to enforce organizational
security policies in isolated computers belonging to the orga-
nization [20]. Attention was focused on operating systems and
the question how to enforce access control policies there [21]–
[25], so that they would apply to all application programs. A
set of security design principles [26] soon emerged for this
setting and a large body of literature on access control and
security policies has grown ever since. In parallel, the old art
of cryptography gained wider attention and entered a new era
with the invention of public-key crypto systems [27]–[29].

While access control and cryptography continue to be
cornerstones of computer security, information technology has
outgrown early-day assumptions and some—but not all—of
the early principles [30]. On the one hand, having a single cen-
tralized access control mechanism is no longer feasible with
vast numbers of computers connected across organizational
and other boundaries. On the other hand, exploitable software
defects, such as memory corruption bugs [31], [32] allowing
attackers to inject their own code into a running program,
turned out as a frequent problem [33], [34]. Attacks often
exploit such vulnerabilities or weaknesses caused by system
management or user behavior, rather than flaws in security
mechanisms themselves [35], [36]. With the growing number,
diversity, complexity, and interconnection of computer systems
the number and diversity of adversaries and their possible
attacks has also grown.

B. Security Design

Consequently, security comprises besides functional re-
quirements also quality aspects [11], [37]. Security functions
become ineffective if they themselves, or components they
depend on, have implementation or design flaws or if the
security architecture of a system permits their circumvention.

To address potential vulnerabilities, development has to take
care of:

• security design patterns [38]–[40] and architectural prop-
erties like the attack surface [41] or defense in depth [42],

• dependencies between security functions, such as the
reliance of access control on authentication and of remote
authentication on network security,

• technology-specific flaws and defects like those collected
in the Common Weakness Enumeration (CWE) [43]
and the OWASP Application Security Verification Stan-
dard [9],

• vulnerabilities inherited from used components, as in
the case of the notorious Heartbleed vulnerability in
OpenSSL [44],

• human factors and usability issues [45], [46] affecting the
strength of security features, and

• possible abuses of required functions by otherwise legit-
imate users or by outsiders.

These and other security considerations have to be made
in addition to any development work addressing primary
requirements. Systems are usually created to serve a purpose
and then they should also be secure. This makes security a
secondary concern. Specific security concerns are dependent
and implied by other requirements or by design decisions.
Security as a whole is a cross-cutting topic that cannot be
isolated in a particular component, and security concerns are
non-uniformly distributed across the parts of a system.

C. “Secure” Means “Not Vulnerable”

Positive definitions of security are difficult if not impossi-
ble [37]. Security is about preventing attacks by adaptive ad-
versaries, who actively seek routes to success [47] and ignore
rules that are not being enforced by effective mechanisms [48].
The secondary, dependent nature of security concerns adds to
the challenge: Similar design features can have vastly different
consequences in different contexts.

Defined negatively, security development aims to prevent
vulnerabilities in development results. “A vulnerability is a
weakness in the system that an attack exploits” [49], in other
words, a feature or property of a system that helps an attack
to succeed. The more vulnerable a system is, the higher
is the expected success rate of attempted attacks [14] and
the more choices an attacker has. For substantial security
improvement it does not suffice to mitigate a random collection
of vulnerabilities. Considering attack adaptation, one has to
care about classes of vulnerabilities that are equivalent from an
attacker’s point of view as they afford comparable results with
comparable effort and prerequisites. However, it would on the
other hand also be inappropriate to overspend on security and
address vulnerabilities that could theoretically be exploited by
some attacker but are unlikely to matter in practice.

A further challenge lies in the nature of vulnerabilities as
design features (or defects) of a system. Vulnerabilities often
exist in side effect behavior that does not affect normal use
but is exploitable in an attack [50]. For example, weak or
missing encryption of data in transit over untrusted networks



DesignThreats Goals

System

Adversaries

Possible

attacks

Conse-

quences

Stakeholders

Environment

Figure 1. General model of security problems. Adversaries may attack a
system, causing consequences for its stakeholders.

has not the slightest impact on a system’s function, reliability,
or performance, but it allows an attacker to obtain information
by sniffing network traffic. This has two consequences: First,
software and systems are vulnerable by default and it takes
dedicated effort to make them less so. Second, unlike defects
that affect users in some way, vulnerabilities tend to remain
invisible until one specifically looks for them.

III. THREE DIMENSIONS OF SECURITY

A. Security Needs

While a general desire for security is easy to express,
development needs more precise guidance. To provide this
guidance is the purpose of security requirements. A require-
ment is a “statement which translates or expresses a need and
its associated constraints and conditions” [51]. Requirements
express needs in such a form that the design and development
process can fulfill them and its results can be verified. Se-
curity requirements do this for security needs. As with other
requirements, stakeholder goals are their root.

Security involves another type of actor besides
stakeholders—adversaries. An adversary has goals like
a stakeholder and will pursue them in or through a system,
but those goals and the adversary’s success are not to be
supported. Adversaries are unwelcome stakeholders whose
success would run counter to the goals of the legitimate ones,
hence the notions of anti-goals and anti-requirements [52],
[53]. Fig. 1 illustrates the adversarial relationship that leads
to security needs: Adversaries may attack a system, causing
consequences that affect legitimate stakeholders1.

Let us condense this general model into two definitions:

Definition (Security Needs). Security needs of a system or
software product are design objectives concerning the pro-
tection of its stakeholders from consequences of (intentional)
threats that conflict with the stakeholders’ goals.

1Note that the separation of stakeholders and adversaries is an idealization,
as rogue users or insider threats blur the line between them. However, for any
particular attack it should be possible, at least in principle, to distinguish the
perpetrators from their victims.

Threats Design

Goals

System Context and Environment

Security

Needs

Figure 2. Dimensions of security needs. Threats, security goals, and the
design of a system together determine security needs.

Definition (Security Requirements). Security requirements
express security needs in a form suitable to inform security
design and make its results verifiable.

The distinction between security needs and security require-
ments aims to evade preconceptions about the latter [54].

Not explicitly included in these definitions is the environ-
ment in which a system operates. Environmental conditions
modify security problems and thus security needs. For exam-
ple, different systems may be exposed to different adversaries,
the presence or absence of alternative targets may influence
adversary behavior, and attacks may have consequences out-
side a system. As Courtney’s first law puts it, “You cannot say
anything interesting (i.e., significant) about the security of a
system except in the context of a particular application and
environment.” [55].

B. Threats, Goals, and Security Design

Three elements interact to create a security problem: threats
to which a system is exposed, the (security) design of the
system, which is shaped during development, and stakeholder
goals, with which the consequences of manifest threats—
i.e., attacks—collide. The likelihood and consequences of
attacks depend on adversaries and system properties; which
consequences matter depends on the stakeholders’ security
goals. Therefore we need to consider three dimensions as
shown in Fig. 2 and outlined below to discuss the security
needs of a system.

1) Threats: Threats are the raison d’être of security needs.
Threats are an objective, independent factor a system is con-
fronted with. Threats can only be understood and addressed,
not changed or negotiated. Threats as such are latent and
merely a potential [14]; how this potential translates into actual
attacks depends also on the target(s) and the environment.
Adversaries (a.k.a. threat agents) as the source of security
threats are intelligent, adaptive actors pursuing their own
agenda and disregarding damage inflicted on others. A threat
therefore corresponds with a range of possible attacks that are
viable and promising for the respective adversaries. Threats



may target a system for its own sake or as an instrument to
achieve goals elsewhere.

2) Goals: Stakeholders have explicit or implicit security
goals. The operation and use of a system is for them a
means to some end. In a benign environment that would be
it, but actual or feared threats impose security goals. Perhaps
the most general formulation of a security goal is to let a
system operate as intended without unbearable disruptions or
side effects, regardless of any threats. More specific goals
follow by refinement. Security goals are traditionally often
expressed in terms of assets and properties like confidentiality,
integrity, or availability to be preserved, but may also concern,
for example, conditions for collaboration [56] or economic
boundaries. Security goals can exist without actual threats,
but defense against imaginary threats would be an investment
without return. Goals can therefore be negotiated and traded
off and any particular goal may be more or less reasonable to
pursue given the cost of doing so.

3) Design: Security design has a twofold meaning, refer-
ring on the one hand to the features and properties of a system
that determine its security and on the other hand to efforts
to shape these features and properties. A system’s security
design influences how this system can be attacked and what
the consequences are. Security design is intertwined with other
design aspects like functionality, architecture, and usability.
Since vulnerabilities often exist in side effect behavior, se-
curity design takes place inadvertently unless one makes a
conscious effort to shape the security properties of a system.
Even then, any further design or implementation decision can
change security properties. As systems are facing multiple
adversaries and attacks and stakeholders may pursue diverging
goals, security design involves tradeoffs.

C. Example: Bicycle Theft

As an example illustrating the three dimensions of security
needs, consider bicycle theft [57]. The threat of theft results
from the existence of thieves—adversaries who disregard
others’ ownership rights in favor of their own gain. This threat
concerns all movable objects, but its intensity varies with
exposure, value, ease of taking away, and other factors. The
theft threat conflicts with the owner’s goals to retain ownership
until voluntarily transferring it and to use the bicycle at any
time. The design of a bicycle as a lightweight human-powered
vehicle makes it easy to move. Locking is a common design
feature to counter the theft threat. Thieves may adapt by
choosing different targets, by attempting to break locks, or
by stealing bicycle parts.

D. Common Concepts, Inconsistent Terminology

The trinity of concepts in Fig. 2 appears, in varying
wording, all over the security literature. Table I shows some
examples. These materials take different perspectives, which
their respective terminology reflects. For example, Willis [59]
focuses on attacks, whereas the Common Criteria [60] are
a framework for product security certification. The former
therefore speaks of vulnerabilities and attack consequences

and the latter of countermeasures and assets. More importantly,
definitions of security [37, p. 316] or security engineering [19,
p. 3] use expressions like malice (threat), dependable (goal),
and building systems (design) that map straightforwardly to
these concepts.

The literature proposes several finer-grained ontologies of
security concepts [1], [60]–[63]. The three dimensions can be
found there as well, although broken down into further pieces.
For example, the Common Criteria’s general model [60, part
1, sec. 7.1] posits six concepts: owners and assets (goals),
threat agents and threats (threats), countermeasures (design),
and risk as something determined by the others.

IV. ONE-DIMENSIONAL SECURITY REQUIREMENTS

Elementary security requirements can be expressed in each
of the three dimensions without much regard for the others.
However, to validate such statements about security needs or
to translate them into design decisions one needs to make
assumptions about the remaining dimensions. These assump-
tions often remain implicit, but sometimes become visible in
comparison between different systems or contexts. A mix of
assertions across the three dimensions is the likely result of
naive security requirements elicitation.

A. Security Goals

Security goals describe the desired protection of a system
and its environment. They capture conditions to be achieved
regardless of threats and design consequences. Goals may
describe, for example:

• assets and their protection needs: “Documents concerning
inventions must remain confidential until a patent appli-
cation has been filed,”

• dreaded consequences: “Large-scale leakage of personal
data will cost us reputation and customers,”

• organizational policies pertinent to the information pro-
cessed in a system: “Only staff with sufficient security
clearance can access classified information,” or

• legal or business requirements: “The system must comply
with European data protection law.”

The first two items describe protection goals, the other two are
formal compliance goals originating from assumed protection
needs.

Such goals often pre-exist when development begins and
can be elicited as domain knowledge of stakeholders. However,
assets may be missed or their protection needs may be over-
or understated. When considering only goals, it is easy to
request protection of everything against all evils, but the
cost of protection requires prioritization and therefore some
understanding of the threats faced.

Some security goals can be refined into functional security
requirements. However, security design is underspecified by
only functional requirements: the implementation of required
security functions alone does not guarantee the security need
to be satisfied with respect to actual adversaries. Nonetheless,
security functions can provide a useful protection baseline and
their presence may also limit liability in the case of an incident.



Table I
VARYING TERMINOLOGY FOR THE THREE DIMENSIONS OF SECURITY NEEDS

Dimension Shostack
[8, p. 219]

Landwehr
[58]

Willis
[59]

Anderson
[19, p. 3]

Goertzel et al.
[37, p. 316]

Common Criteria
[60, pt. 1, 7.1]

Threats Threats Adversary,
threat

Threat to a
target

Malice, error,
mischief

Threats Threat agents and
threats

Goals Requirements Policy Consequences Remain
dependable

Preserve dependability Owners and assets

Design Mitigations Mechanism Vulnerability Building
systems

Ability . . . to protect itself
from sponsored faults

Countermeasures

Security needs,
requirements

—
(Security)

Assurance Risk Security
engineering

Protection against disclosure,
subversion, or sabotage

Risk (reduction)

Security goals are useful as a reference in verification
tasks like penetration testing. Formal goals may also imply
defined evaluation procedures. Effective protection of assets,
on the other hand, is difficult to demonstrate. If a possible
vulnerability has been found, its impact can be evaluated
against known goals. Prioritization is difficult without an
understanding of threats.

B. Threats

A threat statement describes adversaries—their goals, ca-
pabilities, or expected behavior. Threats can be characterized
without reference to specific security goals or system design
features, for example in terms of:

• adversary capabilities: “A nation-state actor with consid-
erable resources,” or “an adversary controlling a botnet
on the Internet,”

• objectives and success conditions: “Cyber criminals work
for profit and aim to evade apprehension,”

• target selection behavior: “opportunistic,” “targeted,”
“scalable,”

• modus operandi: “Intelligence services employ ‘evil
maid’ attacks, wherein they inspect and possibly tamper
with unattended personal mobile devices,” or

• technical attack patterns: “Transparent rerouting of net-
work traffic to run through a host under the control of
the attacker.”

Security needs follow from threats if a system is exposed
to them, adversaries are interested in it as a target, and the
resulting risks are not acceptable.

Eliciting complete and reliable threat models from stake-
holders is hard; even security experts struggle with this task.
Validation is equally difficult. The challenge is to distinguish
real threats from unsubstantiated fears [64] while simultane-
ously avoiding too restrictive assumptions about what adver-
saries might want and do. Neither ignorance nor excessive
paranoia lead to useful threat models.

Threat models motivate security needs but do not define
them to the extent that one could derive a security design spec-
ification from threat descriptions alone. They provide therefore
a rather indirect design guidance, a frame of reference to

evaluate design choices and features in. Threat models serve as
a useful input into verification tasks like penetration testing.
However, the effectiveness of a security design against real
threats remains difficult to assess due to adaptation of attacks
and many unknown parameters. Technical attack patterns may
be easier to work with than adversary models, particularly
when it comes to baseline protection against common vulnera-
bility patterns, but such patterns can be meaningfully discussed
only in relation to a system design.

C. Security Design

Finally, security needs can be described by statements
concerning the design of a system or software product itself.
Such statements are focused on the solution space and omit or
merely imply their justification. One can state, for example:

• required security functions: “The system must log an
audit trail of security events,”

• design detail with security implications: “Session IDs
must be long, random, and unique,” or

• common vulnerabilities to avoid: “The web UI must not
contain cross-site scripting vulnerabilities.”

Expressing security needs in terms of the design space may
seem like a shortcut, but there can be good reasons to jump
right to design. First, some security functions may be justified
by business requirements and customer preferences [65], rather
than by threat and security goal considerations. Second, some
security functions—e.g., user authentication, access control,
and encrypted communication—are common across a wide
range of systems and applications as they solve common
problems. Third, baseline protection against common vulnera-
bilities is almost always needed. Fourth, some technology and
architectural choices entail specific security design require-
ments. While following best-practice guides may not suffice
to create a secure system, it is often a necessary condition.

Elicitation of security design requirements from stakehold-
ers can yield partial and skewed results. Security experts
and developers may be better suited to select a reasonable
set of design guidelines, but even they can fall victim to
availability heuristics and other biases. Design guidance by
stakeholders needs to be validated against goals and threats



Threats Design

Goals

Security

Needs

Risk Analysis

Security Design 

Analysis

Design Process

Figure 3. Analysis tasks. Each pair of dimensions leads to a distinct
perspective.

to prioritize it and also to find gaps due to overestimation
of the protection afforded by security mechanisms. Design
guidance straightforwardly translates into specifications and
is straightforward to verify later on.

V. ANALYSIS TASKS

Single-dimension statements need validation and then trans-
lation or refinement into applicable design guidance. This
is ultimately a three-variable problem, where any change
in one dimension may entail changes or new questions in
the remaining two. Changing goals imply changing design
objectives and threat prioritization, changing threats entail
different security goals and change the success criteria for
design choices, and design changes may lead to new goals and
to threat adaptation. This makes it difficult, if not impossible,
to refine a set initial requirements into final design guidance
in a the single pass of a waterfall approach.

To mitigate this difficulty, one may keep one dimension tem-
porarily fixed while focusing on interdependencies between
the remaining two. As we will see in the next section, this is
indeed what some security requirements techniques do. This
yields the three analysis tasks indicated in Fig. 3, one for
each pair of dimensions. Risk analysis aligns security goals
with threat models and prioritizes them. The design process
translates security goals into design decisions. Security design
analysis looks at the security properties that result from design
decisions in relation to threat models.

A. Threats and Goals: Risk Analysis

Risk analysis pairs security goals with opposing threats,
refines either component as necessary, and ranks goal-threat
combinations by goal importance and expected damages. Risk
analysis takes an abstract and “what-if” point of view. Tech-
nology and design considerations play a minor role and effects
of design choices are often merely estimated or assumed. On
the one hand is the impact of design choices on the overall
risk profile hard to estimate. On the other hand are technical
details irrelevant for many scenarios. If, for example, the goal
at hand is to keep certain data confidential against a variety
of leakage threats, the precise technical way of leaking is less
important for risk analysis than the frequency and scale of
possible incidents. Once a risk model has been established,

there may also be alternative approaches to risk mitigation,
avoidance, or transfer, which likely rely on different features
of the system. Risk analysis leads to a better understanding
of the security problem and of general solution strategies, but
does not detail the solution.

Consider the bicycle theft example from III-C above. Going
back and forth between threat models and security goals, we
may refine our understanding of the problem as follows: The
utility and the value of a bicycle may be lost temporarily,
e.g., if damaged and repaired or if stolen but recovered, or
permanently. Permanent loss can be considered the maximum-
damage case; the average bicycle is worth a few hundred euros.
Thieves may target this value and try to sell stolen bicycles, be
content with the lower scrap value, or take a bicycle solely to
ride it themselves. In the light of this threat model our general
security goal translates into a combination of strategies: (1)
increase the immediate cost of stealing, (2) make the loot
less valuable for the thief, (3) ease recovery, and (4) evade
targeting.

B. Goals and Design: Design Process

The design process of a system translates security goals into
design choices. High-level design takes place in a process of
exploration, evaluation, and decision-making [66]. Security is
one of many facets of design, a particular perspective from
which to consider and select options. Security goals guide the
selection of security mechanisms, the definition of policies and
security models, and the application of security principles and
patterns.

Security design is not a straightforward, top-down refine-
ment of security goals. Even if a security goal is closely
aligned with the capabilities of a security mechanism, such as
confidentiality with encryption, mere deployment of the mech-
anism does not imply fulfillment. The scope of protection of a
security function is usually limited, so that multiple functions
must be combined for effective protection throughout the life-
cycle of some entity. The efficacy of security mechanisms also
depends on their place in the security architecture, mechanism
implementation, and further factors. Security goals therefore
cannot determine security design, they can only guide it.

In our bicycle theft example we can choose from a variety
of locks and ways of locking to make a bicycle harder
to steal. Common lock designs are small and light enough
for easy carry. Some variation exists in their design, mode
of operation, key management, and strength. Locks can be
applied in different ways: through parts of the bicycle (e.g.,
wheels, frame) or through bicycle parts and through or around
objects in the environment, like lamp posts or bike racks. The
thief’s cost of breaking the lock depends on the lock; the
necessity to do so as a prerequisite for stealing depends on
the way the lock is being applied. As an additional security
mechanism one might mark the bicycle with a unique ID and
register it in a database, which makes it harder to sell without
proof of ownership and easier to recover.



C. Design and Threats: Security Design Analysis

To understand how to fulfill a system’s security goals, one
has to analyze how its threat environment may behave in the
presence of the system, how adversaries may tamper with it,
and how the system behaves under attack. This assessment
takes place in security design analysis. The perspective is
similar as in penetration testing [67]–[69], but security de-
sign analysis does not wait until after implementation. Like
penetration testing, security design analysis is exploratory.

Security design analysis looks for possible unmitigated
vulnerabilities that allow attacks to succeed. Although attack-
ers cheat and break rules [48], their behavior often follows
patterns and stereotypes. By interpreting these patterns for a
specific system design in what-if scenarios, one can generate
lists of attacks and attack variants this system may encounter,
evaluate their consequences, and devise mitigations if neces-
sary. Besides attack patterns, security design analysis may also
cover architectural properties like the attack surface.

Examples for collections of attack patterns are STRIDE
and CAPEC. The acronym STRIDE captures six common
attack tactics: Spoofing, Tampering, Information Disclosure,
Denial of service, and Elevation of privilege [6]. The CAPEC
database [70] contains a larger number of more detailed attack
patterns, many of which correspond with certain vulnerability
types. As a result of pondering attack tactics, one may find
issues outside the scope of the established security goals.

In the bicycle theft example, the relevant attack patterns
differ from those applicable in computer security. Nevertheless
we can look at any security design variant and analyze what
a thief with certain objectives and capabilities may do to it.
For example, any lock at all may be good enough to fend off
those merely looking for a joyride. But a professional bicycle
thief may bring tools to the scene to crack locks, come with
a car and load bicycles that cannot roll but are not attached
to other objects, or resort to dismantling and stealing valuable
components rather than entire bicycles.

VI. ANALYSIS TECHNIQUES

The three analysis tasks correspond with different types
of representations and techniques. As the purpose of this
paper is not to survey the literature on security requirements
engineering—several surveys exist [1]–[4]—we pick here one
representative for each analysis task: CORAS [15], [71] for
risk analysis, the security requirements engineering framework
by Haley et al. [16] for the design process, and Microsoft’s
so-called threat modeling with data flow diagrams (DFD) and
STRIDE [6], [72] for security design analysis.

A. Risk Analysis: CORAS

CORAS [15], [71] is a model-driven approach to risk anal-
ysis comprising a graphical modeling language and a method
of creating and evaluating models. CORAS models represent
causal chains of events with adversaries and other causes of
risks at one end, assets to be protected at the other, and threat
scenarios with their expected consequences on paths between
them. Fig. 4 shows as an illustration some of the elements of a

Threat

source

Treatments Threat

scenario

Unwanted

incidents

Affected

asset

Bicycle

Bike lost 

forever

Bicycle

is stolen

Thief

Lock

Bike later

recovered

Regis-

tration

Threats (Anti-)Goals

Figure 4. A CORAS diagram sketch. CORAS models represent scenarios
how threats may lead to undesired consequences.

possible model for the example used before. These graphs can
be annotated with information such as the likelihood of a threat
and its respective consequences, the impact on an asset of
interest, and how acceptable or unacceptable consequences are.
Known or suspected vulnerabilities and treatments to reduce
risks can also be represented in CORAS models, but only as
abstract annotations for the purpose of assessing their impact
on the overall risk model. Beyond that, system design is not
modeled or considered.

CORAS builds on risk management standards and takes an
asset-driven approach. Assets to be preserved imply security
goals. Human and technical sources pose deliberate and ac-
cidental threats. CORAS models capture scenarios how these
threats may lead to undesired consequences for one or more
assets, contrary to the security goals. One can then propagate
probability and impact assessments through the models to
calculate, for example, the contribution of a particular threat
or the impact of particular mitigations on the total risk in a
cost-benefit analysis. CORAS models relationships between
abstract entities (e.g., “threats”, “assets”) and leaves it to
its users to define and assess them. Finding vulnerabilities
or mitigations is not specifically supported, but suspected or
proposed ones can be evaluated.

B. Design Process: Security Requirements Engineering
Framework

Haley et al. [16] propose a framework for the representation
and analysis of security requirements. Their analysis process
comprises four activities: (1) identify functional requirements,
(2) identify security goals, (3) identify security requirements,
and (4) construct satisfaction arguments. In line with the
Twin Peaks model [17], this process is to be iterated until
satisfaction arguments can be made for all security goals.
Iterations may include adjustments to goals and requirements
if security requirements are not feasible to satisfy through
system design choices. Satisfaction arguments verify through
semi-formal reasoning that a set of design choices fulfills the
respective goals.

Security goals are to be expressed in terms of assets and
properties to protect. Threats appear only as reversals of



User,

Browser
Webserver

Application

Server
DB Server

Content 

Repository

Figure 5. A data flow diagram for security design analysis. A subset of the
attacks represented by the acronym STRIDE is applied to each model element.

security goals [49], because security design should aim to
prevent undesired conditions altogether, rather than only overly
specific attacks. Their approach thus starts, roughly, from what
is represented on the right-hand side of a CORAS model,
but does not consider risk analysis itself. As output one gets
detailed security requirements—both functional requirements
and design constraints—that are specific enough to guide
system design and later verification with respect to security.
An approach to security design itself is not part of the
framework. However, satisfaction arguments serve to verify
whichever design choices have been made during design and
the framework considers also the possibility that satisfaction
may be infeasible. This framework belongs at the cross-section
of security goals and design as it aims to translate security
goals into specific security requirements and thus into security
design.

C. Security Design Analysis: DFDs and STRIDE

Microsoft developed a security design analysis tech-
nique [6], [72] based on data flow diagrams (DFDs) as part
of its security development lifecycle (SDL) [73], [74]. This
technique is to be applied by software development teams
to identify security concerns and devise mitigations early in
the development process. Microsoft is offering a free threat
modeling tool, which, perhaps together with its simplicity, has
popularized the technique. It has undergone extensions and
updates [7], [8] and is being studied by researchers [75].

Excluding validation, security design analysis by Mi-
crosoft’s original technique has three steps. First, the software
or system under development is modeled in one or more data
flow diagrams. Fig. 5 shows a high-level example for a generic
web application; more detail can be added if needed. A DFD
describes the architecture from a runtime perspective as a
collection of processes, data stores, external entities, and data
flows between them. In addition, trust and other boundaries
can be represented by dashed lines.

The second step is rather mechanistic, assigning a selection
of STRIDE attacks to each model element. The result is a list
of abstract attacks, such as “spoofing of a client or user” or
“tampering with the data flow from client to server.” In the
third step, the developers assess the impact of each item on

Table II
PERSPECTIVES ON SECURITY NEEDS.

Perspective Focus

Threats Describe adversary objectives, capabilities, and
behaviors

Risk analysis Find and prioritize conflicts between threats and
security goals

Goals Describe conditions to maintain and events to
prevent

Design process Translate goals into design decisions

Design Describe security functions, features, and
architecture

Security design
analysis

Understand the actual security properties and
possible attacks

this list and devise mitigations. The analysis technique does
not prescribe how to do this, but the modeling tool offers hints
and helpful questions.

Microsoft’s designation of this approach as “threat model-
ing” is a bit of a misnomer, as the threat model is the static
collection of abstract attacks encoded in STRIDE. The tech-
nique takes this conception of attacker behavior and explores
a system architecture with it. Design guidance can be derived
if one accepts the implied goal of preventing STRIDE attacks.

VII. THE SECURITY TRIPLET PEAKS

Wrapping up, we can take six different partial perspectives
on the security needs of a system (Table II). Three perspectives
concern the elementary dimensions of threats, security goals,
and security design, and the other three focus on pairs of
dimensions and their interaction. Threats and goals together
define what we may call security requirements. A system
design that aims to fulfill these requirements can, however,
not only fail to do so, but also change those requirements by
attracting different threats and requiring further security goals.

Our discussion suggests to think of security requirements
engineering in terms of a triplet peaks model, which extends
the Twin Peaks model [17] with threat models as the third
peak. The three analysis tasks with their respective techniques
tie together three types of artifacts: threat models, security
goals, and the security design of a system. Each artifact
represents a distinct dimension of a system’s security needs;
they are interdependent, as any change in one of them affects
the others. Threats determine what it takes to meet security
objectives, security goals determine what counts as a threat
and how important different threats are, and security design
determines how threats manifest themselves and cause, or do
not cause, consequences.

Consider as an example the design decision to support the
Transport Layer Security (TLS) protocol [76] in a distributed
system. This protocol offers confidentiality, integrity, and
authentication over untrusted networks. TLS may be used for
one or more of these capabilities to pursue specific security



goals and to address specific threats, or with a less specific
motivation as a state-of-the-art hygiene measure. The pursued
security goals may concern application assets or secondary en-
tities that exist only as the result of previous design decisions,
such as passwords. The decision to use TLS affects all three
security dimensions:

• Security design—Regardless of the original motivation,
all TLS capabilities become available as a basis for
further design decisions, which will likely rely on it. On
the other hand, the decision to use TLS entails a number
of further necessary decisions, such as which cipher suites
to support and how to manage certificates and private
keys.

• Security goals—New security goals arise as TLS intro-
duces new entities that need protection. For example,
TLS depends on the secrecy of private keys, which must
be securely generated and need appropriate protection
throughout their lifecycle.

• Threats—TLS depends on a system of certification au-
thorities (CAs) to verify identities and issue certificates.
Due to this dependency, the introduction of TLS leads to
new threats to consider, such as attacks against CAs. On
the other hand, the network threats that TLS addresses
lose weight in further security considerations.

Due to these interdependencies, security requirements cannot
be fully understood in a linear, top-down process. Rather,
security requirements engineering has to iterate through the
dimensions and the analysis tasks.

The Twin Peaks model [17] of simultaneous, incremental
development of requirements and architectures connects the
idea of agile software development [77], [78] with require-
ments engineering. While requirements conceptually precede
and guide design, requirements engineering does not prescribe
waterfall development. Development rather iterates through
requirements engineering and architecture until it converges
toward an acceptable result. This model has been considered
for security requirements, explicitly in a security adaptation
of it [18] and implicitly by work on security requirements
engineering referencing the model and taking iteration into
account [16].

Security adds threats as a third component that indepen-
dently calls for iteration. Peculiar to security are intelligent,
adaptive adversaries [47]. Their interests and behaviors deter-
mine the need for and the success of security design, but they
cheat [48] and adapt their attacks to the vulnerabilities of their
targets. Threat models as a third peak reflect this. Security
requirements engineering remains incomplete if it considers
only threats and security design or only security goals and
security design. The former results in overspending on defense
against irrelevant threats, the latter in a false sense of security
as adversary behavior is not taken into account.

VIII. EPISTEMIC CHALLENGES

Epistemic challenges of security requirements engineering
concern our ability to anticipate security needs that arise
from the intent and activity of intelligent adversaries. As a

Cattle

Loss

Abduction

Alien
Weak space

defenses

Hide cattle

Mutilation

Figure 6. Should farmers use this risk model? Fears are easy to elicit, but
security engineering needs sound threat models.

motivating example consider the CORAS diagram in Fig. 6,
which describes a threat-risk model for a farm, in which cattle
as an asset are threatened by alien abduction. Within this
model we can reason: Propagating the probability of alien
visits through the model, we conclude that our cattle are safe
while grazing and there is no need to hide them. But how do
we know the model is correct and complete and how do we
find it and its inputs in the first place?

In general requirements engineering, requirements are vali-
dated at the latest when a system has been built that satisfies
the needs of its stakeholders. Security requirements and their
design consequences, however, are being tested only when a
system meets its attackers. Failures or limitations then become
more likely visible through detected attacks than successes
preventing attacks from even being tried. This is not merely
a practical challenge; there are rather fundamental questions
regarding the elicitation of security needs.

A. Absent Adversaries

General requirements engineering revolves around stake-
holders, who are the sources of requirements. When it comes
to security requirements, however, the most important class of
actors remains unavailable: Adversaries as anti-stakeholders,
whose objectives, capabilities, and behaviors define the threats
a system is facing, do not usually participate in efforts to figure
out how to stop them. Threats can therefore be explored only
indirectly.

How to nonetheless obtain reliable threat models remains an
open problem. Microsoft’s threat modeling technique circum-
vents this problem by positing STRIDE as an abstract, generic
attacker model. Further interpretation and assessment is left to
the user of the technique. As an advantage, the STRIDE model
can be used right away; as a downside, it misses many aspects
of adversary behavior and possible attacks [75].

CORAS addresses the problem of absent adversaries by
ignoring it. CORAS models are to be created based on the
knowledge of available stakeholders. This is not wrong per
se, as domain experts may indeed know a lot about threats
that matter in practice. However, the challenge remains to
distinguish good from bad threat conceptions coming from
these proxies. For example, empirical studies of attack trees
and misuse cases, two modeling techniques belonging to the
threat-design intersection, found hints (but no strong evidence)



that their participants seemed to recite what the authors called
“textbook threats” rather than producing specific analyses [79],
[80]. Are there better ways to capture, understand, and rep-
resent adversary behavior to support the analysis of security
needs?

B. Complexity

Security has many facets. As illustrative examples, consider
the hundreds of attack and vulnerability patterns collected
in the Common Attack Pattern Enumeration and Classifica-
tion (CAPEC) [70] and the Common Weakness Enumera-
tion (CWE) [43], or the dozens of pages of checklists in
the OWASP Application Security Verification Standard [9].
Practitioners are facing a vast number of potential concerns,
of which only a subset is relevant for any system and task
at hand, and complicated selection rules for these relevant
items. Some attacks or vulnerabilities pertain to particular
security mechanisms, some to languages or platforms, some to
specific threats or environments, some to architectural patterns,
and some to general hygiene. Identifying the relevant set
of security concerns for a particular development situation
remains an open problem, the more so as system designs
themselves are complex.

Complexity affects in particular visual notations, which
many security requirements techniques include. As the infor-
mal Deutsch limit [81] suggests, only about 50 visual primi-
tives fit on a single screen and besides that, the cognitive limits
of humans must be taken into account. These limits dictate
either a rather high degree of abstraction or a narrow field
of application. CORAS addresses this problem by abstraction
and vagueness—the relationship between risks in a CORAS
model and any design feature of a system remains unclear.
Microsoft’s threat modeling works with the abstract perspec-
tive of data flow diagrams, but lets complexity resurface in
the checklists generated from these models. The approach
of Haley et al. limits generality making assumptions about
security problems and their solutions. Deeper insight into the
sources of complexity in security requirements engineering
and into ways of addressing complexity could be highly
beneficial for practical applications.

C. Reasoning

The three analysis tasks require reasoning about facts or
assumptions as their inputs to produce conclusions. Analysis
techniques prescribe to a varying degree how to reason about
their respective subject matter. CORAS has formal reasoning
built into it, as it allows risk assessments to be propagated
through its graph. Microsoft’s threat modeling, on the other
hand, limits formal reasoning to the mechanistic step of
applying STRIDE to a data flow diagram and leaves any
further thinking to its users. The approach of Haley et al. lies
somewhere between these extremes, combining formal logic
with less formal structured arguments.

While it is tempting to call for as much rigor as possible
in security requirements techniques, two issues get in the
way of formal reasoning. One is the reliability of input. If

a technique lets its users capture arbitrary assumptions, as
demonstrated with CORAS in Fig. 6, no amount of rigor in
later reasoning can fix input errors. A practical challenge in
the design of security requirements techniques is therefore how
much prescriptive reasoning to build into them.

The other issue is a more fundamental one: We still do
not understand the logic of security very well for real-world
systems. One symptom is the notorious difficulty of reliably
quantifying security [82]. As an example, Bozorgi et al. [83]
analyzed the performance of a vulnerability scoring scheme,
CVSS (Common Vulnerability Scoring System, https://www.
first.org/cvss), as a predictor for how likely a known vulner-
ability would be exploited in the wild. They found CVSS
to perform poorly and much worse than a machine-learning
system trained with the texts of vulnerability reports. Their
study concerned known vulnerabilities in deployed products;
some of the information they used may not even be available
at earlier stages of development.

Although rigorous formal methods seem desirable for secu-
rity, they are currently unrealistic outside narrow niches. Less
formal approaches, focusing on gathering and representing
approximate information and leaving security expertise to the
experts, may be more useful in practice than attempts to build
problem solving into a requirements technique.

IX. CONCLUSION

Security requirements engineering inherits all the challenges
of requirements engineering at large, and adds some of its
own. Whether security needs have been sufficiently addressed
depends not only on requirements and system design, but also
on the reaction of adaptive adversaries to the design of a
system. Security requirements should therefore be considered
as a dynamic system with three degrees of freedom. One of
them—threats—cannot be directly influenced and also evades
participation in requirements engineering activities. It must
nevertheless be considered by means of threat models. To
succeed, security requirements engineering needs to iterate
through the components of security needs and analyze their
mutual influences until models converge. The complexity of
security and a lack of universal rules and models for reasoning
about it remain open challenges.

ACKNOWLEDGMENT

I thank my colleagues Philipp Holzinger, Stefan Triller, and
Andreas Poller for many fruitful discussions that lead to the
writing of this paper, and just as much for the fruitless ones.
I also thank the reviewers for their constructive feedback on
the submitted version.

REFERENCES

[1] B. Fabian, S. Gürses, M. Heisel, T. Santen, and H. Schmidt, “A compar-
ison of security requirements engineering methods,” Requirements Eng.,
vol. 15, no. 1, pp. 7–40, 2010.

[2] D. Mellado, C. Blanco, L. E. Sánchez, and E. Fernández-Medina,
“A systematic review of security requirements engineering,” Comput.
Standards & Interfaces, vol. 32, no. 4, pp. 153–165, 2010.

[3] I. A. Tøndel, M. G. Jaatun, and P. H. Meland, “Security requirements
for the rest of us: A survey,” IEEE Software, vol. 25, no. 1, pp. 20–27,
Jan. 2008.



[4] A. Souag, R. Mazo, C. Salinesi, and I. Comyn-Wattiau, “Reusable
knowledge in security requirements engineering: a systematic mapping
study,” Requirements Engineering, vol. 21, no. 2, 2016.

[5] N. R. Mead, E. D. Hough, and T. R. Stehney II, “Security quality require-
ments engineering (SQUARE) methodology,” CMU SEI, Pittsburgh, PA,
Tech. Rep. CMU/SEI-2005-TR-009, 2005.

[6] F. Swiderski and W. Snyder, Threat Modeling. Microsoft Press, 2004.
[7] D. Dhillon, “Developer-driven threat modeling: Lessons learned in the

trenches,” IEEE Security Privacy, vol. 9, no. 4, pp. 41–47, 2011.
[8] A. Shostack, Threat Modeling: Designing for Security. Wiley, 2014.
[9] Application Security Verification Standard, OWASP, 2016,

v3.0.1. [Online]. Available: https://www.owasp.org/index.php/Category:
OWASP Application Security Verification Standard Project

[10] J. Whitmore, S. Türpe, S. Triller, A. Poller, and C. Carlson, “Threat anal-
ysis in the software development lifecycle,” IBM J. Research Develop.,
vol. 58, no. 1, pp. 6:1–6:13, 2014.

[11] L. Chung, “Dealing with security requirements during the development
of information systems,” in Proc. Adv. Inform. Syst. Eng. (CAiSE’93).
Springer, 1993, pp. 234–251.

[12] D. G. Firesmith, “Engineering security requirements,” J. Object
Technol., vol. 2, no. 1, 2003. [Online]. Available: http://www.jot.fm/
issues/issue 2003 01/column6.pdf

[13] D. Ameller, C. Ayala, J. Cabot, and X. Franch, “Non-functional require-
ments in architectural decision making,” IEEE Softw., vol. 30, no. 2, pp.
61–67, 2013.

[14] D. Firesmith, “Specifying reusable security requirements,” J. Object
Technol., vol. 3, no. 1, pp. 61–75, 2004. [Online]. Available:
http://www.jot.fm/issues/issue 2004 01/column6.pdf

[15] M. S. Lund, B. Solhaug, and K. Stølen, Model-Driven Risk Analysis -
The CORAS Approach. Springer, 2011.

[16] C. B. Haley, R. Laney, J. Moffett, and B. Nuseibeh, “Security require-
ments engineering: A framework for representation and analysis,” IEEE
Trans. Softw. Eng., vol. 34, no. 1, pp. 133–153, 2008.

[17] B. Nuseibeh, “Weaving together requirements and architectures,” Com-
puter, vol. 34, no. 3, pp. 115–119, 2001.

[18] T. Heyman, K. Yskout, R. Scandariato, H. Schmidt, and Y. Yu, “The
security twin peaks,” in Engineering Secure Software and Systems,
Ú. Erlingsson, R. Wieringa, and N. Zannone, Eds. Springer Berlin
/ Heidelberg, 2011, pp. 167–180.

[19] R. J. Anderson, Security Engineering: A guide to building dependable
distributed systems. Wiley, 2008.

[20] B. W. Lampson, “Computer security in the real world,” Computer,
vol. 37, no. 6, pp. 37–46, 2004.

[21] ——, “Protection,” in Proc. 5th Princeton Symp. on Inform. Sci. and
Syst. ACM, 1971, pp. 437–443.

[22] J. H. Saltzer, “Protection and the control of information sharing in
multics,” Commun. ACM, vol. 17, no. 7, pp. 388–402, 1974.

[23] S. R. Ames Jr., M. Gasser, and R. R. Schell, “Security kernel design and
implementation: An introduction,” Computer, vol. 16, no. 7, pp. 14–22,
1983.

[24] D. D. Clark and D. R. Wilson, “A comparison of commercial and mil-
itary computer security policies,” in IEEE Symp. Security and Privacy,
Apr. 1987.

[25] S. Lipner, T. Jaeger, and M. E. Zurko, “Lessons from vax/svs for high-
assurance vm systems,” IEEE Security Privacy, vol. 10, no. 6, pp. 26–35,
2012.

[26] J. H. Saltzer and M. D. Schroeder, “The protection of information in
computer systems,” Proc. IEEE, vol. 63, no. 9, pp. 1278–1308, Sep.
1975.

[27] W. Diffie and M. Hellman, “New directions in cryptography,” IEEE
Trans. Inf. Theory, vol. 22, no. 6, pp. 644–654, Nov. 1976.

[28] R. Merkle, “Secure communications over insecure channels,” Commun.
ACM, vol. 21, no. 4, pp. 294–299, Apr. 1978.

[29] R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital
signatures and public-key cryptosystems,” Commun. ACM, vol. 21, no. 2,
pp. 120–126, Feb. 1978.

[30] R. E. Smith, “A contemporary look at Saltzer and Schroeder’s 1975
design principles,” IEEE Security Privacy, vol. 10, no. 6, pp. 20–25,
2012.

[31] M. Bishop, S. Engle, D. Howard, and S. Whalen, “A taxonomy of buffer
overflow characteristics,” IEEE Trans. Depend. Sec. Comput., vol. 9,
no. 3, pp. 305–317, 2012.

[32] L. Szekeres, M. Payer, T. Wei, and D. Song, “SoK: Eternal war in
memory,” in Proc. 2013 IEEE Symp. Security and Privacy, 2013, pp.
48–62.

[33] B. P. Miller, L. Fredriksen, and B. So, “An empirical study of the
reliability of UNIX utilities,” Commun. ACM, vol. 33, no. 12, pp. 32–44,
1990.

[34] J. E. Forrester and B. P. Miller, “An empirical study of the robustness of
Windows NT applications using random testing,” in Proc. 4th USENIX
Windows Syst. Symp., 2000, pp. 59–68.

[35] R. Anderson, “Why cryptosystems fail,” in Proc. 1st ACM Conf. on
Comput. and Commun. Security (CCS’93). New York, NY, USA: ACM,
1993, pp. 215–227.

[36] S. Garfinkel, G. Spafford, and A. Schwartz, Practical UNIX and Internet
Security, 3rd ed. O’Reilly, 2003.

[37] K. M. Goertzel, T. Winograd, H. L. McKinley, L. J. Oh, M. Colon,
T. McGibbon, E. Fedchak, and R. Vienneau, “Software Security
Assurance: A State-of-the-Art Report,” IATAC & DACS, Tech.
Rep., 2007. [Online]. Available: http://www.dtic.mil/docs/citations/
ADA472363

[38] B. Blakley and C. Heath, “Security design patterns,” The Open Group,
Technical Guide G031, Apr. 2004.

[39] M. Schumacher, Security Patterns: Integrating Security and Systems
Engineering. John Wiley & Sons, 2006.

[40] K. Yskout, R. Scandariato, and W. Joosen, “Do security patterns really
help designers?” in Proc. 37th Int. Conf. on Softw. Eng. (ICSE’15),
vol. 1. IEEE, 2015, pp. 292–302.

[41] P. K. Manadhata and J. M. Wing, “An attack surface metric,” IEEE
Trans. Softw. Eng., vol. 37, no. 3, pp. 371–386, 2011.

[42] M. Stytz, “Considering defense in depth for software applications,” IEEE
Security Privacy, vol. 2, no. 1, pp. 72–75, Jan. 2004.

[43] “Common weakness enumeration (CWE),” version 2.11. [Online].
Available: http://cwe.mitre.org/

[44] Z. Durumeric, M. Payer, V. Paxson, J. Kasten, D. Adrian, J. A.
Halderman, M. Bailey, F. Li, N. Weaver, J. Amann, and J. Beekman,
“The matter of Heartbleed,” in Proc. 2014 Internet Measurement Conf.
(IMC’14). New York, New York, USA: ACM Press, 2014, pp. 475–488.

[45] L. Cranor and S. Garfinkel, Eds., Security and Usability. O’Reilly,
2005.

[46] S. Garfinkel and H. R. Lipford, “Usable security: History, themes, and
challenges,” Synthesis Lectures on Information Security, Privacy, and
Trust, vol. 5, no. 2, pp. 1–124, 2014.

[47] C. Severance, “Bruce Schneier: the security mindset,” Computer, vol. 49,
no. 2, pp. 7–8, Feb. 2016.

[48] G. Conti and J. Caroland, “Embracing the Kobayashi Maru: why you
should teach your students to cheat,” IEEE Security Privacy, vol. 9,
no. 4, pp. 48–51, 2011.

[49] C. B. Haley, R. C. Laney, and B. Nuseibeh, “Deriving security require-
ments from crosscutting threat descriptions,” in Proc. 3rd Int. Conf. on
Aspect-oriented Softw. Develop. (AOSD’04). New York, NY, USA:
ACM, 2004, pp. 112–121.

[50] H. H. Thompson, “Why security testing is hard,” IEEE Security Privacy,
vol. 1, no. 4, pp. 83–86, 2003.

[51] “ISO/IEC/IEEE International Standard – systems and software engineer-
ing – life cycle processes – requirements engineering,” ISO/IEC/IEEE
29148:2011(E), pp. 1–94, 2011.

[52] R. Crook, D. Ince, Luncheng Lin, and B. Nuseibeh, “Security require-
ments engineering: when anti-requirements hit the fan,” in Proc. IEEE
Joint Int. Conf. on Requirements Eng. IEEE Comput. Soc, 2002, pp.
203–205.

[53] A. van Lamsweerde, S. Brohez, R. De Landtsheer, and D. Janssens,
“From system goals to intruder anti-goals: Attack generation and reso-
lution for security requirements engineering,” in Proc. RE’03 Workshop
on Requirements for High Assurance Systems (RHAS’03), 2003.

[54] R. Mohanani, P. Ralph, and B. Shreeve, “Requirements fixation,” in
Proc. 36th Int. Conf. on Softw. Eng. (ICSE’14). New York, NY, USA:
ACM, 2014, pp. 895–906.

[55] “Internet security glossary, version 2,” IETF, RFC 4949, Aug. 2007.
[Online]. Available: http://tools.ietf.org/html/rfc4949

[56] A. Poller, S. Türpe, and K. Kinder-Kurlanda, “An asset to security
modeling? analyzing stakeholder collaborations instead of threats to
assets,” in Proc. 2014 New Security Paradigms Workshop (NSPW’14),
2014, pp. 69–82.



[57] D. Van Lierop, M. Grimsrud, and A. El-Geneidy, “Breaking into bicycle
theft: Insights from montreal, canada,” Int. J. Sustainable Transportation,
vol. 9, no. 7, pp. 490–501, Oct. 2015.

[58] C. E. Landwehr, “Computer security,” Int. J. Inform. Security, vol. 1,
no. 1, pp. 3–13, 2001.

[59] H. H. Willis, A. R. Morral, T. K. Kelly, and J. J. Medby,
“Estimating terrorism risk,” Center for Terrorism Risk Management
Policy, Rand Corp., Tech. Rep., 2005. [Online]. Available: http:
//www.dtic.mil/dtic/tr/fulltext/u2/a449118.pdf

[60] “Common criteria for information technology security evaluation,” Sep.
2012. [Online]. Available: http://www.commoncriteriaportal.org/cc/

[61] D. Firesmith, “Common concepts underlying safety, security, and
survivability engineering,” Carnegie Mellon Univ., Technical Report
CMU/SEI-2003-TN-033, 2003.

[62] S. Fenz and A. Ekelhart, “Formalizing information security knowledge,”
in Proc. 4th Int. Symp. on Inform., Comput., and Commun. Security
(ASIACCS’09). New York, NY, USA: ACM, 2009, pp. 183–194.

[63] É. Dubois, P. Heymans, N. Mayer, and R. Matulevičius, “A system-
atic approach to define the domain of information system security
risk management,” in Intentional Perspectives on Information Systems
Engineering, S. Nurcan, C. Salinesi, C. Souveyet, and J. Ralyté, Eds.
Springer, 2010, pp. 289–306.

[64] C. Herley and W. Pieters, “‘If you were attacked, you’d be sorry’:
Counterfactuals as security arguments,” in Proc. 2015 New Security
Paradigms Workshop (NSPW’15). New York, New York, USA: ACM
Press, 2015, pp. 112–123.

[65] R. Sonnenschein, A. Loske, and P. Buxmann, “Which IT security in-
vestments will pay off for suppliers? using the Kano model to determine
customers’ willingness to pay,” in 49th Hawaii Int. Conf. on Syst. Sci.
(HICSS’16), Jan. 2016, pp. 5672–5681.

[66] S. Berkun, Making Things Happen: Mastering Project Management.
O’Reilly, 2008.

[67] B. Arkin, S. Stender, and G. McGraw, “Software penetration testing,”
IEEE Security Privacy, vol. 3, no. 1, pp. 84–87, 2005.

[68] D. Geer and J. Harthorne, “Penetration testing: a duet,” in Proc. 18th
Annu. Comput. Security Appl. Conf. (ACSAC’02), 2002, pp. 185–195.

[69] C. C. Palmer, “Ethical hacking,” IBM Syst. J., vol. 40, no. 3, pp. 769–
780, 2001.

[70] “Common attack pattern enumeration and classification (CAPEC),”
version 2.10. [Online]. Available: http://capec.mitre.org/

[71] B. Solhaug and K. Stølen, “The CORAS language–why it is designed the
way it is,” in Proc. 11th Int. Conf. on Structural Safety and Reliability
(ICOSSAR’13). Taylor & Francis, 2013, pp. 3155–3162.

[72] A. Shostack, “Experiences threat modeling at Microsoft,” in Modeling
Security Workshop. Dept. of Computing, Lancaster University, UK,
2008.

[73] S. Lipner, “The trustworthy computing security development lifecycle,”
in Proc. 20th Annu. Comput. Security Appl. Conf. (ACSAC’04), 2004,
pp. 2–13.

[74] M. Howard and S. Lipner, The Security Development Lifecycle. Mi-
crosoft Press, 2006.

[75] R. Scandariato, K. Wuyts, and W. Joosen, “A descriptive study of
Microsoft’s threat modeling technique,” Requirements Eng., vol. 20,
no. 2, pp. 163–180, June 2015.

[76] S. Turner, “Transport layer security,” IEEE Internet Computing, vol. 18,
no. 6, pp. 60–63, Nov. 2014.

[77] J. Highsmith and A. Cockburn, “Agile software development: the
business of innovation,” Computer, vol. 34, no. 9, pp. 120–127, Sep.
2001.

[78] K. Beck, M. Beedle, A. van Bennekum, A. Cockburn, W. Cunningham,
M. Fowler, J. Grenning, J. Highsmith, A. Hunt, R. Jeffries, J. Kern,
B. Marick, R. C. Martin, S. Mellor, K. Schwaber, J. Sutherland,
and D. Thomas, “Manifesto for agile software development,” 2001.
[Online]. Available: http://agilemanifesto.org/

[79] A. L. Opdahl and G. Sindre, “Experimental comparison of attack trees
and misuse cases for security threat identification,” Inform. and Softw.
Technol., vol. 51, no. 5, pp. 916–932, 2009.

[80] P. Karpati, Y. Redda, A. L. Opdahl, and G. Sindre, “Comparing attack
trees and misuse cases in an industrial setting,” Inform. and Softw.
Technol., vol. 56, no. 3, pp. 294–308, 2014.

[81] “comp.lang.visual FAQ,” 1998. [Online]. Available: http://www.faqs.
org/faqs/visual-lang/faq/

[82] V. Verendel, “Quantified security is a weak hypothesis: a critical survey
of results and assumptions,” in Proc. 2009 New Security Paradigms
Workshop. New York, NY, USA: ACM, 2009, pp. 37–50.

[83] M. Bozorgi, L. K. Saul, S. Savage, and G. M. Voelker, “Beyond
heuristics: learning to classify vulnerabilities and predict exploits,” in
Proc. 16th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data
Mining (KDD’10). New York, NY, USA: ACM, 2010, pp. 105–114.




