
Ph
D

 Th
eses in

 Exp
erim

en
tal So

ftw
are En

g
in

eerin
g

Vol. 60

Hadil Abukwaik

Proactive Support for Conceptual
Interoperability Analysis of
Software Units

Editor-in-Chief: Prof. Dr. Dieter Rombach
Editorial Board: Prof. Dr. Frank Bomarius

Prof. Dr. Peter Liggesmeyer
Prof. Dr. Dieter Rombach

FRAUNHOFER VERLAG

PhD Theses in Experimental Software Engineering
Volume 60

Editor-in-Chief: Prof. Dr. Dieter Rombach

Editorial Board: Prof. Dr. Frank Bomarius
Prof. Dr. Peter Liggesmeyer
Prof. Dr. Dieter Rombach

Hadil Abukwaik

Proactive Support for Conceptual
Interoperability Analysis of
Software Units

Fraunhofer Verlag

Zugl.: Kaiserslautern, TU, Diss., 2017

Printing:
Mediendienstleistungen des
Fraunhofer-Informationszentrum Raum und Bau IRB, Stuttgart

Printed on acid-free and chlorine-free bleached paper.

All rights reserved; no part of this publication may be translated, reproduced, stored in a
retrieval system, or transmitted in any form or by any means, electronic, mechanical,
photocopying, recording, or otherwise, without the written permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. The quotation of those designations in whatever way does not
imply the conclusion that the use of those designations is legal without the consent of the
owner of the trademark.

© by Fraunhofer Verlag, 2018
ISBN (Print): 978-3-8396-1338-2
Fraunhofer-Informationszentrum Raum und Bau IRB
Postfach 800469, 70504 Stuttgart
Nobelstraße 12, 70569 Stuttgart
Telefon +49 711 9 70 - 25 00
Telefax +49 711 9 70 - 25 08
E-Mail verlag@fraunhofer.de
URL http://verlag.fraunhofer.de

Proactive Support for Conceptual
Interoperability Analysis of Software Units

Beim Fachbereich Informatik
der Technischen Universität Kaiserslautern
zur Verleihung des akademischen Grades

Doktor der Ingenieurwissenschaften (Dr.-Ing.)

genehmigte Dissertation
von

Hadil Abukwaik, M. Sc.

Technische Universität Kaiserslautern
Kaiserslautern

Berichterstatter: Prof. Dr. Dr. h.c. Dieter Rombach
Prof. Dr. Ralf Reussner

Dekan: Prof. Dr. Stefan Deßloch

Tag der Wissenschaftlichen Aussprache: 12.07.2017

D 386

To my beloved husband Mohammed and children Adam and Hannah

v

Acknowledgments

I would like to express my sincere gratitude and thanks to my advisor
Professor Dr. Dr. h. c. Dieter Rombach. I would like to thank you for
encouraging my research and for allowing me to grow as a research
scientist. Your great advice on research and career development and
your support for me during my new motherhood responsibilities have
been priceless. I would also like to thank my second supervisor
Professor Dr. Ralf Reussner for his valuable feedback and insightful
discussion. In addition, I want to express my special appreciation to Dr.
Jörg Dörr, Dr. Matthias Naab, and Dr. Liliana Guzmán from Fraunhofer
IESE for their continuous guidance, stimulating discussions, and
encouragement throughout all the phases of my Ph.D. thesis research
and writing.

I acknowledge my research fellows at AGSE and Fraunhofer IESE who
provided me with feedback during my dissertation work including Dr.
Jens Knodel, Dr. Martin Becker, and Alexander Klaus.

I thank the AGSE Group, the Nachwuchsring Program, and the PhD
Program of the Computer Science Department at the University of
Kaiserlsautern for funding my Ph.D. studies and my trips to scientific
conferences and events.

I also thank my friends Walaa and Tina for their motivation and kind
support to overcome all challenges. I am also very thankful for Prof. Dr.
Katharina Zweig for the wonderful example she has provided for me as
a successful female scientist, professor, and mother. Your positive
energy is contagious!

A very special thanks go to my parents for supporting me spiritually
throughout my thesis work. Your prayers for me were what sustained
me thus far and you motivated me to always strive towards my goal.

Last but not the least, thank you my little son Adam for being patient
when Mama could not play and for cheering her up with your beautiful
laugh! Thank you my baby girl, Hannah, for the beautiful feeling that
your kicks gave me while writing and defending my thesis. And words
can never express how grateful I am to my beloved husband
Mohammed for all of the sacrifices that you have made on my behalf.
Your unconditional support, patience, and care for me and for our son
were my relief in my sleepless nights and working weekends and
holidays. Thank you for your comforting smile throughout the ups and
downs of this journey!

vii

Abstract

Interoperability is the ability of separately developed software units to
communicate and exchange data or services meaningfully. This
property plays a vital role in enabling interoperation in today’s systems-
of-systems, cyber-physical systems, ecosystems, etc. Achieving
meaningful interoperation with a software unit requires identifying its
conceptual constraints (e.g., usage context, design decision, quality,
etc.) to understand their associated impact and required resolution.
Missing such constraints causes unexpected conceptual mismatches,
leading to projects running late with costly rework. However, for black-
box software providers, it is a tedious, unguided, and time-consuming
task to share the conceptual constraints explicitly and comprehensively.
Also, despite reuse analysis and mismatch detection approaches, third-
party clients lack guidance on how to detect conceptual mismatches.

To cope with these challenges, we built a model for Conceptual
Interoperability Constraints (COINs), extending and enhancing existing
models of interoperability and reuse. This model is the foundation for
the methodical contribution of this thesis: a framework for Conceptual
Interoperability Analysis (COINA) that supports software architects and
analysts in identifying the conceptual interoperability constraints and
mismatches of software units more effectively and efficiently. COINA
comprises: (1) Proactive, semi-automatic, in-house preparation for
interoperable software units, which helps software providers to explicitly
share conceptual constraints with interested clients with the least effort.
This is facilitated by our tool-supported extraction of COINs from
internal architectural documents (i.e., UML diagrams) and public API
documents. The output is a standard, ready-to-share COIN document
for clients. We also provide guidelines for improving the conceptual
content of API documents. In the long term, this proactive preparation
will help software providers achieve higher business impact and better
competitiveness by increasing the success rate of interoperation. (2) A
systematic, algorithm-based method for mapping the conceptual
constraints of systems to detect their mismatches. Our guided method
directs third-party clients in their conceptual analysis of external units.

We demonstrate the feasibility of COINA preparation by implementing
the COIN extraction from UML diagrams as an add-in for Enterprise
Architect and from API documents as a machine learning classifier. A
multiple-run controlled experiment confirmed our hypotheses that our
systematic analysis method significantly increases the architects’
effectiveness and efficiency in detecting conceptual mismatches. A
survey of practitioners and an initial experiment confirmed that our
guidelines improve the usefulness and ease-of-use of API documents.

ix

Table of Contents

Acknowledgments ... v
Abstract .. vii
Table of Contents ..ix
List of Figures ... xii
List of Tables ... xiv

1 Introduction .. 1
1.1 Motivation ... 1
1.2 Problem Statement and Goals ... 5
1.3 Solution Ideas and Hypotheses .. 13
1.4 Research Context and Assumptions 16
1.5 Overview of Contributions .. 18
1.6 Research Method ... 22
1.7 Thesis Outline .. 23

2 Background .. 27
2.1 Introduction ... 27
2.2 Sources of Conceptual Interoperability Information 27
2.3 Interoperability Mismatches of Software Units 30
2.4 Natural Language Processing and Machine Learning

Techniques... 31
2.5 Summary .. 33

3 State of the Practice... 35
3.1 Introduction ... 35
3.2 Survey on the State of the Practice 35

3.2.1 Research Methodology .. 35
3.2.2 Results and Discussion ... 38
3.2.3 Threats to Validity .. 51

3.3 Summary and Conclusion .. 52

4 State of the Art ... 53
4.1 Introduction ... 53
4.2 Scoping Study on the State of the Art................................... 53

4.2.1 Research Methodology .. 53
4.2.2 Results and Discussion ... 56
4.2.3 Threats to Validity .. 64

4.3 Conceptual Interoperability Foundations 65
4.4 Conceptual Interoperability Analysis..................................... 67

4.4.1 Identification of Conceptual Interoperability
 Constraints .. 67

x

4.4.2 Identification of Software Mismatches in Black-Box
Contexts .. 68

4.5 Summary and Conclusion .. 69

5 The Conceptual Interoperability Constraint (COIN) Model 73
5.1 Introduction ... 73
5.2 Model Overview .. 74
5.3 Model in Detail .. 75

5.3.1 Principal Dimensions ... 75
5.3.2 Detailed COIN Attributes ... 79
5.3.3 Conceptual Interoperability Mismatches and Their

Types ... 87
5.4 Standard Documentation Templates 89

5.4.1 Conceptual Interoperability Constraints Template
(COIN Portfolio) ... 89

5.4.2 Mismatches List Template ... 93
5.5 Summary .. 96

6 The Conceptual Interoperability Analysis (COINA)
Framework .. 97
6.1 Introduction ... 97
6.2 Framework Overview .. 98

6.2.1 Methodical Overview: Input, Output, Activities........... 98
6.2.2 Contextual Scenario: Who, When, How 100

6.3 Proactive, In-House Preparation for Interoperable Software
Units ... 101
6.3.1 Extracting COINs from UML Diagrams 102
6.3.2 Extracting COINs from the Text of API Documents . 113
6.3.3 Guidelines for Improving API Documentations 130

6.4 Approach for the Systematic Detection of Conceptual
Mismatches .. 135
6.4.1 Perspective-based Extraction of COINs 136
6.4.2 Checklist-based, Algorithmic Mapping of Portfolios . 139

6.5 Summary .. 144

7 Evaluation ... 145
7.1 Introduction... 145
7.2 Objectives and Hypotheses .. 145
7.3 Multi-Run Controlled Experiment .. 148

7.3.1 Objectives and Research Questions 148
7.3.2 Experimental Context .. 149
7.3.3 Experimental Setup ... 149
7.3.4 Analysis Results .. 156
7.3.5 Discussion ... 162
7.3.6 Threats to Validity .. 163

7.4 Survey and Initial Controlled Experiment 165
7.4.1 Objective and Research Questions 165
7.4.2 Survey Study ... 166
7.4.3 Initial Controlled Experiment 169

xi

7.4.4 Summary ... 174
7.5 Multiple-Case Study ... 174

7.5.1 Objectives and Research Questions 175
7.5.2 Data Analysis and Discussion 175

7.6 Summary .. 176

8 Summary ... 179
8.1 Contributions and Results .. 179
8.2 Benefits and Limitations ... 181
8.3 Future Work .. 184

References ... 187

Appendix .. 201

Lebenslauf (CV) ... 261

xii

List of Figures

Figure 1 Basis for relationship between interoperability, integration,
and interoperation ... 3

Figure 2 Reuse-investment relation [BB91] .. 6
Figure 3 Example of detected and missed mismatches between S1

and S2... 10
Figure 4 Overall thesis goal: improving the detection of conceptual

interoperability mismatches... 12
Figure 5 Mapping overview of problems, goals, and solution ideas . 14
Figure 6 Relations among foundation/methodical contributions and

evaluation contributions .. 22
Figure 7 Summary of Research Method and Contributions 25
Figure 8 Questionnaire Design .. 37
Figure 9 Respondents' experience in software integration 39
Figure 10 The roles responsible for performing interoperability

analysis ... 41
Figure 11 Cost for interoperability analysis reported by practitioners

with knowledge ... 44
Figure 12 Additional project cost for resolving unexpected conceptual

mismatches ... 45
Figure 13 Distribution agreement on the difficulties of interoperability

analysis practices for each group of respondents 47
Figure 14 Distribution of agreement on perceived content problems of

input artifacts for interoperability analysis per respondent
group ... 49

Figure 15 Distribution of agreement on perceived presentation
problems of input artifacts for interoperability analysis per
respondent group .. 51

Figure 16 Year-wise distribution of selected studies 56
Figure 17 Interoperability-level distribution over selected studies 57
Figure 18 Distribution of evaluation method over selected studies ... 60
Figure 19 The main aspects of the COIN Model 75
Figure 20 The three dimensions of our COIN Model 76
Figure 21 Structural differences of data between two systems 82
Figure 22 An example of a COIN Portfolio (left) and one of its sheets

(right) .. 91
Figure 23 Meta-model for the COIN Portfolio of Interoperable Software

System .. 91
Figure 24 An example of a Mismatches List (left) and one detailed

mismatch description (right) .. 94

xiii

Figure 25 Overview of the COINA Framework 101
Figure 26 COINs extraction process from UML diagrams 105
Figure 27 CoinsExtractor example of a list of interoperable

elements ... 108
Figure 28 CoinsExtractor example of an extracted Context COIN from

a use case diagram ... 109
Figure 29 CoinsExtractor example of a system's COIN Portfolio 110
Figure 30 CoinsExtractor example of generated COIN Portfolio 110
Figure 31 CoinsExtractor architectural overview............................. 111
Figure 32 Multiple-case study process .. 116
Figure 33 COIN share in the Ground Truth Dataset 118
Figure 34 Process of the ML experiments 121
Figure 35 The area under FPR-TPR curve for classification algorithms

after parameter tuning... 124
Figure 36 COIN extraction process from an NL sentence of an API

document .. 125
Figure 37 The selection options of the COINer tool for the COIN

highlighting feature .. 127
Figure 38 A COINer tool example for an automatically highlighted

Dynamic COIN .. 128
Figure 39 A COINer tool example for a COIN report generated for

Structure COINs .. 128
Figure 40 Process overview of the systematic approach for detecting

conceptual mismatches... 136
Figure 41 Example of a formal modeling language and two COIN

instances ... 141
Figure 42 Hypotheses for the contributions..................................... 148
Figure 43 Acceptance evaluation metrics 151
Figure 44 Experimental Design ... 152
Figure 45 Design of Experimental Sessions 153
Figure 46 Correlation results for the demographic characteristics of

the participants .. 157

xiv

List of Tables

Table 1 Frequency of problems related to undetected conceptual
mismatches ... 44

Table 2 Perceived difficulties of interoperability analysis practices . 46
Table 3 Perceived sufficiency of the input artifacts of the

interoperability analysis task ... 47
Table 4 Perceived need for enhancing the content of input artifacts

for interoperability analysis.. 49
Table 5 Perceived need for enhancing the presentation of input

artifacts for interoperability analysis 50
Table 6 Overview of LCIM levels with the problems and solutions

identified in the studies ... 57
Table 7 Detailed attributes of COINs .. 80
Table 8 Predefined COIN Extraction Templates 103
Table 9 Case share of sentences and execution time 117
Table 10 Example of content in the Seven-COIN and Two-COIN

Corpus .. 118
Table 11 COINs identification results using different ML algorithms 123
Table 12 The results of classification after parameter tuning 123
Table 13 Example of a record in the COIN Cheat Sheet for UML

diagrams ... 137
Table 14 Example of a snippet of a COIN Portfolio for the Smart Farm

System .. 138
Table 15 Example of a snippet of a COIN Portfolio for the Smart

Tractor System .. 139
Table 16 Example of a record in the Mismatches Cheat Sheet 142
Table 17 Example of a snippet of the Mismatches List for the Smart

Farm and the Smart Tractor .. 143
Table 18 Hypotheses of the Multi-run Controlled Experiment 150
Table 19 Analysis results regarding Effectiveness (H9) and Efficiency

(H10) for Run I and Run II .. 160
Table 20 Results of Acceptance (H11) for Run I and Run II 161
Table 21 Results of the survey on the guidelines for improving API

documents .. 168
Table 22 Acceptance results from the debriefing questionnaire 173
Table 23 COIN Model comprehensiveness data analysis 176

1

1 Introduction

This chapter motivates the topic and the problems addressed in this
thesis, provides an overview of the solution ideas, and summarizes the
contributions. The chapter also presents the research scope, context,
assumptions, and methodology. Finally, an outline is provided for the
next chapters of the thesis.

1.1 Motivation

We are living in a software-intensive era in which software systems are
used for various purposes in various ways. Software systems in their
different forms (e.g., Information Systems (ISs), Embedded Systems
(ESs), Mobile Systems (MSs), etc.) provide support and solutions in
different domains including manufacturing, agriculture, banking, health,
education, and military, to name but a few. Thus, these systems have
become an integral part of business and influenced the way we perform
processes, manage and learn from collected data, automate complex
and tedious calculations, control machines and vehicles, connect
markets and services, and more.

In the past, a software system used to be developed by a single
organization to provide tightly focused support for certain tasks and
specific purposes. However, today’s software providers are urged to
adopt integration solutions for independent software systems built by
different organizations [BR91, BA99]. This is due to imperative needs,
fast growth, and high competitiveness of modern business. Successful
software integration offers several advantages such as business
revenue growth through improved productivity and time-to-market for
quality software, expanded sales channels, and decreased costs for
software development maintenance, and operation [GC92].
Furthermore, it empowers usage innovation by allowing users to
perform different activities and processes smoothly through software
interoperation among integrated software units. Software interoperation
is the cooperative exchange of data or services among integrated
software units, which is enabled by software integration.

In this context, software integration takes place after the end of the
development lifecycle for each of the integrated software units.
Software integration is defined as follows:

Software-
intensive
business

Business
requires
software
integration

Introduction

2

Definition 1 – Software Integration

The process of bringing together separately developed software units
in different contexts into one software system to enable the desired
interoperation and achieve its goal.

Integrated software units can not only be developed by different
organizations but can also have different sizes. For example, an
integrated unit can be a single software component like web service
API, platform API, commercial-of-the-shelf (COTS) software, Open
Source Software (OSS), etc. On a larger scale, it can be a complete
software system that is intended to be a part of the recent class of large
and complex software systems aimed at obtaining sophisticated
capabilities with higher performance [Jam09]. Examples of such large-
scale systems are: (1) systems-of-systems, which include a number of
ISs (e.g., a health software system integrating a doctor application with
a patient application, a pharmacy application, etc.); (2) cyber-physical
systems, which include a number of ESs (e.g., a traffic control system
integrating a traffic lights app, vehicle app, driver app, etc.); or (3)
Ecosystems, which include a mix of ISs, ESs, and MSs all sharing the
same market and the same overall system goals (e.g., a farm
ecosystem integrating farm management system, smart tractors, a
mobile app for farmers, etc.).

Software interoperability is a key property of software units to cope with
the current business demands. This property is defined by IEEE
[GKM+91] as “the ability of two or more systems or components to
exchange information and to use the information that has been
exchanged”. Beyond the exchange of information, we emphasize the
importance of having the integrated software units aligned on the
conceptual and the architectural levels. Hence, our definition of
software interoperability, adapted from the aforementioned IEEE
definition, has a stronger focus on the conceptual perspective as
follows:

Definition 2 – Software Interoperability

The ability of two or more separately developed software units to
communicate and exchange data or services seamlessly and in a
conceptually meaningful way.

In practice, interoperability is considered as the enabler for software
integration [OWR+11]. It plays a vital role in determining the readiness
of a software unit for integration with other software units. Figure 1
summarizes the relationships among the terms interoperability,
integration, and interoperation [OWR+11].

Types of
integrated
software
units

Interoper-
ability enables
integration

Introduction

3

Figure 1 Basis for relationship between interoperability, integration, and interoperation

An example industry that we can use to demonstrate the
aforementioned aspects is the farming industry, where the key business
service is to produce food for people by growing crops and livestock.
Delivering such a service requires a large number of business
processes related to field work (e.g., fertilizing the soil, planting seeds,
spraying water, harvesting crops, etc.) and management activities (e.g.,
tracking soil humidity, weather status, progress of on-field tasks, etc.).
While in the past, most of these processes have been performed
manually, today’s smart farms enjoy the luxury of automation provided
by different software-intensive systems. In a visit to a smart farm, one
would typically find: ISs as desktop applications supporting managers
in handling farm records and collected data, ESs in smart sprinklers or
in tractors as screens directing the drivers on the field, or MSs as apps
for farmers on their smartphones or smartwatches for tracking job
assignments and reports. Without a doubt, neither have all of these
various software systems been developed by the same organization,
nor do they necessarily share the same business model. For example,
a smart tractor (S1) with high-quality sensors could collect and report
different types of data of high resolution and frequency, while a basic
low-priced farm management system (S2) has limited data storage and
analytic capabilities. With the growing food-production demands, it
would be of great value to a smart farm (SF) to collect and analyze data
for prediction and informed decision purposes. Hence, if producers of
farming-related software systems (like S1 and S2) or initiators of smart
farming ecosystems were to aim at developing interoperable software
products, they would save interested clients (like the owners of the SF)
a lot of integration costs. This would consequently be reflected in the
increased competitiveness and higher long-term revenues of such
software-producing and ecosystem-initiating organizations.

Having said this, building successful integration and consequently
achieving meaningful interoperation starts with early assessment and
reasoning about the properties of the two software units that are to
interoperate. This assessment takes place before adapting,

Why
interloper-
ability
analysis?

Integration

Interoperability

base for

Interoperation

enables

Example:
Smart
Farming

Introduction

4

configuring, or glue-coding the units [BPY+03] and is performed by
software architects and analysts. We call this “interoperability analysis”
and define it as follows:

Definition 3 – Interoperability Analysis

The process of checking the constraints and assumptions of two
software units in order to find if they have any mismatches that impede
their desired communication or meaningful interoperation between
them.

This analysis is a cornerstone for understanding the impact of the units’
constraints, identifying their mismatches, planning the required
resolution work (including design and implementation), estimating the
associated cost (in terms of time and money), and consequently
determining the feasibility of integration early in the project. However,
performing this important interoperability analysis effectively is not a
trivial task. Not only does it require identifying the units’ technical
mismatches that impede the actual exchange of data and services (e.g.,
different network protocols, programming languages, data types, etc.);
it also requires identifying their conceptual mismatches that lead to
meaningless or improper interoperation results (e.g., different usage
contexts, architectural constraints, semantics, qualities, etc.).

According to Krueger [Kru92], organizations adopting integration report
limited success due to non-technical issues. Missing conceptual
mismatches and facing them unexpectedly at a later point in time leads
to worthless technical integration, expensive rework, and obviously to
projects running late. For example, COTS-based integration projects
often suffer from significant overruns in terms of budget and schedule
due to unexpected interoperability mismatches [Bhu07].

Therefore, analyzing software interoperability on the conceptual level
should be performed early with high priority in order to guide decision-
makers in selecting the most appropriate software units for their
systems to interoperate with. The results of conceptual interoperability
analysis offer a basis for deciding whether it is worth investing further
effort into investigating the systems’ interoperability on the
organizational level (e.g., privacy and intellectual property concerns),
the managerial level (e.g., budget and time restrictions), and the
technical level (e.g., network and communication protocols).

The documentation of a software unit is used to retain and
communicate information about the various aspects of the unit to its
audience [For02]. In that sense, it is essential input for the
interoperability analysis, especially in the black-box integration (e.g.,
web service API), where no source code is available. Thus, a proper
software documentation is considered a necessity for enabling

Why
conceptual/
architectural
interloper-
ability
analysis?

Software
document-
ation for
interloper-
ability
analysis

Introduction

5

software integration as it helps to assess the software unit with
reasonable effort [Sam97].

Accordingly, software architects and analysts require a comprehensive
documentation that explicitly states the conceptual and architectural
constraints for a software unit, in order to perform effective and efficient
conceptual interoperability analysis. Such information is usually
preserved in the local software architecture documentation, which
maintains the abstract conceptual overview of the software structure
comprising its elements, properties, and relationships [BCK03]
[CGB+02]. Hence, information contained in architecture documents,
among the other software documents, is of high value for the
conceptual interoperability analysis task.

In response to the potential advantages of software interoperability,
many attempts have been made over the last few decades to support
it. On the one hand, many interoperability standards, models, analysis
approaches, and mismatch solutions have been proposed [CS12]. On
the other hand, many providers of black-box interoperable software
units publicly share documents about their units in the form of online
API documentations, README files, reuse manuals, Wiki pages, etc.

Although the above-mentioned efforts led to improvements in
integration projects, it is still hard in practice to analyze black-box
software units with respect to their conceptual and architectural levels
of interoperability. This, in turn, leads to the conceptual mismatches
between the units to be integrated being missed, which imposes
expensive rework to handle the conceptual mismatches detected late,
provided such rework is even possible at all!

In this thesis, we explore the reasons behind the challenges faced in
conceptual interoperability analysis in practice and investigate where
the proposed solutions in the state of the art fall short in addressing
them. Accordingly, we provide a framework that offers proactive support
for conceptual interoperability analysis, allowing effective and efficient
detection of conceptual interoperability constraints between separately
developed software units.

1.2 Problem Statement and Goals

In this section, we start by presenting multiple-perspective practical
problems (P.P) that impede software architects and analysts from
performing conceptual interoperability analysis and mismatch
detection. Afterwards, we will translate these practical problems into our
practical goals (P.G). Next, we will describe the related research
problems (R.P).These will then be translated into our research goal
(R.G), which we aim to achieve in order to address the practical
problems.

Architectural
document
preserves
conceptual
constraints

Efforts to
support
interloper-
ability

Lack of
support for
conceptual
interloper-
ability
analysis

Introduction

6

Practical Problems and Practical Goals

Studies show that more than 40% of IT-related costs are spent on
solving interoperability problems [MRPX08]. As introduced in the
previous section, analyzing the interoperability of software units to
detect their conceptual mismatches is critical for the success of
integration projects. An example of the effect of such mismatches was
reported by David Garlan [GAO95] in the context of an integration
project of four separately developed software units. While the
estimations indicated that the project needed six months to one person-
years, it actually took two years a five person-years (i.e., four times the
estimated project time and five times the estimated development effort).
Garlan states that the reason behind the issue were the architectural
mismatches resulting from the hidden assumptions about the structure
of the integrated units. This has also been confirmed through published
experiences with other integration projects [SK96]. Therefore, hidden
and unstated assumptions and lack of documentation about
interoperable software units are a significant problem that puts
integration projects of third-party clients at high risk of producing
incorrect or meaningless interoperation with under-estimated cost
[SA11].

In the long run, providers of interoperable software units with such
inadequate sharing of the conceptual constraints will lose clients,
become less competitive and lose revenues. As illustrated in Figure 2,
clients opt to build interoperation with an external software unit (reusing
it) only if the providers invest enough in the unit to make the cost of
reusing it lower than the cost of not reusing it [BB91].

Figure 2 Reuse-investment relation [BB91]

Relevance
of the
conceptual
mismatches
problem

Introduction

7

Hence, on the one hand, it is the responsibility of providers who offer
interoperable black-box software units with which interoperation is
possible to explicitly and comprehensively share the conceptual
constraints for their units. Such information gets typically prepared by
the architects of the software unit during its development or once it is
offered for interoperation with other units. The quality of such
documentation is considered to be one of the main factors that affect
the cost of integration projects [AB97]. However, this is not a trivial task,
as conceptual interoperability constraints are usually hidden within the
internal architecture and design documents of the software unit. Add to
this that these constraints are spread across multiple models (e.g., UML
class diagram, sequence diagram, etc.). Therefore, it is tedious and
time-consuming for the providers to manually analyze the in-house
architecture documents, extract the interoperability-related conceptual
constraints, and document the collected constraints for clients in a
publicly shared document (e.g., an API document). This task gets
harder with large software systems, especially with limited time and
manpower resources. In such contexts, time pressure often leads to
neglecting the documentation or to incomplete and inconsistent
information [Sam97].

Furthermore, the task of sharing documentation about the conceptual
and architectural constraints of an interoperable unit should be
performed from the point of view of the reader (i.e., third-party clients
performing the conceptual interoperability analysis) [CGB+02]. Thus,
this task does, without a doubt, require the responsible architects to
have knowledge and experience regarding the different types of
conceptual interoperability constraints that need to be shared in order
to allow meaningful interoperation.

P.P1: Explicit and comprehensive sharing of conceptual interoperability
constraints for black-box software units is expensive and requires
experience.

On the other hand, it is the responsibility of third-party clients, who look
for interoperable software units that satisfy their needs, to thoroughly
analyze the conceptual interoperability between their systems and the
external software units of interest. Such an analysis takes place early
in the integration project and is performed by software architects or
analysts. However, this is not a straightforward task; on the contrary, it
requires clients to carefully identify and compare the conceptual
constraints of their own software systems (from in-house documents)
and of the external software units (from publicly shared information
sources like API documents) in order to detect any conceptual
mismatches. Thus, the conceptual interoperability analysis is tedious
and time-consuming. An example study [PXZ+12] confirmed this fact
by reporting that only browsing the eBay documentation for a web
service called “AddFixedPriceItem”, which had about 52,657 words,
took more than 10 hours without even extracting the constraints.

Problem
from the
perspective
of software
providers

Problem
from the
perspective
of third-party
clients

Introduction

8

Apparently, the larger in size the software units under investigation
 and their documents, the higher the analysis cost (in terms of time and
effort). Besides, this cost obviously rises as the number of external
software unit candidates increases.

In addition, in order to perform the conceptual analysis task
successfully, responsible architects or analysts need to have
knowledge and experience regarding the task and the different types
and impacts of conceptual constraints and mismatches. Moreover,
Rubinger et al. [RB10] showed that interoperability constraints still
slipped despite familiarity with the documentation, due to the verbose
text and its informality, which requires manual linguistic skills for
capturing, structuring, and saving information about constraints.
Consequently, the significant effect of the integrator’s experience on the
analysis makes this one of the factors used in assessing the integration
cost [AB97]. In other words, the success of conceptual interoperability
analysis depends critically on the architects’ and analysts’ expertise.

Therefore, the cost and the requirements of conceptual interoperability
analysis will often compel software providers to either neglect the issue
of conceptual interoperability altogether or postpone it until the
candidates are filtered based on how easy it is to integrate them from a
technical point of view [Bhu07]. This puts projects at the risk of finding
conceptual mismatches late, which defeats the desired gains of
software integration.

P.P2: Analyzing the conceptual interoperability of software units and
identifying their conceptual mismatches is expensive and requires
experience.

Here we will illustrate these practical problems using our previous
example from the smart farming industry. This is a very simple toy
example, with respect to the description of the software units and the
interoperation requirements, which we will use to shed light on the
interoperability analysis problems on the conceptual level. We will also
limit the conceptual interoperability constraints covered within the
example at this point, but will detail them in Chapter 0.

Imagine a company Alpha (α) that has developed a smart tractor (S1)
with the intention of making its software system interoperable. That is,
S1 was meant to interoperate with other separately developed software
systems (e.g., farms management systems, farmers’ mobile apps, other
smart machinery like harvesters and mowers, etc.). The interoperation
offer includes services like Auto/Remote Steering, Location Tracking,
Task-Progress Monitoring, Field-Data Collecting, Usage Reporting, and
more. Thus, company α decided to invest effort into exposing the
required information about S1 for interested clients.

Example from
smart farming

Providing an
interoperable
Smart Tractor
(S1)

Introduction

9

As α wanted to start integrating S1 very soon due to a time-to-market
constraint, Jana, the software architect responsible for S1, was in rush
during the preparation of the conceptual part of the shared
documentation about S1. She could not go through all available in-
house specification, architecture, and low-level design documents of S1

to completely identify the conceptual constraints of the offered-for-
interoperation elements (i.e., services and data). Hence, Jana updated
the API documentation and integration manual web pages of S1 with as
much main conceptual information as she could before the deadline.

Meanwhile, the owners of a smart farm ecosystem (SF) were looking
for a tractor that would boost the productivity of farmers on the field and
would support informative decision-making by delivering data to the
farm management system (S2). By searching the market, the owners of
SF got interested in integrating an instance of S1 into their software
ecosystem.

Hence, Noah, the software architect responsible for the ecosystem who
was a junior, started assessing the feasibility of building a successful
interoperation between S2 and the tractor S1. In this scenario, Noah had
to analyze the conceptual and architectural constraints for both S1 and
S2 to report any conceptual mismatches to the project manager as soon
as possible, before the developers started implementing the technical
integration. Noah started his ad-hoc manual investigation of the text in
the shared API document and integration manual of S1. He was
overwhelmed by the technical constraints and code examples, which
were much more than the small amount of conceptual information he
was mainly looking for. For example, he found that the offered ”Remote
Steering” function would accept steering requests as a JSON file
including the ID of the tractor sent using the secure communication
protocol Secure Socket Layer (SSL), which would introduce technical
mismatches with the S2, which used the Transport Layer Security (TSL)
protocol to send Java objects. However, Noah did not find any user
restrictions on the Remote Steering functionality, so due to time
constraints and low experience he assumed that it is permitted for any
authorized driver, even concurrently with safety-related emergencies.
Similarly, the Usage Reporting description did not explain the frequency
of such reporting and whether the report would be per driver account or
per tractor, so Noah took a note on that issue to get back to it later, but
under time pressure he forgot. Besides, the undirected analysis led
Noah to miss questioning other important concerns about quality and
behavior. For example, he did not investigate the interaction property of
S1, which was indeed asynchronous and not sending confirmations for
requests, unlike the synchronous interaction of S2. Figure 3 presents
our example of the detected technical mismatches and the missed
conceptual ones.

Are S1 and S2

conceptually
interoperable?

Introduction

10

Figure 3 Example of detected and missed mismatches between S1 and S2

Ideally, if the conceptual constraints had been explicitly specified like
the technical ones in the API documents, they would have alerted Noah
during his analysis. However, the reality was far from ideal and these
conceptual constraints were still hidden in the structural and behavioral
UML diagrams of S1. After all the effort Noah put into the analysis, his
report of the detected interoperability mismatches was incomplete and
the integration project faced the risk of finding these unexpected
conceptual mismatches late in the integration project.

A one possible approach for handling the missing constraints that Noah
had not noticed during his analysis task would be to contact company
α asking for further information about S1. However, adopting this
solution might be expensive for company α, especially for repeated
inquiries by different clients. Also, the waiting time might be
inconvenient for the clients, leading to an unpleasant experience in
integrating the product of company α and affecting its reputation in the
marketplace.

According to the aforementioned practical problems that we illustrated
in the example, we formulate the practical goals that we seek to address
in this thesis as follows:

P.G1: Increase the software architects’ effectiveness and efficiency in
identifying and sharing the conceptual interoperability constraints of
their interoperable black-box software units.

P.G2: Increase the software architects’ and analysts’ effectiveness and
efficiency in identifying the conceptual interoperability mismatches
between their systems and external software units of interest.

Practical
goals

Introduction

11

The first step towards achieving these goals is to reveal the reasons
behind the practical problems in performing the conceptual
interoperability analysis. In the next section, we will therefore describe
the research problems we identified that can lead to P.P1 and P.P2 with
an illustrating example.

Research Problems and Research Goals

To cope with the practical problems mentioned above, different solution
ideas have been proposed, each making a contribution from a specific
angle. Here we outline the research problems (R.P) with regard to
conceptual interoperability analysis that the state of the art has not
covered yet. This leads us to state the research goal (R.G) of this thesis.
Note that here we only provide a very brief overview of related work,
but we will get into detail and present state of the practice and state of
the art studies in Chapters 1 and 4.

We described that performing conceptual interoperability analysis is
about identifying the mismatching conceptual interoperability
constraints of two software units. Therefore, it is crucial to know WHAT
conceptual interoperability constraints are, before looking into HOW to
share and identify them. Only when this is achieved can the approaches
for HOW to prepare for and perform conceptual interoperability analysis
be of real benefit.

It is necessary for both the providers of interoperable software units and
the clients who integrate these units into their systems to have a clear
and mutual understanding of WHAT the conceptual interoperability
constraints are, and to know their classification, the kind of mismatches
they cause, and their impact on the planned integration. During the last
few decades, many state of the art models have been proposed to
classify interoperability. Although these models have established a
strong basis for this property, they are abstract classifications for the
concept and do not support the analysis purposes and activities. That
is, none of them specify precisely what each classification level would
include in terms of constraints that strict the software units that are to
interoperate. Besides, the existing models do not relate the
classifications to the types of mismatches they cause. Hence, these
models have not found their way into practical approaches for
conceptual interoperability analysis.

R.P1: Lack of theoretical foundation that defines the conceptual
interoperability constraints and their related mismatches for software
units.

Concerning HOW providers can prepare their black-box software units
for interested clients, very few approaches have been proposed in
literature. Most of the previous works focus on building and following
interoperability standards, which are typically technology-oriented,

Related
research
problems

Introduction

12

domain-specific, unsustainable, and absolutely unable to cover the
semantics of software units. Some other reuse approaches call for
manual creation and formalization of contracts and interfaces that
mainly specify technical constraints rather than sufficiently including
conceptual constraints as well.

R.P2: Lack of proactive approaches and automated solutions for
guiding providers of interoperable black-box software units in
identifying and sharing conceptual interoperability constraints for their
units.

Similarly, with regard to HOW third-party clients analyze the
interoperability between their systems and software units under
investigation, many approaches aim at identifying mismatches.
Examples of such approaches include contract-based conformance
checking, testing-based techniques, and integration prototype analysis.
Most of these activities target technical mismatches and some specific
types of architectural ones. Furthermore, some of these analysis
approaches are not systematic in documenting the results, and some
are considered expensive as they depend on analyzing the executions
after actually glue-coding the units. Besides, some approaches cannot
be applied in the black-box integration context as they depend on
analyzing and re-engineering the code.

R.P3: Lack of systematic analysis approaches that guide
interoperability analysts in identifying the conceptual constraints of two
software units and detecting their mismatches.

This motivated us to aim at tackling the stated research problems in
order to overcome the practical problems. Our overall research goal,
which is depicted in Figure 4, serves our previously stated practical
goals. Accordingly, we state the research goal in our thesis as follows:

R.G: Provide proactive and systematic support for improving
conceptual interoperability analysis practices.

Figure 4 Overall thesis goal: improving the detection of conceptual interoperability mismatches

Research
goal

Introduction

13

1.3 Solution Ideas and Hypotheses

In the following, we will describe our solution ideas (S.I) and map to the
research problems previously stated in Section 1.2. We will provide an
in-depth presentation of these ideas later in Chapters 0 and 6.

S.I1: A comprehensive model for Conceptual Interoperability
Constraints (COINs) and related conceptual mismatches.

We started with addressing the theoretical research problem (R.P1) by
extending and enhancing existing models of interoperability and reuse
with a particular focus on the conceptual non-technical characteristics
of interoperable software units. In particular, we established the
relationships among different types of conceptual constraints,
interoperable elements (i.e., system, data, and functions), and software
unit types (e.g., IS, ES, etc.). The model also connects the conceptual
constraints with the resulting conceptual mismatches.

S.I2: A framework for Conceptual Interoperability Analysis (COINA)
that supports software architects and analysts in identifying the
conceptual interoperability constraints and mismatches of software
units more effectively and efficiently.

Founded on the aforementioned model, we contribute a supportive and
guiding framework for engineering activities related to conceptual
interoperability analysis. The COINA Framework comprises two
methodical components to assist providers and clients of interoperable
software units.

The first component of COINA addresses the methodical research
problem (R.P2) that providers of interoperable black-box software units
face in sharing conceptual constraints with clients.

S.I2.1: Proactive, semi-automatic, in-house preparation for
interoperable software units, which helps software providers to
explicitly share conceptual constraints with interested clients with the
least effort.

This component helps providers taking charge of both extracting and
documenting the COINs of interoperable software units. This proactive
step makes black-box units ready for proper analysis by potential
clients. The actual output of this component is a standard ready-to-
share COINs document for clients. We facilitate this through our COIN
templates, each of which is a rule. If it is satisfied, a COIN instance is
extracted and documented. Our templates cover certain conceptual
constraints of a software unit from its relevant architectural documents
(i.e., UML structural and behavioral diagrams). We aid this template-
based extraction by implementing an add-in for the Enterprise Architect
[Spa] modeling tool.

Introduction

14

Furthermore, we utilized machine learning capabilities in extracting
existing COINs from the natural language text of public API documents
related to the respective software unit. We also tool-support this
extraction with an add-in for the Chrome web browser, which embeds
the machine learning COIN-Classification Model that is our contribution.
In addition, we provide documentation guidelines for improving the
content and presentation of COINs in API documents.

The second component of COINA addresses the methodical research
problem (R.P3) faced by third-party clients who are interested in
external black-box software units while analyzing them.

S.I2.2: A systematic, algorithm-based method for mapping the
conceptual constraints of system, which assists architects and analysts
in detecting conceptual mismatches between software units.

This component systematically guides third-party clients in their mission
to identify conceptual mismatches between their software units and
external black-box ones. This is facilitated through our COIN Cheat
Sheets, which provide guidance for the identification of different
conceptual constraint types, and our Mismatches Cheat Sheet, which
provide guidance for the identification of different conceptual
mismatches between the constraints of two software units. Our
algorithm-based mapping can be automated by formalizing the COINs
of the two units. However, formalizing all the constraints does not seem
to be a practical approach, so we offer guidelines on how to map them
manually.

Furthermore, a systematic analysis with consistent documentation of
the results of each step towards the final decision is of great
importance. This especially applies in cases of comparing multiple
candidate units, reflecting on reasons for rejecting candidate units, or
learning from and saving analysis experiences. Therefore, our
framework proposes standard documentation templates for saving the
results of the identified COINs for each system as well as their detected
mismatches.

Figure 5 Mapping overview of problems, goals, and solution ideas

Introduction

15

Figure 5 provides a big picture overview that summarizes and maps our
stated practical problems, practical goals, research problems, research
goal, and solution ideas.

Research Hypotheses

For each of our proposed solution ideas, we expect to gain practical
benefits that will translate into a number of scientific hypotheses. We
present a very abstract view of these hypotheses here, but will refine
and evaluate some of them in empirical experiments and case studies
in the course of this thesis. Our hypotheses regarding the short-term
practical benefits of the COINA Framework cover aspects of
effectiveness, efficiency, and acceptance for both providers of
interoperable software units and interested third-party clients, as
follows:

HEffectiveness: Using the COINA Framework increases the
effectiveness of architects in identifying and documenting the
conceptual interoperability constraints and conceptual mismatches of
software units that are intended to interoperate when compared to ad-
hoc approaches.

HEfficieny: Using the COINA Framework increases the efficiency of
architects in identifying and documenting the conceptual
interoperability constraints and conceptual mismatches of software
units that are intended to interoperate when compared to ad-hoc
approaches.

HAcceptance: Using the COINA Framework as proposed is accepted by
architects for identifying and documenting the conceptual
interoperability constraints and conceptual mismatches of software
units that are intended to interoperate.

In the long term, proactive preparation with COINA will help software
providers achieve higher business impact and better competitiveness
by increasing the success rate for interoperation. It is a one-time effort
that will save costs in each future interoperation. Also, the COINA
systematic analysis offers third-party clients engineering benefits such
as traceability (e.g., linking mismatches to the conceptual constraints
that cause them and verifying the resolution cycle from mismatch
resolution requirements to resolution code), repeatability of the analysis
results (which offers higher confidence in the analysis results and better
estimation for conceptual mismatch-related risks), and experience
reuse (which results from mining the accumulative cross-project
interoperability analysis results). This also allows making informed
decision and trade-offs among candidates. However, we do not list
these long-term hypotheses in our thesis as they would require
collecting data and monitoring results over years and across projects,
which makes it unfeasible within the time period available for this thesis.

Introduction

16

1.4 Research Context and Assumptions

Now that we have described the ideas of this thesis, we will establish
the boundaries for our research and its contributions. That is, we will
define the context and the assumptions under which our
aforementioned benefits are expected to be realized.

This thesis is dedicated to advancing the knowledge of software
engineering and its contributions are aligned with the practical needs
described in Section 1.2. The work focuses on software interoperability
as an important quality attribute for systems with meaningful
interoperation needs and interests. The proposed work is mainly
dedicated to supporting the analysis of this property between two
systems that are intended to interoperate.

We have described earlier in the motivation in Section 1.1 and the
example in Section 1.2 that our research focus is on supporting the
conceptual analysis of external black-box software units and we have
focused our empirical evaluation on this type of units. However, it is
possible to scale up the usage of our proposed proactive preparation
and systematic analysis solutions to white-box software units, which
offer third-party clients access to additional sources of information (e.g.,
public architecture documents or code). In addition, our ideas can be
applied to support conceptual interoperability analysis for software units
of different types (i.e., IS, ES, MS, etc.), as we will show later in the
evaluation part of this thesis. Although not empirically evaluated, we
believe that our solution benefits should not be limited to a specific
software size (i.e., the units can vary in size from a single software API
service to a complex software ecosystem consisting of multiple systems
and services).

As mentioned above, the focus of this thesis is on the conceptual
interoperability of software units and not on their technical
interoperability. We give this priority to the conceptual level on the basis
of its critical driving role for integration projects and because of the lack
of support it has in the literature. However, this does not suggest that
the other interoperability levels (e.g., technical, organizational, etc.) are
not important. Accordingly, our contributed model and framework both
focus on the conceptual aspects of interoperability constraints with the
architecture-related ones being at the core. Therefore, we are after the
conceptual constraints and mismatches of software units.

In the context of this thesis, the business need to build interoperation
between a software unit and another external black-box software unit
arises in the future, after both units have already been developed.
Hence, integration requirements are potential and not imperative. In
other words, the interoperable units have not been developed with prior
requirements or concrete plans to match with any other specific units.

Types of
interoperable
software units

Thesis
domain

Software
integration
time

Level of
interoper-
ability

Introduction

17

Hence, the interoperation between two software units is not enabled by
design, but rather by construction in a later integration project.

 Accordingly, our contributions assist interested third-party clients in
analyzing the conceptual interoperability between their systems and the
external units only when they are already developed and after the
emergence of integration requirements based on business needs.
However, within the integration project itself, the conceptual
interoperability analysis reserves a place in the early stages. The
results of the conceptual analysis determine the feasibility of the project
and the requirements to resolve the conceptual mismatches. Therefore,
this analysis comes before the technical interoperability analysis and
before designing and implementing the integration.

Although specific interoperation requirements are not in the picture
while developing interoperable software units, our research ideas
encourage early proactive preparation for potential interoperations.
This preparation, which results in documentation for the conceptual
interoperability constraints of an interoperable unit, takes place either
directly after developing the software unit or during its development life-
cycle, with attention given to updating the document whenever a
change is introduced to the unit under development. This proactive
preparation is considered as an investment that requires one-time effort
to serve many potential integrations. Of course, such prepared
documents need to be maintained in order to keep them up to date and
aligned with software-unit-related changes. Overall, this preparation
applies for both providers of black-box units and owners of software
systems with interoperation interest in mind (e.g., establishers of a
software ecosystem). In general, we expect such proactively prepared
documents to reduce the cost and increase the quality of the conceptual
analysis results.

The methodical contributions of this thesis (i.e., proactive preparation
and systematic analysis) will aid software architects and analysts of
interoperable software units. We expect our contributions to have
strong effects even when serving inexperienced architects or general
software engineers due to our detailed guidance and automation
support. Great architectural knowledge and expertise would be
prerequisites if no automated support was used for analyzing low-level
design documents (i.e., UML diagrams).

The main software engineering activity supported by our contributions
is analyzing conceptual and architectural documents (e.g., API and
UML documents) of software units. This particularly includes extracting
the conceptual interoperability constraints of a software unit,
documenting and sharing the constraints, comparing two software
units’ constraints to detect their mismatches, and reporting the detected
mismatches.

Conceptual
interoper-
ability
analysis time

Proactive
preparation
time

Software
engineering
actors

Software
engineering
activities
Level of
automation

Introduction

18

For our proposed proactive preparation of the COINs document for
interoperable software units, we offer semi-automatic tool support for
COIN extraction from UML diagrams. As previously described in
Section 1.3, the tool automates the extraction based on our predefined
COIN templates; however, it requires architects to select the
interoperable elements of the software units under analysis. On the
other hand, the ML-based extraction of COINs from NL text in API
documents can be totally automated if the corpus is enriched with more
labeled sentences from more API documents in order to increase its
reliability in detecting the COINs accurately.

We have a number of critical assumptions on which we base our
contributions. If they do not hold, then the results produced in each
analysis step cannot be guaranteed to be correct or complete. First,
during the interoperability analysis of software units, these units are
stable and have available up-to-date documentations (e.g., the
architecture, low-level design, or API documents). Second, these
documentations also need to be consistent with each other. This
consistency is assumed among UML diagrams of the same structural
type (e.g., both class diagram and object diagram agree on the
multiplicity relationships), the same behavioral type (e.g., both
sequence diagram and data flow diagram are aligned in representing
the process), and the different types (e.g., a structural class diagram
and a behavioral sequence diagram both agree on the functions a
specific class can issue). Similarly, the different documents are
assumed to hold consistent information (e.g., information in the API
documentation complies with the UML diagrams). Third, we suppose
that the UML notations are used in the correct way as specified by the
Object Management Group (OMG). Fourth, with regard to accessibility,
we assume that architects have access to the in-house architectural
documents of their own software units. Meanwhile, third-party clients
are assumed to have access to some kind of shared documents about
the black-box units, like API documentation, but not to architectural
documents or code.

1.5 Overview of Contributions

In this section, we state the key contributions (C) of this Ph.D. thesis in
four categories as described below.

Foundation contribution. This category includes the theoretical
scientific contributions that offer a basis comprised of concepts,
properties, and relations upon which the rest of the contributions can
be built. In this category, we have the following contribution:

- C1: Conceptual model and a classification. Our “COIN Model”
provides the foundation for the entire thesis work and explains how
the conceptual interoperability constraints are notionally related to

Assumptions

Introduction

19

interoperable software elements, software types, and mismatch
types. By defining these relationships, we can determine which
constraints need to be identified and mapped between two software
units that are intended to interoperate in order to achieve an
effective and efficient conceptual interoperability analysis. Based
on it, we also provide a classification for the “Conceptual
Interoperability Mismatch”.

Methodical contributions. This category includes the contributions to
software engineering methods that will assist specific roles in
performing specific engineering activities. In this category, we have a
number of contributions that are the building blocks of our “COINA
Framework”, which aids conceptual interoperability analysis as
follows:

- C2: Proactive preparation approach for interoperable software
units. This contribution aims at supporting software architects in
the COINs extraction and documentation activities that are
performed in-house for their own software units. This preparation
serves both providers of interoperable software units and
establishers of interoperable systems during the software
development life-cycle.

o C2.1: Documentation template for conceptual constraints.
Our “COIN Portfolio” is a documentation template designed to
support architects in maintaining the COINs of their system in
a standard and structured way. It allows consistency in
documenting the constraints among different interoperable
elements of the same software unit and among the different
software units. Providers of interoperable units can use this
portfolio as a means for explicitly sharing conceptual
information about their software units with clients, which in turn
will allow the clients to perform effective and efficient
interoperability analyses.

o C2.2: Extraction method for structured conceptual
constraints through formal templates for UML diagrams.
Our “COIN Templates” are formal rules for identifying specific
types of conceptual interoperability constraints from UML
diagrams of interoperable software units. Whenever a rule is
satisfied, a COIN instance is detected and can be documented
in the COIN Portfolio of its software unit. This is facilitated by
means of extraction algorithms.

o C2.3: Extraction method for unstructured conceptual
constraints by building a corpus and a machine learning
classification model. Our contribution “COIN Corpus” is a
repository for natural language sentences that we fetched from
a number of real API documents and manually labeled with one
of the COIN types that we defined in the COIN Model. Based

Introduction

20

on the corpus, we created our “Machine Learning COIN
Classification Model”, which can automatically detect COIN
instances in natural language text of API documents.

o C2.4: Guidelines for improving API documentations. Our
proposed guidelines aim at enhancing the shared API
documentation with regard to the content and presentation of
conceptual interoperability constraints. These guidelines
increase the usability and usefulness of API documentation
from the point of view of the architects or analysts who perform
the conceptual interoperability analysis.

- C3: Systematic mapping approach for conceptual constraints
to detect mismatches. This contribution aims at guiding software
architects in their manual conceptual mismatches detection activity
between two software units. It starts by guiding the manual
extraction of COINs for the two software units from their shared
documentation (if their COIN Portfolios are not created proactively).
Then it guides the manual mapping of the two units’ constraints to
detect their conceptual mismatches. It mainly serves the interested
party in building the interoperation during the design time and the
development life-cycle of the integration project.

o C3.1: Guidance for manual extraction of conceptual
constraints through cheat sheets. Our “COIN Cheat
Sheets” offer guidance for the manual extraction of the COINs
of interoperable software units as a perspective-based analysis
(if COIN Portfolios have not been created already). The sheets
describe the different types of COINs and their categories, from
different perspectives, along with examples and directions on
their locations in the software artifacts (i.e., software
requirements specification, UML diagram, and API
documents).

o C3.2: Algorithm-based guidance for manual detection of
conceptual mismatches through a cheat sheet. Our
mapping algorithm defines the process for comparing the
conceptual constraints (or COIN Portfolios) of two units in order
to find any conceptual mismatches between them. We support
architects with a “Mismatches Cheat Sheet”, which describes
the different types of conceptual mismatches and the potential
COINs causing them with examples.

o C3.3: Documentation template for conceptual
mismatches. Our “Mismatches List Template” is a
documentation template designed to support architects in
maintaining traceability between the detected mismatches and
the COINs causing them. It also facilitates consistency in
documenting the mismatches, which supports trade-off and
comparison among different analyzed interoperable software
unit candidates.

Introduction

21

Technical contributions. This category includes contributions that aim
at realizing the methodical contributions to enable their efficient use by
practitioners. In this category, we have contributions that demonstrate
the feasibility of our COINA preparation through software tools for
extracting the COINs as follows:

- C4: Architecture add-in tool for semi-automatic extraction of
conceptual constraints. We implemented our “CoinsExtractor
Tool” as an add-in for Enterprise Architect. It implements our formal
COIN Templates for extracting constraints from different UML
diagrams, then documents them in our proposed COIN Portfolio
documents. To enable this, an architect needs to determine the
interoperable software elements that he seeks by finding and
documenting their constraints.

- C5: Web browser add-in tool for automatic extraction of
conceptual constraints. This tool “COINer” is implemented as an
add-in for the Chrome web browser and embeds our contribution
“Machine Learning COIN Classification Model”. The tool allows an
architect to select natural language sentences in an API document
and to choose the COIN types he is looking for, and it automatically
determines whether the sentences have such COINs.

Empirical evaluation contributions. This category includes empirical
studies that aim at evaluating the hypotheses regarding the benefits of
the research ideas. Our contributions in this category are as follows:

- C6: A survey with practitioners, where we have confirmed at a
statistically significant level the practical problems addressed in this
thesis (i.e., the lack of guidance and the insufficient input for
conceptual interoperability analysis). From another angle, the
survey also shows the relevance and importance of the conceptual
constraint types, which we capture in our COIN Model, for a
successful conceptual analysis.

- C7: A multiple-case study, where we collected evidence on the
comprehensiveness of our COIN Model regarding coverage of the
conceptual interoperability constraints that can be described in the
current publicly shared documentation of black-box software units.
In particular, this study investigated a number of real API
documentations.

- C8: A multiple-run controlled experiment, where we confirmed
our hypotheses that our systematic analysis method significantly
increases the architects’ effectiveness (in terms of recall and
precision) and efficiency (in terms of expended time) in detecting
the conceptual constraints and mismatches of two software units.

- C9: A survey with practitioners, where we confirmed at a
statistically significant level our hypotheses that our guidelines for
improving the API documentation are perceived by practitioners as

Introduction

22

being capable of improving the usefulness and ease of use of API
documentations.

- C10: A small initial experiment, where we got an indication that
our guidelines for improving the API documentation can actually
improve the usefulness and ease of use of API documentations.

In Figure 6, we map the foundation/methodical contributions to their
related evaluation contributions.

Figure 6 Relations among foundation/methodical contributions and evaluation contributions

1.6 Research Method

In this section, we will describe the method employed in this Ph.D.
research, which is summarized in Figure 7.

Identifying the practical problem (exploring the state of the
practice). To characterize the practical problems of conceptual
interoperability analysis, we designed and performed an “Online survey
on the difficulties of interoperability analysis practices and its input
artifacts”. The goal of this study was to identify the problems faced by
software architects and analysts when they perform interoperability
analysis. The investigation explored problems such as experience with
the conceptual constraints, insufficient conceptual information in shared
documents, and lack of guidance and tool support for this task. The
survey results confirmed the criticality of the explored problems that we
aim at tackling in this thesis work.

Identifying existing solutions and research gaps (exploring the
state of the art). To identify and characterize the research works on
solving conceptual interoperability difficulties, we designed and
performed a “Scoping study on conceptual interoperability problems
and solutions”. The study revealed that studies have been performed
mostly on technical interoperability, while few have targeted conceptual
interoperability. The identified solutions for conceptual interoperability
problems were mainly reactive rather than proactive. These results

Introduction

23

helped us in directing our research ideas and formulating our
hypotheses.

Developing the solution idea. After stating our research goals, we
started by designing the research components we needed in order to
achieve our solution ideas. Then we incrementally elaborated the
abstract components with our concrete specification for the input, the
processes, and the output. Our solution development approach
included a “Multiple-case study” with experiments. One of its goals was
to explore the potential advantages of utilizing machine learning (ML)
techniques in automating the extraction of conceptual interoperability
constraints from natural language text of API documents. The results of
this study included our COIN Corpus, our ML COIN Classification
Model, and guidelines for improving API documentation. In addition, we
received regular feedback from senior software architects and software
engineering researchers at Fraunhofer IESE throughout our Ph.D.
work, which we used to enhance and refine our research ideas and
components. By presenting our ideas and results to the Software
Architecture community at several scientific conferences we got
confirmation and support from experts on the value of our contributions
and our research direction.

Evaluating the solution idea. With regard to evaluating our solution
ideas, we performed this evaluation on two levels:

- On the research level, where we partially tested our internal
hypotheses in controlled experiments. We designed and performed
a multi-run experiment to evaluate our hypotheses regarding the
systematic approach. Furthermore, we designed and performed an
initial small experiment to evaluate our hypotheses regarding our
guidelines for improving API documentation.

- On the practical level, where we partially tested our external
hypotheses in a survey and a multiple-case study. We designed a
confirmative survey to evaluate our hypotheses regarding the
perceived value of our guidelines for improving API documentation
as perceived by practitioners. Besides, we used the collected data
from our previously mentioned multiple-case study to check the
comprehensiveness of our COIN Model in covering all types of
existing constraints in current documentations in practice.

1.7 Thesis Outline

In Chapter 2, we will introduce the background of this thesis work. This
will start with a description of the sources of conceptual interoperability
information, conceptual interoperability mismatches, and the machine
learning and natural language processing techniques we used.

Introduction

24

In Chapter 3, we will describe the state of the practice for conceptual
interoperability analysis problems that we characterized through our
survey with practitioners. The survey revealed problems related to
practices and input documentation of interoperable software systems.
We will describe the study design, the data analysis and its results, and
the threats to validity.

In Chapter 4, we will characterize the state of the art regarding
conceptual interoperability constraints and problems that we obtained
through our scoping study. We will describe the study design, the data
analysis and its results, and the threats to validity. Furthermore, we will
present important related work on the topic of identifying conceptual
interoperability constraints and existing interoperability analysis
approaches.

In Chapter 5, we will present our COIN Model, which defines the
different types of conceptual interoperability constraints. We will relate
the types to the interoperable software elements and to the type of
interoperating software unit. We will also mention the different types of
conceptual mismatches that can be caused by the constraints.
Furthermore, we will describe the standard templates that are our
contribution for documenting conceptual interoperability constraints and
mismatches.

In Chapter 6, we will introduce our engineering contributions that we
propose as the COINA Framework for supporting software architects in
performing conceptual interoperability analysis. We will present each of
the framework components, their methods, and the supporting tools in
detail with an illustrative example.

In Chapter 7, we will present the empirical evaluation studies that we
used to test our hypotheses. We will start by refining our hypotheses,
then we will describe how we partially evaluated them on the research
level using controlled experiments and on the practical level using a
multiple-case study. For each evaluation study, we will describe its
design, the data analysis and its results, and the threats to validity.

In Chapter 8, we will summarize our contributions and results, discuss
benefits and limitations, and finally provide ideas for future work.

Note that some of the chapters of this thesis have been published
earlier by the author in a number of papers (i.e., [ATR14], [Abu14a]
[ANR15], [AAR15], [AR16], [AAHR16], [AAR16], and [AANR17]). Some
material from these papers has also been incorporated into this
introductory chapter.

In
tro

du
ct

io
n

25

Fi
gu

re
 7

S

um
m

ar
y

of
 R

es
ea

rc
h

M
et

ho
d

an
d

C
on

tri
bu

tio
ns

27

2 Background

2.1 Introduction

This thesis contributes a framework for analyzing the conceptual
interoperability of software units. In this chapter, we will briefly explain
the foundations on which we base our contributed framework as
follows:

In Section 2.2, we will introduce the basic concepts of the software
artifacts that we consider as the input for our conceptual
interoperability analysis framework in the context described in
Section 1.4.

In Section 2.3, we will clarify the fundamental principles of
interoperability mismatches, which we consider as the output of
performing our proposed conceptual interoperability analysis.

In Section 2.4, we will present the natural language processing and
machine learning techniques that we utilize in our framework to
support some activities of the conceptual interoperability analysis.

In Section 2.5, we will summarize the content of this chapter.

Some of the content presented in this chapter has been published in
background sections of the author’s publications [AAR15, AR16,
AAR16].

2.2 Sources of Conceptual Interoperability Information

Software Architecture

The core artifact that preserve conceptual information about a software
system is its architecture. Many definitions of software architecture can
be found in the literature. One widely adopted definition of software
architecture is given below [BCK03]:

Definition 4 – Software Architecture

The structure or structures of the system, which comprise software
elements, the externally visible properties of those elements, and the
relationships among them [BCK03].

This software artifact abstracts the details of the software unit on both
the level of small building blocks and the level of the whole composed

Background

28

system. It encompasses the design decisions about the software’s
structural and behavioral aspects in more detail than just natural
language text. In fact, according to the Architecture Decomposition
Framework, architecture captures information about data (e.g., data
flows), functions (e.g., interfaces and connectors), deployment (e.g.,
communication paths), activities (e.g., operation processes), and
technologies (technology usage) of the software system and its context
both at runtime and at the development time of the software system [FI].
As the focus of our research is on runtime conceptual interoperability,
we pay attention to the runtime information of the software system and
its context in this framework. For example, on the function level we care
about runtime layering information but not about development
packaging or modules.

Therefore, software architecture and low-level design documents are
rich sources of information for architects and analysts regarding the
software’s conceptual constraints and assumptions. In particular, within
the context of this thesis, such documents are used by architects to
determine the conceptual interoperability constraints that need to be
shared with third-party clients to allow the conceptual analysis.

A widely used modeling language for software architecture is the
Unified Modeling Language (UML) [Boo05], which allows describing the
structure and behavior of a software with standard notations. For
example, software structure can be described using class/object
diagrams (which describe the data objects and their relations),
component diagrams (which show how components are wired to form
larger components or systems), deployment diagrams (which model the
allocation of artifacts to physical nodes), etc. Similarly, software
behavior can be described using sequence diagrams (which show the
interactions and their order among actors and software objects), use
case diagrams (which give an overview of the system functionalities),
activity diagrams (which capture the business processes or workflows),
etc.

Application Programming Interface (API) Documentation

The term API stands for “Application Programming Interface", which
provides access to software functionalities at a very high level of
abstraction level. That is, APIs allow software developers to reuse an
existing software solution without knowing its implementation and
without the ability to edit it (i.e., black-box interoperation). In its simplest
form, an API can be defined as:

Definition 5 – API

The standard contract provided by a piece of code (i.e., software unit)
to another to enable their black-box interoperation.

Background

29

There are different types of APIs in different application domains. These
include, for example, platform APIs, which offer import of libraries to use
their functions (e.g., Java SDK, AppleWatch APIs, Eclipse APIs, etc.)
and web APIs, which offer services that can be accessed via their
address on the World Wide Web (e.g., Google Maps APIs, Twitter APIs,
SoundCloud APIs, etc.). These APIs cover a wide range of applications,
such as social blogging, audio, software development, etc.

To facilitate successful black-box interoperation with a software unit
through an API, providers of the API share a public document specifying
the offered services and how to use them. In particular, the API
documentation describes the structure of exchanged input and output
data (e.g., classes and variables), the interaction procedures, and
sometimes illustrative usage scenarios and code snippets. Accordingly,
this documentation is considered as an essential source of information
for its users to learn how to use it [HBH+10]. API documentation can
exist as files, websites, wikis, blogs, etc.

Software Requirements Specification (SRS)

In the software development lifecycle, the software requirements
specification is the artifact that states unambiguously and completely
what needs to be developed within the project. Based on the IEEE
description of the SRS [IEE98], it can be defined as follows:

Definition 6 – SRS

The standard specification document for a particular software product,
which declares the functional and non-functional requirements along
with usage context, interaction interfaces, and design constraints
[IEE98].

Often, the SRS document is written using free natural language text
(e.g., documented in a MS Word file or a tabular MS Excel sheet) and
may include scenarios and use cases (e.g., documented according to
a structured or tabular template). For organizing the structure of SRS
documents, there are a number of widely used templates, such as the
IEEE standard 830 [IEE98], which is used for communicating developer
requirements, and the Volere Template [RR07], which is used for
communicating both users’ and developers’ requirements.

An SRS for a software integration project is written to specify the
desired interoperation requirements, constraints, and qualities. Hence,
it provides a baseline for third-party clients against which they select an
external software unit and determine if it meets their needs. Thus, we
consider the SRS of an integration project as an important source of
conceptual interoperability constraints expected by the clients of
interoperable software units.

Background

30

2.3 Interoperability Mismatches of Software Units

In the following, we will explain software mismatches in general and
architectural mismatches in particular as they are the core of the
conceptual mismatches we target in our analysis framework (i.e., the
output of the conceptual interoperability analysis).

Interoperability Mismatches

Analyzing the features of two separately developed software units can
reveal different types of interoperability mismatches between them that
can prevent their interoperation. These software mismatches may be
due to incompatible or conflicting features of the software units. For
example, a software unit may exchange textual data in a specific file
format (e.g., .txt file) that is different than the format used by another
unit with which it is supposed to interoperate with (e.g., a .pdf file). Also,
software mismatches may happen as a consequence of some
influential features of a software unit that are inappropriate for other
interoperating units. For example, the programming language of a
software unit can affect a desired quality (e.g., portability is better
supported by units written in Java compared to those written in C) or
the expected input/output data (e.g., a unit written in C may exchange
void, which is not a supported type in another unit written in Java).

Interoperability mismatches stretch over different perspectives
depending on the type of the features of the software units intended to
interoperate. That is, mismatches may exist due to conflicts among
influential features, including those of technical (e.g., different
technologies and protocols), functional (e.g., interoperation needs not
being met by offered units), conceptual (e.g., unaligned data models),
developmental (e.g., software units developed with no built-in quality,
like testability, can affect the integration productivity), organizational
nature (e.g., different policies for data privacy).

Architectural Interoperability Mismatches

The previous description of software interoperability mismatches is too
broad for the focus of this thesis. Therefore, we will here give a deeper
explanation of the architectural mismatches that our research focuses
on for the reasons discussed in Chapter 1.

Two of the critical reasons causing interoperability mismatches
between software units are architectural constraints and design
decisions (e.g., a software unit designed to be secure may influence the
performance and usability, which are of higher interest for another
software unit). Architectural constraints may cause mismatches
between the structures of different units (e.g., control model and data
manipulation), the relationships between units (e.g., interaction protocol

Background

31

and exchanged data), or the global architectural structure (e.g.,
assumptions about the topology of the system communication)
[GAO95]. Architectural mismatches vary considerably with regard to the
impact they have on the desired interoperation [EMG00] and
consequently on the required effort to achieve it. Some can be easily
resolved (e.g., inconsistent interfaces require mapping with the help of
adapters or wrappers), whereas others may be more complex and
expensive to handle (e.g., inconsistent data semantics may require a
semantic-based middleware to enable meaningful interoperation
among different units). This emphasizes the importance of performing
conceptual interoperability analysis, for potentially interoperable
software units, early in an integration project.

2.4 Natural Language Processing and Machine Learning Techniques

NLP Techniques

Communication using natural language (NL) is well suited for humans;
however, it is difficult for machines to interpret and learn. Natural
Language Processing (NLP) has emerged as a field in computer
science that combines the usage of both Artificial Intelligence (AI) and
Computational Linguistics (CL) to enable interaction between machines
and human natural languages. Below we will briefly explain the main
NLP techniques we have used in our research.

Part-of-speech (POS) tagging [MS99, KM03] is also known also as
“grammatical tagging” or “word tagging”. It is a technique that identifies
the part of speech to which a term in a sentence belongs (e.g., noun,
verb, pronoun, adjective, etc.).

Phrase and Clause Parsing [Gro99] is also known as “chunking”. It is a
technique that divides sentences into sets of words that are logically
related (e.g., verb phrase and noun phrase). On top of POS tagging,
this technique improves the syntax of an NL sentence.

Typed Dependencies [DMMM+, DMM08] is a technique that represents
dependencies between individual words through labels for grammatical
relations (e.g., subject, indirect object, etc.). It provides a simple
description of relations and does not require linguistic expertise to
extract them from the text.

Named Entity Recognition [FGM05] is also known as “entity
identification”. It is a technique that identifies specific words and
categorizes them based on predefined classes. These classes often
have a higher level of abstraction and depend fundamentally on the
semantic meaning of the words.

Background

32

ML Techniques

Machine learning is a branch of computer science that enables
machines to do what they have not been explicitly programmed to do
[SSBD14]. It includes a wide range of techniques including, but not
limited to, “text classification” techniques. Text classification refers to
automating the detection of patterns in the text of specific problem
domains through algorithms that learn from offered training data. Below,
we briefly introduce the ML text classification techniques that we utilized
in this thesis work.

Text Classification (TC) [Seb02] is the process of labeling natural
language sentences in textual documents with one or more predefined
classes or themes. In this thesis, we utilize supervised ML, which relies
on the exposure of text classifier algorithms to a training data set. We
prepared this dataset by manually labeling sentences with one of our
predefined classification classes. Our research includes use of the most
effective text classifier algorithms, such as Naïve Bayes [Mur06],
Support Vector Machine [Joa98], [TK01]], Random Forest Tree [LW02],
K-Nearest Neighbor (KNN) [CH67], and others. The accuracy results of
such algorithms depend on the quality and size of the training dataset
[BB01].

The ML Text classification process consists of:

- Building the classification model, where all features of the sentences
in the dataset are identified and modeled mathematically. In our
research, we used popular techniques for building our model: (1) Bag
of Words (BOWs) [CL05] considers each word in a sentence as a
feature; accordingly, a document is represented as a matrix of weighted
values; (2) N-Grams [OJ12] considers each N adjacent words in a
sentence as a feature, where (N > 0); (3) Term Frequency- Inverse
Document Frequency (TF-IDF) [Rob04] is often used in text
classification as a weighting factor to illustrate the importance of a word
for a document in a dataset.

- Evaluating the classification model, where the manually labeled
dataset is divided into a training set and a testing set. The training set
is used for training the ML classification algorithm on the features
captured in the model, while the testing set is used for evaluating the
accuracy of the classification. For our research, we used k-fold cross-
validation [K+95], dividing our ground truth dataset into k folds, meaning
that, (k - 1) folds were used for training and one fold was used for
testing. Finally, an average of k evaluation rounds was computed. The
ML binary (or two-class) classification algorithms are all about finding
the best classifier model that represents the distribution from which the
data comes and that separates the two classes effectively. Finding this
most appropriate model not only requires finding the most proper ML
algorithm, but also it requires a computationally expensive tuning for

Background

33

the algorithm's parameters. This is called optimization, which helps to
get better classification results by choosing the best combination of
values for the different algorithm parameters. This can be implemented
using, for example, the Grid Search method [HCL+03], which is an
exhaustive search process to find the best values from all possible
combinations of the tuned parameters. Another option to do the
parameter tuning is to adopt a randomized search [BB12].

2.5 Summary

In this chapter, we have explained the fundamental concepts of input
artifacts for conceptual interoperability analysis in the context of black-
box integration, software interoperability mismatches, and both the NLP
and ML techniques used in this thesis work. In the next chapters, we
will frequently refer to the fundamental concepts presented here.

35

3 State of the Practice

3.1 Introduction

It is important to collect practitioners’ experience and confirmation
regarding current state of the practice problems related to software
interoperability analysis. This shows us the relevance and significance
of the practical problems we address in this thesis. This also directs us
in shaping solution ideas that will have a valuable impact. Hence, we
decided to perform a systematic explorative study in the form of an
online survey to identify the practical challenges related to
interoperability analysis. It has been proven that this type of studies is
appropriate for approaching a large number of participants and that it
allows collecting a wide range of needed data (e.g., actual experiences
or personal opinions) [DSM11] [Fow95].

3.2 Survey on the State of the Practice

In this section, we will start by describing the research methodology of
our survey study (Subsection 3.2.1), then present the results and
discuss them (Subsection 3.2.2). Finally, we will present the threats of
validity to the survey study (Subsection 3.2.3).

3.2.1 Research Methodology

Goal and Research Questions

We formulate our survey goal in terms of the GQM goal template
[VSBCR02] as follows:

Goal: to explore the state of the practice of interoperability analysis for
external software units for the purpose of characterizing its current state
and identifying its difficulties with respect to its practices and input
artifacts in the context of a survey from the viewpoint of architects and
analysts as the basis for developing practically applicable
enhancements towards efficient and effective interoperability analysis.

We translate this goal into the following research questions (RQs):

RQ1: How is interoperability analysis currently being performed by
practitioners?

RQ2: What are the difficulties experienced when performing
interoperability analysis?

State of the Practice

36

RQ2.1: with respect to its current practices?

RQ2.2: with respect to its input (i.e., currently shared sources
of interoperability-relevant information about external software
units)?

Survey Design and Execution

We designed this survey according to the guidelines proposed by
[Dan11], [DSM11] [Fow95], and [Kva08].

Target Group. The target group of our survey consists of architects and
software engineers with practical experience in interoperability analysis
in software integration projects (including projects in which integration
is a part). Accordingly, we invited 115 practitioners known for their
experience in software integration directly via emails and asked them
to distribute the call to whoever they deemed appropriate. We also
posted the call for experts’ participation on websites of professional
groups (e.g., LinkedIn special interest groups for architecture, software
interoperability, and software integration).

Questionnaire Structure. Based on our stated goal and research
questions, we designed a questionnaire-based survey, which we
supported with a 2-minute video [Abu16c] to introduce the concepts and
terminologies of interoperability analysis that we use in order to ensure
correct understanding of questions and answers. The questionnaire
was designed to collect information about the following aspects as
depicted in Figure 8:

– Current state of interoperability analysis practices and input
artifacts (RQ1), i.e., the respondents’ practical feedback on
performing the interoperability analysis task with regards to the
process, the responsible roles, the methods or tools used , and
typically available sources of information used by them.

– Perceived difficulties (RQ2 including RQ2.1 and RQ2.2), i.e., the
main difficulties that practitioners experience when analyzing the
interoperability of external software units especially on the
conceptual level. This includes the cost of the analysis and of
unexpected conceptual mismatches, the lack of knowledge and
guidance, the quality and availability of sources of information, the
need for tooling support, standard templates for documenting
analysis results, etc.

– Demographic information, i.e., the respondents’ experience in
performing interoperability analysis, the type of applications they
build and integrate, their position, organization type, sector, size,
and location.

State of the Practice

37

Figure 8 Questionnaire Design

Type of questions. The questionnaire consists of fixed-set answer
questions, including single-choice and of multi-choice questions. To
avoid restricting the range of potential answers that respondents may
provide, some questions offer the choice to enter a free text answer if
none of the provided selections applies. Also, some questions have the
option of answering “I don’t know” to avoid forcing an answer if there is
a lack of knowledge.

Questionnaire length. The designed questionnaire includes up to 26
questions as we used filters to avoid overwhelming the participants with
questions that may be irrelevant for their experience. Answering the
questionnaire required between 10 and 15 minutes. The final version of
the questionnaire is provided Appendix A.

Pre-execution evaluation. To assess the quality of our survey, we
had it peer-reviewed by two senior software engineers with expertise in
interoperability and architecture to check the relevance and clarity of
the questionnaire and its supporting video. After revising the survey
according to the results of the peer review, one expert in empirical
software engineering research assessed the quality of the questions
with respect to the principles defined in [Kva08] and the ethical criteria
stated in [Ass13]. As a result, some questions were re-categorized and
shortened to improve understandability.

Implementation. We implemented the survey using Limesurvey
[Tea15] and deactivated it after six weeks. The final dataset is stored in
a repository of the AGSE group of the University of Kaiserslautern. If
the reader is interested in further anonymized analysis results, please
contact the author.

Pilot study. We performed a pilot study with four software engineering
researchers (with a background in interoperability) and two computer
science researchers (with no background in interoperability) to assess
the understandability of the questions and to estimate the time required
to answer them. We encouraged the six researchers to take notes on
any ambiguous words, uncertainties regarding the meaning of the
questions or their answers, and to track the time they spent on filling
out the questionnaire. As a result, two questions were classified as very
complex, so we reduced their complexity by splitting them into logical

Demographics and repondents' background

Interoperability analysis as-is state
(RQ1)

Interoperability analysis difficulties
(RQ2)

Practices
(RQ2.1)

Input artifact
(RQ2.2)

State of the Practice

38

subgroups. Note that we configured our online survey such as to record
the time spent by each participant on the questions, which we found to
be as reported by the participants themselves.

Data Analysis

We analyzed the data using MS Excel and IBM SPSS Statistics 23
[Cor10]. Our descriptive analysis includes the median, mean, max, min,
standard deviation, and frequency. As some of the questions were
presented to the respondents conditionally, we explicitly report the total
number of subjects (N) who answered each question. We further
present statistical analysis that explores how significantly different the
ordinal answers are from a specific point (e.g., a neutral 3 for questions
with a 5-point rating scale) using the one-sample Wilcoxon signed-rank
test [Woo08]. Also, we statistically analyzed the difference in the
answers between two groups of respondents based on their
interoperability analysis experience. For this, we used Pearson’s chi-
square (χ2) test for binary data and the Mann-Whitney (U) test for
ordinal data. In addition, we ran a Spearman rho (ρ) test to check the
correlation between the ordinal variables.

3.2.2 Results and Discussion

In total, we got 73 complete responses for our survey questionnaire
from the targeted group. However, we excluded nine responses as their
demographic information showed that they neither had any year of
experience in integration nor worked on any integration projects. This
ensures that our findings are credible and based on actual experiences
rather than inexperienced opinions. Accordingly, the final number of
included respondents was N = 64.

Next, we will first provide a brief overview of the demographic
characterization of the respondents, and then answer the research
questions by presenting the results we found based on the included
responses.

Background Overview

Software integration experience. The respondents’ experience in
software integration varied in terms of their years of experience and the
number of projects they had participated in (see Figure 9). The largest
shares (35.9% and 30.2%) of years of experience were for “2-5 years”
and “> 8 years”, respectively. Most respondents (25.4%) had
participated in more than five projects. Across the different integration
projects, the respondents reported playing different roles. These roles
were frequently reported to be programmers (71.4%), architects (54%),
system analysts (39.7%), project managers (34.9%), testers (23.8%),
requirements engineers (19%), and technical writers (10%). Single

State of the Practice

39

cases reported playing other roles (e.g., DevOps engineer, technical
project manager, system expert, and risk assessor).

Figure 9 Respondents' experience in software integration

Nature of integration projects. The respondents worked mainly in the
domains of Information Systems (80.8%), Mobile Systems (30.1%), and
Embedded Systems (26%). The respondents reported experiences in
integrating open source software (OSS), commercial-of-the-shelf
(COTS) software, web service APIs, and platform APIs, all with almost
equal shares (54.5% on average for each type). The projects’ size was
mainly (40.6%) medium (i.e., 3 - 6 months, $250-750K, 4 - 10 team
members) and the remaining share was divided almost equally between
large projects (i.e., > 6 months, > $750K, > 10 team members) and
small projects (i.e., < 3 months, < $250K, 3 - 4 team members).

Nature of work organizations. While, the respondents were mostly
(37.1%) employed by enterprises (i.e., with > 1000 employees), very
few (only 8.1%) were employed by large organizations (i.e., 251 – 999
employees). The others were distributed equally (27.4%) between
small (i.e., < 50 employees) and medium (i.e., 51 – 250 employees)
organizations. Among the many reported sectors (e.g., agriculture,
health, finance, military, automotive, etc.), the software development
sector was dominant. The data was collected internationally from
several locations (e.g., USA, UK, Switzerland, Belgium, China, etc.),
but the majority (32.8%) was from Germany.

Interoperability Analysis: As-Is State in Practice (Answering RQ1)

In this part, we will characterize the current state of the practice with
regard to the interoperability analyses actually performed by the
respondents to our survey.

Neglected interoperability analysis. To our surprise, we found that a
large group (42.2%) of the respondents stated that interoperability

11

2 1

16

2 7 5

11

2 5 2
0

5

10

15

20

<
2

pr
oj

ec
ts

2
–

5
pr

oj
ec

ts

<
2

pr
oj

ec
ts

>
5

pr
oj

ec
ts

2
–

5
pr

oj
ec

ts

<
2

pr
oj

ec
ts

>
5

pr
oj

ec
ts

2
–

5
pr

oj
ec

ts

<
2

pr
oj

ec
ts

>
5

pr
oj

ec
ts

2
–

5
pr

oj
ec

ts

< 2 years > 8 years 2 – 5 years 5 – 8 years

Nu
m

be
r o

f r
es

po
nd

en
ts

Respondents' experience in software integration

State of the Practice

40

analysis did not take place at all in their integration projects. These
respondents (N = 27; 42.2%) attributed this behavior to different
reasons, including:

R1: There is not enough knowledge and experience about it (37%).

R2: Priority is given to other tasks, e.g., coding and testing (37%).

R3: Tight schedule and limited resources (29.6%).

R4: It is hard to perform (18.5%).

R5: Unit and integration testing are performed instead (18.5%).

R6: It is not that necessary (14.8%).

Furthermore, some respondents independently provided their reasons
for not performing interoperability analysis. For example, one
respondent stated that, in the context of integrating software units into
ecosystems, they could replace this interoperability analysis with some
negotiation on business rules and software interfaces. This shows a
business-oriented analysis regarding interoperability, which cannot
reveal conceptual software mismatches by itself. Another respondent,
who also selected R6, reported that in his unit they had decided to
proceed with integrating units only if they were implemented using the
same implementation technologies. This indicates a probable
awareness problem regarding the consequences of ignoring early
interoperability analysis.

Looking at the demographic characteristics of these 27 participants, we
found that the majority were working in small organizations with fewer
than 50 employees (35%) on medium-size integration projects (40%)
with less than 5 years of integration experience (61.53%). Note that the
only statistically significant factor correlated to this group of participants
(i.e., Spearman’s rho ρ = 0.307, p-value = 0.015) was their reported
estimation regarding the rather expensive cost of the analysis. This
indicates that it could be the cost of the analysis that discourages
practitioners from performing it.

Immature, unstandardized, unsystematic interoperability analysis.
The rest of the respondents (N = 37; 57.8%) stated that interoperability
analysis actually took place in their integration projects.

When? The responses show that the majority (67.6%) performed it at
the beginning of the integration projects and before starting the
technical implementation. However, many other respondents (24.3%)
stated that interoperability analysis happens during the technical
implementation. Such an approach would obviously require reworking
the implemented parts of the integration if the analysis shows the
existence of more mismatches. Through statistical analysis, we found
that the analysis time was significantly correlated to integration

State of the Practice

41

experience in terms of number of years (i.e., Spearman’s rho ρ = -
0.608, p-value = 0.000) and number of projects (i.e., Spearman’s rho ρ
= - 0.679, p-value = 0.000). That is, experienced analysts recognized
the importance of early analysis. Very few respondents (only 2.7%)
reported that analysis takes place after the technical implementation,
which is, in fact, the worst time (in terms of rework consequences) to
detect conceptual mismatches.

Who? The roles responsible for performing the interoperability analysis
task varied. However, architects were most prominent (see Figure 10)
among the roles. We observed that unlike the other roles, testers were
never reported to assume responsibility for the analysis on their own.
Some of the respondents chose one role, while most (72.9%) selected
at least two roles, which indicates a form of collaboration on the analysis
task. In fact, it was explicitly reported that collaboration might happen
between technical managers and the engineering or DevOps team.
Also, collaboration between domain experts was reported by one
respondent, which would be of great value for analyzing the conceptual
level of interoperability. Regarding the size of the analysis team, only
three respondents stated that this depended on the project type and
size. However, 62.2% said it was performed by a small team (i.e., < 5
members) although the project size ranged from small to large.
Unexpectedly, 66.6% of the respondents who stated that it was
performed by exactly one person worked on large projects.

Figure 10 The roles responsible for performing interoperability analysis

What? Digging deeper, we asked the practitioners to specify the types
of information they targeted during the interoperability analysis task.
The answers showed that technical aspects were dominant.
Specifically, 75.7% targeted communication constraints (e.g.,
networking protocols, message formats, etc.) and 64.9% targeted the
technical syntax (e.g., argument order, data types, etc.). Fewer
respondents (58.1% on average) reported being interested in semantic
constraints (e.g., terminologies, goals, rationale, etc.) and behavior
constraints (e.g., pre-/post-conditions, invariants, interaction protocols,
control flow, etc.). Minor shares of attention (48.6% on average) were
given to context, structure, and quality. As expected, the covered

27,03%

43,24%

62,16%

40,54%

16,22%

27,03%

Project manager

Requirements engineers

Architects

Developers

Testers

System analysts

Who performs the interoperability analysis task?

State of the Practice

42

information aspects were less for those who reported that
interoperability analysis was performed by one person rather than by a
team. For example, one respondent indicated that the analysis was
performed by one developer and the only information targeted was the
technical communication. Statistically, the significantly correlated factor
to the information targeted during analysis was the responsible role
(i.e., Spearman’s rho ρ = 0.493, p-value = 0.002). For example,
architects and developers were the main roles who targeted semantic
and behavior information. Furthermore, we found a statistical
significance in the correlation between the years of integration
experience and the targeting of semantic information (i.e., Spearman’s
rho ρ = 0.333, p-value = 0.008).

How? To better assess the current situation, we asked about the input,
process, and output documentation of the interoperability analysis. The
survey confirmed our expectation that API documentation was the main
available input artifact and source of information as stated by 78.4% of
the respondents. Other available sources of information included high-
level architecture, requirements specification, and source code.
However, these apply to white-box integration (e.g., open source
software projects) rather than black-box integration (e.g., commercial
COTS). One respondent reported that contacting the team members of
the external software unit was his source of information due to a lack of
shared artifacts.

With respect to the support used for performing the interoperability
analysis, we found that about 30% of the practitioners with knowledge
about this issue had no support. Two respondents declared that they
did the analysis in an ad-hoc manner, focusing on identifying the gaps
between the integration requirements and the capabilities offered by the
external software units. On the other hand, 13.5% used analysis models
and frameworks, 10.8% followed guidelines, 8.1% performed
systematic analysis, 8.1% used a template, and 5.4% had tool support.
However, the respondents did not give any further information, details,
or references for the reported support, with two exceptions. One added
that the guidelines they followed had been developed internally and the
other one added that they also had an internally defined process to
follow. With regard to documenting the analysis results, we found that
about 30% of the practitioners did not document the results of their
interoperability analysis. This documentation status had a statistically
significant correlation with integration experience in terms of the
number of projects that the participants had worked on (i.e.,
Spearman’s rho ρ = -0.438, p-value = 0.009). Consequently, there was
a loss of information that would support decision traceability within a
project as well as a loss of knowledge that would allow learning from
experiences and cases across integration projects.

State of the Practice

43

Problems in Performing Conceptual Interoperability Analysis (Answering RQ2)

Here we present the evidence collected from practitioners on the
relevance of the practical problems that are related to interoperability
analysis. Then, we will shed light specifically on those problems that
are related to the conceptual level of interoperability analysis. We
collected data about perceived problems from the entire sample size (N
= 64). However, for the questions that depend on actual experience with
interoperability analysis (i.e., RQ2.1 and RQ2.2), we differentiate
between the results obtained from those who claimed to perform
interoperability analysis (actual experiences) and those who did not
(opinions).

High cost of interoperability analysis. In Figure 11, we depict the
cost of interoperability analysis reported by the respondents who had
knowledge about it (N = 43). The largest share of the responses shows
that interoperability analysis accounts for 10% to 30% of the total cost
of integration projects. Moreover, a portion of the respondents (N = 9)
stated that the analysis would range between 30% and 50%. Obviously,
such cost ranges are relatively high taking into account the other
development activities included in an integration project (e.g.,
requirements analysis, design, implementation, testing, etc.). In one
case, a respondent stated that it would even be worse and would reach
51% to 70% of the total cost. Remarkably, this respondent was one of
those who reported performing the analysis during the implementation
of the integration.

Few responses (N = 12) indicated that the cost of interoperability
analysis would be less than 10% of the total cost of integration projects.
Most of these respondents had rather low integration experience (i.e.,
they had worked on 2 - 5 projects). Some respondents (N = 21) did not
provide an answer due to a lack of knowledge or traceability information
about the cost of interoperability analysis. For example, one respondent
stated in the comment box that they did not track the cost of the analysis
independently, but rather accumulated it within the whole project cost.
Another respondent reported that, in the context of software projects
that were not dedicated to integration only, the costs for interoperability
analysis varied depending on the size of the integration requirements
compared to the total project requirements. No significant correlations
were found between the cost of the analysis and the respondents’
demographic features.

State of the Practice

44

Figure 11 Cost for interoperability analysis reported by practitioners with knowledge

Frequently undetected conceptual interoperability mismatches.
The survey respondents who had knowledge about the frequency of
integration problems related to undetected conceptual mismatches (N
= 59) stated that this problem was most likely to happen. The majority
(52.54%) stated it happened sometimes, while 30.51% said that it was
a common issue. Only three respondents stated that unexpected
conceptual mismatches were always happening. Very few (N = 7)
claimed that this problem was rare and none said that it was never a
problem. Statistically, the responses show significant agreement
regarding the existence of the problem of undetected conceptual
mismatches (see Table 1).

Table 1 Frequency of problems related to undetected conceptual mismatches

Median Mean Standard
deviation

Test statistics b

Z P

Conceptual mismatch
frequency a 3 3.57 1.145 470 0.000***

a Response scale for frequency from 1 (Never) to 5 (Always)
b One-sample Wilcoxon signed-rank test H0: Median (all respondents) = 3
(sometimes); * p < 0.05 ; ** p < 0.01, *** p < 0.001

Expensive resolution for unexpected conceptual interoperability
mismatches. Those respondents who had knowledge about the
resolution cost (N = 47) reported rather high additional costs for
resolving undetected mismatches. As seen in Figure 12, the majority of
the respondents agreed that the total integration project cost increased
by 10% to 30%. Furthermore, a considerable portion of them (more than
a third) agreed that the added cost would even be 31% to 50% of the
project cost. Note that the few respondents who said that conceptual
mismatches were a rare cause of problems still agreed that they were
expensive (e.g., one of them stated that it would cost > 70%).

27,91%

46,51%

20,93%

4,65%
0,00%

1 2 3 4 5

Interoperability analysis cost

State of the Practice

45

Figure 12 Additional project cost for resolving unexpected conceptual mismatches

Problems Related to Practices of Interoperability Analysis
(Answering RQ2.1)

The aim of this question was to reveal any significant difficulties faced
in performing interoperability analysis with respect to current practices.

Perceived need for better practical support for performing
interoperability analysis. We offered the survey participants a list of
practice-related difficulties (D) that would impede performing
interoperability analysis and asked them to select which ones they
considered to be the main ones. This list included the following:

D1: Lack of focus on detecting "conceptual" mismatches compared to
"technical" mismatches

D2: Lack of support for traceability between interoperability analysis
activities and results (i.e., within a project and among projects)

D3: Lack of standard templates for consistent documentation of
interoperability analysis results

D4: Lack of interoperability analysis guidelines and best practices for
practitioners

D5: Undirected collection of information about external software units
(i.e., no plan or predefined data elements)

D6: Posterior collection of information about the external software unit
(i.e., reactive collection based on rising problems along the project)

D7: Manual effort in analyzing the description of external software units
and in documenting the analysis results

According to the responses (N = 64), D4, D7, and D1 had the highest
agreement among practitioners as seen in Table 2. This provides
evidence on the need for helping interoperability analysts and architects
identify conceptual mismatches by providing practical guidelines and
automation tools. Furthermore, D2 and D3 also had a considerable
amount of agreement. Obviously, these two essential difficulties are
related, as the ability to trace interoperability analysis results requires

8,51%

46,81%
36,17%

6,38% 2,13%

1 2 3 4 5

Resolution cost for unexpected conceptual mismatches

State of the Practice

46

documenting them. Accordingly, supporting practitioners with standard
documentation templates would serve the aforementioned traceability
need along with other benefits such as consistency and readability.
Although D5 and D6 got the least shares of agreement, there were still
practitioners who agreed on the importance to overcome them. This
indicates that directed analysis with proactive preparation can enhance
the analysis experience and the results for some analysts and
architects.

Table 2 Perceived difficulties of interoperability analysis practices

Difficulty (D) D1 D2 D3 D4 D5 D6 D7

Total agreement 25 24 23 26 17 9 26

Agreement
percentage % 39.06 37.50 35.94 40.63 26.56 14.06 40.63

Test statistics a
χ2 .080 .961 3.025 6.723 .225 .337 .249

p .777 .327 .082 .010* .635 .562 .618

Test statistics b
ρ -.035 .123 .217 .324 .059 -.073 -.062

p .781 .335 .084 .009** .641 .569 .624

a Pearson’s chi-square (χ2) test H0: Agreement percentage (respondents who performed
interoperability analysis) = Agreement percentage (respondents who did not perform
interoperability analysis)
b Spearman’s rho (ρ) test H0: There is a correlation between the agreement percentage
and the respondents’ group (performed interoperability analysis or not); * p < 0.05 ; ** p
< 0.01, *** p < 0.001

After a more thorough investigation, we found one statistically
significant difference between the agreement percentages on D4 of the
two groups of surveyed practitioners (i.e., those who performed
interoperability analysis in their software integration projects and those
who did not). In fact, this difference was also justified by the statistical
significance of the correlation between the group type and the
agreement on D4.

As visualized in Figure 13, there were some other percentage
differences; however, they were not statistically significant. For
example, D2 and D3 had more votes by practitioners inexperienced in
performing the analysis task (21.12%, and 12.01%, respectively). Thus,
we conclude that all reported difficulties are important for both groups.
However, overcoming D4 would be of higher value for practitioners with
no or low experience in interoperability analysis.

State of the Practice

47

Figure 13 Distribution agreement on the difficulties of interoperability analysis practices for each
group of respondents

Problems related to the Input Artifacts of Interoperability Analysis
(Answering RQ2.2)

The aim of this question was to reveal any significant difficulties faced
in performing interoperability analysis with respect to current input
artifacts. This includes the content and presentation of the input.

Perceived insufficiency of shared information. According to the
respondents with knowledge about the current input artifacts of
interoperability analysis (N = 59), they mostly (37.50%) reported it to be
“3: Not sufficient”. In other words, on the 5-point Likert scale, the main
rating was 2: insufficient. Table 3 shows the median, mean, and
standard deviation. It also presents the significance of the insufficiency
problem of input artifacts. Furthermore, there was statistically significant
agreement from both groups of respondents (i.e., those who performed
interoperability analysis and those who did not) on the input
insufficiency problem.

Table 3 Perceived sufficiency of the input artifacts of the interoperability analysis task

Median Mean Std.
Deviation

Test statistics b Test statistics c

Z P U P

Perceived
sufficiency of

input artifacts a
3 2.98 1.25 -4.76 0.000*** 452 .497

a Response scale from 1 (not sufficient at all) to 5 (very sufficient)
b One-sample Wilcoxon signed-rank test H0: median (all respondents) = 4
c Mann-Whitney (U) test H0: median (respondents who performed interoperability
analysis) = median (respondents who did not perform interoperability analysis); * p <
0.05 ; ** p < 0.01, *** p < 0.001

40,54%

32,43%

27,03%

27,03%

24,32%

16,22%

43,24%

37,04%

44,44%

48,15%

59,26%

29,63%

11,11%

37,04%

D1

D2

D3

D4

D5

D6

D7

Perceived difficulties of practices per respondents group

Interoperability analysis not performed Interoperability Analysis performed

State of the Practice

48

Perceived need for enhancing conceptual information content.
The respondents (N = 64) voted for what they perceived as required
enhancements for the content of input artifacts used in the
interoperability analysis task. We offered a list of interoperability-related
content (C) and asked the respondents to select what they considered
to be important for enhancing the content related to them. This list
included the following:

C1: Communication constraints (e.g., networking protocols, message
formats, etc.)

C2: Syntax constraints (e.g., argument order, data types, etc.)

C3: Semantic constraints (e.g., glossaries, goals, rationale, etc.)

C4: High-level architecture view (e.g., architecture style, patterns, etc.)

C5: Low-level design decisions (e.g., inheritance, synchronicity,
concurrency, etc.)

C6: Behavior constraints (e.g., pre-/post-conditions, interaction
protocols, control flows, etc.)

C7: Context constraints (e.g., stakeholders, use cases, etc.)

C8: Quality constraints (e.g., data precision, service performance, etc.)

Based on the responses (N = 64), C4 got the biggest share of the
practitioners’ interest (see Table 4). This evidently indicates the serious
need to enrich shared documents about interoperable software units
with high-level architecture to improve the analysis. Next, C1 and C6
got substantial agreement, which gives them high priority, too. Note that
C1 is a technical type of content, while C6 is conceptual. Afterwards,
C3, C8, C2, and C5 got convergent large shares of the respondents’
agreement. This shows there is awareness of the need to improve the
quality, semantics, syntax, and low-level design information of
interoperable units. Although C7 got the lowest share of agreement, 24
practitioners still agreed that it is important to be enhanced. These
results denote potential improvement for interoperability analysis
results when the content issues are resolved.

A more thorough investigation showed us that there was one
statistically significant difference between the agreement percentages
on C7 from the two respondent groups (i.e., those who performed
interoperability analysis in their software integration projects and those
who did not). In addition, there was a statistical significance of the
correlation between the group type and the agreement on C7.

State of the Practice

49

Table 4 Perceived need for enhancing the content of input artifacts for interoperability analysis

Content problem
(C) C1 C2 C3 C4 C5 C6 C7 C8

Total agreement 37 29 31 39 27 36 24 31

Percentage% 57.81 45.31 48.44 60.94 42.19 56.25 37.50 48.44

Test
statistics a

χ2 .098 2.705 2.430 .568 .098 1.246 4.651 1.108

p .755 .100 .119 .451 .755 .264 .031* .293

Test
statistics b

ρ -.039 -.206 -.195 -.094 .039 -.140 -.270 -.132

p .759 .103 .123 .459 .759 .272 .031* .300
a Pearson’s chi-square (χ2) test H0: agreement percentage (respondents who
performed interoperability analysis) = agreement percentage (respondents who did not
perform interoperability analysis)
b Spearman’s rho (ρ) test H0: There is a correlation between agreement and
respondents’ group (performed interoperability analysis or not); * p < 0.05 ; ** p < 0.01,
*** p < 0.001

Figure 14 visualizes the percentage differences among more content
types; however, they are not statistically significant. For example, C2
and C3 had more votes by practitioners experienced in performing the
analysis task (almost 20% each). We conclude that all content items
are important for both groups, but interoperability analysis experts
perceived them to be more important (especially C7) compared to
inexperienced respondents.

Figure 14 Distribution of agreement on perceived content problems of input artifacts for
interoperability analysis per respondent group

Perceived need for enhancing conceptual information
presentation. According to the respondents (N = 64), some

59,46%

54,05%

56,76%

64,86%

40,54%

62,16%

48,65%

54,05%

55,56%

33,33%

37,04%

55,56%

44,44%

48,15%

22,22%

40,74%

C1

C2

C3

C4

C5

C6

C7

C8

Perceived content problems per respondents group

Interoperability analysis not performed Interoperability Analysis performed

State of the Practice

50

enhancements are required for the presentation of the input artifacts
used in the interoperability analysis task. Out of the list of presentation
enhancements (P) that we suggested in the survey, the respondents
voted for those they perceived as being the most important ones. This
list included the following:

P1: Mixing conceptual and technical constraints without clear borders
between them

P2: Unstructured verbose text

P3: Lack of easy-to-read process diagrams (e.g., flowcharts)

P4: Inconsistency in reporting constraints for the different data items
and services

P5: Level of formality too low, which prevents potential automation of
the analysis

Based on the responses (N = 64), P1 and P3 got the highest agreement
in equal amounts of the practitioners’ interest (see Table 5). This points
out a critical need to improve the structure of the information shared
about interoperable software units in order to clearly differentiate
between conceptual and technical information. Moreover, an abstract
process view could enhance these documents. Afterwards, the
respondents voiced considerable agreement on P4 and P2, which
shows that structure and consistency in presenting content among
equal elements improve the usefulness of shared artifacts. Although P5
got the lowest agreement by a large number of practitioners, 20
practitioners still agreed that it is an important presentation issue.
Apparently, resolving all the presentation problems for interoperability
analysis input artifacts on which the respondents agreed would add
value to their users.

Table 5 Perceived need for enhancing the presentation of input artifacts for interoperability
analysis

Presentation problem (P) P1 P2 P3 P4 P5

Total agreement 30 25 30 27 20

Agreement percentage% 46.88 39.06 46.88 42.19 31.25

Test statistics a
χ2 .706 .055 4.854 .040 .616

p .401 .814 .028* .841 .432

Test statistics b
ρ -.105 .029 .275 -.025 -.098

p .409 .818 .028* .844 .440
a Pearson’s chi-square (χ2) test H0: agreement percentage (respondents who
performed interoperability analysis) = agreement percentage (respondents who did
not perform interoperability analysis)
b Spearman’s rho (ρ) test H0: There is a correlation between agreement and
respondents’ group (performed interoperability analysis or not); * p < 0.05 ; ** p <
0.01, *** p < 0.001

State of the Practice

51

The statistical test results showed that there was one statistically
significant difference between the agreement percentages on P3 of the
two respondent groups (i.e., those who performed interoperability
analysis in their software integration projects and those who did not).
Moreover, a statistical significance of the correlation between the group
type and the agreement on P3 was found. Figure 15 offers a
visualization of all percentage differences for all presentation issues,
but only P3 has statistical significance. Hence, we conclude that
enhancing the presentation of the content of input artifacts for
interoperability analysis would be of value for both experienced and
inexperienced analysts. However, inexperienced ones would
appreciate it more if the processes were abstracted in diagrams rather
than in unstructured text.

Figure 15 Distribution of agreement on perceived presentation problems of input artifacts for
interoperability analysis per respondent group

3.2.3 Threats to Validity

In this section, we will present the internal and external threats to the
validity of our survey study.

Internal validity (content validity). As described earlier in the survey
design (see Section 3.2.1), we did multiple peer reviews with experts in
software architecture, software engineering, and empirical research.
Furthermore, we evaluated the survey in pilot studies to assess the
understandability of the questionnaire.

External validity (representative sample). The final number of
included responses was (N = 64). These included software architects
and engineers with integration experience from different organizations,
industrial domains, and locations. Thus, we assume that our results are
very likely representative for the state of the practice of interoperability
analysis as of June 2016. However, for better generalization and
observations over time, further surveys with a larger sample size are
required.

51,35%

37,84%

35,14%

43,24%

35,14%

40,74%

40,74%

62,96%

40,74%

25,93%

P1

P2

P3

P4

P5

Perceived presentation problems per respondents group

Interoperability analysis not performed Interoperability Analysis performed

State of the Practice

52

External Validity (completion rate). As peer reviews considered the
questionnaire to be too long, we shortened it to increase the completion
rate for our questions. Also, to ensure that reliable responses would be
collected that are based on genuine experience, we had conditional
appearance of questions and we offered the option to answer “I don’t
know” to questions referring to knowledge rather than opinions. As a
result, we got completely answered questionnaires from all
respondents.

3.3 Summary and Conclusion

In this chapter, we presented a consolidated description of the current
state of the practice of interoperability analysis. We started by
describing the as-is situation, which revealed that 30% of practitioners
do not perform interoperability analysis in their integration projects. The
main reasons behind this were found to be a lack of knowledge about
how to perform it and a lack of awareness regarding its importance,
which leads to prioritizing other tasks over it. This consequently
increases the risk of unexpectedly facing conceptual mismatches late
in an integration project. On the other hand, practitioners who
performed interoperability analysis showed us that the current state of
interoperability analysis was immature. More specifically, there was no
standard or systematic activities being followed (e.g., some performed
interoperability analysis during the implementation rather than before it)
and there was no comprehensive investigation to find interoperability
information during the analysis (e.g., very few of the practitioners with
little experience targeted conceptual information).

Afterwards, we presented the evidence collected on the practical
relevance of the problems addressed by this Ph.D. thesis. In particular,
there was agreement on the high cost of performing interoperability
analysis. Besides, there was significant agreement on the frequency of
unexpected conceptual interoperability mismatches. This kind of
mismatches was also reported to be expensive to resolve. Furthermore,
we identified the exact difficulties related to both the practices and the
input artifacts of the conceptual interoperability analysis task. For
example, a significant difficulty reported in the context of practices was
the lack of guidelines and best practices for interoperability analysis that
practitioners could use. Also, input artifacts were considered
significantly insufficient for the analysis task, especially on the
conceptual level (e.g., context constraints).

To sum up, this chapter confirms the practical problems we stated in
Section 1.2 and paves the way towards presenting our solution ideas
and improvement hypotheses in the following chapters.

53

4 State of the Art

4.1 Introduction

As we described in the introduction (Chapter 1) and as confirmed by
practitioners in the state-of-the-practice study (Chapter 1),
interoperability analysis is not a trivial task and conceptual
interoperability mismatches are frequent and expensive to resolve. This
chapter presents related work in the literature as follows:

In Section 4.2, we will present our state-of-the-art scoping study,
which we used to gain in-depth information about the types of
interoperability-related architectural mismatches and their proposed
solutions in the literature. Note that this section has been published
by the author of this thesis in [ATR14].

In Section 4.3 and Section 4.4, we will describe the work related to
the focus of this thesis, which includes conceptual interoperability
foundations, respectively analysis approaches for software units.

In Section 4.5, we will summarize the limitations of existing work on
conceptual interoperability foundations and analysis approaches,
and describe our research directions.

4.2 Scoping Study on the State of the Art

In this section, we start by describing the research methodology of our
scoping study (Subsection 4.2.1), then we will present the results and
discuss them (Subsection 4.2.2). Finally, we will present the threats of
the validity of the survey study (Subsection 4.2.3).

4.2.1 Research Methodology

In this study, our aim was to systematically investigate the nature and
extent of software architecture research regarding interoperability
problems and before-release solutions in information systems. The
purpose was to collate, summarize, and disseminate research findings,
and identify research gaps. Therefore, we performed a scoping study
following the process proposed by Petersen et al. [PFMM08] along with
a data extraction form. Unlike systematic literature reviews [Kit04], we
aimed at a broad analysis of the literature rather than an in-depth
analysis with quality assessment for selected papers. All materials of
this study are available at the scoping study web page [Abu14c].

State of the Art

54

Goal and Research Questions

The goal of this scoping study was to identify architectural problems
and before-release solutions of interoperability in the context of ISs from
the viewpoint of researchers and software engineers. This goal was
translated into the following research questions:

RQ1: Which levels of interoperability are handled in the literature with
architectural solutions?

This question intends to determine the extent to which architecture
research addresses interoperability in terms of the levels of the LCIM
model.

RQ2: What are the architectural problems faced when building
interoperability among ISs?

This question intends to identify the issues and key drivers that need to
be considered when designing ISs to support the desired
interoperability property.

RQ3: What are the architectural solutions for handling the identified
problems?

This question intends to identify the architectural design decisions and
activities proposed in the literature for handling the identified
interoperability issues.

RQ4: How are architectural solutions for interoperability evaluated?

This question intends to explore the evidence provided about the quality
of the identified solutions in terms of the evaluation method used.

RQ4.1: What interoperability measures are used to evaluate the
architectural solutions?

This question intends to investigate interoperability metrics used
as part of the evaluation.

Data Sources and Search Strategy

In accordance with the recommendations of Dybå et al. [DKJ05], we
looked for published papers in journals and conference proceedings of
the following databases: IEEE Xplore, ACM Digital Library, Springer
Digital Library, Google Scholar, and Science Direct. Having the data
sources selected, we performed trial searches using various
combination of search terms derived from our research questions.
Based on the results we defined our search terms as: (T1)
Interoperability AND Architecture, (T2) Interoperation AND
Architecture, (T3) Interoperability AND Architectural Design, and (T4)
Interoperation AND Architectural Design. The search process was
carried as follows:

State of the Art

55

Stage 1: Pilot search the databases using the defined terms T1 to T4
separately and then combined with the “OR” operation to remove
duplicates. It was applied to the titles and abstracts (4128 studies).

Stage 2: As abstracts from stage 1 showed irrelevance to the research
questions, the database search was refined to be applied on titles only
(246 studies).

Stage 3: Inclusion/exclusion criteria, described next, were applied to
the 246 studies based on keywords, abstracts, and conclusions (22
studies).

Inclusion and Exclusion Criteria

A study got included if it met all the inclusion criteria (I) and none of the
exclusion criteria (E); otherwise it got excluded. These criteria were:

I1: Studies with the main focus on interoperability problems and
architectural solutions in ISs.

I2: Studies with architectural solutions to support interoperability before
release.

E1: Studies written in languages other than English.

E2: Gray studies with an unclear peer-review process (e.g., technical
reports, short papers, keynotes, abstracts, etc.).

E3: Secondary studies about interoperability problems and solutions
(i.e., work related to this research).

E4: Studies with minor interest in architectural aspects regarding
interoperability.

E5: Studies proposing solutions for specific projects under restricted
settings and conditions that cannot be generalized to ISs.

Two researchers separately applied the criteria to the studies. If
discrepancies were found between the results, discussion sessions
were held and consensus-based decisions were made. The search was
conducted in November 2013 and had no timeframe limitations in order
to allow getting a broader coverage of studies related to our research
questions. Note that we did not contact the authors of included studies
to seek unpublished evaluation or other related research.

Data Extraction Strategy

One researcher extracted the data from the 22 included studies and
another researcher checked it against the studies to ensure
completeness and correctness of the extraction (see data extraction
form in Appendix B).

State of the Art

56

Data Analysis

Qualitative data analysis was performed using an initial coding scheme
in a tabular form including interoperability problems, interoperability
levels, architectural solutions, architectural components, and evaluation
types. The coding scheme provided a definition of concepts, categories,
and criteria, which guided the translation of raw data into descriptions
that answer the research questions.

4.2.2 Results and Discussion

Demographic Overview

The identified 22 primary studies were from a diversity of application
domains (e.g., eGovernment, eCommerce, eLearning, geography,
military, and biomedical systems). As seen in Figure 16, a small
increase in the number of studies on interoperability can be observed
after 2004.

Figure 16 Year-wise distribution of selected studies

Studies were conducted in academic and industrial environments with
10 of 22, 45%, of the studies were performed in collaboration between
the two. Almost all studies (21 of 22, 95%) were published at
conferences, while one study appeared in a journal. Remarkably, there
is no dominating conference publishing many studies on
interoperability-related architectural problems and solutions, i.e., each
conference published one study, except for one which published two
studies. One conference named “Distributed Applications and
Interoperable Systems” was dedicated to software interoperability.

Interoperability-related Architectural Problems and Solutions

RQ1: Which levels of interoperability are handled in the literature
with architectural solutions?

To determine the interoperability concerns of each study, we analyzed
its keywords F5, its objectives F6, its problem description F8, and its
solution advantages F15. Afterwards, we compared these concerns to
the description of interoperability levels according to the LCIM model

State of the Art

57

[Tur05]. Figure 17 illustrates the distribution of the handled levels of
interoperability over the included studies. Some studies addressed
more than one level, e.g., S3 addressed both the semantic and
pragmatic levels. Note that the semantic level has the largest share of
the studies’ focus with a growing interest over the years, while the
pragmatic level has a low share and disappeared after 2007. Syntactic
and technical levels have convergent shares. In recent years, especially
in 2012 and 2013, the technical level has caught the attention of inter-
Cloud systems researchers (S18 and S22). Both the dynamic and
conceptual levels got no share in the studies at all.

Figure 17 Interoperability-level distribution over selected studies

RQ2: What are the architectural problems faced when building
interoperability among ISs?

For each study, we examined the interoperability problem it addresses
from the problem description F8. Then we mapped each problem to the
corresponding level of the LCIM model that shares and includes its
concerns. Synthesizing the problems of all studies, we identified eight
distinct architectural issues, with seven of them being related to LCIM
levels as seen in Table 6.

Table 6 Overview of LCIM levels with the problems and solutions identified in the studies
Interoperability Level Problem ID Solution ID Study ID

Technical P3

Sol5 S4

Sol7 S9, S16, S17, S18, S20,
S22

Sol10 S8

Syntactical
P2

Sol5 S6
Sol7 S15, S16, S20
Sol8 S3
Sol9 S9

P5 Sol6 S4
P7 Sol13 S1

Semantic P1

Sol1 S14, S21
Sol2 S3, S5, S10, S12, S13
Sol4 S11
Sol3 S16, S19, S20

P6 Sol11 S2

Pragmatic P4 Sol2 S3, S11
Sol5 S6

State of the Art

58

n/a P8 Sol12 S7

P1: Semantic heterogeneity of data is the most common problem
(occurrence number (N) = 11). It concerns architects designing
interoperable systems that correctly interpret the meaning of data
elements being exchanged among them. For example, the authors of
(S11) investigated designing interoperability among different GIS
systems and stated that it was a challenge due to the growing number
of heterogeneous spatial data sources with semantic differences.

P2: Syntactical heterogeneity of data has been reported frequently
(N = 7). It requires architects to take into account the differences in data
types, formats, and modeling languages of interoperating systems. For
instance, in (S6), Carvalho et al. stated that exchanging geographic
data among different layers of GIS required resolving its different
representations first.

P3: Heterogeneity of communication protocols, platforms, and
technical standards is considered a serious architectural problem (N
= 7). It is essential for interoperability to make design decisions that
enable the system to establish communication with systems having
different technical properties. In (S9), Rabhi observed that developing
cooperation among financial market systems required enormous effort
due to their variant technologies, communication interfaces, and
network protocols.

P4: Heterogeneity of data context has been reported as a problem in
the context of financial and GIS systems (N=3). It is important for
architects to reflect on the context in which the designed system’s
functionalities and data can be used to assure meaningful
interoperability. For example, (S11) describe possible context
heterogeneity in interpreting a domain value of a CropType attribute in
the designed system. While in one country it could be “Wheat”, in
another one it might be “Corn”.

Other stated problems include P5: Heterogeneity of method
signatures; P6: Misunderstanding of the semantic meaning of
interoperability; P7: Redundancy of data; and P8: Inadequacy of
architecture framework for supporting interoperability.

RQ3: What are the architectural solutions for handling the
identified problems?

For each study, we studied the interoperability solution it proposed from
the architectural solution F10, its components F11, and the technology
used F12. Then we mapped the solutions to the identified problems in
RQ2 (see Table 6).

Sol1: Standards address semantic interoperability problems, e.g.,
(S21) unambiguous semantic metadata is achieved through a standard-
based metadata repository, which provides a formal description of the

State of the Art

59

meaning of data types used in classes and attributes of data systems.
Also, (S14) proposes standard-based modeling for processes and data
between collaborating organizations.

Sol2: Ontologies solve semantic and context-related interoperability
problems. For example, (S13) proposes an ontology-based blackboard
architecture to facilitate user retrieval of the correct service offered by
an eGovernment system based on the user’s needs with less effort by
modeling the basic concepts of services from a user perspective.

Sol3: Semantic mediators align semantically related concepts. We
identified three identified forms of mediators: formal-methods-based
mediators align the behavior of systems using their LTS models (S16),
thesaurus-based mediators mediate concepts using knowledge
structures simpler than ontologies (S19), and standard-based
mediators facilitate standardized information exchange and
orchestration (S20).

Sol4: Wrappers encapsulate local data sources in an export schema
comprising the main concepts of the real-world entities. As described in
(S11), a wrapper receives queries from interoperating systems and
translates them into a local form to enable processing them and to
retrieve the required information from the local system.

Sol5: Adaptors embed the connection state and the logic into one or
more external systems, e.g., they can encapsulate a telnet-based
connection into a remote Unix host (S4). Also, (S6) proposes using
adaptor components to transform data among the interfaces of different
GIS devices.

Sol6: Facets provide different implementations for a standard interface
of an action. Hence, the action can be invoked by different system types
through its corresponding facet. In (S4), these facets are automatically
generated by specialized tools.

Sol7: Middleware handles heterogeneities in communication protocols
and data formats. In (S16), Bennaceur et al. present how an on-the-fly
middleware component dynamically resolved the heterogeneity of data
formats in messages being exchanged between distributed systems.

Sol8: External data models are concerned with representing all
sources of data that the system may exchange with other interoperating
systems. In (S3), the authors give examples of external data, including
relational database sources, XML sources, HTML web wrapper
sources, and computational procedures modeled as relations.

Sol9: Internet data formats are proposed for use on the data level of
distributed systems to ensure wide applicability of the associated
components (S9), i.e., using XML and its variants like FIXML with
CORBA for handling the communication.

Sol10: Technical reference models provide guidance for
expeditiously selecting technical standards using a common

State of the Art

60

vocabulary. According to (S8), this fosters interoperability by providing
appropriate system standard profiles.

Sol11: Semantic reference models provide guidance for developing
semantic interoperability capabilities in systems by fulfilling a set of
semantic requirements. In (S2), these requirements are categorized as
policy and governance, organization, and technology.

Sol12: Enterprise architecture frameworks provide a systematic
blueprint to build interoperability among enterprise IS. In (S7), the
identified framework resolves weaknesses determined comparatively in
legacy enterprise architecture frameworks.

Sol13: Central repositories allow cooperative sharing of information
among systems. For example, (S1) proposes using a central repository
for applications installed on a phone device to enable sharing of
resources and context data among them.

A recurring theme we observed in the findings is basing the identified
solutions on the service-oriented architecture style (SOA) and
implementing it with web service technology. This theme is reported in
nine studies (S5, S6, S10, S12, S13, S14, S17, S18, and S22). Also,
we found that the different solutions are not associated with any
particular application domain or research field, i.e., they are applicable
in general ISs.

Evidence on the quality of existing solutions

RQ4: How are architectural solutions for interoperability
evaluated?

As seen in Figure 18, 8 of the 22 identified studies did not provide any
evaluation of their proposed solutions. Because of the lack of empirical
evidence regarding the quality of the identified solutions, it was not
possible to determine their effectiveness.

Figure 18 Distribution of evaluation method over selected studies

State of the Art

61

RQ4.1: What interoperability measures are used to evaluate the
architectural solutions?

None of the studies included in this scoping study used interoperability
metrics to appraise whether it has been achieved in the systems.
Studies with empirical evaluation focused only on assessing
performance in terms of query execution time (S1), feasibility in terms
of understandability and ease of development of the concepts (S7), and
validity in terms of overcoming the interaction and application
heterogeneity (S16). It is noteworthy that neither (S7) nor (S16) was
accompanied by quantitative data.

Studies with toy examples described their solutions’ benefit in light of
different interests: (S2) argues that their solution provides a good basis
for evaluating the maturity level of the semantic interoperability
capability of agencies; (S3) shows that their solution allows context
mediation without the rigidity imposed by changing the original context
models; (S13) explains how end-users are provided with appropriate
interfaces for published services; (S17) illustrates how groupware
requirements diversity could be more easily fulfilled by controlling
concurrency access to shared documents; (S19) clarifies the feasibility
of achieving semantic interoperability with simpler structures rather
than ontologies; (S20) claims gains in adaptivity, flexibility, and security;
and (S21) presents the feasibility of making data semantically
interoperable using ontologies and standards.

Studies with no evidence claim to achieve autonomy, flexibility, and
extensibility (S11) and to allow optimized provisioning of computing,
storage, and networking resources (S18). No reflection of such claims
was found in the given examples.

Discussion

The study results reveal that architectural problems and solutions
related to software interoperability have been studied especially on the
syntactic and semantic levels over the last fifteen years. However, only
a few studies proposing solutions to the higher LCIM levels have been
published. Also, the results demonstrate the low evidence level of the
studies as the quality of the proposed solutions was not properly
evaluated in the papers included in our scoping study. Consequently,
we want to draw attention to the following issues that should be
overcome to advance the research area:

Architectural basis for higher levels of interoperability. This
scoping study demonstrates that research efforts have not addressed
the dynamic and conceptual levels of interoperability yet. In fact,
standalone architectural solutions are not adequate by themselves to
comprehensively solve the aforementioned high levels. That is, a
broader interdisciplinary view is needed, involving organizational,

State of the Art

62

managerial, and advanced technical decisions made, e.g., with the help
of artificial intelligence methods and technologies. Accomplishing this
interdisciplinary solution effectively requires the support of a mature
architectural basis. For example, unaligned models of business
processes would be handled better if constraints such as the ambiguity
of dynamically exchanged business data had already been handled
using mature architectural solutions. Accordingly, we emphasize the
importance of reaching a reasonable degree of architectural maturity in
backing interoperability on its higher levels. As indicated by [GCN09],
achieving a clear interoperability maturity level determines the
strengths and weaknesses of systems in terms of their likelihood to
interoperate, and hence defines the improvement priorities on the path
towards successful interoperability.

Prior architectural solutions to support interoperability before
release. The results show that researchers tend to deal with
interoperability problems after facing them, i.e., they propose expensive
posterior solutions [GMM07]. In contrast, adopting prior architectural
solutions can save time and effort; e.g., designing and implementing an
interface adaptor for a system under construction is less expensive than
modifying a released system and integrating it with new components
[GMM07]. Therefore, it is necessary to push the wheels of research in
the direction of prior architectural solutions for interoperability.

Architectural practices to support software interoperability. In this
study, only architectural design decisions were found in the area of
software architecture. However, software architecture includes other
activities that affect system characteristics, like architectural analysis,
synthesis, evaluation, and documentation [HKN+05]. It is thus of
significant importance to direct such activities towards improving the
interoperability potential of ISs and facilitating its tasks. For instance, it
would be useful to have studies about best practices for evaluating
design patterns with regard to interoperability. Also, studies about
architecture documentation activities that introduce specialized
interoperability views could be helpful in analysis phases. Hence,
research on architectural activities supporting interoperability is
required.

Empirical evidence on the quality of proposed solutions. Based on
our collected data, the majority of the identified architectural solutions
have not been associated with reliable validation. This can lead to
difficulties for practitioners to properly adopt interoperability solutions
and to systematically enhance them in future works. Thus, it is
important to provide trustworthy evidence such as empirical evaluations
to increase the reliability of a solution and encourage its adoption. Such
evaluation should analyze a solution with respect to its achieved
interoperability level, its costs, and any other claimed benefits. The
experience reported in the field of evidence-based software
engineering explains the necessity of empirical evaluation to enable fast

State of the Art

63

adoption of good practices, improve product quality, and minimize
project failures [DKJ05].

Comparisons among interoperability-related architectural
solutions. The results show that the identified interoperability-related
architectural solutions had not been compared to the solutions already
existing in the literature. This is absolutely acceptable if solutions aim
at solving interoperability problems that have not been addressed
before. However, proper justification for the preference of adopting a
new solution over others addressing the same problem would be
needed. Specifically, we call for comparing the experimental results of
new solutions with results obtained from previous ones. A similar
recommendation has been proposed by Aleti et al. [ABG+13] in the
context of building new software architecture optimization methods.
Moreover, it would be of additional help if trade-offs of the solutions
were declared, too.

Interoperability metrics for assessing solutions. The included
studies are inconsistent in estimating the benefits of their solutions, i.e.,
they differ in both the qualities they assessed and the metrics they used.
This lack of consistency impedes comparing the solutions and thus we
were unable to infer the architectural characteristics that influence the
interoperability property of systems. Another issue is that some studies
measured interoperability using indirect metrics that have an unclear
relationship with interoperability, e.g., autonomy, resource provisioning,
security, and concurrency. Hence, the reporting bias represented in
both inconsistency and indirectness should be overcome by using valid
and reliable measures of interoperability. These measures include
interoperability models like the Levels of Information Systems
Interoperability (LISI) model [oDCIWG98], the Operational
Interoperability Model (OIM) [CJ99], the LCIM [Tur05], the System of
Systems Interoperability (SOSI) model [MLM+04], and others. Using
these interoperability models would be a good basis for reporting the
results of previously discussed empirical evidence and for making
comparisons on the quality of interoperability solutions. However, it
would be of even greater benefit to come up with metrics that can
precisely quantify system interoperability and clearly draw the lines
between the semantic, pragmatic, and conceptual levels.

By combining empirical evaluation, consistency in reporting the results,
and directness in assessing the achieved interoperability in
interoperability solutions, the strength of evidence for these solutions
would definitely improve. Thus, estimations of the effectiveness and
interoperability achieved when adopting these solutions would be more
certain and trustworthy.

Reference rules for selecting appropriate interoperability-related
architectural solutions. Currently, various interoperability-related
architectural solutions have been identified, some of which address

State of the Art

64

similar problems. Therefore, it is important to provide guiding rules that
define interoperability problems and assign them to their most suitable
architectural solutions. For example, it would be a valuable assistance
for junior interoperability architects facing a semantic data
heterogeneity problem to have precise directions on how to choose
from alternative solutions such as ontology-based, standards-based,
and thesaurus-based mediations. Designers of such rules certainly
need to carefully take into account the different factors that may
influence the effectiveness of adopting a specific solution. These factors
include available resources, modularity and dependency of system
components, targeted interoperability level, system domain, project
size, developers’ experience, etc.

Tool support for interoperability. Another useful support for
practitioners designing and building interoperability would be to aid
them with software tools that can automatically identify potential
interoperability problems between two systems from their architectural
models. Such tools would be even more helpful if they were to also
suggest plausible architectural solutions for the detected problems
using the aforesaid guidelines. For example, this could be implemented
as a plug-in to an existing software architecture modeling language
(e.g., UML) that provides an interoperability view, reports architectural
mismatches, and supports resolving these mismatches.

4.2.3 Threats to Validity

Researcher bias. (1) To prevent bias in the conducting of this study,
the selection criteria and the data extraction protocol were derived from
the research questions and reviewed by an independent researcher.
For the same purpose, the study selection was performed by two
researchers. (2) To ensure correct inference in extracting data from
studies with poor or insufficient description, data extraction was
performed by one researcher and reviewed by another with discussions
as needed. (3) To increase the confidence about the outcome of
interpreting the qualitative data, the analysis results were reviewed and
discussed until agreement was achieved between the two researchers.
This was important in cases where interoperability was described using
different or no models. (4) To ensure transparency and replicability of
the study, the data and the results of each step were documented.

Publication bias. Although we performed our search in large electronic
databases, we did not contact any authors to identify unpublished
evaluation or other related research. Also, even though the search
terms were derived from the research questions, software engineering
keywords are not standardized. Consequently, relevant studies might
be missed due to our choice of search terms. For these reasons, we do
not claim to generalize the results for the whole research field.

State of the Art

65

However, this research covered a significant part of the literature and
provided valid results.

4.3 Conceptual Interoperability Foundations

In this section, we will describe the related work that lays out the current
basis and characterizations for conceptual software interoperability,
from which interoperability-related activities and artifacts are derived.
Although interoperability is a software property that enables actual
reuse, these two terms (i.e., interoperability and reuse) have been used
interchangeably in practice. Hence, we cover related work using both
terms as keywords.

Interoperability standards. There is a wide range of standards for
software interoperability and integration. A given standard only
specifies some aspects of interoperability, which are mainly technical
rather than semantic. For example, to allow exchange of data between
information systems in the healthcare domain, standards have been
proposed for communication, such as Health Level Seven (HL7) and
Digital Imaging and Communications in Medicine (DICOM); for
terminology, such as ICPC-2 and SNOMED CT; for documentation,
such as IEEE 1073 Point of Care Medical Device Communication: for
management, such as HL7 Clinical Context Management (CCOW); and
many others [B+10]. However, all these standards lack the ability to
achieve semantic interoperability. Also, standards may require domain-
specific knowledge to use them. For example, in health information
systems, many integration standards are based on generic technology
standards, but they still require some healthcare know-how [MT08].

Interoperability and reuse models. Multiple classification models
have been built for defining and organizing interoperability levels in
software systems. These models help to define the compatibility level
between systems and the amount of effort required to enable them to
work together. For example, Vallecillo et al. [VTH99] present a
classification for the interoperability of object-oriented software
components into signature, configurations, semantics, interaction
constraints, and quality. Also, Putman and Hybertson [VHT00] propose
an interaction framework for object interoperability based on software
architecture views. This framework supports interoperability between
distributed systems and includes views for object relationships,
interfaces, binding connectors, cross-domain interceptors, and
behavioral semantics of the interaction. Independent of the
programming type, interoperability models exist for information
systems, such as the Levels of ISs Interoperability (LISI) [oDCIWG98]
and the NC3TA Reference Model for Interoperability (NMI) [Pow08].
While, these two models are more focused on the technical aspects, a
well-known and widely used model of interoperability is the Levels of
Conceptual Interoperability Model (LCIM) [Tur05]. The LCIM focuses

State of the Art

66

on conceptual interoperability of information systems from the
perspective of their data sharing capabilities. It encompasses seven
levels of interoperability (i.e., No Interoperability, Technical, Syntactic,
Semantic, Pragmatic, Dynamic, and Conceptual) with no specific
attributes described under them. Another important model, which we
consider the main model related to our work in this thesis, is the Reuse
Model proposed by Basili and Rombach [BR91]. This model allows
capturing reuse candidates and requirements with a set of
characteristics that include dimensions for the reuse object (i.e., name,
function, use, type, granularity, and representation), its interface (i.e.,
input, output, and dependencies), and its context (i.e., application
domain, solution domain, and object quality). Other dynamic aspects
that describe the behavior of reusable objects are not covered by this
model.

Interoperability mismatch classifications. Researchers have
proposed various classifications for component interoperability errors
and mismatches. For example, a classification schema structuring
interaction incompatibilities has been proposed by [YTB99], which
includes a dimension for syntactic and semantic aspects and a
dimension for the system and the environment. Also, [BOR04] provides
four models. The first is based on a linguistic classification scheme for
errors (i.e., including syntax, static semantic, and dynamic semantic).
The second is based on a Hierarchical Interface Model [BJPW99] (i.e.,
contracts are classified into syntactic, behavior, synchronization, and
quality). The third is based on enhancing the interface classification in
two dimensions (i.e., functional and nonfunctional with interface
granularity). The fourth model is based on the Unified Software
Component Specification Framework (UnSCom) [Ove04]. This
UnSCom was proposed for specifying components from different
development perspectives with an orthogonal distinction among three
design views (i.e., static, operational, and dynamic). In addition, some
works deal with classifying architectural mismatches, such as [GAO95],
[Sha95], and [GAACB95].

Other proposed models and classifications of interoperability cover
broad aspects that are beyond the focus of this Ph.D. work. They
include models and classifications for enterprise interoperability, such
as [Che06] (which proposed a three-dimensional enterprise
interoperability model that inspired us to build a dedicated dimensional
model for software interoperability) and [GCN09], heterogeneity
classifications that include middleware and network layers [BPGG11],
and classification of components based on enumerated and faceted
classification schemes for library search purposes [PD91].

State of the Art

67

4.4 Conceptual Interoperability Analysis

In this section, we will explore related work in the literature concerning
current methods and approaches for analyzing interoperability between
two software units. As in the previous section, we will cover related work
using both interoperability and reuse as keywords.

4.4.1 Identification of Conceptual Interoperability Constraints

Extracting conceptual constraints in black-box interoperation

Mining API documentation. A number of static approaches have been
proposed to mine limited types of interoperability constraints from API
documentation using NLP and rule-based techniques. For example, Wu
et al. [WWL+13] infer dependency constraints of parameters, Pandita
et al. [PXZ+12] infer pre- and post-conditions of methods, and Zhong et
al. [ZZXM09] infer resource specifications. Dekel and Herbsleb [DH09]
extracted method constraints and pushed them into programming
editors.

Mining software executions. There are also dynamic approaches for
extracting software constraints from the execution. By running test
suites, Nimmer and Ernst [NE02] infer software invariants, while Gabel
and Su [GS12] infer temporal constraints. Gao et al. [GWZH14] infer
data preconditions from API signatures, error messages, and testing
results. Betrolino et al. [BIPT09] learn a behavioral service protocol by
observing its execution. The accuracy of the results in these
approaches depends in part on the quality and completeness of the test
cases. The analyzed executions must also fully characterize all possible
executions of the service in order to be credible.

In-house mining of UML diagrams. There are a few studies that
propose tools to support interoperability analysis. Integration Studio
(iStudio) [Bhu07] automates the interoperability assessment of COTS-
based architectures and recommends possible resolutions for
mismatches, while iStudio depends on a completely manual
specification for the architectural interfaces. Ullberg et al. [UFBJ10]
propose a tool for enterprise architecture models that supports
specifying assessment theories in Pi-OCL to be used in interoperability
analysis. Buschle's tool [BJS13] focuses on supporting decision-making
regarding information technology in enterprise architecture models by
analyzing many properties including interoperability.

On a broader scope, other works propose retrieving information using
machine intelligence to assist software architects in different tasks.
Anvaari and Zimmermann [AZ14] retrieved architectural knowledge
from documents for architectural guidance purposes. Figueiredo et al.
[FDRR12] and Lopez et al. [LCAC12] searched for architectural

State of the Art

68

knowledge in emails, meeting notes, and wikis for proper
documentation purposes. Although, these are important achievements,
they do not meet our goal of assisting architects in interoperability
analysis tasks.

4.4.2 Identification of Software Mismatches in Black-Box Contexts

Conformance checking. This method has an active research field with
techniques for enforcing design-by-contract [Mey92]. Many studies,
such as [CD00], [DW98], [Kin99], and [Han99], propose preparing
technical contracts and interfaces for software units to assess their
conformance with units. Conformance checking techniques allow
function authors to formally specify their methods’ pre- and post-
conditions, and object invariants for performing static [RB10] or
dynamic [HBH+10] analysis. Some works like Bastide’s [VHT00]
propose formal specifications for the behavior of interoperating objects
by using Petri nets as an example. On the same path Canal et al.
[VTH99] propose using an extension for interface description
languages (IDL) that uses a subset of π calculus for describing objects’
service protocols. [TN99] proposes presenting software features using
special component description languages (CDL) instead of IDL, which
specify technical contracts (i.e., invariants, pre- and post-conditions)
along with context dependency and component relationships. Similarly,
Gaspari et al. [VTH99], propose using a Unified Problem-solving
Method description language (UPML) for specifying reusable
components in a way that an intelligent broker can semi-automatically
select a proper reusable library. Also, Ruiz et al. [VHT00] propose
tackling object interoperability by using certificates that were granted to
components after passing specific tests and then saved in a repository
of certificates. Other technology-specific works focus on creating
dynamic behavioral interfaces of software units. For example, [Mik99]
proposes mathematical representations for object-oriented client-
server interactions. Another type of common technical interfaces are
network interfaces, such as the WSDL documents published for web
services. Although these works are useful for detecting conformance
violations automatically, most of them are manual-based solutions and
focus on technical constraints rather than conceptual ones. For
instance, the contracts proposed in [RB10] were designed to check only
null values, value range, and object size.

Reuse and COTS analysis. Several approaches have been proposed
for finding component mismatches, typically with the help of general
rules. For example, Bhuta [Bhu07] proposes creating component
definitions for technical and architectural assumptions manually, then
applying mismatch detection rules to these definitions. Abdullah [AA96],
Gacek [Gac98], and Egyed et al. [EMG00] propose detecting
architectural mismatches based on formalizations of architectural styles
and their underlying features. In fact, other studies such as [PKG99]

State of the Art

69

state that characteristics based solely on style properties might not
expose conflicts with enough detail to aid resolution. Further studies,
such as [DGP02] and [UY00], define architectural features and
assumptions that need to be investigated to detect component
mismatches. From a different perspective, Kontino et al. [KCB96]
suggest evaluating COTS based on integration goals and their factor
refinements. Similarly, Alves et al. [AFCF05] define types of COTS
mismatches based on the degree to which they fulfill goals and
functional requirements. Moreover, Franch et al. [FC03] and Carvallo et
al. [CFGQ04] propose using quality models to evaluate COTS.

A lot of work has been performed with a focus on the technical
interoperability level, which is not within the scope of our Ph.D. thesis
research. For example, model-based approaches have been proposed
to overcome heterogeneous middleware solutions, e.g. [BRLM09] and
[BGRB11]. Also, technical interoperability platforms with APIs for
developing interoperable software has been proposed, e.g. by
[GBS03]. Beyond these, dynamic synthesis for emergent connectors
[SG03] [AINT07]] [IBB11] [BPGG11] have been proposed to mediate
the interaction protocols executed by network systems.

Testing-based analysis. These techniques, such as [HBH+10] are
useful for detecting software mismatches; however, they require the
creation of complete, high-quality test suites and the launch of
interoperation for each test. Besides, intensive testing is not always
feasible due to invocation costs. Some methods consider prototyping
for component analysis by simulating its usage within other systems
[LBCC08]. As this requires component acquisition, learning, and
evaluation, it is expensive and limits the number of analyzed
components. Similarly, model-based interoperability testing and
frameworks [BP] [GBPS14] have been proposed for the web service
technology. However, this solution is designed for a single technology
and requires detailed models (i.e., technical interface using WSDL and
behavior using BPEL) to generate automated tests.

4.5 Summary and Conclusion

In this chapter, we have presented related work found in the literature
about conceptual interoperability problems, solutions, models, and
analysis approaches that is close to our research ideas described in
the introduction (Section 1.3). Below, we will summarize the analysis of
these related works and discuss their research gaps in insufficiently
addressing the problems we described earlier in Section 1.2 and in the
findings of our state of the practice survey in Subsection 3.2.2.

We found that there is no single approach or framework to which we
can compare our intended contributions. Instead, we found many works
related to each of our ideas, which partially lay the foundations for this

State of the Art

70

thesis work. The main contribution of this Ph.D. thesis is in the area of
software interoperability analysis. That is, we introduce a framework for
supporting providers and clients of interoperable software units in
performing conceptual interoperability analysis.

The basis for our research is a model for the conceptual interoperability
constraints (COIN Model). As described in Section 4.3, existing
interoperability standards are domain-specific (i.e., they focus on
limited business or technical levels), unsustainable, and usually need
to be complemented with additional standards or project-specific
conventions [MT08]. On the other hand, current interoperability models
and classifications have established a strong basis for this property, but
they are abstract classifications for the concept and do not support the
purposes and activities of practical analysis. That is, none of them
specifies precisely what each classification level would include in terms
of constraints that restrict the software units that are intended to
interoperate. Besides, the existing models do not relate the
classifications to the types of mismatches they cause. Hence, these
models have not found their way into practical approaches for
conceptual interoperability analysis. This is why we extend this work
into a comprehensive model for conceptual interoperability constraints
with fine-grained attributes. In addition, we provide detailed guidance
on how to practically benefit from this model as a reference for
supporting different conceptual interoperability analysis activities
(including documenting relevant information about interoperable
software units and checking specific constraints of external software
units).

The core of this thesis is the conceptual interoperability analysis
(COINA) framework. As described in Section 4.2, the majority of current
research works focus on the technical level of interoperability with a
reactive kind of architectural solutions with limited automation support.
We introduce a proactive, tool-supported framework for supporting
interoperability analysis with a focus on the conceptual level. Both our
COIN Model and the COINA Framework are domain- and technology-
independent.

A key component of our COINA Framework is its support for architects
and interoperability analysts in extracting conceptual interoperability
constraints from the in-house architecture documents of their own
software units and from the shared documentations about external
software units. All works related to this idea follow the same trend of
assigning the third-party clients the responsibility for extracting the
conceptual constraints for interoperable units. We propose proactively
preparation of such information by the owners of the interoperable
software in order to reduce the cost expended by each third-party
system for inferring these constraints and to raise the value and
competitiveness of interoperable software. We extend and stretch the
related works to extract a comprehensive set of conceptual

State of the Art

71

interoperability constraints based on our COIN Model. Furthermore, we
semi-automate the process and utilize machine learning capabilities to
decrease the manual effort and make our approach practical and
usable.

Another key component of our COINA Framework is to support
architects and analysis in detecting conceptual interoperability
mismatches between two software units early in a project. Most of the
presented related works regarding this idea (see Subsection 4.4.2)
propose manual specifications for interfaces, which mainly focus on
method contracts (i.e., invariants, pre- and post-conditions). Also, some
of the related works are domain- or technology-specific and some entail
high cost (e.g., for prototyping and running test suites). These works
inspired us to propose our systematic, guided approach for detecting a
comprehensive set of conceptual interoperability mismatches. Our
algorithm-based approach directs practitioners in mapping the detected
conceptual interoperability constraints in order to identify any existing
conceptual mismatches.

In summary, we provide a comprehensive model for conceptual
interoperability constraints, which in turn lays the foundation for our
analysis framework. This framework provides guidance for architects
and analysts to help them perform simple, efficient, and effective
conceptual interoperability analysis with reusable output.

73

5 The Conceptual Interoperability Constraint (COIN)
Model

5.1 Introduction

In this chapter, we introduce our Conceptual Interoperability
Constraints (COIN) Model, which builds the notional relations among
the conceptual interoperability constraints and the interoperable
software elements, software types, and mismatch types. The model
addresses the theoretical research problem described in Section 1.2
(i.e., R.P1: Lack of theoretical foundation that defines the conceptual
interoperability constraints and their related mismatches for software
units). The model extends the Reuse Model of Basili & Rombach
[BR91] with a particular focus on the conceptual, non-technical
characteristics of interoperable software units.

The COIN Model is the foundation for the remainder of this thesis work.
In particular, it directs the related activities of conceptual interoperability
analysis including (1) the search for the conceptual constraints that
need to be identified for two software units that are intended to
interoperate, (2) the identification of conceptual mismatches and their
impact based on the constraints causing them, and (3) the
documentation of the results of (1) in a standard, structured document,
which we call the COIN Portfolio, for each system. Note that some parts
of this chapter have been published by the author of this thesis in
[ANR15], [AAR15], and [AR16].

In Section 5.2, we will start by defining the term “COIN”, then
introduce the COIN Model and its relations with various aspects.

In Section 5.3, we will characterize the COIN Model in its three
dimensions and specify its attributes in detail. Afterwards, we will
connect the COINs with the conceptual mismatches they cause.

In Section 5.4, we will present our proposed “COIN Portfolio” and
“Mismatches List Template”, which are documentation templates for
conceptual constraints and mismatches that maintain information in
a standard and structured way.

In Section 5.5, we will summarize the presented model and its value
for the subsequent chapter.

The Conceptual Interoperability Constraint (COIN) Model

74

5.2 Model Overview

In this section, we will give a brief overview of the COIN Model, its
aspects, and relations, which offers a proper reference that can be used
for the detailed explanation in the next section.

First of all, we define the conceptual interoperability constraints
(COINs) of a software unit as follows:

Definition 7 – Conceptual Interoperability Constraints (COINs)

These are the conceptual, non-technical characteristics of a software
unit that, if mis-assumed, may lead to conceptually wrong,
meaningless, or improper interoperation results.

Directly conflicting or indirectly influential COINs between two software
units that are intended to interoperate lead to conceptual mismatches
as described in detail in Section 1.1. In other words, successful
integration requires identifying and satisfying the units’ COINs.

From a model theory point of view, the COIN Model bridges the gap
between the abstract classifications of conceptual interoperability (see
Section 4.3) and concrete real-world elements of interoperable
software units in specific interoperation contexts. Thus, it offers a solid
basis for our methodical ideas of supporting the conceptual
interoperability analysis tasks presented in Chapter 6. Moreover, the
model is general and can be used to support interoperability analysis
in the context of different integration projects. That is, it supports
analyzing the interoperability of either black-box or white-box software
units.

For all roles involved in software integration projects, the COIN Model
directs the understanding of the conceptual interoperability constraints
and their impact on integration projects. Hence, the model can be used
to guide the tasks of identifying the COINs, analyzing their impact,
resolving their associated conceptual mismatches, estimating the cost
of satisfying them, or testing the implemented integration. It can also
be used as a reference for researchers interested in classifying
constraints found in different artifacts of an interoperable software unit.
The simplicity of the model enables its users to remember it and use it
as a mental guide.

The COIN Model relates the most important aspects regarding COINs.
It defines the categories of conceptual interoperability constraints (i.e.,
syntax, semantic, structure, dynamic, context, and quality). It also
relates the constraints to elements of the interoperable software (i.e.,
data, function, and system) and applies them to specific types of
software units (e.g., IS, ES, MS, etc.). The model also shows that a
constraint has a value (i.e., qualitative and/or quantitative) and a

What are
COINs?

Why a
COIN
Model?

What does
the model
cover?

Who
benefits
from the
model?

The Conceptual Interoperability Constraint (COIN) Model

75

significance weight (i.e., high, medium, or low). Furthermore, the model
states that a constraint can be associated with different categories of
the conceptual mismatches that it can cause (i.e., direct, indirect, or
potential). Figure 19 summarizes the main aspects of the COIN Model
and its relations.

Figure 19 The main aspects of the COIN Model

Although we claim to build a comprehensive model, we do not claim
that it is complete. Accordingly, we introduce not only fine-grained types
of COINs and mismatches, but also coarse-grained COIN and
mismatch categories to allow extending the model with whatever may
emerge to be a conceptual interoperability constraint or mismatch for
future software units.

5.3 Model in Detail

In this section, we will introduce in detail each of the aspects of the
COIN Model. We will explain the dimensions of a COIN
(Subsection 5.3.1), its detailed attributes (Subsection 5.3.2), and its
associated types of conceptual mismatches (Subsection 5.3.3).

5.3.1 Principal Dimensions

Defining the dimensions of the COIN concept helps us categorize its
fine-grained types and grouping them according to the integration
context. Thus, the users of the COIN Model can focus on the necessary
conceptual constraints that are relevant for the context of their
integration project. Our proposed COIN Model has three main
dimensions that extend and enhance the Reuse Model [BR91] and the
Model for Enterprise Interoperability [Che06] to fit the purposes and
tasks of software interoperability.

The Conceptual Interoperability Constraint (COIN) Model

76

Chen et al. [Che06] state that enterprise interoperability is defined in
terms of interoperability barrier categories, enterprise levels, and
approaches for developing interoperability. However, this
categorization is too broad and abstract for our interest in software
interoperability. We rather need consideration of the interoperable
elements of a software system or unit, the type of external
interoperating software units, and detailed categories for the
conceptual interoperability constraints. Basili and Rombach [BR91]
defined a characterization scheme for reuse candidates, reuse
requirements, and reuse processes, which we extend with our three
dimensions.

Figure 20 The three dimensions of our COIN Model

As shown in Figure 20, the three dimensions of the conceptual
interoperability constraints (namely, interoperable element, conceptual
category, and interoperating unit type) are independent. For example,
a COIN can belong to the context category and be about a data
element. The intersection of the dimensions defines the subset of
conceptual interoperability constraints that users of the model should
pay attention to in their integration projects. An example is the
intersection of the quality category with the function element exchanged
with a software unit of the type embedded system. In such a scenario,
special quality constraints would be of interest to the user (e.g., safety,
power consumption, etc.). On the other hand, if the user is
interoperating with an information system, other quality constraints
would be of higher interest (e.g., security, response time, etc.). Next,
we will discuss each of the dimensions in more detail.

First Dimension (Interoperable Software Element)

As software interoperation can take place at different elements of a
software unit, for our COIN Model we define the following three
categorizations of COINs based on the interoperable elements:

The Conceptual Interoperability Constraint (COIN) Model

77

- Data COINs: These refer to the conceptual constraints regarding
the data that need to be satisfied in order to have a successful and
meaningful data exchange between two software units. For
example, these constraints may declare the meaning of the data,
define relations between data elements, or even specify the
qualities of exchanged data in terms of resolution, security, etc.

- Function COINs: These refer to the conceptual constraints
regarding the functions or services that need to be satisfied in order
to allow successful and meaningful exchange of functions between
two software units. For example, these constraints may declare the
goal of a function, state its pre- or post-conditions, announce its
interaction protocol, or even specify functional qualities like
performance, availability, etc.

- System COINs: These refer to the conceptual constraints imposed
by the overall software unit (i.e., the software system) that offers
the exchange of data or functionalities. These constraints must be
satisfied to allow overall success in building interoperation between
software units. For example, these constraints may specify the
system goals and the end users intended to benefit from the offered
functions, define usage and development contexts and
environments, announce general qualities that apply to all offered
functionalities and data, etc.

Such clear and direct relations between the conceptual constraints and
the interoperable elements can improve software integration projects.
They will, for instance, help interoperability analysts structure the
identification of the conceptual constraints of a software unit. They also
help to trace mismatches back to their source elements.

Second Dimension (Interoperability Category)

Conceptual interoperability constraints are not about syntax and
semantic constraints as categorized by some models. They rather
include a number of categories that we derived from various literature
sources and problem statements. The categories of conceptual
constraints that we propose are as follows:

- Syntax COINs: These state the concept-packaging methods and
the lexical references of exchanged data, functions, and the
system. For example, they state the terminology used or the
conceptual modeling language that interoperating units need to
agree on. Examining the syntactic match paves the way towards
investigating the semantic one.

- Semantic COINs: These express the meaning-related constraints
of the syntax used. For example, they may state that the measuring
unit for calculating a distance service is kilometers, not miles. They
also state the semantic meaning of input, output, and service goals.

The Conceptual Interoperability Constraint (COIN) Model

78

Moreover, semantic COINs could include domain references (e.g.,
reference ontologies) that encode the meaning of exchanged data
and service goals. However, as no reference ontology has been
widely adopted yet, we consider such references as theoretical
constraints that are left for future advances in ontology research.

- Structure COINs: These depict the software unit’s elements, its
relations, and the arrangements that affect the interoperation
results. For example, interoperating with a software system without
being aware of its data distribution may introduce a security threat
if network links between remote sites are not encrypted. In this
case, the distribution of the system is a structural COIN, and so are
function dependency, system layering, etc.

- Dynamic COINs: These restrict the behavior of interoperating
elements during interoperations. If such details are missed, they
can introduce conceptual interaction flaws. For example,
interoperating with a software system with regularly changing data
may lead to synchronization issues if this property is not declared
and addressed properly. Also, dynamic COINs specify interaction
protocols, timing constraints, etc.

- Context COINs: These pertain to external aspects forming the
interoperation settings of a software unit. For example, software
systems that are designed to interoperate with software systems on
desktop devices may cause display and memory issues on mobile
devices. Hence, context COINs specify the user and usage
properties for data and functions or for the overall software system.

- Quality COINs: These capture both the required and the provided
quality characteristics related to exchanged data and functions. For
example, inaccurate results may occur when interoperating with a
face detection service that requires images with a specific degree
of resolution.

Categorizing the conceptual constraints according to this dimension
helps to enhance the structured investigation of these constraints and
to better understand their impact. It aids different tasks in an integration
project, including analysis, resolution planning, and cost estimation.

Third Dimension (Interoperating Software Unit Type)

The third dimension allows further categorization of the conceptual
interoperability constraints according to the type of the interoperating
software unit. Hence, users of the COIN Model include/exclude
conceptual interoperability constraints in their focus during software
interoperability related tasks (e.g., analysis) based on their importance
and relevance for the interoperating system. For example, in the case
of interoperating with an IS, ES, or MS, the following COINs would be
used:

The Conceptual Interoperability Constraint (COIN) Model

79

- IS COINs: These refer to conceptual constraints that are important
especially when interoperating with an information system. For
example, when interoperating with a farm management application,
conceptual constraints of interest would include data structure,
image data resolution, performance and usability of query
functions, etc.

- ES COINs: These refer to conceptual constraints that are important
especially when interoperating with an embedded system. For
example, when interoperating with field mowers, conceptual
constraints of interest would include functional complexity, data
transfer speed and frequency, reliability and safety of
functionalities, etc.

- MS COINs: These refer to conceptual constraints that are important
especially when interoperating with mobile systems. For example,
when interoperating with a farmer app, conceptual constraints of
interest would include some IS COINs, like data structure and
functionality performance and reusability, and also some ES
COINs, like power consumption and reliability.

This distinction between the COINs on the basis of the interoperating
unit type allows avoiding unnecessary or even overwhelming
conceptual constraints that would not affect the desired interoperation.
For example, it would be irrelevant to declare user interface qualities for
embedded systems. Note that these types of systems can be extended
with further instances like systems-of-systems, cyber-physical systems,
ecosystems, etc.

5.3.2 Detailed COIN Attributes

In this subsection, we will present detailed COIN attributes under each
category of our model’s second dimension (i.e., the conceptual
category). To allow practical and easy use of our COIN Model and make
it useful for conceptual interoperability related tasks, we define a set of
COIN attributes that need to be investigated after determining their
importance by checking their intersection with the other two dimensions
(i.e., the interoperable element and the interoperating unit type).

We have derived these attributes by building upon and extending the
existing literature works (including [BR91], [Sha95], [GAO95], [Gac98],
[DGP02], [Bhu07], and more). Our selection criterion for an attribute
was its potential for causing any conceptual interoperability mismatch
between two software units regardless of the integration context (e.g.,
black-box or white-box integration). Remember, we claim that our
proposed attributes are comprehensive, but not complete. The
conceptual categories can always be extended with further attributes
as imposed by future characteristics of software units.

The Conceptual Interoperability Constraint (COIN) Model

80

Table 7 Detailed attributes of COINs

As seen in Table 7, each COIN category has a number of different
attributes that are briefly explained or illustrated with explanatory
examples. Some of the presented attributes can have multiple values
and some can have exactly one value. For example, dynamic service
conditions can be filled with multiple pre- and post-conditions, while the
structure concurrency of a unit can either be single-threaded or multi-
threaded. Next, we will describe each attribute in more detail.

Syntax – Lexical references. This attribute is concerned with the
terminology used by the software unit. It determines if the software units
intended to interoperate are using the same terminology for the same
concepts. This attribute applies to domains in which such information

COIN
Category Attributes Brief Description/Example

Syntax
Lexical references Dictionary, thesaurus, glossary, etc.
Modeling languages XML, UML, ADL, WSDL, etc.

Semantic

Semantic references Reference ontologies
Semantic constraints Data units, scale ratio, ordering style, etc.

Goals Explanation of why to interoperate with
this interoperable element

Input and output Conceptual description of expected input
and output

Structure

Data structural
constraints

Inherited constraints, multiplicity
constraints, structure size, etc.

Data storage Relational database, flat files, etc.

Dependency Underlying dependencies (i.e., additional
required functions or data)

Distribution Distributed, centralized
Encapsulation Encapsulated , not encapsulated
Concurrency Single-threaded, multi-threaded

Redundancy Single or multiple units or interfaces
dedicated to a specific element

Layering Layered, not layered

Dynamic

Dynamicity Static, periodic change, irregular change,
continuous change, etc.

Service conditions Invariants, pre-, and post-conditions

Interaction protocols Data/control flow, acknowledgement
protocol, error handling protocol, etc.

Interaction properties State(ful/less), (a)synchronous, etc.
Interaction time
constraints

Session timeline, acknowledgment
timeline, response timeline, etc.

Communication style Messaging, procedure call, blackboard,
streaming, etc.

Context
Usage context Device type, wired/wireless, access rate,

time, location, etc.
Intended users Human/machine, gender, age, etc.

Quality
Data quality Security, trust, accuracy, etc.
Service quality Safety, availability, efficiency, etc.

The Conceptual Interoperability Constraint (COIN) Model

81

is preserved using common glossaries, catalogs, dictionaries, or
protocol data units. For example, in the health domain, if a clinic
software is built using the ICPC-2 standard terminology and a hospital
software is built using the SNOMED CT terminology, a resolution for
the syntax difference is needed in order to allow their successful
interoperation. However, if a system is not using any data reference,
then it will be a challenging task to check the terminologies and
determine the system’s readiness to interoperate meaningfully with
other systems.

Syntax – Modeling languages. This attribute is concerned with the
conceptual modeling languages used in representing the concepts of
the interoperable elements. It is not about the technical data types or
formats. The techniques used primarily for software modeling include
Entity-Relationship (ER) diagramming, data flow diagramming,
systems flowcharting, and workflow modeling [DGR+06]. Accordingly,
different conventions can be used, such as UML notations, BPML,
SysML, EXPRESS, IDEF1X, etc. To explain the importance of such an
attribute, imagine that the GPS tracking system uses UML for modeling
the ER diagram of exchanged data. Meanwhile, the farm management
system uses the IDEF1X notation. If both systems provide formal
conceptual models, then this will not be of any concern and the
mapping will be on the formal level. However, if the analysis is to be
based on these models, then one of them should be transformed into
the other notation to enable analysis and mapping in order to find any
mismatches between the systems.

Semantic – Semantic references. This attribute is concerned with
stating any references aimed at defining the meaning of the terminology
and syntax used, such as domain-specific ontologies. This helps to
determine whether both the software provider and the client have a
common understanding of the meaning of the requested data or
services. Ideally, this would be defined using ontological references, but
as we mentioned earlier, there are no references yet that have been
widely adopted in any domain. Hence, we consider this attribute to be
theoretical and leave it for future advances in ontology research

Generally, semantic interoperability of software units is not a trivial
issue. Accordingly, traditional studies on semantic interoperability focus
merely on the behavioral specifications of software units, as embracing
all semantic aspects of software interoperation is almost impossible
[VTH99]. However, we here try to cover more aspects than just
behavior, as explained next.

Semantic – Semantic constraints. This attribute is concerned with the
data units, measurement systems, scale ratios, ordering style (e.g.,
ascending and descending) used. It helps to ensure that the data
exchanged between two systems are interpreted in the right way. For
example, the GPS tracking system uses the latest version of the World

The Conceptual Interoperability Constraint (COIN) Model

82

Geodetic System [Tru04], which is WGS84, as its coordinate system.
However, a farm management system may use an earlier version, such
as WGS72. The architect needs to decide whether the difference
between the two coordinate systems introduces a semantic mismatch
between the systems or not.

Semantic – Goals and Input/Output. These attributes are concerned
with stating the goals, input, and output of methods or services in a
conceptual way. That is, they do not aim at declaring the technical face
of these aspects, but rather their notion in order to ensure that
interoperation with the service happens for the right reason. Regarding
the input and output, this attribute makes it clear whether these consist
of data streams, events, function calls, triggers, etc. Typically, these
aspects would be expressed using natural language text, as their
formalization using mathematical languages would not be easy to write
or to understand. For example, the GPS tracking system produces the
location of a vehicle as coordinates, while the farm management
system requires the location output as an address. This explicit
conceptual description of the required and provided output makes it
much easier for analysts to detect mismatches than if they had to read
example codes explaining the input and output of a service.

Structure – Structural data constraints. These are concerned with
the restricting properties of the exchanged data entities and their
relationships. They represent business rules or policies imposed on the
exchanged data, such as cardinality constraints (e.g., one-to-one, one-
to-many, many-to-one, or many-to-many), structure size and ranges
(e.g., list length or value range), participation constraints (e.g., total or
partial), relationship constraints (e.g., functional, is-a, OR, XOR,
inheritance, aggregation, composition, etc.), and attribute constraints
(e.g., key, derived, composite, component, single, or multivalued). To
illustrate the impact of such constraints on interoperation, imagine that
the GPS tracking system has the data entity “Coordinates” composed
of the two entities “Longitude” and “Latitude”, whereas the farm
management system has the data entity “Coordinates” with the two
attributes “Longitude” and “Latitude” (see Figure 21).

Figure 21 Structural differences of data between two systems

The Conceptual Interoperability Constraint (COIN) Model

83

The example in the figure shows a similarity in concept between two
systems with two different structural representations, which would also
be implemented differently. Hence, it should be indicated in the
interoperability analysis results to ensure resolving it correctly.

Structure – Data storage. This kind of constraints is concerned with
the type of data storage that a specific system uses. Possible types of
data storage are relational databases, XML files, full-text files, graphical
databases, etc. Hence, it would be important to know the type of data
storage used by another system to ensure the feasibility of exchanging
data between them. To understand the value of stating such
constraints, imagine a white-box integration between a hospital system
that uses relational data and a clinical system that uses XML files.
Knowing such information in advance would be of great value for
estimating the effort required to overcome such a mismatch.

Structure – Dependency. This attribute is concerned with announcing
the underlying dependencies, i.e., the additionally required functions or
data to enable the exchange of data and services. For example, to
enable the farm management system to launch the AutoSteering
service of a smart tractor in the field, it is required that the
ObstacleDetecting service of the smart tractor is enabled. However, the
farm management system disables the ObstacleDetecting service of
the smart tractor, which requires accessing the farm database (which
is basically allowed for farmers’ applications only and not for
machinery) to record found obstacles. Hence, such a mismatch needs
to be resolved to enable the desired interoperation.

Structure – Distribution. This attribute is concerned with announcing
the distribution status of interoperable software elements, which may
be either distributed or centralized. Such information can be of value
for integration scenarios with a specific interest in security. For
example, if a software unit that requires security interoperates with
another software system without being aware of the latter’s distribution,
a security threat could be introduced if network links between remote
sites are not encrypted. Also, it is necessary to announce the
distribution status as some software systems need to know the
complete system state in order to make decisions, whereas no single
machine in a distributed system has complete information about the
system state and makes decisions based on local information.

Structure – Encapsulation. This attribute is concerned with
announcing the encapsulation status (i.e., has an interface or not) of
the offered data and services in white-box integration context. This
would be of value for interoperability analysts in determining how to
access the interoperable elements properly without breaking their
access rules for internal data and implementation. For example, if the

The Conceptual Interoperability Constraint (COIN) Model

84

smart tractor provider announces that each of its services, such as
AutoSteering, has an interface, the analysts could directly study this
interface and the requirements to build the interoperation with the farm
management system. However, if the provider announces a white-box
service with no interfaces, the analyst’s job would be harder as it would
require investigating the technical code and finding the starting point to
establish the interoperation. In other words, the encapsulation status
plays a role in deciding the effort required to build the interoperation
between the systems.

Structure – Concurrency. This attribute is concerned with stating the
concurrency status (i.e., single-threaded or multi-threaded) of the
interoperable software unit in the context of white-box integration. This
information would be important for interoperability analysts to
determine the amount of re-architecting work required to enable
interoperation between single-threaded units and multi-threaded ones.
For example, imagine that the farm management system is a multi-
threaded system that allows receiving multiple requests from several
smart tractors at a time, while the smart tractor is a single-threaded
system. To overcome this mismatch and enable successful
interoperation between these systems, it is necessary to replace all the
function calls issued by the smart tractor that are not thread-safe.

Structure – Redundancy. This attribute is concerned with the
existence of duplicates for an interoperable software unit or its
interface. Announcing this information is important as it has a potential
impact on the decision regarding interoperation with a software unit,
especially in safety-critical systems. For example, a farm management
system may have safety as a priority requirement, but the smart tractor
might have no duplicated functions or controlling components. Such a
mismatch is a threat to the realization of a highly reliable and safe
system, and to overcome it may come at high cost for the integration
project.

Structure – Layering. This attribute is concerned with the layered
architecture of an interoperable unit, which is important information in
case of white-box integration. This attribute helps interoperability
analysts in determining how to access each layer of the unit properly
without breaking its hierarchical access rules. For example, if the
provider of a farm management system allows white-box integration
and declares its exact layers (i.e., user interface, business logic, data
access, and database), the analyst’s job would be structured, as he
would obviously investigate the constraints of each level against the
overall farm management system. In other words, the layering status
allows analysts to focus on the right access interface for each layer to
find its constraints and to plan the resolution of any mismatches.

Note that there are further attributes that can be added to the structure
category of COINs, like those stated by [Bhu07] , which include

The Conceptual Interoperability Constraint (COIN) Model

85

backtracking to the old state of the system; preemption, which allows
interrupting a running task and suspending tasks; and reentrance,
which allows for non-interfering nested invocations. They also propose
some technical types that are beyond the scope of this thesis work.

Dynamic – Dynamicity. This attribute is concerned with the
exchanged data or service behavior and their state of changes. The
behavior type of data can be either static/persistent or dynamic. For
dynamic data, other properties of interest for interoperating systems
include the data change frequency (e.g., periodic, continuous, or
irregular) and the data growth rate (e.g., static, logarithmic, linear, or
exponential). For both dynamic and static data, the data size is also an
important aspect to be documented. For service dynamicity, an
important aspect are runtime changes that happen to the behavior due
to specific conditions (for example, the priority of serving customers
changes according to quota changes).To illustrate this attribute in an
integration scenario, imagine that the GPS tracking system updates the
location information of registered dynamic objects every 30 seconds,
while the farm management system reads the location of its registered
dynamic objects every 10 seconds. Such a mismatch needs to be
resolved before implementing the integration.

Dynamic – Service conditions. This attribute captures the contracts
of interoperable functions, which state their invariants as well as their
pre- and post-conditions. These contracts are critical for allowing the
desired interoperation and should, accordingly, be investigated by
interoperability analysts. For example, to enable interoperation
between a farm management system and the AutoSteering service of
a smart tractor, certain preconditions need to be satisfied (e.g., the user
must be logged in with authorization to activate this service).

Dynamic – Interaction protocols. This attribute is concerned with
clearly stating the different interaction protocols of interoperating
software units. These protocols include data and control flows,
acknowledgment protocols, error handling protocols, etc. They
describe steps and activities included in the interoperation. For
example, the farm management system expects notifications on failed
tasks, while the smart tractor sends no notifications, but backtracks the
system to a previous state. Such a mismatch needs to be resolved to
ensure meaningful results.

Dynamic – Interaction properties. This attribute focuses on the
interaction properties between two software units. These properties
include, for example, the statefulness of the interaction (i.e., stateful or
stateless) and their synchronicity (i.e., synchronous or asynchronous).
To understand this in the context of a desired interoperation, imagine
that the farm management system requires no blocking for its
components when waiting for a response (i.e., it allows asynchronous
interaction), while the smart tractor blocks components until it sends a

The Conceptual Interoperability Constraint (COIN) Model

86

response to them. Such a behavioral mismatch needs to be resolved
for successful integration.

Dynamic – Interaction time constraints. This attribute is concerned
with time constraints restricting the interoperation between software
units. This includes session timeline, acknowledgment timeline,
response timeline, etc. It is important to have these constraints satisfied
to ensure successful communication. For example, the farm
management system may drop an interaction session if no response is
sent within a minute, while the smart tractor may take longer to respond
depending on different variables. Such a mismatch can impede the
desired interaction and must be resolved.

Dynamic – Communication style. This attribute is interested in the
style of communication that a software unit follows (e.g., messaging,
procedure call, blackboard, streaming, etc.). For example, the farm
management system may communicate using message passing, so it
does not need to know the exact name of a method. The smart tractor,
on the other hand, may expect its procedures to be called directly by
their name. Such a mismatch prevents the desired interoperation and
needs a resolution.

Context – Usage context and intended users. These attributes are
concerned with the user and the usage properties of interoperable data
and functions or of the overall software system. Regarding the usage
context, the attributes include device type (e.g., mobile system or
desktop system), connection state (e.g., wired or wireless), application
domain, access rate, usage time, supported geographical locations,
etc. Regarding the intended users, the attributes include user type (e.g.,
human or machine), gender, age, technology experience, etc. To
explain the effect of these attributes, imagine that the smart tractor is
designed to be used by humans with medium to high experience in
using advanced software technologies. However, farmers in
developing countries might have lower experience than required to use
such advanced technology. Such a mismatch will not be detected in the
analysis if the context is not clearly stated, and it is difficult to overcome
even if the smart tractor can be integrated with the other software
systems of the farm.

Quality – Data quality. This attribute is concerned with a set of data
quality characteristics that have an impact on the interoperation
between two software units. There are very many of these data
qualities, so we only describe some of them here, such as availability
(e.g. instantly accessed, mean time to access, lock frequency, etc.),
accuracy (e.g., approximate, precise, correct, reliable, certified, etc.),
completeness (e.g., sufficient, inadequate, non-null values, missing
values, etc.), timeliness (e.g., up-to-date, out-of-date, valid until, validity
period, etc.), and structure state (e.g., structured, unstructured, semi-
structured). Note that the availability of data is not independent as it is

The Conceptual Interoperability Constraint (COIN) Model

87

affected by the availability of its system in general and more specifically
by the availability of the functions that allow accessing it. Some of a
system’s availability factors are the redundancy of the network on which
the data is being transferred, storage architecture redundancy, and
others. An example of their effect on interoperation is that the GPS
tracking system sends object coordinates with an average inaccuracy
of 5 meters, which increases to 30 meters during space storms.
Meanwhile, the farm management system assumes that the inaccuracy
of the coordinates does not exceed 6 meters at any time. Such a
mismatch should be reported and used to decide whether to proceed
with the integration or to search for an alternative.

Quality – Function quality. This is concerned with a set of
function/service quality characteristics that affect the interoperation
between two software units. There exist many such function qualities,
so we mention only some of them here, including availability (e.g.,
mean time to failure, meant time to recover, downtime frequency, etc.),
performance (e.g., responsiveness and stability under workloads),
usability (e.g., understandability and learnability), and others. Like data
availability, function/service availability and performance are also
affected by a number of system availability factors. Some of these
factors are infrastructure redundancy, resilient client/server solutions,
technical backup solutions, etc. An example that can serve to explain
the effect of this attribute on interoperation is that the GPS tracking
system sends object coordinates within 5 to 10 seconds, while the farm
management system assumes coordinates to be ready within a
maximum of 3 seconds. Such a mismatch influences the decision about
whether integration is suitable.

5.3.3 Conceptual Interoperability Mismatches and Their Types

In this subsection, we will introduce our definition of conceptual
interoperability mismatches and the different possible types that can be
caused by COINs.

Definition 8 – Conceptual Interoperability Mismatch

The inconsistency due to conflicting or influential conceptual constraints
between two software units that are intended to interoperate.

Like the general interoperability mismatches we introduced in
Section 2.3, conceptual mismatches between software units can be
caused by either conflicting or influential features or constraints.
However, these constraints are the non-technical ones that particularly
state the software units’ notions and abstract aspects (i.e., constraints
regarding the software units’ syntax, semantics, context, structure,
behavior, and qualities). For example, a conceptual interoperability
mismatch can be caused by conflicting contexts (e.g., different usage

The Conceptual Interoperability Constraint (COIN) Model

88

modes between a software unit that works only online, requiring an
Internet connection, and another unit working offline in airplane mode).

Direct conceptual mismatches: This type of mismatches is caused by
COINs of similar categories and attributes when they have explicitly
contradicting values for the corresponding interoperable software units.
For example, the farm management system may have a structure COIN
that states that its lists have a maximum capacity of 100 items, while
the smart tractor may have a Structure COIN that states that the
maximum size of its lists is 50 items. This leads to a direct mismatch on
the structure level. This type of mismatches can be associated with any
of the COIN types.

Indirect conceptual mismatches: This type of mismatches is caused
by COINs with values that do not directly contradict the restrictions of
other COINs in the corresponding interoperable software unit, but rather
influence them implicitly. For example, the smart tractor may have a
Dynamic COIN stating that the interaction is synchronous and any
interacting software unit is blocked until a response is received and the
task is accomplished, while the farm management system may have a
Quality COIN stating that the system requires high response time. This
leads to an indirect mismatch on the quality level. Mostly, structure
constraints and dynamic constraints are the reasons for indirect
mismatches and mainly affect Quality constraints of the other
interoperable software unit.

Potential conceptual mismatches: This type of mismatches is caused
by COINs that have no corresponding or conflicting constraints in the
other system/service, neither directly nor indirectly. However, they have
requirements depending on the following subtypes:

- Adherence-type conceptual mismatches demand work for
satisfying them. For example, the farm management system may
have a Structure COIN to have redundancy for safety-critical
services and controlling units to ensure availability of a service,
while the smart tractor has no constraints regarding redundancy.
This leads to a potential adherence mismatch if the integration
developers do not duplicate the critical units in the smart tractor.
Hence, it has to be reported to ensure that the constraint is
satisfied. Any type of COINs can be a reason for an adherence
mismatch if it has no corresponding COINs and is not influenced by
COINs in the other software unit.

Consensus-type conceptual mismatches demand a common
understanding or agreement. For example, a fertilizer supplier system
located in Finland offers a service to automatically deliver fertilizer to
farms in the growing season. This system has a Semantic COIN that
states the meaning of “Growing season” to be the period of time from
June to September only. On the other hand, the farm management

The Conceptual Interoperability Constraint (COIN) Model

89

system, which is located in Spain, has no corresponding constraint to
define the aforementioned term, but it is commonly known that the
growing season in Spain is almost year-round. This leads to a potential
consensus mismatch if users of the latter system misunderstand the
definition from the former one. It is obvious that Syntax, Semantic, and
Context constraints are the main causes of consensus mismatches.

Later on, in Chapter 6, we will explain how to detect these types of
mismatches following an algorithm-based method and how to
document the results in a standard result template.

5.4 Standard Documentation Templates

In this section, we will show the first practical benefit from the COIN
Model by introducing our proposed standard templates for documenting
the COINs of an interoperable software unit (Subsection 5.4.1) and for
documenting detected mismatches (Subsection 5.4.2). We will explain
the role of these templates, their structure, benefits, and limitations. In
Chapter 6, we will place these templates in the big picture of serving
the tasks of conceptual interoperability analysis.

5.4.1 Conceptual Interoperability Constraints Template (COIN Portfolio)

As mentioned in the introduction chapter, we call our proposed
documentation template for conceptual interoperability constraints the
“COIN Portfolio”. It is a standard and structured document used to
explicitly and comprehensively declare the COINs of an interoperable
software unit or system. This portfolio gathers all conceptual
interoperability related aspects of a software system in a single
coherent place to allow clients and interested parties to investigate
desired meaningful interoperations. The COIN Portfolio is written in a
human-readable format (i.e., natural language text) to allow all users
with different levels of experiences to use it easily. However, it can be
partially formalized using a formal-based description language (e.g.,
special DSL) for the COINs with quantitative values, but not for those
with qualitative values (e.g., Quality COINs for response time can be
formalized, but Semantic COINs for goals cannot). Such formalization
can open the door for automating the comparison between portfolios,
which is beyond the scope of this thesis work.

This template maintains the COINs of interoperable software units in a
comprehensive and organized way. The goal of this consolidation of
conceptual constraints is to support architects and interoperability
analysts by using it as input for the conceptual interoperability analysis
task. When the COIN Portfolio is prepared for each of the software units
intended to interoperate, it facilitates comparing the units’ COINs and
detecting their conceptual mismatches. This consequently allows
project managers to make early informed decisions about the feasibility

What is a
COIN
Portfolio?

Why is it
needed?

The Conceptual Interoperability Constraint (COIN) Model

90

of integration, to make trade-off between alternatives, and to assess the
required effort.

In the context of black-box integration, the COIN Portfolio is prepared
by the providers of the interoperable software unit. That is, software
architects and analysts create it so it can be shared with interested
clients. This explicit announcement of conceptual information about
their software units allows the clients to perform effective and efficient
conceptual interoperability analysis and increases the competitiveness
of the software unit. On the other hand, in the context of white-box
integration, the COIN Portfolio can be prepared by the interested clients
if the provider does not share it. That is, the architects and analysts of
the third-party client create this document for their own units as well as
for the external one. Adding work for each interested client can
obviously decrease the competitiveness of the offered software unit,
especially if alternative units do provide COIN Portfolios.

For software units under construction, it is possible to create the COIN
Portfolio gradually along the development lifecycle. In this case, the role
responsible for creating the portfolio has to be careful and update its
content as needed. It can also be prepared once the software unit is
ready for interoperation with other units and no further changes are
expected. Note that, for evolving software units, versions of the COIN
Portfolio should be created and associated with the interoperable
software versions to ensure sharing correct and up-to-date information.

Structure of the COIN Portfolio

The COIN Portfolio is a structured document that reflects the
dimensions of the COIN Model. Accordingly, it captures the COINs for
the interoperable elements of a software unit (i.e., system, data, and
services). For each of these elements, their set of COINs is declared in
groups based on the COIN category (i.e., syntax, semantic, structure,
dynamic, context, and quality). For each COIN instance, the portfolio
includes a dedicated sheet in which all the COIN’s details are reported
(e.g., related interoperable element, interoperating unit type, COIN
category, value, weight, etc.).

Figure 22 presents an example of a COIN Portfolio for a GPS tracking
system (S1) in which only COINs that are relevant for its interoperable
elements are announced explicitly. Such a portfolio benefits a software
architect of an interoperating farm management system (S2) in
detecting his system’s conceptual mismatches with S1. For example, S2
may have security concerns and need to exchange location data with
S1. The first station for the architect of S2 using the portfolio of S1 to
assess the general suitability for the interoperation goals will be the
COINs associated with the overall system. As the system COINs show
no conflicts with S2 interests, the second station for the architect of S2

will be to review only the COINs of the Location data element. The

Who
prepares it?

When to
create it?

The Conceptual Interoperability Constraint (COIN) Model

91

detailed COIN sheets then reveal the distribution characteristics of the
Location data, which may introduce a security threat to S2 (conceptual
interoperability mismatch).

Figure 22 An example of a COIN Portfolio (left) and one of its sheets (right)

Figure 23 represents a meta-model for the COIN Portfolio concept and
its captures its relation with some other concepts, such as the COIN,
interoperable elements, conceptual interoperability mismatches, etc.).

Figure 23 Meta-model for the COIN Portfolio of Interoperable Software System

The Conceptual Interoperability Constraint (COIN) Model

92

Appendix C.1, contains an empty template of the COIN Portfolio
document that can be used for saving the COINs of any interoperable
software unit. In Chapter 6, we will introduce our software tool support
for creating such a COIN Portfolio semi-automatically.

Benefits and Limitations of the COIN Portfolio

The COIN Portfolio offers a number of benefits for its providers and
targeted users, which are described in the following characteristics:

Comprehensive. The COIN Portfolio endeavors to deliver a
comprehensive aggregation of the conceptual interoperability related
information of an interoperable software unit. Based on this, using it as
input enables performing a thorough and effective conceptual
interoperability analysis. Hence, it lowers the risk of undetected
conceptual mismatches between two units.

Customized. The COIN Portfolio focuses on presenting only the
conceptual interoperability relevant information about an interoperable
software unit that is really needed. In other words, it reduces the amount
and complexity of the information by indicating what is enough for the
conceptual analysis without overwhelming the reader with irrelevant
technical information. Narrowing down the investigated artifacts and
information consequently saves time and effort for the user.

Well-structured. The design of our proposed portfolio arranges
interoperability information according to the categories of the
conceptual concerns. Therefore, using it guides interoperability
analysts in determining the different types of conceptual mismatches
between two software units in a systematic way. Hence, it increases
confidence and trust regarding the produced analysis results.

Consistent. The definite structure of the COIN Portfolio allows
documentation consistency to be achieved among the different
interoperable elements of the same software system and among
different software systems. Such consistency is desired to help the user
understand the content and to increase the efficiency in locating the
desired information (this skill improves from one project to the next). It
also helps to avoid the insufficiency of shared information (which can
be mistakenly missed or ignored by the software provider).

Reusable. The COIN Portfolio of a software unit can be reused in its
different integration projects with different systems. This saves time and
effort for clients in every potential interoperation. It is important to
mention that this applies only if the COIN Portfolio is kept up to date
and maintained whenever a change happens to its system. In the long
run, this improves the competitiveness of the interoperable software
units’ providers and grows their business impact as it increases the rate

The Conceptual Interoperability Constraint (COIN) Model

93

of interoperation success. So, it is a one-time effort that saves cost in
each future interoperation.

In addition to these beneficial characteristics of the COIN Portfolio, it
can also be used as a basis for interoperability testing and exception
handling. That is, it can be used for designing interoperability-related
test cases at design time (expected scenarios). It can also be used as
a basis for an exception handling mechanism at runtime (emergent
scenarios). We will not go deeper into this discussion as these potential
usages of the COIN Portfolio are beyond the scope of this thesis.

With regard to the limitations of the COIN Portfolio, it focuses only on
the conceptual level of interoperability constraints and does not cover
other levels (e.g., technical, organizational, etc.). Hence, it cannot be
depended on as the only input for comprehensive interoperability
analysis. However, its structure allows extending it in a flexible manner
with further categories and attributes as needed. Thus, analysts
interested in adding other levels of interoperability to the portfolio can
do so easily. Also, creating the COIN Portfolio introduces some
difficulties as it requires understanding of the COIN categories and
attributes, spending effort on writing it, and continuously maintaining it.
Thus, manual creation of the COIN Portfolio and its sheets is a
cumbersome, expensive task that requires sifting through the software
documentation to identify its conceptual interoperability constraints. To
overcome these difficulties, in Chapter 6 we will present our proposed
support for software architects in creating the portfolio (i.e., guidelines
to support manual creation and software tools to allow semi-automated
creation).

5.4.2 Mismatches List Template

We also propose a standard and structured template for documenting
the detected conceptual mismatches between two interoperable
software units. This “Mismatches List Template” gathers all aspects of
conceptual mismatches in a single coherent place. It is written in a
human-readable format and is the result of comparing the COIN
Portfolios of two software units.

This template lists the conceptual mismatches between two software
units in a comprehensive and organized way. The goal of this template
is to support architects, interoperability analysts, and project managers
in determining the feasibility of resolving these mismatches and going
forward in building the interoperation. It also enables traceability
between a conceptual mismatch and the COIN(s) causing it. Moreover,
this standard document enables trade-offs between multiple candidates
of external software units. This consequently allows decision makers to
make informed decisions about the selected integration candidates.

What is a
Mismatches
Template?

Why is it
needed?

The Conceptual Interoperability Constraint (COIN) Model

94

The Mismatches List is created by third-party clients interested in
integrating their system and an external software unit. That is, software
architects and analysts create it by comparing the COIN Portfolios of
the two software units intended to interoperate. At a later point in time,
this comprehensive documentation of the conceptual mismatches
between software units allows making confident decisions about
pursuing integration with an external software unit.

Structure of the Mismatches List Template

The Mismatches List template is a structured document that maintains
information about the conceptual mismatches in the two software units
and the COINs causing them. Accordingly, for each mismatch instance,
the template captures the mismatch aspects including the related
interoperable element (e.g., system mismatch, data mismatch, etc.), its
type (i.e., direct, indirect, and potential), and its detailed description.

Figure 24 presents an example of a Mismatches List between a farm
management system (S1) and a smart tractor system (S2), where
mismatches are recorded in terms of their related interoperability
element. Such a list benefits the decision makers in an integration
project by helping them decide whether or not integrating S2 within their
S1 is feasible. The first station for the reader of the Mismatches List will
be the conceptual mismatches on the level of the two overall systems
to assess their general suitability for the interoperation goals. Then, the
second station will be the conceptual mismatches of the data and
service elements. For example, the detailed description of the location
data mismatch reveals a direct conflict with the structural length of the
list.

Figure 24 An example of a Mismatches List (left) and one detailed mismatch description (right)

Who
creates it?
When?

The Conceptual Interoperability Constraint (COIN) Model

95

Appendix C.2 contains the empty template of the Mismatches List
document, which can be used for saving the conceptual mismatches
between two interoperable software units. In Chapter 6, we will
introduce our systematic analysis approach that makes use of this
template.

Benefits and Limitations of the Mismatches List Template

With regard to the benefits of this Mismatches List template, they
resemble the ones of the COIN Portfolio. That is, it is similarly:

Comprehensive. The Mismatches List delivers comprehensive
information about the conceptual mismatches between two software
units from their system, data, and service perspectives. Based on this,
using it as input for project managers enables making effective and
evidence-based decisions and tradeoffs in their integration projects.

Customized. It focuses on presenting only the conceptual mismatches
between two software units, which reduces the amount and complexity
of the information presented to decision makers. That is, it reports what
is enough for the conceptual analysis level without providing
overwhelming technical information, so it saves time and effort.

Well-structured. The design of our template guides the reader in
determining the impact of the different types of conceptual mismatches
between two software units in a systematic way. Therefore, it increases
the effectiveness of the decisions.

Consistent. The definite structure of the Mismatches List supports
documentation consistency among the different external software units
candidates investigated. Such consistency is favorable as it paves the
way towards selecting the most appropriate candidate. This
consistency also helps users to understand the content and locate the
desired information efficiently (this skill improves from one project to the
next).

In addition to these beneficial characteristics of the Mismatches List, it
is currently offering a qualitative metric for estimating the required effort
to enable integration between software units. It also offers a basis for
developing a quantitative metric that would be derived from the weights
given to the quantity, type, and perspective of the mismatches. Such
quantitative weights could be used to build formulas for estimating
integration cost in order to support decision-making and trading off
between candidate units. A radar or spider chart could be used to
visualize the metric. It is obvious that developing such a metric requires
reported experiences in the cost of resolving the different kinds of
mismatches. We will not go deeper into this discussion as this potential
benefit of our Mismatches List is beyond the scope of this thesis.

The Conceptual Interoperability Constraint (COIN) Model

96

With regard to the limitations of the Mismatches List, it focuses only on
the conceptual level of mismatches, just like the COIN Portfolio. Hence,
it cannot be used as a standalone for comprehensive decision-making,
which needs to cover further aspects (e.g., organizational, technical,
etc.). However, its structure allows extending it with further categories
as long as the COIN Portfolio also gets extended with corresponding
constraint categories. Also, creating the Mismatches List document
requires understanding of the mismatch types and the COINs causing
them. Thus, creating it could be a cumbersome task for inexperienced
analysts; in Chapter 6, we will therefore present our proposed support
for software architects to help them create it (i.e., guidelines for
mapping COIN Portfolios).

5.5 Summary

In this chapter, a model for conceptual interoperability constraints
(COIN) has been introduced. The three-dimension model describes the
relevant aspects for the COINs and shows their relations to it. In
particular, we described the constraints that reflect the conceptual
characteristics restricting the interoperable software unit and its data
and services. We discussed the differences in their importance based
on the type of the software units that are intended to interoperate with
the unit. Afterwards, we defined categories for the conceptual
interoperability mismatches that can be caused by COINs.

Our model provides a solid basis for the practical benefits of
interoperability analysis. It also offers a structured basis for standard
documentation templates, the COIN Portfolio and the Mismatches List,
which comprehensively hold all related COINs and conceptual
mismatches of two software units. The model also serves as a basis for
other practical activities, which we will describe in the context of our
interoperability analysis framework on the conceptual level in
Chapter 6.

97

6 The Conceptual Interoperability Analysis (COINA)
Framework

6.1 Introduction

In this chapter, we introduce our Conceptual Interoperability Analysis
(COINA) Framework, which we built upon the COIN Model introduced
in the previous chapter. As described earlier in the solution idea
(Section 1.3), the framework includes our methodological and
engineering contributions, which support practitioners in performing the
conceptual interoperability analysis. It helps software architects and
analysts in identifying the conceptual interoperability constraints and
mismatches of software units more effectively and efficiently.
Remember, although the COIN Model can be used as a foundation for
activities related to either black-box or white-box integration, the current
version of the COINA Framework focuses on black-box integration only.

The COINA Framework comprises two methodical components aimed
at assisting providers and clients of interoperable software units. The
first component of COINA addresses the methodological research
problem R.P2: Lack of proactive approaches and automated solutions
for guiding providers of interoperable black-box software units in
identifying and sharing the conceptual interoperability constraints for
their units. The second component of COINA addresses the
methodological research problem R.P3: Lack of systematic analysis
approaches for guiding interoperability analysts in identifying the
conceptual constraints of two software units and detecting their
mismatches). Note that most of this chapter has been published by the
author of this thesis in [ANR15], [AR16], [AAR15], [AAHR16], and
[AAR16].

In Section 6.2, we start by presenting a big picture of the COINA
Framework and its components. Then we will discuss the
methodological overview of the framework and its contextual
scenario.

In Section 6.3, we will describe in detail the first component of the
framework, which comprises proactive, in-house preparation for
interoperable software units. This section includes a method for
extracting COINs from UML diagrams with tool support
(Subsection 6.3.1). We will also present our multiple-case study and
the experiments that helped us propose our next method, which
uses ML techniques for automating the extraction of COINs from NL
text of API documents (Subsection 6.3.20). The multiple-case study

The Conceptual Interoperability Analysis (COINA) Framework

98

also resulted in a set of guidelines for enhancing the API
documentation for conceptual interoperability analysis purposes
(Subsection 6.3.3).

In Section 6.4, we will present the second component of our COINA
Framework, which is a systematic approach for detecting
conceptual interoperability mismatches between two software units.
We will present our algorithmic approach in detail and describe the
associated guidelines and cheat sheets for its activities.

In Section 6.5, we will summarize the presented framework, its
benefits, and its limitations.

6.2 Framework Overview

In this section, we will give a brief overview of the COINA Framework,
its components, and its context. This overview offers a proper reference
that can be used for the detailed explanation in the next sections.

While the COIN Model provides the foundation knowledge for the
conceptual constraints and their types, the Conceptual Interoperability
Analysis (COINA) Framework provides methods and guidelines for
detecting the COINs and their related mismatches between two
software units. Unlike existing analysis approaches, our framework
does not focus merely on detecting conceptual mismatches. It rather
offers comprehensive support for both the providers of interoperable
units and third-party clients, as their efforts are closely intertwined. This
means that the conceptual information about an interoperable unit
shared by its providers affects the conceptual analysis and mismatch
detection performed by the clients. Thus, the goal of the first component
of the framework is to assist the providers of interoperable units in
proactively publishing the COINs of their units while keeping the
associated effort as low as possible. In addition, the goal of the second
component of the framework is to support third-party clients who are
interested in building interoperation with an external software unit in
detecting conceptual interoperability mismatches effectively and
efficiently.

6.2.1 Methodical Overview: Input, Output, Activities

Based on the COIN Model introduced in Chapter 0, the first component
of the COINA Framework calls for proactive, in-house preparation
for software units that are intended to interoperate with other units. It
assists software providers in explicitly sharing the conceptual
constraints with interested clients with the least effort. Prerequisite
input? We assume the availability of the software unit’s internally
shared architectural and low-level design documentation (e.g., UML
diagrams) and its externally shared API documentation. All
documentations are also assumed to be stable (i.e., not undergoing

Why the
COINA
Framework?

What is the
first COINA
component?

The Conceptual Interoperability Analysis (COINA) Framework

99

frequent major changes), consistent (e.g., consistency between the
different UML diagrams and consistency between UML diagrams and
API documentation), and up-to-date (i.e., representing the current state
of the software system). In addition, the UML notations are expected to
be used correctly as specified by OMG for Version 2.51. Output? The
resulting output is a standard document that explicitly states the
conceptual interoperability constraints for the interoperable elements of
the software unit (i.e., its COIN Portfolio). Activities? The process at
this component starts with the definition of the list of interoperable
elements of the software unit. That is, the software architect of the unit
determines what data items and functions are supposed to be part of
future interoperations with other software units. Then the framework
semi-automatically identifies the COINs for the previously determined
interoperable elements. Finally, the framework helps to document the
extracted COINs in the standard documentation template called the
“COIN Portfolio”. This portfolio then gets proactively published, making
black-box units ready for proper analysis by potential third-party clients.
In Section 6.3, we will explain in details and with examples how this
component works.

The second component of the COINA Framework is also based on the
COIN Model introduced in Chapter 0 and the defined types of
conceptual mismatches. It proposes a systematic, algorithmic
method for detecting the conceptual mismatches between two
units. It assists third-party clients in comparing the COINs of two units
in order to effectively and efficiently detect their conceptual
mismatches. Input? The input to this component are the two COIN
Portfolios, one for each of the software units that are intended to
interoperate. If the first component of the framework has already been
applied, then the input should be ready to use by the second
component. Otherwise, the second component offers guidance on how
to manually prepare the portfolios systematically. Output? The
resulting output of this component is a list of the existing conceptual
mismatches between the software units that are intended to
interoperate. We propose documenting these results using a standard
template. Thus, the results can be used for determining the
requirements in order to enable meaningful interoperation and design
the resolution (this activity is beyond of the scope for this thesis work).
Activities? The process at this component starts with the mapping of
the COIN Portfolios of the two software units in a structured way using
the offered guidance. This detailed guidance is based on an algorithm
that we designed. Then we determine the conceptual mismatches
based on their criticality; either they cause direct contradiction or they
require conceptual adherence. In Section 6.4, we will explain in detail
with examples how this component works, what guidance it offers for
manual analysis, and what the mismatch template looks like.

1 http://www.omg.org/spec/UML/2.5/

What is the
second
COINA
component?

The Conceptual Interoperability Analysis (COINA) Framework

100

6.2.2 Contextual Scenario: Who, When, How

The current version of the methodical contributions of the framework
supports performing the conceptual interoperability analysis in black-
box integration projects. This focus does not mean that white-box
integration is less important, but with the limited time and resources for
this Ph.D. work, we prioritized black-box integration due to the serious
lack of shared conceptual information and support offered in the
literature.

Who? The proactive preparation component is particularly appropriate
for software companies interested in building software units that are
offered for clients (e.g., web services) or those companies building units
with the intention of extending their capabilities through interoperation
(e.g., initiators of ecosystems). The software engineering roles who are
expected to apply this preparation are software architects and domain
experts. Experience in interoperability and integration is not a
prerequisite, as the framework offers detailed guidance and automation
support. However, a high level of architectural knowledge and expertise
would be the prerequisite if no automated support was used in
analyzing low-level design documents (i.e., UML diagrams). When? As
we mentioned earlier, this preparation is aimed to be proactive, which
means having the COIN Portfolio of an interoperable software unit
ready before it is needed by a client interested in the unit. Hence, this
preparation is a design-time activity (not a runtime activity), which can
be performed progressively throughout the development lifecycle of the
unit or once it is ready at the end of the development. In both ways, the
provider has to maintain this portfolio up to date. Automation status?
This proactive preparation can be semi-automated with our tool support
for COIN extraction from UML diagrams using our predefined templates
and from NL text of API documents using our ML classification model.

Who? The second component of COINA is designed in particular to aid
third-party clients interested in building interoperation between their
own software units and external black-box ones. As in the first
component, the software engineering roles expected to perform the
proposed systematic analysis are software architects or interoperability
analysts. Also, experience in interoperability and integration is not
required due to the detailed guidance offered by the framework. Thus,
other roles such as software developers can perform the systematic
analysis. When? Once an external software unit is considered for
achieving some business requirements through interoperation, it has to
be analyzed regarding conceptual interoperability with the existing
software system. Hence, our systematic analysis takes place at the
design time of integration projects (not at runtime). It is the first activity,
preceding resolution design, integration implementation, and testing.
Automation status? The current version of the systematic analysis
only supports manual application based on detailed guidance and
standard templates to save the results at each step. However, if the

Context of
the
proactive
preparation
component?

Context of
the
systematic
analysis
component?

The Conceptual Interoperability Analysis (COINA) Framework

101

COIN Portfolios for two software units are formalized, then automation
possibilities can be introduced.

In Figure 25, we summarize the COINA Framework components and
the included activities (in the middle), the expected input and output
from two software units intended to interoperate (on the left), and the
engineering context (on the right).

Figure 25 Overview of the COINA Framework

6.3 Proactive, In-House Preparation for Interoperable Software Units

In this section, we will describe in detail what we contribute to better
support providers of interoperable software. In particular, we will explain
our methodical contributions for extracting the conceptual
interoperability constraints from already existing documents of the
software unit. Remember that we have provided an overview of the
method (i.e., input, output, and process) and the context (i.e., who,
when, and how) in Subsections 6.2.1 and 6.2.2, respectively.

Next, in Subsection 6.3.1, we will describe how to extract the COINs
from the internally shared architecture and low-level design documents
using predefined templates. Afterward, in Subsection 6.3.2, we will
describe how to extract the COINs from NL text of externally shared API

The Conceptual Interoperability Analysis (COINA) Framework

102

documents using machine learning. This subsection is based on a
multiple-case study and on experiments that we will present in detail.
Finally, in Subsection 06.3.3, we will present our guidelines for
improving API documentation with regard to its COIN-related content
and presentation based on our observations from the multiple-case
study.

6.3.1 Extracting COINs from UML Diagrams

The foremost goal of this method is to support providers of
interoperable software units in identifying the interoperability-relevant
conceptual constraints of the unit. More specifically, the method helps
to extract the structured conceptual constraints from UML diagrams. As
described earlier in Subsection 3.2.2, extracting this information
manually is a challenging task, as it is an undirected task that requires
experience with software architecture documents and COIN types. It is
also a tedious and time-consuming task that requires sifting through the
UML documentation of the whole software system and then extracting
only the useful pieces of information for the interoperability analysis. By
facilitating the extraction of COINs, we pave the way towards
proactively sharing useful documents with interested third-party clients
in order to detect conceptual mismatches.

The key contribution of our method is an increase in the effectiveness
of conceptual interoperability analysis as a result of making the
conceptual interoperability constraints shared explicitly and
comprehensively. Additionally, we enable the extraction of COINs from
UML diagrams through our contributed “COIN Extraction Templates”.
This template-based extraction is performed by means of extraction
algorithms. We aid this extraction by implementing an add-in for the
Enterprise Architect modeling tool.

Next, we will describe the COIN Extraction Templates for UML
diagrams, which are the basis of our method. Then we will describe the
semi-automatic extraction method in detail. Finally, we will present the
supporting tool along with examples from the Smart Farming scenario.

Note that most of this subsection has been published by the author of
this thesis in [ANR15], [AR16], and [AAR15].

COIN Extraction Templates

Our predefined set of templates covers certain conceptual constraints
of a software unit from its structural and behavioral UML diagrams. We
define these COIN Extraction Templates as:

Method goal

Contribution

What are
the
templates?

The Conceptual Interoperability Analysis (COINA) Framework

103

Definition 9 – COIN Extraction Templates

A set of rules that identifies specific types of conceptual interoperability
constraint from the UML diagrams of interoperable software units.

Our predefined set of templates covers different types of COINs from
different UML diagrams. More specifically, these templates target COINs
from component diagrams, deployment diagrams, class diagrams, use case
diagrams, and sequence diagrams. Remember, we assume that the UML
notations are used correctly as specified by the OMG for Version 2.5. In Table
8, we show the specific COIN types that our templates target from each of the
aforementioned included UML diagrams.

Table 8 Predefined COIN Extraction Templates
Template

ID
COIN source

diagram
COIN

category COIN type

t1 Component Structure Layering
t2 Component Structure Component distribution
t3 Component Structure DB distribution
t4 Deployment Structure Component distribution
t5 Deployment Structure DB distribution
t6 Class Structure Structural multiplicity
t7 Class Structure Inherited constraints
t8 Use case Context Allowed users
t9 Use case Context Usage multiplicity

t10 Use case Structure Inherited constraints
t11 Sequence Dynamic Interaction synchronicity
t12 All NA Natural language constraints

We represent each of our COIN Extraction Templates formally. For
example, the formal representation of template t7 is as follows:

Template (t7): Inherited constraints of class diagrams

t7 Structure COINs Category

element (e) { interoperable elements (E) ∩

class diagram elements (CDE)},

t7 (e) = True ↔ e.Parent ≠ e.Parent.Constraints ≠

These templates can be used in the manual search for COINs in UML
diagrams. However, the formality of the templates makes them a
suitable basis for the desired automatic extraction of COINs for
interoperable software units from their already existing UML diagrams.

How to use
the
templates?

The Conceptual Interoperability Analysis (COINA) Framework

104

This is done by checking the UML diagrams against these predefined
rules using algorithms. Whenever a rule of a certain template is
satisfied, it indicates the existence of a COIN instance. For example,
template t7 can be checked using the following identification algorithm:

Algorithm (t7 identification)

Input: Class diagram (CD), interoperable elements (E)

Process:

1 coinCandidates ←

2 coin ←

3 For each e {CD.elements}

4 If (e E) (e.Parent, e.Parent.getConstraints ≠)

5 For each c in e.Parent.getConstraints

6 coin ← (e, "Structure", "inherited constraint", value(c))

7 coinCandidates ← {coinCandidates coin}

8 End For

9 End If

10 End For

Output: coinCandidates

As described in the algorithm, it takes the class diagram and the list of
defined interoperable elements as input, then returns the COIN
candidates found in this class diagram. The process starts by initializing
the candidate list to null and so for a COIN variable. As mentioned in
line 4 of the algorithm, each element in the class diagram that is an
interoperable element gets checked against the rules of t7. As seen in
lines 6 and 7, if the rules are satisfied, then the COIN variable gets
initialized with concrete values for its attributes (i.e., interoperable
element, COIN category, COIN type, COIN value). This is repeated for
each constraint found in the parent of the interoperable element.

To see the full set of our formal COIN Extraction Templates and their
identification algorithms, please refer to Appendix D. Note that due to
the limited time and resources available for this Ph.D. work, we provide
only an initial basic set of templates, which we do not claim to be
complete. However, this set is a component of our framework that can
be easily extended with further templates. For example, other templates
can be introduced to cover further UML diagrams such as state
machine diagrams, composite structure diagrams, and others. Also, our
templates focus on extracting the COINs from the low-level design,
which can be extended with further templates that target COINs of the

The Conceptual Interoperability Analysis (COINA) Framework

105

high-level architecture (e.g., templates for identifying the architectural
decomposition of a software system and dependencies on the
component level).

Next, we will show how we use our COIN Extraction Templates within
a method to semi-automate the extraction of COINs from UML
diagrams.

Semi-Automatic COIN Extraction Method

The input for our template-based COIN extraction method is a
consistent, complete, and up-to-date UML document about the
interoperable software unit. This UML document includes structural
diagrams (e.g., component diagram, deployment diagram, class
diagram, etc.) and behavioral diagrams (e.g., use case diagram,
sequence diagram, etc.). Note that it is also possible to create such
input through systematic abstraction and analysis of available source
code (reverse engineering), but this is beyond the scope of our work.
Hence, we assume that the input already exists. With regard to the
output, as we mentioned earlier in Subsection 6.2.1, it is the standard
ready-to-share document, called the COIN Portfolio.

As seen in Figure 26, the input goes through the following four activities
in order to result in the desired COIN Portfolio for a software unit:

Figure 26 COINs extraction process from UML diagrams

Identification of interoperable elements. In this activity, the software
architect identifies the UML elements (i.e., components, classes, use
cases, or actors) of the software system that are intended to be involved
in interoperations with other software systems. This identification
happens by assigning an ”Interoperability Type” property for the
element. This property declares whether the element plays a role in
interoperations with other software systems. For example, in the smart

Input &
Output

Process

The Conceptual Interoperability Analysis (COINA) Framework

106

tractor example S1 described in Section 1.2, the ”RemoteSteering” use
case in the use case diagram would have the interoperability property
declared, and, similarly, this would be declared for the ”Direction” data
element in the class diagram. Declaring this element property directs
the subsequent COIN extraction activities.

Automatic template-based extraction of COINs. To enable the
proposed automation in this activity, we create an Interoperability
Knowledge Base (IKB) and charge it with our predefined COIN
Templates. In a software company, the IKB can be maintained and
updated by the software architects and domain experts. Thus, the UML
diagrams are checked against the predefined templates in the IKB. If
the set of rules for a template is met by an interoperable element within
a UML diagram, then a COIN candidate for the element is created and
added to the list of COIN candidates. Note that the extraction activity
starts with checking each UML diagram of the systems to determine
whether it contains any element with the interoperability property
declared. Then, only the interoperable elements are checked against
the predefined COIN templates saved in the IKB. For example, on a
Structure COIN template this is done as follows:

If there is a use case within the use case diagram that is identified
as an interoperable element (e.g., the ”RemoteSteering” use case
within the use case diagram of S1),

and if it is inherited from another use case (e.g., the
”RemoteSteering” use case is one kind of ”Steering” use case),

and if the use case from which it is inherited has a constraint (e.g.,
the ”Steering” use case has a constraint that only one authorized
farmer at a time can enable it),

then Structure COIN will be added to the list of COIN candidates for
the use case element (e.g., the ”RemoteSteeringl” use case has a
constraint that only one authorized farmer at a time can enable it).

Manual completion (filtering and editing) for the COIN candidates.
This activity is performed manually by the system architects who have
the final word to approve or disapprove the automatically extracted
COINs within the final published COIN Portfolio. For example, an
architect can detect a redundancy in COINs extracted from a duplicated
constraint (e.g., the use case diagram determines that
“RemoteSteering” has a 1:1 relation with “Farmer” and the use case
inherited from “Steering” has it also, which leads to a duplicate in the
multiplicity constraints of the “RemoteSteering” use case in the COIN
candidates list). Furthermore, architects can manually add more COINs
to the Portfolio if they consider them important and useful to share with
clients. Further guidance for this manual adding of COINs to the list can
be derived from the COIN Model and its three dimensions (see
Sections 5.2 and 5.30). The specific COIN attributes described in the

The Conceptual Interoperability Analysis (COINA) Framework

107

model directs the architects in checking what could be missing in the
automatically generated portfolio. Furthermore, in Subsection 6.4.1, we
will propose detailed guidelines and a cheat sheet to direct the manual
extraction of COINs from UML diagrams.

Automatic generation of the COIN Portfolio. Finally, the approved
and manually added COINs are bundled together and categorized
according to the elements to which they are related. Then they are
documented in a standard defined form that is ready to be shared with
clients (i.e., a structured COIN Portfolio with a detailed sheet for each
COIN as described in Section 5.4). Thus, clients can use these for their
interoperability analysis task if they are interested in interoperating with
the software system. The COIN Portfolio can always be updated by the
architect as needed. In practice, COIN Portfolios would be shared
online or saved in a Portfolio Repository that the software provider could
maintain and for which it could provide licensed access.

Add-In Tool for Enterprise Architect

This subsection presents a technical contribution (i.e., a software tool
called CoinsExtractor) that we developed in the context of this thesis in
order to facilitate our template-based method for the automatic
extraction of COINs from architecture UML documents (depicted in
Figure 26). It brings our template-based method to life and makes it
applicable in practice. It takes some burden off the architects' shoulders
through its easy-to-use interfaces, which effectively identify and share
the conceptual interoperability constraints of the software systems.

The CoinsExtractor tool is an add-in for the Enterprise Architect
modeling tool and implements our predefined COIN Extraction
Templates. It enables the extraction of relevant COINs about
determined interoperable elements from existing UML diagrams. Also,
it supports architects in efficiently reviewing, updating, approving, or
deleting the extracted COINs. Finally, the tool creates the COIN
Portfolio, which arranges the COINs according to their categories to
allow the conceptual interoperability analysis task. A tool demo is
available at [Abu17].

Tool Features and Example Results

Below we will describe the functional features of our tool and explain
them with example results from the smart tractor example that we have
been using throughout the chapters.

F1: Interoperable element annotation. This feature allows architects
to annotate any UML component, class, use case, or actor with an
"Interoperability Type" property. Once an element gets annotated with
this property, all its instances in all diagrams get it automatically. Figure
27 shows a list of all annotated elements of S1, where there are three

Tool goal

Feature
overview

The Conceptual Interoperability Analysis (COINA) Framework

108

different possible values for the interoperability property: (1)
interoperating, for external software units that interoperate with the
system (e.g., the Remote Driver mobile app S3 that is intended to
interoperate with the smart tractor S1), (2) exported, for elements that
the system provides to interoperating parties (e.g., the RemoteSteering
function provided by S1), or (3) imported, for elements that the system
acquires from interoperating parties (e.g., the GPS tracking service
used by S1). This step requires one-time manual effort to capture the
architects' knowledge about the software system, which will be reused
in all future interoperations.

Figure 27 CoinsExtractor example of a list of interoperable elements

F2: Automatic COIN extraction from UML diagrams. The tool saves
the architects effort by automatically extracting only relevant pieces of
information, the COINs, about the interoperable elements from the
whole UML document. It also preserves consistency in how a COIN is
documented (across diagrams), and what is being extracted for sharing
and how it is documented (across projects). The tool parses the UML
input and checks it against our implemented predefined COIN
Extraction Templates, which we explained earlier in this subsection
(see Table 8). Once a COIN instance is found, the tool adds it to a list
of candidates, each of which is detailed in a COIN sheet. Figure 28
shows a sheet for a context COIN for the AutoSteering function, which
states that this function is allowed for “Actual Driver” only. This COIN
has been extracted from the use case diagram of S1 (see the back side
of Figure 28). The architect can determine the weight of the COIN (e.g.,
high, medium, and low) and can attach other files to it (e.g., a formal
notations file). She can also enrich the COIN sheet by adding
information about the expected consequences of not satisfying the
COIN for interested third-party clients.

The Conceptual Interoperability Analysis (COINA) Framework

109

F3: Automatic categorization for extracted COINs. The tool provides
two views for the extracted COINs. The first is a diagram-based view,
where architects can navigate the COINs based on the diagram which
they have been retrieved. This helps architects trace the source of the
interoperability constraints in their systems (see the pane tree on the
left side of Figure 28). The second view is an element-based view,
where COINs can be navigated according to the interoperable element
to which they are related. This view is also used in the final shared COIN
Portfolio to help third-party clients focus on the COINs of desired
elements only.

Figure 28 CoinsExtractor example of an extracted Context COIN from a use case diagram

F4: Manual COIN Reviewing. The CoinsExtractor tool realizes the
manual completion and filtering of COINs by enabling the architects to
efficiently approve or delete the automatically extracted COINs.
Furthermore, they can review the COIN sheets and edit them as
needed (see the right side of the portfolio finalization screen in Figure
29). In addition, if constraints are missing in the automatically extracted
list, the tool enables architects to manually add more COIN instances
to any of the interoperable elements (see the bottom side of the portfolio
finalization screen in Figure 29).

As can be seen in Figure 29, the COIN Portfolio has two parts: One part
is dedicated to the actual COINs of exported elements that third-party
clients need to pay attention to when aiming to interoperate with the

The Conceptual Interoperability Analysis (COINA) Framework

110

software system. The other part is about expected COINs from
imported elements that architects need to look for when selecting a
software system to interoperate with. The first part is shared with third-
party clients, whereas the second part is kept internal for the software
provider’s own interest and use when extending his system. Both parts
share the same goal of supporting conceptual interoperability analysis
to detect conceptual mismatches early in integration projects.

Figure 29 CoinsExtractor example of a system's COIN Portfolio

F5: Automatic generation for the COIN Portfolio. The CoinsExtractor
relieves architects from having to manually gather and classify all
extracted and manually added COINs. It generates the final, ready-to-
share, web-based COIN Portfolio (see Figure 30), which can be easily
integrated into the API documentation.

Figure 30 CoinsExtractor example of generated COIN Portfolio

The Conceptual Interoperability Analysis (COINA) Framework

111

Tool Implementation

Development technology. We developed the CoinsExtractor using
C#.NET. We implemented it as an add-in for Enterprise Architect (EA)
[Spa], which is one of the most powerful, widely used architecture tools.
EA offers an extension API that we used.

Architectural overview. The CoinsExtractor has a multi-layered
architecture (see Figure 31). The Presentation Layer offers the user
interaction between the tool and architects through windows for
identifying the interoperable elements, filtering the extracted COINs,
and adding additional ones. It also visualizes the results of such actions
in a table of interoperable elements and a table of COINs. The second
layer is the Business Layer, which includes: (1) The Business Logic is
responsible for processing the UML diagrams and for extracting the
COINs from them. It contains the working units of the tool, such as the
COINs Extractor class and the Portfolio Generator class. (2) The
Business Entities are the predefined data structures needed for the
tool's functionalities (e.g., the Node position, which we use to determine
the distribution) and our COIN templates. The Data Access Layer reads
input from the database and writes results to the output file. The tool's
modularity allows developers to extend it with more COIN templates to
cover further constraints. A template can be defined as a rule with
condition(s) to check and values to assign for each COIN aspect.

Figure 31 CoinsExtractor architectural overview

Extraction process. We have implemented the COIN extraction as a
sequential series of algorithms each serving a different scenario. In the
first step, all diagrams are read using SQL Query and saved to an XML
output. Then the interoperable elements' constraints are inspected by
checking the conditions regarding each element's properties, its

The Conceptual Interoperability Analysis (COINA) Framework

112

relations, and its containing diagram. Specifically, each type of
constraint has a special extracting algorithm. Finally, the extracted
COINs get fetched from the XML file to a user-friendly table for
architects to review and edit as needed.

Challenges. Some of the challenges we faced in building an add-in for
EA were: (1) The inability to extend existing windows of EA (e.g., we
could not add the Interoperability Type of the elements in their already
existing properties window, but had to define it as a tagged value). (2)
The EA documentation provides good directions on how to use its APIs,
but it lacks the what (i.e., a conceptual representation of the elements,
their features, and constraints). This required us to reverse engineer
the EA database to find the properties of elements distributed among
tables. (3) EA APIs do not help to determine the distribution feature of
components. Hence, we implemented a method for calculating the
physical position of elements using the coordinate plane, then checking
if it is within the boundaries of multiple nodes. In addition, the quality of
the extracted COINs and the produced portfolio depend on the quality
of the UML input in terms of consistency, completeness, and stability.

Scalability analysis. The complexity of the algorithms we
implemented in CoinsExtractor varies between O(1), O(n), and O(n2).
For example, reading a block of data from the EA Repository has a
complexity of O(1), while pre-processing the UML project has a
complexity of O(n2): one n for iterating models, and the second for
retrieving each model's elements. However, the COIN extraction
algorithms have a complexity of O(n). In an attempt to improve the tool’s
performance, we decided to use completely pure SQL statements to
access the models' elements instead of depending on EA objects (e.g.,
ObjectType, Connector, Diagram, etc.). These EA objects offer indirect
and sequential access to element information. Hence, using SQL
queries retrieves the needed constraints and properties of the elements
directly.

Summary

In this subsection, we described our COIN Extraction Templates from
UML diagrams, then explained the template-based extraction method.
This method is part of the proactive preparation component of our
framework that serves providers of black-box software units. It helps to
identify interoperability-relevant conceptual constraints from in-house
architecture documents and supports sharing them in a standard
document. We support our semi-automatic method with a software tool
that we implemented as an add-in for the Enterprise Architect modeling
tool.

The Conceptual Interoperability Analysis (COINA) Framework

113

6.3.2 Extracting COINs from the Text of API Documents

In the previous subsection, we presented the first COIN extraction
method (for UML diagrams) in our preparation component of the COINA
Framework. In this subsection, we present the second COIN extraction
method (for natural language text in API documents) in this preparation
component.

The goal of this method is to support extraction of unstructured
conceptual constraints from natural language text in API documents of
interoperable software units. This helps the providers of interoperable
software units identify the interoperability-relevant conceptual
constraints of their units to merge them in the COIN Portfolio. However,
it can also be used by third-party clients to identify the conceptual
constraints of software units from their API documents if the providers
do not offer the portfolio. In either way, by facilitating the extraction of
COINs from the text of API documents, we pave the way towards
effective detection of conceptual mismatches. As we previously
described in Section 1.2, extracting such conceptual information
manually from the verbose text is a challenging task. It requires
knowledge and experience about the COIN types and linguistic skills to
sift the text and document the information about the extracted
constraints. Accordingly, analyzing the text of API documents manually
is a tedious and time-consuming task that critically depends on the
experience of the person performing it.

The key contribution of our method is support for effectively and
efficiently identifying conceptual interoperability constraints from natural
language sentences using machine learning techniques. This
contribution includes building a “COIN Corpus” (i.e., a repository of
manually labeled sentences that is used for training the machine
learning algorithms) and a “Machine Learning COIN Classification
Model” (i.e., a model that can automatically predict the existence of a
COIN type in a natural language sentence of an API document). We aid
this extraction by implementing an add-in for the Chrome web browser.

In the next part, we will start with the research methodology we followed
in developing our method, and then we will describe the resulting COIN
Corpus, the COIN Classification Model, and the results of the fully
automated extraction. Finally, we will present the supporting tool along
with examples.

Note that the author of this Ph.D. thesis has contributed the whole
design of the multiple-case study and the related experiments, the
execution of each case, the analysis of the experimentation results, the
design of the add-in tool’s goal, functionalities, architecture,
technologies used, and its evaluation study. However, the author also
supervised two master theses: The first thesis work [Abu16a] repeated
the execution of the studies, implemented experiments using the

Method goal

Contribution

The Conceptual Interoperability Analysis (COINA) Framework

114

different ML algorithms, and provided a descriptive analysis of the
results. The second thesis work [Nai17] implemented the designed ML-
based tool and executed the designed evaluation study for its
acceptance. Also, note that the author of this Ph.D. thesis has published
most of this subsection in [AAHR16], [AAR16], and [AANR17].

Research Methodology

In this study, we wanted to systematically reveal the potential of
automating the extraction of COINs from natural language text in API
documents using ML techniques. Therefore, we performed a multiple-
case study and followed it up with experiments to investigate the
potential of ML techniques. The websites of the original API
documentations of the selected cases in this multiple-case study are
available on the web page of this study [Abu14b].

Goal and Research Questions

Our research goal formulated in terms of the GQM goal template
[VSBCR02] was: to support the conceptual interoperability analysis
task for the purpose of improvement with respect to effectiveness and
efficiency in identifying the COINs from the viewpoint of software
architects and analysts in the context of analyzing the text of API
documentations within software integration projects. We translated this
goal into the following research questions:

RQ1: What are the existing conceptual interoperability constraints
(COINs) in the text of API documentation?

This question explores the current state of COINs in real API
documents. It also aims at building the ground truth dataset (i.e., the
COIN Corpus representing a repository of sentences labeled with their
COIN class). This forms a main building block towards the envisioned
automatic extraction idea.

RQ2: How effective and efficient would it be to use ML techniques in
automating the extraction of COINs from the text in API
documentations?

This question explores the actual benefits of utilizing ML in supporting
software architects and analysts in analyzing the text. It aims at building
a classification model that will be evaluated through well-known ML
classification algorithms.

This question explores the actual benefits of utilizing ML in supporting
software architects and analysts in analyzing the text. It aims at building
a classification model that will be evaluated with the help of well-known
ML classification algorithms.

The Conceptual Interoperability Analysis (COINA) Framework

115

In order to achieve the stated goal and answer the aforementioned
questions, we performed our research in two main parts as follows:

Research Part 1 (Multiple-case study). In this part, we systematically
explored the state of COINs in six cases of API documentations. The
result of this part is a ground truth dataset (i.e., the COIN Corpus).

Research Part 2 (Experiments). In this part, we started by using the
ground truth dataset, which resulted from the previous part, in building
the ML COIN Classification Model. Afterwards, we investigated the
accuracy of different ML classification algorithms in identifying the
COINs in the text using our model.

Next, we will detail the design and execution process for both research
parts. Afterwards, we will present their results.

Multiple-case study: COIN Corpus (Ground Truth Dataset)

Study Design

Study goal. We intend to answer the first research question RQ1 stated
in Subsection 06.3.2. In order to do so, we needed to examine real-
world API documentations to discover the state of conceptual
interoperability constraints in them.

Research method. We decided to perform a multiple-case study with
literal replication of cases from different domains. Such a method helps
to collect significant evidence and draw generalizable results. We
followed the process proposed by Runeson et al. [RH09]. Our case
study is also considered action research as we, the researchers,
participated in it.

Case selection. To ensure systematic selection of cases of API
documentations, we considered the following selection criteria:

SC1: Mashup Score. This is a published statistical value1 for the
popularity of a web service API in terms of its integration frequency into
new bigger APIs.

SC2: API Type. This can be either a web service API or a platform API.

SC3: API Domain. This is the application domain for the considered API
document (e.g., social blogging, audio, software development, etc.).

Analysis unit. Our case study has a holistic design, which means that
we have a single unit of analysis. This unit is “the sentences in API
documents that include COIN instances”. To document and maintain
the analyzed sentences, we designed a data extraction sheet, which
we implemented as an MS Excel sheet. This sheet consists of
demographic fields (i.e., API name, date of retrieval, mashup score, API

The Conceptual Interoperability Analysis (COINA) Framework

116

type, API domain, and number of sentences) and analysis fields (i.e.,
case id, sentence id, sentence textual value, and the COIN class).

Study protocol. Our multiple-case study protocol includes three main
activities that are adapted from the process proposed by Runeson. The
study activities are case selection, case execution, and cross-case
analysis, as summarized in Figure 32 and described in detail below.

Figure 32 Multiple-case study process

Execution and Results

Based on our predefined case selection criteria, we chose six API
documents in August 2015; four documents of the web services type
(i.e., SoundCloud, GoogleMaps, Skype, and Instagram) and two of the
platform type (i.e., AppleWatch and Eclipse-Plugin Developer Guide).
These cases cover different application domains (i.e., social micro-
blogging, geographical location, telecommunication, social audio, and
software development environment). Regarding the mashup criteria,
our four cases of web service APIs were chosen to cover a wide range
of scores starting from 30 for Skype and ending with 2582 for
GoogleMaps. After selecting the cases, we executed each case as
follows:

Data Preparation. We started this step by fetching the API
documentation for the selected case from its online website. Then we
read the documents and determined the web pages that had textual
content offering conceptual software description and constraints (e.g.,
Overview, Introduction, Developer Guide, API Reference, Summary,
etc.). Subsequently, we started processing the text on the selected web
pages by performing manual and automatic filtering. For more details,
please refer to our published paper [AAR16].

Data Collection. In this step, we cut the content of the text file resulting
from the previous step into single sentences within our designed data
extraction sheet (.xsl file). We completed all the fields of the data sheet
for each sentence except for the “COIN class” field, which we did in the
next step. Note that we maintained data storage, where we stored the
original HTML web pages of the selected API documentations, their text
file, and their Excel sheet. This enables later replication of our work as
documentations get changed frequently.

The Conceptual Interoperability Analysis (COINA) Framework

117

Data analysis. We manually analyzed each sentence in the extraction
sheet and carefully assigned it a COIN class. This classification was
based on interpretation criteria consisting of the COIN Model with its six
classes (i.e., Syntax, Semantic, Structure, Dynamic, Context, and
Quality). We added a seventh class for sentences with no COIN
instance (i.e., Not-COIN class). For example, a sentence like “A user is
encapsulated by a read-only Person object.” was classified as
“Structure”. On the other hand, “You can also use our Sharing Kits for
Windows, OS X, Android or iOS applications” was classified as “Not-
COIN” as it does not express a conceptual constraint, but rather a piece
of technical information.

The result of this step was a very critical point towards our envisioned
automatic COIN extraction idea. Hence, the data analysis was
performed by two researchers. It was first performed by the author of
this Ph.D. thesis and then repeated by the master student she
supervised. They independently classified all sentences for each case,
then compared their classification decisions in multiple discussion
sessions and resolved conflicts based on consensus. Obviously, the
case execution process consumed time and mental effort, especially in
the data analysis step.

Table 9 summarizes the distribution of the collected sentences among
the cases along with the effort we spent executing them (in hours).

Table 9 Case share of sentences and execution time
API Document Total number of sentences Total execution efforts (Hours)
Sound Cloud 219 7.7
GoogleMaps 473 6.5
AppleWatch 360 8.0

Eclipse Plugin 651 12.0
Skype 325 4.5

Instagram 255 4.8
Total 2283 43.5

Cross-Case Analysis (Answering RQ1: What are the types of existing
COINs in the text of current API documentations?). After executing all
cases, we arranged the incrementally classified sets of sentences from
all cases (i.e., 2283 sentences) into one repository, which we call the
ground truth dataset or the COIN Corpus, in ML terminology. We
developed two versions of this dataset as follows:

- Seven-COIN Corpus, where each sentence belongs to one of the
seven classes (i.e., Not-COIN, Dynamic, Semantic, Syntax,
Structure, Context, or Quality).

- Two-COIN Corpus, where each sentence belongs to one of two
classes rather than seven (i.e., COIN or Not-COIN). In fact, the

The Conceptual Interoperability Analysis (COINA) Framework

118

Two-COIN Corpus is derived from the Seven-COIN Corpus by
abstracting the six COIN classes into one class.

In Table 10, we present the differences between the two corpora with
example sentences.

Table 10 Example of content in the Seven-COIN and Two-COIN Corpus

The aim of building these two versions of the corpus was to better
investigate the ML performance results when using the different
versions of the ground truth dataset later in our research. We will
explain this in more detail in the experiments subsection.

Figure 33 COIN share in the Ground Truth Dataset

COIN-share in the contributed ground truth dataset. In Figure 33, we
illustrate the distribution of sentences among the COIN classes within
the Seven-COIN Corpus (on the left). It can be observed that the Not-
COIN class, which expresses technical constraints rather than
conceptual ones, is dominant among the other six COIN classes (i.e.,

Sentence
ID Sentence Seven-

COIN Class
Two-COIN

Class

s1 You can also use our Sharing Kits for Windows, OS
X, Android or iOS applications. Not-COIN Not-COIN

s2 When it is finished manipulating the object, it
releases the lock. Dynamic COIN

s3 A user is encapsulated by a read-only Person object. Structure COIN

s4
A user’s presence is a collection of information about
the users’ availability, their current activity, and their
personal note.

Syntax COIN

s5 A dynamic notification interface lets you provide a
more enriched notification experience for the user Semantic COIN

s6 This service is not designed to respond in real time
to user input Context COIN

s7 Your interfaces need to display information quickly
and facilitate fast navigation and interactions. Quality COIN

The Conceptual Interoperability Analysis (COINA) Framework

119

42%). The Dynamic and Semantic classes have the second and third
biggest shares, respectively. Remarkably, the Structure, Syntax,
Quality, and Context shares are very low, with convergent shares
ranging between 1% and 5%. An aggregated share for all COIN classes
is shown in the Two-COIN Corpus (on the right of Figure 33).

COIN share in the cases. On a finer level, we investigated the state of
the COINs in each case rather than in the whole ground truth dataset.
We found that the content of each API document was focused on the
Not-COIN, Dynamic and Semantic classes, similarly as in the
aggregated findings on the complete dataset seen in Figure 33. For ex-
ample, in the case of the AppleWatch documentation, 40.8% of the
content is for Not-COIN, 26.1% for Dynamic, and 25% for Semantic.
Add to this that all cases had less than 10% of their content in the
Structure, Syntax, Quality, and Context classes (e.g., Eclipse-Plugin
gave them 8.5%).

Observed patterns. For the dominant classes in the ground truth
dataset, we observed in a considerable number of sentences for the
Not-COIN, Semantic, and Dynamic classes a number of patterns in
terms of frequently occurring terms and sentences. We envision that
using the patterns in combination with the Bag-of-Words (BOWs)
technique in future experiments would enhance the results of automatic
COIN identification. For more details about these patterns, please refer
to [AAR16] and [Abu16a].

Threats to Validity

Case bias. To obtain significant results and draw generalizable
conclusions, we included multiple cases for building the ground truth,
which plays a prominent role in our research. We literally replicated six
API documents (i.e., SoundCloud, GoogleMaps, Skype, Instagram,
AppleWatch, and Eclipse-Plugin Developer Guide) from two different
types (web service APIs and platform APIs). Thus, the results are very
likely to be representative of current API documentations. However,
further cases with larger number of sentences and constraints are
required to generalize the results and observe the changes over time.

Case size bias. Due to resource limitations (i.e., time and manpower),
we were unable to analyze the large API documents completely.
However, we were careful with respect to selecting inclusive parts of
these large documents. For example, out of the huge document of
Eclipse APIs, we covered the Plugin part.

Researcher bias. To build our ground truth dataset in a way that
guarantees accuracy and impartiality of the results, we had two
researchers separately replicate the manual classification of the cases’
sentences based on the COIN Model as interpretation criteria. In

The Conceptual Interoperability Analysis (COINA) Framework

120

multiple discussion sessions, the researchers compared their
classification decisions and resolved conflicts based on consensus.

Experiments: Machine Learning COIN Classification Model

Experiments’ Design

Goal of the experiments. This part of our research aims at answering
the second research question RQ2, which we stated earlier in
Subsection 06.3.2. In order to do so, we needed to examine ML
techniques to discover their potentials in supporting architects and
analysts in automatically identifying the COINs in the text of API
documents.

Research method. We built a classification model and ran multiple
experiments employing different ML text classification algorithms. This
method enables comparing the results of the algorithms and drawing
solid conclusions about the ML advantages in addressing the
challenges of manual interoperability analysis.

Evaluation method and metrics. We used k-fold cross-validation,
which we explained in the background (Section 2.4), with k = 10.
Regarding the evaluation metrics used for classification accuracy, we
used the following commonly used measures [Pow11]:

- Precision: the ratio of sentences classified correctly by the
classification algorithm to the total number of sentences it classified
either correctly or incorrectly.

- Recall: the ratio of sentences classified correctly by the
classification algorithm to the total number of sentences in the
corpus.

- F-measure: the harmonic mean of precision and recall, which is
calculated as: (2 * Precision * Recall) / (Precision + Recall).

Experiments’ protocol. Our experiments protocol included three main
activities: feature selection, feature modeling, and evaluation of the ML
algorithms. We illustrate this protocol in Figure 34, and describe it in
detail below. We ran this protocol twice, once for the Seven-COIN
Corpus and once for the Two-COIN Corpus. Also, we performed follow-up
experiments, in which we ran the same protocol with automatic tuning for the
parameters of the evaluated algorithms to see if we would get better results.

The Conceptual Interoperability Analysis (COINA) Framework

121

Figure 34 Process of the ML experiments

Execution and Results

The experiments were executed under the supervision of this Ph.D.
author by the master student [Abu16a]. In a nutshell, the experiment
configuration and runs were executed on Weka v3.7.112, which is a
suite of ML algorithms written in Java with result visualization
capabilities. The execution started with the processing of the textual
sentences in our contributed dataset (i.e., the COIN Corpus) using
natural language processing (NLP) techniques. The processing
included tokenizing sentences into words, lowering cases, eliminating
noise words (e.g., is, are, in, of, this, etc.), and stemming words into
their root format (e.g., encapsulating and encapsulated are returned as
encapsulate).

Feature selection. After processing the text, we identified the most
representative features or keywords for the COIN classes within the
COIN Corpus using the BOW and N-Gram approaches, which we
explained in the background section. That is, each sentence was
represented as a collection of words. Then each single word and each
n-combination of words in the sentence were considered as features,
where N was between 1 and 3. For example, in a sentence like “A user
is encapsulated by a read-only Person object”, the word “encapsulate”
and the combination “read-only” were considered as two of its features.
The output of this step was a set of features for the COIN Corpus.

Feature modeling (Building the ML COIN Classification Model). In
this stage, the whole COIN Corpus was transformed into a
mathematical model. That is, it was represented as a matrix where the
headers contained all features extracted from the previous phase, while
each row represented a sentence of the corpus. Then we weighted the
matrix, with each cell [row, column] holding the weight of a feature in a
specific sentence. For weighting, we used the Term Frequency-Inverse
Document Frequency (TF-IDF), which is often used for text retrieval.
The result of this was the COIN Feature Model (or the COIN

2 Weka: http://www.cs.waikato.ac.nz/ml/weka

The Conceptual Interoperability Analysis (COINA) Framework

122

Classification Model), which is a reusable asset preserving knowledge
about conceptual interoperability constraints in API documents.

Evaluating the COIN Classification Model (K-fold cross-
validation). We selected a number of well-known ML text classification
algorithms (e.g., Naïve Bayes versions, Support Vector Machine,
Random Forest Tree, K-Nearest Neighbor KNN, and others). Then, we
put each algorithm through the cross-validation, which included two
steps. The first step was supervised training, where the ML algorithm
got to learn k-1 folds of our COIN Classification Model with their COIN
classes for k rounds. The result of this training was a classifier model.
The second was is testing, where the resulting classifier got tested for
predicting the COIN class for 1 fold for k rounds.

Evaluation results (Answering RQ2: How effective and efficient would
it be to use ML techniques for automating the extraction of COINs from
the text in API documentations?). The results are as follows:

Effectiveness of identifying COINs using ML algorithms. We report the
effectiveness results in terms of accuracy metrics for two cases:

- Seven-COIN Corpus Case. The evaluation results showed that the
best accuracy in automatically identifying seven classes of
interoperability constraints in the text was achieved by the
ComplementNaïveBayes algorithm (see Table 11). It achieved
70.4% precision, 70.2% recall, and 70% F-measure. Second place
went to the NaïveBayesMutinomialupdatable algorithm with about
5% less accuracy than the former algorithm. For the other
algorithms, the values for accuracy and F-measure were between
62.8% and 59.0%. The worst results were obtained with the KNN
algorithm.

- Two-COIN Corpus Case. When applying the same algorithms on
the Two-COIN Corpus, we obtained better results. In particular,
accuracy increased by almost 11% compared to the results in the
Seven-COIN case with the ComplementNaïveBayes algorithm.
That is, precision increased to 81.9%, recall to 82%, and F-measure
to 81.9%. Similar to the previous case,
NaïveBayesMutinomialupdatable came in second and the 2-
Nearest Neighbor algorithm had the worst results (see Table 11).

Efficiency of identifying COINs using ML algorithms. Obviously, the
machine beats human performance in terms of the time spent for
analyzing the text. As we mentioned earlier, analyzing the documents
cost us about 44 working hours, while it took the machine much less
time. (For example, training and testing the
NaïveBayesMultinominalupdate algorithm took about 5 seconds on our
complete corpus with 2283 sentences). This efficiency would improve
even more when using a faster and more powerful CPU (we ran the

The Conceptual Interoperability Analysis (COINA) Framework

123

experiments on a machine with an Intel core i5 460 M CPU with 2.5
GHZ speed).

Table 11 COINs identification results using different ML algorithms

ML Algorithm Seven-COIN Corpus Two-COIN Corpus
Precision Recall Precision Recall

Complement NaïveBayes 70.4% 70.2% 81.9% 82.0%
NaïveBayes

Mutinomialupdatable 66.0% 65.1% 81.9% 82.0%

Support Vector Machine 59.3% 60.0% 75.7% 75.7%

Random Forest Tree 60.4% 56.3% 73.7% 73.9%

Simple Logistic 52.5% 54.4% 68.2% 68.4%

KNN K=1 54.8% 45.5% 64.2% 52.3%

KNN K=2 49.8% 36.1% 64.4% 48.7%

Follow-up Experiments with Parameter Tuning for ML Algorithms

We further investigated the effectiveness of our COIN Classification
Model through our follow-up experiments. In these experiments, we
performed an optimization by tuning the parameters of the ML
algorithms. In particular, we applied the Grid Search method because
our dataset is relatively small. An example of the parameters that can
be tuned is the degree d of the polynomial kernel of SVM algorithm
[TK01]. With regards to the implementation, we used the scikit-learn
python library [PVG+11].

Table 12 The results of classification after parameter tuning

ML Classification Algorithm
Two-COIN Corpus

Precision Recall

SVM (Polynomial, d = 3) 87.0% 87.0%

SVM (Linear) 81.0% 81.0%

LogisticRegression (L2) 81.7% 82.%

LogisticRegression (SGD) 80.0% 79.0%

The results of the follow-up experiments showed no improvement for
the classification effectiveness (i.e., accuracy) in the case of the Seven-
COIN Corpus. However, we got noticeably higher effectiveness in the
case of the Two-COIN Corpus compared to the results reported in the
previous section. Table 12 shows the best performing algorithms with
their accuracy improvements achieved by performing the parameter
tuning. As seen, the highest accuracy result (i.e., F-measure = 87%)
was obtained from the Polynomial SVM algorithm [TK01] with kernel
degree = 3. This result is 5% higher than the best result achieved
without parameter tuning. The other best performing tuned algorithms
had achieved almost the same accuracy as the best achieved without

The Conceptual Interoperability Analysis (COINA) Framework

124

parameter tuning. That is, the Linear SVM [TK01], Logistic Regression
with L2 regularization level [Ng04], and Logistic Regression with
Stochastic Gradient Descent (SGD) [Zha04] achieved F-measure of
81%, 81.8%, and 79.5% respectively.

While recall, precision, and F-measure inform us about the
classification accuracy of the algorithms using our model, these
measures do not take into account the true negatives [DG06]. Hence,
we further investigated the False Positive Rate - True Positive Rate
(FPR-TPR) curves for the different binary ML classification algorithms
that we tuned their parameters (see Figure 35). The curve of each
algorithm is a plot of the trade-off between the algorithm ability to
correctly detect the COINs (i.e., TPR or recall) and the number of
incorrect alarms for COINs (i.e., FPR). Thus, the area under curve
(AUC) [HM82], which has a value range from 0 to 1, measures how
each algorithm is effective in segregating the two classes (i.e., COIN
and Not-COIN). Therefore, the larger the AUC (or the closer the curve
to the upper left corner), the higher the algorithm's probability in
correctly classifying the sentences. Note that, the dashed diagonal line
in the figure represents the curve for a random classification algorithm
that has AUC of 0.5. It is commonly used as a baseline to see if the
other algorithms are useful. That is, an algorithm with AUC larger than
0.5 is considered as nonrandom binary classification algorithm. Hence,
the depicted algorithms in the figure show good classification
effectiveness when compared to the random algorithm, which supports
the validity of our COIN Classification Model and the robustness of our
automation idea.

Figure 35 The area under FPR-TPR curve for classification algorithms after parameter tuning

The Conceptual Interoperability Analysis (COINA) Framework

125

Automatic COIN Extraction Method

The effectiveness achieved by ML COIN Classification Model in
automatically identifying the seven COIN classes from NL text of API
documents (e.g., 81.9% F-measure) is promising. It shows the potential
of utilizing our model to support architects in their interoperability
analysis tasks. We consider this accuracy high, as we compared the
algorithms’ results with our complete sentence-by-sentence manual
analysis for the API documents, which we performed for the sake of
building a robust corpus. However, in practice, sentences are not
examined in such a heavyweight way, especially when projects are
limited in terms of available time and manpower. Hence, our model and
its provided results are a step towards achieving a good level of
automation intelligence for classic software engineering practices that
are both error-prone and resource-consuming.

The current version of our classification model cannot be used to
identify COINs from any API document. This is due to the fact that our
corpus is relatively small (i.e., ~3k sentences) and is built from six cases
only (which have specific characteristics with regard to company size,
mother language of the document writer, role of the document writer,
maturity of the APIs, etc.). Hence, it will not be appropriate to generalize
the features of the sentences in our small corpus to all existing
sentences of all API documents. Thus, the main effort that we need to
focus on in the future is to enlarge the corpus (e.g., hundreds of
thousands sentences) covering a wider range of API documents with
different variations of the characteristics and to update the classification
model with further features based on the new sentences. Accordingly,
our proposed method and its supporting tool are currently reliable in the
context of our six cases and similar cases.

The input to our ML-based COIN extraction method are API documents
of good quality (e.g., up-to-date, meaningful, correct, etc.). These API
documents include NL text that expresses conceptual interoperability
constraints. With regard to the output, it is a list of all existing COINs in
the API document along with their exact category. Such an output can
be merged by providers of interoperable units in the COIN Portfolio they
offer to third-party clients. Or the method and its output can be used
directly by clients analyzing the API documents.

Figure 36 COIN extraction process from an NL sentence of an API document

Potential

Current
context

Input &
Output

The Conceptual Interoperability Analysis (COINA) Framework

126

As seen in Figure 36, each NL sentence in the input API document goes
through the following three activities in order to identify its COIN class:

Text pre-processing. The same NLP techniques that we used during
the development of the COIN Corpus are automatically applied to each
NL sentence in the API document. In particular, the processing
tokenizes the sentence into words, lowers cases, eliminates noise
words, and stems words into their root format.

Feature selection. The processed sentence has its most
representative features identified automatically using the BOW and N-
Gram approaches. Thus, the sentence features are a collection of
combinations of 1 to N of its words.

Predict COIN class. The features of the sentence get checked by the
best performing classifier model. According to the results seen in Table
11, this classifier is the ComplementNaïveBayes algorithm after being
trained on our ML COIN Classification Model (i.e., the COIN feature
model). Then the output of this activity is the COIN class of the input
sentence, which can be one of our predefined seven classes (i.e., Not-
COIN, Syntax, Semantics, Structure, Dynamic, Context, or Quality).

Add-In Tool for the Chrome Web Browser

This subsection presents the second technical contribution (i.e., a
software tool called COINer), which we developed in the context of this
thesis in order to facilitate our ML-based method for the automatic
extraction of COINs from NL text in API documents (depicted in Figure
36). It brings our ML-based method to life and makes it applicable in
practice. It alleviates some of the challenges that architects and
interoperability analysts face during the conceptual analysis of API
documents. This is facilitated through its easy-to-use interfaces that
automatically identify the conceptual interoperability constraints in the
verbose text. Thus, the tool helps analysts understand the impact of the
identified constraints based on their class. Hence, the tool has the
potential to improve the effectiveness of the interoperability analysis,
especially for inexperienced analysts.

The COINer tool is an add-in for the Chrome web browser and embeds
our contributed ML COIN Classification Model within the best-
performing classifier model. The tool locates the COIN instances within
the text of its API document web page and offers their class within
seconds. It also generates a separate report with all sentences that
have COINs. In addition, it allows architects to edit the automatically
determined COIN class for a sentence and send the feedback to the
tool provider. A tool demo is available at [AN17].

Process

Tool goal

Feature
overview

The Conceptual Interoperability Analysis (COINA) Framework

127

Tool Features and Example Results

Below we will describe the functional features of our tool and explain
them with example results from the SoundCloud API document case,
which we included in the multiple-case study described earlier in this
subsection.

F1: Highlighting COINs within the text of the API document web
page. This feature takes natural language sentences from the API
documents as input and highlights the sentences that have COINs. By
hovering over the highlighted sentence, the user can see the COIN
category (e.g., semantic, structure, etc.). The tool allows architects to
select via computer mouse either all text in the web page of an API
document or some text (i.e., a sentence or more). It also allows the user
to determine which COIN types should be highlighted (i.e., all COIN
categories or only some of them). Figure 37 shows the options for the
highlighting functionality. Note, each sent sentence from the client side
get processed by the server side using our implemented NLP
techniques (e.g., tokenizing and stemming) before it is investigated by
the classification model that responds with the COIN type.

Figure 37 The selection options of the COINer tool for the COIN highlighting feature

Figure 38 shows an example of a Dynamic COIN highlighted within the
API document. Note that the highlight color differs for the different COIN
categories (for a better look see the tool demo [AN17]).

The Conceptual Interoperability Analysis (COINA) Framework

128

Figure 38 A COINer tool example for an automatically highlighted Dynamic COIN

F2: Generating a separate COIN report. This feature takes natural
language sentences from the API documents as input and generates a
separate report including the found COINs and their categories. As in
F1, the tool allows architects to select generating the report either for
the whole text or for some of it. It also allows determining which COIN
types are to be displayed in the report. The report can be saved as an
electronic file and can be printed, too. Figure 39 shows an example of
a generated COIN report for Structure COINs in the SoundCloud
document. Note, this report paths the way towards identifying the
conceptual mismatches between the API and the software system that
would interoperate with it.

Figure 39 A COINer tool example for a COIN report generated for Structure COINs

The Conceptual Interoperability Analysis (COINA) Framework

129

F3: Editing the COIN class for sentences and sending feedback.
As the highest achieved accuracy for our classifier was 81.9%, we give
the users the possibility to update the COIN class for a sentence (using
a drop-down list for the seven classes) for their own local report copy.
The tool also offers the user the option to share his opinion with the tool
providers through the “submit” button. If this button is pressed, the new
update is saved in a special table for our later use in maintaining the
tool’s performance and updating the COIN Corpus and the classification
model. In addition, the users are given the option to edit their report
copy by removing a COIN instance from the report based on their needs
or opinions. The editing “update” and “remove” buttons are shown on
the right side of Figure 39 too. Also, the tool allows the user to reset the
generated report to its original state through the “reset” button. The
“submit” and “reset” buttons are shown at the bottom of Figure 39.

Tool Implementation

As mentioned earlier, the tool and its evaluation study were completely
designed by the author of this Ph.D. thesis and its implementation was
performed under her supervision by a master student. Below, we offer
a brief overview of the implementation, but for a closer look at the
details, challenges, and empirical evaluation study of the tool, please
refer to this master thesis [Nai17].

Development technology. The COINer tool was developed mainly
using the Python and Java programming languages. It is implemented
as an add-in for the Chrome web browser. The tool encapsulates our
contributed COIN Classification Model and mirrors its efficiency and
accuracy described earlier in this subsection.

Architectural overview. The COINer tool has a client-server
architecture, in which the server side has the greater workload of the
tool. That is, the server takes care of processing and classifying the text
sent from the client, while the client side takes care of sending the user
requests to the server and representing the received output.

Extraction process. The client sends the text to be classified to the
server, which starts pre-processing it using the NLP techniques. Then
the server sends sentence by sentence to the classifier model, which
was built using Java. The classifier responds with the COIN class for
each sentence. The server aggregates the sentences with their classes
and sends them back to the client, who represents them to the user.

Summary

In this subsection, we described our multiple-case study and the
experiments we used to investigate the potential of using ML
techniques for automatically extracting COINs from NL text of API
documents. Based on the promising results, we proposed our ML-

The Conceptual Interoperability Analysis (COINA) Framework

130

based COIN extraction method, which is the second part of the
proactive preparation component of our framework. This method can
serve either the providers or the clients of black-box software units, as
it helps to locate the conceptual constraints in the overwhelming
amount of text. We support our automatic method with a software tool
that we implemented as an add-in for the Chrome web browser.

6.3.3 Guidelines for Improving API Documentations

In the previous subsection, we presented the second extraction method
(for natural language text in API documents) in our preparation
component of the COINA Framework. In this subsection, we will present
our guidelines for improving API documentation with respect to its value
for conceptual interoperability analysis.

We propose the guidelines based on our observations and the user
experience we got from our multiple-case study, where we analyzed six
API documents in detail (see Subsection 06.3.2). That is, our
observations on the six cases indicated that improvements are needed
for two aspects of the API documents, namely presentation and
content. In Chapter 7, we will present evaluation studies for our
guidelines (i.e., a survey with practitioners and an initial controlled
experiment).

A widely adopted strategy for interoperability analysis performed by
software clients is to read externally shared Application Programming
Interface (API) documentation for the software system of interest in
order to find its constraints [RB10]. Hence, we propose guidelines that
aim at increasing the usability and usefulness of the API documentation
from the point of view of the architects or analysts who are responsible
for performing the conceptual interoperability analysis. Providers of API
documents can benefit from these guidelines to increase the value and
competitiveness of their interoperable systems.

Next, we will describe our observations on the current API documents
and then present our guidelines for improvement.

Observations from the Six Cases of API Documentation

Technical-oriented API documentations. The Not-COIN class
accounted for 42% of the total sentences in the investigated parts of the
API documents that were supposed to be conceptual (i.e., overview and
introduction sections). A noteworthy example is the GoogleMaps case,
which took it to an extreme level of focus on the technical information
(i.e., 63% of its content was in the Not-COIN class, 11.2% in the
Dynamic class, 13.1% in the Semantic class, and the rest was shared
by the other classes). Accordingly, it is important to raise a flag about
the lack of sufficient information about the conceptual aspects of

Development
strategy of
the
guidelines

The Conceptual Interoperability Analysis (COINA) Framework

131

interoperable software units or APIs (e.g., usage context, terminology
definitions, quality attributes, etc.). This obviously has a direct influence
on the effectiveness of architects and analysts regarding activities
related to conceptual interoperability analysis.

Blended presence of Dynamic and Semantic constraints. Our study
findings reveal that the Dynamic and Semantic COIN classes have
considerable shares in the current API documents (i.e., 25% and 24%
of the dataset, respectively). This reflects a favorable awareness of the
importance of proper and explicit documenting of the API semantics
(e.g., data meaning, service goal, conceptual input and output, etc.) and
dynamics (e.g., interaction protocol, flow of data, pre- and post-
conditions, etc.). Nevertheless, based on the tedious work we went
through to perform our manual analysis for the six cases, we believe
that it would be of great help for architects and analysts to have clear
borders between these two classes of constraints within the verbose
text. For example, it would be easier to skim the text if the API goal were
separated from its interaction protocol rather than blending it into long
paragraphs. This would offer architects and analysts a better
experience and would consequently enhance their analysis results.

COIN deficiency in platform and web service API documents. Our
findings from the six investigated cases revealed a convention on
assigning insignificant shares for the Structure, Syntax, Quality, and
Context COIN classes. Interestingly, the cases varied with regard to
what they chose to slightly cover out of these four classes. On the one
hand, the cases of the web service APIs were the main contributors to
the Context, Quality, and Syntax classes in the ground truth dataset.
That is, the documents from GoogleMaps, SoundCloud, Skype, and
Instagram provided 82.5% of the Syntax COINs, 70.4% of the Quality
COINs, and 92% of the Context COINs. Such a contribution cannot be
related to the nature of web service APIs, as platform APIs also need
to share these COINs explicitly. For example, it is critical for a
FarmerWatch application to know the response time offered by the
Notification service of AppleWatch APIs.

On the other hand, the platform API documents accounted for 56.1% of
the Structure COINs in the ground truth dataset, while the web service
API documents accounted for 43.9%. Note that this is not related to the
larger number of sentences that these two documents contributed to
the dataset, but is rather due to the internal case share of Structure
COINs. On average, the platform API documents allocated about 6% of
their content to structural constraints, while the web service API
documents allocated about 3.6% to these constraints.

Content Guidelines for Improving the API Documentation

This set of guidelines aims at improving the information provided about
the conceptual interoperability constraints of the interoperable software

The Conceptual Interoperability Analysis (COINA) Framework

132

unit. This, in turn, will help the users of the documents perform
comprehensive and effective conceptual interoperability analysis. Our
content guidelines are as follows:

CG1: Provide a view for the high-level architecture of the
software unit. The goal of this guideline is to provide an
overview of the entire system and its components. This can be
implemented by offering an architecture diagram depicting the
structures, layers, distribution, encapsulation, etc.

CG2: Provide a conceptual view for complex input and
output. The goal of this guideline is to make it easier to
understand the structure of complex data exchanged between
software units. It is very important for the reader to know such
information without forcing him to start reading technical code
examples and information about data formats. This can be
implemented via basic data model diagrams (e.g., an ER
diagram showing entities and relations).

CG3: Provide a conceptual view of data flow and control
flow. The goal of this guideline is to make it easy for the
document reader to recognize the dynamic behavior of the
interoperable software unit. That is, the data and control flow
should be abstracted into conceptual information before
overwhelming the reader with code examples and error codes.
This can be implemented by offering a simple sequence
diagram or flowcharts.

CG4: Explicitly specify the interaction properties. The goal
of this guideline is to enrich the API documents with direct
information about the interaction properties (e.g., stateless or
stateful, synchronous or asynchronous, etc.). This can be
implemented by explicitly stating such information in a way that
allows it to be easily located while scanning the page. Avoid
burying it into verbose text or code examples.

CG5: Explicitly specify the runtime qualities. The goal of
this guideline is to enrich the API documents with the quality
information that affects the interoperation between software
units (e.g., availability, response time, security, etc.). Such
information may be a critical directive for clients in making
integration decisions. Hence, this information needs to be
clearly specified for each offered service and should be easy to
find in the document without the need to read it line by line.

CG6: Explicitly specify the main usage scenario first, then
point out special or exceptional cases. The goal of this
guideline is to avoid confusing the reader as to what fits his

The Conceptual Interoperability Analysis (COINA) Framework

133

interoperation needs. This means that the context of using a
specific service should be clearly stated and distinguished from
its subservices and exception handling details. To implement
this, avoid blending context information into textual paragraphs
(e.g., Android vs. desktop users) and offer simplified use case
diagrams or usage scenarios.

CG7: Explicitly define special terminologies. The goal of
this guideline is to ensure correct mutual understanding of the
terminology used in the API documents. This applies to both
invented terms and domain-specific ones. This can be
implemented by describing such terms clearly and early in the
document prior to using them (e.g., glossaries).

CG8: Explicitly specify the expected output of offered
services. The goal of this guideline is to inform the reader
directly and explicitly about the nature of the service output. For
example, the output could be a returned data item with a
specific structure and format, a behavioral action with no
returned data, a confirmation message, or a mix of these. Thus,
this guideline can be implemented by organizing the
information of a service in an obvious way rather than
embedding it into code examples or overwhelming text.

CG9: Explicitly specify measurement systems. The goal of
this guideline is to ensure an agreed-on system for describing
the data (e.g., data units, scale ratio, ordering styles, etc.). For
example, if the input or output of an offered functionality is a
sorted group of values, specify its sorting criteria and ordering
style explicitly (e.g., dates in a transaction log have a
descendant or ascendant order).

Presentation Guidelines for Improving the API Documentation

This set of guidelines aims at improving the way information about
conceptual interoperability constraints is displayed and presented in the
API documents. This, in turn, will help the readers perform efficient and
effective conceptual interoperability analysis. Our presentation
guidelines are as follows:

PG1: Create a clear border between conceptual and
technical information. The goal of this guideline is to satisfy
readers with different needs and analysis perspectives. For
example, conceptual information is the main target for
architects and conceptual interoperability analysts, while
technical information is of high importance for developers and
integration implementers. This separation of information saves
the reader time in locating the needed information. This

The Conceptual Interoperability Analysis (COINA) Framework

134

guideline can be achieved by creating different views or distinct
sections for the offered information in the API document.

PG2: Provide a graphical presentation of conceptual
information whenever possible. The goal of this guideline is
to minimize the amount of overwhelming text, which can be
simplified through graphical diagrams. For example, interaction
protocols are easier to read and remember using
representative diagrams compared to hard-to-trace text.

PG3: Provide a consistent description of the conceptual
constraints for all offered data or services. The goal of this
guideline is to help the reader learn the API document faster
and easier. For example, specifying the COINs for different
services in equal amounts and formats allows the user to know
what to expect and where to find needed information.

PG4: Structure the conceptual information according to
importance. The goal of this guideline is to avoid distracting
the reader and to keep him focused on high-priority information.
This can be implemented by describing the conceptual
constraints and clearly distinguishing them from optional
recommendations.

PG5: Specify the conceptual constraints precisely. The
goal of this guideline is to avoid confusing the reader about the
meaning or criticality of sentences. This includes using the
correct words (e.g., must vs. should) and keeping the
sentences simple (e.g., not specifying two constraints in one
long sentence).

Summary

In this subsection, we described our observations on the six cases of
API documents we studied with regard to their limitations in supporting
conceptual interoperability analysis. These observations inspired us to
propose improvement guidelines for the API documents regarding both
their content and presentation aspects. These guidelines are part of the
proactive preparation component of our framework. They serve the
providers of black-box software units in producing useful and usable
API documents from the point of view of conceptual interoperability
analysts. These guidelines will be evaluated in Chapter 7.

The Conceptual Interoperability Analysis (COINA) Framework

135

6.4 Approach for the Systematic Detection of Conceptual
Mismatches

In Section 6.3, we described the first component of our COINA
Framework, which supports proactive preparation for interoperable
software units. In this section, we present the second component of our
framework, which is a systematic approach for detecting conceptual
mismatches between software units. Remember that we have provided
an overview of the method (i.e., input, output, and process) and the
context (i.e., who, when, and how) in Subsections 6.2.1 and 6.2.2
respectively.

The foremost goal of this approach is to support third-party clients of
interoperable software units in detecting conceptual mismatches
between the software units intended to interoperate.

As we described earlier in Subsection 6.2.1, the input to our systematic
mismatch detection approach is a COIN Portfolio for each
interoperating system. However, if these portfolios are not prepared
proactively, our approach provides detailed guidance on how to prepare
the input. In this case, the expected input is the available software
documentation. Such input is different for in-house software units (i.e.,
SRS, UML diagrams, and API documentation) and external software
units (i.e., API documentation only). With regard to the output, this is,
as we also mentioned earlier, the list of conceptual mismatches
between the two interoperating software units.

In Figure 40, we give an overview of the manual systematic approach
with its two main activities. These activities are the COIN Extraction for
the two software units intended to interoperate into COIN Portfolios (if
they are not already prepared); and the Mapping of the Portfolios, which
results in the list of mismatches between the two units. The figure also
shows that we support the first activity with a documentation template
for the extracted COINs (which we described earlier in Section 5.4), a
COIN Cheat Sheet, and guidelines. The second activity is supported
with a documentation template for detected mismatches, a Mismatches
Cheat Sheet, and guidelines. We define the supporting cheat sheets as
follows:

Definition 10 – COINA Cheat Sheets

These are reference tools that help conceptual interoperability analysts
to accomplish their tasks manually. They provide brief descriptions of
concepts (i.e., types of COINs and mismatches) with simple examples
and guidelines.

In Subsection 6.4.1 and Subsection 6.4.2, we will explain these
supporting materials within their related activities in detail.

Approach
goal

Input &
Output

Process
overview

The Conceptual Interoperability Analysis (COINA) Framework

136

Figure 40 Process overview of the systematic approach for detecting conceptual mismatches

6.4.1 Perspective-based Extraction of COINs

In this subsection, we will describe how third-party clients can manually
and systematically identify the COINs for two software units.

The goal of this perspective-based, systematic method is to support
third-party clients in manually identifying the COINs for the software
units intended to interoperate if COIN Portfolios have not been prepared
proactively. As described earlier in Subsection 3.2.2, extracting such
information manually is a challenge, especially for inexperienced
analysts. By offering detailed guidance, we pave the way towards
effectively detecting conceptual mismatches.

The key contribution of our method is an increase in the effectiveness
of manual extraction of COINs. This is facilitated through our
contributed COIN Portfolio Template, “COIN Cheat Sheets”, and
guidelines, which direct the analysts in performing perspective-based
analysis for interoperable software units.

Next, we will describe the COIN Cheat Sheets, which are the basis for
our method. Then we will describe the guidelines for manual application
of our perspective-based method.

COIN Cheat Sheets

The COIN Cheat Sheets are a derivation of the perspective-based
reading (PBR) technique [SRB00]. The PBR has been proven to have
better effectiveness results when used for defect inspection in software
requirements documents, software code, or UML diagrams [BGL+96,
LA99, LASEE00, LD00]. Uniquely, our approach uses PBR for the
purpose of conceptual interoperability analysis.

Method goal

Contribution

The Conceptual Interoperability Analysis (COINA) Framework

137

Our COIN Cheat Sheets provide guidance for extracting the different
types of COINs and their categories from the system, data, and service
perspectives, along with directions on their locations. An example of a
record in the table of our COIN Cheat Sheet for UML diagrams looks
like this:

Table 13 Example of a record in the COIN Cheat Sheet for UML diagrams

Perspect
ive

COIN
Category COIN Type Description Where to find (probably)?

Service Dynamic
(IP)
Interaction
property

State(ful/less),
(a)synchronou
s, etc.

In the type of messages in
sequence diagrams (i.e., a
synchronous message is
denoted by a solid arrowhead

; an asynchronous
message by a line arrowhead

).

This record guides the user in finding the interaction property constraint
(i.e., synchronicity) for a service or method in the UML diagram.

Although this thesis strongly focuses on the architecture and low-level
design documents as the in-house input for conceptual interoperability
constraints, it also considers the software requirements specification
SRS (see background Section 2.2) as input for COINs in integration
projects. Hence, we developed cheat sheets to help extract the COINs
from different software documents (i.e., SRS, UML diagram, and API
documents). For the full version of the COIN Cheat Sheets,
see Appendix E.

Guidelines for Applying the Perspective-based Extraction Method

Here we state our guidelines associated with using the COIN Cheat
Sheet for manually extracting the COINs for the first software unit:

– Read the in-house architecture documentation of your software unit
(e.g., UML diagrams of the Smart Farm) and read the integration
requirements stated in the SRS (e.g., need for a smart machine
that offers RemoteSteering functionality in the field).

– Abstract your software system and build its input/output model.

o Overall system, e.g., Smart Farm

o Input, e.g., steering directions

o Interoperable functionality required, e.g., RemoteSteering

o Output, e.g., machine moving and confirmation message

– Read the COIN Cheat Sheets and learn about the different
categories and types of COINs.

Activity 1

The Conceptual Interoperability Analysis (COINA) Framework

138

– Search for the COINs related to the elements of the abstraction that
you have built.

– Use the hints provided in the Cheat Sheets to direct your search.

– If you find a COIN instance, record it in the documentation template
“COIN Portfolio Template”.

Similarly, we provide guidelines associated with using the COIN Cheat
Sheet for extracting the COINs manually for the second software unit:

– Read the available documentation of the external software unit
(e.g., smart tractor API documentation)

– Abstract the unit into its input-output model.

o Overall system, e.g., smart tractor

o Input, e.g., steering directions

o Interoperable functionality offered, e.g., RemoteSteering

o Output, e.g., movement and confirmation

– Read the COIN Cheat Sheets and learn about the different
categories and types of COINs.

– Search for the COINs related to the elements of the abstraction that
you have built.

– Use the hints provided in the Cheat Sheets to direct your search.

– If you find a COIN instance, record it in the documentation template
“COIN Portfolio Template”.

In Table 14, we show an example of a COIN Portfolio created using our
perspective-based extraction method for the smart farm system. Table
15 shows another portfolio created for the smart tractor system.

Table 14 Example of a snippet of a COIN Portfolio for the Smart Farm System

Interoperable
element

COIN Sheet
ID Category Type Value

Qualitative Quantitative

Overall system C1 Context Intended user Users with experience in
smart technology

Function
RemoteSteering

C2 Quality Function quality Response time <=
2 ms

Function GetLog C3 Semantic Function output List of last week’s activities
only

Data Location C4 Syntax Definition
Location is a position on the
farm field that is measured
via GPS coordinates

 … … … … … …

Activity 2

The Conceptual Interoperability Analysis (COINA) Framework

139

Table 15 Example of a snippet of a COIN Portfolio for the Smart Tractor System

Interoperable
element

COIN Sheet
ID Category Type Value

Qualitative Quantitative

Function
RemoteSteering

C1 Quality Function
quality

Response time
between
3 <= and <= 5 ms

Function GetLog C2 Semantic Function
output

All tractor activities for its
lifetime

Function GetLog C3 Dynamic Synchronicity Synchronous

Overall system C4 Context Intended user Are in the age group
between 20 and 60 years

 … … … … … …

6.4.2 Checklist-based, Algorithmic Mapping of Portfolios

In this subsection, we will describe how to systematically compare two
COIN Portfolios in order to detect the different conceptual mismatches
between their software units.

The goal of this checklist-based, algorithmic method is to support third-
party clients in manually detecting the conceptual mismatches between
the software units intended to interoperate. Manual detection of the
different types of such mismatches and understanding of their impact is
a challenge, especially for inexperienced analysts. By offering detailed
guidance, we support effective detection of conceptual mismatches.

The key contribution of our method is an increase in the effectiveness
of the manual mapping of COIN Portfolios. This is facilitated through
our contributed mapping algorithm, the “Mismatches Cheat Sheet”, the
Mismatches List Template, and guidelines. These direct the analysts in
performing checklist-based analysis of the portfolios of interoperable
software units.

Next, we will describe the mapping algorithm, the Mismatches Cheat
Sheet, and the Mismatches Template, which are the basis for our
method. Then we will describe the guidelines for manual application of
our systematic checklist-based method.

Mapping Algorithm

Our mapping algorithm defines the process for comparing two lists of
conceptual constraints (or COIN Portfolios) for two software units, in
order to find the conceptual mismatches between them. The algorithm
is as follows:

Method goal

Contribution

The Conceptual Interoperability Analysis (COINA) Framework

140

Algorithm (Mapping COIN Portfolios)

Input: COIN Portfolio of Sx (CPx), COIN Portfolio of Sy (CPy)

Process:

1 mismatchesList ←

2 mismatch ← nil

3 c1.hasCorrespondent ← false

4 c2.hasCorrespondent ← false

5 For each c1 {CPx..coins}

6 For each c2 {CPy..coins}

7 If (c1.element.= c2.element)

8 c1.hasCorrespondent ← true

9 c2.hasCorrespondent ← true

10 If ((c1.category = c2.category) (c1.type = c2.type)

(c1.value ≠ c2.value))

11 mismatch ← (c1.element, "direct mismatch", c1, c2)

12 mismatchesList ← {mismatchesList mismatch}

13 End IF

14 If (((c1.category ≠ c2.category) | (c1.type ≠ c2.type))

(c1.value.influence(c2.value) = true))

15 mismatch ← (c1.element, "indirect mismatch", c1, c2)

16 mismatchesList ← {mismatchesList mismatch}

17 End IF

18 End IF

19 End For

20 End For

21 For each c1 {CPx..coins}

22 If (c1.hasCorrespondent.= false)

23 mismatch ← (c1.element, "potential mismatch", c1)

24 mismatchesList ← {mismatchesList mismatch}

25 End If

26 For each c2 {CPy..coins}

27 If (c2.hasCorrespondent.= false)

The Conceptual Interoperability Analysis (COINA) Framework

141

28 mismatch ← (c2.element, "potential mismatch", c2)

29 mismatchesList ← {mismatchesList mismatch}

30 End If

10 End For

Output: mismatchesList

In this dissertation, we focus on supporting the application of this
algorithm manually through our cheat sheet and guidelines. However,
it is also possible to run it automatically, but only if the input COIN
Portfolios are formalized. Although such formalization can open the
door for automation benefits, it cannot be complete and its associated
effort is not trivial. That is, the formalization task for portfolios is time-
consuming and requires experience in using formal-based specification
languages. In addition, formalizing a COIN Portfolio can be done
partially for COINs with quantitative values only. For example, a Quality
COIN capturing that the response time for S1 should be within 5
seconds can be formalized, but it is not possible to formalize a Semantic
COIN that specifies the goal of adding a RemoteSteering functionality
for boosting the performance of farmers in the field.

Despite the fact that the potential of formalization is not within the scope
of this dissertation, we show in the following a trivial example of how it
would look like to map two formalized COINs. In our example, we built
a trivial modeling language for the COINs based on the architectural
meta-model of the Flexible Modeling Framework (FMF), which is similar
to modeling frameworks found in model-driven language workbenches
[Fow05]. Then we created COIN instances using the language syntax.
Figure 41 illustrates how two COINs for two units S1 and S2 are directly
contradictory and can be detected automatically using our algorithm.

Figure 41 Example of a formal modeling language and two COIN instances

Example of
mapping
automation
based on
COIN
formalization

The Conceptual Interoperability Analysis (COINA) Framework

142

Mismatches Cheat Sheet

The Mismatches Cheat Sheet is a derivation of the checklist-based
reading (CBR) technique [SMKI02], which is typically used for
inspecting and testing purposes. The CBR has been proven to have
better effectiveness results when used for defect inspection in software
code and UML diagrams [LEEH01], [SMKI02]. Uniquely, our approach
uses CBR for the purpose of conceptual interoperability analysis.

In our Mismatches Cheat Sheet, we provide guidance for extracting
different types of conceptual mismatches based on the COINs causing
them, along with examples. That is, this sheet uniquely directs the
identification of mismatches according to the relationships between the
COINs in the two portfolios. Table 16 shows one record of our
Mismatches Cheat Sheet.

Table 16 Example of a record in the Mismatches Cheat Sheet

Mismatch Type How to find? Causing COINs Examples

Direct

COINs of similar
category and
type with
explicitly
contradictory
values for
corresponding
elements.

All types of COINs
can be the cause
of direct
mismatches.

S1 has a “size of lists” constraint that
the returned object has a maximum
capacity of 100 items.

S2 has a “size of lists” constraint that
the maximum size of the lists used
in the system is 50 items.

This leads to a “direct mismatch“ on the
structure level.

The record depicted above guides the user in finding direct mismatches
between two COINs from two software units over a structural constraint
(i.e., the size of the list) for a data object. For the full version of the
Mismatches Cheat Sheet, see Appendix F.

Guidelines for Applying the Checklist-based Mapping Method

Here we state our guidelines associated with using the COIN Cheat
Sheet for manually extracting the COINs for the first software unit:

– Read the Mismatches Cheat Sheet and learn about the different
categories of conceptual mismatches and the COIN types typically
causing them.

– Compare the COINs in the portfolios of the two software units
intended to interoperate in two main steps as follows:

o Step1: Compare each COINx in the portfolio of the first software
unit S1 with each COINy in the portfolio of the other unit S2.

If COINx and COINy are about a correspondent
interoperable element (e.g., both are about the same
function) of the same category and type, and if they
contradict each other, document a direct mismatch in the

Activity 3

The Conceptual Interoperability Analysis (COINA) Framework

143

“Mismatches List Template”. Mark the two COINs with a sign
(e.g.,) to denote that they have been checked.

If COINx and COINy are about a correspondent
interoperable element, but of a different category or type,
and if they influence each other, document an indirect
mismatch in the “Mismatches List Template”. Mark the two
COINs with a sign (e.g.,) to denote that they have been
checked.

If COINx and COINy are not contradicting or influencing each
other, move to the next COIN in the portfolio of S1 (if not
finished) and compare it with each COIN in the portfolio of
S2.

o Step2: For each unmarked COINz in both portfolios of S1 and
S2, check if it introduces a potential mismatch (either
consensus or adherence).

If COINz introduces a potential mismatch by requiring
work in order to be satisfied, document an adherence
mismatch in the “Mismatches List Template”. Mark the
COIN with a sign (e.g.,) to denote that it has been
checked.

If COINz introduces a potential mismatch by requiring
conceptual agreement only, document a consensus
mismatch in the “Mismatches List Template”. Mark the
COIN with a sign (e.g.,) to denote that it has been
checked.

If COINz does not introduce a potential mismatch, move
to the next unmarked COIN until both portfolios are
completely checked.

An example of the detected conceptual mismatches between the COIN
Portfolios of the smart farm and the smart tractor (see Table 14 and
Table 15) using our checklist-based method is depicted in Table 17.

Table 17 Example of a snippet of the Mismatches List for the Smart Farm and the Smart Tractor

Interoperable
element

Mismatch Reference COINs
ID Category Type Description COIN ID

from S1
COIN ID
from S2

Overall system M3
Potential

consensus Context
S1 and S2 have different (not
necessarily contradictory) user
characteristics

C1 C4

Function
RemoteSteering

M1 Direct Quality
S1 and S2 contradict over the
quality of the RemoteSteering
function

C2 C1

Function GetLog M2 Direct Semantic
S1 and S2 contradict over the
output of the GetLog function

C3 C2

The Conceptual Interoperability Analysis (COINA) Framework

144

Data Location M4
Potential

consensus Syntax
S1 has a definition that, if
misunderstood, might lead to a
mismatch

C4 -

Function GetLog M5
Potential

adherence Dynamic S2 has synchronous communication
style and S1 has to satisfy it - C3

… … … … … … …

6.5 Summary

In this chapter, we presented our methodical and technical contributions
within the Conceptual Interoperability Analysis Framework (COINA).
Our framework is based on the model of conceptual constraints
introduced in Chapter 0, which extends and refines the existing models
of reuse and interoperability. The overall goal of COINA is to support
software architects and analysts in performing effective and efficient
conceptual interoperability analysis.

The framework has two supporting components: the first component
tells providers to proactively share the conceptual interoperability
constraints about the software units offered by them, while the second
component guides clients interested in systematically analyzing the
conceptual interoperability between their own software units and
external ones. In this regard, we contributed methods to help providers
extract the COINs from in-house architectural documents (using
templates and supported by an add-in tool for the Enterprise Architect
tool) and from shared API documents (using machine learning and
supported by an add-in tool for the Chrome web browser). Furthermore,
we supported clients with methods for comparing the list of COINs for
two software units and detecting their conceptual mismatches (using
perspective-based and checklist-based methods supported by cheat
sheets and standard documentation templates).

145

7 Evaluation

7.1 Introduction

In this chapter, we will describe the empirical evaluation studies and
their results.

In Section 7.2, we start by stating our evaluation objectives and
the derived hypotheses.

In Section 7.3, we will describe our multi-run controlled
experiment, which we conducted to show the effect of using our
systematic conceptual interoperability analysis approach on
the produced analysis results.

In Section 7.4, we will describe a survey and an initial controlled
experiment, which we used to show the perceived value of our
guidelines and the actual effect on the results of conceptual
interoperability analysis.

In Section 7.5, we will describe the comprehensiveness results
of our COIN Model from the collected data of our multiple-case
study described in Subsection 6.3.2.

In Section 7.6, we will summarize the presented evaluation
studies and their findings.

7.2 Objectives and Hypotheses

For each of our proposed solution ideas, we expect to have some
practical improvements or benefits, which we translated into a number
of scientific hypotheses. From the theoretical perspective, we have
hypotheses about our conceptual foundation idea (i.e., S.I1: the COIN
Model) regarding its validity and comprehensiveness as follows:

Hypotheses regarding the COIN Model

H1: The model of conceptual interoperability constraints is valid in
defining the relationships among types of constraints, interoperable
elements, types of software units, and the type of relevant conceptual
mismatches.

H2: The model of conceptual interoperability constraints is
comprehensive in covering the different types of conceptual

Evaluation

146

interoperability constraints that can restrict the interoperation of
software units.

From the engineering perspective, we have different hypotheses about
the first methodical idea of the COINA Framework (i.e., S.I2.1:
Proactive preparation method) with respect to its effectiveness,
efficiency, and acceptance. As stated below, these improvements are
from the point of view of providers of interoperable software units (H3 to
H5) as well as third-party clients (H6 to H8).

Hypotheses regarding the COINA Framework – Proactive
Preparation

H3: Using the COINA extraction method increases the effectiveness
of architects in extracting and sharing the relevant conceptual
interoperability constraints of their software units when compared to ad-
hoc approaches.

H4: Using the COINA extraction method increases the efficiency of
architects in extracting and sharing the relevant conceptual
interoperability constraints of their software units when compared to ad-
hoc approaches.

H5: Using the COINA extraction method as proposed is accepted by
architects for extracting and sharing the relevant conceptual
interoperability constraints of their software units.

H6: Implementing the COINA guidelines for improving documentation
increases the effectiveness of third-party client architects in
identifying the conceptual interoperability constraints of external
software units when compared to not applying them.

H7: Implementing the COINA guidelines for improving documentation
increases the efficiency of third-party client architects in identifying
the conceptual interoperability constraints of external software units
when compared to not applying them.

H8: Implementing the COINA guidelines for improving documentation is
accepted by third-party client architects as valuable for identifying the
conceptual interoperability constraints of external software units.

From another engineering perspective, we have hypotheses about the
second part of our methodological idea (i.e., S.I2.2: Systematic
detection of conceptual mismatches) with respect to its improvement
effects on effectiveness, efficiency, and acceptance. The hypothesized
improvements are from the point of view of third-party clients who are
responsible for identifying mismatches between software units.

Evaluation

147

Hypotheses regarding the COINA Framework – Systematic
Analysis

H9: Using the COINA systematic analysis increases the effectiveness
of third-party client architects in identifying the conceptual constraints
(from structured and unstructured documents) and the mismatches of
two software units when compared to ad-hoc analysis approaches.

H10: Using the COINA systematic analysis increases the efficiency of
third-party client architects in identifying the conceptual constraints
(from structured and unstructured documents) and the mismatches of
two software units when compared to ad-hoc analysis approaches.

H11: Using the COINA systematic analysis as proposed is accepted by
third-party client architects for identifying the conceptual constraints
and mismatches of two software units.

Overall, we also have hypotheses for applying the COINA Framework
in general. Validating these hypotheses is beyond the scope of our
thesis work as this would require further activities that take place after
the analysis task.

H12: Using the COINA Framework increases the effectiveness of
third-party client architects in designing the resolution for conceptual
mismatches compared to results from ad-hoc analysis approaches.

H13: Using the COINA Framework increases the efficiency of third-
party client architects in designing the resolution of conceptual
mismatches compared to results from ad-hoc analysis approaches.

In Figure 42, we summarize our hypotheses regarding each main
contribution. The shaded hypotheses are the ones we evaluated within
our thesis work. In particular, we evaluated:

– H2 through our multiple-case study (Section 07.5);

– H6, H7, and H8 through a survey and an initial controlled experiment
(Section 7.4);

– H9, H10, and H11 through a multi-run controlled experiment
(Section 7.3).

In the following figure, the unshaded hypotheses represent those that
were not evaluated and have been left for future work and studies.

Evaluation

148

Figure 42 Hypotheses for the contributions

7.3 Multi-Run Controlled Experiment

In this section, we will present a multi-run controlled experiment for
evaluating the effectiveness (H9), efficiency (H10), and acceptance (H11)
of our systematic analysis approach. Thus, we will describe the study
goal and research question, the experimental context and setup, the
analysis of the experiment results, a cross-run discussion, and the
threats to validity.

7.3.1 Objectives and Research Questions

The main goal of this study, formulated by means of the GQM goal
template, was to analyze the systematic conceptual interoperability
analysis approach for the purpose of evaluation with a focus on
effectiveness, efficiency, and acceptance from the perspective of
software architects and analysts in the context of a controlled
experiment with students. That is, we wanted to know if our proposed
analysis approach allows performing a more effective and efficient
conceptual interoperability analysis compared to ad-hoc interoperability
analysis. Also, we wanted to know if our approach is accepted in
practice. In line with the goal, our research questions were as follows:

RQ9 (Effectiveness): Does adopting the systematic conceptual
interoperability analysis approach of COINA enable software architects
to analyze interoperable software units and identify their conceptual
constraints and mismatches more effectively compared to performing
an ad-hoc analysis?

RQ10 (Efficiency): Does adopting the systematic conceptual
interoperability analysis approach of COINA enable software architects

Evaluation

149

to analyze interoperable software units and identify their conceptual
constraints and mismatches more efficiently compared to performing an
ad-hoc analysis?

RQ11 (Acceptance): Do practitioners perceive the systematic
conceptual interoperability analysis approach of COINA as useful and
easy to use when they follow it to analyze interoperating software units?

7.3.2 Experimental Context

The experiment was conducted in two runs (Run I and Run II). Run I
was performed in a practical course entitled “Team-based Software
Development” for master students at the University of Kaiserslautern,
Germany (TU KL). The practical course was co-supervised together
with the Fraunhofer Institute for Experimental Software Engineering
IESE in the winter semester 2015/2016. Run II was performed in the
German-language “Grundlagen des Software Engineering (GSE)”
course for bachelor and master students at TU KL. The GSE course
was supervised by Prof. Dieter Rombach in the winter semester
2015/2016.

7.3.3 Experimental Setup

To explain the setup of the experiment, we will first define the study
variables and formulate our statistical hypotheses. Then we will provide
more information about the participants, the experimental design, the
procedures, tasks, and the materials to be provided.

Study variables. The main concept behind performing experiments is
to examine some variables (dependent variables) while manipulating
some other variables (independent variables). For the experiment we
designed, we defined these variables as follows:

Dependent variables: effectiveness and efficiency for the conceptual
interoperability analysis results, and the participants’ acceptance of the
approach.

Independent variables: the approaches applied for the conceptual
interoperability analysis.

It is important to mention that we distinguish between: (1) full COINA
support provided for the systematic analysis approach (where both the
COIN extraction and the mapping is supported by cheat sheets); and
(2) half COINA support provided for the systematic analysis approach
(where only the COIN extraction is supported by cheat sheets). Hence,
our independent variables are called “full COINA”, “half COINA”, and
ad-hoc approach.

Statistical hypotheses. In this experiment, we intended to answer the
previously stated research questions from Subsection 7.3.1, namely

Evaluation

150

RQ9, RQ10, and RQ11. In order to do this, we derived the statistic null
hypotheses (H0) and the corresponding alternative hypotheses (H1)
from the stated research questions. Note that the arithmetic mean of
effectiveness and efficiency, and the median of acceptance of the full
COINA approach are denoted by μc. Meanwhile, μb denotes the mean
of effectiveness and efficiency of the half COINA approach and μa
denotes the effectiveness and efficiency of the ad-hoc analysis
approach. In Table 18, we describe the hypotheses related to each
research question of this controlled experiment.

Table 18 Hypotheses of the Multi-run Controlled Experiment
Research
Question Hypothesis Quantified

Hypothesis

RQ9:
Effectiveness

H9.1: Full COINA increases the completeness in extracting
the COINs of interoperating systems manually from
structured documents compared to ad-hoc analysis.

H9.1, 0: μ
c
 ≤ μ

a

H9.1, 1: μ
c

> μ
a

H9.2: Full COINA increases the correctness in extracting
the COINs of interoperating systems manually from
structured documents compared to ad-hoc analysis.

H9.2, 0: μ
c
 ≤ μ

a

H9.2, 1: μ
c

> μ
a

H9.3: Full COINA increases the completeness in extracting
the COINs of interoperating systems manually from
unstructured documents compared to ad-hoc analysis.

H9.3, 0: μ
c
 ≤ μ

a

H9.3, 1 : μ
c

> μ
a

H9.4: Full COINA increases the correctness in extracting
the COINs of interoperating systems manually from
unstructured documents compared to ad-hoc analysis.

H9.4, 0: μ
c
 ≤ μ

a

H9.4, 1: μ
c

> μ
a

H9.5: Full COINA increases the completeness in finding
the conceptual mismatches compared to ad-hoc analysis
and half COINA.

H9.5, 0: μ
c
 ≤ μ

a
, μ

b

H9.5, 1: μ
c
 > μ

a
 , μ

b

H9.6: Full COINA increases the correctness in finding the
conceptual mismatches compared to ad-hoc analysis and
half COINA.

H9.6, 0: μ
c
 ≤ μ

a
, μ

b

H9.6, 1: μ
c
 > μ

a
, μ

b

RQ10:
Efficiency

H10: Full COINA decreases the time when used for
interoperability analysis compared to ad-hoc analysis and
half COINA.

H10, 0: μ
c
 ≤ μ

a
, μ

b

H10, 1: μ
c
 > μ

a
, μ

b

RQ11:
Acceptance

H11.1: Practitioners perceive full COINA as useful when
they use it for interoperability analysis.

H11.1, 0: μ
c
 ≤ 3*

H11.1, 1: μ
c

> 3*

H11.2: Practitioners perceive full COINA as easy-to-use
when they use it for interoperability analysis.

H11.2, 0: μ
c
 ≤ 3*

H11.2, 1: μ
c

> 3*

*The value 3 in H11.1 and H11.2 is compared to a defined scale of values from 1 to 5 (more
details below). All hypotheses in the table were tested at a confidence level of α = 0.05.

Operationalization (Evaluation metrics). As stated previously, the
comparison in H9 and H10 is between an ad-hoc conceptual
interoperability analysis and analysis using the support of the COIN
Cheat Sheets or the Mismatches Cheat Sheets. In order to perform the
comparison, we need to have specific metrics that can be calculated
from the results produced by the participants in the experiment. In order
to evaluate the effectiveness in H9, we use the following basic metrics:

– True positive (TP): a COIN/mismatch instance that is correctly
identified as a COIN/mismatch instance

Evaluation

151

– False positive (FP): a non-COIN/non-mismatch that is incorrectly
identified as a COIN/mismatch instance

– True negative (TN): a non-COIN/non-mismatch that is correctly not
identified as a COIN/mismatch instance

– False negative (FN): A COIN/mismatch instance that is incorrectly
not identified as a COIN/mismatch instance

These basic metrics are used for calculating the following two derived
metrics, which we use in our evaluation:

– For completeness:

– For correctness:

Meanwhile, we evaluate efficiency in H10 by directly using a basic cost
metric, which is in minutes spent on the tasks. With regard to
Acceptance, we evaluate it in H11 using the following derived metrics:

– , which is the degree to which software
architects believe that applying the full COINA approach will help
them perform better COIN/mismatch analysis and achieve better
results; and

– , which is the degree to which software
architects believe that applying the full COINA approach would be
free of effort.

Figure 43 Acceptance evaluation metrics

Evaluation

152

To calculate these two metrics, we use basic metrics from the
Technology Acceptance Model (TAM) [DBW89] as seen in Figure 43.
All the basic metrics of acceptance were measured by means of a
debriefing questionnaire at the end of the experiment (more details to
come in this subsection). The questionnaire included questions with a
5-level Likert scale [Lik32] for each basic metric. The five levels were:
strongly disagree, disagree, neither, agree, and strongly disagree. To
quantify the Likert scale data and consequently test H3, the scale levels
were weighted as 1, 2, 3, 4, and 5 accordingly.

Figure 44 Experimental Design

Experimental Design. In accordance with our independent variables,
we have three different analysis approaches (i.e., ad-hoc, half COINA,
and full COINA). Hence, we designed the experiment accordingly with
three groups. Group Ad-hoc (control group) applied the ad-hoc
approach to perform the conceptual interoperability tasks on the
available documentations of two software units. The group was not
given any supporting sheet; only documentation templates were
provided. Group Half COINA (experimental group) performed the
same analysis tasks, but was supported by the COIN Cheat Sheet and

Evaluation

153

documentation templates. Group Full COINA (experimental group)
performed the same tasks, but was supported by both the COIN Cheat
Sheet and the Mismatches Cheat Sheet with the documentation
templates. Figure 44 captures the experimental design and shows the
exact differences between the groups.

Note that, the participants were randomly assigned to the groups and
none of them was known to the experimenter before. The participants
did not know about the differences between the groups either.

For ethical learning purposes, we ran the experiment in three sessions
with three input examples (e1, e2, and e3). Each input example
included an SRS document for a required software unit Sx and an API
document for an offered software unit Sy. Thus, each of the GSE
students got the opportunity to experience each of the three
approaches on different days and with different input examples to avoid
the bias of results at the last session (see Figure 45).

Figure 45 Design of Experimental Sessions

Participants (Subjects). The participants of Run I were 27 master-
level students from the Team-based Software Development course,
who participated on a voluntary basis. All participants had a background
in computer science, their average age was 26, and most of them had
participated in software engineering projects (N = 21). In Run II, 60
bachelor-level students from the GSE course participated, with the
motivation to get bonus grades. Not all participants had a background
in computer science (e.g., some of them were from electrical
engineering, economics, sociology, etc.), their average age was 23, and
most of them had participated in software engineering projects (N = 51).
In order to monitor the influence of the participants on the experimental
results, more information was gathered about the participants by asking
them to fill out a briefing questionnaire before the experiment was
conducted. The questionnaire included questions regarding the
participants’ background.

Experimental procedure. The time allocated to the experiment
session was 90 minutes, which included: (1) Preparation (25 minutes),
which started with an introduction tutorial presented to the students
about the concepts of interoperability, COINs, and conceptual

Evaluation

154

mismatches with examples. Also, the participants got a clear statement
on the role of the experiment in the course and on their role in the
experiment. Then the briefing questionnaire was filled out by the
participants. (2) Execution (55 minutes), which started with task
assignment, where the participants received the materials explaining
their task and the procedures in detail. Throughout the execution, the
experimenter recorded observations on plausible disturbing factors,
such as participants’ emotions and events. The data collection
instrument used was a pre-defined observation template (see Appendix
G). These observations were to be used to analyze confounding
variables and to explain extreme values, e.g., outliers. (3) Finalization
(10 minutes), where the debriefing questionnaire was filled out by the
participants to get their feedback on the assigned tasks and approach.

Experimental tasks. During the experiment, the participants played
the role of software architects/analysts and performed the conceptual
interoperability analysis tasks. All groups got the same input example
of documents for two software units (for SX and SY) that were supposed
to interoperate with each other, but in a different order in the three
sessions for Run II. The tasks assigned to the participants were:

– Task 1: All groups were to analyze the SRS document of SX (which
specified the characteristics of the required unit) and extract the list
of COINs (COIN Portfolio) from it.

– Task 2: All groups were to analyze the API document of SY (which
specified the characteristics of the offered unit) and extract the list
of COINs (COIN Portfolio) from it.

Task 3: All groups were to compare the two COIN lists (portfolios) and
detect the list of conceptual mismatches between SX and SY.

In other words, the participants were expected to produce two types of
results as presented in Figure 44. The first was a COIN List for each
analyzed software unit. The second was a Mismatch List between the
two software units. To ensure format consistency and comparability,
Group A (which applied the ad-hoc approach) was provided with the
documentation template for the COINs and the mismatches. In this way,
we were able to get the same result artifacts from all groups.

Materials. Different artifacts were used to execute the experiment and
collect the data. These included the following:

– A briefing questionnaire, which was the first input filled out by the
participants to collect information about their characteristics and
backgrounds.

– A debriefing questionnaire, which was the last artifact filled out by
the participants after the experiment session to collect their
feedback and experience regarding the analysis approach.

Evaluation

155

– The input examples that were analyzed by the participants of the
three groups were:

o (e1), which included a made-up SRS document for a My Job
Notification app and a part of the real-world, publicly shared
AppleWatch API documentation;

o (e2), which included a made-up SRS document for a music app
and a part of the real-world, publicly shared SoundCloud API
documentation;

o (e3), which included a made-up SRS document for a postman
app and a part of the real-world, publicly shared Google Map
Directions API documentation.

Note that the API document in e1 is from the platform API domain,
while the API documents of e2 and e3 are from the web service
API domain.

– The Documentation Templates for the COINs and the Mismatches,
which guided all groups in documenting their results in a structured
format.

– The COIN Cheat Sheets, which were provided to the participants
of Group Half COINA and Full COINA only.

– The Mismatches Cheat Sheet, which was provided to the
participants of Group Full COINA only.

Along with these materials, the participants were given a non disclosure
agreement and an informed consent form, an explanation of the
experimental procedure, and the task description. See the experimental
materials in Appendix H.1.

Pilot study. We performed a pilot study with five computer science
students (with no previous background in interoperability analysis) with
different study levels (i.e., one bachelor student, two master students,
and two Ph.D. students).The goal was to assess the understandability
of the experimental materials and the sufficiency of the allocated time
to read and perform all tasks. We encouraged the participants to ask
about any confusing or uncertain words and to write their comments on
the space provided on the debriefing questionnaire. Accordingly, the
SRS documents and the API documents were reported to be too long
to finish analyzing them within the given time. Hence, we reduced their
length by deleting paragraphs without affecting the understandability of
the input.

Evaluation

156

7.3.4 Analysis Results

Data Analysis Procedure

One of the most important steps in the data analysis is to evaluate the
dependent variables of the participants’ analysis results. Therefore, we
developed a reference solution for the existing COINs and mismatches
for each of the analyzed input examples. The author of this thesis
evaluated the results produced by the participants using this reference
solution, and a second researcher repeated the evaluation for a portion
of the produced results. The observed agreement percentage between
the two researchers was 88% and Cohen’s Kappa was 0.6 (interpreted
as substantial agreement).

Run I was applied by 27 students on the e1 example. Thus, the size of
the produced data was reasonable to analyze it all (i.e., 27 cases each
containing two COIN Portfolios and a Mismatches List). However, the
results produced in Run II were very large, as we had three sessions
with three examples each applied by 60 students (i.e., 180 cases, each
containing two COIN Portfolios and a Mismatches List). Because of the
time and resource constraints of this Ph.D. work, we randomly selected
a portion of the results of Run II. For comparability reasons with Run I,
we selected 36 cases from e1 (i.e., 12 cases per approach).

Then we analyzed further cases from e2 to explore the generalizability
of the results among different input examples. Hence, we selected 12
cases from e2 (i.e., 4 cases per applied analysis approach) via the
stratified sampling technique, using the participants’ demographic
characteristics and their correlations. That is, we statistically tested the
correlation between the four characteristics, which showed some
differences with regard to the results (i.e., reuse experience, study
program, study level, and English proficiency). We tested the
correlation using the Spearman RHO test, as we could not use the
Pearson test due to the categorical and nominal nature of the data.
Figure 46 shows the results of the Spearman RHO test (denoted as ρ).
These results mean that Study Program, Study Level, and English
Proficiency are correlated and the null hypotheses are rejected with a
significant p-value ranging between 0.00 and 0.03. However, with
regard to Reuse Experience, there is no evidence on its correlation with
any other characteristic and the null hypotheses are not rejected.

Hence, we chose the Study Level (i.e., one of the three correlated
characteristics) along with Reuse Experience for building the sampling
strata as follows: Master student with Reuse Experience (Stratum 1),
Master student without Reuse Experience (Stratum 2), Bachelor
student with Reuse Experience (Stratum 3), and Bachelor student
without Reuse Experience (Stratum 4).

Measuring

Cases’
selection

Building the
sampling
strata

Evaluation

157

Finally, we chose a sampling fraction of 1/3 of the sample size of Run
II on e1 (i.e., 36 cases). Thus, we randomly selected 12 cases (i.e., 4
participants per approach, one from each stratum).

Figure 46 Correlation results from SPSS for the demographic characteristics of the participants

We left e3 for future work as it has the same domain as e2 (i.e., web
service API) and the same type of COINs and mismatches as e2.

Statistical Analysis Results

Results of Effectiveness (H9) and Efficiency (H10)

After evaluating the selected results cases, the data was entered into
SPSS version 23 [Cor10]. Using this tool, we checked the data
normality for each measure using the Shapiro-Wilk test and cross-
checked it with the Lilliefors test. To compare the results of the three
groups when data was not normally distributed, we used the Kruskal-
Wallis test. Then, if the null hypothesis was rejected, we ran a post-hoc
analysis using Dunn’s test, else we performed a pair-wise comparison
using the Mann-Whitney (U) test. However, when data was normally
distributed, we used the one-way ANOVA test. Then, if the null
hypothesis was rejected, we ran the post-hoc Tukey's Honestly
Significant Difference (HSD) method, else we performed a pair-wise
comparison using an independent t-test. Our one-tailed hypotheses
were tested at a p-value < 0.5. Cohen's effect size (d) = (mean
difference/standard deviation) and its classifications are: small = 0.2,
medium = 0.5, and large >= 0.8.

By analyzing the results of the 27 cases in (Run I * e1), we found that,
on average, the results of the full COINA approach were better than the

Analysis
methods

Stratified
sampling

Run I on e1

Evaluation

158

ad-hoc approach results. That is, with full COINA, COIN extraction from
the SRS document improved by 12.5% for precision and by 11.7% for
recall. Also, full COINA improved COIN extraction from the API
document by 13.4% for precision, but only by 3.4% for recall.
Additionally, full COINA improved the mismatch detection by 17.4% for
precision and by 3.4% only for recall. Regarding time spent on analysis,
full COINA had an improvement of 16.3%. With regard to the difference
between half COINA and ad-hoc analysis, we found that the former
improved COIN extraction from both SRS and API documents, except
for extraction recall from API documents (i.e., half COINA scored 1.6%
less). Half COINA also had lower precision (14.7% less) and recall
(4.3% less) in detecting mismatches compared to the ad-hoc approach,
but the time spent was less (16.8%). Obviously, the full COINA had a
better improvement effect compared to half COINA.

While analyzing the results of the 36 cases in (Run II * e1), we found
that, on average, the results of the full COINA approach were better
than the ad-hoc approach results. That is, with full COINA, COIN
extraction from the SRS document improved by 11.9% for precision and
by 17.3% for recall. Also, full COINA improved COIN extraction from
the API document by 6.6% for precision and by 5.5% for recall.
Additionally, full COINA improved the mismatch detection by 33.9% for
precision and by 22.4% only for recall. Regarding time spent on
analysis, full COINA had an improvement of 12.5%. With regard to the
difference between half COINA and ad-hoc analysis, we found that the
former improved the results as the full COINA did. Thus, half COINA
improved COIN extraction from both SRS (by 8.2% for precision and by
14.4% for recall) and API documents (by 7.4% for precision and by
6.8% for recall). Half COINA also increased precision (36.7% higher)
and recall (15.6% higher) in detecting mismatches compared to the ad-
hoc approach and the time spent was less (7.2%). Clearly, the full
COINA had a better improvement effect compared to half COINA.

With regard to the results of the 12 cases in (Run II * e2), we found that
they confirm the improvement results that the full COINA approach
showed earlier in Run II on e1. In other words, this extended analysis
showed conformance between the effect of full COINA on different input
examples (e1 and e2). That is, with full COINA, COIN extraction from
the SRS document improved by 9.5% for precision and by 25% for
recall. Also, full COINA improved COIN extraction from the API
document by 10.8% for precision and by 16.3% for recall. Additionally,
full COINA improved the mismatch detection by 14.9% for precision and
by 17% only for recall. Regarding time spent on analysis, full COINA
had an improvement of 10%. With regard to the difference between half
COINA and ad-hoc analysis, we found that the former improved the
results as the full COINA did. Thus, half COINA improved COIN
extraction from both SRS (by 7.9% for precision and by 25% for recall)
and API documents (by 7.5% for precision and by 9.6% for recall). Half
COINA also increased precision (15.4% higher) and recall (12% higher)

Run II on e1

Run II on e2

Evaluation

159

in detecting mismatches compared to the approach ad-hoc and the time
spent was less (3.1%). Thus, the full COINA had a better improvement
effect compared to half COINA.

In Table 19, we show all the statistical analysis results for comparing
the differences between the different approaches applied on the
different runs and examples. The statistically significant improvements
(p-value < 0.05) are denoted with a () mark. We also include the effect
size for each improvement (Cohen’s d). For example, the null
hypothesis of H9.1 was rejected with statistical significance on both Run
I and Run II on e1, which means that the recall results for extracting
COINs from structured SRS documents were improved by both half and
full COINA compared to the ad-hoc analysis approach. However, in Run
II on e2, there were not enough participants to calculate the statistical
significance of the improvement. Still, in all the runs and examples, the
effect size ranges from medium to large (i.e., d between 0.6 and 1.1).

Results of Acceptance (H11)

Using the SPSS tool, we ran the one-sample Wilcoxon signed-rank (Z)
test to check H11.1 and H11.2. The test finds out if the responses given in
the debriefing questionnaire (in which answers were on a scale from 1:
strongly disagree to 5: strongly agree) on perceived usefulness and
ease of use are rather in agreement (more than 3).

For both Run I on e1 and Run II on e1 and e2, the participants agreed
on the ease of use of the full COINA approach in terms of learnability,
proficiency, etc. The statistical significance of this agreement could be
shown in Run I and Run II on e1, but Run II on e2 could not be
calculated due to the small sample size. The participants also agreed
on the usefulness of using our approach for achieving better results in
terms of completeness, correctness, etc. Although the statistical
significance could be shown in Run I, a larger sample size would have
been needed in Run II. In Table 20, we show the median value and the
statistical significance of the agreements. These results indicate that
practitioners show acceptance for our proposed COINA approach and
its associated cheat sheets and templates.

Analysis
method

For all runs
and
examples

E
va

lu
at

io
n

16
0

Ta
bl

e
19

A

na
ly

si
s

re
su

lts
 re

ga
rd

in
g

E
ffe

ct
iv

en
es

s
(H

9)
 a

nd
 E

ffi
ci

en
cy

 (H
10

) f
or

 R
un

 I
an

d
R

un
 II

Ef
fe

ct
iv

en
es

s
(T

as
k1

: e
xt

ra
ct

in
g

CO
IN

s f
ro

m

st
ru

ct
ur

ed
 d

oc
.)

Ef
fe

ct
iv

en
es

s
(T

as
k2

: e
xt

ra
ct

in
g

CO
IN

s f
ro

m

un
st

ru
ct

ur
ed

 d
oc

.)

Ef
fe

ct
iv

en
es

s
(T

as
k3

: f
in

di
ng

 m
ism

at
ch

es
)

Ef
fic

ie
nc

y

(fo
r a

ll
an

al
ys

is
ta

sk
s)

H 9
.1

: P
re

ci
sio

n
H 9

.2
: R

ec
al

l
H 9

.3
: P

re
ci

sio
n

H 9
.4

: R
ec

al
l

H 9
.5

: P
re

ci
sio

n
H 9

.6
: R

ec
al

l
H 1

0:
Ti

m
e

P-value

Cohen’s d

P-value

Cohen’s d

P-value

Cohen’s d

P-value

Cohen’s d

P-value

Cohen’s d

P-value

Cohen’s d

P-value

Cohen’s d

Run I on e1

Ad
-h

oc
 v

s.
ha

lf
CO

IN
A

.0
1

.9
1

.0
1

1.
43

.3
7 ?

.0
7

.2
7 ?

.1
3

.1
9 ?

.3
6

.1
2 ?

.9
6

.0
0

3.
05

Ad
-h

oc
 v

s.

fu
ll

CO
IN

A
.0

3
.6

4
.0

6 ?
.8

.2
2 ?

.6
.2

1 ?
.4

.1
5 ?

.6
1

.1
9 ?

.5
8

.0
0

2.
63

Ha
lf

CO
IN

A
vs

.
fu

ll
CO

IN
A

-
-

-
-

-
-

-
-

.0
7 ?

.8
9

.0
15

1.

35
.4

9 ?
.0

7

Run II on e1

Ad
-h

oc
 v

s.
ha

lf
CO

IN
A

.0
45

.7

7
.0

47

.8
4

.0
23

.8

2
.0

36

.7
7

.0
00

5
1.

2
.0

02

1.
2

.0
15

1.

23

Ad
-h

oc
 v

s.
fu

ll
CO

IN
A

.0
05

1.

1
.0

19

.9
6

.0
33

.7

8
.0

62

?
.6

6
.0

01

1.
1

.0
0

1.
5

.0
0

1.
63

Ha
lf

CO
IN

A
vs

.
fu

ll
CO

IN
A

-
-

-
-

-
-

-
-

.4
7 ?

.3
2

.4
04

?

.5
2

.0
8 ?

.9

E
va

lu
at

io
n

16
1

Run II on e2

Ad
-h

oc
 v

s.
ha

lf
CO

IN
A

S
N

P ?
.8

0
S

N
P ?

1.
22

S

N
P ?

.5
1

S
N

P ?
.8

1
S

N
P ?

1.
09

S

N
P ?

.8
4

S
N

P ?
.7

1

Ad
-h

oc
 v

s.
fu

ll
CO

IN
A

S
N

P ?
1.

17

S
N

P ?
1.

69

S
N

P ?
1.

08

S
N

P ?
1.

3
S

N
P ?

1.
15

S

N
P ?

1.
23

S

N
P ?

2.
34

Ha
lf

CO
IN

A
vs

.
fu

ll
CO

IN
A

-
-

-
-

-
-

-
-

S
N

P ?
.0

3
S

N
P ?

.5
1

S
N

P ?
1.

88

:I
m

pr
ov

ed
 a

nd
 s

ta
tis

tic
al

ly
 s

ig
ni

fic
an

t (
p

<
0.

05
);

?:
 Im

pr
ov

ed
 (d

 >
 0

.2
),

bu
t n

ee
ds

 m
or

e
pa

rti
ci

pa
nt

s
to

 s
ho

w
 s

ta
tis

tic
al

 s
ig

ni
fic

an
ce

;
?:

N
o

ev
id

en
ce

 o
f i

m
pr

ov
em

en
t;:

 N
o

hy
po

th
es

is
 a

ss
um

ed
 a

s
th

es
e

ar
e

id
en

tic
al

 p
ar

ts
 o

f t
he

 h
al

f a
nd

 fu
ll

C
O

IN
A

;S
N

P
:s

ta
tis

tic
al

ly
 n

ot
 p

os
si

bl
e

to
 c

al
cu

la
te

 d
ue

 to
 th

e
sm

al
l s

iz
e

of
 th

e
sa

m
pl

e

Ta
bl

e
20

R

es
ul

ts
 o

f A
cc

ep
ta

nc
e

(H
11

)f
or

 R
un

 I
an

d
R

un
 II

H 1
1:

Ac
ce

pt
an

ce
 o

f C
O

IN
A

ap
pr

oa
ch

H 1
1.

1:
Pe

rc
ei

ve
d

us
ef

ul
ne

ss

H 1
1.

2:
Pe

rc
ei

ve
d

ea
se

-o
f-u

se

M
ed

ia
n

P-
va

lu
e

M
ed

ia
n

P-
va

lu
e

Ru
n

I o
n

e1

4
0.

00
2

3.
9

0.
02

Ru
n

II
on

 e
1

4
0.

2
3.

6
0.

00
1

Ru
n

II
on

 e
2

4.
5

S
N

P
4.

4
S

N
P

Evaluation

162

7.3.5 Discussion

The findings presented in the previous subsection gave us statistically
significant evidence about the improvement that our proposed
systematic analysis approach COINA can bring to the correctness
(measured as precision) of the manual extraction of COINs compared
to ad-hoc analysis. This has been shown, in Run II on e1, for both
structured artifacts (i.e., SRS documents) and unstructured artifacts
(i.e., API documents). Across the runs, the correctness improvement
for structured documents had an effect size d ranging from 0.6 to 1.17
standard deviations (SD). This is interpreted according to Cohen’s scale
interpretation as a medium to large effect. Obviously, the more correctly
detected COINs there are, the more mismatches are detected correctly.

Moreover, COINA improved the completeness (measured as recall) of
the manual extraction of COINs compared to ad-hoc analysis in
structured documents with statistical significance. The completeness
improvement has an effect size d ranging from 0.8 – 1.69 SD, which is
interpreted as a large effect size. This improvement has a direct
influence on the detection of mismatches early in an integration project.
Similarly, COINA improved the completeness of the manual detection
of COINs in unstructured documents with an effect size d ranging
between 0.13 – 1.3 SD. This effect size widely varies from small to large
improvement per analyzed service or method. To get statistical
significance on this improvement, we would need to analyze more
cases. One of the reasons that might be the cause of this variation is
the fact that reading API documents is a challenging task, especially for
inexperienced students from non-CS majors.

It is noticeable that COINA improved the correctness (measured as
precision) of the manual detection of mismatches compared to ad-hoc
analysis, with an effect size d ranging from 0.36 to 1.2 SD. This is
considered a rather medium to large. Moreover, COINA improved the
completeness (measured by recall) of the manual detection of
mismatches compared to ad-hoc analysis. This improvement is of an
effect size d that ranges from 0.58 to 1.5 SD, which is interpreted as a
rather medium to large effect size.

On top of precision and recall enhancements, COINA increased the
efficiency of the analysis (measured by time in minutes) compared to
ad-hoc analysis with very high statistical significance. The effect size d
ranges from 0.71 - 3.05 SD. This is interpreted as a rather large to very
large effect, which is translated into 10% to 40% faster analysis with
better results. Such improvements are of high value for the success of
integration projects with limited time.

With regard to Run I, we notice that the results did not provide the same
statistically significant evidence on our hypotheses as in Run II. This is

Cross-run
COIN
extraction
correctness

Cross-run
COIN
extraction
completeness

Cross-run
efficiency

Cross-run
mismatch
detection
correctness
and
completeness

Observations

Evaluation

163

related to multiple influencing factors we noticed during the execution
of Run I. First, there was the “Randomization Effect”, which
unintentionally led to assigning the participants with the lowest
experience score and the lowest English proficiency to the Full COINA
Group (e.g., one participant was continuously using a digital translator
during the experiment). Also, the Half COINA Group scored the lowest
in the “ease of task” debriefing question. The Ad-hoc Group had the
participants with the highest experiences. Second, there was the
“Learning Effort Effect”, which means that the Half and Full COINA
approaches required learning the COIN categories and using them
within the experiment time, whereas in Run II, the participants were
trained on them in a class session and in a special exercise session.
Third, there was the “Motivation Effect”, which negatively affected the
performance of the Full COINA Group. That is, it was observed that the
participants were not motivated (e.g., distracted by texting on the
phone, arriving late, asking to take the assignment home, attending only
for the sake of a participation certificate required by another class, etc.).
The Ad-hoc Group, on the other hand, had some highly motivated
participants (e.g., two were seeking the experimenter’s supervision for
their master theses). Add to this that participation in Run I was on a
volunteering basis, while the participants of Run II were promised to get
extra points in the GSE class.

This experiment included only one contribution of this Ph.D. work,
namely the systematic approach for mismatch detection. It can be
expected that the analysis results would be even better if the other
components of COINA had been included in supporting the participants.

7.3.6 Threats to Validity

Construct Validity. This threat concerns the degree to which the
experiment measures the stated goals and claimed hypotheses. It
includes “researcher bias”, which was introduced by the experimenter
(who was also the author of the COINA approach under experiment)
and which may have influenced the design of the experiment
unconsciously so she could prove her claimed hypotheses. In order to
alleviate this effect, the experiment design was peer-reviewed by the
supervisor of this thesis, Prof. Dieter Rombach, and three senior
researchers from Fraunhofer IESE. We also used reliable test
instruments (e.g., TAM) and the GQM approach.

Internal Validity. This threat concerns the degree to which
independent variables influence the dependent variables (i.e., cause-
effect relation). It includes “learning bias”, which is the influence of
maturing skills during the experiment sessions of Run II. The learning
effect is expected to be strong if the participants perform the tasks using
first the ad-hoc approach, then the Half COINA approach, and finally
the Full COINA approach if they perform them on the same input SRS

Evaluation

164

and API documents. Hence, we developed three different examples of
input artifacts (i.e., e1, e2, and e3). Another threat to internal validity is
“evaluation bias”, which is about influencing the findings through
subjective evaluation of the collected data. Hence, we developed a
reference solution and evaluation guidance to ensure objective
evaluation of the data. Moreover, the evaluation was repeated partially
by another researcher. The two researchers’ results had an observed
agreement percentage of 88% and Cohen’s Kappa = 0.6, which is
interpreted as substantial agreement. In addition, “sample selection”
can threaten the internal validity if the participants were assigned to
groups in a biased way. To avoid this bias, we randomly assigned the
participants to the groups. We followed this for both Run I and Run II.

External Validity. This threat concerns the degree to which the results
of the experiment can be generalized to different people and settings.
It includes the concern about the “representative sample” as the
experiment participants were students either at the master or bachelor
level from either a computer science program or a non-computer
science one. That is, they were not practitioner software engineers or
architects. To alleviate this representation issue, we trained the
participants on the concepts through introductory sessions using
presentation slides and examples. Another threat to external validity is
“case bias”, which is about affecting the generalizability of the achieved
results by limiting them to specific input artifacts (in our study, these
were the analyzed SRs and API documents) on the produced results.
To overcome this issue, we included three different input artifacts from
two different domains (i.e., platform APIs and web service APIs). We
had the examples checked to ensure they were similar in length,
difficulty, number, and kind of COINs they have, and the number and
kind of mismatches they have. Despite the effort we put into including
three examples, the “case size” in each of them is still quite small
compared to the typical documentation for software systems in industry.
An additional concern is the “included COINs bias”, which represents
an issue related to the generalizability of the results due to the fact that
the study did not cover all the different types of the COIN Cheat Sheets.
The study included the cheat sheets for the SRS and the API
documentation, and it covered most but not all the COIN types due to
the time limits of the session. Hence, we do not claim that the results
apply to the uncovered sheet and COIN types, but leave their evaluation
to future studies.

Conclusion Validity. This threat concerns the degree to which the
conclusions drawn from the experiment results are correct and proven
with sufficient statistical tests. This includes the “effectiveness metrics“
used for assessing the results of the interoperability analysis tasks. We
based these metrics on the COIN Model, which the author proposed as
the foundation for the analysis approach. This threat to validity holds
especially true for the notion of “correctly extracted COIN” and
“incorrectly extracted COIN”. Hence, the experiment definition of

Evaluation

165

“correctness” must be taken into account when interpreting the results.
Another concern is the “time measurement”, as the reliability of this
metric data affects the assessment of the efficiency of the
interoperability analysis approaches and can also be a threat to validity.
This is because the instrument used in recording the time stamps was
pen and paper used by the participants themselves, even though they
were allocated a specific timeframe for each activity throughout the
whole experiment. Moreover, what can be counted as a threat to the
reliability of measuring time is the fact that students tend to spend all
the given time to work on assigned tasks or even on revising their
answers, which may affect the preciseness of our conclusions
regarding the efficiency of the approach.

7.4 Survey and Initial Controlled Experiment

In this section, we present a research study that included both a survey
and an initial controlled experiment that we used for evaluating our
proposed guidelines for improving API documentation. This study
evaluated H6, H7, and H8. Thus, we will describe the study goal and
research questions, its design, data analysis, and the threats to validity.

Note that these two studies have been completely designed by the
author of this Ph.D. thesis; however, the execution was performed
under her supervision by a master student [Jad16].]. The master thesis
included additional guidelines identified in the literature beside the ones
proposed in this Ph.D. thesis. Hence, we will briefly describe the studies
and their results only with respect to the proposed content guidelines in
this thesis. For further information about the materials of the two
studies, see their web page [Abu16b].

7.4.1 Objective and Research Questions

The main goal of this study, formulated by means of the GQM goal
template, was to analyze our guidelines for improving the content of API
documentation for the purpose of evaluation with a focus on their
perceived and actual effect on the effectiveness and efficiency of
conceptual interoperability analysis from the perspective of software
developers in the context of a survey with practitioners and an initial
controlled experiment with students. That is, we wanted to know if our
proposed content guidelines (see Subsection 6.3.3) have the potential
to produce more effective and efficient conceptual interoperability
analysis results compared to not applying them. In line with the goal,
our research questions are as follows:

RQ6 (Effectiveness): Does implementing the guidelines for improving
the content of API documentation enable software developers to detect
conceptual constraints more effectively compared to not applying
them?

Evaluation

166

RQ7 (Efficiency): Does implementing the guidelines for improving the
content of API documentation enable software developers to detect
conceptual constraints more efficiently compared to not applying them?

RQ8 (Acceptance): Do practitioners perceive the guidelines for
improving the content of API documentation as enhancing the
usefulness and ease of use of the analyzed API documentation?

In order to achieve the stated goal and answer the aforementioned
questions, we performed our research study in two parts as follows:

Research Part 1 (Survey study). In this part, we systematically
explored the practitioners’ acceptance of the value of the guidelines
(RQ8). The result of this part directed us to choose a subset of the
guidelines to further evaluate them in the next research part.

Research Part 2 (Initial controlled experiment). In this part, we
performed a controlled experiment with a small number of students to
get an indication of the guidelines’ actual effect on the conceptual
interoperability analysis results (RQ6 and RQ7).

Next, we will describe the design, execution process, and results for
both research parts.

7.4.2 Survey Study

Study Design

Study goal. We aimed at answering RQ8, which we stated earlier in
Subsection 7.3.1. In order to do so, we needed to collect data from
software developers in practice.

Research method. We performed a survey by means of structured
interviews with a sample of software developers. Such a method is
helpful for collecting evidence and drawing generalizable results about
our guidelines. The survey started with the preparation, where a
number of software developers in the industry with experience in using
APIs were invited to participate in the study after we briefly explained it
and its goals. Next, the execution was performed by the master student
according to the structured interviews we had designed. He explained
each guideline with an example, then asked the practitioners about their
perceived value of it.

Target population. Our target population were software developers
who used API and read API documentations in their daily work routine.
We invited developers from different software companies. We had our
invitation accepted by 20 practitioners whose job titles included intern,
software developer, software architect, and software development lead.

Evaluation

167

Their experiences varied from 1 year to 10 years, and included
experience in both software engineering and usage of different APIs.

Evaluation metrics. To measure the acceptance of the guidelines, we
used a subset of the metrics defined in the TAM model for ease of use
and usefulness. This subset is the same as the one we used in the
multi-controlled experiment acceptance metrics (see Figure 43).

Statistical hypotheses. In this study, we intended to answer the
previously stated research questions, namely RQ6, RQ7, and RQ8. In
order to do this, we derived the statistic null hypotheses (H0) and the
corresponding alternative hypotheses (H1) from the stated research
questions. Note that the arithmetic median of acceptance is denoted by
μ and represents the answer on a response scale ranging from 1
(Strongly disagree) to 5 (Strongly agree). Thus, our hypotheses are as
follows:

H8.1,0 (Guideline effect on Ease of Use): μ = 3 and H8.1,1 : μ > 3

H8.2,0 (Guideline effect on Usefulness): μ = 3 and H8.2,1 : μ > 3

Data collection and questionnaire. The answers of each interviewee
were collected in a sheet, then all answers from all interviews were
saved to an Excel sheet. The questionnaire included three parts (i.e.,
demographic questions, ease-of-use questions about the guidelines,
and usefulness questions about the guidelines). For the questionnaire
and the data collection sheet, see the study web page [Abu16b].

Execution and Results

Pilot study and execution. We ran a pilot with four participants from
industry to get their feedback on the questionnaire’s understandability,
length, and complexity. The results showed that there were no reported
issues at all and the estimated time for the interview session was about
40 minutes. Following this pilot, the interviews were performed in person
during July 2016.

Results for acceptance of the content guidelines. The collected data
was analyzed descriptively and statistically as seen in Table 21. As the
normality test showed that the collected data are not normally
distributed, we used the one-sample Wilcoxon signed-rank test. This
test aims at checking if the agreement answers on the guidelines’ effect
on ease of use and usefulness are statistically significant.

Evaluation

168

Table 21 Results of the survey on the guidelines for improving API documents

Guideline ID a Acceptance Median
H8 test statistics b

Z P-value

CG1
Ease of Use (H8.1) 5 190.0 0.000***
Usefulness (H8.2) 5 190.0 0.000***

CG2
Ease of Use (H8.1) 5 186.0 0.000***
Usefulness (H8.2) 5 167.0 0.000***

CG3
Ease of Use (H8.1) 5 171.0 0.000***
Usefulness (H8.2) 5 171.0 0.000***

CG4
Ease of Use (H8.1) 4 102.0 0.001***
Usefulness (H8.2) 4.5 132.0 0.001***

CG5
Ease of Use (H8.1) 4 153.0 0.000***
Usefulness (H8.2) 5 171.0 0.000***

CG6
Ease of Use (H8.1) 5 210.0 0.000***
Usefulness (H8.2) 5 210.0 0.000***

CG7
Ease of Use (H8.1) 4.5 153.0 0.000***
Usefulness (H8.2) 4 105.0 0.001***

CG8
Ease of Use (H8.1) 5 210.0 0.000***
Usefulness (H8.2) 5 210.0 0.000***

CG9
Ease of Use (H8.1) 4 74.0 0.004**
Usefulness (H8.2) 4 87.0 0.003**

a See guidelines and their IDs in Subsection 6.3.3
b One-sample Wilcoxon signed-rank test H0: median (all respondents) = 3
(sometimes); * p < 0.05 ; ** p < 0.01, *** p < 0.001

According to the presented results, all null hypotheses were rejected.
That is, it was revealed that there is a consensus among practitioners
on the value of our proposed content guidelines for enhancing the ease
of use and usefulness of API documents. The agreement on accepting
our guidelines is of high statistical significance, ranging from 0.00 to
0.003.

We decided to select a subset of these content guidelines to further
evaluate their actual effect on the results of conceptual interoperability
analysis. Our selection criterion was that the guidelines must be fully
accepted with very high significance. That is, the guideline has to have
the median value = 5 for both its perceived ease of use and
effectiveness, and has to have its related null hypotheses rejected at p-
value = 0.0. Thus, the guidelines we selected for the next step of the
evaluation were CG1, CG2, CG3, CG6, and CG8. See [Jad16] for
further descriptive analysis and charts.

Evaluation

169

Threats to Validity

Construct validity. To avoid the risk of using improper measures
(“researcher bias”), we used reliable metrics for acceptance (i.e., TAM)
and followed the GQM approach. We also had the study design peer-
reviewed by a second researcher with experience in empirical software
engineering.

Internal validity. To avoid “experimenter bias”, we designed our
interview to be structured to ensure that we would not get different
results between the interviews. Furthermore, we evaluated the survey
in pilot studies to assess the understandability of the questionnaire.
Another concern is “misinterpretation” of our questions during the
interview. To mitigate this issue, we allowed the participants to read the
guidelines by themselves besides receiving our verbal explanation.

External validity. The number of participants in the study was 20
software developers with various levels of experience in using different
types of APIs and reading their documentation. Although the results
showed high statistical significance, we realize that performing further
surveys with a larger sample size would increase confidence in the
“sample representation” and would allow better generalizability of the
results.

7.4.3 Initial Controlled Experiment

In this subsection, we present our further evaluation of the selected
subset of guidelines (i.e., CG1, CG2, CG3, CG6, and CG8) using an
initial controlled experiment. We implemented these selected
guidelines in a new version of an already existing API document.

Experimental Context

Study goal. We aimed at answering RQ6 and RQ7, which we stated
earlier in Subsection 7.3.1. In order to do so, we needed to experiment
with the effect of applying the selected guidelines on the conceptual
interoperability analysis results.

Experimental context. The experiment was performed with eight
master students at the University of Kaiserslautern, Germany (TU KL),
on a voluntary basis.

Experimental Setup

Study variables. For this designed controlled experiment, we defined
the variables as follows:

Evaluation

170

Dependent variables: the effectiveness and efficiency of the conceptual
analysis results.

Independent variables: the input of the API document analyzed for the
conceptual analysis.

Statistical hypotheses. To answer RQ6, and RQ7, we derived the
statistical null hypotheses (H0) and the corresponding alternative
hypotheses (H1). Note that the arithmetic mean of the effectiveness and
efficiency of the analysis using the modified input according to the
selected guidelines is μb, while μa denotes the mean of the
effectiveness and efficiency of the analysis using the original API
document without applying the selected guidelines. Thus, our
hypotheses are as follows:

H6.1,0 (Guideline effect on Analysis Effectiveness): μb ≤ μa and H6.1,1: μb > μa

H6.2,0 (Guideline effect on Analysis Efficiency): μb ≤ μa and H6.2,1: μb > μa

Operationalization (Evaluation metrics). As stated previously, the
comparison in H6 and H7 is between analysis using modified API
documents using our guidelines and analysis using the original API
documentation without applying our guidelines. In order to perform the
comparison, we needed to have specific metrics that can be calculated
from the results produced by the participants in the experiment. In order
to evaluate the effectiveness in H6, we used the following two basic
metrics for measuring the correctness of the analysis:

– True positive (TP): a COIN/mismatch instance that is correctly
identified as a COIN/mismatch instance

– False positive (FP): a non-COIN/non-mismatch that is incorrectly
identified as a COIN/mismatch instance

On the other hand, we evaluated efficiency in H7 by directly using a
basic cost metric, namely in minutes spent on the task.

Experimental design. According to our independent variables, we
have two different input artifacts for the conceptual analysis task.
Hence, we designed the experiment with two groups accordingly.
Group A (control group) applied the conceptual analysis tasks to the
original API document (i.e., the original SoundCloud API document).
Group B (experimental group) performed the same analysis tasks,
but was given the modified API documents (i.e., a new version that we
had created for the SoundCloud API document).

Participants (Subjects). The participants were eight master-level
students from the CS Department of TU Kaiserslautern, who
participated on a voluntary basis. All of them had participated in
software engineering projects and all had experience in reading UML

Evaluation

171

diagrams. Some of them (3 students) had basic experience in software
reuse (i.e., 1-2 years of experience) and all reported having a level of 4
out of 5 with regard to English proficiency. In order to monitor the
influence of the participants on the experimental results, more
information was gathered about the participants by asking them to fill
out a briefing questionnaire before the experiment was conducted. Note
that the 8 participants were randomly assigned to the groups and none
of them had been known to the experimenter before. The participants
did not know about the differences between the groups either.

Experimental procedure. The time allocated to the experiment
session was 90 minutes, which included: (1) Preparation (20 minutes),
which started with an introduction for the students about the concepts
of interoperability analysis and clarification of their role in the
experiment. Then the briefing questionnaire was filled out by the
participants. (2) Execution (30 minutes), which started with task
assignment, where the participants received materials explaining their
task and procedures in detail. Throughout the execution, the
experimenter recorded observations regarding plausible disturbing
factors, such as the participants’ emotions and events. (3) Finalization
(10 minutes), where the debriefing questionnaire was filled out by the
participants to get their feedback on the task and the input document.

Experimental tasks. During the experiment, the participants played
the role of software architects/analysts and performed the conceptual
analysis task. All participants brought their laptops as we had requested
in the invitation. We gave each participant a copy of the digital .html
files for the API document version assigned to their group. Then we
handed the participants the printed material, which included the task
description and an experiment sheet. After reading the question, the
participants were to find the answer from the API document and fill in
the answer in its dedicated space in the printed material.

– Task 1: All groups were to read the digital API document on their
laptops.

– Task 2: All groups were to read the questions in the printed
experiment sheet, which contained questions about some
conceptual constraints of the SoundCloud API.

– Task 3: All groups were to look for the answer in the API document,
then document it in the allocated space in the question sheet.

Materials. Different artifacts were used to execute the experiment and
collect the data. These included:

– A briefing questionnaire, which was the first input filled out by the
participants and which was aimed at collecting information about
their characteristics and background.

Evaluation

172

– A debriefing questionnaire, which was the last artifact filled out by
the participants after the experiment session to collect their
feedback and experience on the analysis input.

– The digital input examples, which were analyzed by the participants
of the groups on their laptops.

– The Experiment Sheet, which included 11 questions about
conceptual constraints and space for answering the questions.

Along with these materials, there was a non disclosure agreement and
an informed consent form. For the experimental materials, see
Appendix I.1.

Analysis Results

Data Analysis Procedure. One of the most important steps in data
analysis is to evaluate the dependent variables of the participants’
analysis results. Therefore, we developed a reference solution for the
questions on the experiment sheet (i.e., see Appendix I.2) and assigned
a weight to each question (29 points in total). After evaluating the
answers of the eight participants according to the reference solution,
we ran some descriptive analyses for the data, but no statistical
analysis, as the sample size is too small and the error rate would be
very high.

Effectiveness results (H6). By analyzing the results of the eight cases,
we found that, on average, the correctness results of Group B (using
API documents modified according to our guidelines) were better than
the results of Group A (using the original API document). That is, Group
B scored an average of 20.5 out of 29 (70.7% correctness), while Group
A scored 10.75 out of 29 (37.1% correctness). In other words, Group B
produced results that were 33.6% more correct than Group A. This
indicates that our evaluated content guidelines do have the potential to
improve the effectiveness of conceptual interoperability analysis.

Efficiency results (H7). The data collected about the time spent on
tasks indicates a minor improvement. On average, Group B (using API
documents modified according to our guidelines) spent 26 minutes,
while Group A (using the original API document) spent 27 minutes. This
is a small 3.7% improvement on efficiency. Hence, there is not enough
evidence on the ability of our evaluated content guidelines to introduce
an improvement effect on the efficiency of the analysis task of API
documents. This might be related to the typical tendency of students to
spend all given time working on tasks even if they were actually done.

Acceptance. When analyzing the debriefing questionnaire data for the
eight participants, we found that Group B had an increase (ranging from
10% to 12%) in the feedback provided on the perceived ease of use

Evaluation

173

and usefulness of the documents in producing the results (see Table
22).

Table 22 Acceptance results from the debriefing questionnaire

Acceptance Variable Group A Group B

Perceived ease of use of the API document 70% 80%

Perceived efficiency in analyzing the API document 55% 65%

Perceived effectiveness in analyzing the API document 60% 72.5%

Threats to Validity

Construct Validity. This threat includes “researcher bias”, which was
introduced by the experimenter (who was also the author of the
guidelines under experiment), might have influenced the design of the
experiment unconsciously so she could prove her claimed hypotheses.
In order to alleviate this effect, the experiment design was peer-
reviewed, and reliable test instruments (e.g., TAM) and the GQM
approach were used.

Internal Validity. This threat includes “evaluation bias”, which is about
influencing the findings by subjective evaluation for the collected data.
Hence, we developed a reference solution to ensure objective
evaluation of the data. In addition, “sample selection” can threaten the
internal validity if the participants are assigned to groups in a biased
way. Hence, we randomly assigned the participants to the groups.

External Validity. This threat includes concern about the
“representative sample”, as the experiment participants were students
and not practitioners. Also, there is “case bias”, which may affect the
generalizability of the achieved results by limiting them to the specific
API example used in this experiment (i.e., the SoundCloud API
documentation). An additional concern is “included guidelines bias”,
which represents an issue related to the generalizability of the results
due to the fact that the study did not cover all the content and
presentation guidelines proposed in Subsection 6.3.3. Hence, we do
not claim that the results apply to the uncovered guidelines, but leave
their evaluation to future studies.

Conclusion Validity. This threat includes concern about “time
measurement”, as the reliability of this metric data affects the
assessment of the efficiency of the interoperability analysis approaches
and can also be a threat to validity. This is because the instrument used
in recording the time stamps was pen and paper used by the
participants themselves, even though they were allocated a specific
time for each activity throughout the whole experiment. Moreover, what
can be counted as a threat to the reliability of measuring time is the fact
that students tend to spend all given time to work on assigned tasks or

Evaluation

174

even on revising their answers, which may affect the preciseness of our
conclusions regarding the efficiency of the approach.

7.4.4 Summary

In this section, we presented a research study that combined a survey
with practitioners and an experiment with students in order to
investigate the perceived and the actual value of our proposed content
guidelines for improving API documentation. We included all nine of our
content guidelines in the survey and got confirmation from 20
practitioners from industry on the potential of these guidelines in
improving the results of the conceptual analysis. Although all the
guidelines got statistically significant agreement on their improvement
effect, we chose the top-rated ones for inclusion in the next part of the
evaluation. The second evaluation part was a controlled experiment
performed with a small sample size (N = 8). The control group was
given the original API documentation of SoundCloud, while the
treatment group was given the modified version of the documentation
in which we had implemented our selected content guidelines. Both
groups were asked to answer the same set of questions about some
conceptual constraints of the API. The treatment group results showed
that our implemented guidelines did affect the correctness of the
analysis results compared to the results of the control group. Also, the
participants reported better perception of the ease of use and
usefulness of the API documentation in the analysis task. However, we
did not get enough evidence or indication of the effect of the guidelines
on the efficiency of the analysis. Due to the limited number of
participants, it was not possible to perform statistical tests on the
collected data. Therefore, the experiment results cannot be generalized
and should be interpreted as an indication. In the future, further
experiments on the effect of the guidelines should be performed with a
larger sample size to get generalizable evidence supported by
statistical significance.

7.5 Multiple-Case Study

In this section, we present the evaluation results of H2, which states that
the COIN Model is comprehensive in covering the different types of
conceptual interoperability constraints of software units. We performed
the evaluation by means of a multiple-case study, where we
investigated each sentence in six API documentations from different
domains to identify the types of existing conceptual constraints in these
real-world artifacts. We explained the design of the study and its threats
to validity in detail in Subsection 6.3.2, as its first goal was to utilize it in
developing our ML-based COIN extraction method. In this section, we
will describe the second goal of this study and its related research
questions, data analysis, and discussion.

Evaluation

175

7.5.1 Objectives and Research Questions

The goal of this evaluation, formulated by means of the GQM goal
template, was to analyze the COIN Model for the purpose of evaluation
with a focus on its comprehensiveness in covering the different types of
conceptual interoperability analysis from the perspective of
interoperability researchers in the context of a multiple-case study. That
is, we wanted to know if our proposed model falls short in covering any
conceptual interoperability constraint that actually existed in one of the
API documentation cases that we included in the study. In line with the
goal, our research question is as follows:

RQ1 (Comprehensiveness): Does every existing instance of a
conceptual interoperability constraint in the API document have a
matching category and attribute for it under the proposed COIN Model?

Measures. To answer this question, we used a simple metric, which is
“the percentage of conceptual constraints found that are not covered in
the COIN Model”.

In order to achieve the stated goal and answer the aforementioned
question, we performed our multiple-case study, where we analyzed
each sentence in the six cases against the COIN Model. For more
details on the study design, process, and execution, please refer to
Subsection 6.3.2.

7.5.2 Data Analysis and Discussion

Overall, the multiple-case study showed very positive results with
regards to the comprehensiveness of our proposed COIN Model. The
results of the comprehensiveness analysis are summarized in Table 23.
As seen in the presented results, for all six investigated cases of API
documentation, the percentage of conceptual constraints uncovered by
the proposed COIN Model is 0%. In other words, within the six cases,
the COIN Model achieved 100% coverage for existing types of
conceptual constraints on the systems level, data level, and service
level. The only sentences not covered under the model relate to non-
conceptual information (e.g., references, technical recommendations,
development examples, etc.). This strongly indicates the capability of
our COIN Model to offer a solid foundation for analyzing currently
published documentations about interoperable software units.

When we compare our COIN Model to other existing models of
conceptual interoperability (see Section 4.3), we find in addition that the
COIN Model is more comprehensive. In other words, it covers more
conceptual categories and attributes than any of the other models. As
mentioned earlier, the existing models and classifications of
interoperability found in the literature are rather abstract compared to

Evaluation

176

the detailed attributes and description of our model. Hence, the COIN
Model paves the way for practitioners to benefit from its detailed
categories and attributes for their analysis purposes in software
integration projects.

Table 23 COIN Model comprehensiveness data analysis

API Document (Case) No. of sentences
Percentage of

conceptual
constraints

Percentage of
uncovered
conceptual
constraints

Sound Cloud 219 35.9% 0%
GoogleMaps 473 37.0% 0%
AppleWatch 360 59.2% 0%

Eclipse Plugin 651 71.0% 0%
Skype 325 63.4% 0%

Instagram 255 58.4% 0%
Total 2283 58.0% 0%

With regard to the generalizability of our results, we included six cases
of API documents (i.e., SoundCloud, GoogleMaps, Skype, Instagram,
AppleWatch, and Eclipse-Plugin Developer Guide) from two different
domain types (web service APIs and platform APIs). Thus, the results
are very likely to be representative of currently shared API
documentation (which is a type of public documentation for
interoperable software units). However, further case studies with larger
numbers of sentences are needed to generalize the results and to
observe changes over time.

7.6 Summary

In this chapter, we presented our empirical evaluation contributions for
this Ph.D. work. We started by presenting our multi-run controlled
experiment, which we used to evaluate the hypothesized benefits of our
systematic approach for conceptual interoperability analysis. In
particular, we tested our hypotheses about the effectiveness, efficiency,
and acceptance of our approach. The results of the experiment show
that software architects and analysts can produce more correct and
complete analysis results in less time when they use the proposed
systematic approach of COINA. The results have also shown that the
approach is perceived as useful and easy to use.

The second study we presented in this chapter included a survey and
a controlled experiment to evaluate both the perceived and the actual
effect of applying our proposed content guidelines. The survey showed
statistically significant agreement from practitioners about the value of
applying the guidelines. The guidelines rated top by the survey
participants were further evaluated through the controlled experiment.
The results of the experiment show a strong indication of the actual
effect of applying the guidelines on the effectiveness of conceptual

Evaluation

177

interoperability analysis. Due to the small number of experiment
participants, it was not possible to show the statistical significance.

Finally, we presented a further analysis for our multiple-case study data
in order to evaluate the comprehensiveness of our COIN Model in
covering the existing conceptual constraints in current API documents.
The results were very positive as in all six cases, the COIN Model
showed 100% coverage of the cases’ conceptual constraints.

179

8 Summary

In this chapter, we will summarize our thesis contributions and major
results, discuss some ideas for potential future work, and finally provide
concluding remarks.

8.1 Contributions and Results

Successfully integrating a software system with an existing software
system requires more than resolving any technical mismatches. It
requires identifying and resolving the conceptual mismatches that might
result in worthless technical integration and costly rework. The overall
goal of this Ph.D. work was to support software architects and analysts
in performing effective and efficient conceptual interoperability analysis
in black-box integration projects.

Foundation Contribution

We have contributed a conceptual model for conceptual interoperability
constraints, the “COIN Model”. It represents a basis for all the
subsequent contributions of this thesis. The model captures the notion
of a conceptual constraint and its relations with interoperable software
elements, software types, and mismatch types. We evaluated the
model’s comprehensiveness in covering existing conceptual
constraints in current publicly shared documentations of interoperable
software units.

Methodical Contributions

To achieve our goal, we proposed the COINA Framework for supporting
conceptual interoperability analysis. This framework includes two
components.

The first component of COINA supports providers of black-box
interoperable software units in performing in-house preparation by
proactively sharing comprehensive documents about the conceptual
constraints of their units. This is achieved with the help of our
contributed methods, which facilitate extracting the COINs of a software
unit from its documentation. One contributed extraction method is
based on our pre-defined templates, which identify COINs from
internally shared UML diagrams. The other contributed extraction
method is based on the ML COIN Classification Model we produced,
which identifies COINs automatically from NL text of publicly shared API
documents. This method showed very promising results as it achieved

Thesis goal

Summary

180

an accuracy of 82% in automatically detecting seven COIN classes and
87% in detecting two COIN classes. We further support providers with
guidelines to improve the API documentation with regard to the content
and presentation of conceptual interoperability constraints.

The second component of COINA supports third-party clients in
performing successful conceptual interoperability analysis that reveals
the conceptual mismatches existing between two software units. This
is achieved with the help of our proposed systematic algorithm-based
analysis approach, which we support with cheat sheets and
documentation templates for the COINs and the mismatches. It offers
detailed guidance for inexperienced architects and analysts to manually
extract the COINs of two software units and map them in order to find
existing mismatches.

Technical Contributions

To bring our methodical ideas to practical life, we implemented an add-
in for the Enterprise Architect architecture modeling tool. This tool
allows the semi-automatic extraction of conceptual constraints from
UML diagrams. By implementing our contributed formal COIN
Extraction Templates, the architects can determine the software
interoperable elements that they are looking for by finding and
documenting their constraints automatically.

In addition, we extended our technical contribution by implementing an
add-in tool for the Chrome web browser to make our proposed ML-
based COIN extraction method practical. This tool embeds our
contributed Machine Learning COIN Classification Model. Thus, it
allows architects to select natural language sentences in an API
document and choose the COIN types they are looking for, and the tool
then automatically reports if the selected sentences have such COINs.

Empirical Evaluation Contributions

We evaluated parts of our contributions in a number of empirical
studies. We performed a multi-run controlled experiment to evaluate our
proposed systematic approach for detecting conceptual mismatches.
The results of this experiment show that our approach has a statistically
significant effect on enhancing both the effectiveness and efficiency of
the analysis results.

In addition, we performed a survey to evaluate the perceived effect of
our proposed content-related guidelines. The survey results provided
us with statistically significant agreement from practitioners on the
perceived usefulness and ease of use of API documents when applying
our guidelines. We further evaluated the guidelines rated top by the
practitioners through a controlled experiment with a small number of
participants. The experiment results show a strong indication of the

Summary

181

actual effect of our selected content guidelines on the correctness of
the results of conceptual interoperability analysis.

Moreover, we evaluated the comprehensiveness of our proposed COIN
Model within a multiple-case study. The results that we derived from the
six cases show that our model is solid in covering the different
conceptual constraints (100% coverage).

8.2 Benefits and Limitations

In this subsection, we will shed light on the main benefits and limitations
of our research work and contributions.

Overall, this Ph.D. research has great strength from the scientific
research point of view. This is reflected in the fact that all of our included
research studies (the SLR, the surveys, the multiple-case study, and the
experiments) were methodologically rigorous and systematic studies. This
minimizes bias and threats to the validity of our results and findings. It also
supports traceability between the different activities and our reported results
and derived conclusions. Thus, it enables future researchers to independently
replicate our work and compare their results with ours.

With regard to the practical benefits of our work, we mainly expected
and partially validated that the COINA Framework has the capability to
increase software architects’ effectiveness (in terms of completeness
and correctness of the analysis results) and efficiency (in terms of time
and effort spent) in identifying the conceptual constraints and
mismatches of their software systems. Beside this main practical
advantage, we believe that the added value of COINA from the
practitioners' point of view includes the following aspects:

- Extensible framework. The components of the COINA Framework
are designed to allow flexible extension. For example, the
Interoperability Knowledge Base (IKB), which we introduced in
Subsection 6.3.1, the COIN Extraction Templates and can be easily
maintained and extended by architects and domain experts. That
is, they can add further templates to cover extra input types (e.g.,
templates for automatically extracting COINs from structured SRS
documents). Moreover, the COIN Corpus can also be extended
with further manually labeled NL sentences to increase the
prediction accuracy of the classifier model.

- Technology-independent conceptual and methodological support.
The supporting methods, cheat sheets, and templates offered by
the COINA Framework will work for any software unit regardless of
its implementation technology. For example, the COIN Extraction
Templates can be implemented for modeling languages other than
the UML. Also, the ML COIN Classification Model and its tool can

Summary

182

be used to analyze Java API documents or .Net API documents.
Add to this that the COIN Model is designed to cover all types of
conceptual constraints in any software unit regardless of its domain
or size.

- Experience-independent analysis. The COINA Framework
provides detailed guidelines on how to apply it and use the
supporting tools it offers. Hence, architects and analysts with
limited experience can follow the directions and easily learn how to
perform effective preparation for a software unit as well as effective
analysis for mismatches between software units.

- Ready-to-use shared documents. The COIN Portfolio is the result
of proactive preparation of interoperable software units, which
takes place before the need for interoperation arises. Hence,
having interoperability-related conceptual information all set and
ready to use accelerates the analysis and the building of
interoperation among systems. Accordingly, providers improve
their business impact and competitiveness.

- Traceable and repeatable analysis results. Our proposed systematic
analysis approach allows practitioners to trace the results between the
analysis activities. For example, a mismatch recorded in the Mismatches
List can be tracked down to the COIN(s) causing it, which in turn can be
traced to their related interoperable elements. In addition, systematic
analysis allows repeating it by following the exact same steps and
comparing the achieved results to increase the trust and reliability of the
decisions made. These well-documented results and replications are a
form of saving interoperability analysis experiences, which can be
used for training purposes, to reflect on performance, and to plan
future improvements of analysis-related activities.

- Consistent documentation. The standard documentation templates
proposed by the COINA Framework for recording the extracted COINs
and the detected mismatches enable consistency. This consistency is
achieved within the analysis results of an integration project and
among different integration projects. Obviously, this makes it easier
to learn how to read and use the documents and where to locate
specific pieces of information in it. It also enables comparison
between the results achieved by analyzing multiple candidate units.
Accordingly, this supports making trade-offs and arguing reasons
for selecting a specific candidate over others.

Despite the benefits of the COINA Framework, it does have some
limitations that we could not resolve due to the time and resource
constraints of this PhD work. We describe these limitations as follows:

- Limited context of COINA. The framework currently only offers
support for conceptual interoperability analysis in the context of
black-box integration. For example, the extraction methods do not
cover input artifacts like source code or activity log, which would be

Summary

183

available in white-box integration. However, the extensibility of the
framework allows extending it to include such artifacts. Accordingly,
the supporting tools and guidelines would have to be extended, too.

- Limited extraction templates for UML diagrams. The proposed set
of templates is initial and basic, which may lead to false negatives
in the extraction results. That is, a COIN instance might not be
addressed by our predefined COIN Extraction Templates, so it may
get missed in the extraction process. To alleviate this issue, the
framework’s modularity allows extending its IKB with more
templates as needed. For example, templates can be introduced to
cover further UML diagrams (e.g., state machine diagrams,
composite structure diagrams, etc.), further COIN types (e.g.,
technical, business, etc.), and different documents with further
abstraction levels (e.g., high-level architecture documents).

- Input-sensitive. The results of the COIN extraction method from
UML diagrams is subjective regarding the quality of the input
assumed to exist (i.e., architectural documentation). For example,
incomplete UML diagrams will lead to missing information in the
created COIN Portfolio that is shared with clients. Although we
hypothetically assumed that the input is complete and correct, we
are still working on mitigating this challenge by further including
other input artifacts (i.e., the API documentation and the SRS) in
order to complement the extraction results.

- Limited size of the COIN Corpus (ground truth). It is known in the ML
field that the larger the corpus, the better the accuracy results. Also, the
more classification classes you want to train the machine classifier on
identifying, the more training data it must be fed. This explains the higher
accuracy we achieved using the Two-COIN Corpus compared to the
Seven-COIN Corpus, even with the same number of sentences in both.

- Unbalanced number of instances for each class in the corpus. As noticed,
the number of instances for the COIN classes is not balanced in the corpus.
That is, dominant classes (i.e., Not-COIN, Dynamic, and Semantic)
contribute the majority of the sentences in the data set (i.e., 91%), whereas
the other classes (i.e., Structure, Syntax, Quality, and Context) are smaller
and share the remaining 9% of the corpus. This affects the classification
accuracy of classes with the fewer instances.

- Limited automation capability for mapping the COIN Portfolios.
Although we presented an example for the potential of automating the
mapping activity to detect conceptual mismatches, full automation for this
activity is very difficult. On the one hand, formalizing the whole COIN
Portfolio document for each interoperable software unit is a tedious and
time-consuming task, which requires knowledge and experience in
formalization languages. On the other hand, this requires semantic
descriptions of all COINs with all their possible values. Nevertheless, we

Summary

184

consider our contributed mapping approach an important computer
science contribution, as it formalizes the mapping process in an algorithm.

- Limited context of the ML-based support. The current version of our
classification model cannot be used to identify COINs from any API
document. This is due to the fact that our corpus is relatively small
(i.e., 3k sentences) and is built from six cases only (which has
specific characteristics with regards to company size, document-
writer features like his language or role, the maturity of the API,
etc.). Hence, it will not be appropriate to generalize the features of
the sentences in our small corpus to all existing sentences of all
API documents. Thus, we intend in the future to enlarge the corpus
(e.g., hundreds of thousands of sentences) to cover a wider range
of API documents with different characteristics and to update the
classification model with further features based on the new
sentences. Accordingly, our tool support is currently reliable in the
context of our six cases and their similar cases.

8.3 Future Work

In this section, we will describe our ideas for potential future work and
directions aligned with the contribution areas of this thesis.

In our foundation contribution, the COIN Model, we focused on building
a solid basis for the analysis-related activities of the conceptual level of
interoperability. The model could be extended to better support other
activities (e.g., resolution design and implementation) and other levels
of interoperability (e.g., technical and organizational).

With regard our methodical contributions within the COINA Framework,
Section 8.2 described some limitations that open the door for many
possible improvements, including the following:

- Extending the automatic COIN extraction methods (both the template-
based method and the ML-based method) to cover artifacts other than
software architecture diagrams and API documents. For example, they
could be extended to include other input like the software requirements
specification (which describes goals, data, interaction, structure, etc.)
using different models like Business Process Modelling Notations
(BPMN). It could also be extended to automatically extract COINs from
source code and transaction logs.

- Extending the ML-based COIN extraction method to recognize the
perspectives to which a COIN is related. This could be a tough task to train
the machine on recognizing, due to the lack of standardization in the
format and structure of API documents. However, it may be potentially
possible to recognize them with the help of the special HTML tags used
for formatting the heading that declares a new service of the system.

Summary

185

- Extending the systematic analysis approach to support the conceptual
interoperability analysis in the context of white-box integration. Thus,
further cheat sheets and guidelines could be provided to support the
manual extraction of COINs in this context (e.g., reverse engineering
COINs from code, execution logs, history reports, or even from
StackExchange entries and Wikis).

- If the aforementioned extensions were performed, then our supporting
tools could also be extended. For example, the add-in for the Chrome
browser could be extended to search for COINs in source code pages, too.

On the empirical evaluation level of our contributions, we see room for
the following extensions:

- Extending our multi-run experiment with further experiments that cover
more elements of our systematic analysis approach. For example, include
the Cheat Sheet for UML and cover the rest of the uncovered types of
COINs in the analyzed input.

- Extending our experiment for evaluating the guidelines with further
experiments that include larger numbers of participants. These further
experiments could also include the presentation guidelines, which we did
not evaluate. Moreover, it could be of benefit to run the experiments with
experts from industry rather than with students to draw a clear border
between the performance results of experienced and inexperienced
participants.

- Extending the experiments to include our technical contributions (i.e., the
add-ins for Enterprise Architect and for the Chrome web browser). That
is, both tools still need to be evaluated with regard to their actual effect on
enhancing the analysis results. Although the add-in for the Chrome web
browser has been evaluated with regard to its acceptance and the results
have shown significant agreement on its value (see the master thesis
supervised by the author of this thesis [Nai17]), the acceptance of the add-
in for the Enterprise Architect has not been evaluated yet.

187

References

[AA96] Ahmed Abd-El-Shafy Abd-Allah. Composing heterogeneous
software architectures. PhD thesis, University of Southern California,
1996.

[AAHR16] Hadil Abukwaik, Mohammed Abujayyab, Shah Rukh
Humayoun, and Dieter Rombach. Extracting conceptual interoperability
constraints from API documentation using machine learning. In
Proceedings of the 38th International Conference on Software
Engineering Companion, pages 701–703. ACM, 2016.

[AANR17] Hadil Abukwaik, Mohammed Abufouda, Thejashree Nair,
and Dieter Rombach. How practical is it? Machine learning for
identifying conceptual interoperability constraints in API documents,
2017. [Online: http://abukwaik.com/site/wp-
content/uploads/2017/04/Abukwaik-JSS-2017.pdf; accessed 14-Feb-
2017].

[AAR15] Hadil Abukwaik, Mohammed Abujayyab, and Dieter Rombach.
Coinsextractor: The architects’ buddy in identifying conceptual
interoperability constraints. In Proceedings of the 2015 European
Conference on Software Architecture Workshops, page 69. ACM,
2015.

[AAR16] Hadil Abukwaik, Mohammed Abujayyab, and Dieter Rombach.
Towards seamless analysis of software interoperability: Automatic
identification of conceptual constraints in api documentation. In
Software Architecture: 10th European Conference, ECSA 2016,
Copenhagen, Denmark, November 28–December 2, 2016,
Proceedings, pages 67–83. Springer, 2016.

[AB97] Christopher M Abts and Barry W Boehm. Cots software
integration cost modeling study. 30602:1095, 1997.

[ABG+13] Aldeida Aleti, Barbora Buhnova, Lars Grunske, Anne
Koziolek, and Indika Meedeniya. Software architecture optimization
methods: A systematic literature review. IEEE Transactions on
Software Engineering, 39(5):658–683, 2013.

[Abu14a] Hadil Abukwaik. Empirical evaluation for the conceptual
interoperability analysis approach: A controlled experiment design.
Technical report, 2014.

References

188

[Abu14b] Hadil Abukwaik. Materials of the multiple-case study, 2014.
[Online: http://abukwaik.com/site/multiple-case-study15; accessed 14-
Feb-2017].

[Abu14c] Hadil Abukwaik. Materials of the scoping study, 2014. [Online:
http://abukwaik.com/site/scoping-study14; accessed 14-Feb-2017].

[Abu16a] Mohammed Abujayyab. Extracting conceptual interoperability
constraints from API documentation, 2016.

[Abu16b] Hadil Abukwaik. Materials of the related studies to the API
documentation guidelines, 2016. [Online: http://abukwaik.com/site/api-
guidelines16; accessed 14-Feb-2017].

[Abu16c] Hadil Abukwaik. Software interoperability analysis -
introduction, 2016. [Online: https://www.youtube.com/watch?v=-
WUU8sQmn08; accessed 14-Feb-2017].

[Abu17] Hadil Abukwaik. Coinsextractor demo: Conceptual
interoperability analysis tool for UML, 2017. [Online:
https://youtu.be/hBbKN71TBQw; accessed 14-Feb-2017].

[AFCF05] Carina Alves, Xavier Franch, Juan P Carvallo, and Anthony
Finkelstein. Using goals and quality models to support the matching
analysis during COTS selection. In International Conference on COTS-
Based Software Systems, pages 146–156. Springer, 2005.

[AINT07] Marco Autili, Paola Inverardi, Alfredo Navarra, and Massimo
Tivoli. Synthesis: a tool for automatically assembling correct and
distributed component-based systems. In Proceedings of the 29th
international conference on Software Engineering, pages 784–787.
IEEE Computer Society, 2007.

[AN17] Hadil Abukwaik and Thejashree Nair. Coiner demo: A ML-
based tool for extracting coins from NL text of API documents, 2017.
[Online: https://youtu.be/p9EwOnpidrA; accessed 14-Feb-2017].

[ANR15] Hadil Abukwaik, Matthias Naab, and Dieter Rombach. A
proactive support for conceptual interoperability analysis in software
systems. In Software Architecture (WICSA), 2015 12th Working
IEEE/IFIP Conference on, pages 119–122. IEEE, 2015.

[AR16] Hadil Abukwaik and Dieter Rombach. Tool-supported
extraction of conceptual interoperability constraints of software units
from UML diagrams. Fraunhofer IESE, 2016.

[Ass13] British Sociological Association. Statement of ethical practice
for the British sociological association, 2013.

References

189

[ATR14] Hadil Abukwaik, Davide Taibi, and Dieter Rombach.
Interoperability-Related Architectural Problems and Solutions in
Information Systems: A Scoping Study, pages 308–323. Springer
International Publishing, 2014.

[AZ14] Mohsen Anvaari and Olaf Zimmermann. Semi-automated
design guidance enhancer (sadge): a framework for architectural
guidance development. In European Conference on Software
Architecture, pages 41–49. Springer, 2014.

[B+10] Patti Brooks et al. Standards and interoperability in healthcare
information systems: Current status, problems, and research issues. In
In 5th Midwest Association for Information Systems Conference
MWAIS, 2010.

[BA99] Barry Boehm and Chris Abts. Cots integration: Plug and pray?
Computer, 32(1):135–138, 1999.

[BB91] Bruce H. Barnes and Terry B. Bollinger. Making reuse cost-
effective. 8:13–24, 1991.

[BB01] Michele Banko and Eric Brill. Scaling to very very large corpora
for natural language disambiguation. In Proceedings of the 39th annual
meeting on association for computational linguistics, pages 26–33.
Association for Computational Linguistics, 2001.

[BB12] James Bergstra and Yoshua Bengio. Random search for hyper-
parameter optimization. Journal of Machine Learning Research,
13(Feb):281–305, 2012.

[BCK03] Len Bass, Paul Clements, and Rick Kazman. Software
architecture in practice. Addison-Wesley Longman Publishing Co., Inc.,
2003.

[BGL+96] Victor R Basili, Scott Green, Oliver Laitenberger, Filippo
Lanubile, Forrest Shull, Sivert Sørumgård, and Marvin V Zelkowitz. The
empirical investigation of perspective-based reading. Empirical
Software Engineering, 1(2):133–164, 1996.

[BGRB11] Yérom-David Bromberg, Paul Grace, Laurent Réveillere,
and Gordon S Blair. Bridging the interoperability gap: Overcoming
combined application and middleware heterogeneity. In
ACM/IFIP/USENIX International Conference on Distributed Systems
Platforms and Open Distributed Processing, pages 390–409. Springer,
2011.

[Bhu07] Jesal Bhuta. A framework for intelligent assessment and
resolution of commercial-off-the-shelf product incompatibilities.
ProQuest, 2007.

References

190

[BIPT09] Antonia Bertolino, Paola Inverardi, Patrizio Pelliccione, and
Massimo Tivoli. Automatic synthesis of behavior protocols for
composable web-services. In Proceedings of the the 7th joint meeting
of the European software engineering conference and the ACM
SIGSOFT symposium on The foundations of software engineering,
pages 141–150. ACM, 2009.

[BJPW99] Antoine Beugnard, J-M Jézéquel, Noël Plouzeau, and
Damien Watkins. Making components contract aware. Computer,
32(7):38–45, 1999.

[BJS13] Markus Buschle, Pontus Johnson, and Khurram Shahzad. The
enterprise architecture analysis tool–support for the predictive,
probabilistic architecture modeling framework. In 19th Americas
Conference on Information Systems, AMCIS 2013; Chicago, IL; United
States; 15 August 2013 through 17 August 2013, pages 3350–3364.
Association for Information Systems, 2013.

[Boo05] Grady Booch. The unified modeling language user guide.
Pearson Education India, 2005.

[BOR04] Steffen Becker, Sven Overhage, and Ralf H Reussner.
Classifying software component interoperability errors to support
component adaption. In International Symposium on Component-
Based Software Engineering, pages 68–83. Springer, 2004.

[BP] Antonia Bertolino and Andrea Polini. The audition framework for
testing web services interoperability. In 31st EUROMICRO Conference
on Software Engineering and Advanced Applications, pages 134–142.
IEEE.

[BPGG11] Gordon S Blair, Massimo Paolucci, Paul Grace, and
Nikolaos Georgantas. Interoperability in complex distributed systems.
In Formal Methods for Eternal Networked Software Systems, pages 1–
26. Springer, 2011.

[BPY+03] Barry Boehm, Dan Port, Ye Yang, Jesal Bhuta, and Chris
Abts. Composable process elements for developing cots-based
applications. International Symposium on Empirical Software
Engineering, 2003.

[BR91] Victor Basili and Dieter Rombach. Support for comprehensive
reuse. 6:303–316, 1991.

[BRLM09] Yérom-David Bromberg, Laurent Réveillère, Julia L Lawall,
and Gilles Muller. Automatic generation of network protocol gateways.
In ACM/IFIP/USENIX International Conference on Distributed Systems
Platforms and Open Distributed Processing, pages 21–41. Springer,
2009.

References

191

[CD00] John Cheesman and John Daniels. UML Components: A
Simple Process for Specifying Component-based Software. Addison-
Wesley Longman Publishing Co., Inc., 2000.

[CFGQ04] Juan Pablo Carvallo, Xavier Franch, Gemma Grau, and
Carme Quer. Costume: a method for building quality models for
composite cots-based software systems. In Quality Software, 2004.
QSIC 2004. Proceedings. Fourth International Conference on, pages
214–221. IEEE, 2004.

[CGB+02] Paul Clements, David Garlan, Len Bass, Judith Stafford,
Robert Nord, James Ivers, and Reed Little. Documenting software
architectures: views and beyond. Pearson Education, 2002.

[CH67] Thomas Cover and Peter Hart. Nearest neighbor pattern
classification. IEEE transactions on information theory, 13(1):21–27,
1967.

[Che06] David Chen. Enterprise interoperability framework. In EMOI-
INTEROP, 2006.

[CJ99] Thea Clark and Richard Jones. Organisational interoperability
maturity model for c2. In Proceedings of the 1999 Command and
Control Research and Technology Symposium, 1999.

[CL05] Wesley Chu and Tsau Young Lin. Foundations and advances
in data mining, volume 180. Springer Science & Business Media, 2005.

[Cor10] IBM Corp. IBM SPSS Statistics for windows, version 23.0,
2010.

[CS12] Don Choi and Andrew Sage. A framework for interoperability
assessments in systems of systems and families of systems. 11:275–
295, 2012.

[Dan11] Johnnie Daniel. Sampling essentials: Practical guidelines for
making sampling choices. Sage, 2011.

[DBW89] Fred D Davis, Richard P Bagozzi, and Paul R Warshaw. User
acceptance of computer technology: a comparison of two theoretical
models. Management science, 35(8):982–1003, 1989.

[DG06] Jesse Davis and Mark Goadrich. The relationship between
precision-recall and roc curves. In Proceedings of the 23rd international
conference on Machine learning, pages 233–240. ACM, 2006.

[DGP02] L Davis, Rose F Gamble, and Jamie Payton. The impact of
component architectures on interoperability. Journal of Systems and
Software, 61(1):31–45, 2002.

References

192

[DGR+06] Islay Davies, Peter Green, Michael Rosemann, Marta
Indulska, and Stan Gallo. How do practitioners use conceptual
modeling in practice? Data & Knowledge Engineering, 58(3):358–380,
2006.

[DH09] Uri Dekel and James D Herbsleb. Improving api documentation
usability with knowledge pushing. In Proceedings of the 31st
International Conference on Software Engineering, pages 320–330.
IEEE Computer Society, 2009.

[DKJ05] Tore Dybå, Barbara A Kitchenham, and Magne Jorgensen.
Evidence-based software engineering for practitioners. IEEE Software,
22(1):58–65, 2005.

[DMM08] Marie-Catherine De Marneffe and Christopher D Manning.
Stanford typed dependencies manual. Technical report, 2008.

[DMMM+] Marie-Catherine De Marneffe, Bill MacCartney,
Christopher D Manning, et al. Generating typed dependency parses
from phrase structure parses.

[DSM11] Don A Dillman, Jolene D Smyth, and Leah Melani. Internet,
mail, and mixed-mode surveys: the tailored design method. JSTOR,
2011.

[DW98] Desmond F D’souza and Alan Cameron Wills. Objects,
components, and frameworks with UML: the catalysis approach.
Addison-Wesley Longman Publishing Co., Inc., 1998.

[EMG00] Alexander Egyed, Nenad Medvidovic, and Cristina Gacek.
Component-based perspective on software-mismatch detection and
resolution. IEE Proceedings-Software, 147(6):225–236, 2000.

[FC03] Xavier Franch and Juan Pablo Carvallo. Using quality models
in software package selection. IEEE software, 20(1):34–41, 2003.

[FDRR12] Adriana Maria Figueiredo, Julio C Dos Reis, and Marcos A
Rodrigues. Improving access to software architecture knowledge an
ontology-based search approach. International Journal Multimedia and
Image Processing (IJMIP), 2(1/2), 2012.

[FGM05] Jenny Rose Finkel, Trond Grenager, and Christopher
Manning. Incorporating non-local information into information extraction
systems by gibbs sampling. In Proceedings of the 43rd Annual Meeting
on Association for Computational Linguistics, pages 363–370.
Association for Computational Linguistics, 2005.

References

193

[FI] Architecture Seminar Fraunhofer IESE. Aces-adf. [Online:
https://www.iese.fraunhofer.de/en/competencies/architecture/architect
ure-tools/aces-technologies.html; accessed 18-April-2017].

[For02] Andrew Forward. Software documentation: Building and
maintaining artefacts of communication. University of Ottawa (Canada),
2002.

[Fow95] Floyd J Fowler. Improving survey questions: Design and
evaluation, volume 38. Sage, 1995.

[Fow05] Martin Fowler. Language workbenches: The killer-app for
domain specific languages. 2005.

[GAACB95] Cristina Gacek, Ahmed Abd-Allah, Bradford Clark, and
Barry Boehm. On the definition of software system architecture. In
Proceedings of the First International Workshop on Architectures for
Software Systems, pages 85–94, 1995.

[Gac98] Cristina Gacek. Detecting architectural mismatches during
systems composition. PhD thesis, University of Southern California,
1998.

[GAO95] David Garlan, Robert Allen, and John Ockerbloom.
Architectural mismatch or why it’s hard to build systems out of existing
parts. pages 179–185. Proceedings of the 17th international
conference on Software engineering, ACM, 1995.

[GBPS14] Paul Grace, Justan Barbosa, Brian Pickering, and Mike
Surridge. Taming the interoperability challenges of complex iot
systems. In Proceedings of the 1st ACM Workshop on Middleware for
Context-Aware Applications in the IoT, pages 1–6. ACM, 2014.

[GBS03] Paul Grace, Gordon S Blair, and Sam Samuel. Remmoc: A
reflective middleware to support mobile client interoperability. In OTM
Confederated International Conferences" On the Move to Meaningful
Internet Systems", pages 1170–1187. Springer, 2003.

[GC92] John Gaffney and RD Cruickshank. A general economics
model of software reuse. pages 327–337. 14th international conference
on Software engineering, ACM, 1992.

[GCN09] Wided Guédria, David Chen, and Yannick Naudet. A maturity
model for enterprise interoperability. In OTM Confederated
International Conferences" On the Move to Meaningful Internet
Systems", pages 216–225. Springer, 2009.

[GKM+91] Anne Geraci, Freny Katki, Louise McMonegal, Bennett
Meyer, John Lane, Paul Wilson, Jane Radatz, Mary Yee, Hugh

References

194

Porteous, and Fredrick Springsteel. Ieee standard computer
dictionary,ieee std 610. 1991.

[GMM07] Ricardo J Gonçalves, Jörg P Müller, and Kai Mertins.
Enterprise Interoperability II: New Challenges and Approaches.
Springer, 2007.

[Gro99] The Stanford Natural Language Processing Group. The
Stanford Parser: A statistical Parser. [Online:
https://nlp.stanford.edu/software/lex-parser.shtml; accessed 18-April-
2017].

[GS12] Mark Gabel and Zhendong Su. Testing mined specifications. In
Proceedings of the ACM SIGSOFT 20th International Symposium on
the Foundations of Software Engineering, page 4. ACM, 2012.

[GWZH14] Chushu Gao, Jun Wei, Hua Zhong, and Tao Huang.
Inferring data contract for web-based api. In Web Services (ICWS),
2014 IEEE International Conference on, pages 65–72. IEEE, 2014.

[Han99] Jun Han. Semantic and usage packaging for software
components. In Proceedings of the Workshop on Object-Oriented
Technology. Springer-Verlag, 1999.

[HBH+10] Sylvain Hallé, Tevfik Bultan, Graham Hughes, Muath
Alkhalaf, and Roger Villemaire. Runtime verification of web service
interface contracts. Computer, 43(3):59–66, 2010.

[HCL+03] Chih-Wei Hsu, Chih-Chung Chang, Chih-Jen Lin, et al. A
practical guide to support vector classification, 2003.

[HKN+05] Christine Hofmeister, Philippe Kruchten, Robert L Nord, Henk
Obbink, Alexander Ran, and Pierre America. Generalizing a model of
software architecture design from five industrial approaches. In 5th
Working IEEE/IFIP Conference on Software Architecture (WICSA’05),
pages 77–88. IEEE, 2005.

[HM82] James A Hanley and Barbara J McNeil. The meaning and use
of the area under a receiver operating characteristic (roc) curve.
Radiology, 143(1):29–36, 1982.

[IBB11] Valérie Issarny, Amel Bennaceur, and Yérom-David Bromberg.
Middleware-layer connector synthesis: Beyond state of the art in
middleware interoperability. In Formal Methods for Eternal Networked
Software Systems, pages 217–255. Springer, 2011.

[IEE98] IEEE. IEEE recommended practice for software requirements
specifications. IEEE Std 830-1998, pages 1–40, 1998.

References

195

[Jad16] Sundeep Jadav. Useful and usable API documentation:
empirical evaluation for improving guidelines of API documentation,
2016.

[Jam09] Mohammad Jamshidi. Systems of systems engineering
principles and applications. CRC press, 2009.

[Joa98] Thorsten Joachims. Text categorization with support vector
machines: Learning with many relevant features. In European
conference on machine learning, pages 137–142. Springer, 1998.

[K+95] Ron Kohavi et al. A study of cross-validation and bootstrap for
accuracy estimation and model selection. In Ijcai, volume 14, pages
1137–1145, 1995.

[KCB96] Jyrki Kontio, Gianluigi Caldiera, and Victor R Basili. Defining
factors, goals and criteria for reusable component evaluation. In
Proceedings of the 1996 conference of the Centre for Advanced
Studies on Collaborative research, page 21. IBM Press, 1996.

[Kin99] Joseph R Kiniry. Leading to a kind description language:
Thoughts on component specification. 1999.

[Kit04] Barbara Kitchenham. Procedures for performing systematic
reviews. Technical report, 2004.

[KM03] Dan Klein and Christopher D Manning. Accurate unlexicalized
parsing. In Proceedings of the 41st Annual Meeting on Association for
Computational Linguistics-Volume 1, pages 423–430. Association for
Computational Linguistics, 2003.

[Kru92] Charles Krueger. Software reuse. 24(2):131–183, 1992.

[Kva08] Steinar Kvale. Doing interviews. Sage, 2008.

[LA99] Oliver Laitenberger and Colin Atkinson. Generalizing
perspective-based inspection to handle object-oriented development
artifacts. In Software Engineering, 1999. Proceedings of the 1999
International Conference on, pages 494–503. IEEE, 1999.

[LASEE00] Oliver Laitenberger, Colin Atkinson, Maud Schlich, and
Khaled El Emam. An experimental comparison of reading techniques
for defect detection in uml design documents. Journal of Systems and
Software, 53(2):183–204, 2000.

[LBCC08] Rikard Land, Laurens Blankers, Michel Chaudron, and Ivica
Crnkovic. Cots selection best practices in literature and in industry. Ín
International Conference on Software Reuse, pages 100–111.
Springer, 2008.

References

196

[LCAC12] Claudia López, Vctor Codocedo, Hernán Astudillo, and
Luiz Marcio Cysneiros. Bridging the gap between software architecture
rationale formalisms and actual architecture documents: An ontology-
driven approach. Science of Computer Programming, 77(1):66–80,
2012.

[LD00] Oliver Laitenberger and Jean-Marc DeBaud. An encompassing
life-cycle centric survey of software inspection. Journal of Systems and
Software, 50(1):5–31, 2000.

[LEEH01] Oliver Laitenberger, Khaled El Emam, and Thomas G
Harbich. An internally replicated quasi-experimental comparison of
checklist and perspective based reading of code documents. IEEE
Transactions on Software Engineering, 27(5):387–421, 2001.

[Lik32] Rensis Likert. A technique for the measurement of attitudes.
Archives of psychology, 1932.

[LW02] Andy Liaw and Matthew Wiener. Classification and regression
by randomforest. R news, 2(3):18–22, 2002.

[Mey92] Bertrand Meyer. Applying’design by contract’. Computer,
25(10):40–51, 1992.

[Mik99] Anna Mikhajlova. Reasoning about object clients and
distributed object interaction. In Proceedings of the Workshop on
Object-Oriented Technology. Springer-Verlag, 1999.

[MLM+04] Edwin Morris, Linda Levine, Craig Meyers, Pat Place, and
Dan Plakosh. System of systems interoperability (sosi): final report.
Technical report, DTIC Document, 2004.

[MRPX08] Kai Mertins, Rainer Ruggaber, Keith Popplewell, and Xiaofei
Xu. Enterprise Interoperability III - New Challenges and Industrial
Approaches. Springer, 2008.

[MS99] Christopher D Manning and Hinrich Schütze. Foundations of
statistical natural language processing, volume 999. MIT Press, 1999.

[MT08] Juha A Mykkänen and Mika P Tuomainen. An evaluation and
selection framework for interoperability standards. Information and
Software Technology, 50(3):176–197, 2008.

[Mur06] Kevin P Murphy. Naive bayes classifiers. University of British
Columbia, 2006.

[Nai17] Thejashree Nair. Industrial evaluation for a tool extracting coins
from API documentation, 2017.

References

197

[NE02] Jeremy W Nimmer and Michael D Ernst. Automatic generation
of program specifications. ACM SIGSOFT Software Engineering Notes,
27(4):229–239, 2002.

[Ng04] Andrew Y Ng. Feature selection, l 1 vs. l 2 regularization, and
rotational invariance. In Proceedings of the twenty-first international
conference on Machine learning, page 78. ACM, 2004.

[oDCIWG98] Department of Defense C4ISR Interoperability
Working Group. Levels of information systems interoperability (lisi).
Technical report, 1998.

[OJ12] Michael P Oakes and Meng Ji. Quantitative methods in corpus-
based Translation Studies: A practical guide to descriptive translation
research, volume 51. John Benjamins Publishing, 2012.

[Ove04] Sven Overhage. UnSCom: A Standardized Framework for the
Specification of Software Components, pages 169–184. Springer Berlin
Heidelberg, 2004.

[OWR+11] Steffen Olbrich, Balthasar Weitzel, Dominik Rost, Matthias
Naab, and Gilb Kutepov. Decmposing interoperability: A quality
attribute in the balance of system usage, operation and development.
Technical report, 2011.

[PD91] Ruben Prieto-Diaz. Implementing faceted classification for
software reuse. Communications of the ACM, 34(5):88–97, 1991.

[PFMM08] Kai Petersen, Robert Feldt, Shahid Mujtaba, and Michael
Mattsson. Systematic mapping studies in software engineering. In
Proceedings of the 12th International Conference on Evaluation and
Assessment in Software Engineering, EASE’08, pages 68–77. British
Computer Society, 2008.

[PKG99] J Payton, R Keshav, and RF Gamble. System development
using the integrating component architectures process. In Proceedings
of the First Workshop on Ensuring Successful COTS Development, Los
Angeles, USA, 1999.

[Pow08] Brenda J Powers. A multi-agent architecture for nato network
enabled capabilities: enabling semantic interoperability in dynamic
environments (nc3a rd-2376). In International Workshop on Service-
Oriented Computing: Agents, Semantics, and Engineering, pages 93–
103. Springer, 2008.

[Pow11] David Martin Powers. Evaluation: from precision, recall and f-
measure to roc, informedness, markedness and correlation. 2011.

References

198

[PVG+11] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss,
V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher,
M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12:2825–2830, 2011.

[PXZ+12] Rahul Pandita, Xusheng Xiao, Hao Zhong, Tao Xie, Stephen
Oney, and Amit Paradkar. Inferring method specifications from natural
language API descriptions. In Proceedings of the 34th International
Conference on Software Engineering, pages 815–825. IEEE Press,
2012.

[RB10] Ben Rubinger and Tevfik Bultan. Contracting the facebook api.
arXiv preprint arXiv:1009.3715, 2010.

[RH09] Per Runeson and Martin Höst. Guidelines for conducting and
reporting case study research in software engineering. Empirical
software engineering, 14(2):131, 2009.

[Rob04] Stephen Robertson. Understanding inverse document
frequency: on theoretical arguments for idf. Journal of documentation,
60(5):503–520, 2004.

[RR07] James Robertson and Suzanne Robertson. Volere
requirements specification template, 2007.

[SA11] Mahmood Sajjad and Khan Azhar. An industrial study on the
importance of software component documentation: A system
integrator’s perspective. 111:583–590, 2011.

[Sam97] Johannes Sametinger. Software engineering with reusable
components. Springer Science & Business Media, 1997.

[Seb02] Fabrizio Sebastiani. Machine learning in automated text
categorization. ACM computing surveys (CSUR), 34(1):1–47, 2002.

[SG03] Bridget Spitznagel and David Garlan. A compositional
formalization of connector wrappers. In Software Engineering, 2003.
Proceedings. 25th International Conference on, pages 374–384. IEEE,
2003.

[Sha95] Mary Shaw. Architectural issues in software reuse: It’s not just
the functionality, it’s the packaging. In ACM SIGSOFT Software
Engineering Notes, volume 20, pages 3–6. ACM, 1995.

[SK96] Kevin J. Sullivan and John C. Knight. Experience assessing an
architectural approach to large-scale systematic reuse. pages 220–
229. Proceedings of the 18th International Conference on Software
Engineering, IEEE, 1996.

References

199

[SMKI02] Giedre Sabaliauskaite, Fumikazu Matsukawa, Shinji
Kusumoto, and Katsuro Inoue. An experimental comparison of
checklist-based reading and perspective-based reading for uml design
document inspection. In Empirical Software Engineering, 2002.
Proceedings. 2002 International Symposium n, pages 148–157. IEEE,
2002.

[Spa] SparxSystems. Enterprise Architect. [Online: http://-
sparxsystems.de/; accessed 14-Feb-2017].

[SRB00] Forrest Shull, Ioana Rus, and Victor Basili. How perspective-
based reading can improve requirements inspections. Computer,
33(7):73–79, 2000.

[SSBD14] Shai Shalev-Shwartz and Shai Ben-David. Understanding
machine learning: From theory to algorithms. Cambridge University
Press, 2014.

[Tea15] LimeSurvey Project Team. Limesurvey: An open source
survey tool, 2015.

[TK01] Simon Tong and Daphne Koller. Support vector machine active
learning with applications to text classification. Journal of machine
learning research, 2(Nov):45–66, 2001.

[TN99] Sotirios Terzis and Paddy Nixon. Semantic trading: Tackling
interoperability problems during system integration. In Proceedings of
the Workshop on Object-Oriented Technology. Springer-Verlag, 1999.

[Tru04] SA True. Planning the future of the world geodetic system
1984. In Position Location and Navigation Symposium, 2004. PLANS
2004, pages 639–648. IEEE, 2004.

[Tur05] Charles Turnitsa. Extending the levels of conceptual
interoperability model. In Proceedings IEEE summer computer
simulation conference, IEEE CS Press, 2005.

[UFBJ10] Johan Ullberg, Ulrik Franke, Markus Buschle, and Pontus
Johnson. A tool for interoperability analysis of enterprise architecture
models using Pi-OCL. In Enterprise Interoperability IV, pages 81–90.
Springer, 2010.

[UY00] Sebastian Uchitel and Daniel Yankelevich. Enhancing
architectural mismatch detection with assumptions. In Engineering of
Computer Based Systems, 2000.(ECBS 2000) Proceedings. Seventh
IEEE International Conference and Workshopon the, pages 138–146.
IEEE, 2000.

References

200

[VHT00] Antonio Vallecillo, Juan Hernández, and José M Troya. New
issues in object interoperability. In European Conference on Object-
Oriented Programming, pages 256–269. Springer, 2000.

[VSBCR02] Rini Van Solingen, Vic Basili, Gianluigi Caldiera, and
H Dieter Rombach. Goal question metric (gqm) approach.
Encyclopedia of software engineering, 2002.

[VTH99] Antonio Vallecillo, José M Troya, and Juan Hernández. Object
interoperability. In European Conference on Object-Oriented
Programming, pages 1–21. Springer, 1999.

[Woo08] RF Woolson. Wilcoxon signed-rank test. Wiley encyclopedia
of clinical trials, 2008.

[WWL+13] Qian Wu, Ling Wu, Guangtai Liang, Qianxiang Wang, Tao
Xie, and Hong Mei. Inferring dependency constraints on parameters for
web services. In Proceedings of the 22nd international conference on
World Wide Web, pages 1421–1432. ACM, 2013.

[YTB99] Daniil Yakimovich, Guilherme H Travassos, and V Basili. A
classification of software components incompatibilities for cots
integration. In Proceeding of the 24th Software Engineering Workshop,
1999.

[Zha04] Tong Zhang. Solving large scale linear prediction problems
using stochastic gradient descent algorithms. In Proceedings of the
twenty-first international conference on Machine learning, page 116.
ACM, 2004.

[ZZXM09] Hao Zhong, Lu Zhang, Tao Xie, and Hong Mei. Inferring
resource specifications from natural language api documentation. In
Proceedings of the 2009 IEEE/ACM International Conference on
Automated Software Engineering, pages 307–318. IEEE Computer
Society, 2009.

201

Appendix

Appendix A: Survey on Software Interoperability Analysis 202
Appendix B: Scoping Study on Interoperability-Related Architectural Problems and Solutions 211
Appendix C: Standard Documentation Templates 213
Appendix D: COIN Extraction Templates from UML Diagrams and their Identification Algorithms 215
Appendix E: COIN Cheat Sheets 229
Appendix F: Mismatches Cheat sheet 236
Appendix G: Observation Protocol Template for the Controlled Experiment Study 237
Appendix H: Multi-Run Controlled Experiment for Evaluating the systematic Analysis Approach 238
Appendix I: Controlled Experiment for Evaluating the Guidelines for Improving API Documentation 249

Appendix

202

Appendix A Survey on Software Interoperability
Analysis

A.1 Questionnaire

Appendix

203

Appendix

204

Appendix

205

Appendix

206

Appendix

207

Appendix

208

Appendix

209

Appendix

210

Appendix

211

Appendix B Scoping Study on Interoperability-
Related Architectural Problems and Solutions

B.1 Selected Primary Studies

ID Reference

S1 A. Brodt et al.: A mobile data management architecture for interoperability of
resource and context data. In MDM (2011)

S2 A. Ojo et al.: Semantic interoperability architecture for electronic government. In
dg.o (2009)

S3 A. Moulton et al.: Semantic Interoperability in the fixed income securities industry: A knowledge
representation architecture for dynamic integration of web-based information. In HICSS (2003)

S4 G. Hatzisymeon et al.: An architecture for implementing application interoperation with heterogeneous
systems. In DAIS (2005)

S5 L. Xianming et al.: Research on the Portlet Semantic Interoperability Architecture. In WCSE (2009)

S6 D. de Carvalho et al.: Functional and device interoperability in an architectural model of geographic
information system. In SIGDOC (2007)

S7 J. Kim et al.: An enterprise architecture framework based on a common information technology domain
(EAFIT) for improving interoperability among heterogeneous information systems. In SERA (2005)

S8 S. Zhu et al.: Army enterprise architecture technical reference model for system interoperability. In MILCOM
(2009)

S9 F. Rabhi: Towards an open architecture for the integration and interoperability of distributed systems. In Ent-
Net at SUPERCOMM (2001)

S10 B. Powers: A multi-agent architecture for NATO network enabled capabilities: enabling semantic
interoperability in dynamic environments (NC3A RD-2376). In SOCASE (2008)

S11 E. Leclercq et al.: ISIS: a semantic mediation model and an agent based architecture for GIS interoperability.
In IDEAS (1999)

S12 M. Paul: Enterprise geographic information system (E-GIS): A service-based architecture for geo-spatial data
interoperability. In IGARSS (2006)

S13 G. Lepouras et al.: An active ontology-based blackboard architecture for web service interoperability. In
ICSSSM (2005)

S14 C. Schroth et al.: UN/CEFACT Service-Oriented Architecture-Enabling Both Semantic And Application
Interoperability. In KiVS (2007)

S15 P. Arapi et al.: ASIDE: An Architecture for Supporting Interoperability between Digital Libraries and ELearning
Applications. In ICALT (2006)

S16 A. Bennaceur et al.: Towards an architecture for runtime interoperability. In ISoLA (2010)

S17 R. Maciel et al.: WGWSOA: A service-oriented middleware architecture to support groupware
interoperability. In CSCWD (2007)

S18 Y. Demchenko et al.: Intercloud Architecture for interoperability and integration. In CloudCom (2012)

S19 D. Arize et al.: ThesIS: A semantic interoperability service for a middleware service oriented architecture. In
CSCWD (2013)

S20 R. Crichton et al.: An Architecture and Reference Implementation of an Open Health Information Mediator:
Enabling Interoperability in the Rwandan Health Information Exchange. In FHIES (2013)

S21 G. Komatsoulis et al.: caCORE version 3: Implementation of a model driven, service-oriented architecture for
semantic interoperability. In J-BHI (2008)

S22 A. Mohtasebi et al.: Analysis of Applying Enterprise Service Bus Architecture as a Cloud Interoperability and
Resource Sharing Platform. In KMO (2013)

Appendix

212

B.2 Data Extraction Form

Field Description RQ

F1 Title Title of the paper

D
ocum

entation

F2 Author Writer(s) of the paper

F3 Year Year of publishing the paper

F4 Publication Name of Journal / Proceeding
F5 Keywords Keywords of the paper RQ1
F6 Objectives Stated goals of the study by the authors- free text RQ1
F7 IS type Kind of IS application which the study focuses on RQ2

F8 Interoperability
problem(s)

Object of the study which the study tries to solve (i.e.,
problem of interest) - free text RQ2

F9 Interoperability
level Level of LCIM that the study handles RQ1

F10 Architectural
solution(s)

Subject of the study that is proposed to solve the object
(i.e., solution of problem) - free text RQ3

F11 Solution elements Concrete elements of the proposed subject (i.e.,
components of architectural solutions) - free text RQ3

F12 Technology used Technologies supporting implementation of proposed
subjects (e.g., XML, Web Services … etc.) RQ3

F13 Solution evidence
Evidence provided on the quality of proposed subjects
(e.g., discussion, controlled experiment, case study,
etc.)

RQ4

F14 Interoperability
Metric

Quantitative measures used in the study evaluation to
describe the interoperability property achieved RQ4.1

F15 Comments Additional notes provided in the study (i.e., claimed
benefits, tradeoffs, limitations, or challenges) - free text RQ2.1

A
pp

en
di

x

21
3

A
pp

en
di

x
C

S

ta
nd

ar
d

D
oc

um
en

ta
tio

n
Te

m
pl

at
es

C
.1

C

O
IN

 P
or

tfo
lio

 T
em

pl
at

e

In
te

ro
pe

ra
bi

lit
y

An
al

ys
t/P

or
tfo

lio
 C

re
at

or
 N

am
e(

s)
:

C
re

at
io

n
D

at
e:

In
te

ro
pe

ra
bl

e
So

ftw
ar

e
Sy

st
em

 N
am

e:

In
te

ro
pe

ra
bl

e
So

ftw
ar

e
Sy

st
em

 V
er

si
on

:

In
te

ro
pe

ra
bl

e
el

em
en

t
(s

ys
te

m
, d

at
a,

fu

nc
tio

n/
se

rv
ice

/f
e

at
ur

e)

CO
IN

 S
he

et

Co
m

m
en

ts

(C
on

ce
rn

s,
in

fo
rm

at
io

n
re

fe
re

nc
e

do
cu

m
en

t o
r

lin
e

nu
m

be
r,

et
c.

)

ID

(u
ni

qu
e

va
lu

e)

Na
m

e
(a

bs
tr

ac
t

tit
le

)

Ca
te

go
ry

(c

on
st

ra
in

t
cla

ss
)

Ty
pe

(c

on
st

ra
in

t
at

tr
ib

ut
e)

Va
lu

e
W

ei
gh

t
(im

po
rt

an
ce

ra

nk
)

Co
ns

eq
ue

nc
e

(if
 n

ot
 sa

tis
fie

d)

Q
ua

lit
at

iv
e

qu
an

tit
at

iv
e

A
pp

en
di

x

21
4

C
.2

M

is
m

at
ch

es
 L

is
t T

em
pl

at
e

In
te

ro
pe

ra
bi

lit
y

An
al

ys
t N

am
e(

s)
:

An
al

ys
is

 D
at

e:

In
te

gr
at

io
n

Pr
oj

ec
t N

am
e:

In

te
gr

at
io

n
Pr

oj
ec

t v
er

si
on

:

Fi
rs

t I
nt

er
op

er
ab

le
 S

ys
te

m
 (S

1)
Se

co
nd

 In
te

ro
pe

ra
bl

e
Sy

st
em

 (S
2)

Na
m

e:

Na
m

e:

Ve
rs

io
n:

Ve

rs
io

n:

CO
IN

 P
or

tfo
lio

 R
ef

er
en

ce
:

CO
IN

 P
or

tfo
lio

 R
ef

er
en

ce
:

In
te

ro
pe

ra
bl

e
el

em
en

t
(s

ys
te

m
, d

at
a,

fu

nc
tio

n/
se

rv
ice

/f
ea

tu
re

)

Co
nc

ep
tu

al
 M

ism
at

ch

Re
fe

re
nc

e
CO

IN
s

ID
 (u

ni
qu

e
va

lu
e)

Na

m
e

(a
bs

tr
ac

t t
itl

e)

Ty
pe

(c

at
eg

or
y)

De

sc
rip

tio
n

CO
IN

 ID
 fr

om

S1

CO
IN

 ID
 fr

om
 S

2

Appendix

215

Appendix D COIN Extraction Templates from UML
Diagrams and their Identification Algorithms

Template
ID

COIN source
diagram

COIN
category

COIN type

t1 Component Structure Layering
t2 Component Structure Component distribution
t3 Component Structure DB distribution
t4 Deployment Structure Component distribution
t5 Deployment Structure DB distribution
t6 Class Structure Structural multiplicity
t7 Class Structure Inherited constraints
t8 Use case Context Allowed users
t9 Use case Context Usage multiplicity

t10 Use case Structure Inherited constraints
t11 Sequence Dynamic Interaction synchronicity
t12 All NA Natural language constraints

Template (t1): Layering in component diagrams

t1 Structure COINs Category

system (s), e { interoperable elements (E) ∩

component diagram components (COMDC)},

t1 (s) = True ↔ (hasBoundary(COMD) = true)

((length(horizontal lanes(COMD) >1 |

(length(vertical lanes(COMD) >1))

Appendix

216

Algorithm (t1 identification)

Input: Component diagram (COMD), interoperable system (s),
interoperable elements (E)

Process:

1 coinCandidates ←

2 coin ←

3 isInteroperable ← false

4 While (isInteroperable ≠ true)

5 For each e {COMD.elements}

6 If (e s.elements e E)

7 isInteroperable ← true

8 Break For each

9 End If

10 End For each

11 End While

12 If (hasBoundary(COMD) = true

13 ((length(horizontal lanes(COMD) >1 |

14 (length(vertical lanes(COMD) >1))

15 coin ← (e, "Structure", "System Layering", “Layered”)

16 coinCandidates ← {coinCandidates coin}

17 End If

Output: coinCandidates

Appendix

217

Template (t2): Component distribution in component diagrams

t2 Structure COINs Category

element (e) { interoperable elements (E) ∩

component diagram components (COMDC)},

t2 (e) = True ↔ e.stereotype ≠ “database” ength (e.locations) > 1

Algorithm (t2 identification)

Input: Component diagram (COMD), interoperable elements (E)

Process:

1 coinCandidates ←

2 coin ←

3 For each e {COMD.elements}

4 If (e E e.stereotype ≠ “database length (e.locations) > 1)

5 coin ← (e, "Structure", "Component distribution", “distributed”)

6 coinCandidates ← {coinCandidates coin}

7 End If

8 End For

Output: coinCandidates

Appendix

218

Template (t3): DB distribution in component diagrams

t3 Structure COINs Category

element (e) { interoperable elements (E) ∩

component diagram elements (COMDE)},

t3 (e) = True ↔ e.stereotype = “database” length (e.locations) > 1

Algorithm (t3 identification)

Input: Component diagram (COMD), interoperable elements (E)

Process:

1 coinCandidates ←

2 coin ←

3 For each e {COMD.elements}

4 If (e E (e.stereotype = “database (length (e.locations) > 1)

5 coin ← (e, "Structure", "DB distribution", “distributed”)

6 coinCandidates ← {coinCandidates coin}

7 End If

8 End For

Output: coinCandidates

Appendix

219

Template (t4): Component distribution in deployment diagrams

t4 Structure COINs Category

element (e) { interoperable elements (E) ∩

deployment diagram components (DDC)},

t4 (e) = True ↔ e.stereotype ≠ “database” length (e.locations) > 1

Algorithm (t4 identification)

Input: Deployment diagram (DD), interoperable elements (E)

Process:

1 coinCandidates ←

2 coin ←

3 For each e {DD.elements}

4 If (e E (e.stereotype ≠ “database (length (e.locations) > 1)

5 coin ← (e, "Structure", "Component distribution", “distributed”)

6 coinCandidates ← {coinCandidates coin}

7 End If

8 End For

Output: coinCandidates

Appendix

220

Template (t5): DB distribution in deployment diagrams

t5 Structure COINs Category

element (e) { interoperable elements (E) ∩

deployment diagram elements (DDE)},

t5 (e) = True ↔ e.stereotype = “database (e.locations) > 1

Algorithm (t5 identification)

Input: Deployment diagram (DD), interoperable elements (E)

Process:

1 coinCandidates ←

2 coin ←

3 For each e {DD.elements}

4 If (e E (e.stereotype = “database (length (e.locations) > 1)

5 coin ← (e, "Structure", "DB distribution", “distributed”)

6 coinCandidates ← {coinCandidates coin}

7 End If

8 End For

Output: coinCandidates

Appendix

221

Template (t6): Structural multiplicity in class diagrams

t6 Structure COINs Category

element (e) { interoperable elements (E) ∩

class diagram elements (CDE)},

t6 (e) = True ↔ e.association.multiplicity ≠

Algorithm (t6 identification)

Input: Class diagram (CD), interoperable elements (E)

Process:

1 coinCandidates ←

2 coin ←

3 For each e {CD.elements}

4 If (e E (e.association.multiplicity ≠)

5 coin ← (e, "Structure", "Structural multiplicity",

6 value(e.association.multiplicity))

7 coinCandidates ← {coinCandidates coin}

8 End If

9 End For

Output: coinCandidates

Appendix

222

Template (t7): Inherited constraints of class diagrams

t7 Structure COINs Category

element (e) { interoperable elements (E) ∩

class diagram elements (CDE)},

t7 (e) = True ↔ e.Parent ≠ e.Parent.Constraints ≠

Algorithm (t7 identification)

Input: Class diagram (CD), interoperable elements (E)

Process:

1 coinCandidates ←

2 coin ←

3 For each e {CD.elements}

4 If (e E) (e.Parent, e.Parent.getConstraints ≠)

5 For each c in e.Parent.getConstraints

6 coin ← (e, "Structure", "inherited constraint", value(c))

7 coinCandidates ← {coinCandidates coin}

8 End For

9 End If

10 End For

Output: coinCandidates

Appendix

223

Template (t8): Allowed users in use case diagrams

t8 Context COINs Category

element (e) { interoperable elements (E) ∩

Use case diagram elements (EDE)},

t8 (e) = True ↔ length(e.actors) > 0

Algorithm (t8 identification)

Input: Use case diagram (UD), interoperable elements (E)

Process:

1 coinCandidates ←

2 coin ←

3 For each e {UD.elements}

4 If (e E) (length(e.actors) > 0)

5 coin ← (e, "Context", "Allowed users", value(e.actors))

6 coinCandidates ← {coinCandidates coin}

7 End If

8 End For

Output: coinCandidates

Appendix

224

Template (t9): Usage multiplicity in use case diagrams

t9 Context COINs Category

element (e) { interoperable elements (E) ∩

Use case diagram elements (UDE)},

t9 (e) = True ↔ e.association(actor).multiplicity ≠

Algorithm (t9 identification)

Input: Use case diagram (UD), interoperable elements (E)

Process:

1 coinCandidates ←

2 coin ←

3 For each e {UD.elements}

4 If (e E (e.association.multiplicity ≠)

5 coin ← (e, "Context", "Usage multiplicity",

6 value(e.association(actor).multiplicity))

7 coinCandidates ← {coinCandidates coin}

8 End If

9 End For

Output: coinCandidates

Appendix

225

Template (t10): Inherited constraints in use case diagrams

t10 Structure COINs Category

element (e) { interoperable elements (E) ∩

Use case diagram elements (UDE)},

t10 (e) = True ↔ e.Parent ≠ e.Parent.Constraints ≠

Algorithm (t10 identification)

Input: Use case diagram (UD), interoperable elements (E)

Process:

1 coinCandidates ←

2 coin ←

3 For each e {UD.elements}

4 If (e E) (e.Parent, e.Parent.getConstraints ≠)

5 For each c in e.Parent.getConstraints

6 coin ← (e, "Structure", "inherited constraint", value(c))

7 coinCandidates ← {coinCandidates coin}

8 End For

9 End If

10 End For

Output: coinCandidates

Appendix

226

Template (t11): Interaction synchronicity in sequence diagrams

t11 Dynamic COINs Category

system (s), e { interoperable elements (E) ∩

Sequence diagram elements (SDE)},

t11 (s) = True ↔ SDE.message.type ≠

Algorithm (t11 identification)

Input: Sequence diagram (SD), interoperable elements (E)

Process:

1 coinCandidates ←

2 coin ←

3 messagesSynchronicity ←

4 For each message {SD.elements}

5 If (m.type ≠)

6 messagesSynchronicity ← {messagesSynchronicity m.type}

7 End If

8 If (messagesSynchronicity ≠)

9 coin ← (e, "Dynamic", "Interaction synchronicity",

10 messagesSynchronicity)

11 coinCandidates ← {coinCandidates coin}

12 End If

Output: coinCandidates

Appendix

227

Template (t12): Natural language constraint in all diagrams

t12 any COINs Category

e { interoperable elements (E) ∩ {

Component diagram elements (COMDE)

Deployment diagram elements (DDE)

Class diagram elements (CDE)

Use case diagram elements (UDE)

Sequence diagram elements (SDE)}},

t12 (e) = True ↔ ≠ ≠ ≠

Algorithm (t12 identification)

Input: Component diagram (COMD), Deployment diagram (DD),

Class diagram (CD), Use case diagram (UD), Sequence

diagram (SD), interoperable elements (E)

Process:

1 coinCandidates ←

2 coin ←

3 For each e {COMD.elements DDE.elements CDE.elements

4 UDE.elements SDE.elements}

5 If (e E) (e. ≠

6 coin ← (e, NA, "Natural language constraint", value(e.Note))

7 coinCandidates ← {coinCandidates coin}

8 End If

9 If (e E) (e. ≠

Appendix

228

10 coin ← (e, NA, "Natural language constraint", value(e.Constraint))

11 coinCandidates ← {coinCandidates coin}

12 End If

13 If (e E) (e.Comment ≠

14 coin ← (e, NA, "Natural language constraint", value(e.Comment))

15 coinCandidates ← {coinCandidates coin}

16 End If

17 End For

Output: coinCandidates

Appendix

229

Appendix E COIN Cheat Sheets

E.1 COIN Cheat Sheet for UML Diagrams

Perspective COIN
Category COIN type Description Where to find

(probably)?

System Structure

Layering Layered, not layered

- In component and deployment
diagrams when components
appear organized in horizontal or
vertical lanes

Distribution Distributed, centralized
- In component and deployment

diagrams when components
appear on multiple nodes

Data/
service

Semantic

Semantic
constraints of

data

Unit of measurement,
scale of measurement,
sorting style (e.g.,
ascending, descending,
categorized, etc.), etc.

- In NL “note” or “constraint”
elements in any diagram

Input and
output of

service

Non-technical
description of expected
input and output (no
format, no data type)

- In input and output elements of
activity diagram, sequence
diagram, or interaction overview
diagram

Structure

Data
structural

constraints

Data invariants,
inherited constraints,
capacity limits/ranges,
or multiplicity
constraints

- In a relation’s multiplicity
information in class diagrams,
object diagrams. Or in NL “note” or
“constraint” elements in any
diagram

Service
distribution

and data
distribution

Distributed, centralized
- In component and deployment

diagrams when a data or service
element appears in multiple sites

Dependency

Underlying
dependencies (i.e.,
additional required
functions or data)

- In a relation’s type information
(aggregation, composition, etc.) in
class diagrams, object diagrams, or
in NL “note” or “constraint”
elements in any diagram

Redundancy
Single or multiple units
or interfaces dedicated
to a specific element

- In component and deployment
diagrams when a data or service
element appears duplicated

Service and
data

encapsulation

Encapsulated with
interfaces or not
encapsulated with
direct access

- Interfaces in component diagrams,
deployment diagrams, or class
diagrams

Data
concurrency

Single-user or shared
access

- In state machine diagrams and
activity diagrams

Dynamic Service
contracts

Invariants, pre-, or post-
conditions

- In NL “note” or “constraint”
elements in any behavioral diagram
(e.g., activity diagram, sequence
diagram, communication diagram,
etc.)

Appendix

230

Interaction
time

constraints

Session timeline,
acknowledgment
timeline, response
timeline, etc.

- In timing diagrams, NL “note”, or
“constraint” elements in any
behavioral diagram (e.g., activity
diagram, sequence diagram,
communication diagram, etc.)

Interaction
property

State(ful/less),
(a)synchronous, etc.

- In the type of messages in
sequence diagrams (i.e., a
synchronous message is denoted
by a solid arrowhead ; an
asynchronous message by a line
arrowhead)

Interaction
protocol

Description of process
flow/activities and
usage steps

- In activity diagrams, sequence
diagrams, or interaction overview
diagrams

Communicati
on style

Messaging, procedure
call, blackboard,
streaming, etc.

- In message types and properties in
activity diagrams, sequence
diagrams, or interaction overview
diagrams

Context

Usage
multiplicity

Access rate or session
multiplicity

- In a relation’s type information
(aggregation, composition, etc.) in
class diagrams, object diagrams, or
in NL “note” or “constraint”
elements in any diagram

Usage
environment

Device specification,
wired/wireless, etc.

- In component and deployment
diagrams when a data or service
element appears duplicated

Intended end
user

Human/machine,
gender, location, age,
etc.

- Interfaces in component diagrams,
deployment diagrams, or class
diagrams

Quality

Service quality

Availability, response
time, throughput,
#parallel connections,
etc.

- In state machine diagrams and
activity diagrams

Data quality Security, trust,
accuracy, etc.

- In NL “note” or “constraint”
elements in any behavioral diagram
(e.g., activity diagram, sequence
diagram, communication diagram,
etc.)

Appendix

231

E.2 COIN Cheat Sheet for SRS in IEEE Template 830

Perspective COIN
Category COIN type Description Where to find

(probably)?

System

Syntax Terminology
definition

Glossary items or inline
definition for special
terms or abbreviations

- In “Definitions or Glossary”
subsection under “Introduction”
section

Semantic Goal of system Why to interoperate with
this system

- For the system goal, look in
“Purpose” subsection under
“Introduction”

Structure

Layering Layered, not layered
- In “Design and Implementation

Constraints” subsection under
“Introduction” section

Distribution Distributed, centralized
- In “Design and Implementation

Constraints” subsection under
“Introduction” section

Dynamic

Dynamicity
Static, periodic change,
irregular change,
continuous change, etc.

- In “Design and Implementation
Constraints” subsection under
“Introduction” section

Communication
style

Messaging, procedure
call, blackboard,
streaming, etc.

- In “Design and Implementation
Constraints” subsection under
“Introduction” section

Context

Application
domain

The domain area where
the system will be used
(e.g., health, banking,
education, etc.)

- In “Project Scope” subsection
under “Introduction” section

Usage quota Access rate or quota (e.g.,
limited, unlimited, etc.)

- In “Design and Implementation
Constraints” subsection under
“Introduction” section

Usage mode
Online/offline,
wired/wireless,
dynamic/static, etc.

- In “Operating
Environment”
subsection under
“Overall Description”
section

Quality Quality
attributes

Reliability, response time,
ease of use, security, etc.

- In “Non-Functional
Requirements” subsection under
“Specific Requirements” section

Data/service

Semantic

Semantic
constraints of

data

Unit of measurement,
scale of measurement,
sorting style (e.g.,
ascending, descending,
categorized, etc.), etc.

- In “Constraints, assumptions and
dependencies” subsection under
“Overall/General description”
section. Or, within
“input/output” description of use
cases in the “Specific
Requirement” section

Goal of service Why to interoperate with
this service

- For a function goal, look in
“Goal” description of its use
cases in the “Specific
Requirement” section

Input and
output of

service

Non-technical description
of expected input and
output (no format no data
type)

- In “input/output” description of
a function use case in the
“Specific Requirement” section

Structure Data structural
constraints

Data invariants, inherited
constraints, capacity
limits/ranges, or
multiplicity constraints

- In “Constraints, assumptions and
dependencies” subsection under
“Overall/General description”
section

Appendix

232

Service
distribution

and data
distribution

Distributed, centralized

- In “Constraints, assumptions and
dependencies” subsection under
“Overall/General description”
section especially under design
constraints

Dependency
Underlying dependencies
(i.e., additional required
functions or data)

- In “Constraints, assumptions and
dependencies” subsection under
“Overall/General description”
section especially under design
constraints

Redundancy
Single or multiple units or
interfaces dedicated to a
specific element

- In “Constraints, assumptions and
dependencies” subsection under
“Overall/General description”
section especially under design
constraints

Service and
data

encapsulation

Encapsulated with
interfaces or not
encapsulated with direct
access

- In “Software Interfaces” under
“External Interface
Requirements” subsection

Data
concurrency

Single-user or shared
access

- In “Constraints, assumptions and
dependencies” subsection under
“Overall/General description”
section, especially under design
constraints

Dynamic

Service
contracts

Invariants, pre-, or post-
conditions

- In “pre-condition and post-
condition” description of a
function use case in the “Specific
Requirement” section

Interaction
time

constraints

Session timeline,
acknowledgment
timeline, response
timeline, etc.

- In “pre-condition and post-
condition” description of a
function use case in the “Specific
Requirement” section

Interaction
property

State(ful/less),
(a)synchronous, etc.

- In “Constraints, assumptions and
dependencies” subsection under
“Overall/General description”
section

- In “Communication Interfaces”
under “External Interface
Requirements” subsection

Interaction
protocol

Description of process
flow/activities and usage
steps

- In the “Specific Requirement”
section look for a function’s
“Flow of events” in its use case
or for process details in the
“Functional requirements”

Communication
style

Messaging, procedure
call, blackboard,
streaming, etc.

- In “Design and Implementation
Constraints” subsection under
“Introduction” section

Context

Usage
multiplicity

Access rate or session
multiplicity

- In “Constraints, assumptions and
dependencies” subsection under
“Overall/General description”
section

Usage
environment

Device specification,
wired/wireless, etc.

- In “Project Scope” subsection
under “Introduction” section. Or,
in “Operating Environment”
subsection under “Overall
Description” section

Intended end
user

Human/machine, gender,
location, age, etc.

- In “User Classes and
Characteristics” subsection under
“Overall Description” section

Appendix

233

Quality

Service quality
Availability, response
time, throughput,
#parallel connections, etc.

- In “Non-functional
Requirements” subsection under
“Specific Requirements” section

Data quality Security, trust, accuracy,
etc.

- In “Non-functional
Requirements” subsection under
“Specific Requirements” section

Appendix

234

E.3 COIN Cheat Sheet for API Documents

Perspective COIN
Category COIN type Description Where to find

(probably)?

System

Syntax Terminology
definition

Glossary items or inline
definition for special
terms or abbreviations

In “Overview or Introduction” section
of the system, or within the
introduction of services

Semantic Goal of system Why to interoperate
with this system

Structure Layering Layered, not layered
Distribution Distributed, centralized

Dynamic

Dynamicity
Static, periodic change,
irregular change,
continuous change, etc.

Communication
Style

Messaging, procedure
call, blackboard,
streaming, etc.

Context

Application
domain

The domain area where
the system will be used
(e.g., health, banking,
education, etc.)

Usage quota
Access rate or quota
(e.g., limited, unlimited,
etc.)

Usage mode
Online/offline,
wired/wireless,
dynamic/static, etc.

Quality Quality
attributes

Reliability, response
time, ease-to-use,
security, etc.

Data/service

Semantic

Semantic
constraints of

data

Unit of measurement,
scale of measurement,
sorting style (e.g.,
ascending, descending,
categorized, etc.), etc.

- In the description of data input or
returned output of a service

Goal of service Why to interoperate
with this service

- In the service-dedicated
description

Input and
output of

service

Non-technical
description of expected
input and output (no
format, no data type)

- In the service-dedicated
description and process models
associated with it

Structure

Data structural
constraints

Data invariants,
inherited constraints,
capacity limits/ranges,
or multiplicity
constraints

- For input/output constraints, look
in the service-dedicated
description

Service
distribution

and data
distribution

Distributed, centralized
- In the service-dedicated

description and any models
associated with it

Dependency

Underlying
dependencies (i.e.,
additional required
functions or data)

- In the service-dedicated
description and any models
associated with it

Appendix

235

Redundancy
Single or multiple units
or interfaces dedicated
to a specific element

- In the service-dedicated
description and any models
associated with it

Service and
data

encapsulation

Encapsulated with
interfaces or not
encapsulated with
direct access

- In the service-dedicated
description and any models
associated with it

Data
concurrency

Single-user or shared
access

- For data of a specific service, look
in its dedicated description

Dynamic

Service
contracts

Invariants, pre-, or post-
conditions

- For a service contract, look in its
dedicated description and
conditional elements on process
models associated with it

Interaction
time

constraints

Session timeline,
acknowledgment
timeline, response
timeline, etc.

- In the service-dedicated
description

Interaction
property

State(ful/less),
(a)synchronous, etc.

- In the service-dedicated
description

Interaction
protocol

Description of process
flow/activities and
usage steps

- In the service-dedicated
description and process models
associated with it

Communication
style

Messaging, procedure
call, blackboard,
streaming, etc.

- In the service-dedicated
description and process models
associated with it

Context

Usage
multiplicity

Access rate or session
multiplicity

- In the service-dedicated
description

Usage
environment

Device specification,
wired/wireless, etc.

- In the service-dedicated
description

Intended end
user

Human/machine,
gender, location, age,
etc.

- In the service-dedicated
description

Quality
Service quality

Availability, response
time, throughput,
#parallel connections,
etc.

- In the service-dedicated
description

Data quality Security, trust,
accuracy, etc.

- In the service-dedicated
description

Appendix

236

Appendix F Mismatches Cheat Sheet

Mismatch Type How to find? Causing COINs Examples

Direct

COINs of similar
category and type
with explicit
contradicting values
for corresponding
interoperable
element.

All types of COINs
can be the cause
of direct
mismatches.

S1 has a “size of lists” constraint that the
returned object has a maximum capacity
of 100 items.

S2 has a “size of lists” constraint that the
maximum size of the lists used in the
system is 50 items.

This leads to a “direct mismatch“ on the
structure level.

Indirect

COINs with values
that may influence
the requirements of
other COINs in the
corresponding
interoperable
element.

Mostly, Structure
COINs and
Dynamic COINs
are the cause of
indirect
mismatches and
they mainly affect
Quality COINs of
the other software
unit.

S1 has a “synchronicity” constraint that
the independent tasks are processed
synchronously.

S2 has a ”quality” constraint that the
system requires high response time.

This leads to an “indirect mismatch“ on
the quality level.

Po
te

nt
ia

l

Adherence

A COIN that has no
corresponding or
conflicting COINs in
the other
system/service, but
it demands being
satisfied.

All types of COINs
can be behind the
adherence
mismatches.

S1 has a “redundancy” constraint that
there should be a backup interface to
ensure availability of service.

S2 has no constraints regarding interface
redundancy.

This may lead to “potential adherence
mismatches“ if developers of S2 do not
build a backup interface. Hence, it has to
be reported to ensure they will satisfy
this constraint when reusing S1.

Consensus

A COIN that has no
corresponding or
conflicting COINs in
the other system,
but demands a
common
understanding or
agreement.

Semantic and
Context COINs are
the main causes of
the consensus
mismatches.

S1 has “terminology” constraints that it
uses domain-specific terms (e.g., for a
farm application, the “Growing season”
is the period of time from April until
October or November for European
farms).

S2 has no corresponding constraint to
define the aforementioned term.

This may lead to a “potential consensus
mismatch“ if users of S2 misunderstand
the definition (e.g., farmers in Finland
will understand the growing season as
the period of time from June to
September only).

Appendix

237

Appendix G Observation Protocol Template for the
Controlled Experiment Study

Possible disturbing factors’ codes

Emotions
E1. Un-concentrated / Unfocused
E2. Unconfident/doubtful
E3. Bothered/ frustrated
E4. Tired

Events
E5. Participant(s) is (are) inactive
E6. Participant arrives late
E7. Participant leave early
E8. Cell-phone call
E9. Noise
E10. Interruption

Controlled experiment study information

Study date

Study time

Study location

Group (A,B)

Controlled experiment observations

Participant ID Time Emotion code Event code Comments

Appendix

238

Appendix H Multi-Run Controlled Experiment for
Evaluating the Systematic Analysis Approach

H.1 Experimental Material

For all example inputs (e1, e2, e3) from all sessions and for the introduction tutorial for
each group, please go to this webpage: http://abukwaik.com/site/multi-run-
experiment16

(use password: abukwaik_experiment).

H.1.1 Non-Disclosure Agreement and Informed Consent

Appendix

239

H.1.2 Experimental Procedure Description

Appendix

240

H.1.3 Briefing Questionnaire

Appendix

241

Appendix

242

H.1.4 Task Description

For Ad-hoc Approach

Appendix

243

For Half COINA Approach

Appendix

244

For Full COINA Approach

Appendix

245

H.1.5 Debriefing Questionnaire for Full COINA Approach

Appendix

246

Appendix

247

H.2 Raw Data

Appendix

248

Appendix

249

Appendix I Controlled Experiment for Evaluating the
Guidelines for Improving API Documentation

I.1 Experimental Material

For the experiment input for both the control and the treatment group (i.e., the original
SoundCloud API document and the modified version), please go to this webpage:
http://abukwaik.com/site/api-guidelines16

(use password: abukwaik_experiment).

Appendix

250

Appendix

251

Appendix

252

Appendix

253

Appendix

254

Appendix

255

Appendix

256

Appendix

257

Appendix

258

I.2 Reference Solution for Experiment Task

Appendix

259

261

Lebenslauf (CV)

Name Hadil Abukwaik

Address Am Harzhuebel 126
Kaiserslautern, Germany

Birth date 16.08.1984

Birth place Gaza, Palestine

Marital status Married, 2 children

Nationality Palestinian

Education 1990-1996 Primary School
1996 -1999 Preparatory School
1999 - 2002 High School

2002 - 2007 Bachelor of Computer Systems
Engineering, Al-Azhar University, Gaza,
Palestine

2008 - 2010 Master of Computer Science, California
State University, Sacramento, CA, USA

2012 - 2017 PhD candidate of Computer Science,
University of Kaiserslautern, Kaiserslautern,
Germany

Professional
experience

2007 - 2008 Lecturer at Al-Azhar University, Gaza,
Palestine

2008 - 2009 Software Developer at iScan Services
Center, Sacramento, CA, USA

2011 - 2016 Research assistant (part-time) at University
of Kaiserslautern, Kaiserslautern, Germany

2017 - 2017 Wissenschaftlicher Mitarbeiter at University
of Kaiserslautern, Kaiserslautern, Germany

2018 Scientist in "Software Systems and
Architectures" at ABB Corporate Research

Kaiserslautern, 25. February. 2018

PhD Theses in Experimental Software Engineering

Volume 1 Oliver Laitenberger (2000), Cost-Effective Detection of Software Defects
Through Perspective-based Inspections

Volume 2 Christian Bunse (2000), Pattern-Based Refinement and Translation of
Object-Oriented Models to Code

Volume 3 Andreas Birk (2000), A Knowledge Management Infrastructure for
Systematic Improvement in Software Engineering

Volume 4 Carsten Tautz (2000), Customizing Software Engineering Experience
Management Systems to Organizational Needs

Volume 5 Erik Kamsties (2001), Surfacing Ambiguity in Natural Language
Requirements

Volume 6 Christiane Differding (2001), Adaptive Measurement Plans for Software
Development

Volume 7 Isabella Wieczorek (2001), Improved Software Cost Estimation
A Robust and Interpretable Modeling Method and a Comprehensive
Empirical Investigation

Volume 8 Dietmar Pfahl (2001), An Integrated Approach to Simulation-Based
Learning in Support of Strategic and Project Management in Software
Organisations

Volume 9 Antje von Knethen (2001), Change-Oriented Requirements Traceability
Support for Evolution of Embedded Systems

Volume 10 Jürgen Münch (2001), Muster-basierte Erstellung von Software-
Projektplänen

Volume 11 Dirk Muthig (2002), A Light-weight Approach Facilitating an Evolutionary
Transition Towards Software Product Lines

Volume 12 Klaus Schmid (2003), Planning Software Reuse – A Disciplined Scoping
Approach for Software Product Lines

Volume 13 Jörg Zettel (2003), Anpassbare Methodenassistenz in CASE-Werkzeugen

Volume 14 Ulrike Becker-Kornstaedt (2004), Prospect: a Method for Systematic
Elicitation of Software Processes

Volume 15 Joachim Bayer (2004), View-Based Software Documentation

Volume 16 Markus Nick (2005), Experience Maintenance through Closed-Loop
Feedback

Volume 17 Jean-François Girard (2005), ADORE-AR: Software Architecture
Reconstruction with Partitioning and Clustering

Volume 18 Ramin Tavakoli Kolagari (2006), Requirements Engineering für Software-
Produktlinien eingebetteter, technischer Systeme

Volume 19 Dirk Hamann (2006), Towards an Integrated Approach for Software
Process Improvement: Combining Software Process Assessment and
Software Process Modeling

Volume 20 Bernd Freimut (2006), MAGIC: A Hybrid Modeling Approach for
Optimizing Inspection Cost-Effectiveness

Volume 21 Mark Müller (2006), Analyzing Software Quality Assurance Strategies
through Simulation. Development and Empirical Validation of a Simulation
Model in an Industrial Software Product Line Organization

Volume 22 Holger Diekmann (2008), Software Resource Consumption Engineering for
Mass Produced Embedded System Families

Volume 23 Adam Trendowicz (2008), Software Effort Estimation with Well-Founded
Causal Models

Volume 24 Jens Heidrich (2008), Goal-oriented Quantitative Software Project Control

Volume 25 Alexis Ocampo (2008), The REMIS Approach to Rationale-based Support
for Process Model Evolution

Volume 26 Marcus Trapp (2008), Generating User Interfaces for Ambient Intelligence
Systems; Introducing Client Types as Adaptation Factor

Volume 27 Christian Denger (2009), SafeSpection – A Framework for Systematization
and Customization of Software Hazard Identification by Applying Inspection
Concepts

Volume 28 Andreas Jedlitschka (2009), An Empirical Model of Software Managers’
Information Needs for Software Engineering Technology Selection
A Framework to Support Experimentally-based Software Engineering
Technology Selection

Volume 29 Eric Ras (2009), Learning Spaces: Automatic Context-Aware Enrichment of
Software Engineering Experience

Volume 30 Isabel John (2009), Pattern-based Documentation Analysis for Software
Product Lines

Volume 31 Martín Soto (2009), The DeltaProcess Approach to Systematic Software
Process Change Management

Volume 32 Ove Armbrust (2010), The SCOPE Approach for Scoping Software
Processes

Volume 33 Thorsten Keuler (2010), An Aspect-Oriented Approach for Improving
Architecture Design Efficiency

Volume 34 Jörg Dörr (2010), Elicitation of a Complete Set of Non-Functional
Requirements

Volume 35 Jens Knodel (2010), Sustainable Structures in Software Implementations by
Live Compliance Checking

Volume 36 Thomas Patzke (2011), Sustainable Evolution of Product Line Infrastructure
Code

Volume 37 Ansgar Lamersdorf (2011), Model-based Decision Support of Task
Allocation in Global Software Development

Volume 38 Ralf Carbon (2011), Architecture-Centric Software Producibility Analysis

Volume 39 Florian Schmidt (2012), Funktionale Absicherung kamerabasierter Aktiver
Fahrerassistenzsysteme durch Hardware-in the-Loop-Tests

Volume 40 Frank Elberzhager (2012), A Systematic Integration of Inspection and
Testing Processes for Focusing Testing Activities

Volume 41 Matthias Naab (2012), Enhancing Architecture Design Methods for
Improved Flexibility in Long-Living Information Systems

Volume 42 Marcus Ciolkowski (2012), An Approach for Quantitative Aggregation of
Evidence from Controlled Experiments in Software Engineering

Volume 43 Igor Menzel (2012), Optimizing the Completeness of Textual Requirements
Documents in Practice

Volume 44 Sebastian Adam (2012), Incorporating Software Product Line Knowledge
into Requirements Processes

Volume 45 Kai Höfig (2012), Failure-Dependent Timing Analysis – A New Methodology
for Probabilistic Worst-Case Execution Time Analysis

Volume 46 Kai Breiner (2013), AssistU – A framework for user interaction forensics

Volume 47 Rasmus Adler (2013), A model-based approach for exploring the space of
adaptation behaviors of safety-related embedded systems

Volume 48 Daniel Schneider (2014), Conditional Safety Certification for Open
Adaptive Systems

Volume 49 Michail Anastasopoulos (2013), Evolution Control for Software Product
Lines: An Automation Layer over Configuration Management

Volume 50 Bastian Zimmer (2014), Efficiently Deploying Safety-Critical Applications
onto Open Integrated Architectures

Volume 51 Slawomir Duszynski (2015), Analyzing Similarity of Cloned Software
Variants using Hierarchical Set Models

Volume 52 Zhensheng Guo (2015), Safe Requirements Engineering: A Scenario-based
Approach for Identifying Complete Safety-oriented Requirements

Volume 53 Bo Zhang (2015), VITAL – Reengineering Variability Specifications and
Realizations in Software Product Lines

Volume 54 Norman Riegel (2016), Prioritization in Incremental Requirements
Engineering

Volume 55 Pablo Oliveira Antonino de Assis (2016), Improving the Consistency and
Completeness of Safety Requirements Specifications

Volume 56 Thomas Bauer (2016), Enabling Functional Integration Testing by Using
Heterogeneous Models

Volume 57 Michael Kläss (2016), HyDEEP: Transparent Combination of Measurement
and Expert Data for Defect Prediction

Volume 58 Liliana Katherine Guzmán Rehbein (2017), Empirically-based Method for
Performing Qualitative Synthesis in Software Engineering

Volume 59 Michael Roth (2017), Qualitative Reliability Analysis of Software-Controlled
Systems using State/Event Fault Trees

Volume 60 Hadil Abukwaik (2017), Proactive Support for Conceptual Interoperability
Analysis of Software Units

Ph
D

 T
h

es
es

 in
 E

xp
er

im
en

ta
l S

o
ft

w
ar

e
En

g
in

ee
ri

n
g

Software Engineering Research Groups:
– Processes and Measurement (AGSE)
– Dependability (SEDA)

Software Engineering has become one of the major foci of Computer
Science research in Kaiserslautern, Germany. Both the University of
Kaiserslautern‘s Computer Science Department and the Fraunhofer
Institute for Experimental Software Engineering (IESE) conduct
research that subscribes to the development of complex software
applications based on engineering principles. This requires system
and process models for managing complexity, methods and
techniques for ensuring product and process quality, and scalable
formal methods for modeling and simulating system behavior.
To understand the potential and limitations of these technologies,
experiments need to be conducted for quantitative and qualitative
evaluation and improvement. This line of software engineering
research, which is based on the experimental scienti c paradigm,
is referred to as ‘Experimental Software Engineering‘.
In this series, we publish PhD theses from the Fraunhofer Institute
for Experimental Software Engineering (IESE) and from the Software
Engineering Research Groups of the Computer Science Department at
the University of Kaiserslautern. PhD theses that originate elsewhere
can be included, if accepted by the Editorial Board.

Editor-in-Chief: Prof. Dr. Dieter Rombach
Director Business Development of Fraunhofer IESE and Head of the
AGSE Group of the Computer Science Department, University of
Kaiserslautern

Editorial Board Member: Prof. Dr. Peter Liggesmeyer
Executive Director of Fraunhofer IESE and Head of the SEDA Group
of the Computer Science Department, University of Kaiserslautern

Editorial Board Member: Prof. Dr. Frank Bomarius
Deputy Director of Fraunhofer IESE and Professor for Computer
Science at the Department of Engineering, University of Applied
Sciences, Kaiserslautern

9 783839 613382

ISBN 978-3-8396-1338-2

