
Proceedings

Joint Research Workshop

10
th

 Systems Testing and Validation

Workshop (STV15)

1
st
 International Workshop on

User Interface Test Automation

(INTUITEST 2015)

Edited by

Pekka Aho

Tanja Vos

Juan Garbajosa

Jørgen Bøegh

Axel Rennoch

19th October 2015

Sophia Antipolis, France

Online version

http://publica.fraunhofer.de/dokumente/N-360101.html
urn:nbn:de:0011-n-3601016

Contacts

Mr. Axel Rennoch
Fraunhofer Institute for Open Communication Systems FOKUS
email: axel.rennoch@fokus.fraunhofer.de

Mr. Pekka Aho
VTT Technical Research Centre of Finland
email: Pekka.Aho@vtt.fi

http://publica.fraunhofer.de/dokumente/N-360101.html
mailto:axel.rennoch@fokus.fraunhofer.de
mailto:Pekka.Aho@vtt.fi

Preface

In the development process the testing and validation activities are important steps for quality
assurance of any product or system. The System Testing and Validation Workshop (STV) is a
series of events initiated in the year 2002 and seeks to provide answers to the many open issues
related to testing and validation. In 2015 STV is held as a joint research workshop with the first
International Workshop on User Interface Test Automation (INTUITEST) and is co-located with
the 3

rd
 User Conference on Advanced Automated Testing (UCAAT)

We like to thank all members of the program committees for reviewing the submitted papers, the
European Telecommunications Standards Institute (ETSI) for hosting the joint research workshop
and in particular Mrs. Nathalie Guinet and Mrs. Emmanuelle Chaulot-Talmon for their support in
the organization of the event.

Sophia Antipolis, 19

th
 October 2015

Pekka Aho, Tanja Vos, Juan Garbajosa, Jørgen Bøegh, Axel Rennoch

Workshop homepages

STV: https://www.fokus.fraunhofer.de/go/stv15
INTUITEST: https://staq.dsic.upv.es/INTUITEST/2015/

Joint Research Workshop STV'15 & INTUITEST

3

https://www.fokus.fraunhofer.de/go/stv15
https://staq.dsic.upv.es/INTUITEST/2015/

Workshop Committees

STV:

Steering Commitee

Jørgen Bøegh (Lemvig, Denmark)
Juan Garbajosa (Technical University of Madrid, Spain)
Axel Rennoch (Fraunhofer Fokus, Germany)

Programme Committee Members:

Jorgen Boegh (Lemvig, Denmark)
Ana Cavalli (IT-Sudparis, France)
Juan Garbajosa (Technical University of Madrid, Spain)
Stephane Maag (IT-Sudparis, France)
Axel Rennoch (Fraunhofer Fokus, Germany)
György Réthy (Ericsson, Hungary)
Juha Röning (University of Oulu, Finland)
Theo Vassiliou (Testing Technologies, Germany)

INTUITEST:

General Chair
Pekka Aho (VTT Technical Research Centre of Finland, Finland)

Programme Chair:
Tanja Vos (Universidad Politecnica de Valencia, Spain)

Programme Committee Members:

Emil Alegroth (Chalmers University of Technology, Sweden)
Domenico Amalfitano (University of Naples Federico II, Italy)
Mokhtar Beldjehem (University of Ottawa, Canada)
José Creissac Campos (Universidade do Minho, Portugal)
Valentin Dallmeier (Saarland University, Germany)
Anna Rita Fasolino (University of Naples Federico II, Italy)
Jorge Francisco Cutigi (Instituto Federal de São Paulo, IFSP - Campus São Carlos.)
Teemu Kanstren (VTT Technical Research Centre of Finland, Finland)
Peter M. Kruse (Berner & Mattner, Germany)
Leonardo Mariani (University of Milano Bicocca, Italy)
Atif Memon (University of Maryland, USA)
Rafael Oliveira (University of Sao Paulo, Brazil)
Ana Paiva (Faculty of Engineering of the University of Porto, Portugal)
Wishnu Prasetya (Universiteit Utrecht, Netherlands)
Matias Suarez (F-Secure Ltd)
Andreas Zeller (Saarland University, Germany)

Joint Research Workshop STV'15 & INTUITEST

4

Agenda

Welcome and introduction by A. Wiles, ETSI CTI director

Keynote by G. Réthy, Ericsson:

The Test Automation Journey - Challenges and Limits

STV papers:

 T. Kanstrén, M. Chechik and J.-P. Tolvanen:

A Process for Model Transformation Testing 9

 M.-F. Wendland: Approaches to automated test implementation

for test automation architectures 19

 L. M. Hillah, A.-P. Maesano, F. De Rosa, L. Maesano, M. Lettere

and R. Fontanelli: Service functional test automation 29

 M. A. Schneider and L. Bornemann:

Security Testing of Web Services with Fuzzing 39

Keynote by P. Aho, VTT and T. Vos, UPV:

User Interface Test Automation

INTUITEST papers:

 E. Elsaka and A. Memon:

A Fully Automated Approach for Debugging GUI Applications 51

 N. M. L. Neto, J. Lenormand, L. Du Bousquet and S. Dupuy-Chessa:

Toward testing multiple User Interface versions 61

 R. A. P. Oliveira and J. F. Cutigi:

GUI-based Testing in the Brazilian Software Industry: A Survey 73

 O. Stadie and P. M. Kruse

Closing Gaps between Capture and Replay:

Model-based GUI Testing 83

 L. M. Castro, C. B. Earle, H. Ferreiro, M. López and M. Á. F. Fernández:

Using PBT to automate test case generation

and diagnosis in web-based UIs 93

Joint Research Workshop STV'15 & INTUITEST

5

Joint Research Workshop STV'15 & INTUITEST

6

STV

Joint Research Workshop STV'15 & INTUITEST

7

Joint Research Workshop STV'15 & INTUITEST

8

A Process for Model Transformation Testing
Teemu Kanstrén∗, Marsha Chechik†, Juha-Pekka Tolvanen‡

∗VTT, Oulu, Finland
email:teemu.kanstren@vtt.fi
†University of Toronto, Canada
email: chechik@cs.toronto.edu
‡MetaCase, Jyväskylä, Finland

email: jpt@metacase.com

Abstract—This paper describes a process for testing model
transformations. The process is based on systematic analysis of
the transformation rules and the related metamodels. These are
used to identify the relevant parts of the metamodel to test
the transformation, to define coverage criteria, and to define
test oracles (checks) as invariants on what the transformation
output should hold in relation to the input model. Tests are
then created (generated) to produce suitable input models to
fulfill the coverage criteria, and to check that the invariants hold
in the transformation outputs for the different types of inputs
generated. A case study of testing a transformation from the
EAST-ADL specification for the automotive industry is presented.

I. INTRODUCTION

Domain-Specific Languages (DSL) and model-driven engi-
neering are increasingly applied in different contexts. In these
techniques, models at a suitable abstraction level are used to
describe the developed system. One of the core elements in
this is the model transformation, translating the input model
into another format and possibly to a different abstraction
level.The result of the transformation can be code, models,
configuration files or other artifacts. The correctness of the
transformation is crucial as it will impact every input model
using that transformation.

Testing model transformations is challenging as they are
typically created as part of specialized modeling environments,
using their own programming languages and often with limited
support for specific testing features such as extensive test
generation. The potential input space is also typically huge
and difficult to cover to a sufficient extent in manual testing.
We describe how we have addressed these issues in our work,
using a systematic process to describe input models to be
generated, define coverage criteria, apply test generators to
achieve this criteria and to define test oracles for the generated
test cases.

Testing traditional software systems typically involves pro-
ducing various inputs, defining the matching expected output,
and the impact on the System Under Test (SUT) state, which
can in turn influence how further input is turned into output.
Model transformation testing is slightly different in that the
input is given typically as a single input model, and the
observable effects are only the produced the output artifact(s).
In many cases there is no visible state to test from the external
black-box viewpoint. This puts more focus on forming the

input model and the output model for the test cases and less
on the concept of state.

Model transformations have a set of specific properties that
can be used to create more effective test solutions. The input
and output are typically described by metamodels, explicitly
defining their valid structure. The operators applied in the
transformation rules are also typically more constrained than
in using general purpose programming languages. We make
use of these special properties and constraints of the model
transformations in our test process. While various aspects of
model transformation testing have been applied in previous
research, they typically address isolated phases or activities.
We present an overall approach to practical transformation
testing and describe its application in a realistic case study
in the automotive domain.

We use the transformation rules and metamodels to define
the forms of input to create, to define the coverage criteria to
achieve sufficient testing, and to define checks to verify the
correctness of the transformation. We describe how we turn
this information into concrete test cases to execute and verify
the transformation. We demonstrate the approach by applying
it to a model transformation from EAST-ADL specification
language to a Simulink model. EAST-ADL is an Architecture
Description Language (ADL) for the automotive domain.
While we have produced large scale models for different parts
of the specification, our case study focuses on a specific subset
to illustrate the process.

The rest of the paper is structured as follows. In Section II
we describe related work. In Section III we present our process
for testing model transformations. In Section IV we apply
this to a transformation from the EAST-ADL specification.
Section V discusses the results, followed by conclusions.

II. RELATED WORK

In [1], transformation testing is described as consisting of
three activities: generating test data, defining test adequacy
criteria, and constructing an oracle. In [17], these are called
phases and the fourth phase of test execution is added. We see
transformation testing as being composed of several activities
performed iteratively in different phases. The works described
in [1] and [17] are related to different parts of these activities.
These related works describe different phases of a possible
process, with a limited view on how these tie together and can

Joint Research Workshop STV'15 & INTUITEST

9

be applied in practice. In this paper, we present our approach
for an overall, practical model transformation testing process
and illustrate it with a concrete and realistic example. The
rest of this section present an overview of related works in
different areas of such processes, from which we have applied
and adapted different parts to our approach.

A central term in the transformation testing literature is
the Effective Metamodel (EM). This is the part of the input
metamodel relevant for the transformation [6]. It includes
the parts of the input that the transformation is expected to
operate on, and excludes the parts that the transformation
does not operate on. The EM can be identified by analyzing
the transformation rules to see what model elements they
are associated with. When static analysis tools for the given
transformation platform are available, those can be used to
automate this analysis for existing code [16]. We use the EM
as one input for our test process.

What [1] describes as test adequacy criteria, we more gen-
erally term as the test coverage requirements. Different ways to
define coverage requirements for transformation testing have
been presented, and we use these different forms of coverage
as part of our process.

For white-box transformation testing, similar to traditional
white-box testing, we can use code-coverage measures of
the transformation code itself [8]. For black-box testing, we
can define a set of coverage criteria based on the EM. In
[6] and [7], EM coverage is defined as combinations of
EM classes, their associations and attributes. Combinations
of these in different input models should then be covered in
testing the transformation. Different coverage criteria for the
combinations can be defined, such as each range must appear
in one input model, or all combinations of all ranges must
appear in the combined set of input models [7]. In general
software testing terminology this is typically called category-
partitioning.

Generic coverage measures such as those based on transfor-
mation rules or the EM can be used generally for any trans-
formation but can require very large test suites. Knowledge
based partitioning on the other hand is based on the expert
providing specific sets of combinations that need to be covered
[2]. This requires more effort from the domain expert but is
better at capturing the important needs of the domain in a
concise way. In Section IV we demonstrate how our approach
can effectively cover the general level EM based coverage
requirements, and how these can be fine-tuned with domain-
specific definitions.

Finally, coverage can also be analyzed using mutation
analysis [16]. In this case, the transformation is mutated (small
behavior modifying changes made to the rules) and when
all mutants are covered by the test cases the test suite is
considered adequate.

Covering these coverage criteria requires a significant test
set, making manual testing expensive. As transformations are
typically well defined (with metamodels and specific transfor-
mation rules), and executed fast (no user interface) they are
well suited for automated test generation. Different approaches

to generating such test sets have been taken. For example,
constraint solvers [3] and randomization based test generators
[18] have been used. We apply a method described in [10]
which uses randomization based algorithms to optimize the
test set for a wide variety of coverage criteria, providing
means to address effectively the different types of coverage
requirements.

To evaluate the correctness of any test execution, a test
oracle is needed. A test oracle is a procedure that evaluates
whether a given test case should pass or fail. A single test case
may have several different test oracles to assess different prop-
erties. Different levels of such test oracles have been defined
for transformations. A simple and generic approach is to start
with checking that the transformation output conforms to the
output metamodel [2]. For making more detailed comparisons,
several rules are presented in [14], such as finding matching
and missing elements in test input models vs transformation
output. From these, four different outcomes are suggested:
element is correctly/incorrectly mapped, transformation is
incomplete and comparison is incomplete [14].

Some additional oracles are proposed in [15]. These include
pattern matching, contracts, and extensions of the comparison
operators. Six examples are given. When a reference transfor-
mation exists, it can be used for comparison, such as running
several refactoring tools on the same input and comparing their
results [4], [18]. When possible, Inverse transformation can
be applied to see if the result given back is the original input.
Again, an example is to run two opposite refactorings in a
sequence [4], [18]. An expected output model can be provided
by an expert for a given input model. A generic contract
is provided by a test expert and should always hold when
comparing the input model to the output model, for example,
matching input elements to output elements. Specific asserts
are checks tailored by the test expert for a given input model
(test case specific). Model snippets define partial input and
output (snippets) for a test case.

We use different types of oracles for different purposes in
our test process. Metamodel validation is used as a generic
test oracle for all tests. Expected output models are used for
manually defined tests, which are used to cover basic coverage
requirements. Contracts (invariants) between the input and
output are used as part of generated tests (e.g., matching model
elements).

An approach for transformation testing called Tracts is
presented in [9]. The user specifies a set of input metamodel,
output metamodel, and input-output metamodel mapping con-
straints called Tracts for what needs to be tested and evaluated.
The effort is described as often matching re-implementing the
transformation or more [9]. We use a black-box model-based
testing approach describing the relevant input and the test
oracles for evaluating the produced output. In our experience,
this lets us focus on parts of interest and focus the effort in
more intuitive way for a tester. However, another approach
such as Tracts could be used as part of the process as well.

Joint Research Workshop STV'15 & INTUITEST

10

III. PROCESS

We describe our process for testing model transformations
in three different parts:

1) Characterizing the domain
2) Defining checks (test oracles)
3) Creating and executing test cases
These are illustrated in Fig. 1. Characterizing the domain

refers to identifying the important elements in the transfor-
mation to be tested. Following this, we define test oracles
to verify the transformation as checks over properties in the
transformation input vs. transformation output. Creating and
executing test cases refers to turning the understanding of the
input and output and their relations into concrete test cases
that can be executed to evaluate the transformation.

Fig. 1: Process flow

This process is a learning and improvement process where
the three activities are iterated in collaboration with different
stakeholders (e.g., testers, developers, domain experts). The
loop terminates when a suitable level of confidence on the
transformation quality has been achieved for involved parties,
respecting the available resources and observed criticality of
the test target. It re-starts when this confidence no longer holds.
The following subsections characterize these three activities in
more detail.

A. Characterizing the domain

In characterizing the domain, we identify the effective meta-
model (EM) and define the coverage (test adequacy) criteria.
We see this as generally a black-box activity, making use of the
white-box information where available (e.g., tools discussed in
Section II). However, simply using a white-box analysis tool to
identify the EM from the transformation implementation is not
sufficient. This alone cannot tell if the rules are correct, if some
are missing or if some should not have been implemented at
all. For this reason, we find it important to always perform an
analysis of the requirements against the EM.

In our experience, and similar to testing in general, perform-
ing a black-box analysis based on specifications and discussing
this with other stakeholders also helps identify ambiguities
and misunderstandings. This can be augmented with white-
box analysis tools where possible.

We have developed a set of questions to guide the transfor-
mation analysis and discussion, and to identify the EM. These
questions are intended to help systematically go through the
transformation metamodels and rules as a basis for the later
phases. The questions are:

• Why does the transformation do what it does?
• For each input (meta)model element:

– Is it relevant (in scope) for the transformation?
– How is it (or should be) affected by the transforma-

tion?
– What should be produced for it in the output?
– Does it have any other impact on the transformation?

The first question helps raise discussion about the purpose
of the transformation, why testing it is important, and what
areas should the testing focus on.

The four questions related to each model element help
define a set of (expected) high-level transformation rules, the
EM, and test coverage criteria. Identifying the EM allows us to
define the different forms of input models to create for testing,
which should include various combinations of the elements in
the EM. The EM, as metamodels in general, consist of model
elements (e.g., classes, attributes, ports, roles [13]) and their
associations. As our tests cannot possibly cover all possible
combinations in any non-trivial meta-model, we need to limit
this set by defining the coverage criteria more strictly.

We have used categorizations of 0,1,N (N = 2 or more)
as coverage goals for the number of different types of model
elements and associations as the primary coverage goal. We
illustrate this with a hypothetical model having two elements:
A and B. For this, the set of input models should have at least
one model with 0 of A, one with 1 of A and one with N of A,
and the same for B. Several such goals can be covered by a
single input model, for example, a single model that has 0 A
and 2 B. We use the combinations of these as the secondary
coverage goal. For example, one input model with 0 A and 2
B and another with 1 A and 2 B. The coverage criteria can be
further weighted by the importance of specific model elements.
For example, informal input model elements (e.g. comments)
may be given lower weight than functional elements. Works
presented in Section II can be used to assist in producing more
complex coverage requirements as needed.

A specific part to consider is the input metamodel not part of
the EM. While the transformation should correctly handle the
EM and nothing more, we do not know if it correctly handles
the nothing more part until we test it. A transformation viewed
as a black-box may break if there are elements included in the
input that are not part of our EM. However, such elements
do not need to be covered in extensive detail and can be
given lower coverage priority. When white-box transformation
analysis tools are available, they can also be used to provide
assurance that only the EM has impact on the transformation
implementation and execution.

Once we have defined the rules to form relevant test input,
and the coverage criteria, we can use them to define checks.

B. Define Checks (Test Oracles)

What use checks to refer to the test oracles that make
assertions about the produced output with regards to the
provided input. They can be implemented in different ways.

The output metamodel can be used to verify that the
transformation always produces valid output conforming to
the output metamodel. This generic check can be applied for
all test cases and for all transformations when the output

Joint Research Workshop STV'15 & INTUITEST

11

metamodel is available. More specific checks need to be
defined on a per-transformation basis.

As discussed in Section II, one potential test oracle is to
use reference results where the expected output for a specific
input is manually defined. We have used previously designed
production input models and their associated, transformed
and manually checked, output models as such references.
However, manual testing typically does not scale to high level
of assurance over complex input combinations.

To scale higher, we have applied test generation techniques
using model-based testing (MBT) tools. In these cases, the
generator produces large sets of input model variants covering
the potential input space as defined by our coverage criteria.
The checks are defined as invariants that should hold over all
outputs the transformation produces for these inputs.

The process we have followed to create the checks consists
of the following steps:

• Define a check at least for each transformation rule.
• Combine checks for the same elements.
• Map the checks to the concrete output.
• Review with domain expert.
• Repeat as needed.
We start with the transformation rules identified when

characterizing the domain. We look at each rule and consider
what its effect is on the output, and define a check to evaluate
that property holds when the element is present in the input
model. We repeat this for each transformation rule identified.
In the end, we go through the checks and combine the ones
related to the same output element.

For example, several rules may produce new output ele-
ments of type A, each from a different input model element.
We first create checks for each of these to find the matching
number of A in the output. These checks would fail as the
overall number of A is actually impacted by several rules each
generating more A separately. To address this, we go through
the checks, combine all that impact A and use the sum as the
overall check for A. Other combination operations may also be
required, such as merging several if the output property should
be overwritten in case of duplicates. This is further illustrated
in Section IV with concrete examples.

Depending on what level the analysis is performed, we may
need to separately map the checks to the concrete output.
For example, we may define a check that an association of
A to B in the input model is represented correctly in the
output. Concretely this may require checking each side of
the association (A and B) in the output separately, due to
properties of the output model.

Finally, the checks, similar to the domain characterization
need to be reviewed with stakeholders and iterated as needed.
At any time it is also possible to go back to refine the domain
characterization as we learn more.

C. Create and Execute Test Cases

Test cases are created by combining the information col-
lected in characterizing the domain and defining checks. They
formalize the acquired understanding and provide a means

to validate it through test case execution. They are based on
the structure of the input (EM) and the defined test coverage
(adequacy) criteria.

We use different types of techniques to cover different parts
of the coverage requirements. We use reference inputs and
outputs where available as a starting point. We add coverage
for large-scale variation with a MBT test generator. When
needed, we apply the generator separately to focus on specific
aspects, such as providing more extensive coverage for more
complex parts. We compose such smaller (partial) test models
to higher-level test models. This helps to keep the complexity
of the test generators under control.

In our experience, issues with the transformation are found
in all stages of the process. Biggest issues are typically discov-
ered before any tests are executed as ambiguities, misunder-
standings and missing requirements during the test modeling
process. Manually created tests and reference models are good
at finding the most obvious issues in the implementation. Large
scale, automatically generated tests are best at discovering
issues with complex interactions and combinations of different
elements.

The information learned from this phase can again lead to
refinement of the characterization of the domain as well as to
refining the test oracles (checks).

IV. CASE STUDY: EAST-ADL

In this section, we present an example of applying the
process for testing a transformation from an architectural
description written using a DSL based on EAST-ADL in the
MetaEdit+ tool to a Simulink model.

Automotive manufacturers use architecture description lan-
guages, like EAST-ADL, to specify vehicle architecture at a
functional level. This is used to describe all types of system
parts such as software, electric and electronic functionality.
Typically EAST-ADL is used to describe the static architecture
and Simulink is used to describe the behaviour of different
components. To facilitate working on these different parts with
the different tools, MetaEdit+ provides three different trans-
formations. One for transforming the EAST-ADL model from
MetaEdit+ to Simulink, one for transforming the Simulink
model back to EAST-ADL, and one for checking that the
EAST-ADL and Simulink models have the same elements (to
support co-evolution).

We use the first one that transforms EAST-ADL model
to Simulink model to illustrate our testing process. As an
example model we use the Anti-Lock Braking (ABS) system.
This EAST-ADL model is illustrated in Fig. 2, showing a
brake pedal, a brake controller, and four wheels with a brake
torque controlled by the brake controller. This model itself is
hierarchically part of a set of larger models, but we focus on
this smaller part to illustrate the concept.

Fig. 3 shows the Simulink visualization of the same model
after the transformation. The transformation aims to preserve
as much as possible of the model information to make
switching between tools as seamless as possible. MetaEdit+
allows several users to work on a single model simultaneously,

Joint Research Workshop STV'15 & INTUITEST

12

Fig. 2: ABS Model in MetaEdit+

which is typical to the architecture definition phase (EAST-
ADL use). Simulink on the other hand only supports one-at-a-
time editing, which is more typical for the behavior modeling
part, focusing on particular module details but not the overall
functionality of the vehicle. As these tool, languages and
environments need to be used both to work on the same
models, these transformations are needed.

Listing 1 shows a partial output for the EAST-ADL to
Simulink transformation for the model visualized in Fig. 3
by Simulink. This listing is used as basis for discussing the
transformation in the following subsections.

Listing 1: Output (Simulink) model snippet
Model {

Name ”BBW FDA”
Description ”Example model”
Version 1.0
System {

Name ”BBW FDA”
Location [10, 100, 700, 500]
Block {

BlockType ModelReference
Name ”ABS FR Pt”
SID ”1”
Ports [1,0]
ModelNameDialog ”ABS LDM T”
ModelReferenceVersion ”1.0”
List {

ListType InputPortNames
port0 ”BrakeTorqueIn” }

List {
ListType OutputPortNames }

CopyOfModelName ”ABS LDM T”
}
Block {

BlockType ModelReference
Name ”ABS RL Pt”
SID ”2”
Ports [1,0]
ModelNameDialog ”ABS LDM T”
ModelReferenceVersion ”1.0”
List {

ListType InputPortNames
port0 ”BrakeTorqueIn” }

List {
ListType OutputPortNames }

}
Line {

Name ”fl”
SrcBlock ”BrakeCtrl Pt”
SrcPort 3
DstBlock ”ABS FL Pt”
DstPort 1
}
}
}

A. Characterizing the domain

The overall metamodel for EAST-ADL is described in detail
in the EAST-ADL specifications (Section 6) [5]. Identifying

the parts of this metamodel relevant for the transformation
gives us the EM. The two main elements in the EM identified
are related to the reference block part of the EAST-ADL
metamodel:

• DesignFunctionType (DFT): Defines a type for a DFP.
• DesignFunctionPrototype (DFP): Representes an occur-

rence (instance) of a DFT that types it.

Fig. 4 illustrates this part. A DFT defines the type of a DFP
and a set of ports to connect to other DFT instances (DFP’s).
It may also define a composition of several DFP as part of it.
The ABS model in Fig. 2 concretely illustrates this.

In Fig. 2, the boxes are DFP instances, with an associated
DFT. For example, BrakeControllerPrototype is a DFP, and
it has a DFT of BrakeController T. The four blocks on the
right side are the wheels. They are all separate DFP instances
but share the same DFT type ABS LDM T. In Fig. 2, the
BrakeControllerPrototype DFP has four ports each linking to
a different DFP’s (of type ABS LDM T). We use the term
block to refer to the components (boxes) in Fig. 2, and the
term line to the connection lines between them.

In order to identify the transformation rules for the follow-
ing steps of the process, we had several iterations of discus-
sions and reviews between the tester, the developer and the
domain expert. The tester also had access to the modelling and
tranformation tool environment (MetaEdit+ with the models).
This was used by the tester to clarify details and to refine
questions about the transformation between the stakeholder
meetings. A large set of existing reference models existed
for the transformation, so in this case the process focused on
producing a test generator to cover the EM variation at larger
scale. Close to 70 rules were identified for the transformation.

We describe here the rules for transforming the Design-
FunctionPrototype (DFP), focusing on a subset sufficient to
illustrate the process. At the highest level, a Block element
is generated in the output (Simulink model) for each DFP in
the input (MetaEdit+) model. This Block is then used as the
container for properties of the DFP in the (Simulink) output
model. A subset of these DFP transformation rules is (add

Joint Research Workshop STV'15 & INTUITEST

13

Fig. 3: ABS Model in Simulink

Fig. 4: Effective Metamodel (EM) for the reference block part of the transformation.

refers to adding attributes to a Block):

• Add BlockType with static value ModelReference
• Add Name, with value of Short name from DFP.
• Add SID, with increasing unique integer.
• If Description is defined for DFP, add Description with

value of Description from DFP.
• Add AttributeFormatString, with value of Name from

DFP.
• Add ModelNameDialog, with value of FunctionName

from DFP.
• Add ModelReferenceVersion with static value 1.0
• Add List and inside it

– Add ListType with static value InputPortNames
– For each InFlowPort in DFP

∗ Add port X where X is an increasing integer, with
value of Short name from InFlowPort

– For each InPowerPort in DFP, do the same as for
InFlowPort

– For each ServerPort in DFP, do the same as for
InFlowPort

• Add List and inside it

– Add ListType with static value outputPortNames
– For each OutFlowPort in DFP,

∗ add port X where X is increasing integer, with
value of Short name from OutFlowPort

– For each OutPowerPort in DFP, do the same as for
OutFlowPort

– For each ClientPort in DFP, do the same as for
OutFlowPort

TABLE I: Example coverage categories

Model Element Categories
DFP 1,2,N

InFlowPorts in DFP 0,1,N
OutFlowPorts in DFP 0,1,N
InPowerPorts in DFP 0,1,N

OutPowerPorts in DFP 0,1,N
ServerPorts in DFP 0,1,N
ClientPorts in DFP 0,1,N

Description 0,1

These and other rules were identified by going through the
EM following the process in Section III. In a similar way, we
also looked at the elements of the EM and their properties
to set the coverage goals. A subset of these is shown in
Table I, Where N refers to 2 or more (in the first row 3
or more). Combinations for these were defined as described
in Section III-A. Besides these, the EM contains associations
(lines) and various types of additional properties. These are
not shown here to keep the example concise but were also
included in the input models and coverage criteria.

Besides these criteria related to single model elements, we
defined criteria for their various combinations. This refers
to having variants of the categories in the same model. For
example, one combination to cover by an input model would
be 1 InFlowPorts, 1 OutFlowPorts, N DFP instances and an
association between the two flow ports. Combinations used
include variants of:

Joint Research Workshop STV'15 & INTUITEST

14

• port type count and DFP counts,
• connections types, connection numbers, and number of

different types of ports

The number of combinations for the options we defined
comes to 300. Covering such combinations is by far too large
a task to handle by manual test creation. While we could define
much bigger sets and use more complex models, our goal is
not to evaluate the specific test generation algorithm but rather
to illustrate the process and its application.

The Description element is an example of an item that is
not used for anything other than informational purposes in the
input and output models. Thus it was given less weight in the
coverage criteria.

Beyond covering different combinations for the elements
and properties of the EM, we also analyzed the specifications
to define specific coverage criteria of interest. These include
traditional test targets where errors are most likely to exist,
such as boundary conditions or invalid parameters types.
Following are some examples of these:

• Connection from same port type to same port type (e.g.,
InFlowPort to InFlowPort)

• Several connections from/to a single port
• Overlapping DFP names
• DFP without type (DFT) defined

While we can create tests manually or via generation to
cover these, we also need to consider how actual models by
users would be created and under what constraints. The actual
models are intended to be created using the DSL defined in
MetaEdit+. The DSL defines a set of constraints for what types
of models can be created, even if they could otherwise be fed
to the transformation engine.

In this case, the DSL defines a number of constraints
including forbidding connections between different kind of
ports, allowing a connection to be attached to only one port at
each end, not allowing adding a connection in a DFP without
its DFT having defined a port, and requiring DFP and DFT
names to be unique in their context.

However, not all of our corner cases are enforced in the
DSL, and were defined after very interesting stakeholder
discussions. For example, multiple connections from a single
input port are allowed by EAST-ADL but not in Simulink. As
such, these still need to be considered by the transformation
and the tests created. Another example is missing DFT defi-
nition for a DFP that are allowed and only produce a warning
at modeling time.

A property that generally needs to be considered in testing is
input formatting. EAST-ADL defines a set of strict formatting
rules for what types of names and values are allowed in the
model. As these are enforced by the DSL in MetaEdit+, we
also follow these rules in our tests and do not test invalid input
formatting. In another context, we might be interested to also
test these DSL constraints but due to resource limitations we
chose to trust the DSL with these.

B. Defining Checks
For the manually created and reference input models, the

test oracles used are the reference output models. For the gen-
erated test cases, the problem of providing a test oracle is more
interesting. To define the test oracles for them, we analyzed
the identified transformation rules identified in Section IV-A
using the process described in Section III-B. These checks
include (SL refers to the Simulink models produced by the
transformation):

1) The output model conforms to the output metamodel.
2) Number of Input Ports in SL is sum of input model ports

of type InFlowPort, InPowerPort, and ServerPort.
3) Number of Output Ports in SL is sum of input model

ports of type OutFlowPort, OutPowerPort, and Client-
Port.

4) Number of lines in SL matches those in input.
5) All SID values in output are unique.
6) Dynamic attribute values are copied as expected.
7) Required static attribute values are found for relevant

model elements.
Checking that the output model conforms to the output

metamodel ensures that the transformation always produces
a structurally valid output. Once we have assurance that the
output model is structurally valid, we check it for the defined
invariants (checks 2-7 above). The checks for the number of
input and output ports are examples of combining checks for
several rules into one. For example, InFlowPort, InPowerPort,
and ServerPort are all combined into one check for Input Ports
as all three input ports produce same types of outputs but as
a result of different rules.

These checks in general are intended to be more abstract
than the implementation. For example, we check that each
SID is unique, not that they are in an increasing order (even
though they are implemented sequentially). Partly this is
because this is the true requirement (not the sequential order
but uniqueness). In practice it also easier to check for no
duplicates, and shows how we do not wish to re-implement
the transformation for test oracle checking. Instead, we want
to see that their structure is valid (check 1) and the important
invariants always hold (checks 2-7) in a cost-effective manner.

Finally, reviews of the checks vs rules were performed
together with the domain expert to evaluate that the relevant
properties had been included, there were no extra properties
and that the checks that were defined were correct. This was
iterated several times.

C. Create and Execute Test Cases
We used the existing input models as references for the

initial test set to create test cases for the transformation. To
generate large scale test suites, we used our MBT generator
(available at [11]) described in [10]. Like many test generators,
it was originally designed to create state-based tests for reac-
tive systems. In such cases, the SUT is provided with inputs
in small steps (e.g., login, add item to cart, checkout) and
checks are performed at step granularity (e.g., login success,
load correct page, check cart for correct items).

Joint Research Workshop STV'15 & INTUITEST

15

TABLE II: Example rules and actions

Rules Actions
Always allowed Create a DFT
Always allowed Create a DFP

[Unlinked DFP’s > 0
and DFT’s > 0]

Link DFP to DFT

[DFT’s > 0] Add InFlowPort for DFT
[DFT’s > 0] Add OutFlowPort for DFT

[DFP without
Description exists] Add Description to DFP

To produce a test case for a transformation, we do not
consider a test case as executing and checking such small
steps. Rather we need to first produce a complete input
model, execute the transformation on it, and then perform
all the checks as a single operation on the output model.
Thus we had to adapt the concept of our MBT generation
to transformations.

Our generator notation represents the tests to be generated
as a set of actions and rules for creating steps in a test case.
The actions implement the test steps and the rules specify
when each action is allowed. The generator maintains state
to enable creating more complex rules and actions. These are
implemented in a test model, which the test generator executes
in different ways using a given algorithm (e.g., weighted
random choice). This is described in more detail in [10]. To
avoid confusion between different models (MBT test models
and transformation models), we refer to this in the following
as just the test generator.

To adapt this to transformation testing, we used the rules
and actions to describe steps of building the input model. We
used generator state to reflect the input model being generated.
In our view, such a generator represents the process a human
expert would use to build a set of input models. As the
generated input model structure is stored in the generator state,
we can also use this state to define the checks for the invariants
that should hold over the input.

Using the transformation rules defined in Section IV-A,
we defined a set of rules and actions for the test generator
to produce EAST-ADL input models. Table II illustrates a
subset of these. The complete set was created to cover the
overall EM and the identified transformation rules. Due to
space constraints we do not show all of them here, but the
complete generator is available at [12]. The test generator
executes these actions in different sequences to generate input
model variants. The generator state maintains a list of the
created DFP and DFT instances, their attributes, DFP links
to DFT, and port connections between the DFP’s.

Executing one action produces a model element for the
output model, which updates the generator state. For example,
Create a DFT adds a new DFT to the generator state. This
state can then be used by the rules to enable or disable other
actions. For example, [DFT’s > 0] in Table II checks if the
generator state (current input model being generated) has a

DFT defined. If it does, the actions to add an InFlowPort or
an OutFlowPort to a DFT are enabled and can be taken by
the generator.

Listing 2 shows an example generator trace for building a
test case. Each line represents a step invoked by the generator
to build a single test input model. First, two DFP instances
and their descriptions are created (steps 1-4). Following this, a
DFT is created, a DFP is linked to it, and five ports are created
for the DFT (steps 5-11). A second DFT is then created and
three more ports are created (steps 12-16). These could be
for either of the two DFT in the generator state. Finally, the
unlinked DFP is also linked to a DFT, forming a potential DFT
pair for the generator to create port connections (step 17). The
generator then creates two flow connections (18-20).

Listing 2: Example generator sequence
1. CREATEDFP
2. ADDDESCRIPTION
3. CREATEDFP
4. ADDDESCRIPTION
5. CREATEDFT
6. LINKDFPTODFT
7. ADDSERVER
8. ADDINFLOW
9. ADDOUTPOWER
10. ADDSERVER
11. ADDCLIENT
12. CREATEDFT
13. ADDOUTFLOW
14. ADDINPOWER
15. ADDOUTPOWER
16. ADDINFLOW
17. LINKDFPTODFT
18. CREATEFLOWLINK
19. ADDOUTPOWER
20. CREATEFLOWLINK

This trace does not directly show which DFT is linked to
which DFP or which DFT the ports are generated for. The
actual input model the generator built while executing this
trace is shown in Listing 3. This listing is an approximation
of the actual generated MetaEdit+ XML format, to provide a
more concise and easy to read example. The created DFT are
shown in the beginning, the DFP instances and their links to
the DFT next, and finally the set of connections between the
DFP instances.

Here we also see how each DFP is given a unique DFT
and how the created ports are in this case distributed over
the DFT. Other tests have different elements, properties and
links, as well as different generation sequences, all together
contributing to the overall test suite fulfilling all the coverage
combinations we requested. This is the model built piece by
piece by the steps (actions) taken by the generator in Listing 2.

Listing 3: Input Model for example sequence
<GXL>
<TYPE ID=”1” NAME=”DFT1”>
<PORTS>
<INFLOW NAME=”InFlow1” ID=”1”/>
<OUTFLOW NAME=”OutFlow1” ID=”1”/>
<INPOWER NAME=”InPower1” ID=”1”/>
<OUTPOWER NAME=”OutPower1” ID=”1”/>
<OUTPOWER NAME=”OutPower2” ID=”2”/>
<CLIENT NAME=”Client1” ID=”1”/>
<SERVER NAME=”Server1” ID=”1”/>
<SERVER NAME=”Server2” ID=”2”/>

</PORTS>
</TYPE>
<TYPE ID=”2” NAME=”DFT2”>
<PORTS>
<INFLOW NAME=”InFlow1” ID=”1”/>
<OUTPOWER NAME=”OutPower1” ID=”1”/>

</PORTS>
</TYPE>
<PROTO DESCRIPTION=”Description1” TYPE=”DFT2” NAME=”DFT1” ID=”1”/>
<PROTO DESCRIPTION=”Description2” TYPE=”DFT1” NAME=”DFP2” ID=”2”/>
<CONNECTIONS>

Joint Research Workshop STV'15 & INTUITEST

16

<CONNECTION>
<SRC DFP NAME=”DFP1” DFP ID=”1” PORT NAME=”InFlow1” PORT ID=”1”/>
<DST DFP NAME=”DFP2” DFP ID=”2” PORT NAME=”OutFlow1” PORT ID=”1”/>

</CONNECTION>
</CONNECTIONS>

</GXL>

Similarly, the set of checks generated for this same model
are shown in Listing 4. These are again shown in an abstracted
format, whereas in an actual environment they were mapped to
a concrete scripting language (we generated executable Python
scripts in this case). However, the information required to
execute the checks is all shown here. We check that the output
matches the metamodel. We check that all SID are unique and
that each block has one. We generate a check for each DFP
in the input that there is a matching number of blocks, and
that one of them has the properties of each DFP in the input
model for that test case. All these have been generated from
the generator state that was built when producing the input
model shown in Listing 3.

Listing 4: Example checks
metamodel validates
all SID are unique
BLOCKS = 2
TYPES = 2
TYPE1.NAME = DFT1
TYPE2.NAME = DFT2
BLOCK1.NAME = DFP1
BLOCK1.INPORT COUNT = 1
BLOCK1.OUTPORT COUNT = 1
BLOCK1.DESCRIPTION = Description1
BLOCK2.NAME = DFP2
BLOCK2.INPORT COUNT = 4
BLOCK2.OUTPORT COUNT = 4
BLOCK2.DESCRIPTION = Description2
CONNECTIONS=1
CONNECTION1=DFP1.1−DFP2.1

To execute the test cases with the inputs and checks, we
provide the generated input model to MetaEdit+ transforma-
tion engine, run the transformation and perform the checks on
the output.

The test generation algorithms and coverage optimizers we
use are described in more detail in [10]. For space reasons,
we do not repeat them here. To briefly summarize, a large set
of variants are generated and optimization algorithms are used
to pick ones that best fulfill the defined coverage criteria.

To define the coverage criteria, we also use the mecha-
nisms described in [10] specifically applied for transformation
testing. The criteria were defined before in Section IV-A
and illustrated in Table I. We use a hierarchy of coverage
criteria, where we start with single model elements and their
properties. For example, we represent the number of DFP in
the input model as DFP(X), X being the category identifier
from Table I. Other elements are represented similarly, such
as DFP-InFlow(X). A single input model can satisfy several
coverage requirements, such as DFP(1) and DFP-InFlow(2).

Element combinations are represented similarly as pairs of
different types. For example, DFP-InFlow1+DFP-OutFlowN,
refers to having a DFP with one InFlowPort and N OutFlow-
Ports, and InFlow0+InFlowN refers to having to different DFP
instances in the input model, one with no InFlowPorts and one
with N of them. different DFP instances in the input model,
one with X InFlowPorts and the other with Y OutFlowPorts.
Given such coverage definitions, the test generator optimizes

the set of generated input models to achieve high coverage
over these.

The generator achieves full coverage to the criteria we
defined in about 25 tests. As discussed before, this is the
set of basic model elements and sets of variant combinations
(about 300 combinations). This relatively small set of tests
for relatively complex coverage criteria is possible due to the
generator combining large sets of criteria is a single test (input
model), and having capability to track their fulfillment across
large sets and optimize for it.

Where required, the generation can also be guided towards
specific areas if we find those areas especially important. For
example, by using generator scenarios that define the parts
of input to focus on in the overall model (by slicing the test
model). As model transformation are also generally not very
heavy to execute (when invoked directly), they can also be
executed in large numbers fast, which makes them well suited
for automated test generation and execution approaches.

The results for executing the generated tests, our results
are similar to those for other systems. Many ambiguities
and different interpretations are revealed during a systematic
modeling process. This is often seen already as a major
contribution. Beyond this, large scale generation and test
coverage is in our experience very good at finding bugs in
more complex interactions and corner cases.

V. DISCUSSION

While we have described the overall process as consisting
of iterative phases, this also applies at a more fine grained
level. We have found it best to build small parts of the test
model, focus on specific aspects, and iterate from these with
additional parts, including coverage criteria and test oracles.

In terms of coverage optimization, our example is not the
most complex we have seen. In very complex scenarios, the
optimizer may not achieve 100% coverage of the possible
combinations. However, in our experience it finds a very large
number of them, and the ones generated have provided us
with good results in including the important combinations to
find potential issues. In [10] we evaluated the optimization
algorithm also with tens of thousands of options, showing
ability to achieve good coverage. A specific aspect to note
is that the coverage criteria and combinations can be complex
to achieve together with complex input test generation. This
is one part of what makes the transformation testing an
interesting and challenging area.

In the case of the EAST-ADL transformation using
MetaEdit+ we have been able to use the limitations enforced
by the modeling environment to limit the generated input
models to mainly contain valid input models. This is true when
we can assume the input models come from a trusted source
and are used by responsible experts. When the transformation
input models come from external sources, and can be created
with any type of tool, we cannot assume they match particular
metamodel or DSL constraints. In such cases, we should also
consider invalid inputs more broadly.

Joint Research Workshop STV'15 & INTUITEST

17

Based on our experience, we have identified a number of
different types of issues that can be wrong in the transfor-
mation input, and how these may be addressed in different
modeling environments:

1) DSL constraints prevent creating illegal inputs
2) DSL warns about illegal input but allows creating it and

running the transformation
3) DSL allows creating illegal input but prevents running

the transformation
4) output is illegal but target tool (TT) opens it (showing

errors)
5) output is illegal and TT does not even open it
6) output is illegal and TT does not recognize it
7) input is legal based on source metamodel but not on

target metamodel
The first three of these describe how the modelling en-

vironment can manage the different forms of invalid input.
Depending on how far these are implemented in the DSL, we
can ignore related invalid inputs in our testing as the related
constraints are already enforced. Options 4-6 are related to
the target tool for which the transformation output is intended.
These require a deeper understanding also for the target tool
and its notations.

In the last four cases, the target tool will show different
levels of errors for the invalid output models. Typically we
have ruled out such cases from our testing as they are not
valid. However, identifying such cases can be difficult and
commonly not all this information is known to all parties.
In our experience, this is something we learn over time in
performing the testing process and executing the tests.

The last one is in our experience the most tricky one, as it
requires detailed understanding of both the input metamodel
and associated tooling as well as the output metamodel and
associated tooling. For example, EAST-ADL allows multiple
connections from a single input port to multiple output ports,
but blocks targeted in Simulink forbids these.

The case study we presented in this paper is based on the
MetaEdit+ environment and its transformation languages. We
have also implemented this same process in the Eclipse ATL
transformation environment. While the details are different, we
have found the approach to be applicable across the different
transformation environments. Differences include the more
rule-oriented transformation definition language in ATL and
a model navigator-oriented language in MetaEdit+.

The more distinct rules in ATL make it easier to per-
form white-box style analysis and to show more specific
transformation rules to the test engineer. The more generic
approach of MetaEdit+ makes it easier to build more powerful
generators and to re-use elements across different subparts
of the transformations. In both cases, the input metamodel
provides a good starting point for providing test modeling
assistance through our process.

The case studies we have done in this area have concerned
performing the process manually with the help of the test
generation tools. For wider adoption, we see it would be
useful to implement support for the process in the actual

modeling environments. This would include providing the
user with means to go through the elements of the input
and output metamodels and their properties, to use these to
define coverage criteria and test oracles, and to integrate a
test generator to generate tests from these.

VI. CONCLUSIONS

In this paper we described a process we have applied for
testing model transformations. An attempt was made to keep
it generic and allow using any available tools and techniques
to be used to apply it. An example was then presented of a
transformation from an EAST-ADL specification to a Simulink
model. Depending on the support provided by the transforma-
tion framework used, the amount of effort required can vary.
In the future we hope to see this type of support integrated as
part of the modeling and transformation environments to make
it more cost-effective and easier to apply for domain experts.

REFERENCES

[1] B. Baudry, S. Ghosh, F. Fleurey, R. France, Y. Le Traon and J.-M. Mottu,
Barriers to Systematic Model Transformation Testing, Communications
of the ACM, vol. 53, no. 6, pp. 139-143, 2010.

[2] E. Brottier, F. Fleurey, J. Steel, B. Baudry and Y. Le Traon, Metamodel-
based Test Generation for Model Transformations: an Algorithm and a
Tool, Int’l. Symposium on Software Reliability Eng. (ISSRE), 2006.

[3] F. Büttner, M. Egea and J. Cabot, On Verifying ATL Transformations Us-
ing ’off-the-shelf’ SMT Solvers, in Model Driven Engineering Languages
and Systems (MODELS), 2012.

[4] B. Daniel, D. Dig, K. Garcia and D. Marinov, Automated Testing of
Refactoring Engines, in ESEC-FSE, 2007.

[5] EAST-ADL Association, EAST-ADL Domain Model v2.1.12,
http://www.east-adl.info/Specification.html, referenced April 2015.

[6] F. Fleurey, J. Steel and B. Baudry, Validation in Model-Driven Engineer-
ing: Testing Model Transformations, in 1st Int’l. Conf. on Model, Design,
and Validation, 2004.

[7] F. Fleurey, B. Baudry, P.-A. Muller and Y. Le Traon, Qualifying Input
Test Data for Model Transformations, Journal of Software and Systems
Modelling, vol. 8, no. 2, pp. 185-203, 2009.

[8] C. A. Gonz, ATLTest: A White-Box Test Generation Approach for ATL
Transformations, in Model Driven Engineering Languages and Systems
(MODELS), 2012.

[9] M. Gogolla and A. Vallecillo, Tractable model transformation testing, in
Proc. of ECMFA11, ser. LNCS, vol. 6698. Springer, 2011, pp. 221236.

[10] T. Kanstrén and M. Chechik, A Comparison of Three Black-Box Opti-
mization Approaches for Model-Based Testing, in 5th Int’l. Workshop on
Automating Test Case Design, Selection and Evaluation (ATSE), 2014.

[11] T. Kanstrén, OSMO Tester Model-Based Testing Tool,
https://github.com/mukatee/osmo, referenced April 2015.

[12] T. Kanstrén, EAST-ADL to Simulink Example Test Generator,
https://github.com/mukatee/dsm-mbt-example, referenced April 2015.

[13] H. Kern, A. Hummel and S. Kuhne, Towards a Comparative Analysis
of Meta-Metamodels, The 11th Workshop on Domain-Specific Modeling
(DSM), 2011.

[14] D. S. Kolovos, R. F. Paige and F. A. C. Polack, Model comparison: A
Foundation for Model Composition and Model Transformation Testing,
in Workshop on Global Integrated Model Management (GaMMa), 2006.

[15] J. Mottu, B. Baudry and Y. Le Traon, Model Transformation Testing:
Oracle Issue, in ICST workshops, 2008.

[16] M. Mottu, S. Sen, M. Tisi and J. Cabot, Static Analysis of Model
Transformations for Effective Test Generation, in 23rd Int’l. Symposium
on Software Reliability Engineering (ISSRE), 2012.

[17] G. M. K. Selim, J. R. Cordy and J. Dingel, Model Transformation
Testing: The State of the Art, in Workshop on the Analysis on Model
Transformations (AMT), 2012.

[18] G. Soares, R. Gheyi and T. Massoni, Automated Behavioral Testing of
Refactoring Engines, IEEE Transactions on Software Engineering, vol.
39, no. 2, pp. 147-162, 2013.

Joint Research Workshop STV'15 & INTUITEST

18

Approaches to automated test implementation in
model-driven test automation architectures

Marc-Florian Wendland
Fraunhofer FOKUS, Kaiserin-Augusta-Allee 31, 10589 Berlin
+49 30 3463-395
marc-florian.wendland@fokus.fraunhofer.de

Abstract:
Automated test execution, in particular represented by keyword-driven testing, is long
established in industry and research. Automated test design, better known as model-
based testing or test generation, was the subject of intensive research in the last ten to
fifteen years. Scarce work was done in the area of systematic approaches to automated
test implementation, though. Test implementation summarizes the activities that derive
executable test cases from high-level test case specifications. As such, the test imple-
mentation assumes an important role within the entire test process. Depending on the
level of abstraction applied for test design and the desired test execution method (auto-
mated, manual), the test implementation activities vary from simple in-mind translations
for manual test execution to formally specified mapping rules for automated test execu-
tion.
In this paper, we identify, specify and compare different approaches to automated test
implementation that act as a mediator between automated test design and automated
test execution. We will, in particular, emphasize the prerequisites of each approach and
the circumstances under which these approaches positively affect the overall level of
test automation in an otherwise fully automated test design and execution environment.

Introduction

In the recent years many approaches and methods to automated test design, better
known as model-based testing (MBT), have been described and published in numerous
scientific and industrial work. MBT has been a very active research field, though, within
the last ten to fifteen years. The increased interest in model-based approaches to test
generation could indeed be related to the release of UML 2 back in those days and the
promising idea of OMG’s model-driven architecture (MDA) [14]. Whereas automated test
execution – first and foremost the idea of keyword-driven testing (KDT) to be mentioned
– was already adopted by the industry back in the late 1990s [6], MBT allowed further
increasing the overall degree of automation in software testing by automating the test
design activities. Between the test design and test execution phase, the test implemen-
tation activities take place. The ISTQB [10] assigns a dedicated phase in its fundamental

Joint Research Workshop STV'15 & INTUITEST

19

test process for the test implementation activities. ISO 29119 [4] instead merges test
design and test implementation into a single phase. The underlying task and purposes
of the test implementation activities, however, remain the same: concretization of high-
level test case specifications obtained from the test design phase into technical test
cases that can be executed by a test execution system. Test implementation can, thus,
be classified as a transformation either automated or manually performed.

In a test automation architecture that is based on MBT for automated test design and
KDT for automated test execution the result of the test implementation activities are key-
word test cases that use keywords organized in libraries, and an adaptation layer that
provides the implementation of the utilized keywords. The test execution system is then
responsible to run the test cases against the system under test (SUT). The efficiency of
the test implementation activities are, thus, vital for the overall efficiency of the test au-
tomation architecture. To obtain the best efficiency, the test implementation activities
should be performed in an automated manner as well. Interestingly, there is almost no
work available that systematically analyse and distinguish automated approaches to test
implementations in an otherwise automated test architecture. Our work describes differ-
ent approaches to automated test implementation in such a MBT-/KDT-based test auto-
mation architecture.

The contributions of this paper are:

- Analysis of abstraction levels and their dependencies in a model-driven test au-
tomation architecture based on MBT and KDT

- Definition of different approaches to automated test implementation that are
based on abstraction levels of test models and model transformations

- A comparison of these approaches regarding their prerequisites, complexity, ad-
vantages respectively disadvantages.

The reminder of this paper is structured as follows: Section 2 summarizes the related
work in the field of systematic approaches to test implementation automation. Section 3
depicts our understanding of abstraction levels usually found in a test automation archi-
tecture that is realized by MBT and KDT. Section 4 builds upon our understanding of
such a test automation architecture we have faced so far and describes the different
approaches to automated test implementation. Section 5 finally summarized this paper
and provides a view on future work in that area.

Related Work

The related work that deals with a systematic classification and comparison of auto-
mated test implementation approaches is limited. To the best of our knowledge, there is
no work available that systematically address different approaches to automated test
implementation based on (test) models. Model-based ([7], [8], [2], [1]) and keyword-
driven ([6], [4] part 5, [12]) testing has been discussed, partly also the combination of the

Joint Research Workshop STV'15 & INTUITEST

20

two [13]. However, none of this work addressed or compared the test implementation
approaches applied dedicatedly. Our work, in contrast, systematically distinguishes dif-
ferent approaches to test implementation and, thus, helps test engineers make decision,
respectively foresee potential impacts of their decision that influences the architecture
of model-driven test automation solutions.

Abstractions in test automation architectures

A test automation architecture describes a framework that facilitates the automated ex-
ecution of different activities in a test process. Activities that can be automated usually
refer, among others, to test design, test implementation, test execution, test planning
and test execution scheduling or test evaluation activities. A reference framework for a
generic test automation architecture was describes by the ISTQB [9]. It states, and we
agree, that automation is almost always based on abstraction. Figure 1 shows a con-
densed view on that reference framework including the ideal abstraction level of different
artifacts produced or used in such a framework. Ideal means that the actual abstraction
level of those artifacts may vary in different realizations of such a framework, depending,
among others, on the approach for automated test implementation. Moreover, Figure 1
depicts also the different phases or activities and their outcomes in an MBT- and KDT-
based test automation architecture.

The SUT resides on the lowest level of abstractions. It represents a concrete implemen-
tation of the system requirements specification (SRS), which is located on the highest
level of abstraction. The analysis of the test basis from a tester’s point leads to a test
model that realizes the SUT’s expected behaviour and serves as the input for an auto-
mated derivation of test cases. It contains the logical actions that can be performed on
the SUT. Logical means that it is not yet clear, how a particular feature is or was realized
in the SUT. The corresponding test cases are, thus, called logical test cases, capturing
the aspects of the SUT that shall be tested, not how these aspects are tested technically.
Hence, the test model and its resulting test cases reside on the same level of abstraction.
Afterwards the test implementation phase turns the logical test cases into two different
parts: technical test cases and the adaptation layer. Technical test cases are machine-
readable artifacts of the test execution system. They can be as sophisticated as a TTCN-
3 module or as simple as an XML file. The test execution system must be able to execute
the technical test cases. The adaptation layer is an essential part of every KDT approach.
It comprises both a library of known keywords that can be used to build technical test
cases (upper interfaces, abstraction level 2), but also an implementation of these key-
word libraries so that that the test execution is eventually able to execute the keywords
against the SUT (lower interfaces, abstraction level 0). The adaptation layer is, thus, kind
of a transformation that turns the technical test cases into invocations against the actual
interfaces of the SUT at the lowest abstraction level. Technical test cases together with
the adaptation layer form the executable test cases.

Joint Research Workshop STV'15 & INTUITEST

21

Figure 1. Abstraction levels in a test automation architecture

Approaches to automated test implementation

The adaptation layer heavily influences the approaches to automated test implementa-
tion. First and foremost, the existence (or non-existence) of an adaptation layer has to
be clarified. If there is already a working adaptation layer (or supposed to be, e.g., ob-
tained from a commercial vendor), the test implementation approach should consider it
for being immediately executable of the technical test cases. This means, in turn, that
the degree of freedom with respect to the realization of the approach is limited. In the
end, the approach has to produce technical test cases that fit with the adaptation layer.
If there is no adaptation layer available nor supposed to be available in near future, the
restrictions on the test implementation approach are less strict. In such cases, the adap-
tation layer might be implemented manually or completely derived from the test model
layer.

We distinguish at least three different approaches to automated test implementation:
Top-down, bottom-up, and meet-in-the-middle (see Figure 2). We reduced this figure to
the essence of what is needed for the understanding of our work. Since the test model
and the logical test cases reside on the same level of abstraction, they are merged into

Joint Research Workshop STV'15 & INTUITEST

22

the concept test model layer. The SUT is not shown at all because the test implementa-
tion approach has no direct influence on the SUT but on the technical test cases and the
adaptation layer. The test implementation approaches are differentiated in greater detail
in the following subsections regarding the following characteristics: Description, prereq-
uisites, complexity, pros, cons, recommendation, and examples.

Figure 2. Approaches to automated test design

Top-Down Approach

Description. In the top-down approach (see Figure 2a) the test model layer assumes a
dominant position. Neither the test execution system nor the adaptation layer do not
have an impact on the test model layer, which is based on the logical actions described
in the test basis. The abstraction level of the test model layer need to be harmonized
with the interface and type system of the SUT. This approach is very often applied and
described in scientific work, due to its simplicity with respect to the required test environ-
ment.

Prerequisites. This approach has minimal constraints on how to actually executed the
test cases. Neither does it presume a certain adaptation layer, nor does it enforce a
certain test execution system. The modeling language to constitute the test model layer

Joint Research Workshop STV'15 & INTUITEST

23

should at least be capable of describing the logical actions of the SUT as a behavioural
specification (e.g. state machines, transition system). If the adaptation layer shall be
generated from the test model layer, too, the modeling language must, in addition, allow
specifying the SUT interfaces and its type system. The UML Testing Profile (UTP) [3] is
a good example for a modeling language that meet both prerequisites.

Complexity. The test implementation transformation consists basically of a model-to-
text-transformation that generates the technical test cases out of the test model layer.
This transformation is usually rather straightforward for no other impacts have to be con-
sidered. If, however, the adaptation layer shall be automatically generated, too, this ap-
proach becomes more sophisticated. The modeling language would have to be capable
to express three abstraction levels (test model, technical test cases and SUT) as well as
a mechanism to link test definitions (i.e., interface and type definitions) on different layers
on abstraction and a dedicated mapping among these layers. Automated generation of
adaptation layers, however, is not consider as the main scenario for this paper.

Pro. Since the test model layer reflects the logical actions of the SUT obtained from the
test basis, the automated design and implementation can be performed even before the
SUT is even available. In addition, this approach does not influence the abstraction level
of the test model. Any abstraction level that is appropriate for the test analysts can be
targeted. Finally, this approach grants the highest degree of freedom regarding which
test execution system or (programming) language to use for test execution. There does
not even have to be a dedicated test execution system utilized. A plain programming
language (or even executable modeling language) is sufficient to realize this approach.

Con. The biggest disadvantage of the top-down approach is the lack of reusability of the
test implementation transformation. The transformation was designed to tie the test
model layer on a certain abstraction level directly to the SUT. Thus, any other SUT im-
plementation or abstraction level would require re-work of the test implementation trans-
formation. Moreover, if the adaptation layer shall be generated from the test model layer,
the transformation would have a high complexity. If the adaptation layer shall be imple-
mented manually, it would be resource-consuming.

Recommendation. This approach is often used in research projects and for early proof-
of-concepts due to its simplicity regarding the integration of test design and test execu-
tion and the minimal constraints on the employed test automation solution. This ap-
proach can be beneficial nonetheless, when no suitable adaptation layer is given for the
SUT implementation and reuse of the test adaptation layer for other test automation
architectures is not required or intended.

Example. In the EU project REMICS, this approach was successfully applied [5]. The
UTP test model was translated into TTCN-3 scripts and the according adaptation layer
was implemented manually.

Joint Research Workshop STV'15 & INTUITEST

24

Bottom-Up Approach

Description. The bottom-up approach (see Figure 2b) constitute the counterpart of the
top-down approach. The adaption layer assume a dominant position, thus, the interfaces
and type system of the adaptation layer is pulled up into the test model layer and directly
influences the design of the test model and the logical test cases. The test model layer
and the upper interfaces of the test adaptation layer reside on the same abstraction level.

Prerequisites. By definition, this approach demands the existence of an adaptation
layer and test execution system. The test modeling language need to offer concepts to
describe the technical test cases and the interfaces and type system of the adaptation
layer, but not of the SUT.

Complexity. The test implementation transformation usually consists of both a re-engi-
neering transformation (adaptation to test model layer) and a transformation from logical
to technical test cases (model-to-model or model-to-text transformation, depending on
the format of the technical test cases). The transformation of test cases is usually
straightforward, for the logical test cases are located on the same abstraction level as
the technical test cases. The type system and interface definitions of the adaptation layer
can be automatically pulled up to the test model level in many cases.

Pro. The biggest advantage is that the generated test cases are guaranteed to being
immediately executable because of the dominant position of the adaptation layer. When-
ever changes to the SUT have to be incorporated by the adaption layer, the test model
layer can be (in many cases) automatically updated and test cases re-generated. The
complexity of the transformation of test cases is rather low.

Con. The inherent disadvantage of this approach is that the test model layer is depend-
ing on the adaptation layer. The test model layer does not (necessarily) constitute the
most suitable abstraction level of the logical actions, but the one obtained from the ad-
aptation layer. This is reflected in the deviation of the ideal abstraction level of the test
model layer in Figure 1 (i.e., abstraction level 3) and the effective one in this approach
in Figure 2 (i.e., abstraction level 2). If the adaptation layer is poorly abstracted (i.e. the
interfaces and type system contain too low-level implementation details), the test model
would suffer from the same poor abstraction. This can result in test models that are
difficult to write, read, maintain or understand for test analysts.

Recommendation. The application of the bottom-up approach shall be used when the
adaptation layer is located on an appropriate abstraction level that efficiently abstracts
from the actual implementation.

Examples. In the EU project MIDAS [11] the bottom-up approach was realized. In short,
the application of the bottom-up approach was successful, because the abstraction level

Joint Research Workshop STV'15 & INTUITEST

25

of the WSDL-based adaptation layer was appropriate for the test analysts to build test
models and generate test cases from it. The test model layer was automatically re-engi-
neered from the adaptation layer using an MDA-inspired process.

Meet-in-the-middle Approach

Description. The meet-in-the-middle approach (see Figure 2)) builds upon the top-down
and the bottom-up approach. It leverages either advantages and mitigates either short-
comings by splitting the test model layer into a high-level and a low-level test models.
The high-level test model is derived from the test basis on an appropriate abstraction
level for the test analysts (similar to the top-down approach). In addition, the adaptation
layer is re-engineered into the low-level test model that facilitates automated test execu-
tion (similar to the bottom-up approach).

Prerequisites. This approach requires the existence of both a capable test basis and
an existing (or anticipated) adaptation layer and test execution system. In between the
high-level and the low-level test model a number of model-to-model-transformations (at
least one) are required that gradually refines the logical test cases into technical test
cases, respectively executable ones. Furthermore, the test modeling language must of-
fer concepts to describe both abstraction levels. This approach requires by definition a
model-to-model transformation.

Complexity. There is an inherent higher complexity in the meet-in-the-middle approach
compared to the former to approaches. There at least two rather independent test model
layers that need to be integrated with each other. Opposed to what we have said so far,
the meet-in-the-middle approach requires by definition a model-to-model transformation.
The more intermediate models are involved, the more complex (but flexible) becomes
the automated test implementation.

Pro. First, the combined advantages of the top-down and bottom-up approaches guar-
antees an appropriate abstraction level for test analyst (efficient automated test design)
and ensure being immediately executable based on the existing adaptation layer (effi-
cient automated test execution). This approach can be realized even when no adaptation
layer is available yet, because of the separation of high-level and low-level test models.
This fosters early testing. Another benefit of the layered test models is that even the low-
level actions (i.e., the actions contained in the low-level test model) can be composed
into a more complex ones. Such macro-like actions can be utilized as library to encap-
sulate complex communication with the SUT in a single action without losing the guar-
antee of being executable thanks to the model-to-model transformations in between any
test model.

Con. The biggest (and most probably sole) disadvantage is the higher and initial com-
plexity of the test implementation approach. It is, in fact, the only approach that inherently

Joint Research Workshop STV'15 & INTUITEST

26

requires model-to-model transformations or, even more sophisticated, a complete MDA
framework including traces among each test model level. The realization of such a test
automation architecture will be quite costly when applied the first time.

Recommendation. The approach shall be used when the abstraction level of the adap-
tation layer is not feasible for the test model and the project has a long duration with a
most likely evolving SUT. If an MDA framework shall be applied, a meta-modeling tech-
nology shall be used that natively supports the idea of the MDA including superior facil-
ities for implementing model-to-model transformations. The high complexity of this ap-
proach is payed off by several benefits, though.

Example. In MIDAS [11], the application of the data fuzzing techniques has been real-
ized on this approach. High-level data fuzzing strategies have been defined and applied
on the high-level test model, agnostic of any (test) programming language. Finally, a
model-to-model transformation was developed that resolved these strategies into con-
crete TTCN-3 external libraries and invocations thereof.

Conclusion

In this paper, we have identified different approaches to automated test implementation
as a link between automated test design (i.e., test generation) and automated test exe-
cution. We have compared the approaches with respect to their prerequisites, complex-
ity, pros and cons. The assessment of the complexity of each approach was based on
abstractions levels. These abstraction levels have been discussed in the context of a
generic test automation architecture inspired by the ISTQB [9].

We have argued that the top-down approach is the most intuitive, but least feasible ap-
proach for rigor industrial application due to the lack of flexibility. Due to its isolated na-
ture, this approach is predestined for (academic) proof-of-concepts without the need of
considering existing environments. Apart from these settings, we do not recommend to
utilize the top-down approach. The bottom-up approach is built upon an automated test
execution environment and pulls the adaptation layer into the test model layer. This guar-
antees that the generated test cases are immediately executable since the actions in the
test model reflect the logical abstraction level of the adaptation layer. On the downside,
this could easily lead to test models with an inappropriate, yet too low, abstraction level.
The meet-in-the-middle approach mitigates the shortcomings of either approach by in-
troducing at least two test models that are located on different levels of abstraction. As
a result, test analyst are able to create test models that are easy to maintain, to read and
write, and the technical test analyst has to face less abstraction for realizing the execut-
able test cases. In between the high-level and low-level test models any number of test
models on with lower, respectively, higher abstraction level can reside. Among those
abstraction levels, transformation need to be employed to actually meet in the middle.

Joint Research Workshop STV'15 & INTUITEST

27

Future work will in particular address a systematic and empirical evaluation of the bot-
tom-up and meet-in-the-middle approach. We think that these two approaches have the
highest potential for being adopted by the industry in order to transition from automated
text execution to test automated test design. We are going to analyse this transitions in
greater detail in future. The idea is to define a process framework that guide test engi-
neers along their path from automated test execution towards automated test design by
relying on one of the two approaches for automated test implementation.

References
[1] Prenninger W., and Pretschner, A., Abstractions for Model-Based Testing, in International

Workshop on Test and Analysis of Component Based Systems (TACoS 2004)..
[2] Pretschner, A. and Philipps, J., Methodological Issues in Model-Based Testing. in Model-Based

Testing of Reactive Systems. Springer, 2004.
[3] Object Management Group (OMG): UML Testing Profile. URL: http://www.omg.org/spec/UTP
[4] International Organisation for Standardisation (ISO): ISO/IEC 29119, Software Testing Standard,

http://www.softwaretestingstandard.org
[5] Wendland, Marc-Florian et al., Model-based testing in legacy software modernization: an expe-

rience report, in Proceedings of the 2013 International Workshop on Joining AcadeMiA and In-
dustry Contributions to testing Automation (JAMAICA 2013). JAMAICA'13, July 15, 2013, Lu-
gano, Switzerland.

[6] Foster, M. and Graham, D., Software Test Automation. Addison-Wesley Professionals, 1999.
ISBN: 978-0201331400.

[7] Utting, M.; Pretschner, A., Legeard, B.: A Taxonomy of Model-Based Testing. ISSN 1170-487X,
2006. http://www.cs.waikato.ac.nz/pubs/wp/2006/uow-cs-wp-2006-04.pdf.

[8] Utting, Mark; Legeard, Bruno, Practical Model-based testing – A Tools Approach, Elsevier, 2007.
[9] International Software Testing Qualifications Board (ISTQB): Certified Tester Expert Level Syl-

labus – Test Automation - Engineering. Version 2014.
[10] International Software Testing Qualifications Board (ISTQB): Certified Tester Foundation Level

Syllabus. Version 2012.
[11] Wendland, Marc-Florian; Schneider, Martin; and Hoffmann, Andreas. A model-driven approach

to test automation for SOA systems. Accepted for STTT Special Issue Model-based Testing on
the Cloud. Springer, Heidelberg, 2015.

[12] Takala, Tommi; Maunumaa, Mika; and Katara, Mika. An Adapter Framework for Keyword-
Driven Testing. In: Proceedings of the Ninth International Conference on Quality Software
(QSIC) 2009, IEEE Computer Society, 2009.

[13] Pajunen, Tuomas; Takala, Tommi; and Katara, Mika. Model-Based Testing with a General Pur-
pose Keyword-Driven Test Automation Framework. Fourth IEEE International Conference on
Software Testing, Verification and Validation (ICST) 2012, Germany.

[14] Object Management Group (OMG). MDA Guide rev. 2.0, URL: http://www.omg.org/cgi-
bin/doc?ormsc/14-06-01.pdf, last visit: 16th September, 2015.

Joint Research Workshop STV'15 & INTUITEST

28

Service functional test automation

Lom Messan Hillah, Ariele-Paolo Maesano
Laboratoire d’Informatique de Paris VI, Sorbonne Universités, UPMC
lom-messan.hillah@lip6.fr, ariele.maesano@lip6.fr
Fabio De Rosa, Libero Maesano
Simple Engineering France SARL
fabio.de-rosa@simple-eng.com, libero.maesano@simple-eng.com
Marco Lettere, Riccardo Fontanelli
Dedalus S.p.A
marco.lettere@dedalus.eu, riccardo.fontanelli@dedalus.eu

Abstract:
This paper presents the automation of the functional test of services
(black-box testing) and services architectures (grey-box testing) that has
been developed by the MIDAS project and is accessible on the MIDAS
SaaS. In particular, the paper illustrates the solutions of tough functional
test automation problems such as: (i) the configuration of the automated
test execution system against large and complex services architectures,
(ii) the constraint-based test input generation, (iii) the specification-based
test oracle generation, (iv) the intelligent dynamic scheduling of test
cases, (v) the intelligent reactive planning of test campaigns. The paper
describes the usage of the MIDAS prototype for the functional test of an
operational distributed application in the domain of healthcare.

Introduction

Services are everywhere. They are involved in services architectures
built of service components that: (i) expose service APIs, (ii) interact
through service protocols (REST/XML, REST/JSON, SOAP…) and (iii)
are deployed independently of each other. The SOA approach has
been used for fifteen years to let distributed vertical applications coop-
erate. More recently, systems have exposed service APIs for interac-
tion with mobile apps. Presently, the internal structure of applications,
once monolithic, is going to be designed as a micro-services architec-
ture [9] that is particularly well adapted for cloud deployment. Services
are loosely coupled, allowing agility of design, development, integration
(continuous integration - CI), delivery (continuous delivery - CD) and
deployment.
The Calabria Cephalalgic Network (CCN) [3] is a multi-owner distrib-
uted application that supports the headache integrated care processes,

Joint Research Workshop STV'15 & INTUITEST

29

effectively coordinating
different care settings
(general practitioners,
specialists, clinics,
labs...) in a patient-
centred vision. The
application is designed
as a services architec-
ture (Figure 1), is op-
erational today and its
components’ services
are physically de-
ployed in different data
centres. The service
APIs are compliant
with the HL7/OMG
HSSP international
standards (RLUS, IXS,
CTS2...) [13].
Dedalus [12], a com-

pany specialised in healthcare systems, is in charge of the provision
within the CCN of the Patient record, the Patient identity and the Ter-
minology services. CCN service-oriented architecture allows Dedalus
to put in place a modular integration process with one separate source
code repository and one separate build per service component.
Actually, the service integration process is a full testing process, consti-
tuted of all the testing activities: functional, security, fault tolerance and
performance test. In order to improve agility and time-to-market, these
activities shall be organised in an optimized manner. The service
integration and delivery process pattern that is becoming popular is the
CD pipeline [15], in which the testing activities are placed as stages
between the service build formation and its deployment in the produc-
tion environment. The transition from a stage to the next is permitted
only whether the stage tests pass, otherwise the sequence is interrupt-
ed and restarts with the check-in of the updated code. An example of
service CD pipeline is sketched in Figure 2.
The test tasks in each stage and the chosen sequence of the test stag-
es can and should maximise the effectiveness (the fault exposing po-
tential and the troubleshooting efficacy) and the efficiency (the fault
detection rate) of the testing tasks. Test effectiveness and efficiency
are important even for completely automated stages - to say nothing
about manual ones - that can be heavyweight and can slow the entire
process.

Joint Research Workshop STV'15 & INTUITEST

30

In the CD pipeline sketched in Figure 2, the successfully constituted
build is firstly submitted to acceptance white-box tests. All the subse-
quent test stages target different aspects of the service external behav-
iour and are independent of the service implementation technology.
The subsequent two stages are about functional test and are detailed
in the section ‘Automated functional test’. The security tests follow -
they can be effective and efficient only whether the service build pass-
es the functional tests. The last two stages are about quality of service:
the fault tolerance tests challenge the resilience of the service imple-
mentation in the face of failures of the underlying computing resources
or the unavailability of the services it interacts with. Lastly, the perfor-
mance tests concern mainly the service invocation and provision laten-
cy. The CD pipeline can be more or less automated. A single CD pipe-
line stage can be fully automated whether: (i) its internal tasks can be
fully automated and produces automatically a meaningful report and (ii)
the automated tasks can be invoked through APIs by the CD server
(for instance Jenkins [14]).
This paper reports a solution of automation of service functional test.
The section ‘Related work’ gives the motivation for doing research on
the topic and a short review of the state of the art. The section
‘Automated functional test’ presents the prototype developed within
the MIDAS project and provided as-a-service by the MIDAS SaaS [16].
Dedalus has incorporated the functional test automation services in its
integration process: this experience is presented in the ‘Prototype
usage in an operational environment’ section. The ‘Conclusion’
discusses major advantages and drawbacks of the new solution and
outlines future work.

Related work

Service test and, in particular, end-to-end test of complex services
architectures is difficult, knowledge intensive, hard to manage and

Joint Research Workshop STV'15 & INTUITEST

31

expensive in terms of labour effort, hardware/software equipment and
time-to-market. Since the inception of the service orientation, service
testing automation has been a critical challenge for researches and
practitioners [2] [1] [11]. In particular, tasks such as: (i) automated op-
timised generation of test inputs [2], (ii) automated generation of test
oracles [1], and (iii) optimised management of test suite for different
test activities - such as first testing, re-testing, regression testing [11],
has not yet found automation solutions that can be applied to real
complex services architecture such as those that are implemented in
healthcare [3].
Model-based testing (MBT) utilises formal models (structural, functional
and behavioural) of the services architecture under test to undertake
the automation of the testing tasks [5]. The “first-generation” MBT re-
search is essentially focused on test input generation. More recently,
formal methods, especially SAT/SMT-based techniques have been
leveraged [6] that allow the exhaustive exploration of the system exe-
cution traces, and efficient test input generation satisfying constraints
(formal properties expressed in temporal logic). Jehan and colleagues
[6] use a constraint solver to compute the expected inputs for each
particular execution of the business process as extracted from the con-
trol flow graph.
The MIDAS approach to the prioritization of test cases [11] is entirely
original [8]: it is based on the usage of probabilistic graphical models
[10] [7] in order to dynamically choose the next test case to run on the
basis of the preceding verdicts. Moreover, the scheduler is able to es-
tablish a dynamic relationship between test case prioritization and the
generation of new test cases, by supplying on the fly to the generator
evidence-driven directives based on the preceding verdicts.

Automated functional test

Test environments

The service functional test automation
is illustrated through an example of a
simplified services architecture related
to the CCN application (Figure 3). In
order to provide its service, eHealth
service consumes the Patient record,
the Patient identity and the Terminolo-
gy services. These services that are

Joint Research Workshop STV'15 & INTUITEST

32

not consumers of other services are called
terminal services.

Unit test stage
The unit test stage includes the following
tasks: (i) produce test inputs (stimuli), (ii)
produce test oracles (expected out-
comes), (iii) deploy and initialise the build
in an appropriate environment (service under test - SUT), (iv) configure
and generate the test system, (v) bind the test system with the SUT,
(vi) run test cases (transmit stimuli, collect and log outcomes), (vii)
arbitrate test outcomes against test oracles, (viii) schedule test case
runs (dynamic scheduling), (ix) plan test campaigns (reactive planning)
and (x) report test campaigns. For every terminal service, the unit test
environment architecture is similar to that sketched in Figure 4.
For non-terminal services, such as the eHealth service, the typical unit
test environment is depicted in Figure 5. The test tasks involved in the
stage are the same as those for terminal services, but in the test sys-
tem are generated, in addition to the stimulator, three mocks that “vir-
tualise” the downstream services. The binding sub-task enables the
mocks receipt the requests of the eHealth service, and send back the
canned responses. The test system must be able to evaluate against
the oracles that the requests that are issued target the appropriate
services, are in time, are in the exact sequence and are the right ones.

End-to-end test stage
The services architecture under test
(SAUT) distributed environment is
deployed with the lastest release
builds of the downstream services. In
the test system are generated the
interceptors that catch the exchang-
es forth and back between the
eHealth service and the downstream
services (Figure 6). This test envi-
ronment is put in place in the end-to-
end stages of the CD pipelines of all
the services involved in the SAUT,
including the terminal services. An
interesting point is that the end-to-
end tests can highlight functional
failures of any of the SAUT services -
not only of the service of the pipeline

Joint Research Workshop STV'15 & INTUITEST

33

in which the stage is accom-
plished - and so eventually reveal
service tight coupling - when a
change in one service produces
an unexpected failure in another
service.
End-to-end testing of multi-owner
services architecture requires
collaborative testing projects that
involve all the service owners and
that explore systematically the
cooperation scenarios between
all the services. Systematic end-
to-end testing campaigns are
mandatory for first testing of new
distributed applications, but are
also recommended as regular
activities of re-testing and regres-
sion testing. A collaborative test-

ing project involving all the owners of the CCN application services is in
progress.

Test automation methods

The MIDAS functional test prototype brings automation solutions (test
automation methods) for the most critical test tasks: (i) configuration of
the test system against distributed services architectures, (ii) test case
(input/oracle) generation based on constraint propagation and symbolic
execution, (iii) intelligent dynamic test case prioritisation and scheduling,
(iv) intelligent reactive planning of test campaign with on-the-fly, evi-
dence-based generation of new test cases. These test automation
methods are provided as services by the MIDAS SaaS.

Automated configuration of the test system
The structure of the test system (stimulators, mocks, interceptors) is
automatically generated from the SAUT model and the test configura-
tion model. The former model is represented through an XML docu-
ment depicting the actual components of the SAUT and the actual
wires between them – interaction links that are typed by service speci-
fications (e.g. WSDL documents). The latter model is obtained from the
former model: (i) by adding virtual components (stimulators, mocks)
and the corresponding virtual wires to actual components and (ii) by
designating the actual wires to be observed (interceptors).

Joint Research Workshop STV'15 & INTUITEST

34

Automated genera-
tion of test cases
Each SAUT compo-
nent is equipped with
a protocol state ma-
chine (PSM), mod-
elled as a Harel
state-chart [4], that
represents the inter-
action states of the
component and the transitions triggered by received messages
(events), filtered by conditions (guards) and producing effects de-
scribed as data-flow transfer functions. The service component PSMs
are represented through standard SCXML documents [17] and the
conditions and transfer functions are expressed in Javascript.
Test cases (inputs and oracles) are generated from the set of models
(Figure 7). The test cases generation process relies on model-checking
the PSM models using TLA+ [18], a well-known formal specification
language based on temporal logic. TLA+ is backed by the TLC model
checker to exhaustively check correctness properties across all possi-
ble executions of the system and by the TLAPS proof system that re-
lies on SMT (Satisfiability-Modulo Theory) solvers for checking TLA+
proofs. The PSMs and the generation parameters are translated into a
TLA+ companion algorithm language (PlusCal) that is afterwards com-
piled into TLA+. Through assertions, execution traces of the system
that match some criteria - for instance where messages of some spe-
cific types, or containing some specific values, are exchanged - are
requested to the proof system. Input data are then extracted from the
execution traces and fed to the SCXML engine, which executes the
PSMs for the scenarios triggered by the input data and produces the
related oracles.

Automated dynamic scheduling of test runs
Automated dynamic scheduling takes places in the MIDAS test system
that is equipped with automated execution and arbitration of test cases
(Figure 8). In this context, the scheduler is able to choose the next test
case to run on the basis of the past test verdicts. The cycle sched-
ule/execute/arbitrate continues until there are no more test cases to run
or some halting condition is met. The objectives of dynamic scheduling
are (i) precocious detection of failures and (ii) localisation of faulty ele-
ments (troubleshooting).

Joint Research Workshop STV'15 & INTUITEST

35

The dynamic scheduler
builds a Bayesian Net-
work (BN) model [10]
from (i) the SAUT model,
(ii) the test suite and (iii)
user’s beliefs on the
SAUT. The BN is com-
piled into an Arithmetic
Circuit (AC) [7]. At each
test run the verdicts are
inserted as evidences in
the AC and the subse-
quent inference calcu-

lates a fitness probability for each remaining test case that, combined
with a scheduling policy (e.g. max-fitness, max-entropy...), allows the
scheduler to choose the next test case.

Automated reactive planning of test campaigns
The idea behind a fully automated workflow for functional testing is to
use the scheduler to drive not only the choice among a set of existing
test cases but also the generation of new test cases. The test cam-
paign starts with a minimal test suite and, on the basis of evidences
(verdicts) brought from the past test runs, the scheduler calculates the
degree of ignorance (Shannon entropy) on SAUT elements and rec-
ommends the generation of test cases whose execution would diminish
this ignorance. This feature is operational and its usage in test cam-
paigns is in progress.

Prototype usage in an operational environ-
ment

Dedalus currently utilises a home-made framework for service unit
testing that has already significantly shrunk the effort of manually pro-
ducing and executing test cases and test suites. The major limitations
of this solution can be labelled as: (i) “test case overhead”, (ii) “unit
testing only”, (iii) “lack of planning and scheduling”, (iv) “manageability”.
The “test case overhead” issue relates to the necessity of creating a
huge amount of test cases since the services to be tested (such as
RLUS) are specified as generic and the payload structure varies ac-
cording to the instantiation of the service. In addition, typical content
transferred in the healthcare domain is made of very complex data
structures with several thousands of atomic data types. The automated

Joint Research Workshop STV'15 & INTUITEST

36

generation of test cases brought by the MIDAS prototype reduces dra-
matically the effort that was formerly dedicated to test case hand-
writing. Moreover, the home-made testing framework is able to support
only service unit testing. End-to-end test of service compositions with
MIDAS requires only the drafting of the appropriate SAUT, test configu-
ration and PSM models.
With the aforementioned huge amount of test cases, the optimisation of
the test campaigns is a must. The home-made test framework doesn’t
have any support for test cases prioritization and test case generation
optimization. MIDAS intelligent scheduler and reactive planning facility
propose solutions to the optimisation problem that are technically oper-
ational and whose evaluation is in progress.
Last but not least, with the home-made framework every change in the
deployed SAUT (IP addresses, ports, URIs, parametrizations) requires
a significant effort of reconfiguration by hands of every individual test
case, practically preventing any continuous integration approach. With
the MIDAS prototype, the SAUT models, the test configuration models,
the PSMs and the generated test suites are independent of the SAUT
physical locations that are indicated as configuration parameters to be
instantiated at test run time.

Conclusion

The collection of functional test automation methods of the MIDAS
prototype covers all the service functional test tasks, including the most
“intelligent” and knowledge-based ones. Furthermore, the test automa-
tion methods are provided as services, allowing the MIDAS SaaS user
both to invoke them individually and to easily combine them in service
integration and delivery processes directed by CI/CD servers. These
methods are actually integrated as services by a MIDAS partner
(Dedalus) in its specific integration and delivery process of healthcare
distributed applications and services architectures. Experiences for
assessing and mastering advanced features such as dynamic schedul-
ing for re-testing and regression testing and evidence-based test case
generation are in progress.
Current drawbacks of the MIDAS prototype are manageability and
usability issues and are the matters of future work: (i) taking into ac-
count REST/JSON service testing; (ii) automated check of the align-
ment of the SAUT deployment with the SAUT model; (iii) simplifying the
specification of the test configuration; (iv) better handling of passive
oracles (generated from incomplete specifications).

Joint Research Workshop STV'15 & INTUITEST

37

References

1. Barr, E., Harman, M., McMinn, P., Shahbaz, M., & Yoo, S. (2015).

The oracle problem in software testing: A survey. IEEE Transactions
on Software Engineering, 41(5).

2. Bozkurt, M., Harman, M., & Hassoun, Y. (2010). Testing web ser-
vices: A survey. Department of Computer Science, King’s College
London, Tech. Rep. TR-10-01.

3. Conforti, D., Groccia, M. C., Corasaniti, B., Guido, R., & Iannacchero,
R. (2014). EHMTI-0172.“Calabria cephalalgic network”: innovative
services and systems for the integrated clinical management of
headache patients. The journal of headache and pain, 15(1), 1-1.

4. Harel, D. (1987). Statecharts: a visual formalism for complex sys-
tems. Science of Computer Programming, 8 (3), 231-274.

5. Hierons, R. M., Bogdanov, K., Bowen, J. P., Cleaveland, R., Derrick,
J., Dick, J., Gheorghe, M., Harman, M., Kapoor, K., Krause, P.,
Lüttgen, G., Simons, A. J. H., Vilkomir, S., Woodward, M. R., & Zed-
an, H. (2009). Using formal specifications to support testing. ACM
Comput. Surv., 41 (2), 1-76.

6. Jehan, S., Pill, I., & Wotawa, F. (2013, May). Functional SOA testing
based on constraints. In Proceedings of the 8th International Work-
shop on Automation of Software Test (pp. 33-39). IEEE Press.

7. Maesano, A. P. (2015). Bayesian dynamic scheduling for service
composition testing. Ph.D. Dissertation, University Pierre et Marie
Curie, Paris.

8. Namin, A. S., & Sridharan, M. (2010). Bayesian reasoning for soft-
ware testing. In Proceedings of the FSE/SDP workshop on Future of
software engineering research, FoSER '10, (pp. 349-354). New York,
NY, USA: ACM.

9. Newman, S. (2015). Building Microservices. O'Reilly Media, Inc.
10. Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Net-

works of Plausible Inference. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc.

11. Yoo, S., & Harman, M. (2012). Regression testing minimization, se-
lection and prioritisation: a survey. Softw. Test. Verif. Reliab., 22 (2),
67-120.

12. http://www.dedalus.eu/
13. https://hssp.wikispaces.com/
14. https://jenkins-ci.org/
15. http://martinfowler.com/bliki/DeploymentPipeline.html
16. http://www.midas-project.eu
17. http://www.w3.org/TR/scxml/
18. http://research.microsoft.com/en-us/um/people/lamport/tla/tla.html

Joint Research Workshop STV'15 & INTUITEST

38

Security Testing of WSDL-based Web
Services with Fuzzing

Martin A. Schneider, Leon Bornemann
Fraunhofer FOKUS

Kaiserin-Augusta-Allee 31
10589 Berlin, Germany

martin.schneider@fokus.fraunhofer.de

Abstract:
Our today’s lives are relying more and more on services that are connected
through the Internet. This degree of interconnection of services will increase
due to developments such as the Internet of Things and Cyber-Physical Sys-
tems. Since the kind of data processed by such services is also getting sensi-
tive, e.g. health data, the secure operating of services is of significant im-
portance.
In this paper, we present a holistic black-box security testing approach for
WSDL-based web services covering test identification, test case generation,
verdict arbitration and scheduling of security test cases we are developing
within the MIDAS project. Furthermore, we present a draft idea of an ap-
proach that combines different fuzzing techniques.

1. Introduction

The increasing degree of interconnection of devices due to developments
such as Cyber-Physical Systems and the Internet of Things also increases the
demand for the secure operation of connected devices. Since the kind of
data processed by such services is also getting sensitive, e.g. health data, this
demand is increasing further. Due to events such the revealing how intelli-
gence services are exploiting vulnerabilities, this topic is getting more attend-
ance as well.
In this paper, we present an approach that is based on complementary fuzz
testing techniques how web services can be tested for vulnerabilities. This
includes (traditional) data fuzzing, an approach we call behavioural fuzzing
and a novel combination of both of these techniques. We have implemented
these techniques within the MIDAS projects where we will also perform an

Joint Research Workshop STV'15 & INTUITEST

39

evaluation based on two case studies, one from the Logistics domain and
one from the eHealth domain.
The remainder of this paper is organized as follows: Section 2 presents re-
lated work with respect to fuzz testing. In the following Section 3, we intro-
duce how we fuzz web services and what information we use for this pur-
pose. It presents also an idea for a novel approach combining data and
behavioural fuzzing. The conclusions, ongoing and future work within the
MIDAS project are presented in Section 4.

2. Related Work

Fuzz testing or fuzzing is a security testing approach that aims at finding
zero-day-vulnerabilities by stimulating the system under test (SUT) with in-
valid or unexpected input data [1,2]. Fuzzing is testing for missing or faulty
input validation mechanism by generating corresponding input data based
on the interface specification [2] (black-box approach) or the source code
(white-box approach) [4]. When such input data is processed instead of
being rejected, this may lead to an undefined state and to security-relevant
problems [2]. Famous examples for such problems are buffer overflow and
SQL injection. In case of a buffer overflow vulnerability, the SUT does not
check the length of the input data and thus, the memory may be corrupted
be very long input data. In case of an SQL injection, user input is used within
a database request in an insecure way. This allows an attacker to alter the
semantic of the database request in order to bypass an authentication
mechanism or get access to restricted information. In case of a buffer over-
flow vulnerability, constraints for valid input data are neglected while in
case of an SQL injection, SQL syntax elements are not expected as input,
leading in both cases to a vulnerability requiring input validation and input
sanitizing mechanisms in order to eliminate them.
However, usually several constraints has to be checked in order to decide
whether an input date is valid or not. Therefore, the first random-based
fuzzers [3] are not very efficient because they generate usually totally inva-
lid input data that violate several constraints for valid input data. Hence,
such data is likely being rejected because several validation mechanisms
must fail in order to accept it [2]. The focus of so-called smart fuzzers is on
generating semi-valid input data that is mostly valid and invalid only in small
portions. For this purpose, they are employing a specification of valid input
data, e.g. a model (see Figure 1) [2,5].

Joint Research Workshop STV'15 & INTUITEST

40

Figure 1: Target of random-based and model-based fuzzing

Basically, there are two types of fuzzing: Traditional data fuzzing is gener-
ating invalid input data as described above in order to find faulty or missing
input validation and input sanitizing mechanisms. In contrast to this, be-
havioural fuzzing is generating invalid message sequences in order to find
faults in the state machine of the SUT or interdependencies between invalid
messages and input validation [5]. Although there are some basic ap-
proaches for behavioural fuzzing, e.g. in [6,7,8], a first elaborated approach
was presented in [9] that proposes behavioural fuzzing operators that mu-
tate existing valid message sequences in form of UML sequence diagrams.

Figure 2: Illustration of test generation for behavioural fuzzing. A valid message sequence
(left-hand) is mutated by a behavioural fuzzing operator ‘Remove Message’ that is ap-
plied to an element in order to generate an invalid message sequence (right-hand).

Such behavioural fuzzing operators work on one hand on message level,
by removing, repeating, or inserting messages, and on the other hand on
control structure level by altering loop boundaries or conditions of alterna-
tive branches. The presented approach [9] has the advantage that existing
functional test cases or traces can be reused for security testing.

Joint Research Workshop STV'15 & INTUITEST

41

3. Fuzzing of Web Services

Our approach of fuzzing web services presented in this paper is based on
data fuzzing and behavioural fuzzing techniques as well. It is based on UML
environmental models that contain on one hand structural descriptions, i.e.
the type system of the SUT as well as the interface description, and on the
other hand behavioural descriptions, i.e. sequence diagrams representing
valid interactions with the SUT, e.g. functional test cases.
A data format commonly used to the describe the interface of a web service
is the Web Service Description Language (WSDL) format [10]. It contains
descriptions of the messages that can be exchanged with a web service as
well as the type system in the form of XML schema [11]. Within MIDAS, a
tool was developed that automatically imports the message types and the
type system from WSDL files and XML schema documents and thus, re-
duced the effort for creating a test model. By employing other testing tech-
niques, such as usage-based testing, a nearly-complete model can be gen-
erated from recorded usage profiles and used as a starting point for security
testing as described in [12].

3.1 Data Fuzzing

The approach of data fuzzing is employing a library of existing fuzzing heu-
ristics from the (formerly) Open Source fuzzing tools Peach [13] and Sulley
[14], called Fuzzino [15]. It provides a set of basic fuzzing heuristics for
different kinds of primitive types. In order to make it feasible to create fuzz
test data for real-world web services, we extended it with the capability to
create fuzz test data for complex, i.e. structured data types. This allows
fuzzing a data structure itself, e.g. by removing, repeating or inserting
fields, as well as its enclosed values.
Since the model we use as starting point for fuzz test case generation also
provides all the type information from the WSDL file, we also make use of
the accompanying type constraints, e.g. minimal and maximal length of a
string, regular expressions describing a pattern of a valid string, minimal
and maximal value for a number.
Fuzzino uses this information to generate fuzz test data, i.e. invalid or un-
expected values. An extended version of Fuzzino is able to generate test
data from grammars and transforms a regular expression to a grammar.
Thus, it is able to generate fuzz test data from regular expressions by mu-
tating the equivalent grammar in several ways. For instance, it makes a

Joint Research Workshop STV'15 & INTUITEST

42

required element optional in order to generate some test data that do not
contain the required element.
As mentioned above, we are using a model-based approach for test gen-
eration. Therefore, all the test cases including test data are enclosed within
the model. However, fuzzing techniques usually generate a huge number
of test data for a certain message argument. Therefore, the corresponding
fuzz test cases only differ in this message argument whereas the rest of
test case remains the very same. Providing all the test data in separate test
cases would blow up the model with only little additional information.
Therefore, we get rid of all the fuzz test data by using so-called test strate-
gies. These test strategies indicate which kind of fuzzing heuristic shall be
employed for by a fuzz test data generator, i.e. Fuzzino. This approach re-
duces the size of the model that contains only abstract test cases and test
strategies (abstract in that way the fuzz test data is not contained while all
the required information in order to generate the actual fuzz test cases is
provided). This approach is presented in [16].

Verdict arbitration. For functional testing, the test verdict is usually de-
termined by evaluating the response of the SUT within the functional test
case. For security testing, this is quite different. Since we are looking for
faults that lead to unintentional processing of invalid input data or message
sequences, the response of a stimulus carrying invalid input data or an in-
valid message is not valid in order to determine whether a security-relevant
fault was found or not.
Example: A web service is interacting with a database by SQL queries. If
such SQL queries carry user data, the syntax and thus, the semantic of an
SQL query may be altered. If this is well done, the SQL query may still be
valid in terms of the SQL syntax. Thus, it will be successfully executed while
having a totally different semantic. Thus, existing records in the database
may be changed, deleted, or added (or other effects). Since the altered SQL
query is syntactically correct and therefore, successfully executed, the web
service won’t detect any error and respond with the information that the
request was successfully processed.
A (partial) solution to this problem for black-box security testing is valid
case instrumentation [2]. This means to execute a security test case that
stimulates the SUT with malicious inputs and ignore the responses of the
SUT. No verdict is determined within the security test case. Instead, after
each security test case, a functional test case is executed in order to deter-
mine the verdict for the security test case. The functional test case checks
whether the SUT is still alive and whether it is working functionally correct.
This has a few implications for the selected functional test case. On one
hand, it has to be ensured that the functional test case triggers (at best) all

Joint Research Workshop STV'15 & INTUITEST

43

the functionality of the SUT that may be negatively impacted by the security
test case previously executed. The more functionality is tested, the lesser is
the number of false negatives. On the other hand, the functional test case
should not be dependent on a certain state of the SUT that may be changed
by a security test case even if no bug was triggered. Therefore, relying on
a certain state of the SUT may lead to false positives.
Therefore, functional test cases have to be carefully selected. We intro-
duced the capability to determine one or several functional test cases ap-
propriate for verdict arbitration together with each testing strategy.

Scheduling. However, fuzzing techniques still generate far more test cases
than can be executed. Therefore, different kinds of risk-based testing ap-
proaches are used for test case identification, selection, and prioritization.
In contrast to many approaches that require manual analysis, such as fault
tree analysis [17], failure mode and effect analysis [18], and the CORAS
approach [19], we propose an automated approach that takes advantage
of an already shown correlation between interface complexity and error
proneness. Since fuzzing is a negative testing approach, we propose a com-
plexity metric for the negative input space that measures the boundaries of
the negative input space.
The works of Cataldo [20] and Bandi [21] form the basis for a negative
input space complexity suitable for security testing. Cataldo [20] showed
that there is a correlation between interface complexity and error prone-
ness. His approach employed the metrics interface size and operation ar-
gument complexity used by Bandi et al. [21]. Operation argument complex-
ity is dependent of the type of the operation's arguments. A constant value
is assigned to each type. The operation argument complexity is determined
by the sum of the complexity of each argument's type [21]. The interface
size is defined as the product of the number of parameters and the sum of
their sizes (operation argument complexity).
Since there is a correlation between interface complexity, operation argu-
ment complexity and error proneness, we suppose this correlation holds
true for security-relevant errors as well. We would like to exploit this corre-
lation for prioritization of security test cases generated by using data fuzz-
ing techniques. Our presumption is: The more constraints apply for an input
date of a certain type, the higher is the chance that one of the correspond-
ing validation mechanisms is faulty.
The negative input space of a certain type is determined by the boundaries
of the positive input space comprising all valid values. The boundaries be-
tween the positive and negative input space are specified by the type con-
straints valid input data. Therefore, the negative input space metric is ex-
pressed with respect to these constraints. We schedule security test cases

Joint Research Workshop STV'15 & INTUITEST

44

based on the hypothesis that a high negative input space complexity is an
indicator for a higher risk of a faulty implementation of an input validation
mechanism.
Since the metric is based on the constraints for valid input data, we have
to investigate the different kinds and the structure of them and how they
may be assessed by the metrics. The metric counts the number of con-
straints for the valid input space and determines the number of dependen-
cies between different parts of a data type.
The calculated score is determined by the number of boundaries, for exam-
ple 2 for length restricted strings, one for the lower bound (if it is at least
1) and one for the upper bound. In order to determine the complexity score
of a regular expression, we resolve predefined character classes and evalu-
ate the different number of character ranges as well as quantifiers.
An example for dependencies are calendar dates where the maximum valid
number for the day depends on the month (usually 31 but 28 and 30 for
February, April, and so on) and the year (29 for February in case of a leap
year). This metric is used by scheduling the data fuzz test cases with respect
to the negative input space complexity of the message argument’s type for
that fuzz test data shall be generated. Based on the hypothesis, this metric
leads to a prioritization of test cases that may reveal faulty implementations
of input validation mechanism earlier and may reduce the number of test
cases if a threshold value for the metric score is used. This would enable to
omit those test cases whose complexity score based on the message argu-
ment’s type is below the selected threshold. If this threshold is carefully
selected, the test effort may be reduced where the risk for missing security-
relevant bugs is minimized. The metric is described in more detail in [23].

3.2 A Combined Fuzzing Approach

In addition to the isolated usage of data fuzzing and behavioural fuzzing
techniques, a combined approach is possible. The combination of both
techniques means that a single test case contains both invalid input data
and invalid message arguments. Such an approach may help to reveal vul-
nerabilities with less effort than with an isolated approach.
Considering the vulnerability in the Apache web server revealed by Kita-
gawa [6]. A malformed HTTP request with a repeated ‘Host’ message by-
passes the input validation mechanism for the message argument, i.e. the
virtual host name, and may lead to a buffer overflow. However, the buffer
overflow is only revealed if a large number of host message repetitions is

Joint Research Workshop STV'15 & INTUITEST

45

chosen. This may require a large number of test cases with different num-
bers of repetitions of the host message when a host name with a usually
short, valid length is used. A combination of the behavioural fuzzing ap-
proach that repeats the host message with data fuzzing techniques that
may generate an extremely large host name would reveal this vulnerability
earlier because the buffer overflow may be achieved by the first repeated
host message.
Generally, two approaches for the combination of data and behavioural
fuzzing techniques are possible. On one hand, as discussed in this example,
an invalid message may carry invalid or unexpected data. Therefore, both
techniques are applied to the same element, behavioural fuzzing is applied
to a message and data fuzzing is applied to arguments of the very same
message. On the other hand, both fuzzing techniques may be applied to
different elements within the very same test case. An invalid message ar-
gument may be used for one message and another message may be be-
havioural fuzzed. This would make sense if the message relies on a fuzzed
input data of a previous message.

4. Conclusion, Ongoing and Future
Work

We presented a holistic, black-box security testing approach for WSDL-
based web services employing different fuzzing techniques, i.e. data fuzz-
ing generating invalid input data, behavioural fuzzing generating invalid
input message sequences, and a combination of behavioural fuzzing and
data fuzzing generating test cases with invalid messages and invalid input
data. We also presented a metric for the negative input space complexity
serving as a prioritization mechanism for scheduling of security test cases.
Within the MIDAS European research project [22], we are currently building
a test platform on the cloud for testing of service-oriented architectures.
As part of this project, we are implementing the presented techniques.
Within the project, we are working closely together with industrial partners
from the Logistics and the eHealth domain. We will utilize their implemen-
tations for the evaluation purposes.
Based on the results, we will improve the presented approaches; in partic-
ular, we will see how well the combined approach of data and behavioural
fuzzing performs currently implemented in a naïve version. Based on the
results, we will work on an improved version of this approach that will take
into account data flows.

Joint Research Workshop STV'15 & INTUITEST

46

Acknowledgments. This work is partially funded by the EU FP7 project
MIDAS (no. 316853) and RASEN (no. 318786).

References
1. Bekrar, S., Bekrar, C., Groz, R., Mounier, L. (2011, March). Finding

software vulnerabilities by smart fuzzing. In Software Testing, Ver-
ification and Validation (ICST), 2011 IEEE Fourth International
Conference on (pp. 427-430). IEEE.

2. Takanen, A., DeMott, J., Miller, C.: Fuzzing for Software Security
Testing and Quality Assurance. Artech House, Boston (2008)

3. Miller, B. P., Fredriksen, L., & So, B. (1990). An empirical study of
the reliability of UNIX utilities. Communications of the ACM,
33(12), 32-44.

4. Godefroid, P.; de Halleux, P.; Nori, A.V.; Rajamani, S.K.; Schulte,
W.; Tillmann, N.; Levin, M.Y., "Automating Software Testing Us-
ing Program Analysis," in Software, IEEE , vol.25, no.5, pp.30-37,
Sept.-Oct. 2008

5. Kaksonen, R., Laakso, M., & Takanen, A. (2001). Software security
assessment through specification mutations and fault injection. In
Communications and Multimedia Security Issues of the New Cen-
tury (pp. 173-183). Springer US.

6. Kitagawa, T., Hanaoka, M., Kono, K.: AspFuzz: A State-aware Pro-
tocol Fuzzer based on Application-layer Protocols. In: IEEE Sympo-
sium on Computers and Communications, pp.202-208 (2010)

7. Takanen, A., DeMott, J., Miller, C.: Software Security Assessment
through Specification Mutations and Fault Injection. In: Commu-
nications and Multimedia Security Issues of the New Century, Se-
ries: IFIP Advances in Information and Communication Technol-
ogy, Vol. 64, Steinmetz, Ralf; Dittmann, Jana; Steinebach, Martin
(Eds.) (2001)

8. Becker, S., Abdelnur, H., State, R., Engel, T.: An Autonomic Test-
ing Framework for IPv6 Configuration Protocols. In: Mechanisms
for Autonomous Management of Networks and Services.
AIMS'10: Mechanisms for Autonomous Management of Net-
works and Services, Zurich, Switzerland (2010)

9. Schneider, M., Grossmann, J., Tcholtchev, N., Schieferdecker, I.,
Pietschker, A.: Behavioral Fuzzing Operators for UML Sequence
Diagrams. In: 7th Workshop on System Analysis and Modelling
2012 (SAMWkshp 2012), ser. LNCS, O. Haugen, R. Reed, and R.
Gotzhein, Eds., vol. 7744. Springer, 2013, pp. 88–104

Joint Research Workshop STV'15 & INTUITEST

47

10. Web Service Description Language (WSDL) 1.1, W3C (2001). URL:
http://www.w3.org/TR/wsdl

11. XML Schema 1.1, W3C (2004). URL: www.w3.org/XML/Schema
12. Schneider, Herbold, S., Wendland, M.-F., Grabowski, J.: Improv-

ing Security Testing With Usage-Based Fuzzing. To appear in: Risk
assessment and risk-driven testing 2015 (RISK 2012), ser. LNCS, J.
Großmann, F. Seehusen, M. Felderer, M.-F.Wendland, Eds., Sprin-
ger, 2015

13. Eddington, M. (2011). Peach fuzzing platform. Peach Fuzzer. URL:
http://www.peachfuzzer.com/

14. Amini, P. A.: Sulley: Fuzzing framework (2007). URL:
https://github.com/OpenRCE/sulley

15. Fuzzino at Github: https://github.com/fraunhoferfokus/Fuzzino
16. Großmann, J., Schneider, M., Viehmann, J., & Wendland, M. F.

(2014). Combining risk analysis and security testing. In: Leveraging
Applications of Formal Methods, Verification and Validation. Spe-
cialized Techniques and Applications (pp. 322-336). Springer Ber-
lin Heidelberg.

17. Tanaka, H., Fan, L. T., Lai, F. S., & Toguchi, K. (1983). Fault-tree
analysis by fuzzy probability. Reliability, IEEE Transactions on,
32(5), 453-457.

18. Stamatis, D. H. (2003). Failure mode and effect analysis: FMEA
from theory to execution. ASQ Quality Press.

19. Lund, M. S., Solhaug, B., & Stølen, K. (2010). Model-driven risk
analysis: the CORAS approach. Springer Science & Business Me-
dia.

20. Cataldo, M., De Souza, C. R., Bentolila, D. L., Miranda, T. C., &
Nambiar, S. (2010). The impact of interface complexity on failures:
an empirical analysis and implications for tool design. School of
Computer Science, Carnegie Mellon University, Tech. Rep.

21. Bandi, R. K., Vaishnavi, V. K., & Turk, D. E. (2003). Predicting
maintenance performance using object-oriented design complex-
ity metrics. Software Engineering, IEEE Transactions on, 29(1), 77-
87.

22. EC FP7 MIDAS Project. www.midas-project.eu (2012-2015), FP7-
318786

23. Schneider, M. A., Wendland, M.-F., Hoffmann, A.: A Negative In-
put Space Complexity Metric as Selection Criterion for Fuzz Test-
ing. To appear in: 27th IFIP WG 6.1 International Conference
ICTSS 2015 Proceeding, ser. LNCS, K. El-Fakih, G. Barlas, N. Yev-
tushenko, Eds., vol. 9447. Springer, 2015, pp. 1–6

Joint Research Workshop STV'15 & INTUITEST

48

http://www.w3.org/TR/wsdl
http://www.w3.org/XML/Schema
https://github.com/OpenRCE/sulley
https://github.com/fraunhoferfokus/Fuzzino

INTUITEST

Joint Research Workshop STV'15 & INTUITEST

49

Joint Research Workshop STV'15 & INTUITEST

50

A Fully Automated Approach for Debugging GUI
Applications

Ethar Elsaka
Department of Computer Science
University of Maryland
ethar.elsaka@gmail.com

Atif Memon
Department of Computer Science
University of Maryland
atif@cs.umd.edu

Abstract:
Recent studies have shown the increasing cost of software testing and debugging, with
software testing cost contributing up to 25% of total project costs, and software debug-
ging consuming up to 50% of programmers time. To date, software testing and debug-
ging processes are largely manual, requiring significant involvement of human develop-
ers and testers to carry out those tasks. Despite attempts to build automated debugging
solutions, existing approaches fall short of full automation, and hence are hardly used in
practice. In this paper, we propose a unified framework for fully automated GUI testing
and debugging. We develop algorithms and methods that leverage the process of auto-
mated software testing and extend it to achieve automated debugging as well. Our
automated debugging framework mutually utilizes both program dynamic and static
information in order to explain and identify root causes of software bugs. We present
several use cases showing the effectiveness of our approach.

Introduction

Software debugging—isolation and correction of programmatic errors—is often consi-
dered as one of the most time consuming phases of software development [1], [2], [3].
The debugging process starts after a problem, typically a program failure, e.g., a crash
or incorrect output, has been encountered either during testing or usage [4]. A develo-
per uses a mix of manual analysis, program understanding, and tools to isolate the
source of the problem, and then fix it [5].

Joint Research Workshop STV'15 & INTUITEST

51

By far, the most common way of debugging a program is by using a manual iterative
debugging technique in conjunction with a debugging tool [6], [7]. During iterative
debugging, the developer analyzes one or more executions (test cases) of a program,
iteratively building up knowledge about the program state surrounding the problem
area. In an effort to narrow down the problem areas of the code, the developer may
remove some parts of original test case and check if the problem still exists. Once the
test case has been sufficiently pared down, the developer may examine program
states—values of variables—and track down the source of the problem. This can be
done by using debugging hooks, supplied by a debugger, into the program or simply
adding a few print statements, which output the values of variables at certain points of
program execution. As can be imagined, this is a slow and resource intensive process.

The manual debugging remains the most commonly used approach. This is not surpri-
sing given that most research efforts to automate debugging remain confusing, difficult
to use, and often have no tool support on various common programming platforms. For
example, program slicing based techniques [8], [9] require intimate knowledge of static
and dynamic analysis, and require (often unavailable) slicing tools; program spectrum-
based techniques [10], [11], [12] require the availability of both passed and failed test
cases that are similar with respect to program spectra distance criteria; ranking based
approaches [13], [14], [15], [16] output, for manual examination, a ranked list of pro-
gram statements, where ranking is an indicator of suspiciousness of the statement
towards the failure; and input reduction techniques such as delta debugging [12] requi-
re a correct execution of the program to accompany the faulty execution. Many of
these artifacts are not usually available in practice.

In this paper, we present Debugging using Sequence Covers, a framework for fully
automatic debugging. Our aim is to democratize automated debugging by giving deve-
lopers a technique that is easy to understand, uses off-the-shelf code instrumenters,
and is supported by tools that can be run on any platform. A key enabler of our appro-
ach includes wider adoption of automated testing technology, which gives us access to
multiple failing test cases that share an underlying bug.

At a high level, our approach captures automated test case execution traces using
code instrumenters. We separate traces into groups according to the source of the
error. Then, for each group, we extract common subsequences from the execution
traces using a novel and efficient common subsequences extraction algorithm that is
adapted for processing code traces. After extracting common subsequences, we back-
trace the common subsequences using static code analysis to find out the source of
the error, and report it to the developer. We show multiple case studies of our appro-
ach applied to bugs in applications of varying sizes. We show the easy applicability of
our framework to those applications, and show the final output produced by it to ex-
plain the bug to the developers.

Joint Research Workshop STV'15 & INTUITEST

52

Joint Research Workshop STV'15 & INTUITEST

Automated Debugging Framework

Now we present Disqover, our automated debugging framework. Disqover takes as an
input the test suite and the source code of the application under test (AUT) and outputs
the detected faults with their recommended code subsequence that leads to the source
of the fault. Since in this paper we deal with graphical user interface (GUI) applications,
the first module of our framework is a module is capable of extracting GUI information
from GUI applications, generating and replaying test cases for GUI applications, but
this part can be replaced by any other module that is capable of generating and execu-
ting non-GUI applications test cases.

Disqover consists of 6 modules as can be seen in Figure 1:

1. The Automated Testing Module, which is responsible of extracting GUI informa-
tion, generating and running the test cases. It takes as input the application
source code and outputs the test cases execution logs. These logs show the
output of the test case, i.e., whether it passed or failed.

2. The Execution Trace Extraction Module, which is responsible of extracting the
test cases execution traces. These traces present the order of the statements
that are touched during the execution of the test cases.

3. Partitioning Module, which is responsible of grouping the test cases according
to the type and the location of the errors caught by the test cases execution. It
takes as an input the test cases execution logs and outputs test case groups.
Each group has the test cases that are failed for the same error (exception) ty-
pe at the same location in the source code. In addition, it outputs an additional
group for all the passed test cases.

4. Common Subsequence Extraction Module, which is responsible of extracting
two kinds of information: common event subsequence and common statement
subsequence. In the first one, the algorithm is applied to the test cases and
outputs the common event subsequence. In the second one, for each event in
the common event subsequence, the algorithm is applied to the statements
that are touched during event execution to output the common statement sub-
sequence.

5. Hybrid Dynamic/Static Analysis Module, which analyzes the code mutually
along with the common statement subsequences to provide the dependency of
the line that throws the error from the common subsequence. It takes as input
the common subsequence statements for all the common events together and
outputs a final subsequence. This subsequence explains the fault since it con-
tains only the lines that affect the line that throws the exception.

6. Remote Debugging Module, which provides the values of the variables that in-
cluded in the subsequence that explains the fault.

Joint Research Workshop STV'15 & INTUITEST

54

Case Studies

In this section we evaluate our framework by discussing two case studies of two errors
in two different applications. The applications are Crossword Sage, and ArgoUML. The
application sizes vary from thousands of lines of code to hundreds of thousands of
lines of code. Throughout the case studies, we show concrete examples of our frame-
work's capability to find and identify root causes of bugs, and present them to the
developer in a self-explained manner. We also show the final output of the framework
for each error, along with the number of lines to inspect in that output. Below, we des-
cribe our applications.

Crossword Sage [18] is a tool for creating professional-looking crosswords with po-
werful word suggestion capabilities. It can be used to build, load, and save crosswords.
It can suggest words for adding to the crosswords, and allows the crosswords builder
to give clues for them. Furthermore, in addition to building crosswords, it allows users
to load pre-built crosswords and solve them. Crossword Sage project consists of 3072
lines of code, 34 classes and 238 methods.

ArgoUML [19] is an open source UML modeling tool. It includes support for Structural
and Behavioral UML diagrams. It has been used for the analysis and design of object
oriented software systems. Also, It can run on any Java platform and is available in ten
languages. The ArgoUML project consists of 152513 lines of code, 1787 classes, and
13117 methods.

Case Study 1: Crossword Sage

In order for the user to create a new crossword puzzle, he/she needs to click on the
File menu and choose the New Crossword menu item. Then, the application asks the
user to input the size of the puzzle through a dialog box. When the user inputs a nume-
ric number between 2 and 20, the application creates an empty grid to allow the user to
start building his/her crossword puzzle.

Normally, if the user enters a non-numeric value as the size of the puzzle, an error
dialog box should appear warning the user about the wrong input format and asks the
user to enter another input value. However, in this application when the user enters a
non numeric value in the dialog box, the application crashes with a NumberFormatEx-
ception as can be seen in Figure 2.

Joint Research Workshop STV'15 & INTUITEST

55

Fig. 2: Crossword Sage NumberFormatException Fig. 3: Sequence Explaining Fault for Crossword

Sage

Now, we discuss how using Disqover, the developer can get the concise sequence of
statements explaining the error as shown in Figure 3. We list the steps performed by
Disqover below. All of those steps are performed automatically.

Step 1: The process starts by generating and running the application test suite using
the automated testing module. The output of this step is 347 test cases and their exe-
cution logs.

Step 2: At the same time, the test case execution traces are extracted during the test
cases execution.

Step 3: Then, the test cases that reveal the NumberFormatException are grouped
together using the partitioning module. This step detects 41 test cases that fail becau-
se of the exception that is shown in Figure 2.

Step 4: Next, the common subsequence algorithm is applied to execution trace of the
41 test cases. This step returns the common events that cause the NumberFormatEx-
ception, which are File → New Crossword → Cancel.

Step 5: Then, for each event in the common events, the common subsequence algo-
rithm is applied again for the event code to get the common statement subsequence.

Step 6: Then, the hybrid dynamic/static analysis module gets the dependency of the
line that throws the exception. The output of this module is shown in Figure 3.

Step 7: Finally, the remote debugger module is applied to the final output to get the
variable values of each assignment statement.

In order for the developer to find the source of the error using our proposed approach,
only the following activities will take place:

java.lang.NumberFormatException: For input string: ""

at java.lang.NumberFormatException.forInputString

(NumberFormatException.java:48)

at java.lang.Integer.parseInt(Integer.java:470)

at java.lang.Integer.parseInt(Integer.java:499)

at crosswordsage.Grid.<init>(Grid.java:33)

at crosswordsage.CrosswordCompiler.<init>

(CrosswordCompiler.java:40)

at crosswordsage.MainScreen.showCrosswordBuilder

(MainScreen.java:226)

at crosswordsage.MainScreen.access$3(MainScreen.java:216)

at crosswordsage.MainScreen$MenuListene

.actionPerformed(MainScreen.java:423)

Fig. 4: Crossword Sage NumberFormatException

enter another input value. However, in this application when
the user enters a non numeric value in the dialog box, the
application crashes with a NumberFormatException as can be
seen in Figure 4.

Now, we discuss how using Disqover, the developer can
get the concise sequence of statements explaining the error as
shown in Figure 5. We list the steps performed by Disqover
below. All of those steps are performed automatically.

Step 1: The process starts by generating and running the
application test suite using the automated testing module in
Section III-A. The output of this step is 347 test cases and
their execution logs.

Step 2: At the same time, the test case execution traces
are extracted using the module in Section III-B during the test
cases execution.

Step 3: Then, the test cases that reveal the NumberForma-
tException are grouped together using the partitioning module
in Section III-C. This step detects 41 test cases that fail because
of the exception that is shown in Figure 4.

Step 4: Next, the common subsequence algorithm that is
discussed in Section III-D is applied to execution trace of
the 41 test cases. This step returns the common events that
cause the NumberFormatException, which are File → New
Crossword → Cancel.

Step 5: Then, for each event in the common events, the
common subsequence algorithm is applied again for the event
code to get the common statement subsequence.

Step 6: Then, the hybrid dynamic/static analysis module in
Section III-E gets the dependency of the line that throws the
exception. The output of this module is shown in Figure 5.

Step 7: Finally, the remote debugger module that is ex-
plained in Section III-F is applied to the final output to get the
variable values of each assignment statement.

In order for the developer to find the source of the error
using our proposed approach, only the following activities will
take place:

• The last line in the sequnece is line 14 (setLay-
out(new GridLayout(Integer.parseInt(cw.getHeight()),
Integer.parseInt(cw.getWidth())));). This line is the

1 private void showCrosswordBuilder()

2 String reply = JOptionPane.showInputDialog(null,"Please

enter grid size (2-20)...", null);

3 cc = new CrosswordCompiler(reply, reply);

4 public CrosswordCompiler(String width, String height)

5 cw = new Crossword(width, height);

6 public Crossword(String width, String height)

7 isEditable = true;

8 this.width = width;

9 this.height = height;

10 words = new ArrayList();

11 public CrosswordCompiler(String width, String height)

12 grid = new Grid(cw);

13 void Grid(Crossword cw)

14 setLayout(new GridLayout(Integer.parseInt(cw.getHeight()),

Integer.parseInt(cw.getWidth())));

Fig. 5: Sequence Explaining Fault for Crossword Sage

line that throws the NumberFormatException. From
this line, the developer can conclude that this ex-
ception results from applying the Integer.parseInt()
function to a non-numeric value.

• This non-numeric value may be assigned to either the
height or the width variables of the cw object (because
the Integer.parseInt() appears twice in the line).

• Now, the developer can go backwards in the sub-
sequence and see that the cw object comes from
the method parameter as shown in line 13 (public
Grid(Crossword cw)).

• Going backward, there is a line in the sequence that
creates new object from the Grid class and passes the
Crossword object as a parameter as can be seen at the
line 12 (grid = new Grid(cw)).

• By going backwards further, the developer can see that
the Crossword object cw is created at the line 5 (cw =
new Crossword(width,height);) and the width and the
height are passed as parameters.

• These width and height variables are passed to the
function through the Crossword- Compiler constructor
arguments at line 4(public CrosswordCompiler(String
width, String height)).

• Finally, by going backwards at crossword-
sage.MainScreen class, the developer can see
that these parameters are passed as arguments
when creating a new instance of cross-
wordsage.CrosswordCompiler at line 3 (cc =
new CrosswordCompiler(reply, reply)) and these
arguments are both initialized by the variable reply
which takes string values in line 2 (String reply =
jOptionPane.showInputDialog(null, Please enter grid
size (2 - 20)..., null);).

java.lang.NumberFormatException: For input string: ""

at java.lang.NumberFormatException.forInputString

(NumberFormatException.java:48)

at java.lang.Integer.parseInt(Integer.java:470)

at java.lang.Integer.parseInt(Integer.java:499)

at crosswordsage.Grid.<init>(Grid.java:33)

at crosswordsage.CrosswordCompiler.<init>

(CrosswordCompiler.java:40)

at crosswordsage.MainScreen.showCrosswordBuilder

(MainScreen.java:226)

at crosswordsage.MainScreen.access$3(MainScreen.java:216)

at crosswordsage.MainScreen$MenuListene

.actionPerformed(MainScreen.java:423)

Fig. 4: Crossword Sage NumberFormatException

enter another input value. However, in this application when
the user enters a non numeric value in the dialog box, the
application crashes with a NumberFormatException as can be
seen in Figure 4.

Now, we discuss how using Disqover, the developer can
get the concise sequence of statements explaining the error as
shown in Figure 5. We list the steps performed by Disqover
below. All of those steps are performed automatically.

Step 1: The process starts by generating and running the
application test suite using the automated testing module in
Section III-A. The output of this step is 347 test cases and
their execution logs.

Step 2: At the same time, the test case execution traces
are extracted using the module in Section III-B during the test
cases execution.

Step 3: Then, the test cases that reveal the NumberForma-
tException are grouped together using the partitioning module
in Section III-C. This step detects 41 test cases that fail because
of the exception that is shown in Figure 4.

Step 4: Next, the common subsequence algorithm that is
discussed in Section III-D is applied to execution trace of
the 41 test cases. This step returns the common events that
cause the NumberFormatException, which are File → New
Crossword → Cancel.

Step 5: Then, for each event in the common events, the
common subsequence algorithm is applied again for the event
code to get the common statement subsequence.

Step 6: Then, the hybrid dynamic/static analysis module in
Section III-E gets the dependency of the line that throws the
exception. The output of this module is shown in Figure 5.

Step 7: Finally, the remote debugger module that is ex-
plained in Section III-F is applied to the final output to get the
variable values of each assignment statement.

In order for the developer to find the source of the error
using our proposed approach, only the following activities will
take place:

• The last line in the sequnece is line 14 (setLay-
out(new GridLayout(Integer.parseInt(cw.getHeight()),
Integer.parseInt(cw.getWidth())));). This line is the

1 private void showCrosswordBuilder()

2 String reply = JOptionPane.showInputDialog(null,"Please

enter grid size (2-20)...", null);

3 cc = new CrosswordCompiler(reply, reply);

4 public CrosswordCompiler(String width, String height)

5 cw = new Crossword(width, height);

6 public Crossword(String width, String height)

7 isEditable = true;

8 this.width = width;

9 this.height = height;

10 words = new ArrayList();

11 public CrosswordCompiler(String width, String height)

12 grid = new Grid(cw);

13 void Grid(Crossword cw)

14 setLayout(new GridLayout(Integer.parseInt(cw.getHeight()),

Integer.parseInt(cw.getWidth())));

Fig. 5: Sequence Explaining Fault for Crossword Sage

line that throws the NumberFormatException. From
this line, the developer can conclude that this ex-
ception results from applying the Integer.parseInt()
function to a non-numeric value.

• This non-numeric value may be assigned to either the
height or the width variables of the cw object (because
the Integer.parseInt() appears twice in the line).

• Now, the developer can go backwards in the sub-
sequence and see that the cw object comes from
the method parameter as shown in line 13 (public
Grid(Crossword cw)).

• Going backward, there is a line in the sequence that
creates new object from the Grid class and passes the
Crossword object as a parameter as can be seen at the
line 12 (grid = new Grid(cw)).

• By going backwards further, the developer can see that
the Crossword object cw is created at the line 5 (cw =
new Crossword(width,height);) and the width and the
height are passed as parameters.

• These width and height variables are passed to the
function through the Crossword- Compiler constructor
arguments at line 4(public CrosswordCompiler(String
width, String height)).

• Finally, by going backwards at crossword-
sage.MainScreen class, the developer can see
that these parameters are passed as arguments
when creating a new instance of cross-
wordsage.CrosswordCompiler at line 3 (cc =
new CrosswordCompiler(reply, reply)) and these
arguments are both initialized by the variable reply
which takes string values in line 2 (String reply =
jOptionPane.showInputDialog(null, Please enter grid
size (2 - 20)..., null);).

Joint Research Workshop STV'15 & INTUITEST

56

1. The last line in the sequnece is line 14 (setLayout(new GridLayout(Inte-
ger.parseInt(cw.getHeight()), Integer.parseInt(cw.getWidth())));). This line is the
line that throws the NumberFormatException. From this line, the developer can
conclude that this exception results from applying the Integer.parseInt() functi-
on to a non-numeric value.

2. This non-numeric value may be assigned to either the height or the width va-
riables of the cw object (because the Integer.parseInt() appears twice in the li-
ne).

3. Now, the developer can go backwards in the subsequence and see that the cw
object comes from the method parameter as shown in line 13 (public
Grid(Crossword cw)).

4. Going backward, there is a line in the sequence that creates new object from
the Grid class and passes the Crossword object as a parameter as can be
seen at the line 12 (grid = new Grid(cw)).

5. By going backwards further, the developer can see that the Crossword object
cw is created at the line 5 (cw = new Crossword(width,height);) and the width
and the height are passed as parameters.

6. These width and height variables are passed to the function through the
Crossword- Compiler constructor arguments at line 4(public CrosswordCompi-
ler(String width, String height)).

7. Finally, by going backwards at crosswordsage.MainScreen class, the developer
can see that these parameters are passed as arguments when creating a new
instance of cross- wordsage.CrosswordCompiler at line 3 (cc = new Cross-
wordCompiler(reply, reply)) and these arguments are both initialized by the va-
riable reply which takes string values in line 2 (String reply = jOptionPa-
ne.showInputDialog(null, ”Please enter grid size (2 - 20)...”, null);).

As we can see, the developer needs only to inspect 6 lines to find the root cause of the
bug. Those 6 lines are self-contained, and do not require prior knowledge of the code,
as the problem can be seen by just inspecting those lines.

Case Study 2: ArgoUML

When the user exports the graphics using the “Export All Graphics” menu item, and
saves them to a file, if the user enters a directory location that does not exist on disk,
the application throws a FileNotFoundException as can be seen in Figure 4, and exits
the Save dialog without notifying the user of the problem. The error is thrown when the
application is actually trying to save the file, while it is originated when the user choo-
ses the improper directory.

Joint Research Workshop STV'15 & INTUITEST

57

Fig. 4: ArgoUML FileNotFoundException Fig. 5: Sequence Explaining Fault for ArgoUML

The output of Disqover after being applied to this exception is shown in Figure 5. To
obtain that output, Disqover, performs all the following steps automatically.

Step 1: The process starts by applying the automated testing module, which generates
and runs 6317 test cases.

Step 2: At the same time, the trace execution extraction module finds out that the
average number of lines per test case trace is 221795 lines. This large number of lines
makes the manual debugging impractical.

Step 3: From the 6317 test cases, the partitioning module finds out that only 122 test
cases reveal the FileNotFoundException exception that is shown in Figure 4.

Step 4: Now, after applying the common subsequence algorithm on the 122 failed test
cases, it detects that the common events that cause the exception are File → Export
All Graphics... → Save As: → Save.

Step 5: Then, for each event in the common events, the common subsequence algo-
rithm is applied again for the event code to get the common statement subsequence.
This step reduces the number of lines that need to be inspected to 234 lines.

Step 6: Then, the hybrid dynamic/static analysis module gets the final common state-
ment subsequence. The number of lines to be inspected is reduced again to be 31
lines. We show a relevant subset of those lines in Figure 5.

Step 7: Finally, the remote debugging module gets the variable values of each as-
signment statement in the final sequence.

In order for the developer to find the source of the error using our proposed approach,
only the following activities will take place:

java.io.FileNotFoundException: /crash/crash/ClassDiagram.png

(No such file or directory)

at java.io.FileOutputStream.open(Native Method)

at java.io.FileOutputStream.<init>(FileOutputStream.java:179)

at java.io.FileOutputStream.<init>(FileOutputStream.java:131)

at org.argouml.uml.ui.ActionSaveAllGraphics.saveGraphicsToFile

(ActionSaveAllGraphics.java:230)

at org.argouml.uml.ui.ActionSaveAllGraphics.trySaveDiagram

(ActionSaveAllGraphics.java:161)

at org.argouml.uml.ui.ActionSaveAllGraphics.trySave

(ActionSaveAllGraphics.java:130)

at org.argouml.uml.ui.ActionSaveAllGraphics.trySave

(ActionSaveAllGraphics.java:106)

at org.argouml.uml.ui.ActionSaveAllGraphics.actionPerformed

(ActionSaveAllGraphics.java:98)

Fig. 6: ArgoUML FileNotFoundException

As we can see, the developer needs only to inspect 6 lines to

find the root cause of the bug. Those 6 lines are self-contained,

and do not require prior knowledge of the code, as the problem

can be seen by just inspecting those lines.

B. Case Study 2: ArgoUML

When the user exports the graphics using the Export All

Graphics menu item, and saves them to a file, if the user enters

a directory location that does not exist on disk, the application

throws a FileNotFoundException as can be seen in Figure 6,

and exits the Save dialog without notifying the user of the

problem. The error is thrown when the application is actually

trying to save the file, while it is originated when the user

chooses the improper directory.

The output of Disqover after being applied to this exception

is shown in Figure 7. To obtain that output, Disqover, performs

all the following steps automatically.

Step 1: The process starts by applying the automated

testing module in Section III-A, which generates and runs 6317

test cases.

Step 2: At the same time, the trace execution extraction

module in Section III-B finds out that the average number of

lines per test case trace is 221795 lines. This large number of

lines makes the manual debugging impractical.

Step 3: From the 6317 test cases, the partitioning module

in Section III-C finds out that only 122 test cases reveal the

FileNotFoundException exception that is shown in Figure 6.

Step 4: Now, after applying the common subsequence

algorithm that is discussed in Section III-D on the 122 failed

test cases, it detects that the common events that cause the

exception are File → Export All Graphics... → Save As: →
Save.

Step 5: Then, for each event in the common events, the

common subsequence algorithm is applied again for the event

code to get the common statement subsequence. This step

reduces the number of lines that need to be inspected to 234

lines.

1 public void actionPerformed(ActionEvent ae)

2 trySave(false);

3 public boolean trySave(boolean canOverwrite)

4 return trySave(canOverwrite, null);

5 public boolean trySave(boolean canOverwrite, File

directory)

6 Project p = ProjectManager.getManager().getCurrentProject();

7 File saveDir = (directory != null) ? directory :

getSaveDir(p);

8 for (ArgoDiagram d : p.getDiagramList())

9 okSoFar = trySaveDiagram(d, saveDir);

10 protected boolean trySaveDiagram(Object target, File

saveDir)

11 File theFile = new File(saveDir, defaultName + "." +

SaveGraphicsManager.getInstance().getDefaultSuffix());

12 SaveGraphicsAction cmd = SaveGraphicsManager.getInstance().

getSaveActionBySuffix(SaveGraphicsManager.getInstance()

.getDefaultSuffix());

13 boolean result = saveGraphicsToFile(theFile, cmd);

14 private boolean saveGraphicsToFile(File theFile,

SaveGraphicsAction cmd)

15 fo = new FileOutputStream(theFile);

Fig. 7: Sequence Explaining Fault for ArgoUML

Step 6: Then, the hybrid dynamic/static analysis module

in Section III-E gets the final common statement subsequence.

The number of lines to be inspected is reduced again to be 31

lines. We show a relevant subset of those lines in Figure 7.

Step 7: Finally, the remote debugging module that is

explained in Section III-F gets the variable values of each

assignment statement in the final sequence.

In order for the developer to find the source of the error

using our proposed approach, only the following activities will

take place:

• The last line in the sequence is line 15 (fo = new

FileOutputStream(theFile)). This line is the line that

throws the FileNotFoundException. From this line, the

developer can conclude that this exception results from

an attempt to output stream to a file ”theFile” and this

file does not exist.

• Now, the developer can go backwards in the subse-

quence and see that the “theFile” variable comes from

the method parameter as shown in line 14 (private

boolean saveGraphicsToFile(File theFile, SaveGraph-

icsAction cmd)).

• Going backward, there is a line in the sequence

that calls the saveGraphicsToFile function as can be

seen at the line 13 (boolean result = saveGraphic-

sToFile(theFile, cmd)).

• Since the developer is investigating the variable

”theFile”, we can see that this variable is defined

at line 11 (File theFile = new File(saveDir,

java.io.FileNotFoundException: /crash/crash/ClassDiagram.png

(No such file or directory)

at java.io.FileOutputStream.open(Native Method)

at java.io.FileOutputStream.<init>(FileOutputStream.java:179)

at java.io.FileOutputStream.<init>(FileOutputStream.java:131)

at org.argouml.uml.ui.ActionSaveAllGraphics.saveGraphicsToFile

(ActionSaveAllGraphics.java:230)

at org.argouml.uml.ui.ActionSaveAllGraphics.trySaveDiagram

(ActionSaveAllGraphics.java:161)

at org.argouml.uml.ui.ActionSaveAllGraphics.trySave

(ActionSaveAllGraphics.java:130)

at org.argouml.uml.ui.ActionSaveAllGraphics.trySave

(ActionSaveAllGraphics.java:106)

at org.argouml.uml.ui.ActionSaveAllGraphics.actionPerformed

(ActionSaveAllGraphics.java:98)

Fig. 6: ArgoUML FileNotFoundException

As we can see, the developer needs only to inspect 6 lines to

find the root cause of the bug. Those 6 lines are self-contained,

and do not require prior knowledge of the code, as the problem

can be seen by just inspecting those lines.

B. Case Study 2: ArgoUML

When the user exports the graphics using the Export All

Graphics menu item, and saves them to a file, if the user enters

a directory location that does not exist on disk, the application

throws a FileNotFoundException as can be seen in Figure 6,

and exits the Save dialog without notifying the user of the

problem. The error is thrown when the application is actually

trying to save the file, while it is originated when the user

chooses the improper directory.

The output of Disqover after being applied to this exception

is shown in Figure 7. To obtain that output, Disqover, performs

all the following steps automatically.

Step 1: The process starts by applying the automated

testing module in Section III-A, which generates and runs 6317

test cases.

Step 2: At the same time, the trace execution extraction

module in Section III-B finds out that the average number of

lines per test case trace is 221795 lines. This large number of

lines makes the manual debugging impractical.

Step 3: From the 6317 test cases, the partitioning module

in Section III-C finds out that only 122 test cases reveal the

FileNotFoundException exception that is shown in Figure 6.

Step 4: Now, after applying the common subsequence

algorithm that is discussed in Section III-D on the 122 failed

test cases, it detects that the common events that cause the

exception are File → Export All Graphics... → Save As: →
Save.

Step 5: Then, for each event in the common events, the

common subsequence algorithm is applied again for the event

code to get the common statement subsequence. This step

reduces the number of lines that need to be inspected to 234

lines.

1 public void actionPerformed(ActionEvent ae)

2 trySave(false);

3 public boolean trySave(boolean canOverwrite)

4 return trySave(canOverwrite, null);

5 public boolean trySave(boolean canOverwrite, File

directory)

6 Project p = ProjectManager.getManager().getCurrentProject();

7 File saveDir = (directory != null) ? directory :

getSaveDir(p);

8 for (ArgoDiagram d : p.getDiagramList())

9 okSoFar = trySaveDiagram(d, saveDir);

10 protected boolean trySaveDiagram(Object target, File

saveDir)

11 File theFile = new File(saveDir, defaultName + "." +

SaveGraphicsManager.getInstance().getDefaultSuffix());

12 SaveGraphicsAction cmd = SaveGraphicsManager.getInstance().

getSaveActionBySuffix(SaveGraphicsManager.getInstance()

.getDefaultSuffix());

13 boolean result = saveGraphicsToFile(theFile, cmd);

14 private boolean saveGraphicsToFile(File theFile,

SaveGraphicsAction cmd)

15 fo = new FileOutputStream(theFile);

Fig. 7: Sequence Explaining Fault for ArgoUML

Step 6: Then, the hybrid dynamic/static analysis module

in Section III-E gets the final common statement subsequence.

The number of lines to be inspected is reduced again to be 31

lines. We show a relevant subset of those lines in Figure 7.

Step 7: Finally, the remote debugging module that is

explained in Section III-F gets the variable values of each

assignment statement in the final sequence.

In order for the developer to find the source of the error

using our proposed approach, only the following activities will

take place:

• The last line in the sequence is line 15 (fo = new

FileOutputStream(theFile)). This line is the line that

throws the FileNotFoundException. From this line, the

developer can conclude that this exception results from

an attempt to output stream to a file ”theFile” and this

file does not exist.

• Now, the developer can go backwards in the subse-

quence and see that the “theFile” variable comes from

the method parameter as shown in line 14 (private

boolean saveGraphicsToFile(File theFile, SaveGraph-

icsAction cmd)).

• Going backward, there is a line in the sequence

that calls the saveGraphicsToFile function as can be

seen at the line 13 (boolean result = saveGraphic-

sToFile(theFile, cmd)).

• Since the developer is investigating the variable

”theFile”, we can see that this variable is defined

at line 11 (File theFile = new File(saveDir,

Joint Research Workshop STV'15 & INTUITEST

58

1. The last line in the sequence is line 15 (fo = new FileOutputStream(theFile)).
This line is the line that throws the FileNotFoundException. From this line, the
developer can conclude that this exception results from an attempt to output
stream to a file "theFile" and this file does not exist.

2. Now, the developer can go backwards in the subsequence and see that the
``theFile" variable comes from the method parameter as shown in line 14 (pri-
vate boolean saveGraphicsToFile(File theFile, SaveGraphicsAction cmd)).

3. Going backward, there is a line in the sequence that calls the saveGraphicsTo-
File function as can be seen at the line 13 (boolean result = saveGraphicsToFi-
le(theFile, cmd)).

4. Since the developer is investigating the variable "theFile", we can see that this
variable is defined at line 11 (File theFile = new File(saveDir, defaultName + "."
+ SaveGraphicsManager.getInstance().getDefaultSuffix())).

5. This line uses a "saveDir" variable that is passed as the method parameter as
can be seen at line 10 (protected boolean trySaveDiagram(Object target, File
saveDir)).

6. By going backwards further, the developer can see that the function "trySave-
Diagram" is called at line 9 (okSoFar = trySaveDiagram(d, saveDir)).

7. Finally, by going backwards at "trySave" function, the developer can see that
the "saveDir" variable is set at line 7 (File saveDir = (directory != null) ? directo-
ry : getSaveDir(p)) to non existing location "/crash/crash".

As we can see, the total number of lines that are needed to be inspected are only 7.

References

[1] I. Vessey, “Expertise in debugging computer programs: A process analysis,” Inter-
national Journal of Man-Machine Studies, vol. 23, no. 5, pp. 459–494, 1985.
[2] G. J. Myers, The art of software testing (2. ed.). Wiley, 2004.
[3] “Cambridge University study states software bugs cost economy $312billion per
year,” http://undo-software.com/press- releases/cambridge-university-study-states-
software-bugs-cost- economy-312billion-per-year/.
[4] D. Lo, H. Cheng, J. Han, S. Khoo, and C. Sun, “Classification of software behaviors
for failure detection: a discriminative pattern mining approach,” in Proceedings of the
15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mi-
ning, Paris, France, June 28 - July 1, 2009, 2009, pp. 557–566.
[5] C. Parnin and A. Orso, “Are automated debugging techniques actually helping
programmers?” in Proceedings of the 20th International Sym- posium on Software
Testing and Analysis, ISSTA 2011, Toronto, ON, Canada, July 17-21, 2011, 2011, pp.
199–209.
[6] “GDB: The GNU Project Debugger,” http://www.gnu.org/software/gdb/, 2006.

Joint Research Workshop STV'15 & INTUITEST

59

[7] “jdb - The Java Debugger,”
http://docs.oracle.com/javase/7/docs/technotes/tools/windows/jdb.html, 1993.
[8] M. Weiser, “Program slicing,” in ICSE, 1981, pp. 439–449.
[9] X. Zhang, R. Gupta, and Y. Zhang, “Precise dynamic slicing algo-
rithms,” in ICSE, 2003, pp. 319–329.
[10] M. Renieris and S. P. Reiss, “Fault localization with nearest neighbor
queries.” in ASE. IEEE Computer Society, 2003, pp. 30–39.
[11] J. A. Jones, M. J. Harrold, and J. T. Stasko, “Visualization of test
information to assist fault localization,” in ICSE, 2002, pp. 467–477.
[12] A. Zeller, “Automated debugging: Are we close,” IEEE Computer, vol. 34, no. 11,
pp. 26–31, 2001. [Online]. Available:
http://doi.ieeecomputersociety.org/10.1109/2.963440
[13] ——, “Isolating cause-effect chains from computer programs,” in Pro- ceedings of
the Tenth ACM SIGSOFT Symposium on Foundations of Software Engineering 2002,
Charleston, South Carolina, USA, Novem- ber 18-22, 2002, 2002, pp. 1–10.
[14] H. Cleve and A. Zeller, “Locating causes of program failures,” in ICSE, 2005, pp.
342–351.
[15] B. N. Nguyen, B. Robbins, I. Banerjee, and A. M. Memon, “GUITAR: an innovative
tool for automated testing of gui-driven software,” Autom. Softw. Eng., vol. 21, no. 1,
pp. 65–105, 2014.
[16] “Cobertura (A code coverage utility for Java),” http://cobertura.github.io/cobertura/,
2001.
[17] R. Valle !e-Rai, P. Co, E. Gagnon, L. J. Hendren, P. Lam, and V. Sundare- san,
“Soot - a java bytecode optimization framework,” in Proceedings of the 1999 conferen-
ce of the Centre for Advanced Studies on Collabo- rative Research, November 8-11,
1999, Mississauga, Ontario, Canada, 1999, p. 13.
[18] “Crossword Sage,” http://sourceforge.net/projects/crosswordsage/.
[19] “ArgoUML,” http://argouml.tigris.org/.

Joint Research Workshop STV'15 & INTUITEST

60

Toward testing multiple
User Interface versions

Nelson Mariano Leite Neto, Julien Lenormand, Lydie du Bousquet,
Sophie Dupuy-Chessa
Univ. Grenoble Alpes, LIG, F-38000 Grenoble, France
CNRS, LIG, F-38000 Grenoble, France
{lydie.du-bousquet, sophie.dupuy}@imag.fr

Abstract:
More and more software systems are susceptible to be used in different
contexts. Specific user interfaces are thus developed to take into ac-
count the execution platform, the environment and the user. The multi-
plication of user interfaces increases the testing task, although the core
application remains the same. In this article, we explore a solution to
automate testing in presence of multiple user interfaces designed for the
same application (e.g. web-based, mobile, …). It consists of expressing
abstract test scenarios in a high-level language, and then to apply con-
cretization rules specific to each UI version to generate executable tests.

1. Introduction
With the rise of mobile devices such as notebooks, smartphones and
tablets, software systems are susceptible to be used everywhere and
in different contexts. A context of use involves three factors: the plat-
form (i.e. the type of device), the environment (e.g. the level of bright-
ness) and the user (e.g. with different levels of expertise) [1]. These
factors affect the interaction between the user and the system. That is
why different User Interfaces (UI) can be proposed in order to fit the
user’s needs. Systems with adaptable UIs are built to dynamically pro-
pose the relevant UI with respect to their interpretation of the contextu-
al situation. In these conditions, developing a set of relevant UIs can
become as complex as developing the core of the system [2].

This article is concerned with the problem of asserting quality while
developing different UIs in parallel for the same system (e.g., in order
to propose adaptable UIs). Quality is achieved during the development
and often evaluated by testing [2, 3, 4]. Testing becomes more and
more expensive and automation can be a key to reduce this cost.
Creation and maintenance of test scripts have to be taken into account
to make test automation cost-effective [4].

Joint Research Workshop STV'15 & INTUITEST

61

To be cost effective, our proposition is to factorize the testing process
as much as possible. Our starting point is a set of different UIs for the
same system. We aim at automatically generating executable test
scripts for each UI from a single description. To do that, we express
test scenarios in an abstract way, and concretizing them for each UI
version using specific translation rules. We think that this approach has
several advantages. An abstract test scenario is easier to write and
maintain than different executable test scripts. It is also easier to make
evolve a set of test scripts

This paper is structured as follows. First, the related work is presented.
Then, we introduce an illustrative example, using three web-based UIs
and one mobile UI. Next, we detail the approach. The last section con-
cludes and draws some perspectives.

2. Related Work
Our work concerns the problem of automating validation of multiple UI
for the same application that are developed to fit different contexts of
use. Executable test scripts are specific to each UI since they have to
match the widget and navigation specificities of each version. Our solu-
tion aims at factorizing the effort of testing required for the different
versions. In this section, we explore some approaches that have been
proposed to automate UI testing with factorization point of view.

UI test scripts can be manually written and then automatically executed
in some testing tools such as Abbot tool1 or Selenium WebDriver2. The
oracle is implemented as assertions in the code of the scripts. The
automation relies mainly on the execution part.
Writing scripts is a laborious task. To ease it, “capture and replay” tools
can be used to record user’s interactions with the UI. The recorded
interactions can then be replayed. Many tools propose this feature,
both for web-based or mobile application testing [5]. Oracle can rely on
visual inspection during re-execution of the captured scenarios, image
comparison or manual added assertions [6, 7].
Direct scripting and capture and replay approaches provide no direct
factorization possibilities for test generation. Each interface has to be
analyzed separately.

Model-based approaches have also been proposed to automate test
generation for UIs [8, 9, 10, 11, 12, 13, 14, 15, 16]. They offer more

1 http://abbot.sourceforge.net/
2 http://www.seleniumhq.org/

Joint Research Workshop STV'15 & INTUITEST

62

possibilities of factorization, especially when the model is built manually
during the development process. But such a construction is quite diffi-
cult to carry out since it may require a high-level expertise [13]. Moreo-
ver, it is often difficult to maintain the equivalence of a model and the
implementation during the application evolutions.
To deal with this problem, different authors propose to extract automat-
ically the model from the existing interfaces [8, 9, 10, 12]. This type of
approach is less adapted to our needs, since each interface has to be
analyzed separately. However, being able to extract a specific model
from each interface can then allow checking automatically the equiva-
lence of interfaces [17].
When tests are generated from an abstract model, mapping from the
model to the code has to be expressed in order to produce executable
tests [14]. In [11], authors use a keyword machine to transform abstract
test cases into executable ones.

No related work directly addresses the problem of generating executa-
ble test scripts for each UI version from a single description. However
the idea of transforming abstract test cases into executable ones can
be of interest to factorize. In this article, our high-level scenarios that
are common to all interfaces were produced manually. But a model-
based approach to generate them should be possible if a model is
available. The next section describes small example of application.

3. Illustrative example
The illustrative example used in this work is a prototype for a smart
home energy management system. It allows users to control and moni-
tor the energy consumption in a home from different devices.

We have developed four UIs for this system: a mobile application for
Android (named “mobile”), a web interface for desktop browser (named
“web0”), and two web interfaces for mobile browsers (one with a menu
page named “web1”, the other with a menu bar, named “web2”). The
web-based versions are implemented in HTML5, JavaScript and
JQuery. The mobile version is developed in Java 1.8. All versions have
the same features. The differences between the different web versions
are of two sorts. First widgets are different. Second navigation among
pages is different.

Joint Research Workshop STV'15 & INTUITEST

63

Figure 1: goal and filter features
on the web0 interface

Figure 2: goal and filter features
on the mobile interface

In this paper, we focus on three features.

 Goal: the user can check information about the general energy
consumption per month. He can access the goal and actual con-
sumption in kWh for the chosen month (Fig. 1 and 2).

 Filter: the user has access to a list of all the objects in the house,
having the possibility to filter them per room. An object means
any component that can be controlled and whose energy con-
sumption can be registered, such as lights and electronic devices
(Fig. 1 and 2).

 Comparator: the user can choose two objects and compare, side
by side, their energy consumption charts (Fig. 3).

Figure 3: compare feature on the web2 interface

Test scripts for web versions are executed in Selenium [20], a tool
following a capture and playback approach for web-based application.
The Selendroid framework completes the Selenium environment for the
mobile version3.

3 http://selendroid.io/

Joint Research Workshop STV'15 & INTUITEST

64

4. Approach
4.1 Principles
As said previously, the four UI versions share the same features but
have different widgets and navigation paths. For this reason, to test
them, it is necessary to write four specific executable test script sets.
To avoid this tedious work, we propose the approach illustrated Fig. 4.

Abstract test “scenarios” are expressed in a high-level language. These
scenarios are common to all the UI versions. A scenario is composed
of a sequence of abstract instructions. A set of translation rules is used
to transform the abstract test scenario into executable test scripts. The
rules explicitly associate executable code to abstract descriptions. The
translation rules are specific to each interface and defined manually. A
translation rule simply rewrite an abstract instruction into an executable
one, taking into account the implementation specificities. Translation
rules can be the same for different UIs if they share the same widgets.
A tool is used to translate the abstract scenario into executable test
scripts.

Figure 4: our approach to test script generation

4.2 Principles put into Practice
To express the high level scenarios, we use an existing language
called TSLT (Test Schema Language for Tobias [18]). It is a textual
language that contains several types of constructs allowing the defini-
tion of complex system scenarios. It is used as input of a testing tool
called Tobias [18], which is responsible of the translation into the exe-
cutable scripts.

Tobias is a test generator based on combinatorial testing. Combinato-
rial testing performs combinations of selected input parameter values
for given operations and given states. Tobias adapts this principle to
the generation of operation call sequences. It allows exploring system-

Joint Research Workshop STV'15 & INTUITEST

65

atically a large set of behavior sequences from a single abstract de-
scription, called scenario. An on-line version of Tobias is available at
http://tobias.liglab.fr/

In our use of Tobias for UI testing, we start by expressing the abstract
scenarios. Then we identify the executable code corresponding to each
abstract instruction. This correspondance is expressed by a translation
rule in TSLT. For the moment, this is carried out manually.

For instance, Listing 1 shows an abstract scenario in TSLT, designed
to check that the displayed values are the expected ones for each goal.
It consists of a sequence of three abstract instructions that allows to (1)
navigate to the appropriate view (@goToGoal), (2) choose a month
(@selectMonth) and (3) check that the displayed value is the expected
one (@verifyValues).
Instruction “Integer month = [1-3]” indicates to Tobias to repeat the
sequence for the first three months (combinatorial approach). Listings 2
to 5 show the four specific translations rules for “@goToGoal” abstract
instruction.

group testMonthValue[us=true] {
 Integer month = [1-3];
 @goToGoal;
 @selectMonth;
 @verifyValues;
}

Listing 1: Abstract scenario of the Goal test case

group goToGoal[us=false] {
 // does nothing
}

group goToGoal[us=false] {
 driver.get(siteAddress);
}

Listing 2: Translation rule of
@goToGoal for Mobile

Listing 3: Translation rule of
@goToGoal for Web0

group goToGoal[us=false] {
 driver.get(siteAddress);
 WebElement goalButton = driv-
er.findElement(By.xpath("/html/body/div/section/ul/li[1]/div/a"));
 goalButton.click();
}

Listing 4: Translation rule of @goToGoal for Web1

Joint Research Workshop STV'15 & INTUITEST

66

group goToGoal[us=false] {
 WebElement goalButton = driver.findElement(By.id("menu_goal"));
 goalButton.click();
}

Listing 5: Translation rule of @goToGoal for Web2

From these TSLT rules, Tobias is able to translate the abstract scenar-
ios into executable scripts. The executable scripts are executed in
JUnit with Selenium or Selendroid frameworks.

For testing the three features of our illustrative example, six scenarios
were designed, using 11 abstract instructions. Scenarios were translat-
ed into 21 executable test scripts in JUnit. The difference between the
number of abstract scenarios and the number of executable tests is
due to the combinatorial nature of Tobias. For example, the test case
shown in Listing 1 is translated into three JUnit tests, each one corre-
sponding to a different value for the month (1, 2, 3). By only changing
“Integer month = [1-3]” into “Integer month = [1-12]” it is possible to
generate the 12 test cases necessary to check all the months. It can
also be changed into “Integer month = [0-13];” and then generate ro-
bustness tests.

As said previously, it is important to have test suites easy to maintain.
The size of the description is one factor that impacts the cost of
maintenance. Table 1 shows the number of lines written for the ab-
stract scenarios with the translation rules for each feature. It also dis-
plays the number of line of code for the executable test scripts. Without
the approach, those executable test scripts should have been written
by hand. It can be observed that the number of lines to write has been
at least halved.
This diminution of code between the abstract scenario and the execut-
able test case is also due to the fact that the JUnit syntax is not de-
scribed in the abstract scenarios nor in the translation rules. Tobias tool
automatically generate the JUnit packaging.

Feature
tested

Implementation Mobile Web0 Web1 Web2

Goal Test scripts 161 143 151 147
Abstract scenario 76 67 69 68

Filter Test scripts 529 350 402 369
Abstract scenario 117 88 93 92

Compare Test scripts 231 235 235 227
Abstract scenario 65 60 59 58

Joint Research Workshop STV'15 & INTUITEST

67

Table 1: Number of lines for the abstract scenarios and generated tests

Feature Rule Mobile Web0 Web1 Web2
Goal @goToGoal 0 0 3 2

@selectMonth 5 3 3 3
@verifyValues 4 4 4 4
@veryfyMonthsCount 6 3 3 3

Filter @goToObjects 2 0 3 2
@selectRoom 3 5 5 5
@verifyObjectsFiltered 25 5 5 5
@selectRoomUncorrect 3 3 3 3

Compare @goToCompare 2 3 3 2
@selectRoom 3 3 3 3
@verifyWidget 10 10 10 10
@verifyChart 0 0 0 0

Total 63 39 45 42
Table 2 : Number of lines for each rule for each version of each feature

Translation rules are quite simple. They consist in associating executa-
ble code to abstract instruction. For our example, the executable code
corresponds to 0 up to 25 lines of code, for a total of 189 lines of code
(see Table 2). Variation implementation details are thus expressed in a
very concise way and localized. It becomes easy to make them evolve.

4.3 Discussion and Analysis
Our focus is to show the feasibility to express test scenarios for multi-
ple UI versions of the same application, and to measure the effect of
the factorization. The factorization effect can be evaluated through the
difference of size between abstract and executable tests (Table 1). The
factorization contribution is clearly visible. With Tobias, it is easy to
increase artificially this difference, by playing on the combinatorial fea-
ture of the tool. But we deliberately limit the combinatorial exploration
(e.g. we check only three months, instead of the twelve).

TSLT language does not allow expressing directly loops, return state-
ments, exception handling nor proper functions in the translation rules.
This constraint has for origin to guaranty that the combinatorial engine
of Tobias will always succeed in the process of translating abstract
scenarios into executable tests. Here, those constructions are neces-
sary to express oracle condition and for scrolling handling navigation
on the mobile version. The limitation has been bypassed during the
experiment by separating code of the loops in a different file. To be

Joint Research Workshop STV'15 & INTUITEST

68

able to express all the translation rules in TSLT, the language has to be
extended. This does not affect the relevance of the approach.

As it can be seen on Table 2, some translation rules correspond to
zero line of code. The reason is that there is no corresponding instruc-
tion within Selenium/Selendroid (e.g. it is not possible to check that an
image is the one which is expected). This is directly linked to the test-
ing framework expression power. It is independent of the approach.

5. Conclusions and Perspectives
We are concerned by the validation of several UIs provided for the
same application for different contexts. Our motivation is to prepare the
validation of adaptive applications, where tests have to be chosen with
respect to the context. To do that, we would like to be able to automate
test in a cost effective way.

The work described here is a first step toward this goal and should be
considered as a feasibility study. Abstract scenarios and translation
rules were both expressed in an existing language called TSLT, asso-
ciated to a testing tool called Tobias. It is a combinatorial tool which
aims at unfolding scenarios to explore all combinations that are defined
by the scenario. It was not originally designed for UI testing but for
JUnit test script generation. That was the main reason why it was cho-
sen. The fact that the translation of abstract scenario into executable
scripts can be done in a combinatorial way is an advantage since it
helps in the process of factorizing code (and thus being cost effective).

Even if our illustrative example is simple, the different versions were
built to explore a variety of widgets. Different navigation paths were
also considered. This helps us to be confident in the fact that the fac-
torization can be generalized. Moreover, translating abstract scenarios
into executable ones can also be carried out for other testing frame-
work than JUnit, since Tobias is designed to fit other testing frame-
works. However, the example shows that the TSLT language is not
fully appropriate as it is designed now (see. Sect. 4)

The example also shows that the approach can decrease the work of
creating and maintaining testing suites. The size of the abstract scenar-
ios with the translating rules is much smaller than the size of the final
test scripts, which share a lot of identical code. Writing them is not
simpler, but definitively shorter.

Joint Research Workshop STV'15 & INTUITEST

69

Our perspectives are to consolidate the work by exploring larger exam-
ples, other versions of interfaces and testing frameworks. This will help
us to evaluate more precisely the amount of manual effort required with
respect to the automated one and the approach genericity. Once this
step is achieved, we will explore the possibility to associate translation
rules to a context definition, and then to provide a framework that is
able to generate tests during the execution, to fit the current execution
context. The final step will be to generate automatically the abstract
tests from a model, like those proposed in the Cameleon framework
[19] and/or to produce automatically the translation rules such as in
TESTAR [10].

Bibliography
[1] Coutaz, J., and Calvary, G. HCI and software engineering: Design-
ing for user interface plasticity. Human-Computer Interaction: Devel-
opment Process (2009).
[2] Muccini, H., Francesco, A. D., and Esposito, P. Software testing of
mobile applications: Challenges and future research directions. In 7th
Int. Workshop on Automation of Soft. Test (AST), IEEE (2012), 29-35.
[3] Beizer, B. Software testing techniques. Dreamtech Press, (2003)
[4] Grechanik, M., Xie, Q., and Fu, C. Maintaining and evolving GUI-
directed test scripts. In IEEE 31st Int. Conf. on Software Engineering
(ICSE) (2009), 408-418.
[5] Gao, J., Bai X., Tsai W. T., and Uehara T. Mobile application test-
ing: a tutorial. IEEE Computer, 47:2 (2014), 26-35.
[6] Jung, H., Lee, S., and Baik, D.-K. An Image Comparing-based GUI
Software Testing Automation System. In SERP (2012), 318-322.
[7] Xie, Q., and Memon, A. M. Designing and comparing automated
test oracles for GUI-based software applications. ACM Transactions on
Software Engineering and Methodology (TOSEM) 16, 1 (2007).
[8] Aho, P., Suarez, M., Kanstrén, T., and Memon, A. M. Industrial
adoption of automatically extracted GUI models for testing. In
EESSMOD@ MoDELS (2013), 49–54.
[9] Aho, P., Suarez, M., Kanstren, T., and Memon, A. M. Murphy tools:
Utilizing extracted GUI models for industrial software testing. In IEEE
7th Int. Conf. on Software Testing, Verification and Validation Work-
shops (ICSTW), (2014), 343–348.
[10] Vos, T. E., Kruse, P. M., Condori-Fernández, N., Bauersfeld, S.,
and Wegener, J. TESTAR: Tool support for test automation at the user
interface level. Int. Journal of Information System Modeling and Design
(IJISMD) 6, 3 (2015), 46–83.

Joint Research Workshop STV'15 & INTUITEST

70

[11] Nieminen, A, Jääskeläinen, A., Virtanen, H., Katara, M. A Compar-
ison of Test Generation Algorithms for Testing Application Interactions,
11th Int. Conf. on Quality Software (QSIC), (2011), 131-140.
[12] Amalfitano, D., Fasolino, A.R., Tramontana, P. A GUI Crawling-
Based Technique for Android Mobile Application Testing. IEEE 4th Int.
Conf. on Software Testing, Verification and Validation Workshops
(ICSTW), (2011), 252-261.
[13] Holzmann, G. J., and Smith, M. H. An automated verification
method for distributed systems software based on model extraction.
IEEE Trans. on Software Engineering (TSE), 28, 4 (2002), 364-377.
[14] Grilo, A., Paiva, A., and Faria, J. Reverse engineering of GUI
models for testing. In 5th Iberian Conf. on Information Systems and
Technologies (CISTI), (2010), 1-6.
[15] Nguyen, B., Robbins, B., Banerjee, I., and Memon, A. Guitar: an
innovative tool for automated testing of GUI-driven software. Automat-
ed Software Engineering (ASE) 21, 1 (2014), 65-105.
[16] Yuan, X., Cohen, M. B., and Memon, A. M. Towards dynamic
adaptive automated test generation for graphical user interfaces. In
IEEE Int. Conf. on Software Testing, Verification and Validation Work-
shops (ICSTW) (2009), 263–266.
[17] Oliveira, R., Dupuy-Chessa, S., and Calvary, G. Equivalence
checking for comparing user interfaces. The 7th ACM SIGCHI Sympo-
sium on Engineering Interactive Computing Systems, ACM, (2015).
[18] Triki, T., Ledru, Y., du Bousquet, L., Dadeau, F., and Botella, J.
Model-based filtering of combinatorial test suites. In Fundamental Ap-
proaches to Software Engineering (FASE). Springer, (2012), 439-454.
[19] Calvary, G., Coutaz J., Thevenin, D., Limbourg, Q., Bouillon, L.,
Vanderdonckt, J. A Unifying Reference Framework for Multi-Target
User Interfaces, Interacting With Computers, Vol. 15/3, (2003), 289-
308

Joint Research Workshop STV'15 & INTUITEST

71

Joint Research Workshop STV'15 & INTUITEST

72

GUI-based Testing in the Brazilian
Software Industry: A Survey

Rafael A. P. Oliveira¹, Jorge Francisco Cutigi²

¹University of Sao Paulo, USP, São Carlos

rpaes@icmc.usp.br

²Federal Institute of Sao Paulo, IFSP, São Carlos

cutigi@ifsp.edu.br

Abstract: GUI (Graphical User Interface)-based testing consists of exploring front-end re-
sources to exercise a Software Under Test. Despite the fact that GUI-based testing strategies
are in constant evolution, the distance between practice and theory remains a problem in this
field. Due to this, the practice of automated and systematic GUI-based testing is severely
limited by costs and the need for specific tools. Aiming to produce insights on the current
practice and the needs of GUI testing in the Brazilian software industry, in this paper we
conducted a survey that contributes to deep analyses and discussions on the practice of GUI-
based testing in the scenario of the Brazilian Software industry. Based on the answers from
49 practitioners from leading companies, our survey reveals that problems such as the lack of
knowledge, lack of supporting tools, and tight deadline so large projects, lead most of the
Brazilian companies to perform manual and ad-hoc GUI testing instead of exploring auto-
mated and systematic approaches. Then, the main contributions of this paper, in addition to
quantitative and visual information, is a discussion associated with a proposal of some future
directions towards the incorporation of GUI testing strategies by Brazilian companies and
companies from other emergent countries.

Keywords: GUI-based testing; Test automation; Graphical User Interface

1 – Introduction

Currently, the global economy has been guided by technological advances in Infor-
mation Technology (IT). Having an active software industry can increase the representative-
ness of a whole country in a global economic context. Software testing activities are intimately
associated with a powerful and influential software industry, and are seen as being one of the
most important practices to increase the software quality and productiveness [14]. Software
testing collaborates to ensure that the software product is in accordance with its specifica-
tions, reducing costs of maintenance [14]. However, some emergent countries do not have
good practices on software testing, limiting their ability to participate more effectively in global
economic activities. For instance, Brazil has a representative local software industry that
needs direction so that it can to act better in international scenarios. To do so, initiatives from
academia need to be implanted in practice by industry.

A contemporary practice in software testing is GUI testing (Graphical User Interface)
(also known GUI-based testing) that consists of exploring front-end resources to exercise a
Software Under Test (SUT) [1]. Technically, a GUI consists of an array of graphical compo-
nents, widgets, and properties that allows final users to interact with the SUT's underlying

Joint Research Workshop STV'15 & INTUITEST

73

code (back-end code). In a GUI, each graphical component dispatches an event to respond to
user’s interactions from keyboards, mouse, touchscreens, etc [2]. Then, test cases can be
designed through sequences of input events that exercise the GUI’s widgets. Theoretically,
GUI testing represents an essential step towards the proper verification of the consistence
among a system and its specification [3]. Nowadays, even if all of the underlying code has
gone through systematic VVT activities (Validation, Verification, & Testing activities), it is not
recommended to deliver a SUT without the application of a GUI testing strategy. Given these
concepts, it is possible to affirm that, in conjunction with other testing techniques and criteria,
GUI testing is absolutely necessary to build successful software [4,5]. However, in practice
there are huge gaps between theory and practice that causes automated and systematized
GUI testing to be avoided by most of the practitioners in software industry [7]. These gaps are
mainly due to different reasons: lack of proper tools, maintenance of testing scripts, manual
efforts, generation of useless test cases, and difficult to design effective test oracles.

Aiming to produce insights on the current practice and needs of GUI testing in the
Brazilian software industry, in this paper we conducted an online survey. Through this survey,
we measured common practices and testing strategies adopted by a representative portion of
leading companies of software development in Brazil. The main goal of this survey is to create
quantitative data to support ideas and initiatives towards the productive use of GUI testing in
practice. Using professional social media and personal contacts, we invited more than 70
practitioners of top IT companies in Brazil to participate of our research. Based on a set of
data collect from more than 50 practitioners, we designed the results of this study. Our survey
is prepared to answer the following five Research Questions (RQs):
RQ1: Do the practitioners from the Brazilian software industry know all of the GUI testing
concepts?
RQ2: What are the GUI testing strategies being applied in practice (in accordance to a
chronological taxonomy defined by Alegroth E. [6])?
RQ3: What are the reasons to not apply GUI testing in practice?
RQ4: Does the Brazilian software industry implement supporting tools for GUI testing?
RQ5: Do the practitioners know the importance of the GUI testing for the quality of the final
product?

Besides the quantitative analysis and visual information on the practice of GUI testing
by leading Brazilian companies, the contributions of this paper are threefold:(1) it produces
insights for future directions on the practice of GUI testing strategies; (2) it presents an effec-
tive analysis questionnaire that can be adapted and applied in other countries under different
contexts; and (3) it provides a massive discussion with critical points of view and comments
on what is expected from the GUI testing in the software industry of an emergent country.

2 – GUI-based Testing

Regarding the code level, a GUI is a 3-tuple: {W, P, V}:W is a set of Widgets (Labels,
Forms, Buttons, Lists, Sliders, Spinners, Menus, etc);P represents a set of properties to each
Widget (Size, Color, Background-color, Translucence, Shape, etc.); and V addresses to a set
of valid Values associated to each Property P. Technically, this 3-tuple representats a con-
cept known as “GUI state” that is a set of values to W, P, and V, representing an instance of a
GUI. Regarding the software testing point of view, a consequence of the 3-tuple representa-
tion is that the GUI testing is different from regular testing techniques.

Joint Research Workshop STV'15 & INTUITEST

74

Historically, 1991 was the year in which the first research efforts on exploring GUI re-
sources to test the SUT’s functionalities were published [1]. In a recent analysis on the GUI
testing history, Alegroth E. [6] states that during the last decade (from 2005 to 2015) this area
evolved the following three chronological approaches that can be seen as generations: (1)
Record/Playback-based; (2) GUI model-based approaches; and (3) Visual-based approaches.
This taxonomy is based on the source of information and on the level of automation associ-
ated with the GUI testing techniques. Below we present details of each testing generation:
Generation 1 (G1): this first generation is totally scripted and it uses record/playback tools
that allow the testers to record testing sequences. Then, after new implementations and code
updates, these testing sequences can be playedback automatically. Due to the usage of
screen coordinates or specific code targets to perform the test record, scripts maintenance in
this generation is a painful and costly activity;
Generation 2 (G2): this generation, which can be called the component-based generation,
explores a model to represent all of the possible GUI events and interactions. From such a
model, which can be derived from rippers implemented through reverse engineering tech-
niques or even from manual scripts, it is possible to generate test cases and design several
test oracles. This generation has a high level of automation, however the high number of test
cases and ripper/script-dependency are some of the drawbacks of its approaches;
Generation 3 (G3): also known as Visual GUI Testing (VGT), this generation uses processing
image techniques and resources from image recognition algorithms to exercise the GUI and
assert the SUT’s correctness through the GUI representation displayed on the screen. Then,
approaches in this generation are script-based and code-independent. Once this generation
represents a novel trend on GUI testing, there is an open field of research efforts to be done
regarding test data generation and test productivity. Despite the fact that only initial research
have been conducted [6], this generation seems to suffer from several robustness problems,
mainly due to costly image processing algorithms [8].

The GUI testing generations are complementary and good testing strategies are
given through the combination of approaches from two or more generations. Regarding GUI
testing, for instance, there are valuable research efforts and tools that could be adopted in
practice, for instance, PBGT-approach [13] for GUI testing of web applications, GUITAR [12]
and Murphy tools [11] for desktop applications, Sikuli [10] for VGT testing, and so forth.

3 – Survey Design and Execution

In order to make survey access and distribution easy, we developed the question-
naire1 using a free online service. We planned a questionnaire with objective questions (mul-
tiple choice), open questions (text), and scale questions, totalling 21 questions.

We divided the questionnaire into 2 sections: at the first section, we presented the
participants with a small introduction regarding GUI Testing. In this introduction, we presented
the three generations of GUI testing (Section 2) and we named as Generation 0 (G0) all of
the GUI Testing executed manually with no tool support at all. In the second section, we
added the survey questions. The first five questions were about the professionals and the
company that they worked for. The next five questions were about a testing activities (testing
levels, automation, etc). The next eight questions were related to GUI testing, which asked

1access online the complete questionnaire: http://goo.gl/forms/WFk4vHM6R6

Joint Research Workshop STV'15 & INTUITEST

75

http://goo.gl/forms/WFk4vHM6R6

about the professional’s knowledge and how this kind of testing was performed at the Brazil-
ian companies. Finally, the three last questions got information about the contact of the
responder and an open space to comments about the questionnaire or GUI testing.

We developed specific questions to answer our research questions. The question-
naire was e-mailed to practitioners that are involved with software development, focusing on
testing practitioners of leading Brazilian IT organizations. We started to distribute the ques-
tionnaire on June 8, 2015, in which only testing practitioners were the target. After June 13,
2015, we prepared a new distribution batch for broader group of software practitioners, not
only testers. The next batch was sent after June 17, 2015, in which we collected another good
amount of responses. We received 56 responses. Among the 56 responses seven were
discarded because some of their answers were not complete enough, missing some neces-
sary points to our analysis. After that selection, our survey comprised 49 responses.

4 – Survey Results

Analysing the first part of our survey, one can notice that we had responses from dif-
ferent major business, such as information technology, consulting, finance, education, agri-
business, healthy, etc. We also got information of some government industries, representing
around 16% of the respondents. 31% of all respondents work for large companies (more than
1000 employees) and 27% work for small companies (less than 50 employees). About the
respondent's job positions, we have almost 27% responses from practitioners related directly
with software testing/quality activities, while others are directors, project managers, analysts
or developers.

Regarding general software testing activities in Brazilian companies, we asked some
important basic questions, aiming to know about testing levels and their automations. Figure 1
presents the results obtained in a bar graph, in which each section is how automated the level
testing is, or if this level is not used in the company. We can notice that most of the compa-
nies perform the testing activities, although a good amount of companies make it manually or
ad-hoc. We also asked how satisfied the respondents are about the software testing activities
performed in their company: only 10.2% of the respondents are very satisfied with the testing
in their company, while 22.4% are very unsatisfied. Around 63.7%, declared to be partially in
accordance with the testing activities performed by their companies.

Figure 1 - Use of each testing level and how automated they are.

Joint Research Workshop STV'15 & INTUITEST

76

The section below presents potential answers to our RQs based on the collected
through our survey.

4.1 – Answers to RQs and Discussion

In the paragraphs below we present potential answers for our RQs (presented in Sec-

tion 1) and some comments on the implications and evidences collected from the survey.
Regarding the RQ1, our survey has revealed that few practitioners (only 69% of the

respondents) had previous knowledge of concepts and techniques of GUI testing. Then, a
considerable amount of practitioners (31% of the respondents) affirmed they did not have any
previous knowledge of GUI testing. We expected more practitioners with previous knowledge
on GUI testing. In addition to that, we believe that these critical numbers are due to two main
reasons: (1) defective undergraduate IT courses with few or no software testing lessons; and
(2) GUI testing is a relatively new concept and the Brazilian software industry did not incorpo-
rate testing strategies and artefacts to address this issue.

With regard to RQ2, that is addressed to identify which are the GUI testing genera-
tions being used in practice by Brazilian software industries, our survey reported four main
findings: (1) an extensive amount of the companies (87.8%) use manual and ad-hoc GUI
testing approaches from G0; (2) few practitioners explore approaches from G1 (38.8%) and
G2 (26.5%); (3) few companies (8.2%) use modern approaches from G3; and (4) a consider-
able portion of the Brazilian software industry is careless about GUI testing. Figure 2 presents
all of the data collected from our survey to identify the usage of the testing generations in
practice. The left side of Figure 2 presents a bar plot with the percentage of usage of each
generation. The right side of the same figure illustrates the numbers of each survey respon-
dent using each GUI testing generation.
 The answers from our survey to RQ2 show us that most of the practitioners use
manual approaches (G0) or record/playback strategies (G1) to test their GUI applications.
This evidence was already expected by us for two main reasons: (1) GUI testing is a new
practice, then it is natural that most of the companies are still incorporating its practice in their
daily activities; and (2) the lack of mature GUI testing tools cause some companies explore
approaches that are more human-dependant (G0 and G1).

Figure 2 -Rates (left) and numbers (right) for the practical use of each GUI testing generation.

Joint Research Workshop STV'15 & INTUITEST

77

RQ3 addressed raised evidence about reasons and barriers to not employ GUI test-
ing in practice. To obtain data towards answering this question, we adopted open questions:
GUI testing practitioners and even for practitioners that are negligents about GUI testing. After
analysing several responses, we classified the answers into four categories: (1) negligence or
careless about applying GUI testing; (2) time issues; (3) lack of knowledge; and (4) lack of
supporting tools. Figure 3 presents the final results of our analysis. For 36% of the practition-
ers, the "lack of supporting" tools represents the main limitation to apply GUI testing in prac-
tice; 29% of the practitioners complained about "time issues"; 18% declared that sometimes
the "GUI testing is neglected" in their projects; and 17% declared believe the "lack of know-
ledge" and capacity is the main drawback on using GUI testing in their companies. Still about
RQ3, we believe the results were near to what we expected. This is due to two main reasons:
(1) the lack of proper supporting GUI testing tools for different programming languages,
platforms, and paradigms is already known among researchers and practitioners in this field.
In addition to that, the lack of automated resources leads to time issues associated to the
limitation of its usage; (2) although, we did not expect that a large amount of practitioner
would declare that sometimes the GUI testing is neglected.

Figure 3 - Main reasons to not apply GUI testing.

With regard to RQ4 that investigates whether GUI testing tools are implemented by

companies to be used in their own projects, 8% of the respondents affirmed that it is a com-
mon practice to implement their own testing tools. From the data collected, one can infer that
the particularity of some projects makes 8% of the companies implement GUI testing arte-
facts. Consequently, 92% do not implement their own automated or semi-automated testing
tools. However, this huge number does not mean that Brazilian industry have mature tools
supporting, but it show us that software testing is sometimes neglected or performed manu-
ally.

Still regarding RQ4, analysing details of cases in which the professional affirmed their
company implements their own tools for GUI testing, we noticed two main evidence: (1) there
are cases in which the company does not implement a complete tool, however they establish
a particular software architecture and a testing pattern to keep their test sets easy to change;
(2) the supporting tools implemented can be classified as G1-tools because most of them
consists of scripts that reproduces a real-user interacting with the SUT’s GUI through its GUI
using coordinates and components' IDs.

Finally, to answer RQ5 that consists of checking the level of priority given by Brazilian
practitioners for GUI testing, we prepared a scaled question that starts from one (1) ending in
five (5). Our data shown that 42.9% of the respondents considered the GUI testing very

Joint Research Workshop STV'15 & INTUITEST

78

important for the SUT’s quality, and 36.7% considered the GUI testing important. Figure 4
presents a bar plot in which the answers of the participants are synthesized through visual
information. Regarding the answer of this question, one can considered that most of the
professionals recognize the importance of the GUI testing for the SUT’s quality, however
number of them refuse or neglect to adopt automated and systematic GUI-based testing
strategies in their daily activities.

Figure 4 - Level of importance of the GUI testing for Brazilian IT practitioners.

In an additional analysis, we systematically evaluated some of the data of our survey

to represent a draft of the state-of-the-practice of the GUI testing in Brazil. Considering that
the most prolific GUI testing scenarios must be composed by the combinations of tools from
two or more generations (preferentially, combinations from G2 and G3), we analysed the
answer from each practitioner individually to determine the combinations of GUI testing
generation approaches. Then, for the survey response, we analysed the combination of tools
from the four different generations presented. Figure 5 shows the final numbers for this
analysis arranged through a Venn diagram.

Figure 5- Venn diagram for the combination and usageof each GUI testing generation. (created using [9])

Joint Research Workshop STV'15 & INTUITEST

79

Analysing the visual information provided by the diagram, one can notice several im-
portant points: (1st) 23 practitioners (in blue bubble) declared their company uses only ap-
proaches from G0; (2nd) 10 respondents said that in their companies are used approaches
from G0 and G1 (intersection between blue and yellow bubbles); (3rd) six respondents de-
clared their companies combine approaches from G0, G1, and G (intersection between blue,
yellow, and green bubbles); and (4th) only one respondent said his company works along all
of the testing generations (central area and intersection of all of the bubbles).

Regarding this combination of generations, it is possible to mention that the Venn
diagram and the data from our survey reveal an immaturity of the GUI testing in the Brazilian
industrial scenario. The immaturity of the area is evident mainly for three reasons: (1) most of
the combinations involves the G0 and G1 that are considered outdated facing the current
scenarios; (2) in general, few respondents declared their company combined tools from
different generations, demonstrating most of the companies have to deal with drawbacks and
limitations of particular approaches; and (3) few companies are using the two newer genera-
tions and their combination. Regarding the combinations, we highlight that the ideal scenario
expected consists of more companies using approaches from G2, G3, and their combinations
in different contexts (in the intersection between green and pink bubbles).
 After analysing the data collected from our survey, we believe that some directions
regarding GUI testing are fundamental to increase the Brazilian competitiveness in the soft-
ware industry. We see some initiatives that are necessary to improve the scenario of GUI
testing in Brazil. Firstly, it is necessary for "more collaboration between academia and indus-
try" towards the development of open source testing tools and testing resources applicable to
GUI testing in different contexts, mitigating testing costs and human efforts. Secondly, cus-
tomers, universities, and government have to be engaged "towards the exigency of more
reliable" and faithful software products. In this context, customers should be more energetic in
demanding well tested software. Universities should incorporate more quality issues in their IT
courses offering specific lessons of topics on contemporary testing practices (such as, GUI
testing). In addition to that, the Brazilian government and Universities should be associated to
coordinate funding programs to allow researchers to realize local workshops and conferences
about contemporary IT topics. Finally, the Brazilian software industry by itself should "look for
capacity programs for their employees", preparing their professionals for contemporary prac-
tices.

4.2 – Threats to Validity

The threats of this study are presented on three perspectives:
Credibility: the main threat to the credit of the findings collected from this study is as-

sociated with the survey population. As mentioned in Section 3, we opened the survey, not
only for testers, but also for practitioners from different job positions (developers, analysts,
managers, etc). Thus, we take the risk that some of our survey respondents are not able to
provide precise information on GUI testing practices.

Dependability: we see a threat to the consistency of our findings associated with the
fact that some of our survey questions (mainly the open questions) could make the results
inconsistent. Then, to mitigate this threat, we discarded some questions and defined some
assumptions and performed a few to make our analysis possible.

Joint Research Workshop STV'15 & INTUITEST

80

Confirmability: regarding the real association of the answers to our RQs and the data
collected, we believe there is threat associated to our fourfold categorization about the draw-
backs on using GUI testing in the RQ3. This threat is due to our previous knowledge on GUI
testing. To mitigate that threat, the categorization was suggested by two different authors and
validated by a specialist.

5 – Conclusions

GUI testing is a contemporary VVT activity that explores UI aspects to exercise the

SUTs aiming to check inconsistencies. The GUI testing field is advancing and it will be soon
still more practical and useful. Based on five previously defined RQs, this survey study re-
veals several critical points about the practice of GUI testing by Brazilian practitioners from
leading software companies: (1) few practitioners (69%) know GUI testing concepts, support-
ing tools, and resources; (2) most of the GUI testing strategies are still manual and ad-hoc; (3)
lack of proper automated GUI testing tools and time to market are the main excuse and
barriers to the effective use of contemporary GUI testing strategies in industry; and (4) despite
the fact that most of the professionals know the importance of GUI testing, they continue
refusing to use it in their daily activities. In this regard, as a contribution, this paper provides
some initiatives towards increasing the practical usage of GUI testing and other contemporary
software testing practices in the Brazilian software industry. Specific open source tools,
academia engagement, and efforts to train professionals are some of the directions to be
followed. As a future work, in addition to collecting answers from more practitioners, we intend
to run this survey in countries whose software industry is at similar levels as Brazil (India,
Israel and Ireland) and in reference countries (USA, China, and Germany), establishing then
some basis for comparisons between Brazilian industry and other countries, besides opening
opportunities to write new papers to be discussed in key conferences.

References

[1] “Graphical User Interface (GUI) Testing: Systematic Mapping and Repository” by

Ishan Banerjee, Bao Nguyen, Vahid Garousi. and Atif Memon, Information and Soft-

ware Technology, Vol.55, I. 10, October 2013, pp 1679-1694.

[2] “GUI Testing: Pitfalls and Process” by Atif M. Memon. Computer, IEEE Computer

Society Press. vol. 35, no. 8, 2002, pp. 87-88.

[3] “What Test Oracle Should I Use for Effective GUI Testing?” by Atif M. Memon, Ishan

Banerjee, and Adithya Nagarajan. In Proceedings of the 18th IEEE International Con-

ference on Automated Software Engineering (ASE 2003), Montreal, Canada, pp. 164-

173. 2003.

[4] "A systematic capture and replay strategy for testing complex GUI based java appli-

cations", by O.E. Ariss, D. Xu, S. Dandey, B. Vender, P. McClean, B. Slator. in: Con-

ference on Information Technology, 2010, pp. 1038–1043.

Joint Research Workshop STV'15 & INTUITEST

81

http://www.sciencedirect.com/science/journal/09505849/55/10

[5]"Modelling and testing hierarchical GUIs", by A.C.R. Paiva, N. Tillmann, J.C.P. Faria,

R.F.A.M. Vidal, In: Proceedings of the 2005 Workshop on Abstract State Machines

(ASM 2005), Pairs, France, pp. 8-11, 2005.

[6] “On the industrial applicability of visual GUI testing” by E. Alegroth, ´ Department of

Computer Science and Engineering, Software Engineering (Chalmers), Chalmers

University of Technology, Goteborg, Tech. Rep., pp. 1-187, 2013.

[7] “Making GUI Testing Practical: Bridging the Gaps” by Pekka Aho, Matiaz Suarez.

Atif Memon, and Teemu Kanstrén, in The Proceedings of The 12th International Con-

ference on Information Technology - New Generations (ITNG 2015), Las Vegas, NV,

USA, pp. 439-444, 2015.

[8] “Conceptualization and Evaluation of Component-based Testing Unified with Visual

GUI Testing: an Empirical Study” by Emil Alégroth, Zebao Gao, Rafael A. P. Oliveira.

and Atif Memon, in The Proceedings of 8th IEEE International Conference on Software

Testing, Verification, and Validation (ICST 2015), Graz, Austria, pp. 1-10, 2015.

[9]"An interactive tool for comparing lists with Venn's diagrams" by Oliveros, J.C. (2007-

2015) Venny.http://bioinfogp.cnb.csic.es/tools/venny/index.html

[10] "Sikuli: using GUI screenshots for search and automation" by Tom Yeh, Tsung-

Hsiang Chang, and Robert C. Miller. In Proceedings of the 22nd annual ACM sympo-

sium on User interface software and technology (UIST 2009). ACM, New York, NY,

USA, pp. 183-192. 2009

[11] “Murphy Tools: Utilizing Extracted GUI Models for Industrial Software Testing” by

Pekka Aho, Matias Suarez, Teemu Kanstren. and Atif Memon, In Proceedings of the

Testing: Academic & Industrial Conference (TAIC-PART), Cleveland, OH, USA, 343-

348 2014

[12] “GUITAR: an innovative tool for automated testing of GUI-driven software” by Bao

N. Nguyen, Bryan Robbins, Ishan Banerjee. and Atif Memon, Automated Software

Engineering, 2013, pp. 1-41, Springer US.

[13] “A Pattern-Based Approach for GUI Modelling and Testing” by Rodrigo Moreira,

Ana Paiva and Atif Memon, In Proceedings of the 24th IEEE International Symposium

on Software Reliability Engineering (ISSRE 2013), Pasadena, CA, pp. 288-297, 2013

[14] "Software Testing Research: Achievements, Challenges, Dreams" by Antonia

Bertolino. In Proceedings of the Workshop on the Future of Software Engineering

(FOSE 2007). IEEE Computer Society, Washington, DC, USA, pp. 85-103, 2007

Joint Research Workshop STV'15 & INTUITEST

82

http://bioinfogp.cnb.csic.es/tools/venny/index.html
http://dx.doi.org/10.1007/s10515-013-0128-9

Closing Gaps between Capture and Replay:
Model-based GUI Testing

Oliver Stadie and Peter M. Kruse

Berner & Mattner Systemtechnik GmbH, Berlin, Germany,
{oliver.stadie|peter.kruse}@berner-mattner.com

Abstract. Testing software as a black box can be time consuming and error-
prone. Operating and monitoring the graphical user interface is a generic method
to test such systems. This work deals with convenient and systematic testing of
GUI software systems. It presents a new approach to model-based GUI testing
by combining the strengths of four well-researched areas combined: (1) the in-
tuitive capture&replay method, (2) widget trees for modeling the GUI, (3) state
charts and (4) the classification tree method. The approach is implemented as
a prototype and is currently under validation on a real GUI. The presented ap-
proach includes the whole test cycle, from scanning the GUI and model-based
test specification to the automatic execution of tests.

Keywords: Automated GUI Testing, Systematic GUI Testing, Model-based Testing,
Classification Tree Method, State Chart, Capture&Replay

1 Introduction

There are many approaches, how to test software. Today, many software systems pro-
vide a graphical user interface (GUI) to ease the users to access these systems. When
testing these software systems, the GUI can be used to test the software from the user-
perspective (black box testing) or to test the GUI itself. In current systems, the GUI
takes up to 60 percent of the total source code [1]. Testing generally causes 50 per-
cent of the total costs of software development [2]. By automating GUI tests, up to 80
percent of the costs could be saved compared to manual GUI testing [3].

Especially for regression testing, a major problem is that changes to the GUI should
not require manual steps in order to adapt the test [4].

Semi and fully automatic methods have been published, in order to simplify the
GUI testing process [3, 5]. Nevertheless, the approach most widely used is still cap-
ture&replay [6]. This gap between explored and used methods could be due to a lack of
intuitiveness, learning and lack of tool support.

In this work we develop a method to support the GUI testing process by combining
existing methods. The developed method is to be implemented in a tool that can be used
for any type of GUI, regardless of the underlying technology. Specifically, the following
methods and models are used: the capture&replay method [7], widget trees [8], state
charts [9] (esp. UML state diagrams), and the classification tree method [10].

Joint Research Workshop STV'15 & INTUITEST

83

Table 1. Combined Methods and Models in This Work

Method Advantages Disadvantages
Capture&Replay- Intuitive Usability - High Maintenance Costs
[7] - Widespread - Low Stability against Changes

- Quick and Easy Specification of Indi-
vidual Sequences
- Simple Means to Scan the GUI

Widget Trees - Detailed Modeling of GUI States - Stability to Changes Uncertain
[8] - Convenient Management and

Overview by Hierarchies
State Charts [9] - Modeling and Selection of System Be-

havior (Sequences)
- Difficult Automated Construction

- Relatively Stable to GUI Changes
- Easy to Learn

Classification
Tree Method

- Classification of the Input Data Space,
Reduction of the Necessary Test Cases

- Can be Too Large for Complex Sys-
tems (Splitting into Several Trees

[10] - Systematic Derivation of Test Cases Circumvents the Problem)
- Established in Practice
- Suitable for Functional Black Box
Testing

These methods are to be combined in the following sections, with the aim to obtain
as many of the benefits as possible and to eliminate as many of the disadvantages as
possible (Table 1).

2 Background

The widespread capture&replay tools work as follows: The tester records a manually
executed sequence of actions on the GUI. This is the capture phase. Then the recorded
sequence can automatically be executed on the GUI repeatedly. That’s the replay phase.
One advantage of capture&replay tools is that they can be easily learned and used. A
draw-back is that they are not inherently systematic, so the quality of the recorded test
depends of the skills of the tester [7].

Memon pays attention to both the importance and the lack of GUI test methods [7].
Methods used are often unsystematic, ad hoc or too expensive.

Surveying recent works related to model based GUI testing [11–13], reveals that
there are two dominant methods for modeling GUIs. One common approach in model-
based testing are state charts [5]. A second approach is the model of Memon et al.
consisting of GUI forest, event-flow graphs and integration tree [14].

Widget Trees are another approach to modeling of GUI-states [8]. Widget trees
focus on the modeling of all elements in the widget hierarchy, while state charts model
the behavior and possible navigation paths through the system.

A systematic method for test specification is the classification tree method [10].
TESTONA is a test tool that implements the classification tree method [15, 16].

Joint Research Workshop STV'15 & INTUITEST

84

3 Approach

The developed method supports the tester in testing a model-based GUI. The method
forms a cycle, which (1) starts and analyzes the GUI, it then (2) creates GUI models,
from these (3) derives test sequences and ultimately (4) executes these sequences again
on the GUI (Figure 1).

Fig. 1. Workflow

1. The tester initiates the capture process part. The tester performs to be recorded
sequences, by using peripherals1 (mouse and keyboard), on the system under test
(SUT).

2. The inputs in the periphery and the output of the SUT can be observed and models
of GUI are created and updated from it. After the tester completes a sequence, they
can restart the capture process any number of times to record additional sequences.

3. The created GUI model is presented to the tester for test sequence generation.
4. Finally, the tester triggers the test sequence execution. The SUT is started automati-

cally for each test sequence and manipulated automatically via generated, simulated
peripheral inputs.

3.1 Capture

The first phase of the process ensures the creation of capture sequences. After starting
the SUT, its GUI is scanned to determine its initial state. The tester makes any number

1 Device used to put information into or get information out of the computer. Also called in-
put/output device. [17]

Joint Research Workshop STV'15 & INTUITEST

85

of inputs on the keyboard and mouse during each recording. Each of these inputs affects
the SUT. Thereafter, the method links the input to the last recorded GUI state and reads
the new GUI. Each GUI scan is stored as a widget tree.

Stabilization: For all widgets in the widget tree, the details are reduced and only
names and types are kept, resulting in a discarding of e.g. widget dimensions, pixel
positions, colors, IDs (similar to [18]). This is done for increased robustness, esp. in
regression testing. The interrelation of widgets is only maintained using their location
in the widget tree.

Merging: Multiple similar user actions without consequences to the widget tree
can be merged, e.g. typing several single letters into a textbox or moving around the
mouse without actually clicking (assuming there are no interactive reactions cause by
the typing and no hover-reactions of traversed GUI elements). This is done do limit
state explosion.

Each capture sequence contains a (merged) chain of traversed states and transitions
of the SUT. Each transition has an atomic action as its trigger. Each state consists of a
stabilized widget tree. The model of capture sequences is a non-empty set of capture
sequences, which in turn are modeled as traversed states and actions performed.

3.2 Abstraction of Models

After capturing has been completed, abstraction of GUI Models is performed. The cap-
ture sequences lack a relationship between the sequences and their branches. Therefore,
we use the following heuristics to merge the capture sequences:

Treat equal what looks equal: Since operation is performed on stabilized widget
trees, the algorithm merges sequences so that equal looking steps (containing widgets
with same name and type) are merged into single states of the resulting state chart.

Hierarchy: To create state chart hierarchies, a state on the first level of the state
chart is created for each modal window. Each window state has a set of sub states for
different application modes. All widget trees from all capture sequences with the same
type structure (discarding all other properties, such as name) are merged into single
application modes (all on the second level of the state chart). Each application mode
state contains a set of sub states, derived from the text of the widgets in the widget
tree. So we use the similarity in widget tree structures for creation of states on second
level and the differences in widget tree properties (especially widget text) for creation
of states on third level of the state chart.

Concurrency: Orthogonality is created using a set of predefined widgets, such as
the main menu and pop-up menus. Once a menu is used in any sequence recorded, it is
considers always accessible, independent of actual access in recorded sequences. The
behavior of each such menu is modeled in its own orthogonal region in the state chart.

The first and the third heuristic here increase the possible number of variations
and permutations in later test design. In contrast to the plain playback of linear se-
quences in conventional capture&replay. This generalization might however lead to
non-executable sequences.

Each GUI-model consists of a set of widget trees, a state chart and a classification
tree created from the state chart (as described in [19]). Each widget tree is assigned to
exactly one state in the state machine.

Joint Research Workshop STV'15 & INTUITEST

86

3.3 Specification of Test Sequences

In the third phase, test sequences are specified. First, the classification tree part of the
GUI model is used to identify test sequences and—as in the ordinary classification tree
method [19]—described in a test matrix. Each sequence also represents a path through
the state chart. The state machine is used to constrain possible test sequences. The
sequences determined meet coverage criteria such as state coverage or path coverage.

Each test sequence defines a sequence of states to reach. Since the state chart has
a higher abstraction level than the captured sequences, non-caputured sequences may
occur here. The handling of infeasible paths in sequences is not yet automated and
therefore left to the tester. The required actions to traverse the states are defined in
the state chart. As such, events carry those input values (e.g. for text fields) that were
recorded in the initial capture phase. The tester can however adopt these as part of test
specification.

3.4 Test Execution

In the fourth phase, the previously specified test sequences are executed automatically.
At this stage, all given test sequences are treated sequentially. At the beginning of each
test sequence, the SUT will be started automatically. Similar to [18], it is required that
the SUT always starts into the same initial state. The tester needs to take care of this
(e.g. by resetting the SUT preferences prior test execution).

Each test step is then processed from each test sequence. First, the GUI is scanned
to identify its widget tree. The to-use widget is searched in the widget tree. The action
to be carried out by operation of the peripherals is then simulated. The tester can define
a delay time between execution steps. Otherwise all events are fired as fast as possible,
potentially leading to the SUT not receiving all events.

After all steps of a test sequence are performed, the SUT is terminated. After com-
pleting all the test sequences, this phase ends.

Simple test results can be produced here by comparing the actual with the expected
widget trees after each step. This also includes reporting whether each action could be
performed.

4 Evaluation

The developed solution has been implemented as a plug-in for TESTONA2 and cur-
rently works for all GUIs in Windows operating systems (Figure 2). To this end, several
existing works—as frameworks and libraries—have been reused.

The approach used here conforms to a general structure for GUI tests [20]: A test-
ing framework consisting of a technology-independent GUI model and the general test
sequence specification were already implemented as XML specifications.

The implementation of the developed method is currently under evaluation quantita-
tively and qualitatively for several GUI systems. The results of evaluation are intended

2 http://www.testona.net

Joint Research Workshop STV'15 & INTUITEST

87

Fig. 2. Execution of Tests

to provide indications of the practicality of the developed test design process and about
the quality of the prototype.

We have obtained some first results. In our approach widgets are described in terms
of their name and type. This choice is sufficient for inferring a good abstraction of
the model in the Windows applications tested, as for example most of the time button
names were similar to their caption. This might be due to the Windows API or sim-
ply be good design of tested applications (Windows Calculator, TESTONA tool itself).
With a growing body of applications under test, we might need to consider different
stabilization rules.

Currently, keyboard and mouse inputs by the tester are the only
Table 1 lists the four methods used in our approach with their individual strengths

and weaknesses. We will now evaluate, whether the combination of methods helps to
overcome weaknesses without sacrificing the strengths.

4.1 Capture&Replay

A general problem with capture&replay are the high maintenance costs due to low sta-
bility of captured sequences against changes. By using widget trees and by scanning the
GUI during test execution, our approach reduces the maintenance costs with increased
stability against changes of the GUI. Details on cost reduction and on how stable the
approach actually is, have not yet been provided due missing evaluation in detail.

The advantages of capture&replay are all preserved. Our combined approach also
relies on the intuitive usability. The recorded individual sequences are, however, used
to abstract a general GUI model, which allows more variation in later test specification.

4.2 Widget Trees

The stability of widget trees against changes in the application has not yet been as-
sessed. Without a large-scale evaluation, we cannot yet overcome this problem.

The advantage of widget trees, both detailed modeling of GUIs and the introduction
of hierarchies for better overview, are both kept.

4.3 State Charts

The construction of state charts is a challenging task. By introduction of heuristics
provided, this weakness is completely resolved.

The strengths of state charts are all maintained. The influence of GUI changes to
the stability of state charts have not yet been verified.

Joint Research Workshop STV'15 & INTUITEST

88

4.4 Classification Tree Method

By only including relevant parts of the state chart to the classification tree, the size of
trees is kept small.

The mentioned advantages are all preserved. The automated generation of test se-
quences is considered helpful.

5 Related Work

Bauersfeld and Vos also implement a tool for testing GUI system: GUITest [18]. Their
tool provides the following features, also present in our implementation: a) Works on
all native GUIs, which are recognized by the Windows API. b) SUT must not be instru-
mented. c) Allows the user to define their own actions. d) Generated Test sequences can
be stored and played back.

In contrast to GUITest our tool offers the following features: a) GUITest specializes
in robustness tests. That is, it searches automatically for random test sequences through
the GUI, without necessarily representing realistic or target-oriented user behavior. The
point is to find errors. Our implementation is especially useful for functional testing.
The aim here is to test if specific requirements are met and the SUT fulfills its intended
purpose. b) Compared to GUITest our implementation displays the model of GUI and
test sequences.

Memon et al. also offer an implementation—similar to this work—for model-based
GUI testing, with prototypical capture, semi-automatic modeling and automated execu-
tion [14]. While Memon et al. model the SUT with GUI forests, event-flow graphs and
integration trees, this work uses state chart, widget trees and classification trees.

We assume, that state charts are more suitable, because they are more compact due
to hierarchies and orthogonality. Test models intended for end-user (Tester) presentation
should be understandable. In this case, state charts might be better, esp. when dealing
with self-transitions, which can occur in GUIs. However, state charts are not considered
better per se.

Nguyen et al. combine state charts with the classification tree method [21]. They
choose paths on the state chart, representing abstract test sequences. For each of these
paths, they construct a classification tree. With these trees several specific test sequences
are specified for each path. Nguyen et al. see the strength of the state charts in the
specification and selection of sequences (consecutive events) and the strength of the
classification tree method in the selection of specific input parameters and a meaningful
reduction of the input parameters.

In the context of web applications, there are similar approaches [22, 20]. While this
also is a challenging field, our work focuses on native applications outside the browser.

6 Conclusion

The developed tool enables the user to comfortably create GUI models by capturing.
GUI models are then used for systematical test design in terms of the classification tree

Joint Research Workshop STV'15 & INTUITEST

89

method. Resulting test scenarios can be automatically executed on the SUT. Such sce-
narios allow to test the GUI itself or to use the GUI for black-box testing the underlying
system.

Despite the problems worked out the combination of the four methods capture&replay,
widget trees, state charts, and classification trees seem to be much-promising and suit-
able for the testing of GUI systems. Weaknesses of single methods were overcome
without accepting many sacrifice of their strengths. Many of the problems identified
will be addressed in future work.

Future work will also concentrate on a large scale evaluation and comparison with
capture&replay tools in terms of efficiency and effectiveness considering both, initial
creation and maintenance efforts.

References

1. Brad A Myers. User interface software tools. ACM Transactions on Computer-Human
Interaction (TOCHI), 2(1):64–103, 1995.

2. Frederick P Brooks. The mythical man-month, volume 1995. Addison-Wesley Reading, MA,
1975.

3. Michael Turpin. Survey of gui testing processes. 2008.
4. Atif M Memon and Mary Lou Soffa. Regression testing of GUIs. ACM SIGSOFT Software

Engineering Notes, 28(5):118–127, 2003.
5. Imran Ali Qureshi and Aamer Nadeem. Gui testing techniques: A survey. International

Journal of Future Computer and Communication, 2(2), 2013.
6. Stephan Arlt, Cristiano Bertolini, Simon Pahl, and Martin Schäf. Trends in model-based gui

testing. Advances in Computers, 86:183–222, 2012.
7. Atif M Memon. Gui testing: Pitfalls and process. Computer, 35(8):87–88, 2002.
8. Sebastian Bauersfeld, Stefan Wappler, and Joachim Wegener. A metaheuristic approach to

test sequence generation for applications with a gui. In Search Based Software Engineering,
pages 173–187. Springer, 2011.

9. David Harel. Statecharts: a visual formalism for complex systems. Science of Computer
Programming, 8(3):231–274, 1987.

10. Matthias Grochtmann and Klaus Grimm. Classification trees for partition testing. Softw.
Test., Verif. Reliab., 3(2):63–82, 1993.

11. Valéria Lelli, Arnaud Blouin, Benoit Baudry, and Fabien Coulon. On model-based testing
advanced GUIs. In Software Testing, Verification and Validation Workshops (ICSTW), 2015
IEEE Eighth International Conference on, pages 1–10. IEEE, 2015.

12. Pekka Aho, Matias Suarez, Atif Memon, and Teemu Kanstrén. Making GUI testing prac-
tical: Bridging the gaps. In Information Technology-New Generations (ITNG), 2015 12th
International Conference on, pages 439–444. IEEE, 2015.

13. Tanja EJ Vos, Peter M Kruse, Nelly Condori-Fernández, Sebastian Bauersfeld, and Joachim
Wegener. TESTAR: Tool support for test automation at the user interface level. International
Journal of Information System Modeling and Design (IJISMD), 6(3):46–83, 2015.

14. Atif M Memon, Ishan Banerjee, and Adithya Nagarajan. GUI ripping: Reverse engineer-
ing of graphical user interfaces for testing. In 2013 20th Working Conference on Reverse
Engineering (WCRE), pages 260–260. IEEE Computer Society, 2003.

15. Peter M Kruse and Magdalena Luniak. Automated test case generation using classification
trees. Software Quality Professional, 13(1):4–12, 2010.

Joint Research Workshop STV'15 & INTUITEST

90

16. Eckard Lehmann and Joachim Wegener. Test case design by means of the CTE XL. Pro-
ceedings of the 8th European International Conference on Software Testing, Analysis and
Review (EuroSTAR 2000), Kopenhagen, Denmark, December, 2000.

17. Philip A Laplante. Dictionary of Computer Science, Engineering and Technology. CRC
Press, 2000.

18. Sebastian Bauersfeld and Tanja EJ Vos. Guitest: a java library for fully automated gui robust-
ness testing. In Proceedings of the 27th IEEE/ACM International Conference on Automated
Software Engineering, pages 330–333. ACM, 2012.

19. Peter M Kruse and Joachim Wegener. Test sequence generation from classification trees. In
Proceedings of ICST 2012 Workshops (ICSTW 2012), Montreal, Canada, 2012.

20. Peter M Kruse, Jirka Nasarek, and Nelly Condori Fernandez. Systematic testing of web
applications with the classification tree method. In Proceedings of the XVII Iberoamerican
Conference on Software Engineering (CIbSE 2014), 2014.

21. Cu D Nguyen, Alessandro Marchetto, and Paolo Tonella. Combining model-based and com-
binatorial testing for effective test case generation. In Proceedings of the 2012 International
Symposium on Software Testing and Analysis, pages 100–110. ACM, 2012.

22. Domenico Amalfitano, Anna Rita Fasolino, and Porfirio Tramontana. Rich internet appli-
cation testing using execution trace data. In Software Testing, Verification, and Validation
Workshops (ICSTW), 2010 Third International Conference on, pages 274–283. IEEE, 2010.

Joint Research Workshop STV'15 & INTUITEST

91

Joint Research Workshop STV'15 & INTUITEST

92

Using property-based testing
to automate test case generation
and diagnosis in web-based
graphical user interfaces

Laura M. Castro1, Clara Benac-Earle2, Henrique Ferreiro1,
Macías López1, and Miguel Ángel Francisco3

lcastro@udc.es, cbenac@fi.upm.es, hferreiro@udc.es,
mlopez@udc.es, miguel.francisco@interoud.com

The nature of user interactions, together with the inherent state
explosion to be faced when formalising the behaviour of a GUI,
makes efficient and effective testing of graphical user interfaces
(GUIs) still very challenging nowadays. Many methods and tools
commonly used for either white-box or black-box system testing
are unsuitable in practise for different reasons, yet the final
quality of the system needs to be assessed more than ever.

In this paper, we show how we can use property-based
testing (PBT) to automate test case generation, execution and
diagnosis, when working at GUI-level, for systems in which such
GUI is a web-based GUI. By opening this possibility, we believe
that significant improvement can be brought to the quality of
software products, at the same time that the effort needed to
achieve that quality level is substantially decreased.

Introduction

A key area of software development is designing, development
and testing of human-computer interfaces. Human-software
communication takes place via such ‘user interfaces’, among
which the most common are ‘graphical user interfaces’ (GUIs).
GUIs are often the only part or aspect of a software system the
users have access to, thus the way in which they exercise the
software functionalities.

With the proliferation of web applications in the last
decade, web-based interfaces have become one of the most
popular types of GUIs. They represent a lightweight, flexible, and
maintainable way of building the client side of a system, up to

Joint Research Workshop STV'15 & INTUITEST

93

mailto:lcastro@udc.es
mailto:miguel.francisco@interoud.com
mailto:mlopez@udc.es
mailto:hferreiro@udc.es
mailto:cbenac@fi.upm.es

the challenge of continual availability of web applications [4]. In
this domain, technologies and standards such as JavaScript and
HTML5 are present as the user-interaction component in the vast
majority of web services and web applications.

Unfortunately, GUIs (of any kind) are the software
components which usually undergo the least complete and
systematic testing process [10] in a software development
project. Not only is testing, especially when manual, and thus
labour-intensive and slow, the software development phase that
suffers the most squeezing under pressure [4], the intrinsic
characteristics of GUIs add significant difficulties when trying to
apply techniques and tools which do a good job in other aspects
of software testing, such as unit testing or integration testing.
The specific challenges of GUIs testing, in close relationship with
its event-driven behaviour and its visual essence, hinder the
development and popularisation of methods and tools to assist
developers in this task. This is in contrast to the spreading of
testing techniques applied in testing other kinds of components
that we are witnessing recently, such as property-based testing
(PBT) [13]. Also, it can pay a bigger price when high availability
is expected, as is the case of web applications [5, 11, 19].

PBT has been applied to a number of open testing
challenges over the last few years [7,8,12,16,18], and has been
quite successful in increasing testing coverage, efficiency, and
overall effectiveness. Here, we make the following contributions:
– We introduce the first PBT-based testing approach for web-
based GUIs, enabling automatic test case generation, execution,
and diagnosis.
– We implement a testing library that implements this approach,
which features two complementary aspects:

• a set of general properties, applicable to common
interactions present in many web-based GUIs;

• a test model for general browsing, adaptable to be used
with different frameworks and technologies commonly used for
building web-based GUIs.
– We validate our approach and library in an industrial system, to
analyse its generalisability and possible threats to validity.

Related work

The automation of GUI testing is an open research problem. As
we have already mentioned, the nature of GUIs presents serious

Joint Research Workshop STV'15 & INTUITEST

94

challenges, such as their visual nature, or the simultaneity of the
bidirectional conversation between user and software.

There are two general approaches to finding faults in web
applications: static analysis and dynamic analysis (i.e. testing).
The first has limited potential, due to the dynamism intrinsic to
web-based GUIs (in which more frequently than not parts of the
GUI are generated on-the-fly using JavaScript and other client-
side scripting languages), while the latter face a large input
space and the requirement of simulating user interactions. In the
state of practice manual generation of inputs that leads to
displaying different pages is required [9].

The difficulties related to exercising the different parts of a
GUI during testing are augmented by the great number of
technologies used to develop them, and particularly their bond
to particular environments, operating systems, and software or
hardware platforms. Consequently, most successful attempts
usually focus on a particular choice of technologies, as is the
case of the FitTest project (which provides a solution for Java-
based desktop GUIs [1]), or HP QuickTest Professional (which
provides a VisualBasic solution for Windows systems).

In the web domain, practitioners have chosen
systematisation of GUI testing by means of testing tools such as
Selenium [3], or Sahi [2], that use direct interaction with the
browser to provide partial testing automation. Specifically, they
automate test case execution once the test case has been
defined (either by manually writing script-based scenarios, or
using a record-replay facility). However, since these automations
are constrained to test case execution, they leave test design
still mostly as an intuition-driven manual testing activity [22].
This makes it very difficult to provide any indication about testing
advance or coverage, and when bugs are found they are rather
hard to debug and fix.

Slightly more advanced tools generate tests by executing
an application on concrete input values, and generate additional
values by solving symbolic constraints derived from exercised
control-flow paths, but these have not been practical, especially
in the area of GUI-testing [9].

Last but not least, the high availability of web applications
often leads to the deployment of new GUIs for existing services
in one of these two variants: (1). in co-existence with an older
version; (2). as a full replacement. In any case, the new web-
based GUI can be developed regardless of new functionalities
being deployed together with the GUI or the new GUI version

Joint Research Workshop STV'15 & INTUITEST

95

being rolled out only for aesthetic purposes (which may involve
using a different UI framework). And, in any case, all the testing
effort invested in testing a previous version of a same-
functionality web-based GUI is not reusable for the new GUI.

The aim of this work is to develop and validate a testing
methodology (and supporting tool), that allows the
automatisation of web-based GUI testing, including test case
generation, execution, and diagnosis, that is agnostic to the UI
technology used to implement the GUI and thus allows for a
maximum degree of reuse of test efforts.

PBT and web-based GUI testing

Property-based testing (PBT) is an automatic testing strategy
that has lead to a family of powerful automatic testing tools.
These are generally tools for test-case generation and execution
based on specifications. Usually working as a library, they allow
the developer/tester to write down program specifications, using
a regular programming language, in the form of properties which
should not be violated. From those specifications, the tools
automatically generate, run, and check the results of large
numbers of random test-cases to see whether the properties fail
or not. The use of random inputs in doing so does well in
comparison with more systematic black-box testing techniques
[14], with a great gain on cost efficiency. All in all, the more
advanced PBT tools provide mechanisms to control data
distribution as a means to improve effectiveness [12].

The applicability of PBT to GUI testing has already been
explored [15]. However, this previous approach required some
initial manual exploratory exercising of the GUI by the developer
or tester, in order to generate an initial set of interaction traces.
Then, from these traces, a model was inferred and used to
subsequently produce test cases and execute them (cf. Fig. 1).

In our work, we make a different use of PBT for GUI testing,
adapted to the particularities of web-based GUIs. Namely, we
focus on two common characteristics to many web-based GUIs:
– Common patterns of interaction, such as log-in pages, or add-
element to a table-like structure (shopping cart, client list, etc.).
– Continuous browsing, in which essentially a user would expect
to continuously and seamlessly interact with the web application
without encountering any unexpected errors.

Joint Research Workshop STV'15 & INTUITEST

96

Consequently, our contributions here are twofold. To assist
web application developers and testers in designing their test
scenarios, and allow them to adopt PBT as a testing strategy, we
build a library of reusable general properties, which define
common patterns of interaction. An example of such general
properties would be the one shown in Source 1.1.

Here, element_data() represents a generic data generator
to fill in the required fields depending on the element to be
added to the current page. From such a property, a PBT tool can
instantiate the data generator many times and execute the
property body many times, automatically. Should the property
body evaluate to false any time, the PBT tool will not only inform
of the discrepancy (i.e. possible bug found that is triggered by a
certain generated input), but also shrink such input [8] in order
to find a smaller, easier to debug example that triggers the error.

The key actions used in the property body,
INTERACTION_ON_PAGE... and PAGE_CONTAINS_... , together with

Fig. 1: PBT-based interaction trace & model inference GUI test cycle.

Trace extraction subsystem

Model
inference
subsystem

Test
generation
subsystem

Trace file FSM model

Execution

Automated tests

Graphical
User

Interface

Any
error

found?

END

No

Bug fixing

START

Yes
Yes

No

Model fixing

New functionalities

Source 1.1: Generic property for adding list elements in a web-based GUI

Joint Research Workshop STV'15 & INTUITEST

97

many others relevant to web-based GUI testing, are heavily
dependent on the underlying technology and frameworks used to
build the GUI. Most of them are based on HTML5 and/or
JavaScript, but define their own building blocks, use their own
naming conventions for the elements to be found on a web page,
etc. Consequently, to enable a technology-agnostic definition of
PBT properties, we build a general browsing test model, in the
form of a general skeleton that defines the key actions, and it is
complemented with particular instantiations of specific
interactions depending on the specific web technology.

This model defines the general, technology-agnostic
property that a PBT tool will attempt to falsify during testing,
which is presented in Algorithm 1.

Implementation: the webUI-test library

Once the abstraction of the methodology is in place, the key is to
define the actions, which are also present in the patterns of
interaction used in specific properties.

To that end, we have developed the webUI-test library,
which implements both the general continuous browsing model
and the more specific interaction patterns. The general
architecture of the tool is presented in Fig. 2, where gray-
shadowed elements are the reusable components, while their
specialisations are GUI-specific.

To test a given GUI using webUI-test, a WebUIModel
specialisation must be implemented, including specific setup()
and teardown() methods, together with a WebUIactions

Joint Research Workshop STV'15 & INTUITEST

98

specialisation, including specific ways of retrieving action
elements for the GUI under test. Source 1.2 shows an example of
interaction elements implementation specific to a XPath-
compatible UI framework.

Pilot evaluation: the VoDKATV pilot study

In order to assess the validity of our approach, we apply webUI-
test to one of the GUIs in the VoDKATV system. VoDKATV is an
IPTV/OTT middleware that provides end-users access to different
services on a TV screen, tablet, smartphone, PC, etc., allowing an
advanced multi-screen media experience. Architecturally, it is a
distributed system composed by several components, which are
integrated through web services, for which different web-based
GUIs are designed, implemented and deployed.

As many other services, many VoDKATV GUIs present the
user with a log-in page in which a valid combination of username

Fig. 2: Design of the webUI-test library.

WebUImodel

+run()
+setup()
+teardown()
-prop_webui(m : webUI_model)
-setup(m : webUI_model)
-teardown(m : webUI_model)
#run(m : webUI_model)

call setup(m)
run quick-check tests
call teardown(m)

SUTmodel

+run()
+setup()
+teardown()

super.run(this)

start webdriver session
call m.setup()

call m.teardown()
stop webdriver session

call prop_webui(m)

set base URL for webdriver session

WebdrvSession

«uses»

we omit QC-related
callbacks here
for clarity

WebUIactions

+common_actions()
+specific_actions()

strategy

UIframework

+specific_actions()

Source 1.2: Implementation snippet for action detection.

Joint Research Workshop STV'15 & INTUITEST

99

and password must be provided before proceeding. Once logged
in the system, there is virtually no restrictions to the interaction
sequences that a user can perform on the web-based GUI. Thus,
Source 1.3 shows how a VoDKATV-specific WebUImodel
specialisation would include this initialisation step, where the use
of the generic WebUIactions encapsulates the use of the
corresponding VoDKATV-specific actions definition.

With this pilot, we have been able to use the webUI-test
generic model and actions, defining one specific test model and
two framework definitions to test the old version and the new
version of two functionality-equivalent GUIs that coexist
nowadays in production. This has effectively reduced not only
the amount of test source code to be written, but also has
augmented the extent and systematisation to which both GUIs
were being tested.

Discussion

One of the main strengths of our work is that, unlike many
others, we follow a purely black-box dynamic approach that does
not require any static analysis [4], nor does it require access to
the server-side in any way. As a consequence, we do not
explicitly offer coverage measures within the framework itself
[4], but coverage of the server side is still achievable using
whichever coverage tools are suitable. All in all, since our
interest is GUI testing, not system testing, server-side coverage
is not the most relevant metric, although it is the only way of
detecting server-side dead code (i.e. unreachability of server-side
functionalities from the GUI). Instead, we evaluate the impact of
our approach by analysing test effort reduction, that is to say,
reduction in test code LOC, together with percentage of reuse of
test code. These metrics are better suited than GUI-coverage
metrics precisely because of on-the-fly generation of web pages

Source 1.3: Implementation of VoDKATV custom setup/teardown.

Joint Research Workshop STV'15 & INTUITEST

100

on web-based GUIs. In fact, coverage of GUI, when it can be
partially dynamically generated is an open problem.

Even without accessing the server side, the use of PBT
instead of traditional unit testing tools, allows us to exploit,
during test generation process, the output of previous
interactions [4]. These values are collected dynamically from the
web pages that are transversed, which are accessed directly via
the browser (using WebDriver [3]), thus maintaining our
approach free of any dependencies with any web-based GUI
implementation framework [4, 19]. As for test input minimisation
upon bug detection, most research focus on value minimisation
[9], and in doing so combine symbolic and concrete execution.
Stateful PBT is capable of minimising the test sequence itself,
eliminating interactions superfluous to reaching the uncovered
failure. Also, the symbolic execution is usually another source of
binding of research tools to specific languages, frameworks
and/or systems, which we avoid. In contrast, the possibility of
writing test data generators in a programming language is much
more powerful and expressive than inference, and compensates
for the obliviousness of black-box input minimisation to the
properties of such inputs [9].

Previous work has already pointed out the interest of non-
determinism in testing web applications [4], since it manifests
important aspects of them. Alternatively, one could profile users
to narrow test scope, something that has already been done, in
combination with PBT, for non-functional testing [6].

Absence of bias and subjectivity in determining a bug is
also a strength of PBT, because of the as is of any work that uses
an automated oracle [4]. However, GUI errors such as displaying
of the wrong page, or part of the GUI being blocked or overlaid
and thus not visible or interactuable because it is blocked or
overlaid cannot be detected by oracles that only look for
execution or script errors, in contrast with those that directly
inspect web-page elements.

Ricca et al. [19] use a static UML model of a generic web
application to drive their testing; we instead use a stateful model
of web-based GUI interaction for the same purpose. We argue
that the static structure of the application itself is not that
important for GUI testing. While the first represents a white-box
approach, our black-box does not need to differentiate between
dynamic or static HTML content, since at the point we interact
with it (the browser), it makes no difference. Ricca et al. [19] use
this for optimisation purposes, eliminating from the web app

Joint Research Workshop STV'15 & INTUITEST

101

static pages not containing forms. We cannot benefit from this,
but again we do not need access to the server side internals
either, which is definitely an advantage in the area of web
systems, which tend to evolve rapidly [19] (and more so their
web-based GUIs). More so since few works consider problems
related to web site evolution and maintenance [21].

Other tools for automatic testing of dynamic webpages
systematically explore all paths to a certain bound [20].
However, they need a human tester to prepopulate user-
interaction profiles. Other approaches pre-record traces of user
interactions [17]. While eliminating the need for human
intervention, and maintaining the relevant random component
[4], the use of specific interaction profiles could be added to our
approach, as mentioned before [6].

Last but not least, considerating interactions such as
reload, going back, etc. seems very meaningful in web-based GUI
testing, and has not been done before to the best of our
knowledge. In our approach, these interactions can be treated in
the same way as any other.

Conclusions

Exploring systematisation and automation possibilities for GUI
testing is a very active and promising research area. In this work,
we show how we enable the use of PBT in the domain of web-
based GUIs in a way that enables test-effort reuse by abstracting
out the GUI-framework specific interactions and liberates from
test case design using a generic continuous browsing model.

References

1. FITTEST. http://crest.cs.ucl.ac.uk/fittest/ (2010-2013)
2. Sahi: Automation testing tool for web applications. http://sahipro.com/
(2015)
3. Selenium: Web application testing system. http://seleniumhq.org/ (2015)
4. Alshahwan, N., Harman, M.: Automated web application testing using
search based software engineering. IEEE/ACM International Conference on
Automated Software Engineering. pp. 3–12 (2011)
5. Anderson, R., Srinivasan, S.: E-satisfaction and e-loyalty: A contingency
framework. Psychology and Marketing 20(2), 123–138 (2003)
6. Arts, T.: On shrinking randomly generated load tests. ACM SIGPLAN
Workshop on Erlang. pp. 25–31. ACM (2014)

Joint Research Workshop STV'15 & INTUITEST

102

7. Arts, T., Castro, L., Hughes, J.: Testing Erlang data types with Quviq
QuickCheck. ACM SIGPLAN Workshop on Erlang. ACM Press (2008)
8. Arts, T., Hughes, J., Johansson, J.: Testing telecoms software with Quviq
QuickCheck. ACM SIGPLAN Workshop on Erlang (2006)
9. Artzi, S., Kiezun, A., Dolby, J., Tip, F., Dig, D., Paradkar, A., Ernst, M.:
Finding bugs in web applications using dynamic test generation and explicit-
state model checking. IEEE Transactions on Software Engineering 36(4),
474–494 (2010)
10. Belli, F.: Finite state testing and analysis of graphical user interfaces.
International Symposium on Software Reliability Engineering (2001)
11. Brashear, T., Kashyapb, V., Musantec, M., Donthud, N.: A profile of the
internet shopper: Evidence from six countries. Journal of Marketing Theory
and Practice 17(3), 267–282 (2009)
12. Castro, L.: Advanced management of data integrity: property-based
testing for business rules. Journal of Intelligent Information Systems 44(3),
355–380 (2015)
13. Derrick, J., Walkinshaw, N., Arts, T., Benac, C., Cesarini, F., Fredlund, L.,
Gulias, V., Hughes, J., Thompson, S.: Property-based testing - the ProTest
project. Lecture Notes in Computer Science 6286, 250–271 (2010)
14. Hamlet, D.: When only random testing will do. International Workshop
on Random Testing. pp. 1–9 (2006)
15. Iglesias, D., Castro, L.: Property-based testing for graphical user
interfaces. Journal of Computer and Information Technology 1(3), 60–71
(2011)
16. López, M., Castro, L., Cabrero, D.: Feasibility of property-based testing
for time-dependent systems. Lecture Notes in Computer Science, vol. 8112,
pp. 527–535 (2013)
17. McAllister, S., Kirda, E., Kruegel, C.: Leveraging user interactions for in-
depth testing of web applications. Recent Advances in Intrusion Detection,
Lecture Notes in Computer Science, vol. 5230, pp. 191–210 (2008)
18. Nilsson, A., Castro, L., Rivas, S., Arts, T.: Assessing the effects of
introducing a new software development process: a methodological
description. International Journal on Software Tools for Technology Transfer
17(1), 1–16 (2015)
19. Ricca, F., Tonella, P.: Analysis and testing of web applications.
International Conference on Software Engineering. pp. 25–34 (2001)
20. Tanida, H., Prasad, M., Rajan, S., Fujita, M.: Automated system testing of
dynamic web applications. Software and Data Technologies,
Communications in Computer and Information Science, vol. 303, pp. 181–
196 (2013)
21. Warren, P., Boldyreff, C., Munro, M.: The evolution of websites.
International Workshop on Program Comprehension. pp. 178–185 (1999)
22. Zhu, Z.: Study on beta testing of web application. International
Conference on Computer and Automation Engineering 1, 423–426 (2010)

Joint Research Workshop STV'15 & INTUITEST

103

Joint Research Workshop STV'15 & INTUITEST

104

	STV-2.pdf
	Introduction
	References

