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Abstract— The evolution towards autonomous driving in-
volves operating safely in open-world environments. For this,
autonomous vehicles and their Autonomous Driving System
(ADS) are designed and tested for specific, so-called Operational
Design Domains (ODDs). When moving from prototypes to
real-world mobility solutions, autonomous vehicles, however,
will face changing scenarios and operational conditions that
they must handle safely. Within this work, we propose a fuzzy-
based approach to consider changing operational conditions of
autonomous driving based on smaller ODD fragments, called
µODDs. By this, an ADS is enabled to smoothly adapt its
driving behavior for meeting safety during shifting operational
conditions. We evaluate our solution in simulated vehicle
following scenarios passing through different µODDs, modeled
by weather changes. The results show that our approach is
capable of considering operational domain changes without
endangering safety and allowing improved utility optimization.

I. INTRODUCTION

Today’s Autonomous Driving System (ADS) are designed
to operate under specific operational conditions, which are
usually aggregated and formalised as Operational Design
Domain (ODD) [1]. Such an ODD specification makes the
testing, validation, and safety assurance of an ADS tractable.
However, the dream of fully autonomous driving, i.e., the
ADS operates in an open-world context, entails handling a
very large ODD. Towards realizing fully-automated driving
(FAD), ADS developers take an incremental approach by
continuously expanding the supported ODD.

The safety assurance for such FAD systems still poses the
challenge that static safety concepts require the ADS to be
designed for worst-case situations within the scope of its
supported ODD. This likely leads to an over-conservative
system that, although safe, does not provide acceptable
utility. Nevertheless, there are promising attempts providing
more flexible and efficient solutions. Adaptive safety man-
agement [2], for instance, provides a framework to utilise
runtime knowledge, to adapt the system behavior to actual
risk being present in the current situation - rather than using
worst-case assumptions. Additionally, a divide and conquer
strategy can be adopted to partition a given ODD into smaller
µODD’s [3]. Runtime detection of the active µODD seems
an attractive solution to adaptively manage safety of the
active ODD fragments. This may offer higher degrees of
freedom to optimize specific aspects of the driving utility.
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In this paper, we propose a methodology to integrate a
fuzzy understanding of the world in the form of µODD’s. It
includes a fuzzy definition and detection of active µODD(s).
We evaluate its impact on common safety driving policies
and moreover, introduce a multi-level Fuzzy Longitudinal
Motion Controller (FLMC) as a fuzzy-based alternative. For
our investigations, we consider a highway following scenario
to demonstrate the effectiveness of the proposed approach in
a simulation environment. Our findings show a significant
improvement of the driving behavior, without endangering
safety, when considering operational conditions in an ODD
explicitly. We see the proposed methodology as an essential
building block towards a safe and life-like driving behavior
in varying real-world conditions.

In Section II we motivate this work and outline the running
example of a following vehicle use case on a highway,
besides introducing the background concepts. Section III
provides an overview of our methodology and introduces our
approach of fuzzy µODD partitioning along with the pro-
posal of a corresponding fuzzy-based controller. In Section
IV, we evaluate our approach in an automotive simulation of
the highway following use case, followed by related work in
Section V. We conclude this paper with an outlook to future
work in Section VI.

II. BACKGROUND

We provide context to our work with a motivational
example of a highway following scenario, which is further
used as running example. Moreover, we introduce concepts
of (fuzzy) surrogate safety metrics which we adopt in our
approach for determining safety in such scenarios.

A. Highway Following Use Case

For researching the influence of operational condition
changes on a driving system, we utilize a simplified example
of a following scenario on a highway throughout this paper.
In this, an autonomous ego-vehicle with speed vego follows
a lead front vehicle at speed vf and should maintain the safe
inter-vehicle distance d to avoid any rear-end collision.

Human drivers are trained to keep a safe distance from
front vehicles. For instance, German driving schools teach a
halb-tacho rule that prescribes a following distance of half of
their current speed dH/2. When operational conditions like
weather conditions change, e.g., rain or snow, human-drivers
normally slow down and increase this distance to still meet
the safety. In general, human-drivers gauge inter-vehicle dis-
tances for example in an abstracted way, like far, near, close,
or dangerously close, and differentiate raining conditions



as sprinkles, low-rain, heavy-rain or thunderstorms. Even
though humans cannot take exact measures like machines,
this provides sufficient understanding to safely drive under
varying conditions in the real world.

In our running example use case, we utilize the minimum
safe distance dmin to the front vehicle as main safety
property which must be respected by the ego-vehicle, also
when operational conditions change. The latter is modeled
by altering weather conditions during the drive, resulting
in varying required minimum distances dmin. The actual
safety of the ego-vehicle must therefore be assessed for
the individual situation. The front-vehicle is assumed to
drive respecting maximum speeds adjusted to these weather
conditions.

B. Surrogate Safety Metrics

Surrogate Safety Metrics (SSM) are used to measure the
safety level of specific situations by identifying conflicts
and not only accidents [4]. A SSM provides estimates of
collision-risks, based on the identification of initial condi-
tions leading to conflicts. This deems to be effective, since
usually conflicts precede accidents and are more frequent.
SSM can be used in various settings involving different
types of traffic participants on multiple road-types [5]. For
example, Time to Collision (TTC), is a commonly used
SSM that measures the time until a collision, if the vehicles
continue their current motion with constant speeds [6]. With
Responsibility Sensitive Safety (RSS) [7] a mathematical
model for computation of vehicle safety has been intro-
duced, including a minimum safe inter-vehicle distance dRSS

min

(cf. Equation 1). In general, RSS targets to assure safety if
certain rules of road are observed and thus, can be interpreted
as well as an SSM [8].

However, most of SSM parameter configurations depend
on the prevailing operational conditions. The SAE-J3016
[1] standard defines such a set of operating conditions as
Operational Design Domain (ODD), under which a given
driving automation system or feature thereof is specifically
designed to function. This includes, but is not limited to,
environmental, geographical, and time-of-day restrictions,
and/or the requisite presence or absence of certain traffic or
roadway characteristics [9]. For example, RSS makes certain
implicit assumptions about the ODD supported by an ADS,
in the form of RSS configuration parameters. Equation (1),
which defines the minimum RSS-safe longitudinal distance,
requires making reasonable assumptions for the parameters:
ρ, bmax, bmin, and amax.
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where,

ρ - response time of the ego-vehicle [s],
vego - longitudinal speed of the ego-vehicle [m/s],
vf - longitudinal speed of front-vehicle [m/s],

bmax - maximum possible deceleration for the front-vehicle
[m/s2],

amax - maximum acceleration for ego-vehicle during ρ in-
terval [m/s2],

bmin - minimum deceleration that ego-vehicle maintains af-
ter ρ interval [m/s2].

The maximum possible braking bmax of the vehicle is one
example of such an ODD-dependent parameter. Even within
an ODD, we could encounter several operational conditions
which require different RSS configurations. Switching pa-
rameters of an SSM, like RSS, to reflect or adapt changing
operational conditions, may cause abrupt changes in driving
behavior with wide-spread safety implications, like sudden
steep demand in the minimal required distance dRSS

min .
Fuzzy definitions for SSM allow to alleviate this problem.

Fuzzy sets generalize classical set theory and allow to model
vagueness by assigning degrees of truth. As an extension to
SSM, fuzzy SSM can be created [4][10], which we apply as
well to our approach.

III. APPROACH FOR FUZZY ODD PARTITIONING

When developing autonomous vehicles, generally, the
ADS is designed to handle a specific set of operational
conditions. This, in turn, is defined by the ODD specifica-
tion, which can for example encompass various levels of
abstractions and describe a large domain scope. For assuring
safety of the ADS, the safety engineer needs to make worst-
case assumptions applicable within the whole scope of the
target ODD. For instance, in case the target ODD also
incorporates heavy rain weather conditions, the ADS needs to
globally follow braking parameter assumptions correspond-
ing to heavy rain. This in turn leads to unreasonable minimal
distance requirements, e.g., even in absence of rain and
ideal driving conditions. Thus, similar to [3], we propose
using domain knowledge to partition an ODD into smaller
fragments, called µODD. Within such µODDs only present
operational conditions can be derived as a baseline for per-
forming adequate driving behavior adaptations. In contrast to
the pre-defined ODD at design time, the Operational Domain
(OD) reflects these actual conditions in the world from a
runtime perspective. By this, it is feasible to sense all relevant
dimensions of an OD, e.g., road-type, weather, time-of-day,
etc., to determine if an ADS is operating inside its supported
ODD.

In the following, we introduce our approach of consider-
ing varying operational conditions by defining µODDs and
utilizing this to safely optimize the driving behavior. Since
µODDs cannot be clearly separated and may overlap (e.g.,
distinction between light and medium rain), our approach
supports fuzzy logic to model these characteristics. Based
on this, we can identify the operational conditions, which
must be considered and can determine suitable safety con-
figurations. For the latter, we apply the concept of fuzzySSM
(cf. SectionII-B) to assess the safety of the ADS. Moreover,
an adaptation of the driving behavior can be enforced by
switching driving modes, which can be carried out by an
ADS Mode Manager as defined by [11]. We further evaluate
the inclusion of operational conditions, by designing an
exemplary multi-level Fuzzy Longitudinal Motion Controller



(FLMC), which exploits fuzzy knowledge about the present
operational conditions. For the scope of this paper, we
consider the highway following scenario (cf. Section II-
A) as representative example for the influence of changing
operational conditions on the longitudinal motion aspects of
an autonomous vehicle.

A. Fuzzy µODD Partitioning and Detection

Based on the ODD specification for an ADS, we propose
to design operational conditions of smaller fractions of an
ODD. For modeling this fuzzy µODD management, we
define (based on [12]).

Definition 3.1: a fuzzy set A as a pair (U,µ), where U =
{x}, x ∈ U is the universe of discourse, and µA : U → [0, 1]
is the membership function.
In line with this, based on [12], we define a

Definition 3.2: linguistic variable F as a 4-tuple:

F = ⟨X,U,G,M(X)⟩ (2)
where,
X - Term set,
U - Universe of discourse,
G - Context-free grammar used to generate elements of

X,
M(X) - mapping from X to the fuzzy sets defined over U.

It assigns a membership function µX : U → [0, 1] to
every term Xi ∈ X .

In this work, without loss of generality, we use standard
triangular (Tr) and trapezoidal (Tp) membership functions
to define fuzzy sets, cf. Appendix I.

In the first steps of our approach, we create standardized
fuzzy partitions across the multiple dimensions of a specified
ODD. For this, we consider the individual dimensions and
break them down into measurable entities which can be
sensed during operation. However, sensing capability needs
to be capable to distinguish between defined partitions.
Besides the challenge of specifying hard values for each
partition, sensing capabilities often include uncertainty of
their measurements, i.e., either epistemic, aleatoric, and/or
ontological. Hence, we apply Fuzzy Logic as method to
handle uncertain, imprecise knowledge and its powerful
framework for reasoning. To this end, we propose to model
such entities as linguistic variables, and ODD as well as
derived µODDs as composite linguistic variables. By this,
we can also adapt the membership functions of the fuzzy sets
reflecting the individual sensor uncertainties. An example of
a crisp and fuzzy representation of µODD’s with respect
to rain intensity is shown in Figure 1. For improving the
reliability of the µODD representations, their partitioning
could be based on available statistics. This specific example
involves an ODD which supports rainy weather defined by
a precipitation below a certain threshold. In this case, the
precipitation corresponds to a Rainy Weather entity which
can be measured by a respective rain-intensity sensor. An
example partition suggested by [13] based on precipitation
values could be:

1) NoRain: precipitation ∈ [0.5,1.9) mm/hr,

2) LowRain: precipitation ∈ [1.9,8.1) mm/hr,
3) HeavyRain: precipitation ∈ [8.1,34) mm/hr),
4) Thunderstorms: precipitation ∈ [34,∞)mm/hr).

d

𝑏

d

𝑏

(a)
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Fig. 1: ODD partitioning into (a) crisp µODD’s (b) fuzzy
µODD’s

For the use case of highway following (see Section II-
A), we assume the ego-vehicle is always operating in its
designated ODD. For the sake of simplicity, we consider
only the two dimensions precipitation (P) and precipitation
deposits (PD). These are both modeled as linguistic variables
in (3) and (4).

P = ⟨{None, Low,High}, UP ,MP ⟩ (3)

PD = ⟨{Dry,Wet, Puddles}, UPD,MPD⟩ (4)

For now, the ODD specification is defined as a composite
linguistic variable defined in (5). The introduced µODD
specifications are further described in Table I. These par-
titions are intended to be done by domain experts and, thus,
can be created with the knowledge of available trustworthy
sensor data as well as substantiated with robust statistics
about µODD detection performance. Thus, we assume the
context-free grammar (G) is part of the same and omit
G in linguistic variable definitions. In future, the context-
free grammar G could be derived from ODD specification
standards like [14].

O = ⟨XO, UO,MO⟩ (5)

TABLE I: µODD Fuzzy Detection Rules

XO MO

NoRain P is None ∧ PD is Dry
LowRain P is Low ∨ PD is Wet
HeavyRain P is High ∨ PD is Puddles



B. µODD-Aware Control

For investigating and exploiting the potential of the fuzzy
µODD detection, we propose a multi-level situation-aware
Fuzzy Longitudinal Motion Controller (FLMC) allowing for
µODD-specific behavior adaptations. Its operation is divided
over two layers for separating the concerns safety and utility:
Reactive and Proactive. These layers use Fuzzy SSM for
relevant conflict identification. The Reactive Layer is respon-
sible for identifying critical conflicts which might trigger
safety interventions, e.g., emergency braking (EB). On the
other hand, the Proactive Layer is responsible for identifying
utility losses and deploy relevant interventions, e.g., comfort
braking (CB), throttle (ACC), and maintain-speed (ZERO).

Within our present approach, we consider the most possi-
ble/probable µODD to be adopted. However, in general we
can specify a threshold for the degree of truth, leading to
multiple µODDs being active at the same time. The Fuzzy
SSM used in our framework are countable additive, i.e., the
fuzzy intervals pertaining to each µODD can be added using
fuzzy arithmetic. This enables the creation of a superimposed
controller response, applicable to multiple currently probable
µODDs. Handling of multiple active µODDs is part of
intended future work.

FLMC uses a fuzzy control system to regulate longitu-
dinal motion of a tuned PID-based motion controller. In
our approach, rather than directly computing dmin, we use
fuzzy inference to assign current d into the three fuzzy-
sets critically-unsafe, proactively-unsafe, or safe. The chosen
term-set merely reflects a fuzzy interpretation of safety, and
not to be confused with traditional safety notations. The
designed controller provides a longitudinal response, in the
form of a desired target ego-vehicle acceleration, based on
inferred degree of membership in these fuzzy sets. For this,
we resort to the following definition from [10] for calculating
a degree of safety (between [0,1]) with respect to an ego-
vehicle’s current inter-vehicle distance d to a lead vehicle.

Definition 3.3: A fuzzy-set A for ”unsafe situation” is
defined as follows [4][10]:

µA(d) =


1, 0 < d ≤ du

0, d > ds
d−ds

du−ds
, du < d < ds

(6)

The ds represents minimum inter-vehicle distance when
they are safe; du represents maximum inter-vehicle distance
when they are unsafe. We further denote the inter-vehicle
distance as certainly-unsafe for µA = 1, possibly-safe for
0 < µA < 1, and certainly-safe for µA = 0. In our
approach, the values for ds and du are derived from the
present µODD(s). Moreover, we consider the comfortable
braking acceleration - bcomf ∈ (−2.0, 1.5)m/s2 [15] in the
generation of the controller response. For non-fuzzy SSMs,
like RSS, this definition collapses to a crisp representation,
where du = ds = dRSS

min .
For conflict-type identification, we model the inter-vehicle

distance as a linguistic variable D, defined as:

D = ⟨{critical-unsafe, proactive-unsafe, Safe}, UD,MD⟩.
(7)

Additionally, we define a linguistic variable B which cap-
tures the vagueness associated with estimating possible max-
imum braking acceleration in a given situation:

B = ⟨{Dry,Wet, Puddles}, UB ,MB⟩ (8)

The bmax for actual µODD can be inferred by fuzzy infer-
ence on B using the following rules:

• NoRain =⇒ B is Dry,
• LowRain =⇒ B is Wet,
• HeavyRain =⇒ B is Puddles.
For the sake of simplicity, we assume that both vehicles

have similar braking capabilities, and can brake with a
maximum deceleration - bmax. The comfortable braking
acceleration (bcomf ) can be modeled as a linguistic variable,
and depends on the desired subjective comfort inputs pro-
vided by the user.

The ad is the target Ego-vehicle acceleration used to
invoke the desired controller response. It is modeled as a
fuzzy consequent AD shown in (9) and Table II.

AD = ⟨{EB,CB,ACC,ZERO}, UAD,MAD⟩. (9)

TABLE II: Desired Acceleration(ad) Membership - MAD

Xad µad

EB Tr⟨ad;−bmax,−bmax, 0⟩
CB Tr⟨ad;−bcomf , 0, 0⟩
ACC Tr⟨ad; 0, amax, amax⟩
ZERO Tr⟨ad;−0.5, 0, 0.5⟩

IV. EVALUATION

We evaluate our approach and the influence of detecting
changing operational conditions on the driving behaviour in
a simulated highway following use case. RSS can be scaled
to account for common driving behaviors, and proves as an
effective SSM. Thus, it is used to establish a driving safety
baseline in our evaluation. In detail, we analyse the impact of
changing µODDs on different ego-vehicle driving strategies,
represented by the following autonomous driving agents:
RSS-S : Static worst-case RSS parameter assumptions, i.e.,

corresponding to HeavyRain,
RSS-D : Dynamic-RSS with µODD-specific parameter

adaptations as (cf. Table IV),
FLMC : Introduced approach using fuzzy-based control

(cf. Section III-B).

A. Scenario Setup

A highway following scenario was simulated in the
Carla driving simulator [16] in the inbuilt map ”Town04”
(cf. Fig. 2). The fuzzy inference and modeling has been done
using the open-source scikit-fuzzy toolbox [17]. The RSS
behavior has been integrated using [18]. In our scenario,



the weather is dynamically updated along the route, so
that the ego-vehicle transitions through NoRain, LowRain,
HeavyRain µODDs, in that particular order. The effect of
rainy weather on the road conditions is simulated by dynam-
ically updating tire-friction with values from [19], as shown
in Table III. In the normal driving situation, the lead vehicle
accelerates to the maximum allowed speed throughout the
simulation run. A change in its behavior is further simulated
by an emergency-braking scenario.

TABLE III: Mapping of road friction co-efficient to µODD
at varying speeds

µODD 50 [kmph] 90 [kmph] 130 [kmph]

NoRain 0.85 0.8 0.75
LowRain 0.65 0.6 0.55
HeavyRain 0.55 0.3 0.2

TABLE IV: RSS Parameter assumptions

µODD amax[m/s2] bmax[m/s2] bmin[m/s2] ρ[s]

NoRain 2.0 7.5 4.0 0.2
LowRain 2.0 5.5 3.0 0.2
HeavyRain 2.0 2.0 1.0 0.2

For this, we apply the exemplary ODD partitioning as
depicted in Figure 3. For the sake of simplicity, we use a
crisp value of bcomf = −1.0m/s2 for the FLMC agent in
our evaluation, without loss of generality. The membership
functions for the linguistic variables used in our evaluation
are shown in Appendix II.

RSS driving agents were configured using parameters
specified in Table IV. RSS-S agent does not have any µODD
awareness and uses parameter configurations correspond-
ing to HeavyRain globally, irrespective of the encountered
µODD.

B. Results & Discussion

1) µODD-aware Driving: The resulting speed profiles
for RSS-S and RSS-D of the simulated highway following
mission are shown in Figure 4. As can be seen, the RSS-S
agent is unable to match speeds with the front lead vehicle
and drives at relatively slower speeds. This can be attributed
to the large dRSS

min required by worst-case configuration of
RSS throughout the mission. On the contrary, RSS-D is able
to have a good speed matching as the µODD awareness
leads to RSS parameter configurations which are sensitive
to the operational conditions. However, RSS-D is unable to
reconcile with sudden changes in dRSS

min , e.g., when transition-
ing from LowRain (yellow) to HeavyRain (orange) µODDs.
It can be shown that RSS fulfills its purpose to maintain
a safe following distance. Nevertheless, RSS configuration
parameters must be set reasonably, to improve the utility. A
transition between (µ)ODDs, consequently leads to a change
in required safety distance, and therefore in the speed of the
following ego-vehicle.
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Fig. 4: Vehicle Speed Profiles: Normal Driving Situation
(a) RSS-S, (b) RSS-D, (c) FLMC-ours

On the other hand, the proposed FLMC agent is able to
match speeds with the front vehicle to drive at comparatively
higher speeds. The FLMC agent has a fuzzy understanding
of the operational conditions, in the form of fuzzy µODDs.
This allows for a smoother transitions between encountered
operational conditions. In contrast to RSS, FLMC’s SSM
distinguishes between critical-safety and proactive-safety. To
this end, FLMCs Proactive layer pre-emptively intervenes
with utility conserving responses, thus, avoiding harsh Re-
active layer interventions. As this corresponds to a relaxation
of what is an acceptable minimal distance to the lead-car, we
evaluated the safety of the FLMC agent with respect to rear-
end collisions, by simulating emergency braking situations.

2) Emergency-braking: The resulting vehicle speed pro-
files of simulating the FLMC agent in emergency-braking
situations of the front vehicle are shown in Figure 5. At
time tfstart the lead vehicle deployed its emergency brake
(EB) and came to standstill at time tfend. The FLMC exe-
cuting ego-vehicle started braking at time tegostart and came to
complete standstill at tegoend, avoiding any rear-end collision
and maintaining a reasonable stopping distance. We have
conducted multiple simulation runs involving the lead vehicle
executing emergency braking at different points throughout
its mission, with tfstart and tegostart spanning NoRain, LowRain
and HeavyRain µODDs. Our FLMC agent was able to avoid
any collisions in all simulated runs.

These results indicate that the introduced FLMC approach
meets the required safety during unforeseen events like
emergency braking, while providing means to improve the
utility of an ADS through its fuzzy-based control. Further
work for optimizing driving utility, however, is out of scope
for this paper. Moreover, we like to state that for establishing
a complete safety argumentation, a quantitative framework
with end-to-end propagation of dynamic uncertainties from
sensors to the vehicle control needs to be set up.



Fig. 2: Carla simulation setup
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Fig. 3: ODD Partitions

Fig. 5: FLMC behavior during Lead-vehicle emergency
braking

V. RELATED WORK

During the ADS development, an ODD specification is
extensively used for gathering requirements, generating test-
scenarios, safety analysis [20][21]. The concept of an ODD
has also been used in research by [22] for fail-operational
behavior and degradation through runtime ODD-restrictions.
Unlike these approaches, we utilise an ODD specification to
generate runtime monitorable µODD fragments, and perform
targeted behavior adaptation(s) to improve driving utility and
performance. Research by [3], already proposes the general
idea to partition a large ODD into such smaller µODD’s.

Risk-aware RSS [23], extends the standard RSS [7], with
the approach to estimate risk for current driving situation.
It uses the other object driving behavior hypothesis, in the
selection of RSS parameters from available parameter-sets.
However, such parameter switch at runtime might suddenly

demand a steep minimum safe inter-vehicle distance, that
could be difficult to reconcile during ADS operation. Our
proposed partitioning approach uses the fuzzy theory allow-
ing integration of vagueness associated with defining and
detecting µODD’s. Furthermore, we build upon an ADS
Mode Manager [11] design, for integrating active-µODD
knowledge into lower-level motion planning. Thus, the ADS
becomes more sensitive towards actual risk, rather than
operating with a predefined worst-case risk of the entire
ODD.

With respect to motion planning of a vehicle, a related
motion-controller design has been introduced in [24]. It relies
on implicit assumptions of the operating conditions, in the
form of reasonable assumptions on maximum possible brak-
ing accelerations (bmax). Unlike their design, we propose a
framework to calculate fuzzy estimates of bmax, reflecting
actual conditions, rather than making implicit assumptions.
By this, we extend this longitudinal controller to design
a multi-level, situation-aware Fuzzy Longitudinal Motion
Controller.

VI. CONCLUSION & FUTURE WORK

In this paper, we proposed a fuzzy partitioning of specified
Operational Design Domains (ODDs), along with a multi-
level Fuzzy Longitudinal Motion Controller that improves
overall driving utility without compromising safety. For this,
we investigated a highway following scenario with µODD
transitions in a driving simulator, to demonstrate feasibility
of our approach and to benchmark it against the state-of-art
approach with only considering one large ODD. The simu-
lated evaluation indicates that the proposed approach leads
to a smoother transitioning between changing operational
conditions, defined by µODDs. Furthermore, our approach
provides means to actively avoid rear-end collisions, under
different operating conditions (within scope of the ODD), in
case of a sudden hard braking by the lead-vehicle.

As a part of future work, we plan to investigate driving
performance of our proposed approach in regards to driving



speeds, comfort, number of safety interventions, etc., to
benchmark the performance of our proposed approach. Fur-
ther investigation into end-to-end propagation of perception
uncertainties in µODD detection, along with their influences,
can be useful in modeling the membership functions of our
proposed linguistic variables.

APPENDIX I
FUZZY MEMBERSHIPS

Tr⟨x; a, b, c⟩ = max

(
min

(
x− a

b− a
,
c− x

c− b

)
, 0

)

Tp⟨x; a, b, c, d⟩ = max

(
min

(
x− a

b− a
, 1,

d− x

d− c

)
, 0

)
APPENDIX II

MEMBERSHIP FUNCTIONS USED IN THE EVALUATION

TABLE V

(a) MP

XP µP

None Tp⟨p; 0, 0, 10, 20⟩
Low Tp⟨p; 10, 20, 40, 50⟩
High Tp⟨p; 40, 50, 70, 80⟩

(b) MPD

XPD µPD

Dry Tp⟨pd; 0, 0, 5, 10⟩
Wet Tp⟨pd; 5, 10, 30, 40⟩
Puddles Tp⟨pd; 30, 40, 60, 70⟩

(c) MB

Xb µb

Dry Tp⟨bmax; 4, 4.5, 6.25, 7.5⟩
Wet Tp⟨bmax; 3, 3.5, 4.25, 5.5⟩
Puddles Tp⟨bmax; 1.0, 1.25, 1.75, 2⟩
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