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Figure 1: Five different cup holders, customized and simulated with our system. All five passed
the validation successfully. Finally, the holders have been printed with a 3D FDM printer.

Abstract

We present an approach for integrating interactive design and simulation for customizing
parameterized 3D models. Instead of manipulating the mesh directly, a simplified interface for
casual users allows for adapting intuitive parameters, such as handle diameter or height of our ex-
ample object – a cup holder. The transition between modeling and simulation is performed with
a volumetric subdivision representation, allowing direct adaption of the simulation mesh without
re-meshing. Our GPU-based FEM solver calculates deformation and stresses for the current pa-
rameter configuration within seconds with a pre-defined load case. If the physical constraints are
met, our system allows the user to 3D print the object. Otherwise, it provides guidance which pa-
rameters to change to optimize stability while adding as little material as possible based on a finite
differences optimization approach. The speed of our GPU-solver and the fluent transition between
design and simulation renders the system interactive, requiring no pre-computation.
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Introduction

Mass customization and 3D printing services on the internet (Shapeways [1], etc.) are a
recent trend since few years. Typically, 3D printing online shops only check whether the product
can be 3D printed based on the geometry of the model. While these services allow for geometry
variations and are performing geometry-oriented checks before printing, the following question is
largely unanswered:

How to support novice designers and laymen in designing – within some given
design space – 3D-printed objects that withstand future loads?

We developed the prototype solution CUPstomizer that answers this question by integrating
parametric modeling, simulation and optimization approaches. It enables the user to vary design
parameters and to guide him/her to choose parameters satisfying a target function of maintaining
stability while adding as little as possible material – all in an easy-to-use, interactive 3D appli-
cation. While the underlying data structures, representation schemes and algorithms are generic,
CUPstomizer illustrates the smooth transition between design and simulation using cup holders for
espresso cups as an example.

Innovative representation schemes and data structures are key to the smooth and efficient
transition from modeling to simulation — and vice versa. Whereas most CAD systems just de-
scribe the boundary surface of objects (BRep-NURBS), 3D printing (additive manufacturing) and
simulation are inherently volumetric and require representation schemes and data structures to
handle volumetric information. For multiple or graded materials, BRep-NURBS is not applicable
directly. Only cumbersome workarounds can enable these traditional CAD representation schemes
to be (mis-)used for such cases. Also, the mapping from BRep-NURBS to a model suitable for
simulation (e.g. a finite element mesh) is generally tedious and in many cases requires manual
intervention.

CUPstomizer is based on volumetric subdivision representation in the design stage, which
can be efficiently transformed into a simulation mesh. We perform physically-based simulation us-
ing a linear finite element model based on the volumetric subdivision mesh. Computational struc-
tural mechanics (CSM) simulation is directly calculated on the graphics processing unit (GPU) by
our solver, using the GPU for all mathematical operations accelerates the solve step by a factor of
approximately 10 compared to CPU-based solutions. This speed-up allows us to not only perform
stability analysis but also sensitivity analysis. In the stability analysis phase, we calculate internal
stresses and displacements from external loads, such as gravity and the weight of the cup to be car-
ried. Based on this information, we assess the object’s ability to carry the loads after being printed,
depending on the magnitude and distribution of the simulated values. Input to these calculations
are the geometry model, the material model of the printed material and the defined load case. In
the sensitivity analysis phase, we use the time gained by the GPU acceleration to run additional
simulations with varied parameters to give feedback to the user which parameter to tune in case
the chosen configuration does not yield a stable model. These suggestions can be taken-up by the
user to optimize the design and find a best possible compromise between the shape he or she likes
most and the stability requirements to be fulfilled so that the object is usable in practice. CUP-
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Stomizer unlocks the 3D printing option for the end user only if the designed object complies to
the requirements. Figure 1 shows five 3D-printed cup holders, customized with our application.

These innovative aspects of CUPstomizer: parameterized volumetric modeling, efficient
FEM simulation including suggestions for optimization and an intuitive user interface for casual
users are described and discussed in detail in the sections “Modeling”, “Simulation”, and “User
Interface” respectively.

Related Work

Geometric Representations: In the CAD domain, continuous representations such as B-
splines or NURBS patches are widespread. They allow for a definition of smooth surfaces with
a relatively low number of degrees of freedom, the so-called control points. Multiple patches are
often combined via trimming, creating complex transitions between them. In computer graphics
and animation, subdivision surfaces have been used for many years to create smooth 3D models.
Similar to NURBS and B-splines, they are also based on control points, but rely on an iterative
refinement process instead of a direct mathematical description. In 1978, Doo and Sabin [2] as
well as Catmull and Clark [3] independently presented different subdivision schemes for smooth
surfaces. Many more followed over the years. While some subdivision schemes require a con-
trol mesh with a certain topology, e.g. purely triangular meshes for the scheme presented by
Loop [4], others can operate on control meshed with arbitrary topology (such as the ones by Doo
and Sabin [2] and Catmull and Clark [3]).

However, subdivision surfaces as well as B-splines and NURBS patches only describe sur-
face models. Even implicit volumetric descriptions such as closed and manifold surfaces meshes
or BReps do not contain volumetric information per se. Similar to subdivision surfaces, volumet-
ric subdivision schemes exist. In 1999, Joy and MacCracken [5] presented a volumetric extension
to the Catmull-Clark subdivision scheme. In addition to faces, edges and vertices, volumetric
schemes also introduce cells that are subdivided iteratively, resulting in a fully volumetric mesh
with arbitrary resolution. Since Catmull-Clark solids can operate on arbitrary volumetric control
meshes, but create mainly hexahedral meshes during subdivision, other methods were presented
that operate on and create tetrahedral meshes (e.g. by Chang et al. [6] and Schaefer [7]). The
latter are especially useful when aiming for finite element simulations as presented in the next
subsection. As for those simulations, discrete volumetric meshes (in most cases purely tetrahedral
meshes) are required, volumetric subdivision algorithms provide good control over the granularity
and mesh resolution. They are often used for global or local mesh refinement and re-meshing as
presented by e.g. Burkhart et al. [8]. Altenhofen et al. [9] recently presented an approach that
uses Catmull-Clark solids for volumetric 3D modeling as well as fast and consistent tetrahedral
meshing for finite element simulations.

Although, subdivision algorithms have been mainly developed for geometric use cases,
some approaches exist to directly use the subdivision mesh for simulation. Wawrzinek et al. pre-
sented a method for subdivision surfaces [10] while Burkhart et al. show an approach for the
volumetric case [11].
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Finite Element Method FEM: The Finite Element Method (FEM) as presented by
Zienkiewicz et al. in 1997 [12] is widely used for physical and physically-based simulation, es-
pecially in the domain of structural mechanics. FEM was first developed for and used in the
engineering domain. Later, adapted methods were invented for computer graphics and animation,
e.g. by Müller et al. in 2002 [13] and Nealen et al. in 2006 [14]. Typically, finite element simula-
tions require the solving of a large sparse linear system of equations. Classical CPU-based solvers
were studied well and have been the state of the art for many years. Weber et al. [15, 16] presented
data structures and algorithms, developed for GPU architectures, for solving large sparse linear
systems of equations. By using the computational potential of modern GPUs, huge improvements
to the performance can be achieved.

The core idea of the FEM is to divide the simulation domain into discrete parts (the so-
called finite elements) and discretize the physical equations locally for every element. In a second
step, an implicit equation is solved to calculate the global result. To create a finite element mesh
from a CAD model, the continuous surface representation has to be transformed into a discrete and
fully volumetric model (the so-called meshing process). This is a complex and error-prone task,
especially for non-watertight surface models. When frequently changing the design and re-running
the simulation, the costs for meshing multiply with the number of design changes. Representing
the design model with one of the volumetric subdivision approaches described in the previous sub-
section, proves to be much more suitable for simulating changing designs as shown by Altenhofen
et al. [9].

Customization and Parametric Design: Custom adjustment of products is getting more
and more popular, especially driven by the rapid development of 3D printers promising a cost
effective fabrication of such products. The advantage compared to traditional mass fabrication is
apparent, since personalized products provide more appealing aesthetics (e.g., jewelry, household
objects), better functional adaptability (e.g., prostheses) or more comfort (e.g., shoes).

Already a few web-based applications tackle the challenge to provide the possibility to
the user to model his or her individual product. Examples are Shapeways [1] or Nervous Sys-
tem [17]. However, their customization possibilities are often restricted to very simple changes.
Compared to that, shape editing and assembly-based methods from the field of computer graph-
ics like iWire by Gal et al. [18] or the work by Bokelo et al. [19] provide broad and fast shape
editing methods yielding visually pleasing and intuitive results. However, they do not guarantee,
that the customized objects are valid for fabrication, which leads to an iterative trial and error pro-
cess between modeling and time-consuming validation. In CAD applications like AutoCAD[20]
or SolidWorks [21] it is possible to put constraints on parameters, which could restrict the user
to only generate valid models. However, to detect functional failures in a model, expert knowl-
edge is still needed, which makes it difficult to determine the right parameters for a model. This
makes the approach non-suitable for novice users. One example of combining geometric design
and physical functionality is the work done by Umetani et al. [22]. They provide a real-time in-
tegrated analysis and design system, which guides the user in his design process. However their
design domain is strictly limited to nail-jointed, plank-based furniture modeling, making it hard to
utilize their system for more general applications. Shugrina et al. [23] presented a more general
technique to maintain the validity and ensure that a parametric design customized by a non-expert
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user can be fabricated. For that they introduce their own representation format Fab Form as an
abstraction for representing customizable, manufacturable digital objects. However, it requires a
time-consuming pre-processing step to sample the design space to determine valid regions where
the user can navigate in and to cache geometry for fast look up. A similar precomputation regard-
ing geometry sampling and caching accounts for the approach by Schulz et al. [24] that allows
interactive exploration and optimization of parametric CAD data.

(a) The control mesh of the model. (b) Cup holder model attached to
the cup.

(c) 3D-printed cup holder.

Figure 2: The basic cup holder model. The holder is defined by a coarse control mesh shown as a
black grid and white vertices and the subdivided limit surface describing the actual model in light
brown. This model can then be printed in 3D.

Modeling

Modeling with Subdivision Volumes: Common tools for polygonal modeling used in de-
sign and computer animation, like SolidWorks [21], Rhino [25] or Maya [26], only support surface
modeling. Although closed surface meshes implicitly describe a volumetric object, they are not
considered as volumetric meshes. In addition to vertices, edges and faces, a volumetric mesh con-
sists of cells and has inner faces to separate these cells. A closed surface mesh could however be
considered as a volumetric mesh consisting of just one polyhedral cell.

In this work we, utilize a volumetric subdivision representation to model our objects.
Throughout the whole modeling process, we keep the volumetric mesh that can later on be used for
stability analysis simulation. To create complex models we use a block-based modeling scheme,
which allows to create a variety of different objects and designs. In order to keep the number of
degrees of freedom low for modeling, the coarse control mesh is used to define the 3D object and
a subdivision algorithm is applied to create the actual model seen in Figure 2a. This gives high
control over the shape of the object allowing for intuitive modeling while at the same time creates
visually appealing surfaces. To carve out details it is possible to define sharp features and crease
edges. To obtain more details on the topic we recommend the work by Altenhofen et al. [9].

A basic model of our example object, a cup holder, is presented to the user as a starting
point. The main shape is a C-shaped ring with a customary handle on the opposite side of the
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opening and round holes along the outside of the ring. The holder is designed to match the outer
surface of the cup to provide secure positioning. Figure 2 shows the cup holder model. Of course,
our application is not restricted to this model – it can be exchanged to represent other use cases
with different load cases, as e.g. a coat hook.

(a) The base model. (b) The parameter cup height is in-
creased.

(c) The parameter middle radius is
reduced.

Figure 3: Visualization of the effects of different parameter settings on our cup holder model. The
base model is stretched by increasing the height and thinned by reducing the radius of the middle
part.

Model parametrization: Constrained parametric design is one of the most common cus-
tomizable object representations. It allows capturing the design intent using features and con-
straints, enabling users to easily perform changes. For example, organizations often turn to para-
metric modeling when making families of products that include slight variations on a core design.

As previously described, the input to our application is a modeled volumetric control mesh
along with a subset of parameters visible to end users. Parameters are defined by the designer for
every object in advance. This guaranties that all constraints are realistic, for example no invalid
values (e.g., negative radius) can be assigned to parameters. Also 3D-printability should be consid-
ered so that the result is among others a watertight mesh with minimum feature thickness above a
threshold. Watertightness is especially covered by the nature of our modeling scheme with subdi-
vision volumes since our modeling operations always preserve a closed volume mesh. Exceptions
may arise if the model exhibits self-intersections, which the designer has to prevent.

For manipulating the geometry, parameters are mapped to constrained modeling operations.
Those modeling operations can be arbitrarily complex geometry processing operations so that the
underlying parametric model can have a few orders of magnitude more degrees of freedom than
just the few ones exposed to the user.

One parameter can consist of multiple parametric operations, which are defined as con-
strained operations with a type, a range and a default value. These constrained operations are
specified on the vertices of the control mesh. This direct influence of the parameters on the control
points enables us to achieve an interactive geometry generation rate without geometry caching. A
set of vertices can be grouped into a constraint group, which is influenced by a constraint. How-
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ever, in the design phase they should be grouped in such a way that meaningful parameters are
realized, like e.g. the radius of the upper rim of the cup holder. An example of different modeling
operations is shown in Figure 3. The type of a constrained operation is defined by a symmetry
reference object, such as a point or a plane, and a geometric operation, e.g. translation or rota-
tion. The combination of the volumetric subdivision model with parametric extensions generate
our parametric design model. Additionally, we provide a human readable text-based parameter file
to be able to store and load parameter settings. This allows importing previously modeled settings
into different customizing applications.

Simulation

In order to evaluate the validity of a model by its physical properties, we perform a finite
element simulation in our framework. While it is possible to evaluate multiple properties simul-
taneously, it can be sufficient to evaluate only the most critical ones for a given scenario. For the
example of our c-shaped cup holder, the critical physical properties are not the resulting stresses
but the maximum displacement magnitude. In other words, the cup holder will more likely bend
and release the cup than it will break. We defined a static load case, similar to the real life load
case, induced by the gravitational forces of the filled cup and the forces applied by the human
hand to the handle. We used the material parameters of polylactic acid (PLA), which is a common
material for 3D printing applications. While this was sufficient in our scenario, we designed the
simulation framework to allow for fast changes in the material parameters as well as the load cases.
The simulation itself was performed on a tetrahedral mesh with linear finite elements and a linear
stress model.

Implicit Mesh Generation: For a finite element simulation, the computational costs of
the initialization of the framework, the mesh topology and mesh-specific quantities can match
up with the costs for actually solving the given finite element system. Since the performance of
the simulation is crucial to the user experience, we implemented a direct internal update of the
tetrahedral mesh. Figure 4 shows the direct relation between the volumetric subdivision model
and the tetrahedral simulation mesh. For a new set of parameters, the new control points and
subsequently the new positions of the mesh vertices are computed. We update only those values
that are affected by the parameter changes, saving most of the computational costs for many of the
initial operations. After modifying the mesh, a new finite element simulation is performed.

GPU-based Finite Element Solver: For solving a load case in the static finite element
scenario many linear operations are required. Most notable is the solve of a sparse linear system of
equations. Since the computational costs for solving this linear system of equations account for a
huge portion of the overall costs, we utilize the speed advantages of a GPU-based implementation
as proposed by Weber et al. [15]). While there are many different approaches to solve such a
system, iterative solvers are well suited for parallelization on a GPU. Our implementation therefore
uses a GPU-based conjugated gradient solver.

While the conjugated gradient solver converges for well-behaving meshes without inverted
tetrahedra, it might fail for problematic meshes. We therefore use a direct CPU-based solver as a
fallback strategy.
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(a) Smooth limit representation of the cup
holder model.

(b) Tetrahedral mesh generated from (a).

Figure 4: Tetrahedral mesh generation from a subdivision model.

Suggestions for the user: In order to provide hints to a user on which parameter he or she
should modify, we need to specify which value should be optimized. Stability is the most obvious
criteria. Since certain parameters always have a bigger impact on stability than others, we decided
to incorporate the volume of the model and set the target function to

f (p) =
d(p)

vol(p)
(1)

where d(p) is the maximum displacement and vol(p) is the volume of the mesh for a given set of
parameters p.

In order to provide hints on the impact of the different parameters, we determine the partial
derivatives of the different parameters to the target function f . We chose to use one-sided finite
differences

∆i f (p) = f (p+hi)− f (p) (2)

instead of central finite differences, since f (x) has to be computed only once for all parameters
combined. Here, hi = ε ∗ ei is a appropriate small delta to the i-th parameter, while ei is the i-th
standard basis vector.

Evaluating all partial derivatives and the simulation results themselves requires ||p||+ 1
simulations, where ||p|| is the number of parameters.

User Interface

Interactive Customization: The user interface, which allows casual users to customize the
cup holder, consists of 2D GUI elements and a 3D view (see Fig. 5). The 2D GUI on the left side
of the application presents sliders, which are generated from a parameter file, and allow changing
the parameters of the cup holder. In addition, information such as the current weight of the holder
is shown, too. Buttons to update the parameters, to switch the visualization between a solid color
and simulation result color mapping, and to export the current holder geometry for 3D printing,
complete the left side of 2D GUI. The right side of the application contains a 2D GUI that allows
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the manipulation of the color mapping. The key components of the 2D GUI at different stages
are highlighted using a workflow-based approach. For example, the color mapping is enabled and
the parameter sliders are disabled when simulation results are shown. The 3D view shows the
cup with the holder standing on the ground. An interactive response to changes of the parameters
via the 2D GUI is achieved by caching of mathematical operands. The mathematical operands
are computed once when the initial model of the cup holder has been loaded and are then used
to evaluate the limit surface from the subdivision volume control mesh every time the parameters
change. This approach is similar to the pre-computation of the subdivision matrices as described
by Altenhofen et al. [9]. The updated design is visible in the 3D view shortly after the casual user
changed a parameter with a slider, allowing an interactive, iterative design process. Furthermore,
the 3D view supports color mapped visualization of the current FEM results. The 3D view and the
2D GUI elements support touch input, and therefore, allow a natural and fluent operation of the
front-end.

Figure 5: User Interface for casual users.

Asynchronous Communication: While the GPU solver presented in the previous sec-
tion is highly efficient and achieves sub-second simulation times, asynchronous communication
with the solver is used to reduce perceived delays even further. To achieve this goal, we im-
plemented asynchronous communication and simulation cancellation via WebSocket-based (see
IETF RFC 6455 [27]) interprocess communication (IPC). WebSockets provide a reliable, ordered,
message-based communication channel.

While the user manipulates the model’s parameters, the UI immediately messages the sim-
ulation service with the new set of parameters. If no simulation is running yet, these parameters are
applied to the tetrahedral model used for simulation and a new simulation, including calculation
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of derivatives, is triggered. If a simulation is already running, the running simulation is canceled
before retriggering the simulation. An example sequence diagram is given in Fig. 6, which shows
the ideal case where the results are available before the user actively triggers simulation, reducing
perceived latency to zero.

To support cancellation, several cancellation points were introduced into the simulation
algorithm. At these points, a cancellation condition is checked. If cancellation is requested, the
current simulation is interrupted and the cancellation is reported to the UI. Due to the synchro-
nization costs between the protocol and simulation threads, as well as the GPU, these points are
only introduced at natural synchronization points, such as between derivative calculations or every
n iterations of the linear solver.

User UI Simulation

parameters 1
simulate 1parameters 2
simulate 2parameters 3
simulate 3

canceled 1, 2

results 3

simulate display

Figure 6: Sequence diagram of an exemplary user interaction sequence including cancellation. Pa-
rameter changes immediately trigger new simulation messages, and old simulations are canceled.
In the ideal case, when the user clicks the “Simulate” button, the results are already available for
display.

Feedback for User Guidance: The 2D UI highlights the parameter with the highest impact
on the target function, once the simulation back-end messages the suggestions to the front-end. The
slider of that parameter is visually highlighted to indicate in which direction the casual user may
move the slider to get a better result. Therefore, the slider background is split by the handle. The
side pointing to the better result gets a green background and the other one a red background as
shown in Figure 7. The casual user has the possibility to change other parameters as well. Hence,
the design can be adjusted to personal preferences at all times. More experienced users can toggle
the visualization to show the simulation results color mapped from red to blue. Those users then
can directly see the critical regions and get an idea of how to improve the holder. In addition,
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the color bar at the right side of the application shows a histogram revealing the distribution of
deformation values.

Figure 7: Example for user guidance to improve the holder.

In case the deformation is below a material dependent threshold, the ‘Send to Printer’
button is enabled as shown in Figure 8b, otherwise it is disabled (see Fig. 8a). Pressing the enabled
‘Send to Printer’ exports the current cup holder model as a tessellated surface mesh that can then
be used as input for 3D printing.

(a) Disallow printing. (b) Allow printing.

Figure 8: User guidance to visualize printability check results.

Conclusion and Future Work

In this paper, we present a new approach for customizing parameterized 3D models while
at the same time ensuring their usability in the real world. We do so by integrating volumetric
subdivision modeling, constrained parametric modifications and efficient GPU-based FEM simu-
lation. We developed a comprehensive user interface for the casual user to easily customize his or
her product. Additionally to visualizing the simulation results, we calculate and provide sugges-
tions on how to improve the current parameter configuration with respect to a given target function.
We focused on fluent transitions between the single stages (modeling, simulation and adaptation),
resulting in an interactive user experience and high usability of the system. Figure 1 shows five
differently customized cup holders created with our application. Before having been printed, all
five successfully passed the validation in our FEM simulation and are able to hold a full espresso
cup.

A potential extension for the UI would be to port it to an HTML5 web application. This
would be ideal for existing online 3D printing services. The choice of WebSockets, which are also
supported by modern HTML5 browsers, as IPC channel means that only minimal changes would
be required on the simulation back-end. It could be directly used as a simulation server and even
serve multiple different client UIs.

To further increase the functionality of our presented system, it would be beneficial to pro-
vide an authoring tool for easily defining new parameters or modifying existing ones. Additionally,
new base models and load cases could be created with such a tool.
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