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Abstract
We systematically investigate the interaction between a monovacancy and
various lattice dislocations in body-centered cubic (bcc) metal tungsten
by means of atomistic simulations. Two models with a different level
of sophistication have been employed for the description of interatomic
interactions—the empirical Finnis–Sinclair potential, which is a central-force
scheme, and the bond-order potential, which is able to describe correctly
unsaturated directional covalent bonds that are crucial for the cohesion and
structure of bcc transition metals. Our simulation results show that the vacancy–
dislocation interaction depends sensitively on the separation distance and
orientation of the two defects. A comparison of the simulation results with
the predictions of elasticity theory shows excellent agreement between the two
approaches when the separation between the vacancy and the dislocation core
is above 0.5 nm. Large deviations from the elastic limit are found at close
distances, when the vacancy enters the dislocation core.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

AQ1

Many important metallurgical phenomena such as high-temperature creep, dislocation or
‘pipe’ diffusion, irradiation embrittlement and fracture are affected by the interactions
between dislocations and point defects. Creep is associated with a non-conservative climb
of dislocations by emission or absorption of vacancies. Pipe diffusion along dislocations may
accelerate the diffusion of impurities by several orders of magnitude [1] or promote nucleation
and growth of voids [2]. A supersaturation of vacancies in irradiated or heavily deformed
materials significantly alters the mobility of dislocation both at high and low temperatures [3, 4],
and can have a profound influence on fracture processes [5, 6].

A thorough understanding of all these phenomena rests ultimately on the knowledge
of the underlying atomic processes that occur within a few nanometers from the interacting
defects. Unfortunately, experimental observations of such complicated nano-scale phenomena
are difficult to perform even with modern techniques. For this reason, most analyses of the
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point defect–dislocation interactions have been done using elasticity theory [7–9]. However,
approximations have to be made for processes that are controlled by atomic mechanisms. In
particular, when the core of the dislocation is involved in the interaction process, the continuum
elasticity ceases to be applicable and a correct description of the interaction can only be obtained
using an atomistic model [10].

The amount of research on dislocation–vacancy interactions by means of atomistic
simulations carried out so far has been rather limited, especially for body-centered cubic
(bcc) metals. Several studies of vacancies interacting with edge dislocations in α-iron [11]
and molybdenum [12] were performed more than 30 years ago using simple pair potentials .
A calculation based on an approximate tight-binding scheme was also done for the 1/2〈1 1 1〉
screw and edge dislocations [13]. Most of these studies, however, concentrated on the
variability of interaction outcomes using different interatomic potentials and paid little attention
to the comparison between atomistic results and elasticity theory. Only recently, Clouet [14]
carried out a thorough analysis of atomistic and elastic contributions for the interaction between
vacancies and edge dislocations in several face-centered cubic metals, and showed that the
atomistic and linear elastic predictions agree when the cores of the two defects do not overlap.
Another very recent atomistic study of vacancy migration around a mixed edge-like dislocation
in bcc iron was presented by Lau et al [15]. The results of this study were used in a kinetic
Monte Carlo simulation of dislocation climb over extensive time and length scales [16].

A critical aspect of all atomistic simulations is their dependence on the description of
interatomic interactions. Methods based on the density functional theory (DFT) provide such
description most reliably and have been employed in many investigations of the physical and
mechanical properties of materials (for reviews, see e.g. [17–19]). However, these calculations
are limited to small block sizes and further restricted by the use of periodic boundary conditions.
Consequently, studies of large and complex systems typically require approximations and
significant simplifications when describing interatomic interactions. In large-scale atomistic
studies of metallic materials the Finnis–Sinclair (FS) potential [20] has been one of the most
broadly used methods describing the interatomic forces [21–23]. This central-force many-body
potential is able to describe well simple and noble metals, in which the bonding is almost nearly
free-electron-like. However, in transition metals such as tungsten, the bonding mediated by the
d-electrons has a covalent and non-central character, which makes the bonds dependent also
on the angles [24, 25]. The bond-order potential (BOP) is a method based on the tight-binding
approximation and therefore it is able to describe correctly the angular character of bonding
[26–28]. Despite its quantum mechanical origin, BOP is sufficiently computationally efficient
for the modeling of extended defects and due to its real space formalism it is not limited by
the periodic boundary conditions. In our study, we employ both BOP and the FS potential not
only to investigate how sensitive is the outcome of the vacancy–dislocation interactions on the
description of interatomic interactions but also to see whether it is possible to identify general
results, which are independent of the model used.

The purpose of this paper is to describe the results of a systematic atomistic computer
simulation study of the interactions between a monovacancy and four different dislocations in
bcc tungsten. The dislocations investigated are 1/2〈1 1 1〉 and 〈1 0 0〉 screw dislocations, and
1/2〈1 1 1〉{1 1 0} and 〈1 0 0〉{1 1 0} edge dislocations. The reason for choosing the 1/2〈1 1 1〉
screw dislocation is rather obvious. It has been firmly established by many experimental and
theoretical studies [9, 29–31] that the specific plastic behavior of bcc metals at low temperatures
can be attributed to a non-planar core configuration of the 1/2〈1 1 1〉 screw dislocation. As a
consequence, the 1/2〈1 1 1〉 screw has a high Peierls stress and moves by a thermally activated
formation of double kinks. It is still an open question how the interaction with a vacancy can
influence this process. In contrast, the 1/2〈1 1 1〉 edge (and mixed) dislocations possess an
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Figure 1. Schematic picture of the block used in the simulations. The dislocation is introduced
at the center of the block by displacing all atoms according to the anisotropic elastic displacement
field; the dislocation line lies parallel to the z direction. Atoms in the inactive region are kept fixed
during the simulations. The dislocation–vacancy separation distance and relative angle are labeled
r and θ , respectively.

extremely low lattice friction, and even a small attractive force, e.g. from a vacancy, may cause
the dislocation to move in its slip plane [11]. Dislocations with the 〈1 0 0〉 Burgers vector can
be produced by interactions between the 1/2〈1 1 1〉 dislocations [32–34]. They have usually
been found as parts of dislocation networks. However, long and wavy 〈1 0 0〉 dislocations have
also been found in certain single crystals deformed to stage I [35]. Although it is generally
assumed that dislocations with the 〈1 0 0〉 Burgers vectors do not contribute directly to the
plastic deformation, they are believed to play an important role in crack nucleation [36–39].

2. Method

2.1. Interatomic potentials

The atomistic simulations in this work were performed using two interatomic potentials
developed for W—the FS potential [20, 40] and the BOP [27]. The FS potentials have been
widely used to study lattice defects in metals as they are computationally efficient, but since they
are central-force schemes their ability to describe the unsaturated directional covalent bonds of
middle transition metals is limited. The BOPs are based on the tight-binding approximation and
thus provide a direct bridge between electronic structure and atomistic approaches. Atomistic
studies employing these potentials are therefore more likely to reveal correctly the structures
and properties of lattice defects that induce changes in both bond lengths and bond angles.

2.2. Simulation block

The simulation block used in our calculations is depicted schematically in figure 1 and its main
characteristics are given in table 1. The rectangular block is periodic along the z direction,
which is also the direction of the dislocation line. Therefore, the initial dislocation in our
simulations is always straight and infinite without any kinks or jogs. The periodic length of the
block in the z direction in all simulations is at least 0.9 nm in order to minimize interactions
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Table 1. Dimensions of simulation blocks (lattice parameter a = 0.316 52 nm).

Dislocation type X Y Z Number of atoms

1/2〈1 1 1〉 screw 40a 40a 4
√

3a ∼11 000

1/2〈1 1 1〉{1 1 0} edge 60a 40a 2
√

6a ∼24 000
〈1 0 0〉 screw 40a 40a 3a ∼10 000

〈1 0 0〉{1 1 0} edge 60a 40a 2
√

2a ∼12 000

between periodic images of vacancies (see below). In the x and ydirections perpendicular to
the dislocation line rigid boundary conditions are used. In this setup, the atoms in the outmost
‘inactive’ region (see figure 1) are kept fixed so that the dislocation is effectively placed in an
infinite crystal environment. The dimensions of the block in the x and ydirections are about
12 nm for the screw dislocation simulations, whereas for the edge dislocation simulations the
size along the x directions is multiplied by a factor of 1.5 since the edge cores are extended
more along their glide planes [41]. The dislocations are introduced at the center of the perfect
block by displacing the atoms according to the anisotropic elastic displacement field of a screw
or an edge dislocation in an infinite medium [42]. In order to obtain realistic core structures, the
atomic positions are then fully relaxed using a Fast Inertial Relaxation Engine (FIRE) [43].
The relaxation is considered complete when the forces on all atoms fall below 0.01 eV Å−1.
The vacancy is then introduced by removing an atom at different sites around the dislocation
and the energy is minimized for the second time.

As already noted above, due to the periodic boundary condition along the dislocation line,
the introduced vacancy also repeats infinitely in the z direction with a separation distance of
z0 (1–2 nm, see table 1). Our tests, however, show that the vacancy–vacancy interactions for
these separations are already very small and can be neglected. For instance, the binding energy
for the 1/2〈1 1 1〉 screw dislocation changes by less than 0.01 eV when the z dimension of the
block and therefore also the vacancy repeat length are doubled. Thus, the simulation blocks
used in our simulations are sufficiently large to capture the essence of the dislocation–vacancy
interactions in a reliable manner.

3. Results

3.1. Core structures

The relaxed core structures are shown in figure 2, where the atomic arrangements are shown
in the planes perpendicular to the dislocation lines. Atoms in different atomic layers are
distinguished by different colors. The 1/2〈1 1 1〉 screw dislocation is considered the most
important dislocation in bcc metals since it controls the low-temperature plastic deformation.
Crystallographically, the 〈1 1 1〉 direction is a three-fold screw axis in the bcc lattice and hence
the core structure of the screw dislocation parallel to this direction must also possess such
a symmetry and be intrinsically non-planar [9, 31]. While direct experimental observations
of the cores of screw dislocations are difficult [44, 45], the non-planar character of the core
has been found in all atomistic calculations [10, 17, 27–29, 31, 46, 47] using a broad variety of
descriptions of interatomic interactions.

In figure 2(a), the 1/2〈1 1 1〉 screw dislocations are plotted using a differential
displacement map [48]. The lengths of the arrows correspond to the displacements of two
neighboring atoms parallel to the Burgers vector. Two types of cores are obtained: the FS
potential yields a core that is rather extended and spread asymmetrically into three {1 1 0}
planes, and is not invariant with respect to the [11̄0] diad symmetry operation (see figure 2(a1));
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Figure 2. Relaxed dislocation core structures calculated using BOP and FS potentials. Circles with
different shadings correspond to atoms in adjacent layers. The differential displacement method
is used for plotting the cores of screw dislocations. For the edge dislocations, the densities of the
Burgers vectors along the glide plane are illustrated.

the BOP gives a more compact core that is invariant with respect to this symmetry operation
and spreads symmetrically (see figure 2(a2)). The two core variants are often termed as
‘degenerate’ and ‘non-degenerate’, respectively [49].

Unlike the screw, the core of 1/2〈1 1 1〉{1 1 0} edge dislocation shown in figure 2(b)
is planar. A detailed analysis of the relaxed configurations reveals that the large inelastic
displacements parallel to the Burgers vector are predominantly confined to a single {1 1 0}
atomic plane immediately above the slip plane and the Burgers vector is distributed widely
along the glide plane [50]. As a consequence, the Peierls barrier is extremely low and the
mobility of the edge dislocation is several orders of magnitude higher than the mobility of the
screw.

As mentioned above, the 〈1 0 0〉 dislocations have been found in experiments as products
of reactions between the 1/2〈1 1 1〉 dislocations. They can be of either screw or edge character.
With both BOP and FS potentials the 〈1 0 0〉 screw dislocations have similar non-planar cores
whose centers are located between two atomic columns (see figure 2(c)). The 〈1 0 0〉{1 1 0}
edge dislocations have planar core structures (see figure 2(d)), which are however much
narrower than the cores of the 1/2〈1 1 1〉 edge dislocations.

3.2. Dislocation–vacancy binding energy

Thermodynamically, the interaction between a dislocation and a vacancy is characterized by
the interaction or binding energy, Ebind, which indicates whether it is more favorable for the
vacancy to remain in the bulk or in the vicinity of the dislocation. This energy can be determined
easily from total energies of four different atomic configurations as

Ebind = (Evac,dislo − Edislo) − (Evac − Eideal), (1)

where Eideal is the total energy of the ideal block without any defect and Edislo, Evac and Evac,dislo

are the total energies of relaxed blocks containing a single dislocation, a single vacancy, and
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Table 2. Vacancy formation energies (eV).

FS BOP DFTa,b Exp.a,b

3.6 3.8 3.3–3.8 3.5–4.1

a Foiles S M 1993 Interatomic interactions for Mo and W based on the low-order moments of the
density of states Phys. Rev. B 48 4287.
b Soeerlind P, Yang L H, Moriarty J A and Wills J M 2000 First-principles formation energies of
monovacancies in bcc transition metals Phys. Rev. B 61 2579.

Figure 3. Binding energy maps showing the binding energy for the vacancy around the dislocations
from figure 2. For edge dislocations, the green lines are the contour line corresponding to zero
binding energy.

both the dislocation and the vacancy, respectively. According to this definition, the vacancy is
attracted to the dislocation when Ebind is negative.

The vacancy formation energies calculated using BOP and FS potentials are presented in
table 2. For the FS potential the vacancy formation energy is in fact a fitted quantity and thus
it agrees closely with the results of both first-principles calculations and experimental data.
The prediction of the BOP model is also good even though the vacancy formation energy is
not included in the fitting database. Nevertheless, the absolute value of the vacancy formation
energy is likely to have only a marginal influence on the dislocation–vacancy binding energy
since Ebind is a relative quantity resulting from a subtle interplay of more contributions.

The computed vacancy binding energies as a function of the vacancy position are displayed
in figure 3. From the binding energy maps we can conclude several things. First, the binding
energies for the screw dislocations are always negative, indicating that they would act as sinks
for the vacancies. The most favorable position for the vacancy is located in the core region of
the screw, where the atoms are most distorted from their equilibrium positions. The binding
of the vacancy to the core can also be interpreted as a creation of a double jog with a width of
one lattice spacing along the 〈1 1 1〉 direction [51–53].

Second, for the edge dislocations the obtained binding energies can be both positive and
negative depending on the vacancy position. The negative energies corresponding to vacancy
attraction occur predominantly in the region of compressive stress above the dislocation center.
This observation agrees with previous studies of dislocation–vacancy interactions in other bcc
metals using simple pair potentials [11, 12]. However, our calculations also show that the
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binding energies on several atomic layers below the glide plane are slightly positive. This
repulsion between the edge dislocations and the vacancy was not reported in the older studies,
but it was found in more recent simulations employing the FS potentials [14, 15].

Third, the magnitudes of the binding energies vary significantly among the investigated
dislocations. We obtained the smallest absolute values for the 1/2〈1 1 1〉 screw. This result
is not unexpected since the local atomic densities within the core are almost the same as in
the bulk and only the bond angles are distorted. In contrast, the cores of the remaining three
dislocations present much stronger disturbances to the crystal lattice in terms of both atomic
densities and bond angles, which are reflected by larger binding energies exceeding 1 eV.

Finally, some differences exist between results calculated using BOP and FS potentials.
For most dislocations studied here, BOP yields more compact core structures than the FS
potential. Since the smaller cores are likely to be associated with larger local compressive
stresses, it is understandable that BOP also yields larger binding energies due to larger release
of the elastic energy when the vacancy is absorbed. However, the overall extent and shape of
the most binding regions are generally similar with BOP and FS potentials, and follow closely
the shape and the symmetry of the dislocation cores.

4. Comparison of atomistic results with elasticity theory

According to the elasticity theory, the interaction between a dislocation and a vacancy can
be written as a sum of the first- and second-order size interactions and the inhomogeneity
interaction [7, 8, 14, 42, 54]. The first-order size interaction arises from the interaction between
the long-range stress field of the dislocation and the hydrostatic tension caused by lattice
contraction around the vacancy [55]. Its form is usually deduced using a continuum model,
where the crystalline body is replaced by an elastic medium with the dislocation simulated by
an appropriate Volterra dislocation and the point defect by an elastic inclusion. The associated
elastic energy can then be written as

E1 = −δ

∫
V

pii dV , (2)

where the integral is over the volume V , δ is the vacancy dilatation and pii is the hydrostatic
stress due to the presence of the dislocation. If we assume tungsten as an isotropic medium,
there will be no first-order size interaction between the vacancy and the screw dislocation since
pii is zero. If the dislocation is of edge type, E1 has an explicit form:

E1 = 4(1 + ν)µbδr3
0 sin θ

3(1 − ν)

1

r
, (3)

where µ, ν, b, r0, r and θ are the shear modulus, Poisson’s ratio, Burgers vector, radius of
the unrelaxed vacancy, separation distance between the vacancy and the dislocation center,
and vacancy–dislocation relative angle, respectively (see figure 1). The vacancy dilatation δ

is expressed as

δ = 3ε(1 − ν)

(1 + ν)
, (4)

where ε corresponds to the change in vacancy radius due to relaxation, i.e. ε = rrel/r0−1 where
rrel is the radius of the relaxed vacancy. The change in the vacancy radius can be either obtained
directly from atomistic simulations or estimated within the harmonic approximation [12] as

ε = 3

√
3(c44 − c12)

c11 + 2c12
+ 1 − 1. (5)
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Table 3. Elastic constants of tungsten (GPa).

C11 C12 C44 µ ν

522.4 204.4 160.6 160.0 0.28

Thus, all parameters required to compute the first-order contribution can be given within the
framework of the elasticity theory.

The second-order size interaction originates from the non-linear elastic properties of the
crystal [56] and its analytical derivation is too complicated to handle. Fortunately, since the
vacancy relaxation is very small in metals such as W and Fe, the second-order contribution is
small and can be neglected [7].

The inhomogeneity interaction arises from the differences in elastic constants (e.g. µ, B)
between the matrix and the inclusion (vacancy in our case) [57]. As the elastic constants
associated with the vacancy have to be lower than those of the matrix, the inhomogeneity
interaction is always attractive. The presence of a vacancy then leads to a release of the elastic
energy:

E3 = 1
2Vpij e

I
ij , (6)

where eI
ij is an induced strain, which is linearly related to the dislocation strain field [8, 57].

For a straight screw dislocation equation (5) is equal to

E3 = 5µb2r3
0 (1 − ν)

2π(7 − 5ν)

1

r2
, (7)

while for edge dislocations an additional dependence on angle appears as

E3 = 5µb2r3
0

2π(1 − ν)(7 − 5ν)

[
1 − 1 + 6ν − 5ν2

5
sin2 θ

]
1

r2
. (8)

The presented theoretical predictions assume perfect dislocations and isotropic elasticity. In the
case of W, the anisotropy ratio A is about 1.01, so that the use of isotropic elasticity is valid [42].
For the elastic calculations, we used the shear modulus µ and the Poisson coefficient ν (see
table 3), obtained by the Voigt average of the elastic constants corresponding to the potential
used for the atomistic calculations [42].

In figure 4, detailed comparisons between the elasticity theory predictions and the atomistic
results of both FS potential and BOP are presented for different separation distances between
the dislocations and the vacancies. The inset bar charts show the differences between the
atomic results and the elasticity predictions. Since the interactions between the vacancy and
edge dislocations depend on the relative angle θ between them (see equations (3) and (8)), we
plot here as an example only one specific direction for both edge dislocations. A complete set
of results is then shown in figure 5.

As illustrated in figure 4, the interaction energies calculated using the elasticity theory and
those from the atomistic simulations agree well with each other provided that the separation
distance between the dislocation core and the vacancy is larger than about 0.5 nm. As expected,
(see the bar chart insets), large deviations from the elasticity predictions occur when the vacancy
enters the dislocation core. The absorption of the vacancy leads to a local reconstruction of
the core that can no longer be captured by continuum models. The large values of the binding
energies within the cores indicate that all dislocations can be regarded as effective sinks for
vacancies.

For edge dislocations, the magnitude of the interaction depends not only on the separation
distance but also on the angle θ between the dislocation glide plane and the vector pointing
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(a) 1/2<111> screw (c) <100> screw

(b) 1/2<111>{110} edge (d) <100>{110} edge

Figure 4. Dependences of the binding energies on the separation distance between the vacancy
and the dislocation center. The plots show comparisons between the elasticity predictions (lines)
and the atomistic results (points) for the dislocations from figure 2; the inset bar charts display the
differences between the elasticity and atomistic results. Since for edge dislocations the interaction
depends on the relative angle, only specific directions, namely 〈2 0 1〉 for the 1/2〈1 1 1〉{1 1 0} edge
dislocation and 〈1 1 1〉 for the 〈1 0 0〉{1 1 0} edge dislocation, are plotted here.

ideal

A

B

A

B

(a) (b) (c)

Figure 5. Dependences of the binding energies on the separation distance for edge dislocations.
(a) and (c) show comparisons between the elastic range and the complete set of atomistic results for
the 1/2〈1 1 1〉{1 1 0} and the 〈1 0 0〉{1 1 0} edge dislocations, respectively. The circles mark the
most attractive sites for the vacancy located in the compressive region of the dislocation cores. The
empty and full circles in (a) correspond to the vacancy positions before and after the relaxation,
respectively. The magnitude of the corresponding vacancy-induced shifts of the 1/2〈1 1 1〉{1 1 0}
core is shown as a function of the initial vacancy position in the inset plot. The separation distance
after the relaxation was determined by analyzing the Burgers vector distributions displayed in (b).
See text for detailed discussion.
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from the dislocation center to the vacancy. Given a fixed separation distance, the minimum and
the maximum of the interaction energy can be computed using equations (3) and (8). In figure 5
both the minimum and the maximum curves of the elasticity prediction are plotted, together
with the atomistic results for all possible vacancy positions around the two edge dislocations
calculated using the FS potential. The comparisons show that almost all results from the
atomistic calculations fall in between the minimum and maximum boundaries given by the
elasticity. The points lying outside this region are again for configurations in which the vacancy
enters the dislocation core. For the 1/2〈1 1 1〉 edge dislocation, these points correspond to
vacancy positions located in the most attractive area on the plane immediately above the glide
plane (see figure 3). We observed in our simulations that for these configurations the attractive
interaction between the vacancy and the dislocation is so large that it causes the dislocation to
move towards the vacancy. Figure 5(a) therefore shows two sets of symbols—empty circles
corresponding to the initial separation distance, and full circles showing an estimated distance
between the defects after relaxation. The magnitudes of the vacancy-induced dislocation shifts
are shown in the inset of figure 5(a). The shifts were determined by analyzing and comparing
the Burgers vector distributions of the vacancy containing cores along the {1 1 0} glide plane.
As mentioned above, the Burgers vector of the 1/2〈1 1 1〉{1 1 0} edge dislocation is rather
widely spread along the slip plane, and the dislocation position can be determined from the
continuous distribution of infinitesimal dislocation Burgers vector [50, 58, 59]. Figure 5(b)
shows the Burgers vector distributions for an ideal dislocation core (top) and for relaxed cores
containing vacancies, whose positions correspond to the minimum peaks on the curves. In both
figures 5(a) and (b) we can clearly distinguish between two groups of configurations, marked
as A and B. If the initial position of the vacancy is less than 1 nm from the core center and on
the plane right above the glide plane (group A), the strong attraction pulls the dislocation closer
to the vacancy with the shift being roughly linearly proportional to the initial separation (see
the inset of figure 5(a)). As seen in figure 5(b), for all configurations in group A the vacancy
is embedded in the very central region of the dislocation core, relieving its compressive stress.
Interestingly, when the binding energies are plotted against the corrected separation distances
(full points in figure 5(a)), the results fall again within the elastic limits. If the initial position
of the vacancy is on the plane right above the glide plane but more than 1 nm from the core
center (group B), the dislocation is still attracted by the vacancy but the effect is weaker and
the dislocation shifts only by about 0.4 nm. The vacancy remains, in this case, in the border
region of the core and even the corrected binding energies still lie outside the elastic range.
Finally, when the initial separation is larger than about 2 nm, the dislocation position does
not change during relaxation. It is interesting to note that the vacancy-induced dislocation
shifts were observed by Ingle and Crocker [11] but not in other studies [12, 13, 36]. This may
be related to the use of periodic simulation blocks containing stable dipole and quadrupole
arrangements of dislocations in the latter studies rather than non-periodic blocks used here or by
Ingle and Crocker. Additional studies of vacancy migration paths and barriers, which should
provide more information about the dynamical aspects of the interactions, are currently in
progress.

5. Discussion and conclusions

The present results provide detailed information about the vacancy–dislocation interaction
energies in bcc tungsten and confirm that the vacancies are mostly attracted by the dislocations.
The strength of the interaction, however, depends sensitively on the type of the dislocation as
well as on the vacancy location. Based on large magnitudes of computed binding energies, the
〈1 0 0〉 dislocation cores can be regarded as very strong sinks for vacancies. The vacancy
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formation energies in these cores decrease to only a few tens of eV and are therefore
dramatically reduced compared with a situation when the vacancy is located in the bulk crystal.
It can be assumed that once trapped, the vacancy will stay attached to the 〈1 0 0〉 core. The
vacancy is also bound strongly to the most compressive region just above the slip plane of
the 1/2〈1 1 1〉 edge core. The attraction is so strong that it forces the dislocation to move
towards the vacancy if the mutual separation is smaller than about 2 nm. This vacancy-induced
dislocation glide is understandable, since the Peierls stress for the 1/2〈1 1 1〉 edge dislocation
is very low while the vacancy migration energy in W is about 2 eV [60]. The smallest binding
for the vacancy is found in the 1/2〈1 1 1〉 screw core. The likely reason is that this core is most
bulk-like from all investigated cases and the changes in atomic bonding are mainly associated
with variations of bond angles but not bond lengths, resulting in negligible changes of local
hydrostatic stresses.

While it is clear from the thermodynamic point of view that the vacancy favors to be
located in the vicinity of dislocation cores, the influence of segregated vacancies on dislocation
mobility is much more complicated and can lead to different outcomes. First, the vacancy can
act as a pinning site and hence hinder the dislocation glide. This scenario is most likely to
occur at low temperatures and in the case of highly mobile edge and mixed dislocations that
have extended planar cores and low Peierls stresses. The strong binding makes the vacancy–
dislocation complex stable and sessile since its glide is governed by the thermally activated
migration of the vacancy rather than applied stress. The situation can be, however, opposite
for the 1/2〈1 1 1〉 screw dislocation. The mobility of this dislocation at low temperatures
is determined by a thermally activated formation of pair of kinks that can be enhanced if a
vacancy is segregated at the dislocation core. Indeed, our preliminary calculations show that
the Peierls barrier is significantly reduced when the vacancy is located in front of the screw
dislocation. Finally, at high temperatures the non-conservative motion of dislocations occurs
via diffusion of vacancies to/from dislocation cores [15, 52, 53], a process that depends both
on the vacancy–dislocation binding and on the vacancy diffusion barriers and their variation in
the vicinity of dislocation cores. Since the processes mentioned above depend sensitively not
only on the binding of the vacancy to the dislocation core, they cannot be thoroughly analyzed
based on the results presented here. Additional calculations of vacancy migration paths and
barriers that would enable theoretical estimation of the vacancy diffusion to, from and along
dislocations, and that would help to quantify the effects of vacancies on dislocation mobilities
are currently in progress.

To summarize, the interaction between a vacancy and several dislocations in bcc tungsten
was studied by means of the elasticity theory as well as atomistic calculations using two
interatomic potentials. Four types of dislocations with the shortest Burgers vectors in the
bcc lattice were included in our investigation. The results show that the dislocation–vacancy
interactions can be well described by the linear elasticity as a free vacancy subjected to the
elastic field of a dislocation when the separation distance between the two defects is larger
than about 0.5 nm. For screw dislocations, it is accurate enough to predict the mutual elastic
interaction by means of the inhomogeneity effect only. However, this effect has a much
smaller contribution in the case of edge dislocations, for which the first-order size interaction
dominates. When the separation distance between the dislocation center and the vacancy is less
than 2–3 Burgers vectors the elasticity theory is no longer applicable and an explicit atomistic
treatment is necessary.

Our simulations show rather good agreement between the results from BOP and FS
potentials. Both potentials agree well with elasticity predictions when the separation distance
exceeds the radius of dislocation core. For the 〈1 0 0〉 dislocation cores, even the absolute
values of the binding energies obtained from the two potentials agree well. The largest
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differences are found for the 1/2〈1 1 1〉 cores. BOP predicts the cores to be more compact
and, consequently, the binding energies are about twice as large as those given by the FS
potential. In the case of the 1/2〈1 1 1〉 screw, the binding energy map of FS (cf figure 4)
follows the shape of the degenerate core that is extended on three {1 1 0} planes, while BOP
yields correctly the non-degenerate core structure with the most favorable vacancy positions
located at the core center. Since BOP is able to capture non-central bonding effects associated
with changes of not only bond lengths but also of bond angles [61, 62], BOP results are likely
to be more accurate than those obtained using the FS potential, especially for the 1/2〈1 1 1〉
dislocations.
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