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Abstract—In the coming years, the energy system will be trans-
formed from central carbon-based power plants to decentralized
renewable generation. Due to the dependency of these systems
on external influences such as the weather, forecast uncertainties
pose a problem. In this paper, we will compare different methods
that mitigate the impact of these forecast uncertainties. Our
results suggest that estimating these uncertainties and modeling
them for optimization can increase the benefit for the individual
system.

Index Terms—Stochastic Dynamic Programming, Model Pre-
dictive Control, Probabilistic PV Forecasting, Probabilistic Load
Forecasting, PV Battery Systems

I. INTRODUCTION

In order to decrease CO2 emissions and transition to a more
sustainable future in the energy sector, an increased penetration
of renewable generation into the electricity grid is necessary.
Typically, the generation profile of renewable energy sources
is dependent on external factors such as the weather, therefore,
unlike conventional carbon-based power plants, production
cannot be controlled. This introduces uncertainty into the
system.

Another problem arises as electricity generation shifts from
large centralized plants to a more decentralized system. In
Germany, over 98 % of all photovoltaic generators feed into
low voltage distribution grids [1]. With less large power plants,
the increased variability of the generation must be mitigated
by the decentralized plants. To this end, the installment of
storages is often incentivized. Optimal operation of these
systems entails maximizing both individual benefit for the
owner and minimizing negative impact on the electricity grid.
This can be achieved by using predictive control strategies.
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However, the performance of these strategies largely depends
on the accuracy of external forecasts for the generation profile
as well as for possible uncontrollable loads in the system.

A. Existing Control Approaches

Various studies have been published which present methods
of mitigating forecast uncertainties in the control of energy
systems, most of the strategies presented in the literature are
based on model predictive control (MPC). These strategies can
be categorized into three groups
• In Deterministic MPC, state feedback is obtained via

reoptimization at every timestep. Knowledge of the future
is represented by a deterministic forecast. An update
of the forecast with most recent measurements can be
performed to mitigate uncertainties. Various studies have
been published using this approach in different applica-
tions and different focuses [2]–[8].

• In Scenario-based MPC or two-stage stochastic MPC
forecast uncertainty is considered by using scenario
forecasts instead of deterministic ones. At each sam-
pling time, the current control input is determined by
minimizing the most probable costs and the recourse
costs approximated with the scenario forecast. Studies
discussing this approach can be found in [9]–[12].

• Multi-stage Stochastic MPC accounts for the fact that
future state feedback depends on the realizations of the
uncertain parameters and therefore the entire evolution of
the system up to that point. This approach is implemented
in [13]–[16] for linear systems. For nonlinear systems and
relationships between uncertain parameter and control
input dynamic programming can be used if the system
has a low dimensionality [17]–[19].

Different methods for mitigating the uncertainty of forecasts
for external influences have been studied. However, there is a
distinct scarcity of studies comparing these methods in order
to determine their suitability for certain application. In this



paper we will compare different methods of mitigating forecast
uncertainties in optimal operation. Furthermore, we will study
the impact a precise characterization of the forecast uncertainty
could have on the system performance.

II. OPTIMIZATION UNDER UNCERTAINTY

A. Plant Model

We intend to control a system of a photovoltaic (PV) power
generator combined with a storage system and an uncontrol-
lable load. We use a generic description fitting to various
applications such as PV battery systems, PV heatpump sys-
tems or photovoltaic charging of battery electric vehicles. We
assume that the controlled plant can be completely described
by a single state variable; the state of charge of the storage
system xk. A discrete time formulation with discretization
timestep ∆t and time index k is assumed. Furthermore, a
single control variable uk is used, denoting the power used
to charge and discharge the storage. A stochastic external
influence through PV production pPV

k and household load pLoad
k

on site is summarized by the variable

Rk = pPV
k − pLoad

k . (1)

Positive values for uk and Rk denote the provisioning of
energy into the common household bus i.e. discharging the
battery and PV production exceeding the household load
respectively.

The state transition of xk is given by

xk+1 = fxk (xk, uk, Rk) (2)

where the transition may only depend on the control, state, and
residual generation state variable at the respective timestep.
For simplicity, the state transition is assumed to be deter-
ministic. Depending on the control paradigm, extension to a
stochastic state transition may be possible. The allowed region
of the state variable is denoted by X

xk ∈ X ≡ {x′|xmin ≤ x′ ≤ xmax} ∀k (3)

Typically, the state of charge is allowed between 0 and 1.
However, a smaller interval is also possible to cater for
increased storage aging or storage losses in low and high state
of charge regions.

A constraint is set on the control variable as well

uk ∈ P(xk) ∀k, (4)

where the set P is not necessarily continuous.

B. Stochastic Optimization Problem

The system performance measurement J is described by
stage costs and terminal costs

J =

N−1∑
k=0

gk(xk, uk, Rk) + gN (xN , RN ) (5)

where gk(xk, uk, Rk1) denotes stage costs typically result-
ing from regulations or energy prices. The terminal costs

gN (xN , RN ) account for energy in the storage at the end of
the optimization horizon N .

Our goal is to find a set of control inputs u = [u0, ..., uN−1]
which control the system in a way that minimizes the overall
costs of operation. However, J depends on the uncertain
residual generation. This leads to a stochastic optimal control
problem which reads

min
x,u

E
R

(J(x,u,R)) (6)

subject to
xk+1 = fx(xk, uk) ∀k = 0...N − 1

xk ∈ X uk ∈ P(xk) ∀k = 0...N

x0 = xinit

where a boldface setting of a variable name denotes the
timeseries over the complete horizon. In (6) the control input
(and therefore also state) at timestep k may depend on the
realization of Ri for i ≤ k. Hence, u must be understood as a
policy which defines a decision rule for the control dependent
on x and R. However, this leads to an intractable optimization
problem in the infinite dimensional state of policies. In the
following, different methods to transform this problem into a
tractable formulation will be presented.

C. Ensemble Forecast

As discussed, R is a timeseries of an uncertain variable that
can be modeled as a random distribution. Ensemble forecasts
are used to estimate this distribution and approximate the
expectation value in problem (6).

A forecast ensemble is a set of M possible trajectories of
the residual generation each with a horizon length of N . The
member m-th at timestep k is denoted by

R̄mk . (7)

The full ensemble forecast is denoted by R̄ and the mean
forecast at timestep k with R̂k. The ensemble forecast for the
residual generation is obtained by pairwise adding the mem-
bers of individual forecast ensembles for load and photovoltaic
generation.

R̄mk = p̄mPV
PV − p̄

mLoad
Load , (8)

where p̄mPV
PV denotes the mPV-th of MPV members of the PV

ensemble and p̄mLoad
Load denotes the mLoad-th of MLoad members of

the load ensemble. This results in M = MPV ·MLoad members
for the residual generation.

1) PV Forecast Ensemble: For the PV forecast we use the
ensemble forecast from the Integrated Forecasting System of
the European Centre for Medium-Range Weather Forecasts
(ECMWF-IFS) which is upsampled to a time resolution of
15 min. We are considering the day ahead prediction of the
0:00 run of the model. PV generation is calculated using a
parametric PV simulation for a PV plant in Freiburg, Germany
with an azimut angle of 17 ° and a declination of 30 °.

Since the ECMWF ensemble p̄m,uncalib
PV is underdispersive,

we apply a variance deficit calibration to yield a forecast
ensemble with an appropriate spread. For each forecast, this



calibration is done using the forecast and measurement data
over the timespan of one month directly prior to the forecast.
The root mean squared error (RMSE) of the mean forecast
is calculated for that data. It is used to compute the variance
deficit factor

κVD
PV =

RMSEPV

ν̂PV
(9)

where ν̂PV denotes the ensemble’s standard deviation averaged
over the previous month. κVD

PV is used to yield the calibrated
ensemble

p̄mPV = p̄m,uncalib
PV + κVD

PV (p̄m,uncalib
PV − p̂PV) (10)

with the m-th forecast ensemble member p̄m,uncalib
PV before

calibration.
2) Load Forecast Ensemble: To generate a forecast for

the household load, a linear regression approach is used. To
this end our one-year data set is divided into three parts: the
training data set and validation set (making up the first half
year), and the test data set (the second half of the year), used
to evaluate the performance of the control algorithms.

Our forecast model reads

pLoad,k = ϕT
kθ + ε (11)

where ε denotes the residuals and the vector ϕk the input
features at timestep k. These features are a one-hot encoding
for the hour of the weekday, the load exactly one week prior,
and the load measurement of the last 96 timesteps prior to the
forecast. Equation (11) is used for one-step ahead predictions
generating a forecast over the full horizon iteratively.

The weights of the linear regression θ are fitted using histor-
ical data. A new forecast is generated every ∆tFC Update = 6 h.
In doing so, the data of the last 89 days prior to the initial time
of the forecast is used to perform the training to determine θ.

To obtain a measure of the forecast accuracy, the distribution
of the residuals is approximated by a Gaussian distribution
with mean 0 and standard deviation νLoad which is obtained
from training.

The RMSE is calculated in the validation data set. By
comparing it with the mean standard deviation of the residual
distribution ν̂Load, the variance deficit factor of the load

κVD
Load =

RMSELoad

ν̂Load
(12)

is obtained.
With this, a calibrated load forecast ensemble with MLoad

members is calculated after every ∆tFC Update. The recursive
expression for the calculation of one member reads

p̄mLoad,k+1 = ϕT
k+1θ +N (0, κVD

LoadνLoad) (13)

where the standard deviation of the residual distribution νLoad
is determined in the respective training period and multiplied
with the calibration factor. As discussed, the feature vector
ϕk+1 includes the immediate history of the timeseries. This
history is known up to the initial time point of the forecast.
When a forecast ensemble member is generated iteratively,
every value p̄mLoad,k is used in the input feature vector ϕk′>k.

III. SOLUTION METHODS

As discussed in Section I-A, several schemes exist to control
a system in an uncertain environment, in this section we will
present the three different solution approaches.

A. Deterministic MPC

Model predictive control (MPC) is a control paradigm which
has drawn copious attention in recent years. It is based on
solving an optimal control problem at every sampling timestep
and applying the first element of the resulting control trajectory
to the controlled system. For further details see textbooks such
as [20].

For our system, in problem (6) the mean forecast for the
residual generation R̂ is taken for the input trajectory R. The
currently measured residual generation is used as the value for
R0. Then, the resulting deterministic optimization problem is
solved using a dynamic programming approach.

B. Scenario-based MPC

A common strategy to account for uncertain forecasts is to
use two-stage stochastic MPC based on scenario forecasts. To
that end, at each sampling timestep, the current measurement
R∗ is taken as the forecast for the current timestep

Rm0 = R∗ (14)
Rmk = R̄mk ∀k ∈ {1, ..., N} (15)

resulting in a scenario tree branching into M branches within
the first timestep. Each branch consists of one ensemble
member R̄m. To get the optimal control input u0, the expected
cost is optimized.

min
u0,x1

E
m
JScen(x1, u0,R)

=
1

M

M−1∑
m=0

[g0(u0, R
m
0 ) + gN (x1,R

m)] (16)

subject to
x1 = fx(x0, u0)

where x0 denotes the initial state of charge and R the complete
forecast ensemble. Furthermore, gN (x1) are the terminal costs
that emerge from the deterministic optimization of control
given the m-th ensemble member. The costs of each branch
of the scenario tree can be determined by solving the m
independent optimization problems

gN (x0,R) = min
{uk}N−1

k=1 ,{xk}Nk=1

N−1∑
k=1

g(uk, Rk) + gN (xN )

(17)
subject to
xk+1 = fx(xk, uk) ∀k = 0...N − 1

x ∈ X ∀k = 0...N

uk ∈ P(xk) ∀k = 0...N − 1

x1 = xinit .



The optimal control problems (17) can be solved with the
same algorithm as the problem in Section III-A. The resulting
optimal control input u0 is applied to the system and the
procedure is repeated at the next timestep.

C. Dynamic Programming Algorithm for Stochastic MPC

Principally, the expected residual generation and the control
inputs at an arbitrary point in the forecast horizon can depend
on their realizations up to that point. Therefore, considering
the full forecast tree branching at every timestep can be
beneficial. This full tree can be considered using stochastic
dynamic programming (SDP): an SDP scheme is set up with
two states x and R which denote the state of charge and
the residual generation respectively. For further information
on stochastic dynamic programming, we refer the reader to
[21]. The evolution of the state of charge is governed by (2).
The residual generation evolves as

Rk+1 = ρk + σkn ≡ R̂k+1 + τ(Rk − R̂k) + σkn (18)

with the mean forecast R̂k as well as the persistency parameter
τ and the uncertainty parameters {σk}Nk=1. The second term in
(18) incorporates the assumption that the current measurement
for the residual generation is a good estimate for the close fu-
ture. The parameter τ ∈ [0, 1] determines how fast the weight
of current measurement decreases over the horizon. The last
term in (18) includes a measure for forecast uncertainty from
one timestep to the next. It is modeled as a Gaussian noise n
with standard deviation σk.

The probabilistic forecast ensemble can be used to deter-
mine the possibly time-dependent model parameter σk. The
method of how a maximum likelihood fit is used to do so, can
be found in the appendix. The resulting expression reads

σk =

√√√√ 1

M

M−1∑
m=0

(R̄mk+1 − ρmk+1)2 (19)

where ρmk+1 = R̄mk+1 + τ(ρmk − Rmk ) is defined recursively.
A time independent σ can be obtained by averaging over the
time horizon of the forecast.

To use dynamic programming, the state spaces of x and
R have to be discretized into nx and nR states respectively.
The state space discretization into XDiscr also leads to a
discretization of the control space

U(xk) ≡ P ∩ {ui = (fx)−1(xi|xk) ∀xi ∈ XDiscr} (20)

with the system model from P , X and fx(xk, uk). Limiting
the control variable to this set, asserts the state constraints.

For every timestep and discrete state a ”cost-to-go”
Jk(xk, Rk) is computed. To start, terminal costs are allocated
for the state at the end of the horizon

JN (xN , RN ) = gN (xN ). (21)

Then, iterating backwards, the cost-to-go is computed for each
point in the horizon

Jk(xk, Rk) = min
uk∈U(xk)

gk(uk, Rk) + E
Rk+1

[Jk+1(fx(xk, uk), Rk+1)]

(22)

This implies the policies

µ(xk, Rk) = argmin
uk∈U(xk)

gk(uk, Rk) + E
Rk+1

[Jk+1(fx(xk, uk), Rk+1)] .

(23)

mapping a state at timestep k to an optimal control action. The
expectation value is computed over the distribution of Rk+1

given by (18).
These policies are calculated at every update to the external

forecast after ∆tFC Update = 6 h. During operation, the optimal
control action u is determined from the respective policy at
each sampling timestep using the measured values x∗ and R∗.

IV. BENCHMARK CASE STUDY

The goal of this study is to estimate how well different
methods mitigate forecast uncertainty. To do so, a simulation
is carried out. As a benchmark sytem we consider a grid
connected PV battery system coupled via the AC household
bus. The system fulfills all assumptions made in Section II-A.
The evolution of the state of charge is governed by the battery
power uk

xk+1 = fx(xk, uk) := xk − pEff(uk) · ∆t

CBat
(24)

where CBat = 5 kWh is the effective capacity of the battery
and

pEff(uk) =

 (1− ε) (uk + pLoss(uk)) if uk < 0
(1 + ε) (uk + pLoss(uk)) if uk > 0

0 if uk = 0
(25)

is the effective charging power. The losses stem from the static
battery efficiency ε =

√
0.96 and the dynamic inverter losses

pLoss(uk) = pnom

(
pa + ua

uk
pnom

+ ra

(
uk
pnom

)2
)

(26)

where we use the typical parameters pa = 0.00387, ua =
0.0178 and ra = 0.0272. For the nominal inverter power we
use pnom = 2.5 kW. The operation region of the inverter is
given by

P = [−pnom,−0.05 pnom] ∪ {0} ∪ [0.05 pnom, pnom]. (27)

Note that when combining (25) and (27), feasibility is guar-
anteed as 0 ∈ U at all times. The state of charge is further
limited to the interval x ∈ X = [0, 1].

The power of the photovoltaic generator, the household load
and the battery is balanced via the public electricity grid. We
consider a feed-in limitation into the electric grid of 50 %
of the PV nominal power. Here we simulate a PV generator



with a nominal power of 5 kW and therefore a feed-in limit of
pLim = 2.5 kW. If the residual generation exceeds the feed-in
limit, PV power is curtailed. The stage costs are defined as the
cost for electricity supplied and a remuneration for electricity
fed into the grid

gk(uk, Rk) =

 −cs(uk +Rk) if uk +Rk < 0
−cf(uk +Rk) if 0 < uk +Rk < pLim

−cfpLim else
(28)

where cs = 28 ct/kWh and cf = 12.3 ct/kWh are the price
for electricity supply and the feed-in tariff respectively. The
terminal costs are defined using the average of both cost
coefficients

gN (xN ) = −xN
cs + cf

2
. (29)

In the cost structure defined in (28) charging the battery with
PV generation leads to cost savings by avoiding supply from
the public grid. However, if the battery is charged too early
high PV generation can no longer be stored and must be
curtailed. The goal of optimal operation is to find the best
balance between self-consumption through early charging and
postponing charging from PV in order to avoid curtailment
losses.

As a forecast for the residual generation we use a procedure
as presented in Section II-C. We have MPV = MLoad = 50
ensemble members for the PV and load forecast resulting in
2500 members of the residual generation ensemble.

A. Compared Algorithms

To benchmark these different methods, a simulation is
carried out. Four algorithms have been compared.
• Deterministic MPC (Det. MPC): No modeling of fore-

cast uncertainty as described in Section III-A.
• Scenario based MPC (Scen. MPC): A two-stage MPC

approach such as in Section III-B is implemented. Out of
the 2500 available scenarios 100 are selected.

• Multi-stage MPC using fitted σ from ensemble (SDP):
The algorithm described in III-C is used to generate
policies using a constant value for σ fitted from the
ensemble forecast for each policy generation.

• Multi-stage MPC using fitted σk from ensemble
(Time-dep SDP): The algorithm described in III-C is
used to generate policies using values for σk which vary
over the horizon.

B. Simulation Results

The methods have been compared with respect to their
curtailment losses relative to the overall PV production and
an electricity bill calculated with the cost function given in
(28). Furthermore, the self-sufficiency ΣSelf, is defined as the
fraction of overall household demand produced by PV.

From the yearlong data, a half year was used to train the
load and PV forecast algorithms. The simulations estimating
controller performance were executed on the remaining half
year. The results for the compared algorithms are summarized
in Table I. The resulting electricity bill (which corresponds to

TABLE I
PERFORMANCE OF DIFFERENT METHODS TO MITIGATE FORECAST

UNCERTAINTIES. THE SIMULATIONS ARE DONE FOR THE CALIBRATED
FORECAST ENSEMBLE (UPPER PART) AND THE UNCALIBRATED ENSEMBLE

(LOWER PART). ON AVERAGE, THE CALIBRATION INCREASED THE
STANDARD DEVIATION OF THE FORECAST ENSEMBLE BY A FACTOR OF

1.5.

Method ΣSelf Relative Electricity bill
Curtailment [Eur]

Det. MPC 43.3 % 1.92 % 135.9
Scen. MPC 45.9 % 1.26 % 125.9
SDP 50.9 % 1.82 % 112.5
Time-dep SDP 51.7 % 1.88 % 110.2

Results for uncalibrated forecast ensemble

Scen. MPC 45.3 % 1.25 % 127.5
SDP 51.5 % 2.00 % 111.4
Time-dep SDP 51.6 % 1.86 % 110.2

the optimization costs), shows that including a model of the
forecast uncertainty has led to a better controller performance.
For the scenario based approach this increase was mainly due
to avoiding curtailment losses. For the SDP approaches the
main reason was the increased self-sufficiency. This can be
explained by the difference in the modeling of the residual
generation. In the scenario-based scheduling, some scenar-
ios predicted large PV generations and therefore curtailment
losses, pushing the optimal charging power to a lower value.
These trajectories are considered in SDP as well. However,
with the forecast model (18) trajectories that drift towards the
mean forecast are weighted mode, leading to less sensitivity
for curtailment losses.

The time-dependent SDP approach performed slightly better
than the time-independent approach. This could be due to a
better modeling of the varying forecast uncertainty with the
varying PV generation due to the course of the sun.

When comparing the performance of the controller given a
calibrated and an uncalibrated ensemble, it becomes apparent
that the calibration only slightly changes the performance
of the controllers. This suggests that the studied controllers
are robust against limited errors in the estimation of forecast
uncertainties. The calibration factors were approximately 1.5
in our study. If this robustness remains for larger mismatch
of the forecasted and actual forecast uncertainty may be
investigated in further studies.

V. OUTLOOK

Four different methods of mitigating forecast uncertainty
in optimal operation have been simulated. It has been shown,
that considering forecast uncertainties can lead to better perfor-
mance of a controlled system. Furthermore, our results suggest
that a more complex model of the forecast uncertainty further
increases the performance.

However, a comprehensive study analyzing different appli-
cation cases for a larger data set must be done in order to
yield more reliable results.
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APPENDIX

In Section III-C we presented an algorithm to consider
forecast uncertainty in optimization. This scheme includes
a Markov chain model for a forecast of the residual gen-
eration in (18). Here, we will show, how the parameters
σ = [σ0, ..., σN−1] of that model can be determined from an
ensemble forecast R̄ using a maximum likelihood estimation.

When using (18), the probability for a one-step prediction
of Rk+1 given the measurement Rk at the previous timestep
k > 0 as well as the parameter σk reads

p(Rk+1|Rk, σk) =
1√

2πσ2
k

exp

(
− (Rk+1 − ρk+1)2

2σ2
k

)
(30)

with
ρk+1 = R̂k+1 + τ(Rk − R̂k) (31)

depending on the previous measurement Rk and mean forecast
R̂k.

In terms of the maximum likelihood estimation, the ensem-
ble forecast R̄ can be seen as M independent measurements

ym = Rm = [R̄m0 , ..., R̄
m
N ]T , (32)

for the residual generation R = [R0, ..., RN ].
Bayes rule is used to yield the probability of the complete

measurement ym by generalizing (30) to

p(ym|σ) ≡ p(R̄mN , R̄
m
N−1, ..., R̄

m
1 |R̄m0 , σ) (33)

=
∏N−1
k=0 p(R̄

m
k+1|R̄mk , σk). (34)

With this, we can derive the likelihood P of all M measure-
ments ym from the forecast ensemble given the parameters σ
and the initial values {R̄m0 }Mm=0

P (y|σ) =

M−1∏
m=0

p(ym|σ) (35)

with y = [y0, ..., yM−1] denoting the M individual measure-
ments. In order to determine the best fit σOpt this likelihood
is maximized

σOpt = argmax
σ

P (y|σ). (36)

We transform (36) into the minimization of the negative
logarithm of the likelihood

σOpt = arg min
σ

[− logP (y|σ)] (37)

where

F ≡− logP (y|σ)

=

[
M

2

N−1∑
k=0

ln(2πσ2
k) +

M−1∑
m=0

N−1∑
k=0

(R̄mk+1 − ρmk+1)2

2σ2
k

]
.

(38)

With this, problem (37) can be solved analytically by deriving
F with respect to σk yielding

0 =
∂F

∂σk
=
M

σk
− 1

σ3
k

M−1∑
m=0

(R̄mk+1 − ρmk+1)2. (39)

This in turn results in the analytic independent expressions for
the parameters σ in (19)


