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Abstract

This paper outlines new perspectives for data‐supported foresight by combining

participatory expert‐based futures dialogues with the power of artificial intelligence

(AI) in what we call the hybrid AI‐expert‐based foresight approach. To this end, we

present a framework of five typical steps in a fully fledged foresight process ranging

from scoping to strategizing and show how AI can be integrated into each of the

steps to enable the hybrid AI‐expert foresight approach. Building on this, we present

experiences gained from two recent research projects of TNO and Fraunhofer ISI

that deal with aspects of the hybrid AI‐expert foresight approach and give insights

into the opportunities and challenges of the new perspectives for data‐supported
foresight that this approach enables. Finally, we summarize open questions and

challenges for future research.
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1 | INTRODUCTION

Science and technology have become increasingly important in re-

search and innovation policy to address societal grand challenges.

“[Society] is facing a tremendous challenge to cope with societal

challenges such as climate change, security and the aging population.

Investing in science, applied research and innovation is essential to

come up with solutions for these challenges” (Ministry of Economic

Affairs and Climate, 2018). Not only individual nation state but also

the European Commission is putting their hopes on technological

advances to contribute to addressing these challenges: so‐called New

and Emerging Science and Technologies (NEST) provide tremendous

innovation potential. However, in this time of fast technological

change, with high uncertainty, ambiguity, and complexity, how can

we trace emerging technologies and novel ideas to promote the most

promising innovations to realize societal missions? How can we

identify frictions and make decisions regarding the complex puzzles

that societal challenges entail? These questions emphasize the con-

tinuing need for relevant and timely intelligence to support policy and

strategy development and decision‐making.

Policy makers and strategists can base these types of decisions

on foresight studies (see i.e., Coates, 1985; Cuhls, 2020; Da Costa

et al., 2008; Miller, 2018; Porter et al., 2004; Salo & Cuhls, 2003).

Technology foresight in this sense can be defined as the process

of systematically attempting to look into possible longer‐time

future developments of science, technology, economy, and society

to identify emerging technologies likely to yield the greatest

economic and societal benefits (Blind et al., 1999; Martin, 1995;
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Porter et al., 2004; Rotolo et al., 2015). In these views, technology

foresight is closely linked to policy and decision‐making processes

(Cuhls, 2020). In other words, foresight aims to systematically ex-

plore alternative futures. In doing so, it not only produces valuable

information for policy makers (“product benefit”/policy informing)

but also improves the quality of the reasoning process itself (“process

benefit”/policy facilitating) by diversifying mental models and in-

creasing the variety of perspectives considered (Chermack, 2005; Da

Costa et al., 2008).

Over time, various qualitative and quantitative foresight re-

search methodologies (see e.g., Bengisu & Nekhili, 2006; Daim &

Oliver, 2008; Dalkey & Helmer, 1963; Huang & Zhang, Guo,

et al., 2014; Martino, 2003; Porter & Detampel, 1995; Zhu &

Porter, 2002) have already been considered to address such fore-

sight questions (for an overview, see Glenn & Gordon, 2009). Al-

though both qualitative and quantitative foresight approaches have

their assets and advantages, they also have their challenges. For

example, most qualitative methods rely on expert judgments that

suffer from expert bias (Schirrmeister et al., 2020). In contrast, most

quantitative methods struggle to account for emerging topics

(Cozzens et al., 2010) and unknown and “hidden” variables (Goodwin

& Wright, 2010). Furthermore, social, psychological, and behavioral

dimensions form an integral part of technology foresight as people's

relationship to the use and the utilization of technologies is a com-

plex issue (Kaivo‐oja, 2017). The integration of quantitative and

qualitative data and methods, including participatory processes to

enable forward‐looking perspectives is, therefore, still a major en-

deavor in foresight (Cozzens et al., 2010; Kaivo‐oja, 2017; Porter
et al., 2004; Ranaei et al., 2020; Zhang et al., 2018).

Artificial intelligence (AI) is appearing as an opportunity for

foresight studies to explore new horizons, especially when con-

sidering emerging topics. AI was established as an academic dis-

cipline within computer science in the 1950s. Initially, it was defined

as the process of “making a machine behave in ways that would be

called intelligent if humans were so behaving” (McCarthy et al., 1955,

p. 1). Today, AI can be defined as the scientific discipline and tech-

nological practice that encompasses efforts ranging from building a

general‐purpose machine (broad AI) to AI systems that perform

narrow classification, prediction, and optimization tasks (narrow AI)

(Boden, 2016; Russell & Norvig, 2009). In this paper, we focus on

narrow AI. The current AI hype has been triggered mostly by the

introduction of machine learning (ML) algorithms, trained to induce

patterns from both labeled or structured data sets and unstructured

data sets (LeCun et al., 2015). The field of ML can be divided into

different subfields that are characterized by the available data.

Within supervised learning (most mature, most frequently used) an

ML algorithm is trained on input‐output pairs from a real process to

produce optimal outputs for unseen inputs. Within unsupervised

learning, only input data is given to a model but no output. The

machine is then tasked with a learning objective, for example, to find

rankings or patterns for this input. Ultimately, ML algorithms can

reveal patterns in data without being programmed with an exact set

of rules to identify these patterns (Himanen et al., 2019). As a result,

emerging topics, trends, or relations between concepts could—

possibly—be identified even before they have recognizably been

established within a certain domain or been given a name. The

continuous input of new data can make this process also more “real‐
time” than before, identifying shifts and changes in emerging pat-

terns. As such, AI presents the possibility to make predictions or

decisions more timely and responsive to changes in context than

before.

The increasing availability of data, especially new data sources

(e.g., social media data, web data, open data, etc.) on the one hand

(Von der Gracht et al., 2015) and of ML algorithms and computing

capacity on the other has the potential to change foresight as well.

Using big data and AI next to expert knowledge for foresight—

which we define as the hybrid AI‐Expert foresight approach—can

enrich understanding of the increasingly complex and fast‐
evolving science, technology, and innovation developments and

support the development of policies and strategies, which are

based on a wider range of perspectives, and more timely and re-

sponsive to changes in these areas. That is, especially when con-

sidering emerging topics and innovations, for which existing

information and statistical intelligence is scarce, AI might in-

troduce new opportunities to identify those emerging topics in

“real‐time” as it is able to reveal patterns in large data sets. While

in this paper we focus on technology foresight, the principal ap-

proach is not limited to technology; by leveraging the power of AI

and big data, a new foundation for data‐supported foresight is

created that goes beyond current practice. In this paper, we in-

troduce the hybrid AI‐expert foresight approach, explore new

perspectives the approach offers for data‐supported foresight,

showcase two case studies in which several steps of the hybrid AI‐
expert approach were implemented, and discuss some of the re-

maining possibilities and challenges for future research.

This paper is structured as follows. In Section 2, we discuss the

need for integrating new perspectives on data‐supported foresight in

foresight decision‐making processes. We argue that the success of

such a new perspective on data‐supported foresight depends on

delivering results that provide useful, reliable, trustworthy, and

transparent information. Section 3 then introduces the hybrid AI‐
expert foresight approach by discussing a new perspective on data‐
supported foresight via a framework. This framework shows the

different steps of a fully fledged foresight process, and how data

retrieval and text mining (i.e., AI methodologies) can go hand‐in‐hand
with expert involvement to identify science, technology, and in-

novation (STI) trends, assess their potential impact, and design ac-

tionable strategies. We further discuss how the foundation of the

hybrid AI‐expert foresight approach is formed by the knowledge

graph—a representation of an ontology that defines the relevant

concepts within a given domain and visualizes the strength of the

relationships between those concepts. Section 4 presents the ex-

periences gained from two recent research projects that deal with

aspects of the AI‐expert foresight approach presented in Section 3.

These projects give insights into the opportunities and challenges of

the approach; (1) TNO's Innovation Outlook project and (2) The
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Foresight Fraunhofer project. Finally, Section 5 concludes by sum-

marizing open questions and challenges for future research.

2 | NEW PERSPECTIVES ON
DATA‐SUPPORTED FORESIGHT—WHY
IT IS NEEDED AND WHAT ARE THE
CHALLENGES

To optimally benefit from the disruptive potential of emerging

technologies to address societal challenges, like quantum technolo-

gies, VR/AR, hydrogen technology or solar power, smart and

evidence‐based decision making is required. This is important for

industry and governments to better map, understand, and manage

uncertainty and complexity about (disruptive) emerging technologies

and innovations and the future goals set by transformative innova-

tion policies. Policy makers and strategists can base these types of

decisions on technology foresight studies (see i.e., Coates, 1985;

Cuhls, 2020; Da Costa et al., 2008; Miller, 2018; Porter et al., 2004;

Salo & Cuhls, 2003).

Technology foresight has always heavily relied on data analyses

as important inputs into collective futures dialogues. These data

analyses are largely operating on structured data sources, such as

patents and publications (see e.g., Abbas et al., 2014; Daim

et al., 2006; Glänzel et al., 2004; Huang et al., 2014; Huang &

Chang, 2014; Milanez et al., 2014; Small et al., 2017; Zhang

et al., 2018). In addition, these data analyses have relied upon the

mining of structured, clearly defined databases for environmental

scanning, weak signal scanning, or the extrapolation of time‐series to
forecast technology trajectories (see e.g., Bengisu & Nekhili, 2006;

Krigsholm & Riekkinen, 2019; Martino, 2003; Small et al., 2014).

With the rapid advancement of algorithms and computing ca-

pacity, these approaches are also now becoming ever more sophis-

ticated (Cozzens et al., 2010; Martino, 2003; Mühlroth &

Grottke, 2018; Von der Gracht et al., 2015). Since the beginning of

‘00’s, for instance, researchers have explored and applied new ap-

proaches to incorporate additional data sources in foresight pro-

cesses. Online data sources like social media, research articles, news

articles, or project or grant proposals have become much easier to

access and offer a variety of new perspectives on innovation and

society (i.e., Lee & Park, 2018; Zhang et al., 2018; Zhu &

Porter, 2002). This has led to an emerging stream of research in so‐
called foresight support systems, wherein ICT systems support ex-

perts and stakeholders over an entire foresight process to support

decision making toward complex futures (Von der Gracht

et al., 2015).

By adding the possibility to analyze also unstructured data

without a predefined search realm, however, the advancements in

big data and AI create unprecedented opportunities to develop data‐
supported and meaningful insights in future technology and in-

novation trends and their potential societal impact. That is, due to

the rapid development of computing capacity, algorithms to analyze

patterns in unstructured data sources—such as natural language

processing (NLP), topic‐modeling such as latent Dirichlet allocation

(LDA), and deep learning methods based on artificial neural networks

—are increasingly available (Daas & van der Doef, 2020; LeCun

et al., 2015; Mühlroth & Grottke, 2020; Porter, 2019). Recently, a

number of proposals have been made on how to mobilize this po-

tential in foresight, especially for identifying early signals of emer-

ging changes (e.g., Krigsholm & Riekkinen, 2019; Lee & Park, 2018;

Mühlroth & Grottke, 2018; 2020). Insights from these new data

sources can, potentially, show new perspectives on data‐supported
foresight for experts, policy makers, and strategists and their re-

spective decision‐making processes.

We argue, however, that automatized AI‐based foresight ap-

proaches on their own are not sufficient to support high‐quality
foresight processes. Rather what is needed are hybrid approaches

with carefully designed interfaces between human knowledge and

AI‐supported analyses. There are three core reasons for this argu-

ment, which we will discuss next.

First, contrary to other AI approaches that use entity recognition

and existing ontologies/knowledge graphs1, foresight usually deals

with novel phenomena; that is, new technologies or concepts, or new

fields of application of existing concepts. For AI technologies, such as

NLP, this is a specific challenge of doing data‐supported foresight as

the terminology of some of the trends of interest does not yet exist

or the meaning of existing terms in the area of interest changes over

time. While AI technologies are already applied in clearly defined

areas with well‐defined entities, recourse to these concepts in the

field of foresight is only of limited help since path dependencies

resulting from a lock‐in into “past knowledge” must be avoided

(Cozzens et al., 2010). Accordingly, most quantitative analyses of

emerging technologies are retrospective analyses of pre‐determined

areas rather than methodological studies designed to identify

emerging technologies. As such, the identification of emerging topics

remains a challenge to the field of foresight (Braaksma et al., 2020;

Cozzens et al., 2010; Goodwin & Wright, 2010; Mühlroth &

Grottke, 2020).

Second, as indicated above, foresight also pursues a completely

different goal. As the evolution of complex social systems cannot be

predicted due to inherent nonlinear feedback loops, foresight fo-

cuses on making this “ontological uncertainty” (Debyshire, 2019)

manageable. This is done by supporting actors to think through dif-

ferent development paths (i.e., alternative futures) or a wide range of

emerging seeds of change hypotheses (Warnke & Schirrmeister,

2016) and consider diverse system views (Floyd, 2008). Through

widening and diversifying mental models, reasoning processes be-

come more socially robust and decisions less prone to “folly”

(Chermack, 2005). Next to outcomes in the form of possible future

pathways or robust strategic options, this “process benefit” in the

form of diversified mental models is highly valuable both for in-

dividual participants and organizations as it enables them to observe

their environment more openly (Schoemaker, 2018). Learning to

draw more robust conclusions through the active participation of

individual participants and organizations in such processes is there-

fore an essential contribution of foresight processes.
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Finally, current AI‐enabled systems produce results that are

often hard to understand by users and, as such, hard to assess for

their usefulness, reliability, trustworthiness, and transparency

(Braaksma et al., 2020). This is further complicated by the high

prevalence of bias in the field of AI as AI systems are typically

trained on human‐selected and human‐labeled data (Dignum,

2019). The human design of AI systems and the underlying data-

bases can therefore significantly influence (i.e., supporting or

hindering) the insights obtained for decision making (Calvo

et al., 2019; Floridi et al., 2018), which is why AI systems should

not necessarily be seen as neutral intermediaries (Dignum, 2019;

Floridi et al., 2018). This thus warrants a deeper consideration of

psychological biases and heuristics in the context of AI and fore-

sight and scenario processes (Schirrmeister et al., 2020; Tversky &

Kahneman, 1974).

For these three reasons, we argue that an approach is required

that includes both the human (expert) users and AI methodologies

when developing a new perspective on data‐supported foresight. At

present, however, there are no AI approaches that complement the

entire foresight process or that provide a basis for the optimal in-

teraction of experts and AI‐based methodologies. We fill the gap by

introducing the hybrid data‐supported foresight approach in which AI

technologies and domain experts2 meet.

3 | COMBINING EXPERT ‐BASED
FORESIGHT WITH AI

To combine participatory expert‐based foresight with AI, we outline

the hybrid AI‐expert foresight framework (see Figure 1) that illus-

trates (1) the steps of a typical fully fledged foresight process and (2)

where the integration of both AI and expert‐based knowledge can

support and add value to the different steps of that process to

provide new perspectives for data‐supported foresights. We will

elaborate on these steps next.

3.1 | The hybrid AI‐expert foresight framework:
Five steps

To capture indications of possible future pathways for new and

emerging science and technologies, we distinguish five steps in

the foresight process (see Figure 1). In those steps, expert‐based
approaches are then combined with state‐of‐the‐art AI methods

to provide new data‐supported foresight insights. The framework

follows the order of scoping and scanning, identification of

trends, identification of related impact, and translation of these

new insights into a strategy or a strategic perspective. Foresight

studies do not necessarily capture the whole framework; they

can also focus on one or some parts of the framework.

3.1.1 | Scoping

Scoping is an important first step in the foresight process; it sets the

direction for each step afterward. It includes the identification of

the research questions, target audience, methodology, and criteria

for the selection of data sources (such as news articles, patents,

social media, or other), relevant (expert) stakeholders, and the rea-

soning for their involvement. After the scoping phase, one has de-

fined a clear objective and conceptual model, which defines the

search boundaries in the steps thereafter.

F IGURE 1 Foresight framework and the integration of big data and AI with experts. AI, artificial intelligence
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When we combine the scoping step with AI methodologies, the

clearly formulated objective, conceptual model, and search bound-

aries form the input for the construction of a knowledge graph

(Ehrlinger & Wöß, 2016; Smith, 2003). A knowledge graph can be

seen as a representation of the relevant concepts/keywords within

one or several domains, which visualizes the strength of the relations

between these concepts as a graph. A knowledge graph can be

constructed from scratch or can be refined by adding missing (ex-

pert) knowledge when relying on a pre‐established knowledge graph

(Himanen et al., 2019). When aiming to identify new emerging topics

and their potential impact in a given domain—which is often a goal in

foresight processes—the construction of a new knowledge graph is

needed to avoid path dependencies and the reliance on past situa-

tions. See Background Section 1 for a more detailed discussion of the

knowledge graph.

Background Section 1: The knowledge graph
as the backbone of the hybrid AI‐expert
foresight framework

Throughout the discussion of the hybrid AI‐expert
foresight framework, the knowledge graph plays a

central role—and should thus be introduced further.

The knowledge graph was introduced in 2012 as a

semantic enhancement of Google's search function

(Ehrlinger & Wöß, 2016). A knowledge graph can be

seen as a graphical representation that depicts the

relevant concepts within one or several domains (such

as technologies, innovations, and societal challenges)

with a network of keywords and visualizes the

strength of the relations between these concepts as a

graph (Himanen et al., 2019; Smith, 2003). As a result,

the knowledge graph enables the search of text data

as the machine has “learned” to “read” text by looking

for matches between the text data and the knowledge

graph text. As such, the knowledge graph is central to

any AI or ML model that is fed with textual data.

Paulheim (2016) makes a distinction between the

construction of a knowledge graph and the refinement

of a knowledge graph. Construction of a knowledge

graph means that a knowledge graph is built from the

scratch. Think of it as if an expert is consulted for his/

her knowledge, and based on that knowledge a mental

model is built that graphically depicts the core con-

cepts and relationships. An ML model is then able to

add new data onto the knowledge graph, which might

guide the foresight process into new directions. Re-

versely, in a data‐first approach toward the con-

struction of the knowledge graph, (textual) data is

collected (e.g., through web scraping or via the col-

lection of data sources, such as patents, scientific

publications, social media, etc.), and these text cor-

pora (i.e., the database) are scanned by a machine,

which plots document snippets on the knowledge

graph. The knowledge graph this plotting delivers can

be used to further refine the (constructed) knowledge

graph using expert or domain knowledge. Refinement

of the knowledge graph means that—based on human‐
machine interactions—missing (expert) knowledge

is added or identified errors are removed from

the knowledge graph. Such an approach, whereby the

expert knowledge base is combined with the ma-

chine's database is an example of a hybrid approach

between experts and machines, which can sig-

nificantly advance the quality of the outcomes of the

foresight process.

3.1.2 | Scanning

Scanning focuses on the systematic examination of the gathered

data to identify potential threats, opportunities, and developments.

Scanning may explore novel and unexpected issues, as well as

persistent problems, trends, and weak or future signals (i.e., early

signs of an emerging topic) (Amanatidou et al., 2012, Lee &

Park, 2018; Van Rij, 2010). Amanatidou et al. (2012) differentiate

two different types of scanning: exploratory scanning and issue‐
centered scanning. The first concentrates on identifying potential

emerging issues. The second concentrates on a wide range of ex-

isting issues and looks for weak signals or potential emerging topics

around that issue. Although these two approaches are based on a

different scoping, the outcome in both cases is a long list of (early)

signs of emerging topics.

In the hybrid data‐supported foresight framework, a wider se-

lection of new, online, and open data sources can be used for the

scanning phase—from research articles to Twitter messages. To en-

able this, AI methodologies can be used to gather data with so‐called
crawlers and scrapers: tools to obtain data from online sources and for

cleaning up that data. By next assigning the collected data to the

knowledge graph nodes based on textual similarities, the ontology can

be further refined in the scanning phase (Braaksma et al., 2020). An

interesting question concerns the relevance of these online data

sources for the objective at hand. Twitter might, for example, be an

interesting source for an assessment of sentiments toward wind en-

ergy, but it might not be the best source for the newest developments

regarding hydrogen. An assessment of relevant new, online and open

data sources for addressing different types of foresight questions

(defined in the scoping phase) could thus be part of this phase.

3.1.3 | Trend analysis

During the trend analysis step the long list of issues around a topic is

narrowed down to a set of trends and weak signals, which are as-

sessed with regard to their future development as an emerging topic.

In classical technology forecasting, this is usually done by assessing
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certain attributes, such as growth in functional capability, rate of

replacement of old technology by a newer one, market penetration,

technology diffusion, and the likelihood and timing of technological

breakthroughs (see Martino, 2003, Porter et al., 1991). Commonly

used foresight approaches to assess the future development of the

emerging topics are the Delphi method, roadmapping, and future

trend analysis (see i.e., Daim & Oliver, 2008; Dalkey & Helmer, 1963;

Glenn & Gordon, 2009; Hussain et al., 2017; Porter &

Detampel, 1995).

When combining these approaches with AI methodologies in the

hybrid AI‐expert foresight framework, the opportunity arises to

follow up on new directions—identified in the scanning phase—to

create a long list of potential weak signals or trends (i.e., potential

fast‐growing topics). Such a raw topic list of weak signals generated

with a text‐clustering algorithm can then be validated using, for ex-

ample, expert interviews or workshops. It thus still takes an expert to

interpret the results and to differentiate the actual trends and their

impact from the noise. An additional opportunity of the hybrid AI‐
expert foresight framework is that when over time more data be-

comes available, the algorithms behind the knowledge graph “learn”

from this data and new knowledge is added to the knowledge graph

of the scoping and scanning phase. This new knowledge can guide the

scanning into new directions.

3.1.4 | Assessing impact

The previous steps answered the question: what are the emerging

trends? Strategy and policy makers like to anticipate opportunities

and risks to society, which go beyond science, technology, and in-

novation trends; what could the effect be of these trends? How could

these trends play a role in addressing societal challenges, for ex-

ample, to assess their potential to contribute to resource efficiency?

To help answering these questions the next step in the hybrid AI‐
expert foresight framework assesses the potential impact of the

trends identified in the trend analysis step to develop plausible fu-

ture scenarios. Impact assessments are often associated with social

impact or environmental impact assessments, which address factors,

such as health (e.g., lifestyle, stress, diet, etc.), social dimensions (e.g.,

creation or elevation of social divisions, trust in institutions, value,

use, and utilization of technology), economic impact (e.g., welfare,

employment, workload), and impact on institutions (e.g., regulatory

agencies) (Kaivo‐oja, 2017; Vanclay, 2002). Typically, impact is

therefore the outcome of interactions between trends, events, en-

vironmental and social conditions, and the actions of societal actors

over time. Different methods are currently employed in foresight

processes to study these interactions, for example, system dynamics,

scenario planning, and cross‐impact analysis (Glenn & Gordon, 2009;

Kaivo‐oja, 2017; Wright & Cairns, 2011). The outcome of these im-

pact assessments is a deeper understanding of social realities and a

set of alternative futures. A complicating factor in such impact as-

sessment is the cognitive bounds of strategists or policy makers. That

is, dominant representations, sources of inertia, or the inability to

legitimize new strategies could influence strategists' and policy ma-

kers' ability to follow up on identified strategic futures (Lehr

et al., 2017).

In our hybrid AI‐expert foresight framework, the impact as-

sessment within the foresight process can be augmented by

looking at the potential future development of the identified

trends and weak signals (see trend analysis). That is, a data‐
supported impact analysis explores the future developments of

each topic trend and the development of relationships among

topics. This then largely builds upon the ability of knowledge

graphs to “learn” from data and add new knowledge (technologi-

cal, but also social) to the knowledge graph. This new knowledge

can not only guide the trend analysis in new directions, as dis-

cussed in the previous step. By comparing the knowledge graph

over time it also becomes possible to identify fast‐growing (hot) or

fast‐declining (cold) concepts around a topic in real‐time (Geurts &

Raaijmakers, 2020). The knowledge graph thus helps to improve

future scenarios for strategy development (see strategy) as it

takes into account not only (potentially new) topics but also (po-

tentially new) relationships between topics that might challenge

intuition. We, therefore, expect that when data is projected onto a

knowledge graph over time, dynamics will appear that can add

unique, different, and perhaps unexpected insights and thereby

enrich and extend the information base. This provides opportu-

nities to closely monitor developments and dynamics and make

informed decisions that do not necessarily rely on existing stra-

tegies, mental models, intuition, and assumptions (cf. Lehr

et al., 2017). This remains, however, a research area that needs

further exploration (see also Section 5).

3.1.5 | Strategy

The more enriched and nuanced insights of the previous steps

finally shift attention toward how policy makers and strategists

can make use of these insights for foresight. This process of

strategy development focuses on the identification of future

pathways for change and develops response strategies for those

pathways; foresight helps generating strategies for complex fu-

tures to advise policy or to prepare decision‐making. In this sense,

strategy is not a prediction but rather a set of approaches to bring

longer‐term considerations into decision‐making (Cuhls, 2020).

Foresight can thus support strategy in, for instance, exploring the

effects and range of choices regarding current policies, provide

early warnings about potential (unanticipated) difficulties/new

opportunities, enable planning, explore possible disruptive devel-

opments, or suggest focus/directions (Blind et al., 1999). Typical

approaches in this phase are wind tunneling, backcasting, road-

mapping, scenario‐based strategizing, or more recently the robust

portfolio decision analysis (Baker et al., 2020; Lehr et al., 2017;

Phaal et al., 2007; Ringland, 1998). Despite the possibilities such

approaches provide for strategic decision making for complex fu-

tures, cognitive bounds created by existing strategies, mental
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models, and assumptions tend to limit the strategizing possibilities

(Lehr et al., 2017). Furthermore, it remains difficult to draw con-

clusions based on multiple knowledge sources, even when drawing

upon experts; as such approaches are unable to learn or to accu-

mulate knowledge over time similar exercises have to be con-

ducted over time (Mühlroth & Grottke, 2020).

In our hybrid AI‐expert foresight framework, the opportunity is

introduced to include real‐time, dynamic, and emerging information

on trends (see trend analysis) and a wider conceptualization of im-

pact (see impact) to formulate actionable strategy “options.” Such

options can be more distant, that is, deviate significantly from the

status quo (Lehr et al., 2017), to allow the identification of a course

of action that creates a competitive advantage. By using a knowledge

graph that provides a richer understanding of the concepts and the

relationships between those concepts within a system and takes into

account real‐time dynamics, the hybrid AI‐expert foresight approach
potentially enables strategists to enrich the formulation of such

distant strategy options. For example, in the case of roadmapping,

insights on interactions between roadmap layers may be provided as

an additional input to the roadmapping dialogue, which might direct

the dialogue in more “distant” directions. This is a research area that

should be explored in more detail in future research (see also

Section 5).

3.2 | The hybrid AI‐expert foresight approach: On
the interaction between AI and experts

Throughout the discussion of the hybrid AI‐expert foresight frame-

work, the notion of a hybrid approach has been consistently present.

Hybrid in this context means that (participatory) expert‐based
foresight approaches are combined with a machine‐driven foresight

approach. In our discussion of the framework in this section, we

discuss that this combination has the potential to significantly ad-

vance the quality of the outcomes of the foresight process as it can

duplicate, extend, or even challenge intuition toward new horizons.

In Section 4, we illustrate how this plays out in practice using two use

cases.

When considering a hybrid AI‐expert‐based approach, we focus

on the role of experts and the role of machines in the foresight

approach. Experts, we argue, rely on their expertise or knowledge

base to distill a mental model of the topic or issue at hand. Machines

rely on a database to define anML model of the topic or issue at hand.

Both the knowledge base/mental model and the database/ML model

can, in essence, contribute to the construction and the refinement of

the knowledge graph that represents the topic or issue at hand.

Figure 2 further depicts this reasoning and provides a graphical il-

lustration of a knowledge graph.

When considering a hybrid‐expert‐based approach, two basic

strategies can be distinguished based on the division of tasks be-

tween experts and machine intelligence. On the one hand, experts

can go first to predefine concepts and their relationships based on a

shared mental model to create a “seed” ontology. With the use of

supervised ML methodologies such as text mining this “seed” on-

tology is then further elaborated on by including new nodes and

relations or excluding nodes and relations. On the other, one can also

start by scanning documents from a defined area of interest and

(automatically, in an unsupervised manner) extract and cluster the

topics via the use of unsupervised ML algorithms. Only then these

topics are labeled by experts and their relations are elaborated on.

The distinction between the two strategies is the sequence of the

contribution of experts and AI: the first strategy starts with the

expert to direct AI, whereas the second strategy starts with AI to

support the expert to create the knowledge graph.

For the hybrid AI‐expert approach, (i) setting up a knowledge

graph, (ii) using big data and AI to enrich the available and relevant

information, and (iii) analyzing how the knowledge graph changes

over time, is a process where AI and experts frequently interact.

The construction of a knowledge graph in a hybrid approach en-

ables us to avoid path dependencies or over‐reliance on intuition

or past situations or experiences. Ultimately, the hybrid AI‐expert
foresight approach can be used to enrich the information base

upon which decision makers act and formulate possible future

pathways to design actionable strategies or policies. The knowl-

edge graph and its analysis over time thus provide the basis that

provides the opportunity to not only identify newly emerging to-

pics and how they evolve, but also to see if the relation between

specific technologies, innovations, and impact factors is increasing

or decreasing in strength over time. As such, the hybrid AI‐expert
foresight approach provides new perspectives for data‐supported
foresight and the integration of qualitative expert and quantita-

tive data knowledge.

F IGURE 2 Example of an approach to
develop and refine a knowledge graph from
scratch using (1) expert knowledge base and
(2) machine database to define a hybrid
knowledge graph (TNO, 2019). AI, artificial
intelligence
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4 | THE HYBRID AI‐EXPERT FORESIGHT
APPROACH IN PRACTICE: INSIGHTS FROM
TWO RESEARCH PROJECTS

To illustrate the hybrid AI‐expert foresight approach in practice, two

recent research projects—one by TNO and one by Fraunhofer ISI—

have applied and tested the new data‐supported approach and

gained first‐hand practical experience with using Big Data and AI in

foresight processes. A brief summary of the two projects is given

below.

4.1 | TNO foresight project “Innovation Outlook”

Under TNO's Early Research Program the program “Innovation

Outlook” was initiated in 2019 and ran till 2020. The aim of this

1‐year multidisciplinary research program was to explore, renew, and

test a new hybrid AI‐expert foresight approach and framework

building upon data‐driven tools to identify emerging trends and weak

signals in (disruptive) technology and innovation developments, de-

termine their societal impact, and design actionable strategies to

form a strategic perspective. The program involved experts from

several TNO units with different expertise (foresight experts, ex-

perts with in‐depth knowledge of system dynamics, experts from

data science (specifically NLP), and experts in strategy development).

In addition, domain experts (focusing on Mobility‐as‐a‐Service
[MaaS]) were involved: to experiment with and test the new fra-

mework and methodology a use case has been carried out on MaaS.

The aim of the use case was to gain experience with how AI and big

data can be embedded in foresight, what is the benefit, and how to

organize interaction between experts and AI.

We followed a hybrid AI‐expert‐based approach from the

start. That is, we started by involving experts to develop an on-

tology for a knowledge graph before using AI methods to project

the data onto the ontology and evaluate the topics. That is, we

started our project with the scoping phase by formulating specific

research questions, and subsequently organizing a workshop with

various domain experts (mobility, energy transition, labor) and

foresight experts to predefine concepts and their relationships

based on a shared mental model to create what we defined as a

“seed” ontology (Amanatidou et al., 2012). For the workshop,

we made use of the expert‐driven Method to Analyse Relations

between Variables using Enriched Loops (MARVEL) (Zijderveld,

2007), which helped to structure and map the relevant concepts,

(inter)relations, and possible effects to construct the knowledge

graph. The experts also provided a primary set of data that was

used in the scanning phase to acquire text data from pointers

(websites, document repositories, PDF's, etc.). With state‐of‐the‐
art AI methodologies, we further text‐mined additional data re-

sources (ArXiv, The Guardian, Reuters, and IntelligentTransport)

and automatically harvested them using NLP models of knowledge

graph data (synonyms and semantic embeddings) and a filter (“only

MaaS‐relevant documents”). This way, the neural network is

trained on a data set to create neural word embeddings and

capture neighboring words. It thus enables to search for keywords

and add a relation between keywords (see also De Boer &

Verhoosel, 2019). During the scanning phase, we followed an

iterative process to refine the knowledge graph by labeling the

nodes of the ontology with descriptive data and using state‐of‐the‐
art AI (i.e., ML) to find topic similarities between ontology nodes

and external data and connecting documents (and snippets) to the

ontology nodes.

For the next step, trend analysis, an interactive dashboard has

been developed (see Figure 3), which presents data and provides

insight into the speed of topic growth, amount of growth (density),

diversity of growth (new topics), and “word evolution” over time.

These insights provide an overview of emerging trends and their

development over time, as well as the strength and direction of re-

lations between trends and MaaS concepts. The dashboard also en-

ables users to relabel (conflate, delete, or split) nodes for deeper

insights.

The use case provided insight in (i) top emerging trends in MaaS

and their development over time, (ii) strength and direction of rela-

tions between technological trends, MaaS concepts, and the poten-

tial impact of MaaS (i.e., CO2 emission or jobs), and (iii) visualize the

knowledge graph for transparency, accountability, and validation

purposes (e.g., capability to edit the associations/terms). The use case

further provided valuable insights into the opportunities and

boundaries of how AI can be embedded in the hybrid AI‐expert
foresight approach. The use case revealed the complexity of re-

designing, expanding, and eventually refining existing tools with new

functionalities, especially when specifically designing for human‐
machine interaction. The implemented approach yielded new insights

into the division of labor between experts, knowledge models

(ontologies), and data sources, and how interactions between these

can highlight information dynamics over time as well as different

types of biases. Finally, the experience from this project highlights

the challenge of multidisciplinary collaborations, wherein experts

with different backgrounds collaborated. In those instances, we

found that the development of a common language and shared un-

derstanding are important, as it ensures the continuation of the

project. This could be an important issue to take into account for

researchers who are planning to embark on the use of comparable

methods.

4.2 | Fraunhofer Foresight Project (ISI)

The Fraunhofer Foresight Project was carried out by four Institutes

from the Fraunhofer Group for Innovation Research between April

2018 and December 2019 and aimed at identifying emerging topics

with potentially high impact for applied research in 2030. The project

was divided into two phases: in the first phase, an extensive, multi-

layered survey across all 72 Fraunhofer Institutes was conducted to

condense and assess the 51 most promising so‐called “Future‐
Spotlights” for applied research. In the second phase, it was the aim
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to further develop, continue, and standardize the process by in-

tegrating AI and Big Data and thereby making use of (partly‐) au-
tomated processes. The efforts included (i) further optimizing an

already well‐established tool for scanning structured data from sci-

entific databases, (ii) exploring unstructured data sources to retrieve

new Spotlights using News‐Sites and Podcasts (Welz et al., 2021),

and (iii) identifying market potentials for Spotlights by analyzing

corporate press releases via ML algorithms.

At Fraunhofer ISI, we focused on analyzing unstructured data

from news sites, that is, identifying emerging topics from relevant

web articles by setting up an unsupervised topic model using LDA.

LDA is a generative statistical model that uses ML to detect latent

topics across text documents via the distribution of words across

these documents (Blei et al., 2003). For this procedure, no manual

labeling or keyword tagging of the documents that are processed is

needed beforehand. This addresses the scoping phase of the hybrid

AI‐expert foresight framework, as it tested a way to set up an on-

tology starting with the output of an automated AI model and only

then involving experts to evaluate the topics and to find labels and

relationships between them.

Before setting up the topic‐model, however, the scoping requires

identifying suitable sources for the question at hand. For this step,

we used expert input in the form of the 51 well‐developed Future‐
Spotlights of the first project phase and their one‐page descriptions.

By extracting the eight most characteristic keywords from each

Spotlight description using Term Frequency—Inverse Document

Frequency scores (TF‐IDF‐scores, see Ramos, 2003) and integrating

these keywords in an online search query, we identified potential

websites in a widely automated manner, which referred to some but

not all of the initial spotlights. After rating the identified websites,

the articles of the sites eligible for the task were text‐mined for a

time span of 6 months and eventually served as input for the LDA

topic‐model.

Figure 4 shows a two‐dimensional projection of a 100‐topic so-

lution of the LDA‐model using Jensen–Shannon divergence to create

a distance matrix on the topic‐term distribution and metric multi-

dimensional scaling (mMDS) for dimension reduction. Each circle in

the figure represents one topic. Each topic is represented by the

most dominant terms within the topic. The example shows the top 25

terms representing “Topic 11.” To find appropriate labels for the

topics of the model, the meaning has to be derived given the words

within the topics and the documents underlying the model (i.e., news

articles). In the example, topic 11 was labeled “Cell research in the

clinical context.”

The project showed that this approach yields meaningful topics

for the question at hand. Given the broad focus of the project, which

makes it difficult to come up with a shared mental model from

scratch, the hybrid AI‐expert approach can help as a starting point to

reduce complexity for the experts and break up rigid thinking by

providing automatically generated topic clusters. This approach can

either be used for an exploratory scanning in the sense of

Amanatidou et al. (2012) or be further developed into a knowledge

graph and thus be one important step within the hybrid AI‐expert
foresight framework described above (Section 3).

The project results emphasize the vital role that experts have in

the interplay with ML concepts, as in‐depth knowledge is needed to

“make sense” of the discovered patterns. Starting with documents

written by experts, followed by semi‐automatically selecting eligible

F IGURE 3 Demonstrator of an interactive dashboard for data‐supported foresight for Mobility‐as‐a‐Service (TNO, 2019). On the left is a
visualization of the knowledge graph upon which the selected data sources (bottom‐right) for the years 2000–2019 (bottom‐left) are projected.
On the right‐hand side is a corresponding graph that shows the trend in the selected data for the selected timeframe—focusing on 2017–2019.
The topics are the role of the government (blue), CO2 emission mobility (red), and electric bicycle (orange). Below the graph are the data
snippets that can be explored more in depth
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sources, and ending the process with a sense‐making process by

experts, show that the cooperation of experts and AI is not strictly

linear but rather like a loop. To benefit even more from this synergy

more experience from use cases and systematic comparison of out-

comes is needed to gain insight on how to optimally design this

process depending on the aims and scope of the project. To be able

to further optimize the topic‐model the availability of high‐quality
text data is fundamental and by incorporating validated ontologies or

other external resources (e.g., lexical databases like WordNet), in a

way that avoids path dependencies, validity and usability could ad-

ditionally be improved.

5 | DISCUSSION AND CONCLUSION

In this paper, we explored new perspectives for data‐supported
foresight by exploring the possibilities for foresight created by AI to

detect emerging topics. To do so, we introduced the hybrid AI‐expert
foresight framework and explored the different steps in foresight

processes and the role both experts and AI might play within those

steps. Our discussion of the theoretical considerations and practical

implementation of such a hybrid approach indicates that the hybrid

AI‐expert‐based approach holds great potential to add value to

current foresight practices to identify emerging topics, and our hy-

brid AI‐expert foresight framework offers a guideline on how to

achieve this in a meaningful way at the same time. The experiences

from two projects of TNO and Fraunhofer ISI further illustrate this in

practice.

Both projects show that introducing automatized AI‐based data

analysis within the scoping, scanning, and trend analysis phase of a

foresight project broadens the range of hypotheses of emerging

changes that can be fed into a sense‐making process within sub-

sequent futures dialogues. It is important to note that due to the

inherent uncertainty in the evolution of complex systems there is no

“data from the future.” Accordingly, neither the automatized nor the

“manual” human analysis of present data has a predictive value. Rather

the scoping, scanning, and trend analysis phases of our hybrid ap-

proach serve to support the questioning of anticipatory assumptions

that frame our perception of the present by subjecting a wider range

of (emerging) aspects into our conceptualization of the future and

thereby improves our capacity to deal with uncertainty and emer-

gence (Miller, 2018, Rossel, 2012, Warnke & Schirrmeister, 2016).

In light of this, it is important to consider that how such findings

from the previous phases can become of value for the impact

F IGURE 4 visualization of the LDA model with 100 topics and example topic 11, which was labeled “Cell research in the clinical context”.
LDA, latent Dirichlet allocation
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assessment and strategy phase has yet to be explored in more detail.

Specifically, as our hybrid approach serves to support the question-

ing of anticipatory assumptions, results might not necessarily dupli-

cate or extend users' intuition, but rather challenge it by subjecting a

wider range of (emerging) aspects into our conceptualization of the

future. Especially when resulting insights become more distant and

deviate from the status quo (Lehr et al., 2017), it might remain a

challenge for decision makers to alter existing strategies, mental

models, intuition, and assumptions (cf. Lehr et al., 2017) based on

such insights.

Thus, the projects show that to fully leverage the potential of the

hybrid AI‐expert foresight approach and establish best practices,

more research is needed. Based on shared discussions between the

various co‐authors, we identify the following major points within our

approach that need special attention: validity and the interplay be-

tween experts and AI, relevance and acceptance of the output (e.g.,

depending on the type of sources used), and longevity of efforts (e.g.,

financial support, access to databases). Future research can address

not only these overarching challenges but also specific shortcomings

we identified within the projects.

5.1 | Challenges and requirements: A future
research agenda

Despite the promises the hybrid AI‐expert foresight approach holds,

several challenges remain. We identify three points for attention: (1)

validity and the role of the expert, (2) relevance and acceptance, and

(3) longevity.

5.1.1 | Validity (or trustworthiness or reliability)
and the role of the expert

While descriptive validity refers to the factual accuracy of the in-

formation provided, interpretative validity refers to the degree to

which the researcher actually portrays the meaning behind the data

(Tashakkori & Teddlie, 2003). Interpretative validity is a high concern

in a hybrid AI‐expert foresight approach. Although human minds

easily interpret texts and find the relation with another word (or

group of words), the output of data‐supported models can place

words out of their context. What is more, models and algorithms can

easily misrepresent the meaning of the text. It thus requires back-

ground information and most likely expertise in the field to make a

valid interpretation (Himanen et al., 2019). The involvement of ex-

perts thus guarantees that the added value generated throughout

the process does not stay within the data. What is more, the parti-

cipation of experts and stakeholders is key to ensure the buy‐in of

decision‐makers (Lehr et al., 2017).

At the same time, experts bring along certain idiosyncratic ex-

periences, norms and values, background information, and view-

points, which too can bias their interpretation in a way that is

misleading (for various views on this topic, see i.e., Baker et al., 2020;

Geurts & Raaijmakers, 2020; Hilkamo et al., 2021; Lehr et al., 2017;

Schirrmeister et al., 2020). Think, for instance, about dominant re-

presentations, sources of inertia, or the inability to legitimize new

strategies that could influence the ability of strategists and policy

makers to follow up on identified strategic futures (Lehr et al., 2017).

The combination of both – expert and AI –has great potential to

address these concerns but what is still needed are deeper insights

into possible synergies between AI and expert input. To address this

validity challenge, two areas for future research can be identified.

First, it is important to explore the AI‐bias side or the extent to which

data‐supported models place developments out of context. Expert

judgment can play a role to address this issue. Comparative analyses

and case studies that are deliberately designed to assess such in-

fluences could provide knowledge of human or data/modeling bias

that could advance not only the field of foresight but also the field of

data‐driven science in general. Second, future research could explore

the expert‐bias side by exploring various hybrid approaches to de-

termine how to enable a hybrid AI‐expert‐based approach in the best

way to overcome strategizing bounds (cf. Lehr et al., 2017). For this,

we encourage the exchange of experiences on which steps can be

(semi‐) automated and what are the needs and requirements to en-

able actors to validate, correct, and interpret the outcomes. The

outcome of such analyses could indicate the context and the chosen

research questions most suitable for various AI methodologies.

5.1.2 | Relevance and acceptance

The added value of a hybrid AI‐expert‐based approach is determined

by the relevance of the data and the information acquired from that

data. Different communities (i.e., science, industry, government,

policy makers, citizens, etc.) will have different specifications of what

is considered “relevant,” which makes it challenging to draw con-

clusions and make decisions based on the output (Amanatidou

et al., 2012; Himanen et al., 2019). The resulting information gap (see

i.e., Himanen et al., 2019)—the fact that stakeholders require dif-

ferent information sources and data output than what might be

currently used and produced—provides further strain on the accep-

tance of insights based on hybrid AI‐expert approaches. What is

needed, therefore, are comparative insights into the capacity of such

different information and data sources to answer different questions

from or for different stakeholders. Systematic analyses of the in-

formation needs of various stakeholders, and the way various data

sources meet those needs should be conducted (see e.g., Amanatidou

et al., 2012). Such analyses can further support the widespread ac-

ceptance of the hybrid AI‐expert foresight approach, as it would

increase trust in the data, models, and outputs and help providing

information where and when it is needed. Hence, keeping the experts

in the loop is not only necessary for a valid outcome, but also for an

acceptable outcome.

In addition to the assessment of informational needs, an as-

sessment of the added value of different data sources is needed. In

foresight, various attempts can be identified to use data‐supported
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approaches, largely drawing upon various data sources (i.e., biblio-

metrics, web data, social data—see e.g., Porter, 2019; Ranaei

et al., 2020). A systematic analysis of the differences in results from

those various data sets has yet to be made. Only by providing this

kind of analysis, the question which data is important to acquire

which information can be addressed. In addition, it is worth exploring

whether such different data sources should be compiled together to

provide holistic insights, or whether they should be systematically

compared to identify what types of questions a certain source can

address best. Finally, a comparison of different data sources would

provide the opportunity to identify important sources of bias stem-

ming from these data sources.

Finally, it should be taken into account that to produce relevant

and acceptable results, it is important to consider the challenge of

multidisciplinary collaborations, wherein experts with different

backgrounds (i.e., computer scientists, technologists, industry or

sector representatives, or policy makers) collaborate. The experi-

ences from the two illustrative projects indicate that each of those

actors has different interests and aims with a project, and might

consider different outputs as result. In those instances, we found that

the development of a common language and shared understanding

are important to increase the relevance of the project to all stake-

holders. Future research could provide more insights into how such

common ground can be established among different types of multi-

disciplinary collaborations.

5.1.3 | Longevity

A final constraint to any data‐supported science projects are concerns

around longevity (see Himanen et al., 2019). Due to the current hype

of big data and AI, many platforms, databases, and other open science

initiatives proliferate. However, long‐term financial support for

sustained operation and timely updates of such platforms, databases,

or other formats are rarely guaranteed. As a result, initiatives to en-

able data‐supported science, including the hybrid AI‐expert foresight
approach, run the risks of duplication of efforts and loss of valuable

data and insights. To exploit big data and AI for new perspectives on

data‐supported foresight, institutions thus need to begin to consider

how to strategically deploy big data collection and storage manage-

ment solutions. Part of the challenge will be how to combine data from

various disparate sources in a meaningful way. Some form of inter-

operability or interfacing is also essential for the widespread adoption

of a new approach or ways of doing research (Himanen et al., 2019).

That is, stakeholders can only participate in the development of

technology if they speak a common language, for instance in the form

of ontologies or metadata. Such approaches enable researchers from

the same field to transform various dialects into a common language.
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ENDNOTES
1For more information on ontologies/knowledge graphs, see Background

Section 1.

2Depending on the context, our understanding of domain experts en-

compasses a variety of potential groups in participatory processes, in-

cluding, for example, citizens who can be considered experts on issues

that affect their everyday lives.
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