
Model-centric Security Verification

Subject to Evolution

Jan Jürjens

TU Dortmund & Fraunhofer ISST

http://jan.jurjens.de

The Forgotten End of the System Life-cycle

Challenges:

• Software lifetime often longer than intended

(cf. Year-2000-Bug).

• Systems evolve during their lifetime.

• In practice evolution is difficult to handle.

Problem: Critical requirements (e.g. security) preserved ?

Jan Jürjens: Model-centric Security Verification Subject to Evolution 2/17

Model-based Security

Engineering with UMLsec

UMLsec Models

Security Requirements

Code

Inte-

grate

Code-/

Testgen.
Reverse
Engin.

Analyse

Configuration Data
Generate

Verify

Runtime System

Configure

Execute

Evolution

Jan Jürjens: Model-centric Security Verification Subject to Evolution 3/17

Challenge: Evolution

Each artifact may evolve.

To reduce costs, reuse verification

results as far as possible.

Under which conditions does

evolution preserve security?

Even better: examine possible future evolution for effects on

security.

• Check beforehand whether potential evolution will preserve

security.

• Choose an architecture during the design phase which will

support future evolution best wrt. security.

Jan Jürjens: Model-centric Security Verification Subject to Evolution 4/17

Model Formalization

Formalize model execution. For transition

t=(source,msg,cond[msg],action[msg],target) and message m,

execution formalized as:

(where statecurrent current state; statecurrent.t(m) state after

executing t).

Example: Transition t0:
[Jürjens, Fox: Tools for Model-based

Security Engineering. ICSE’06]

Exec(t,m) = [statecurrent=source m=msg cond[m]=true

 action[m] statecurrent.t(m)=target].

Exec(t0,m)=

[statecurrent=NoExtraService

m=wm(x) moneycurrent+x>=1000

 moneycurrent.t0(m)=moneycurrent+x

 statecurrent.t0(m)=ExtraService].

[money+x>=1000]

[money+x<1000]

t0

Jan Jürjens: Model-centric Security Verification Subject to Evolution 5/17

Formalization of Requirements

Example „secure information flow“:

No information flow from confidential to public data.

Analysis: If two states statecurrent, state‘current differ only in confidential

attributes, then their publically observable behaviour needs to be

the same:

(where statecurrent ≈pub state‘current if statecurrent and state‘current have

the same publically observable behaviour).

Example: Insecure, because confidential attribute money influences

return value of public method rx().

statecurrent ≈pub state‘current statecurrent.t(m) ≈pub state‘current.t(m)

ExtraService ≈pub NoExtraService

aber nicht:

ExtraService.rx() ≈pub NoExtraService.rx()
[money+x>=1000]

[money+x<1000]

Jan Jürjens: Model-centric Security Verification Subject to Evolution 6/17

Evolution vs. Design- / Architectural Principles

Consider design techniques and architectural principles which support

evolution.

Under which conditions are requirements preserved ?

Design technique: Refinement of specifications. Supports evolution

between refinements of an abstract specification.1

Architectural principle: Modularization supports evolution by

restricting impact of change to modules.

Different dimensions:

• Architectural layers

• Component-oriented architectures

• Service-oriented architectures

• Aspect-oriented architectures

For each discovered conditions under which requirements are

preserved. Explain this at the hand of security requirements.

[Ochoa, Jürjens, Warzecha: A Sound Decision Procedure for

the Compositionality of Secrecy. ESSoS’12]

[Deubler, Grünbauer, Jürjens, Wimmel: Sound development of

secure service-based systems. ICSOC’04]

[Jürjens, Houmb: Dynamic Secure Aspect

Modeling with UML. MoDELS’05]

[Hatebur, Heisel, Jürjens, Schmidt: Systematic Development of

UMLsec Design Models Based on Security Requirements. FASE’11]

1 [Schmidt, Jürjens: Connecting Security

Requirements Analysis and Secure Design

Using Patterns and UMLsec. CAiSE’11]

Jan Jürjens: Model-centric Security Verification Subject to Evolution 7/17

Design Technique: Refinement

For behaviour preserving refinement, one would expect preservation of

behavioural requirements.

„Refinement Paradox“: Surprisingly, in general not true [Roscoe‘96].

Example: In above example, transition

rx()/return(true) (resp. false) is refinement of

„secure “ transition rx()/return(random_bool).

Observation: Problem: Mixing non-determinism

as under-specification resp. as security mechanism.

Our specification approach separates these.

Result: Refinement now preserves behavioural requirements.

Proof: using

formal

semantics.

Above example: with our approach: not a refinement.

[money+x>=1000]

[money+x<1000]

Jan Jürjens: Model-centric Security Verification Subject to Evolution 8/17

Problem: Behavioural requirements in general not compositional.

Above example: States ExtraService and NoExtraService each „secure “ (only

one return value for rx), but composition in statechart not.

Under which condition are requirements preserved ?

Solution: Formalize requirement as

„rely-guarantee“-property.

Result: Using this formalization, get conditions for

compositionality.

Proof: using formal semantics.

Above example: Rely-guarantee formalization shows that

secure composition impossible.

Architectural Principle: Modularization

[money+x>=1000]

[money+x<1000]

Jan Jürjens: Model-centric Security Verification Subject to Evolution 9/17

Evolution-based Verification

...

Evolution-based Verification – Idea:

• Initial verification: Tool registers

which model elements relevant for

verification of given requirement.

• Store in verified model, together with

partial results („proof-carrying models“).

• Discovered conditions on changes

such that requirement preserved.

• Compute difference between old and new

model (e.g. using SiDiff [Kelter]).

• Only need to re-verify model parts which

1) have changed

2) were relevant in the initial verification and

3) which don‘t satisfy the above-mentioned conditions.

Significant verification speed-up compared to

simple re-verification.

Jan Jürjens: Model-centric Security Verification Subject to Evolution 17

Evolution-based Verification: Example

Preservation condition for secure information flow at evolution

M → M‘: Only consider states s, s‘ for which:

• s ≈pub s‘ in M‘ but not in M, or

• s.t(m) ≈pub s‘.t(m) in M but not in M‘.

Example: wm(0).rx() ≈pub wm(1000).rx() in M but not in M‘. Shows

that M‘ violates secure information flow (confidential data 0

and 1000 distinguishable).

[money+x>=1000]

[money+x<1000]

[money+x>=1000]

[money+x<1000]

M → M’

Jan Jürjens: Model-centric Security Verification Subject to Evolution 11/17

Model-code Traceability under Evolution

[Bauer, Jürjens, Yu: Run-Time Security Traceability for Evolving Systems. Computer Journal ‘11]

Goal: Preserve model-code traceability

during evolution.

Idea: Reduce evolution to:

• Adding / deleting model elements.

• Supporting refactoring operations.

=> Approach for automated

model-code traceability based

on refactoring scripts in Eclipse.

Jan Jürjens: Model-centric Security Verification Subject to Evolution 12/17

Jan Jürjens: Model-centric Security Verification Subject to Evolution 13/17

13

p

q g

q

g
p

Code Verification subject to Evolution

Use evolution-based model verification and model-

code traceability for evolution-aware code

verification using static analysis.

Example: Condition in sequence diagram correctly

checked in implementation.

Project Csec (with Microsoft Research Cambridge):

Implemented static analysis, found several

weaknesses.

All paths from p

to q check g.

[Jürjens. Security Analysis of Crypto-based Java Programs using Automated Theorem Provers. ASE’06.]

[Aizatulin, Gordon, Jürjens: Extracting and verifying cryptographic models from C protocol code by

symbolic execution. CCS’11]

Relevant versions of source code not always available => run-time monitoring.

Relevant approach in the literature: Security Automata [F.B. Schneider 2000].

Problem: no evolution and only „safety“-properties supported

(too restrictive e.g. for secure information flow).

So: New approach, based on runtime verification (based on techniques from

model-checking and testing).

Formalize requirement to be monitored in LTL.

Continuous monitoring of system events through

monitors generated from the models,

with evolution-based traceability.

Including non-safety-properties (using 3-valued

LTL-semantics).

Example results:

Run-time Verification subject to Evolution

[Bauer, Jürjens. Runtime Verification of Crypto-

graphic Protocols. Computers & Security ‘10]

[Pironti, Jürjens. Formally-Based Black-Box

Monitoring of Security Protocols. ESSOS’10]

t

Property
fulfilled?

Actions

System

Property

Monitor

Runtime verification in a nutshell

automatic
generation of

Jan Jürjens: Model-centric Security Verification Subject to Evolution 14/17

• Correctness: based on formal semantics.

• Completeness: view model transformation as sequence of

deletions, modifications and additions of model elements.

Performance gain maximal where

difference << software. Example result:

• Evolution-based verification:

Performance linear in software size

(given constant size of differences)

• Complete Re-Verification:

Performance exponential in software size.

This condition is satisfied e.g. for:

• Maintenance of stabile software

• QA tightly integrated with evolution

(e.g. nightly builds)

Technical Validation

[Robles et al.: Evolution and Growth in Large Libre Software Projects]

Jan Jürjens: Model-centric Security Verification Subject to Evolution 15/17

Practical Validation

Application of in practice (examples):

• Global Platform (smartcard software updates, Gemalto)

• Mobile software architecture (Telefonica O2 Germany)

• Internal information system (BMW)

• Biometric authentication system

• German Health Card

• Health information systems

Detected signification weaknesses for some of these.

Empirical comparison model-based vs. traditional QA (testing):

Example: Model-checking vs. simulation / testen:

Door control unit (coop. w. BMW). Model-checking: Additional

effort (1-2 days / LTL formula), but detects also obscure bugs.
[Jürjens, Trachtenherz, Reiss: Model-based Quality Assurance of Automotive Software. Models’08]

[Jürjens et al.: Incre-

mental Security

Verification for

Evolving UMLsec

models. ECMFA’11]

[Best, Jürjens, Nuseibeh: Model-based Security Engineering

of Distributed Information Systems using UMLsec, ICSE’07]

[Jürjens et al.: Model-based Security Analysis

for Mobile Communi-cations. ICSE’08]

[Lloyd, J. Jürjens, Security Analysis of a Biometric

Authentication System using UMLsec and JML. Models’09]

[Jürjens, Rumm: Model-based Security Analysis of the German

Health Card Architecture. Methods of Information in Medicine’08]

[Mouratidis, Sunyaev, Jürjens: Secure Information Systems Engineering:

Experiences and Lessons Learned from Two Health Care Projects. CAiSE’09]

Jan Jürjens: Model-centric Security Verification Subject to Evolution 16/17

Conclusion: Model-centric Security Verification

 Subject to Evolution

Evolution: challenging for QA.

Question: Can reuse QA results after evolution ?

Result: Condition for requirements preservation…

• … in context of design-/architectural techniques for

evolution (e.g. refinement, modularization).

• … under model evolution („evolution-based

verification“).

• evolution-based static analysis

and run-time verification.

• Tool-implementation: significant performance

and scability gains wrt. simple re-verification.

Validation: Successful use in practice.

Jan Jürjens: Model-centric Security Verification Subject to Evolution 17/17

