Model-centric Security Verification
Subject to Evolution

Jan Jurjens

TU Dortmund & Fraunhofer ISST

http://jan.jurjens.de

hJ technische universitat % Fraunhofer
dortmund 1SST

The Forgotten End of the System Life-cycle

Challenges:

« Software lifetime often longer than intended
(cf. Year-2000-Bug).

« Systems evolve during their lifetime.
* In practice evolution is difficult to handle.
Problem: Critical requirements (e.g. security) preserved ?

<1-2 year 5-10 years
A A
' N N
Requirements Model Code Deployment USAGE
[| 1] | % v J
A A A A
DEVELOPMENT

Change #1 in Chqn§¢ in

Configuration
Model of : .
Change in Attacker Chqn?e #2_ in
Requirements Configuration

hJ technische universital jan Jirjens: Model-centric Security Verification Subject to Evolution % Fraunhofer 2/17
dortmund ISST

Model-based Security
Engineering with UMLsec

Security Requirements

Inte- Analyse
grate

UMLsec Models

Code-/ Reverse
Testgen. Engin.

Code

Generate>

Verify

Execute

Configuration Data

! ‘ Configure

Runtime System

technische universital jan Jirjens: Model-centric Security Verification Subject to Evolution % Fraunhofer 3/17

! dortmund

ISST

Challenge: Evolution

Each artifact may evolve. Requirements ’
. .. . Weave Analyze
To reduce costs, reuse verification l' against
. Models Configurations
results as far as possible. B oy lf% l one
Testgen Verify Configure

— Under which conditions does Source Code IEmmg)p Runtime System
evolution preserve security?

Even better. examine possible future evolution for effects on
security.

« Check beforehand whether potential evolution will preserve
security.

« Choose an architecture during the design phase which will
support future evolution best wrt. security.

\

technische universitat jan Jurjens: Model-centric Security Verification Subject to Evolution 24 Fraunhofer 4/17
* dortmund ISST

Requirements
ave nalyze

r— Configurations

Model Formalization SO0 | T

estgen ify
Source Code m Runtime System

Formalize model execution. For transition
t=(source,msg,cond[msg],action[msg],target) and message m,
execution formalized as:

Exec(t,m) = [state =source A m=msg A cond[m]=true

= action[m] A stategeneym=target J.

current

(Where state . current state; staten: m) State after
executing t).

[Jirjens, Fox: Tools for Model-based

EX am p I e : TranSitlon to: Security Engineering. ICSE’06]
m{)/return{imoney) rmi)/return(money)
Exec(ty,,m)= I
. rx()/return(true)
[state,,.,=NOEXtraService wm(x)
_ [money+x>=1000] jl’ _
A mzwm(X) A moneycurrent+X>:1000 ExtraService J Tmoney = NoExtraService
_ money+x /money:=0
— moneycurrent.to(m)_moneycurrent+x
A Stat€gyrrent omy=EXtraService]. o

'tLJ technische universital jan Jirjens: Model-centric Security Verification Subject to Evolution % Fraunhofer 5/17
dortmund ISST

Formalization of Requirements

Requirements
Weave alyze
in

Configure =
Lt CoOnfigurations

Code-/ Rev.Eng o Configure
Testgen Verif .

Source Code IEXENp Runtime System

Example ,,secure information flow*:

No information flow from confidential to public data.

Analysis: If two states state_ ., State’., . differ only in confidential
attributes, then their publically observable behaviour needs to be

the same:

Statec:urrent zpub state current — Statecurrent.t(m) zpub state current.t(m)

(Where state et ~pup State o pen If stateg, o, and state’ ., have
the same publically observable behaviour).
Example: Insecure, because confidential attribute money influences

return value of public method rx().

Customer account 00 down—flow» 1,

ExtraService =,,, NoExtraService
aber nicht:

rm(): Integer rm()/return(money)
wm(x: Integer)
rx(): Boolean

rx()/return(true)

ExtraService.rx() =,,, NOExtraService.rx()

Account «critical»
{secret={wm,rm,money}}

money: Integer

technische universitat jan Jiirjens: Model-cen

! dortmund

rm(): Integer
wm(x: Integer)
rx(): Boolean

mm()/return(money)

/money:=0

Requirements
Weave Analyze
in against

Evolution vs. Design-/ Architectural Principles.. e %

je-/ Rev.Ent Configure
Testgen Verify

Source Code IEZmSp Runtime System

Consider design techniques and architectural principles which support

evolution.

Under which conditions are requirements preserved ?
Design technique: Refinement of specifications. Supports evolution

between refinements of an abstract specification.!

Architectural principle: Modularization supports evolution by

restricting impact of change to modules. e e
Different dimensions: e e SR

Architectural layers e
Component-oriented architectures e Composnalty of Screcy ES808 121
Service-oriented architectures e e voved e 165058 o7
Aspect-oriented architectures Moaoing with ML MoDELE o8]

For each discovered conditions under which requirements are

preserved. Explain this at the hand of security requirements.

\

technische universital jan Jirjens: Model-centric Security Verification Subject to Evolution % Fraunhofer 7/17
' dortmund ISST

Requirements
Weave Analyze
in against

Design Technique: Refinement | o, .
Source Code IEZmp Runtime System
For behaviour preserving refinement, one would expect preservation of
behavioural requirements.

,2Refinement Paradox": Surprisingly, in general not true [Roscoe96].

Example: In above example, transition NG T
rx()/return(true) (resp. false) is refinement of
,secure “ transition rx()/return(random_bool).

Observation: Problem: Mixing non-determinism
as under-specification resp. as security mechanism.
Our specification approach separates these.

Result: Refinement now preserves behavioural requirements.

X()/return(false

/money:=0
/money [money+x<1000]
ney:=
money-+N\ V1 x)

Proof: using Definition Q refines P (P~ Q) if for each § ¢ Stl'ealllfp
formal have [P](5) 2 [Q](3).
semantics. Theorem If P preserves secrecy of m and P~ Q
then Q preserves secrecy of m.

Above example: with our approach: not a refinement.

\

technische universital jan Jirjens: Model-centric Security Verification Subject to Evolution % Fraunhofer 8/17
' dortmund ISST

Requirements
Weave Analyze
in against

Architectural Principle: Modularization Ly lt% i

Source Code m Runtime System

Problem: Behavioural requirements in general not compositional.

Above example: States ExtraService and NoExtraService each ,secure “ (only
one return value for rx), but composition in statechart not.

Under which condition are requirements preserved ?|™ =" N

Solution: Formalize requirement as a
-ExtraService
,rely-guarantee“-property. — o ey Jioneye=0
oney:=

money+

Result: Using this formalization, get conditions for

compositionality.
Proof: using formal semantics.

Theorem 5. Let . . D and U be processes with Ip, = Ip, Op = Ip,, Op, = Iy
and Oy = Op, and such that D has a left inverse D' and U a right inverse U’. Let

m € (Secret U Keys) \ Upcip . (Se U Kg)-
' (LT
If I°, preserves the secrecy of m and I, Nt P then P preserves the secrecy of m.

Above example: Rely-guarantee formalization shows that —— Py =
secure composition impossible. D 3 U
L Pz_f
__——

\

technische universitat jan Jiirjens: Model-centric Security Verification Subject to Evoluton 24 Fraunhofer 9/17
' dortmund ISST

Requirements
Weave Analyze
n

against

Evolution-based Verification lt%l

Source Code m Runtime System

Evolution-based Verification — Idea: Theorem 1 Assume that the program p’ evolved from the

program p where p and p’ are related as in the following cases
e |nitial verification: Tool regiSterS p = either p' or p": This implies p = p' and p = p".
. p=if E=E then p’ else p"': For any expression X € Ex
which model elements relevant for B=4 e e "

such that p preserves the secrecy of X :

verification of given requirement_ p’ preserves the secrecy of X assuming E = E’ and

p" preserves the secrecy of X assuming E # E’.

« Store in verified model, together with

partial results (,proof-carrying models®).

« Discovered conditions on changes

such that requirement preserved. Anlyzing D 2o
evolution Factory
information

« Compute difference between old and new
model (e.g. using SIDiff [Kelter]). Validation of all

possible deltas

* Only need to re-verify model parts which
1) have changed

2) were relevant in the initial verification and
3) which don't satisfy the above-mentioned conditions.

Performance measurement comparison for

verification of secure dependency
1000

s //

1

Significant verification speed-up compared to
simple re-verification.

econds

technische universital jan Jirjens: Model-centric Security Verification Subject to Eve o,
' dortmund 10 % 50 0

Number of dependencies

=== Difference-based Verification == Complete Re-Verification

Requirements
Weave Analyze
in against

Evolution-based Verification: Example o PR Roe
Source Code m Runtime System

Preservation condition for secure information flow at evolution
M — M Only consider states s, s’ for which:

* S=,,, S In M butnotin M, or
* s.t(m)=,,, s-f{(m) in M but not in M".

Yreturn{(money)

rm()/return(money)

mm()/return(money)

m{)}/return{(money)

rx()/return(irue) rx()/return(false
wmi(x)

rx()/return

wm(x) '
[money+x>=1000] \I" [money+x>=1000] |

ExtraService NoExtraService ExtraService NoExtraService
) /money:=) /Mmoney:=
money+x /money:=0 money+x /money:=0
/money:= /money:=
ey /money:= [momxglfoo] money+ /money:= [momx(;:l)ow]
wm(x) money+x wm(x) money+x

Example: wm(0).rx() =,,, wm(1000).rx() in M but not in M". Shows
that M’ violates secure information flow (confidential data O

and 1000 distinguishable).

\

technische universitat jan Jurjens: Model-centric Security Verification Subject to Evolution 24 Fraunhofer 1117
ISST

! dortmund

Model-code Traceability under Evolution

Requlrements

code-/ Rev.Eng "’:,\‘, Confiqure
I Source Code MRunﬁme Systeml

Goal: Preserve model-code traceability

during evolution.
ldea: Reduce evolution to:

« Adding / deleting model elements.
« Supporting refactoring operations.

=> Approach for automated
model-code traceability based
on refactoring scripts in Eclipse.

Test
Cases

Functional
Requirements

|

DESIGN IMPLEMENTATION
A Virtualizing Programs
- refactorings, !
: -5
n Concre tizng
. refactorings, Tests,
[] :-
A F
n ||
u u . .
- H Virtualizing Programs
. - refactorings,
B AR I
Concre tizing
refactoring Tests
Security
Reqguirements EOL
— . Formulae
'/UIVIL
_—— — sec |
A

UMLsec

UML Design annotations Refactoring
| Scripts
—_—— —l ART }
Security \ Security
Py Code A _
- . spects spec‘[J\ JUn I, Tests
{ JUnit) \ x\ /
N § . .//
v Continuous integration
I./'(]ruise(lontrol , config.xml
'\\ ant " build.xml

[Bauer, Jirjens, Yu: Run-Time Security Traceability for Evolving Systems. Computer Journal ‘11]

technische universital jan Jirjens: Model-centric Security Verification Subject to Evolution

! dortmund

\

~ Fraunhofer

12/17

ISST

Execution Path Diagram for method 55LSocket.doCl

Code Verification subject to Evolution

Use evolution-based model verification and model-
code traceability for evolution-aware code
verification using static analysis.

Example: Condition in sequence diagram correctly
checked in implementation. Al paths from p

Project Csec (with Microsoft Research Cambridge): |04 checkg.

. . j serverkerx = serverkey
Implemented static analysis, found several I— EF;E
weaknesses. N
C LOC IML LOC outcome result type time q v;EE
simple mac ~ 250 12 verified symbolic 4s /___EfEE
RPC ~ 600 35 verified ~ symbolic 5s — e L
NSL ~ 450 40 verified computat. 5s N 7
CSur ~ 600 20 flaws found — Bs p B o= :
Metering ~ 1000 51 flaws found — 15s Certificate(sign,
[.]i_]rjens_. Security An“al_ysis.of Crypt_o—based Ja_va_ Programs using Automated Theorem Provers. ASE’'06.] ;
[S/;\I:]ell)tgll;(r:,e(jé)égggr,]..]grgegsl.lllzxtractmg and verifying cryptographic models from C protocol code by CllentKe}IEXChan
[[equal (fst(exty, (cs)),9)]
' technische universitat Urjens: _centri s
J ponnisen I Jan Jurjens: Model-centric Sg g q leshed(symencx (11

Requirements

o Configurations

aga
Rev.Eng. gy Configure
Testgen Verify

Run-time Verification subject to Evolution T
[Source Code Jrzmmlp|Runtime System|

Relevant versions of source code not always available => run-time monitoring.
Relevant approach in the literature: Security Automata [F.B. Schneider 2000].

Problem: no evolution and only ,,safety“-properties supported
(too restrictive e.g. for secure information flow).

So: New approach, based on runtime verification (based on techniques from
model-checking and testing).

Formalize requirement to be monitored in LTL. Runtime verification in a nutshell
Continuous monitoring of system events through PTOPeYY I stomatic
monitors generated from the models, geperation of
with evolution-based traceability. ZSystem Mogitor
LS “ 5% property
: : . , @) .
Including non-safety-properties (using 3-valued = fulfilled?
L TL-semantics). Actions L/ ot

Example results:

Client Server |No Monitor [s]|Monitor [s]|Overhead [s]|Overhead [%]
[Bauer, Jirjens. Runtime Verification of Crypto- nuTLS | GnuTLS 0.109 0.120 0.011 10.313
graphic Protocols. Computers & Security ‘10] OpenSSL JESSIE 0.158 0.172 0.014 8 986
[Pironti, Jirjens. F lly-Based Black-B 1 1)
Monitoring of Securiy Protocols. £ssoso) | U TLS | JESSIE 0.144 0.148 0.004 2.788
technische universital jan Jirjens: Model-centric Security Verification Subject to Evolution % Fraunhofer 1417

! dortmund

ISST

Technical Validation

Requirements
Weave Analyze
in against

Models Configurations

Code-/ Rev.Eng Configure
Testgen Verify

Source Code m Runtime System

Correctness: based on formal semantics.

v

Completeness: view model transformation as sequence of \//
deletions, modifications and additions of model elements. \

Performance gain maximal where

difference << software. Example result:

Evolution-based verification:
Performance linear in software size
(given constant size of differences)

Complete Re-Verification:
Performance exponential in software size.

This condition is satisfied e.g. for:

Maintenance of stabile software

QA tightly integrated with evolution
(e.g. nightly builds)

technische universital jan Jirjens: Model-centric Security Verification Subject to E

! dortmund

[Robles et al.: Evolution and Growth in Large Libre Software Project

4500000

3500000 |-

Performance measurement comparison for

verification of secure dependency

o

..

2000000 —— =

1500000

1000000 |-

Requirements
Weave Analyze
in against

Practical Validation e

od
Testge

Source Code IEZmSp Runtime System

Application of in practice (examples):

[Jurjens et al.: Incre-

Global Platform (smartcard software updates, Gemalto) i

Evolving UMLsec

Mobile software architecture (Telefonica O2 Germany) ™ =""
Internal information system (BMW)
Biometric authentication system of Disrbuted nformation Systems using UMLsec, ICSE/07]
German Health Card e, Rumim:Modelbased Securty Analyssof he German
Health information systems T ———————

Experiences and Lessons Learned from Two Health Care Projects. CAISE’09]

[Lloyd, J. Jirjens, Security Analysis of a Biometric
Authentication System using UMLsec and JML. Models’09]

Detected signification weaknesses for some of these.

Empirical comparison model-based vs. traditional QA (testing):
Example: Model-checking vs. simulation / testen:

Door control unit (coop. w. BMW). Model-checking: Additional
effort (1-2 days / LTL formula), but detects also obscure bugs.

[Jurjens, Trachtenherz, Reiss: Model-based Quality Assurance of Automotive Software. Models’08]

\

technische universital jan Jirjens: Model-centric Security Verification Subject to Evolution % Fraunhofer 16117
' dortmund ISST

Conclusion: Model-centric Security Verification
Subject to Evolution

Evolution: challenging for QA. qui't ’
Question: Can reuse QA results after evolution ? Midinsf B-— conﬁglurations
Result: Condition for requirements preservation... ' soure co mmmp runine sysiem
* ... In context of design-/architectural techniques tor

evolution (e.g. refinement, modularization). S

. . Analyzing o Delta |

- ... under model evolution (,evolution-based = &, QU =

verification®).

« evolution-based static analysis
and run-time verification.

« Tool-implementation: significant performance
and scability gains wrt. simple re-verification.

Validation: Successful use in practice.

\

technische universital jan Jirjens: Model-centric Security Verification Subject to Evolution % Fraunhofer 1717
' dortmund ISST

