
Document Interoperability
Open Document Format and Office Open XML

Dr. Klaus-Peter Eckert · Jan Henrik Ziesing · Ucheoma Ishionwu

FOKUSbasic

Document Interoperability

Open Document Format and Office Open XML

- White Paper -

30 July 2009

Authors

Dr. Klaus-Peter Eckert

Jan Ziesing

Ucheoma Ishionwu

Editor

Fraunhofer-Institute for Open

Communication Systems FOKUS

Publisher

Fraunhofer Verlag

ii Imprint

 ii

Imprint

Editor
Fraunhofer-Institute for
Open Communication Systems FOKUS
Kaiserin-Augusta-Allee 31
10589 Berlin, Germany

Authors
Dr. Klaus-Peter Eckert [klaus-peter.eckert@fokus.fraunhofer.de]
Jan Ziesing [jan.ziesing@fokus.fraunhofer.de]
Ucheoma Ishionwu [ucheoma.ishionwu@fokus.fraunhofer.de]

Competence Center
Electronic Government and Applications
Telephone +49 (0)30 3463-7115
eMail elankontakt@fokus.fraunhofer.de
www.fokus.fraunhofer.de/egov-lab

Printing and Bindery
Mediendienstleistungen des
Fraunhofer-Informationszentrum Raum und Bau IRB, Stuttgart

ISBN 978-3-8396-0047-4

Printed on acid-free and chlorine-free bleached paper.

All rights reserved; no part of this publication may be translated, reproduced, stored in a retrieval system, or transmitted in
any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the written permission of
the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. The
quotation of those designations in whatever way does not imply the conclusion that the use of those designations is legal
without the consent of the owner of the trademark.

FRAUNHOFER VERLAG, 2009,
Fraunhofer Information-Centre for Regional Planning and Building Construction IRB
P.O. Box 80 04 69, D-70504 Stuttgart
Nobelstrasse 12, D-70569 Stuttgart
Fon +49 (0) 7 11/9 70-25 00
Fax +49 (0) 7 11/9 70-25 08
E-Mail verlag@fraunhofer.de
URL http://verlag.fraunhofer.de

© by Fraunhofer FOKUS, 2009
All Rights reserved

Acknowledgements
The authors especially wish to thank the experts on document formats and applications Dirk Vollmar & Wolfgang Keber
from DIaLOGIKa as well as Mario Wendt from Microsoft, Mohamed Zergaoui from Innovimax and Florian Reuter from
Novell. They helped to develop important basics and ideas and supplied valuable comments on prior versions of this White
Paper. Special thanks are also due to the DIN and ISO which picked up on some of the ideas prior to this White Paper and
are currently developing them further as part of the standardization process.

mailto:klaus-peter.eckert@fokus.fraunhofer.de
mailto:jan.ziesing@fokus.fraunhofer.de
mailto:%20ucheoma.ishionwu@fokus.fraunhofer.de

Contents iii

 iii

Contents

Contents ...iii

1 Introduction .. 1

2 XML based Document File Formats .. 3

2.1 eXtensible Markup Language ... 3

2.2 Office Open XML ... 4

2.3 Open Document Format ... 6

3 Basic Principles .. 9

3.1 Structure of the White Paper ... 9

3.1.1 Use case template .. 9

3.1.2 Use case scenario ... 10

3.2 Approach ... 11

4 Use Cases ... 13

4.1 Word Processing Documents ... 13

4.1.1 Empty document .. 13

4.1.2 Simple text formatting .. 14

4.1.3 Documents of public authorities .. 16

4.1.4 Tables and field functions ... 18

4.1.5 Itemization and numeration ... 20

4.1.6 Index and table of contents .. 22

4.1.7 Metadata and settings .. 23

4.1.8 Change tracking and collaboration functions ... 25

4.1.9 Forms .. 28

4.1.10 Vector graphics ... 30

4.1.11 Generic fields .. 31

4.1.12 Font metrics and C-fonts .. 32

4.1.13 Equations .. 34

4.2 Spreadsheets .. 35

4.2.1 Listing and structural features .. 35

4.2.2 Formulas and calculation .. 37

4.2.3 Embedded spreadsheet documents ... 39

4.2.4 Simple text formatting and embedded documents ... 41

4.3 Presentation ... 43

4.3.1 Simple text formatting .. 43

4.3.2 Itemization and numeration ... 44

4.3.3 Positioning and layout .. 46

4.3.4 Slide blending and effects .. 47

4.3.5 Animations .. 49

4.3.6 Diagrams ... 51

iv Contents

 iv

4.3.7 Multimedia content .. 52

4.3.8 Master layout ... 54

5 Functionalities and Translatability ... 57

5.1 Introduction .. 57

5.2 Word Processing Documents ... 57

5.2.1 Text formatting ... 57

5.2.2 Paragraph formatting ... 60

5.2.3 Header and footer .. 65

5.2.4 Tables .. 65

5.2.5 Itemization and numeration ... 67

5.2.6 Indices ... 69

5.2.7 Change tracking and annotations ... 70

5.3 Spreadsheets .. 71

5.3.1 Introduction .. 71

5.3.2 Formatting .. 72

5.3.3 Calculation .. 73

5.3.4 Additional properties .. 74

5.4 Presentations .. 75

5.4.1 Introduction .. 75

5.4.2 Slides ... 75

5.4.3 Text formatting ... 76

5.4.4 Master layout ... 77

5.5 Common Aspects .. 78

5.5.1 Alternative presentations ... 78

5.5.2 Custom XML parts .. 79

6 Conclusion ... 80

7 References ... 82

Introduction 1

 1

1 Introduction

OASIS Open Document Format ODF 1.0 (ISO/IEC 26300) and Office Open XML (ISO/IEC 29500) are

both open document formats for saving and exchanging word processing documents, spreadsheets

and presentations. Both formats are XML based but differ in design and scope.

OASIS ODF 1.0 was published by OASIS in May 2005 and accepted as an international standard by ISO

(ISO/IEC 26300) in December 2006. Office Open XML was first approved in December 2006 by the

ECMA International General Assembly as ECMA-376. An updated version was published in November

2008 by ISO (ISO/IEC 29500). The corresponding version, ECMA-376 2nd edition, was published in

December 2008.

The White Paper “Document Interoperability: Open Document Format and Office Open XML”

addresses both technical and strategic decision makers in the public sector. It analyzes how both

standards implement the most important document features, and if and how these features can be

translated between the two formats. The Paper targets users of both document formats as well as

template designers whose competences cut across the spectrum of XML and XML-related

technologies which directly or remotely deal with one or both of the two standards. The Paper will

be of great assistance to those seeking to exchange documents between formats, to extract data

from or import data into documents, or to write applications supporting the two formats.

This White Paper aims at analyzing the two standards and their underlying concepts in terms of

interoperability issues for a selected set of features. It analysis the way these features are

implemented in both standards and estimates the degree of translatability between them using a

table-based comparison. The document serves as a preliminary technical translation guideline for

evaluating translatability between certain parts of the two standards. It does not compare different

implementations which can cause additional kinds of interoperability problems.

Both Office Open XML and Open Document formats are basically descriptions of schemas used for

word processing documents, spreadsheets and presentations created by office application suites.

Both are open formats. A key design objective is to guarantee long term access to data without the

legal or technical barriers associated with proprietary binary formats. XML schema definitions are

normative parts of both standards.

The easiest and most flexible way of manipulating documents is to separate a document’s layout

from its content. Editing the layout and data components independently of one another affords

considerable flexibility in creating and editing office documents. Defining the structure and content

of documents has been the focus of both standards. A document’s layout is ultimately governed by

the implementation of the office suite, in particular by the rendering engine. Thus, using exactly the

same standard to describe a document does not guarantee that different office suites will produce

identical layouts. Consequently this White Paper focuses more on the definition of guidelines for the

translation of document structure and content than on the preservation of document layout.

In this White Paper the two standards will be examined in their universality and not by comparing

specific implementations such as Microsoft Office or OpenOffice. For this reason, various examples

have been developed using a simple XML editor which supports both standards. The names of

2 Introduction

 2

specific implementations may be used in the use cases to illustrate the real world scenario behind

the use case. The figures in this White Paper are created for illustration purposes, using available

tools such as OpenOffice 3.1 and Microsoft Office 2007 SP2. It should not be assumed that the

current versions of these implementations support all the features needed to implement the use

case, especially the document standards and the translation between them.

Several use cases do not mention existing tools, but rather use abstract names such as document

format A (DF-A) and document format B (DF-B).

The White Paper begins with a short overview of XML based document standards. It presents typical

use cases characterizing scenarios where specific features supported by both document formats are

used. It then analyzes the most important features of one document format and show how those

features can best be represented in the other format. The White Paper then reviews the concepts,

architectures and various features of the two document formats in order to provide a good

understanding of the formats' common features and especially their differences. Most features can

be translated to the other format with varying degrees of fidelity. For each feature, we provide

detailed information on the extent to which that feature can be translated.

The following abbreviations will be used throughout this White Paper:

 ODF, which stands for Open Document Format (ISO/IEC 26300:2006).

 OOXML, which stands for Office Open XML (ISO/IEC 29500:2008).

We hope that this White Paper will be useful in understanding how the ODF and OOXML standards

compare, and how their functionality can be mapped between the two formats.

XML based Document File Formats 3

 3

2 XML based Document File Formats

In the early years of the personal computer, different office applications each used their own

proprietary binary file formats. Binary file formats convert human-readable content into machine-

readable representations in binary form. Proprietary formats closely connect the file format to the

application producing it.1

The first free and open standard for a document file and interchange format was the Open Document

Architecture and Interchange Format (ODA/ODIF) published by ISO between 1989 and 1999 as ISO

8613-1:1989, but which failed to find broad acceptance. The Open Document Architecture now has

no market relevance, but its ideas and concepts have indeed influenced standards for document file

formats broadly used today.2

Another important early standard influencing development of XML-based document file formats was

ISO 8879:1986 - the Standard Generalized Markup Language (SGML).3 SGML is a meta-language for

defining markup languages for documents. SGML was originally designed to enable sharing of large

machine-readable documents which have to remain readable for decades. SGML is the substantially

more comprehensive and powerful predecessor of the eXtensible Markup Language (XML) designed

for ease of implementation. XML is now a W3C open standard widely used by numerous

applications.4

The original Sun specification for Open Document Format, adopted by OASIS in 2005 as the OASIS

ODF 1.0 standard, was developed between 2000 and 2002 with the following objective:

“To create as a community, the leading international office suite that will run on all major platforms

and provide access to all functionality and data through open-component based APIs and an XML-

based file format.” 5

Microsoft followed suit in 2006 via the Open Specification Promise (OSP)6 by opening the format of

its 2007 version of the Microsoft office suite (version 12) for which it also uses XML as an exchange

and storage format. This format is published as ECMA-376 1st edition.

2.1 eXtensible Markup Language

The eXtensible Markup Language (XML) is a deliberately simple and straightforward text format for

the exchange and storage of data. The core of the XML format is the coupling of data with its

corresponding mark-up (in the form <start-tag> data <end-tag>; for example: <real estate price>

220.000 </real estate price>. The tags, which are always in angle brackets, enable human readers to

understand the meaning of the data, and computer systems to process the data – in the example

given, the figures for the real estate price can be clearly identified. The ease and straightforwardness

1 (Ditch, 2007)
2 (ISO, 1989)
3 (ISO, 1986)
4 (W3C, 2006)
5 (OpenOffice, 2002)
6 (Microsoft, 2006)

http://en.wikipedia.org/wiki/Machine-readable

4 XML based Document File Formats

 4

of XML means that it now enjoys widespread acceptance, and has become near-pervasive. XML is

one of the major forms of data exchange in all eCommerce and eGovernment sectors.7

2.2 Office Open XML

Office Open XML is a file format originally developed by Microsoft as a successor to its earlier Office

2003 file formats. Office Open XML is used for representing spreadsheet, presentation and word

processing documents. In 2006 Office Open XML became an ECMA standard (ECMA-376). In 2008, a

revised version of ECMA-376 became an open ISO standard (ISO/IEC 29500:2008). The ISO standard,

which has its equivalent in the ECMA-376 Second Edition, freely available in public domain, will be

supported in Microsoft’s Office 2010 (code named Office14).8

The standard itself is structured into four parts, each of which contains normative as well as

informative material:

1. Fundamentals and Markup Language Reference (5558 pages)

Part 1 of the ISO29500 standard9 contains definitions for strict conformance as well as the

reference material for WordprocessingML, SpreadsheetML, PresentationML, DrawingML,

Shared MLs and Custom XML Schema. It defines every element and attribute including the

element hierarchy (parent/child relationships).

2. Open Packaging Conventions (129 pages)

Part 2 of the ISO29500 standard10 defines the Open Packaging Conventions (package model,

physical package) along with the core properties, thumbnails and digital signatures.

3. Markup Compatibility and Extensibility (40 pages)

Part 3 of the ISO29500 standard11 clearly specifies how elements and attributes should be

introduced by future versions or extensions of Office Open XML documents. It describes

extension facilities of OOXML documents while also providing a method by which consumers

can obtain a baseline version of the OOXML document (a version without extensions) for

interoperability.

4. Transitional Migration Features (1465 pages)
Part 4 of the ISO29500 standard12 contains definitions for transitional conformance. It
defines features for backward-compatibility which are useful for the high-quality migration of
existing binary Microsoft Office documents.

The standard specifies six levels of document and application conformance, strict and transitional for

WordprocessingML, PresentationML and SpreadsheetML respectively, together with corresponding

7 (Schmidt, et al., 2006)
8 (Microsoft, 2008)
9 (ECMA-376-1, 2008)
10 (ECMA-376-2, 2008)
11 (ECMA-376-3, 2008)
12 (ECMA-376-4, 2008)

XML based Document File Formats 5

 5

schema definitions. Transitional conformance allows inclusion of XML attributes used to provide

compatibility with older versions of Office documents. Details are specified in Part 4 of the standard.

Strict conformance restricts the number of XML attributes to the core defined in Part 1. Microsoft

Office 2010 produces transitional conformant documents.

The standard also specifies application descriptions of the types base and full. Base applications are

obliged to understand at least one feature of their conformance class, while full applications must

support all features. The introduction of domain-specific document categories and supporting

applications can be expected in the future.

Figure 1: This White Paper opened in Package Explorer

An Office Open XML document file is actually a compressed zip package containing mainly XML-

based files. The Office Open XML file can be extracted using different tools. Examples include

Package Explorer13, XMLSpy14, and the Oxygen XML Editor15. As an example this White Paper is

opened in the Package Explorer Application as shown in Figure 1.

13 (Vugt, 2009)
14 (Altova)
15 (Oxygen)

6 XML based Document File Formats

 6

The structure of the ZIP container is defined via the Open Packaging Conventions (OPC), an

abstraction layer between the physical file / directory layout inside the ZIP file, and the document

structure. OPC defines the concepts of Parts containing data and Relationships connecting the Parts.

At the root lies the so-called “Content Type Stream” which identifies the overall document's type as

well as the content type of its individual Parts. The root relationship defines the location in the ZIP

file of the main document Part. Depending on the document type and the contents of the document,

the main Part will be connected to further Parts and/or external documents via Relationships.

Office Open XML contains specifications for the following three document types:

 Word processing documents

 Spreadsheets

 Presentations

The following diagram illustrates the relationships between the technologies upon which Office Open

XML is based:

.:

Figure 2: OOXML architecture
16

Each document type is defined via its own markup language and uses shared languages for

functionalities common to all three document types (e.g. drawings, metadata, etc.).

2.3 Open Document Format

OpenDocument was originally developed by Sun Microsystems beginning in 2000, as the XML-based

format for StarOffice and OpenOffice. In 2002, the standardization process was initiated at OASIS in

the newly created OASIS Open Office XML Format Technical Committee. This TC was renamed to

OASIS Open Document Format for Office Applications TC in January 2005, and in May 2005 the

16 Graphic by Microsoft (Microsoft, 2007)

XML based Document File Formats 7

 7

standard was published as OASIS Open Document Format for Office Applications, abbreviated as

OpenDocument or ODF17. In 2006, Open Document Format for Office Applications v.1.0 became an

ISO Standard [ISO/IEC 26300]. Open Document Format for Office Applications v.1.118 is the latest

version, standardized and published by OASIS. At the time of writing (July 2009) Version 1.2 is still in

a drafting stage. While version 1.0 of the ODF standard only consists of one part, the current working

draft (version 1.2)19 is structured into three parts: core, formulas, and packages.

The ISO/IEC 26300:2006(E) document is structured as follows:

 Chapter 1: Introduction to the OpenDocument format

 Chapter 2: Document structure

 Chapter 3: Meta-information

 Chapter 4: Text

 Chapter 5: Paragraph content

 Chapter 6: Text fields

 Chapter 7: Text indices

 Chapter 8: Table content

 Chapter 9: Graphical content

 Chapter 10: Chart content

 Chapter 11: Form content

 Chapter 12: Content common to all documents

 Chapter 13: Integration of SMIL animation markup into the OpenDocument schema.

 Chapter 14: Style information content

 Chapter 15: Formatting properties used within styles

 Chapter 16: Data types

 Chapter 17: Packages 20

To date (July 2009) most applications use ODF version 1.1, or even drafts of version 1.2. Examples of

currently available implementations of ODF include OpenOffice.org, StarOffice, NeoOffice, KOffice,

Google Docs, Lotus Symphony, Apple TextEdit, as well as Microsoft Office 2007 Service Pack 2 and

the Windows 7 implementation of Wordpad 2009.

Documents using ODF have an internal structure similar to that of Java-archive files (JAR-files). Like

the JAR-file they contain a manifest file which declares the type and location of the files contained in

the archive.

Unlike OOXML, ODF contains no abstraction layer above the physical file layout within the ZIP

archive; instead, fixed file names are used for document content (content.xml), style information

(styles.xml), meta information (meta.xml) and application settings (settings.xml). These files are

placed in the root directory of the archive; the manifest file (manifest.xml) resides in the subdirectory

17 (OASIS, 2005)
18 (OASIS, 2007)
19 (OASIS, 2009)
20 (ISO, 2006)

8 XML based Document File Formats

 8

META-INF. For unencrypted documents, the ODF standard mandates the presence of a thumbnail

representation of the document, in PNG format, at the location Thumbnails/thumbnail.png.

In order to allow easier content-type recognition by operating systems and processing applications,

ODF documents may contain a file “mime type” containing nothing but the mime type in the root

directory. If this file is present, the standard specifies that this type must not be compressed and

must be the first entry in the ZIP archive so that the information it contains is located at a fixed offset

within the binary representation of the document.

Figure 3 illustrates the minimal structure of an ODF document stored in a ZIP container:

Figure 3: Minimal ODF structure

/

META-INF/

manifest.xml

Thumbnails/

thumbnail.png

content.xml styles.xml meta.xml settings.xml
mimetype
(optional)

Basic Principles 9

 9

3 Basic Principles

3.1 Structure of the White Paper

3.1.1 Use case template

To facilitate comparisons and a quick overview, use cases are described using the following template:

Description:

 Describes the scenario/story the use case is going to tell

 Includes one or more figures demonstrating the use case (optional)

 Defines the translation type and fidelity to be demonstrated

Implementation:

 Describes the features necessary to implement the use case

Use case name:

Translation type and fidelity

One-trip translation


Round-trip translation


Presentation instructions


Document content


Dynamic content


Metadata


Annotations


Document parts


Additional fidelities if needed


Required features:

 Feature a including references to standards

 Feature b including references to standards

Requirements:

 Describes the expected behavior of a feature's translation between both standards

10 Basic Principles

 10

 Describes how the document(s) used in the use case should be defined to achieve the
intended fidelity

Conclusion:

 Compare the applicable features in both standards and the translation rules and fidelity
as elaborated in section 0.

3.1.2 Use case scenario

All use cases are defined as parts of an overall scenario describing a typical information-sharing

situation between cooperating public authorities and between citizens and public authorities.

Assume employee A of a public authority in federal state A and employee B of another public

authority in federal state B wish to exchange documents independent of the office suites used by

their agencies. Microsoft Office and OpenDocument suites are all in broad use for generating

documents, with millions of documents extant in legacy and actual formats.

For purposes of the use case scenario, employee A uses Microsoft Office 2003, and employee B uses

OpenOffice. Both public authorities use a central forms server with a built-in template catalog. In

addition to files using the storage format of their respective office suites, both public authorities can

create pdf-files.

Figure 4: Overall use case scenario

As both pubic authorities see the advantage of sharing XML documents, they decide to test both

available XML formats to check how readily documents can be translated between both standards.

Basic Principles 11

 11

1. Employee A sends employee B a migrated doc/ppt/xls file as an OOXML file.

2. Employee B converts employee A’s OOXML file into ODF and sends it back to employee A,

who compares the files.

3. Employee B sends employee A a migrated doc/ppt/xls file as an ODF file.

4. Employee A converts employee B’s ODF file into OOXML and sends it back to employee B,

who compares the files.

5. Employee B converts an OpenDoc legacy file to ODF and sends it to employee A.

6. Employee A converts employee B’s ODF file into OOXML and sends it back to employee B,

who compares the files.

The intention of this paper is not to review the technical infrastructure or applications, but rather to

focus on the documents the two employees wish to share with each other, and the capabilities and

restrictions of both XML-based, standardized formats based on their actual specifications. Hence we

will focus on different document features and elaborate on their compatibility and translatability in

corresponding use cases. Such a focus on translatability between the standards merely addresses a

subset of the whole challenge of document translation between public authorities and citizens.

3.2 Approach

This White Paper takes a use-case-based approach to identify the requirements to be considered for

translation between ODF and OOXML. As depicted in Figure 5, use cases are selected and categorized

along two lines: type of translation and fidelity of translation. This approach covers all aspects of

translation between the two document formats. Both standards define a storage and exchange

format for documents, including information about both a document’s presentation and its content.

Presentation of documents itself is beyond the scope of the actual standards, and thus beyond the

scope of both the translation process and this Paper.

Another important category of uses cases, graphic fidelity between different layout engines (i.e.

layout implementations), is also beyond the scope of this Paper. In such use cases, different layout

engines are provided with the same information, but may produce visually different results. Since the

actual process of layout is not described by either the ODF or the OOXML standard, this Paper does

not deal with such use cases. However it does cover preservation of layout information around

format translations as part of the presentation instructions so that the selfsame layout engine can

produce the same visual result from the same information encoded in different formats.

Use case descriptions reference section 3.1.2 for the description of demonstrated translation types

and fidelities, and section 5 for a comparison of required features and functionalities.

12 Basic Principles

 12

Figure 5: Use case category overview

The definition of translation fidelity considers the following document properties:

 Presentation instructions include all layout and presentation related information such as
fonts, spacing, margins, and animation in office documents.

 Document content (user content) covers all aspects of content defined directly by the user of
a document.

 Dynamic content covers all aspects of automatically generated content, calculations or form
functionalities such as fields, generated tables, or dynamic references.

 Metadata cover all information apart from the core document content. Metadata are used
to describe meta information about the document such as generator, version, authors, and
to ensure the accessibility of documents, for instance by using certificates.

 Annotation covers all aspects of annotations to a document including comments, change
tracking, and collaborative functions.

 Document parts covers all aspects of structural document features such as headlines, tables,
listings, tables, or captions.

Use Cases 13

 13

4 Use Cases

4.1 Word Processing Documents

4.1.1 Empty document

Description:

When a new document is created either in ODF format or in OOXML format, the user sees initially an

empty document. When the document is saved without any further editing, a document is generated

without user content but with some initial metadata and presentation instructions. This initial

content should be preserved as far as possible during the translation process.

Figure 6: Empty word processing document

Implementation:

Use case name: Empty document

Translation type and fidelity

One-trip translation


Round-trip translation


Presentation instructions


Document content


Dynamic content


Metadata


14 Use Cases

 14

Annotations


Document parts


Required features:

 Metadata
o OOXML: section 8.3; 17.*
o ODF: section 3.1

Requirements:

The following behavior should be obtained no matter which standard is applied:

 Presentation and style instructions remain unchanged

 Metadata remain unchanged

It is not expected that both standards will necessarily use similar defaults for metadata.

Conclusion:

When an empty document defined in the other standard is opened, presentation instructions can be

preserved. However, the initial view of the empty document may be slightly different, depending on

the rendering engine. Metadata can be translated accordingly, even though some information like

the “generator” may be modified.

4.1.2 Simple text formatting

Description:

This use case describes translating a business letter between the ODF and OOXML standards, with a

special focus on formal aspects.

The scenario starts with employee A from federal state A, who writes a letter to employee B of

federal state B about the possible means of cooperation in eGovernment matters and about the joint

organization of a conference on “Cooperative eGovernment”. The letter is intended to be sent to

both their heads of department. Employee A works on his laptop, using an application which

supports format A. The letter looks like the one depicted in Figure 7. After finishing the letter,

employee A e-mails it to employee B who imports the document to format B with a tool and adds the

name of his head of department, checks for mistakes and sends the document back to employee A.

Employee A opens the document again, looks at the now finalized form, saves it in his boss’s

preferred format A, and forwards it to his departmental head.

Use Cases 15

 15

Figure 7: Sample letter

Implementation:

This sample letter makes use of all typical text formatting features. There is centered text on the top

and the date information is positioned on the right. The receiver’s address is aligned on the left. The

letter’s body paragraph is in block format. The text formatting contains a bold paragraph as the

subject line, and embedded italic characters in the body text. At the end of this document an image is

embedded representing the signature of the author. Layout and structure of the document must be

preserved during translation.

Use case name: Simple text formatting

Translation type and fidelity

 One-trip translation


16 Use Cases

 16

Round-trip translation


Presentation instructions


Document content


Dynamic content


Metadata


Annotations


Document parts


Required features:

 Text formatting
o OOXML: section 8.3, 17.*
o ODF: section 2.3, 4, 9.5, 14.*, 15.4

 Paragraph formatting
o OOXML: section 15.2, 17.*
o ODF: section 2.8, 4.2, 9.3, 7.12, 14.*, 15.*

Requirements:

This scenario requires the preservation of presentation instructions during multiple translations of a

formal business document. A formal business letter is a common example of the application of basic

text-processing functionality. A formal letter should strictly conform to a set of guidelines which can

be divided into aspects of presentation and content. Regardless of the text-processing applications

used to create it, a business letter’s appearance and structure should remain identical throughout

the translation process.

Conclusion:

The tables “text formatting” and “paragraph formatting” in sections 5.2.1 and 5.2.2 show how far the

required features can be translated between the two standards. Simple text formatting such as bold

or italic characters, and paragraph formatting such as text alignments can easily be converted

between the two formats, with the exception of “theme fonts,” which are not supported in ODF.

4.1.3 Documents of public authorities

Description:

Employee A has to fill out a format A based travel application form for his planned journey to the

conference on cooperative eGovernment. He sends this to his accounts and human resources

department for further processing. The department opens it in format B and should be able to read

and further process the application. Figure 8 gives a screenshot example of the travel application.

Use Cases 17

 17

Figure 8: Travel application as an example of a basic document from public authorities

Implementation:

Many different functionalities are used in this document. In the header a graphic is embedded while

a text gives information about the document type, its purpose and its application domain. A table is

used to structure information (alternatively a form field could be used as shown in use case 4.1.9). A

text block enables the editing of free text at a defined location. Furthermore, different text

formatting functionalities together with a list are used.

Use case name: Text documents of public authorities

Translation type and fidelity

One-trip translation


Round-trip translation


Presentation instructions


Document content


Dynamic content


Metadata


18 Use Cases

 18

Annotations


Document parts


Required features:

 Images and vector graphics
o OOXML: Section 15.2.13 (15.2.14)
o ODF: Section 9.3.2

 Whitespaces and preserved elements and attributes
o OOXML: Sections 17.15.1.18, 17.18.7
o ODF: Section 1.6

 Text formatting
o OOXML: Section 17.3.2
o ODF: Section 15.4

 Header and footer
o OOXML: Section 11.3, 17.10
o ODF: Section 10.2, 14.3, 15.3

 Tables
o OOXML: Section 17.4/6; 18.3/8
o ODF: Section 8.*; 15.*

 Itemization and numeration
o OOXML: Section 8.3; 17.9
o ODF: Section 4.3

Requirements:

When human resources reviews the document, it should be displayed in exactly the same way as in

employee A’s application. Images and text field should look the same and retain the same

information.

Conclusion:

The document's translation between the standards is difficult from a variety of viewpoints. While the

text formatting issues involved in the example are highly translatable (see use case 4.1.2), tables,

itemization, numeration and graphics can cause difficulties if they have to be translated (see use

cases 4.1.4.; 4.1.5.; 4.1.10.). Even greater problems might arise here due to the different processing

of white spaces in combination with the preserve attribute. Textual header and footers are

translatable.

For further details see: 5.2.1, 5.2.4, 5.2.5

4.1.4 Tables and field functions

Description:

After general approval by the two heads of department, employee A plans to give a cost estimate for

the joint conference to employee B. After filling out the estimates in a document using format A,

Use Cases 19

 19

employee A emails the document to employee B. Employee B saves the document in format B and

emails it to his colleagues.

Figure 9 shows a brief excerpt from the cost estimate:

Figure 9: Sample table

Implementation:

One of the more advanced features of text processing is the usage of tables and predefined field

functions, as seen in Figure 9. This excerpt shows a table with joined cells and common text

formatting. Cells are joined up to span multiple rows and columns. Different cell alignment appears

as left, center and right aligned text. A hyperlink is inserted into the header row of the table.

Use case name: Tables and field functions

Translation type and fidelity

One-trip translation


Round-trip translation


Presentation instructions


Document content


Dynamic content


Metadata


Annotations


Document parts


20 Use Cases

 20

Required features:

 Tables
o OOXML: section 17.*
o ODF: section 8.1, 15.*

Requirements:

When translating such a document between the ODF and OOXML standards, the result must meet

structure-related requirements in addition to preserving the visual appearance, as shown in the

“Simple text formatting” use case. Document parts must be consistently translated to enable users to

edit hyperlinks, table cells and even complex nested tables after converting the document’s format.

Conclusion:

The translation of table structures between ODF and OOXML is supported in most cases. Problems

appear when using table background patterns (not supported by ODF) as well as sub-tables (not

supported by OOXML). Another problem is ODF’s lack of support for certain layouts, such as the

“right to left” layout. Such layout options could be emulated within the options available to ODF, but

even so would still require a complex translation. ODF’s lack of support for document themes which

OOXML uses frequently could cause information loss during translation.

These differences restrict the translatability of tables between the two standards.

4.1.5 Itemization and numeration

Description:

Besides common table functionality, other important features commonly used in office documents

are numerations and lists which are often used to present structured information. Employee A sets

up a shared online workspace to facilitate the exchange of larger files related to the joint venture. He

sends a document explaining the workspace login procedure to his contacts in federal state B.

Created in format A, the document describes the required tasks in a few steps. The employees at

federal state B open the document using an application supporting format B and see the following:

Figure 10: Numbered items

Use Cases 21

 21

Implementation:

The example shown in Figure 10 contains a simple list of instructions typed in plain text. The

instructions are listed using simple numerals and special characters (".") as separators.

Use case name: Itemization and numeration

Translation type and fidelity

One-trip translation


Round-trip translation


Presentation instructions


Document content


Dynamic content


Metadata


Annotations


Document parts


Required features:

 Itemization and Numeration
o OOXML: section 8.3; 17.9
o ODF: section 4.2, 14.9

Requirements:

During a translation between both standards it should be possible to retain the index values and

structural order in the numeration and list parts of the document.

Conclusion:

Due to the ambiguous wording of the ODF standard for numeration, multiple interpretations of

certain itemization and numeration properties are possible. Both formats have multiple ways of

applying numbering to text segments. Maintaining visual fidelity would probably call for relatively

complicated transformation methods between the two standards, even if the logical hierarchy of

different layers of indices was preserved.

The translation of itemization and numeration properties between the standards ODF and OOXML is

described in more detail in section 5.2.5.

22 Use Cases

 22

4.1.6 Index and table of contents

Description:

After the creation of the shared workspace and an initial budget approval, employee A starts to

create a document setting goals, explaining results and covering different topics in different

chapters. To give a rapid overview of the content and structure and to facilitate navigation, an

automatically generated index is added to the document. The document created is saved in format A.

Employee B opens the document in his format B-supporting application, removes chapters, and

sends the revised version (in format B) to his colleagues.

Figure 11: Auto-generated index

Implementation:

In addition to continuous text and structural and presentation features, large documents can contain

indices and tables of contents, to enhance readability and to make them more human searchable.

Indices like the one shown in Figure 11 should display the document's structure based on headings

and page numbers as well as figures and tables based on their captions. Indices should be generated

automatically by the available word processing application and kept updated as necessary.

Use Cases 23

 23

Use case name: Index and table of contents

Translation type and fidelity

One-trip translation


Round-trip translation


Presentation instructions


Document content


Dynamic content


Metadata


Annotations


Document parts


Required features:

 Indices
o OOXML: section 17.16
o ODF: section 7.*

Requirements:

The table of contents should be adapted automatically; deleted chapters should no longer appear in

the index, and the page numbers of the remaining parts of the document should be updated. The

main requirement in this scenario is that the table of contents and index from a format A document

can be correctly translated into a corresponding table of contents and index in a format B document.

Conclusion:

Although the two document formats differ in their approaches to the generation of tables of

contents and indices, they do indeed offer comparable levels of support for this feature.

Implementations must take into account the different models, which makes the translation much

more complex, especially when documents combine the available models. A more detailed view of

index handling is given in section 5.2.6.

4.1.7 Metadata and settings

Description:

When a document created by employee A using English vocabulary, punctuation and spell checking is

saved in format A and sent to employee B, who uses an application supporting format B, his

application should immediately recognize which language was used when creating the document.

24 Use Cases

 24

Figure 12: English text with German settings

Figure 13: English text with English settings

Figure 14: Language metadata info

Implementation:

To ensure the accessibility of word processing documents, certain additional information must be

stored as metadata. One example of such metadata is the settings indicating the language used in

authoring a document. Grammar and spelling-checkers will need this information when working with

the translated document.

The document shown in Figure 12 was written in English with an application normally using German

as its default language. Thus, the written words are not recognized by the German spelling checker,

as shown by the squiggly red lines displayed under each word. In Figure 13, the language settings

have been modified, as evidenced by the absence of the red lines denoting misspelling. Excerpt of

the documents’ metadata files are given in Figure 14 where the position indicating the default

language is underlined in red.

Use Cases 25

 25

Use case name: Metadata and settings

Translation type and fidelity

One-trip translation


Round-trip translation


Presentation instructions


Document content


Dynamic content


Metadata


Annotations


Document parts


Required features:

 Metadata
o OOXML: section 17.3
o ODF: section 2.*, 3.1

Requirements:

A target word processing application must be able to correctly interpret a document’s metadata if

costly errors are to be avoided. Translation tools should ensure adequate mapping or meaningful

default mapping of the metatags when translating between standards.

Conclusion:

Both standards support different types of metadata. Language information can be adequately

translated.

4.1.8 Change tracking and collaboration functions

Description:

The following scenario illustrates how collaboration between different authors using different text

processors should proceed.

Employee A, using format A, is planning to publish an article about Web services. Employee B and

some other colleagues will all contribute to it, authoring in format B. The first draft of the document

will be provided by employee A. The following screenshot illustrates the initial version of the article:

26 Use Cases

 26

Figure 15: Continuous text

Employee A sends this document in format A to his co-author, employee B with a request for

comments. The co-author reviews the document using format B’s commenting and change tracking

features. The comments, shown as colored boxes on the right margin21, can be applied to

paragraphs, words, and even single characters. Comments are marked with the initials of the user

entering the comment, with different colors marking comments made by different users. The change

tracking function highlights added, edited, moved or deleted text parts and shows the obsolete text

parts in colored comment boxes.

Figure 16: Continuous text with annotations

After employee B has returned the reviewed version of the article, employee A can revise the text by

accepting or rejecting the comments and proposed changes.

Implementation:

One of the most important features for editing large documents with multiple authors is called

“collaborative functions” which include user-specific comments and tracking of changes. These

21 The way comments are shown (rendered) depends on the chosen implementation.

Use Cases 27

 27

functions enable collaborative workflows, allowing document editing and reviewing by multiple

participants. The information required for such workflows, including user data, notes or tracked

changes, is embedded within the document itself. Proper adoption of such meta-information plays

an important role in the collaborative authoring processes.

This type of application, with its workflow support, substantially alleviates the difficulties of revising

documents with multiple authors. The foundation for this document lifecycle is the proper

conversion of meta-information from one standard to the other, to correctly retain comments and

proposed revision information.

Use case name: Change tracking and collaboration functions

Translation type and fidelity

One-trip translation


Round-trip translation


Presentation instructions


Document content


Dynamic content


Metadata


Annotations


Document parts


Required features:

 Change tracking and document revision
o OOXML: section 17.*
o ODF: section 3.1, 4.6, 8.3, 12.3

Requirements:

The references to the paragraphs, words and characters made by employee B using format B should

be accurately translated into employee A’s format A. The information used for change tracking

should also reflect the exact editing (such as highlighted changes) in such a way that it can be

accurately reproduced, since it is vital that all proposed changes be rendered properly.

28 Use Cases

 28

Conclusion:

Both document formats offer support for revision-handling, although there are significant differences

in the scope of their revision-handling functionality and their approach to the underlying technical

details. For example, ODF does not allow for tracking changes made within tables, while OOXML

tracks changes to the content of tables as well as changes to the structure of tables themselves.

While ODF only records the fact that a text attribute, such as the used text font, has changed,

OOXML records the full history of changes made, ensuring the ability to reconstruct the previous text

version. Another difference is in the understanding of text comments. While OOXML allows adding

comments to arbitrary text ranges, this feature is not supported by ODF. However similar

functionality may be provided by inserting notes associated with a point within the text rather than a

range. The table “change tracking and document revision” in section 5.2.7 details how collaborative

functions could be used when translating between the different document formats.

4.1.9 Forms

Description:

The joint conference being planned uses optimized internal workflow processes. Employee A has

designed a digital application form, to avoid the bother of paper-based workflows. The application

form saves the data in a structured form, making it easy to extract information such as mailing lists or

statistical data. The form is also used by employee B and other employees from federal state B, and

thus involves the transfer of forms between computers running different word processing

applications. This use case illustrates some simple features commonly used in forms:

Figure 17: OOXML form

Implementation:

Modern word processing documents are tightly integrated into electronic workflows. They serve as

static output formats for reports or certificates and, with their extended form functionalities, they

can also be integrated as dynamic, data driven front-ends.

The form in Figure 17 contains different textboxes. The form is filled out by an applicant and

submitted via a send button which integrates the form’s data directly into applications which further

process the data.

Use Cases 29

 29

Use case name: Forms

Translation type and fidelity

One-trip translation


Round-trip translation


Presentation instructions


Document content


Dynamic content


Metadata


Annotations


Document parts


Required features:

 Forms
o OOXML: section 17.16
o ODF: section 11

Requirements:

To pass this form between applications based on ODF and applications based on OOXML, the form's

functionality needs to be preserved. Translating the form from one format to the other for

processing or viewing should not result in data corruption.

Conclusion:

Translation of forms between ODF and OOXML is likely to prove problematic, since the two

technologies diverge strongly in many aspects of form handling. While ODF is directed to the open

standard XForms22 (Version 1.0 from 2004), OOXML uses "form fields" that support insertion of data

through "form controls". Although both concepts work with XML structures, the translatability of

forms between the two standards is merely low to average.

22 (W3C, 2003), has been replaced by 3rd edition in October 2007

30 Use Cases

 30

4.1.10 Vector graphics

Description:

Employee A designs a logo which is embedded in a format A document and sends it to employee B

who opens the document using a format B office application. Ideally, the logo should be displayed by

the format B application in the same way as it was by the format A application.

Figure 18: Embedded vector graphic

Implementation:

Vector graphics are essential elements of modern document content and presentation, especially for

printing purposes. They are flexible in use, editable to a certain extent, and scalable to nearly any size

without any need for special expertise in graphics.

Use case name: Vector graphics

Translation type and fidelity

One-trip translation


Round-trip translation


Presentation instructions


Document content


Dynamic content


Metadata


Annotations


Document parts


Required features:

 Vector graphics
o OOXML: section 8.6
o ODF: section 9.3

eGov

Coop

Use Cases 31

 31

Requirements:

Graphics embedded in documents should maintain their appearance, scaling, and quality when

translating documents between the two formats. There should be no discernible difference between

graphics presentation under ODF and OOXML. This applies equally to graphics properties such as

pixel size, color encoding etc.

Conclusion:

Unlike bitmap graphics which are represented simply through a MIME type and are virtually

platform-independent, vector graphics pose bigger translation challenges. OOXML essentially defines

its own DrawingML format to which the now obsolete VML (Vector Markup Language) was a

precursor. ODF recommends the use of SVG (Scalable Vector Graphics) which is not as rich in

features and functionality as DrawingML. The ODF standard merges the SVG namespace with ODF’s

namespaces, so the SVG objects in ODF documents can’t be handled by generic SVG tools and

technologies. These types of disparities could pose potential interoperability problems between the

two standards in the area of vector graphics.

4.1.11 Generic fields

Description:

To automate recurring tasks, employee A creates a letter template using generic fields that automate

tasks such as including addresses for mass mailings, inserting portions of text or the current date.

When employee B reopens one of these template-generated letters for review, amendment and

eventually for printing, certain fields are auto-completed, which saves him both time and trouble.

After reviewing the letter, employee B sends out the invitations, saved in format B.

Figure 19: Field function displaying the current date

Implementation:

The concept of generic fields was introduced to provide text documents with dynamic content. Fields

have become one of the most basic tools in preparing document templates. Fields automatically

update to include changing data in the document. Combining fields with AutoText creates a powerful

documentation “toolbox”.

Use case name: Generic fields

Translation type and fidelity

One-trip translation



Round-trip translation


32 Use Cases

 32

Presentation instructions


Document content


Dynamic content


Metadata


Annotations


Document parts


Required features:

 Generic fields
o OOXML: section 17.16
o ODF: section 11.3

Requirements:

The document created by employee A should contain the same generic fields when it is opened by

employee B, and function the same way on both ODF and OOXML platforms. The current system

date, for example, should be recognized by the application which opens the document and should be

displayed correctly in the automatically updated date fields. It is important that applications correctly

interpret all formats and conventions.

Conclusion:

Unlike ODF, OOXML allows text fields to contain arbitrary user-generated content. This functionality

is used by third-party applications to extend the document's functionality, i.e. by dynamically

inserting (meta-)data into a document, or by extracting data in order to perform calculations. While

work is underway to add similar functionality to ODF, such functionality thus far cannot be

adequately translated.

4.1.12 Font metrics and C-fonts

Description:

After sending out the invitations, a response letter written using the OOXML format and typed in the

Cambria font is sent to both employees.

Use Cases 33

 33

Figure 20: Cambria font

Implementation:

New fonts such as Microsoft’s C-fonts (Calibri, Cambria, Candara, etc.) are optimized using ClearType

rendering for increased sharpness on liquid-crystal displays. The metrics of the available fonts are

used to identify an alternative font in case the primary (C-)font is not available.

Use case name: Font metrics

Translation type and fidelity

One-trip translation


Round-trip translation


Presentation instructions


Document content


Dynamic content


Metadata


Annotations


Document parts


Required features:

 Font metrics
o OOXML: section 17.8
o ODF: section 2.6

Requirements:

The document that both employees open in their different applications should line up in all aspects

of graphical fidelity. The advantages of ClearType fonts should also be clearly visible when opened in

an ODF application and displayed by an appropriate layout engine.

34 Use Cases

 34

Conclusion:

Due to the use of alternative metrics optimized for ClearType, the appearance of translated

documents could differ in terms of line and page breaks. Replacement font types used in alternative

document formats such as ODF might require greater or lesser space than the original C-Fonts. One

possible solution could be embedding these font types by anchoring them as characters within a text

span.

This use case is related to graphic fidelity. Its focus is on features of layout engines and not on

translation between document formats.

4.1.13 Equations

Description:

Employee B adds several embedded equations to a document in format B. The equations require

special formatting so as to properly represent formulas. Employee B emails the document in format

B to employee A who views it using a format A-supporting application.

Figure 21: Embedded equation

Implementation:

In ODF equations are described using the W3C recommendation MathML23 and anchored as part of

drawing elements within or between text paragraphs. With the additional semantic content

definition (in the form of semantic tags and annotations) provided by MathML, equations could also

be communicated in different ways. MathML encodes the notational structure of an expression in a

sufficiently abstract way to facilitate rendering to various media. Thus, the same presentation

markup can be rendered with relative ease on screen in either wide and narrow windows, in ASCII or

graphics, in print, or it can be enunciated in a sensible way when spoken.

Equations in OOXML are described in the shared Office MathML Markup Language (OMML)

language. These equations are embedded in OOXML documents. They support features such as

revision markings, images and regular styles and formatting found in regular WordprocessingML.

OMML can be transformed into MathML via XSLT.

Use case name: Equations

Translation type and fidelity

One-trip translation



Round-trip translation


23 (W3C, 2003)

Use Cases 35

 35

Presentation instructions


Document content


Dynamic content


Metadata


Annotations


Document parts


Required features:

 Equations
o OOXML: section 8.6; 17.5
o ODF: section 9.3

Requirements:

The equations employee B inserts in the document should be displayed on the format-A target

system in a form equivalent to that created by employee B. Equation elements may not be omitted,

swapped or placed in the wrong position.

Conclusion:

Mathematical content such as equations is represented via MathML in ODF, even though ODF does

not import or reference the MathML schema definition. OOXML implements the shared markup

language OMML for handling mathematical equations. In OOXML shared parts types can refer to

both MathML and OMML. For this reason the translatability between both standards with XSLT is

quite high. Change tracking is not possible in MathML.

4.2 Spreadsheets

4.2.1 Listing and structural features

Description:

Employee B uses a spreadsheet using format B to store contact information. The spreadsheet has 5

columns and about 400 entries. The top row contains the column titles: first name, surname,

address, notes and date of birth. To facilitate navigation, the top row is fixed, and will not move while

scrolling down the rows. Figure 22 shows an excerpt from the spreadsheet. Employee B emails the

spreadsheet to employee A who opens it for editing using format A.

36 Use Cases

 36

Figure 22: Address list

Implementation:

One of the main applications for spreadsheets is the listing and structuring of large amounts of data

in sortable tables. Presentation instructions can define the frames, shading and colors used for

highlighting and structuring certain parts of the spreadsheet. This use case illustrates the most

important functionalities used in spreadsheets. The graphical characteristics of this sheet include its

fixed top row, the grey shading of the top row, the colored text in a single cell and the highlighting

colored frame on a complete row. The last column uses date formatting which formats any entry as a

date.

Use case name: Listing and structural features

Translation type and fidelity

One-trip translation


Round-trip translation


Presentation instructions


Document content


Dynamic content


Metadata


Annotations


Document parts


Required features:

 Formatting
o OOXML: section 8.4, 12, 17.4, 18.*, 21.2
o ODF: section 2.3.4, 6.7, 9.3, 14.7, 15.*

Use Cases 37

 37

Requirements:

When employee A opens employee B’s list, it should remain obvious that certain elements, such as

the row marked red or the red text, are more relevant than others. All the applied presentation

characteristics created in format B must be reproduced accurately in employee A’s format A

application.

Conclusion:

Though certain non-vital features such as shared formulas are not supported by both standards, and

features like “cell protection” can only work under certain preconditions in OOXML, more important

features such as highlighted cell borders, background images and the assignment of formulas and

functions to particular cells are well-translatable. For this use case, the level of translatability with

respect to preservation of content and presentation is high.

4.2.2 Formulas and calculation

Description:

Employee B uses a spreadsheet template to place orders for new computer equipment. Employee B

uses format B, while the IT department handling the order uses format A.

Figure 23: Spreadsheet based invoice template

38 Use Cases

 38

Implementation:

In addition to storing and organizing data, spreadsheets are a powerful tool for managing complex

and dynamic calculations. Within a spreadsheet, any cell can contain a formula which references the

values of other cells using row and column numbers.

Use case name: Formulas and calculation

Translation type and fidelity

One-trip translation


Round-trip translation


Presentation instructions


Document content


Dynamic content


Metadata


Annotations


Document parts


Required features:

 Calculation
o OOXML: section 18.*
o ODF: section 8.1

Requirements:

The essential part of this spreadsheet consists of a table for the invoice line items and a self-totaling

field for calculating the total cost of the items ordered. Each time a new line item is added, the total

due field is updated automatically. Translation of calculation spreadsheets should preserve formula

logic as well as presentation and layout information.

Conclusion:

One problem likely to arise when translating spreadsheets is that formula-evaluation is generally

application dependent; calculations may work differently if used in different applications. Possible

workarounds for such difficulties could be:

 The use of self-written formulas as against the native “out of the box” ones provided by the
application which might pose problems during adaptation to non native platforms.

Use Cases 39

 39

 The mapping of formulas to specific programming/script languages.

The general underlying problem is the lack of a standard for formulas; such a standard would go a

long way towards alleviating formula incompatibilities. The OOXML standard includes a documented

formula syntax, but ODF does not include a standardized syntax for formulas. The ODF 1.2

specification (currently under development by OASIS) will include a standardized Open Formula

syntax, which may enable implementers to more reliably map formulas between ODF and OOXML

spreadsheets. This is less of a conversion/mapping problem than an end user inconvenience. Further

details are given in section 5.3.3.

4.2.3 Embedded spreadsheet documents

Description:

Employee B wants to pass on information to employee A contained in a format-B spreadsheet.

Instead of recreating the portion of the spreadsheet he wants to send, he simply embeds the

pertinent spreadsheet information in a text document containing a note and instructions as shown in

Figure 24.

Figure 24: Spreadsheet embedded in a word processing document

Implementation:

An obvious advantage of this approach is that the data in the embedded spreadsheet can be edited

and manipulated directly as a dynamic source by the spreadsheet engine rather than being handled

statically.

40 Use Cases

 40

ODF accomplishes this by making use of the <text:insertion> element which contains the information

required to identify any insertion of content. Placing a frame within the text area, such as a drawing

shape in which a spreadsheet has been embedded, can also be used to create the same effect.

OOXML proposes two options for embedding a spreadsheet within a text document:

 Embedded Packages - Two documents (in this case: a SpreadsheetML document embedded
in a WordprocessingML document) are stored together in a format defined by OOXML as an
embedded package.

 Embedded Objects – The data stored in the object is identified by a unique string (ProgID)
which identifies the kind of object data to be embedded.

Use case name: Embedded spreadsheet documents

Translation type and fidelity

One-trip translation


Round-trip translation


Presentation instructions


Document content


Dynamic content


Metadata


Annotations


Document parts


Required features:

 Embedded spreadsheets
o OOXML: section 15.2
o ODF: section 8; 9.3

Requirements:

When employee A opens the document containing the embedded spreadsheet, he expects all edited

features of the spreadsheet such as color boundaries and highlighted text to be presented exactly as

they were when employee B saved the original spreadsheet. For example, the date format needs to

be maintained exactly, since an incorrect representation of the original date data could lead to

confusion or errors.

Use Cases 41

 41

Conclusion:

Translatability of embedded objects between ODF and OOXML is not confronted by any major

barriers; both standards support Object Linking and Embedding (OLE) as well as alternative image

representations of linked objects. Slight translation difficulties may occur in the latter case, since

when representing alternative images OOXML may refer to elements of the deprecated VML format

which is not an open standard.

4.2.4 Simple text formatting and embedded documents

Description:

Employee B creates a spreadsheet containing several sample newsletter layouts, and saves it in

format B before sending it to employee A who opens it with his format A-supporting application.

Figure 25: Spreadsheet with simple text and embedded documents

42 Use Cases

 42

Implementation:

In spreadsheet documents, portions of text are often included as cell content. The use case illustrates

one such scenario which is also associated with the formatting and inclusion of graphics.

Spreadsheets often contain formatted text as cell content. This use case illustrates one such scenario

which is also associated with formatting and the inclusion of graphics.

The example given in Figure 25 contains three rows and three columns. Column A contains a short

text description. Column B contains comments describing the newsletter layout. Column C contains a

short text sample formatted using the proposed layout. In addition to paragraph and word

formatting, the sample layout in column C also contains embedded graphic elements. Each layout

sample fits into the last cell on the row which bears the scaled down proportions of a letter-format

page, and is displayed as a page in miniature. The layout samples included in the sheet can either be

linked to or embedded within the document.

Use case name: Simple text formatting and embedded documents

Translation type and fidelity

One-trip translation


Round-trip translation


Presentation instructions


Document content


Dynamic content


Metadata


Annotations


Document parts


Required features: Embedded parts

 Formatting
o OOXML: section 12.3; 15.2
o ODF: section 9.3

Requirements:

In translating the information needed to present this spreadsheet using an ODF application, all

presentation instructions settings should be preserved. The graphic elements and images should

likewise maintain their original graphical appearance.

Use Cases 43

 43

Conclusion:

The translatability between ODF and OOXML faces no major barriers as both standards support

Object Linking and Embedding (OLE) as well as alternative image representations of linked objects.

Translating vector graphics could pose slight problems as mentioned in section 4.2.3.

4.3 Presentation

4.3.1 Simple text formatting

The basic features of presentation documents are quite similar to those of text processing

documents. The following scenario describes the common features of presentation documents

exemplified by a simple keynote presentation. The presentation was created by employee A using

format A, and needs to be revised by employee B using format B.

Description:

Employee B opens the presentation for review and checks to make sure the formatting is correct and

there are no grammatical errors.

Figure 26: Simple text formatting in presentation documents

Implementation:

The introductory slide makes use of common text formatting features such as centering and bold

text.

Use case name: Simple text formatting

Translation type and fidelity

 One-trip translation


44 Use Cases

 44

Round-trip translation


Presentation instructions


Document content


Dynamic content


Metadata


Annotations


Document parts


Required features:

 Formatting
o OOXML: section 2.3.3, 13.3, 19.*, 21.1
o ODF: section 4.4, 14.6, 15.*

Requirements:

Any corrections employee B makes in format B, (such as changes to fonts, indentation or layout)

should be reproduced without significant discrepancies when employee A reopens the presentation

using his format A application.

Conclusion:

The requirements of this use case are relatively easy to translate between the two standards. Details

can be found in section 5.4.2.

4.3.2 Itemization and numeration

Description:

Employee A uses his format A application to show the following slide to his head of department

before the planned event. Employee B has previously reviewed this slide and sent it back to

employee A in format B.

Use Cases 45

 45

Figure 27: Itemization and numeration in presentation documents

Implementation:

This slide contains a text list similar to that used in word processing applications. The list is comprised

of a combination of both numbered bullet point and list items. The bullet points are demarcated by

symbols, while the main points are demarcated by numerals.

Use case name: Itemization and numeration

Translation type and fidelity

One-trip translation


Round-trip translation


Presentation instructions


Document content


Dynamic content


Metadata


Annotations


Document parts


Required features:

 Itemization and numeration
o OOXML: section 13.3.*
o ODF: section 4.4

46 Use Cases

 46

Requirements:

The combination of bullet points and numbered list items should be displayed identically by both

applications, since any change in indentation, formatting or symbols used could cause confusion or

distortion of facts.

Conclusion:

The minor problems evident in the translatability of word processing documents also apply to

presentations because of the way ODF applies the same document root structure to all of its

documents. In this use case, however, translatability between the two standards is on a high level.

4.3.3 Positioning and layout

Description:

As in the previous use case, employee A uses his format A application to show the slide below to his

head of department before the planned conference. Employee B has previously reviewed this slide

and sent it back to employee A in format B.

This slide portrays projected results for two different years. These two years are compared using

three short bullet points, and differences between their statistics should be recognizable at first

glance.

Figure 28: Positioning and layout in presentation documents

Implementation:

The slide contains two sections with graphic elements as backgrounds. Each contains distinctive text.

The text in each section is a combination of headers, regular text portions and numbered list items.

The two sections differ in content but not, however, in format.

Use Cases 47

 47

Use case name: Positioning and layout

Translation type and fidelity

One-trip translation


Round-trip translation


Presentation instructions


Document content


Dynamic content


Metadata


Annotations


Document parts


Required features:

 Positioning and layout
o OOXML: section 13.3.9
o ODF: section 14.15

Requirements:

In this use case, the presentation is significant. When employee B opens the slide in his format B

application, it should display precisely as it did in employee A’s format A application. All changes

made by employee B should be visible to employee A when he reopens the document and display as

they did in the format B application.

Conclusion:

In this use case, translatability is high for both content and presentation. Even so, the translatability

of the list featured in this example is limited.

4.3.4 Slide blending and effects

Description:

To enhance the presentation, employee B applies visual animation effects as slide transitions using

his format B application. Employee A then reviews the presentation shortly before a board meeting,

using his format A application.

48 Use Cases

 48

Figure 29: Slide blending and effects in presentation documents

Implementation:

Instead of simple transfers from slide to slide, employee B uses blending effects where one slide

blends over into another, as in the fades or “push” transitions illustrated in Figure 29. Animation

transitions make the slide changes appear more fluid and give the presentation a smoother overall

look.

Use case name: Slide blending and effects

Translation type and fidelity

One-trip translation


Round-trip translation


Presentation instructions


Document content


Dynamic content


Metadata


Annotations


Document parts


Use Cases 49

 49

Required features:

 Presentation
o OOXML: section 19.5
o ODF: section 13.1; 15.36

Requirements:

The same visual effects should be visible when employee A opens the presentation using format A. If

employee B later alters or adds to the effects already applied using a format B application, such

changes should be reflected the next time employee A reopens the document using format A. A

roundtrip conversion should be possible.

Conclusion:

Certain features such as time line functionality or transitioning slides along Bezier curves or polylines

are not supported by ODF. OOXML provides a far richer lineup of features which are only marginally

translatable, or indeed impossible to transform into ODF. This makes for restricted translatability

between the two standards with regard to animated slide transition features.

4.3.5 Animations

Description:

For better visualization of the quoted statistics, employee A uses his format A application to add

animations to a slide. He then emails the slide to employee B for review.

Figure 30: Sample animation in presentation documents

50 Use Cases

 50

Figure 31: Sample animation in presentation documents

Implementation:

The bars shown in Figure 31 seem animated as they appear one by one with the help of graphic

effects which are triggered by a mouse click or shown at timed intervals. The embedded animation is

visible for as long as the slide is active.

Use case name: Animations

Translation type and fidelity

One-trip translation


Round-trip translation


Presentation instructions


Document content


Dynamic content


Metadata


Annotations


Document parts


Required features:

 Presentation
o OOXML: section 19.5
o ODF: section 9.7

Use Cases 51

 51

Requirements:

Employee B should be able to replay these animations in a format B environment without noticing

any difference; any changes employee B makes to the animations should also be reproducible in

employee A’s format A environment.

Conclusion:

Both standards have a well-developed set of tools to animate graphic elements. There could be slight

difficulties in translatability between applications since animations based on OOXML can be

manipulated with finer granularity than those based on ODF. This imposes more constraints on the

translation of ODF based applications. One possible way of circumventing some of these setbacks is

through the use of SMIL (Synchronized Multimedia Integration Language), which offers a common

animation platform for the two standards.

4.3.6 Diagrams

Description:

Employee A creates a slide comparing project results across three years. Employee B has been asked

to add the new slide to the keynote presentation.

Figure 32: Diagram in presentation documents

Implementation:

Presentation documents can contain simple embedded graphics, called shapes in ODF. Diagrams

used in presentation documents in the case of ODF are basically drawing shapes which differ only in

their attribute/style-family elements. Presentation shapes are assigned presentation attributes with

52 Use Cases

 52

a style from the “presentation” family, while drawing shapes are assigned drawing attributes with a

style from the “graphic” family. In addition, presentation shapes are further classified based on

usage. Examples of such classifications include “text”, “graphic” or, as shown in Figure 32, “chart.”

Use case name: Diagrams

Translation type and fidelity

One-trip translation


Round-trip translation


Presentation instructions


Document content


Dynamic content


Metadata


Annotations


Document parts


Required features:

 Diagrams
o OOXML: section 14; 12.3
o ODF: section 9.2; 10

Requirements:

When employee B reviews the document, it is displayed in exactly the way it looks in employee A’s

application: The lines, colors and proportions should be the same in both applications.

Conclusion:

The original view would – to a great extent - be retained during a translation between the standards

as the translatability between graphic components is high.

4.3.7 Multimedia content

Description:

To make for a more lively presentation, employee B wants to incorporate multimedia content (in this

case audio and animated vector graphics) into his slides. Before giving the presentation employee A

crosschecks these multimedia slides to ensure everything is working smoothly.

Use Cases 53

 53

Figure 33: Multimedia content in presentation documents

Implementation:

Employee B has embedded three multimedia elements (audio) each associated with additional

graphic elements serving as clickable surfaces (grey rectangles). When an audio is being played, the

animated “play” sign appears. When an audio being played is paused, an animated "pause" sign

appears. If no audio button is clicked, an animated "stop" sign appears.

Use case name: Multimedia content

Translation type and fidelity

One-trip translation


Round-trip translation


Presentation instructions


Document content


Dynamic content


Metadata


Annotations


Document parts


54 Use Cases

 54

Required features:

 Multimedia content and vector graphics
o OOXML: section 15.2.2; 15.2.10
o ODF: section 9.8

Requirements:

When employee A reopens the slide, all media assets should be properly referenced, and the

animations should work in the same way they did in the format B application.

Conclusion:

The only means provided by ODF to implement these functionalities is SMIL which is a good

alternative to the usual <presentation:animations> element when a mixture of multiple animations

are running at the same time. ODF’s use of SMIL for certain animation effects is not likely to give rise

to any major translatability issues since the schema and syntax of OOXML’s PresentationML is loosely

based on SMIL.

4.3.8 Master layout

Description:

In order to give the event a "corporate design" employee B creates slide templates to be used by the

different presenters. Employee A opens one of the layout templates sent to him by employee B and

edits it using a format B application.

Figure 34: OOXML master slide in presentation documents

Use Cases 55

 55

Figure 35: ODF master layout in presentation documents

Implementation:

Employee B uses the master slide to simultaneously edit layout on multiple slides (see Figure 34).

Employee A then manipulates the master slide to further adjust the slide layout (see Figure 35).

Use case name: Master layout

Translation type and fidelity

One-trip translation


Round-trip translation


Presentation instructions


Document content


Dynamic content


Metadata


Annotations


Document parts


Required features:

 Presentation Masters
o OOXML: section 8.5; 13.3; 19.3
o ODF: section 9.*; 13.5; 14.*; 15.36

56 Use Cases

 56

Requirements:

The changes made by employee A should be reflected in the slide master when employee B reopens

the presentation in application B. Employee B should also be able to automatically see the master

changes reflected on each individual slide without having to open the master slide settings.

Conclusion:

Translatability between the OOXML master slides and ODF master layouts is very high and satisfies

most requirements. For further details, see section 5.4.4.

Functionalities and Translatability 57

 57

5 Functionalities and Translatability

5.1 Introduction

This section explains the features needed to implement the use cases described in section 4. The

tables in the following subsections summarize the availability of various features for each of the two

document formats as well as offering an estimate of the "translatability level" of the various features,

which is defined as follows:

 Low: Either one of the standards does not support this feature at all, or the way the feature

is implemented differs so significantly that feature translation is impossible without

information loss.

 Medium: Features categorized as having a "Medium" translatability are supported in both

formats, although some aspects may differ and workarounds may be required. Features

marked as "Medium" may support a single-direction translation, but will result in information

loss during round-trip translations. The "Notes" column provides further details on each

relevant feature.

 High: These features are supported by both standards, and round-trip translation should

pose no problems.

The characterization of translatability by the above mentioned metric indicates whether it is possible

or in general impossible to translate a feature between the standards. It cannot be assumed that a

given tool actually has an implementation for all translations, indicated as "high". On the other hand

it cannot be excluded that a given tool has a specific implementation for a translation, indicated as

"low". Translation rules will always be tool specific.

It is important to note that the focus of this section is to describe the translatability of various

document features between formats and not to engender discussion about the relevance of certain

features or to make recommendations for the addition or removal of features from one of the

standards. All characterizations are focused on strictly conformant OOXML documents. Transitional

conformance as described in ISO/IEC 29500 part 4 is not considered. All statements about ODF refer

to ISO/IEC 26300.

5.2 Word Processing Documents

5.2.1 Text formatting

This section contains properties which may be applied to text in word processing documents. Both

formats support formatting text at the paragraph level as well as finer granularity. OOXML calls this

capability a “run,” ODF calls it a “span”. The following table summarizes the features which appear in

the use cases described in section 4.1.

58 Functionalities and Translatability

 58

Table 1: Text formatting

Functionality
Sub-

functionality
OOXML ODF

Translata-
bility

Notes

Bold text (font
weight)

 Yes

17.3.2.1

Yes

14.6.3

Medium In addition to bold, ODF allows
font weight to be specified
numerically (100-900).

Text borders Yes

17.3.2.4

No Low ODF only supports borders on
whole paragraphs.

Whitespaces Yes

17.15.1.18

17.18.7

IS29500-3

10.

Yes

1.6

Medium Because certain OOXML
elements (such as the “preserve”
attribute defined separately in
IS29500 – part 3), are not
supported by ODF, translatability
of this feature could be
problematic.

Capitalization

All upper case Yes

17.3.2.5

Yes

15.4.2

High

Small caps Yes

17.3.2.33

Yes

15.4.1

High

All lower case No Yes

15.4.2

Low

Text color

RGB Yes

17.3.2.6

Yes

14.7.8

High

Background
color

Yes

17.3.2.6

Yes

15.4.37

High

Based on
theme

Yes

17.15.1.20

17.18.97

No Medium ODF has no concept of a
“document theme”.

Blinking text No Yes

15.4.36

Low OOXML supports only blinking
backgrounds, but no blinking
text.

Text
highlighting

Yes

17.3.2.15

No Medium Only a limited range of colors is
available for text highlighting.

Complex script
support

 Yes

17.3.2.7

Yes

15.4.13

15.4.14

Medium The formats differ in how
complex scripts (east-Asian or
right-to-left scripts) are
supported.

East-Asian text

Packing two
lines into
one

Yes

17.3.2.10

No Low

Functionalities and Translatability 59

 59

Functionality
Sub-

functionality
OOXML ODF

Translata-
bility

Notes

Brackets
around two-
lined text

Yes

17.3.2.10

17.18.8

No Low

Vertical text Yes

17.3.2.10

Yes

15.4.42

Medium ODF supports rotating text by 0,
90 and 270 deg.; OOXML
supports only 0 and 90 deg.
rotation.

Emphasis
marks

Yes

17.3.2.12

Yes

15.4.40

Medium ODF offers more fine-grained
support. Marks can be placed
above or below the text.

Font selection

By font name Yes

17.8

Yes

15.4.13

High

By font family Yes

17.8.3.9

Yes

15.4.14

High

Theme fonts Yes
17.18.96

No

Low ODF does not support the
concept of document themes.

Font effects

Emboss Yes

17.3.2.13

Yes

15.4.26

High

Imprint/

Engrave

Yes

17.3.2.18

Yes

15.4.26

Medium OOXML has an effect termed
“imprint” while ODF offers
“engrave”.

Outline Yes

17.3.2.23

Yes

15.4.5

High

Shadow Yes

17.3.2.31

Yes

9.5.1

Medium ODF allows for fine-grained
control of text-shadow
parameters, OOXML only allows
turning the shadow on or off.

Manual
specification of
run / span
width

 Yes

17.3.2.14

17.3.2.43

Yes

15.4.41

 High

Italic text Yes

17.3.2.16

Yes

15.4.25

Medium ODF supports both italic and
oblique text; OOXML makes no
such distinction.

Kerning Yes

17.3.2.19

Yes

15.4.35

High

Text language Yes

17.3.2.20

Yes

15.4.23

High

60 Functionalities and Translatability

 60

Functionality
Sub-

functionality
OOXML ODF

Translata-
bility

Notes

Enable/ disable
spell checking
for run/ span

 Yes

17.3.2.21

17.15.1.52

No Low ODF does not support this
feature.

Raised/
lowered text

 Yes

17.3.2.24

Yes

15.4.12

Medium OOXML uses absolute values,
ODF uses percentages. This may
lead to translation problems.

Strikethrough Yes

17.3.2.37

17.3.2.9

Yes

15.4.34

Medium OOXML allows both single and
double strikethrough.

Underline Yes

17.3.2.40

Yes

15.4.28

Medium OOXML allows both single and
double underlining.

5.2.2 Paragraph formatting

In the context of word-processing documents, a paragraph is the smallest unit of text upon which

layout is performed. Both document formats support applying the text formatting properties given

above on a per-paragraph basis. In fact OOXML simply embeds a run-properties element within the

paragraph format whereas ODF paragraph styles may contain both paragraph and text properties.

Table 2: Paragraph formatting

Functionality
Sub-

functionality
OOXML ODF

Translata-
bility

Notes

Line height

Fixed Yes

17.3.1.33

Yes

15.5.1

High

Minimum Yes

17.3.1.33

Yes

15.5.2

High

Line spacing No Yes

15.5.3

Low

Font-
independent
line spacing

No Yes

15.5.4

Low

Automatic

Yes

17.3.1.33

No Low OOXML provides a (Boolean)
option that specifies "HTML-like"
line spacing.

Text alignment
(left/ right/
centered/
justified)

 Yes

17.3.1.13

Yes

15.5.5

Medium OOXML supports a range of
additional values for Arabic and
Thai text.

For last line in
paragraph

No Yes

15.5.6

No

Functionalities and Translatability 61

 61

Functionality
Sub-

functionality
OOXML ODF

Translata-
bility

Notes

Justify single
word

No Yes

15.5.7

No

Keep paragraph
on same page
as following
paragraph

 Yes

17.3.1.15

Yes

15.5.8

High

Do not split
paragraph
across multiple
pages

 Yes

17.3.1.14

Yes

15.5.10

15.5.9

15.5.8

 Medium OOXML only supports keeping a
paragraph on a page without
specifying the minimum number
of lines and the position of the
paragraph.

Tab stops

 Yes

17.3.1.37

Yes

7.12.6

 High

Position Yes

17.3.1.37

Yes

7.12.6

 High

Type (left,
center, right,
decimal)

Yes

17.3.1.37

Yes

7.12.6

Medium ODF only supports 2 types (left
and right).

OOXML does not support
specifying the decimal character.

Type (bar,
clear, list)

Yes

17.18.84

No Low These tab stop styles are
supported in OOXML, but their
use is discouraged.

Leader
properties

Yes

17.18.72

Yes

7.12.6

Medium The formats support different
kinds of leader styles. ODF reuses
the same styles which allows for
underline and strikethrough.
OOXML supports a fixed list of
styles.

Default tab
stop

Yes

17.15.1.25

Yes

15.5.12

14.2

High

Hyphenation

Last word on
page

 Yes

17.15.1.10

Yes

15.4.44

High

Maximum
consecutive
hyphenated
lines

Yes

17.15.1.22

No

Low

Drop Caps Yes

17.3.1.11

Yes

15.5.15

Medium OOXML handles drop caps via
specialized text frames. ODF’s
approach is more straight-
forward.

62 Functionalities and Translatability

 62

Functionality
Sub-

functionality
OOXML ODF

Translata-
bility

Notes

Register truth
(same text line
distance across
multiple pages
/ columns)

 No Yes

15.2.12

 Low ODF supports a paragraph style
attribute which can specify the
reference line distance for all
paragraphs. This functionality is
not supported directly by
OOXML.

Fixed width tables in OOXML
may be able to compensate for
this drawback; however there
may be difficulties in
translatability.

Margins

Absolute,
relative

No Yes Medium OOXML only supports absolute
values for paragraph margins.

Left/right/
top/bottom

Yes Yes Medium OOXML supports contextual
spacing where top/bottom
spacing is ignored for identically
formatted paragraphs.

First line indent

Absolute,
relative

Yes

17.3.1.12

Yes

15.5.18

Medium OOXML only supports absolute
values for first-line indentation.

Based on font
size

No Yes

15.5.19

 Low ODF supports an auto-text-
indent property specifying that
the first line of a paragraph is
indented by a value that is based
on the current font size.

Page/ column
break

Before
paragraph

Yes

17.3.1.23

Yes

2.8

Medium OOXML does not support column
breaks as paragraph properties.

Background
color

 Yes

17.3.1.31

Yes

15.5.23

Medium OOXML allows using theme color
attributes. ODF does not support
the concept of a "document
theme".

Background
pattern

 Yes

17.3.1.31

No

Low

Background
image

 No

Yes

15.5.24

 Low Background paragraph images
are not supported in OOXML.

Filter No Yes

15.5.24

 Low

Functionalities and Translatability 63

 63

Functionality
Sub-

functionality
OOXML ODF

Translata-
bility

Notes

Opacity
(percent)

 No Yes

15.5.24

 Medium ODF manipulates the opacity of
the background image in the
form of a percentage, while in
OOXML the background color (or
filled vector graphics) can be
influenced indirectly via alpha
color transformations which can
be used to modify opacity. Alpha
color transformations are
expressed as percentages.

Embedded
Images

 Yes

15.2.14

Yes

9.3.2

Medium Bitmaps can be easily translated.
However, due to discrepancies
between SVG (used by ODF) and
DrawingML (used by OOXML),
there is a high probability that
compatibility issues will arise
when vector graphics are to be
translated.

Borders

Top/bottom/
left/ right

Yes

17.3.1.24

Yes

15.5.25

High

Between/

bar

Yes

17.3.1.24

No Low In OOXML a paragraph may have
a "bar" (a border on the "inner"
side of the paragraph when a
book-like layout is used).
Additionally a "between" border
can be specified for paragraphs
with identical border formatting.
ODF allows for merging the
borders of consecutive,
identically formatted paragraphs.

Color Yes

17.3.4

No Low OOXML allows for using theme
color attributes. ODF does not
support the concept of a
"document theme".

Frame effect Yes

17.3.4

No Low

Shadow effect Yes

17.3.4

Yes

15.5.28

Medium ODF offers more fine-grained
control of shadow parameters.

Spacing Yes

17.3.4

Yes

15.5.27

High

Width Yes

17.3.4

Yes

15.5.26

High

64 Functionalities and Translatability

 64

Functionality
Sub-

functionality
OOXML ODF

Translata-
bility

Notes

Type Yes

17.18.2

Yes

15.5.26

Medium OOXML documents can specify
"art borders", a concept not
supported by ODF.

Common styles (single/ double)
are supported by both formats.

Padding Yes

17.3.1.11

Yes

15.5.27

 High

Shadow Yes

17.3.2.31

17.3.1.29

Yes

15.5.28

 High

Line numbering

 No Yes

14.9.1

Low OOXML only supports line
numbering on a per-section
level, not as a paragraph setting.
Individual paragraphs can be
exempted from line numbering.

(Re-)set start
value

No Yes

15.5.31

Low

Vertical
alignment (top,
middle,
bottom,
baseline)

 Yes

17.3.1.39

17.18.91

Yes

15.27.11

Asian / complex
text layout
properties

Add space
between
Asian, ctl and
western text

Yes

17.3.1.2

Yes

15.5.32

Medium OOXML allows for specifying
extra spacing between Asian and
Roman text as well as Asian Text
and Numbers. ODF allows for
spacing between Asian, ctl and
Western text (but not numbers).

Allow
punctuation
to hang into
margin

Yes

17.3.1.21

Yes

15.5.33

High

Snap to layout
grid

Yes

17.3.2.34

Yes

15.2.21

15.5.38

High

Line breaking
behavior
(strict / auto)

Yes

17.3.1.16

Yes

15.5.34

Medium OOXML allows more specific
settings (kinsoku).

 Writing mode
(lr/rl/tb)

 Yes

17.3.1.6

Yes

15.2.19

Medium OOXML only supports setting
paragraph properties to either
right-to-left or left-to-right.

Text frames

 Yes

17.3.1.11

Yes

9.3

High

Functionalities and Translatability 65

 65

Functionality
Sub-

functionality
OOXML ODF

Translata-
bility

Notes

Suppress
overlap

Yes

17.3.1.36

 Yes

15.30.5

Medium In ODF chart text label overlaps
may be suppressed. In OOXML
this feature is supported with
reference to drawing objects. If a
text is treated as a drawing
object (for example by being
grouped with a text) this feature
can be used.

Lists Yes

17.9

Yes

4.3

Medium Since both formats offer multiple
ways of applying numbering
information to text segments, an
implementation will most likely
require fairly complex processing
in order to retain the best
possible graphical fidelity.

5.2.3 Header and footer

OOXML and ODF both support the definition of header and footer. While OOXML assigns them to the

whole document or to single sections, ODF aligns them with the concept of a master page. OOXML

supports multiple content types; ODF supports textual headers and footers. Both standards use the

terms "header" and "footer" in a slightly different way. To display additional content types than text

on the top or bottom of a page, in ODF this content has to be associated with the page instead with

the header and footer.

Table 3: Header and footer

Functionality
Sub-

functionality
OOXML ODF

Translata-
bility

Notes

Content type Yes

11.3.6/9

Yes

14.4

Medium ODF supports text only but other
content can be added as part of
the master page.

Properties

Separate
definitions for
right, left, first
page

Yes

17.10

Yes

14.4

Medium ODF allows separate definitions
for right and left pages.

Formatting Yes

17.6.11

Yes

14.3

15.3

Medium ODF allows formatting headers
and footers while OOXML allows
formatting pages including
headers and footers.

5.2.4 Tables

Both OOXML and ODF support the insertion of tables inside a document. Both formats allow table

cells to span across multiple rows and / or columns and provide detailed control over the display of

table elements. The table below covers the table features from the use case in section 4.1.4 and

highlights further areas where functionality varies between the document formats.

66 Functionalities and Translatability

 66

Table 4: Tables

Functionality
Sub-

functionality
OOXML ODF

Translata-
bility

Notes

Table
properties

Right-to-left
(rtl) layout

Yes

17.7.6.1

No Medium ODF does not support rtl-layout
for tables. However the
functionality can be emulated by
appropriately reversing the cell
order.

Alignment of
whole table
(left, center,
right, auto,
indented)

Yes

17.4.29

Yes

15.8.2

Medium ODF has no support for floating
tables. However, this
functionality may be emulated by
placing a table inside a frame.

Background
color

Yes

17.4.32

Yes

15.8.8

Medium ODF does not support document
themes, so information may be
lost in translation.

Background
pattern

Yes

17.4.32

No Low

Background
image

Yes

17.2.1

Yes

15.8.8

High

Data alignment Horizontal /
vertical

Yes

17.3.1.13

Yes

15.11.1

High OOXML aligns cell data in tables
embedded in word-processing
documents at paragraph level.

Column settings

Adjust column
width

Yes

17.4.16

Yes

15.9.1

High

Row settings

Adjust row
height

Yes

17.4.81

Yes

15.10.1

High

Cell settings

Span multiple
columns

Yes

17.4.17

Yes

8.1.3

High OOXML does this via the vMerge
element.

Span multiple
rows

Yes

17.4.85

Yes

8.1.3

High

Sub-tables No Yes

8.1.3

8.2.6

Low ODF supports the concept of sub-
tables, e.g. tables embedded
seamlessly within a table cell.
While the same effect may be
reproduced by splitting and
rejoining cells in the containing
table, this would require a
translator who could "render"
the complete table internally.

Functionalities and Translatability 67

 67

Functionality
Sub-

functionality
OOXML ODF

Translata-
bility

Notes

Borders

Color / width /
style

Yes

17.4.67

Yes

8.3.3

15.8.12

High Both formats allow the same
values as for paragraph borders.

Table headings No Yes

8.2.2

8.2.4

Low OOXML has no way of identifying
certain table cells as being part of
a table header. It does contain a
<tblHeader> element; however
this specifies that the affected
row should be repeated on every
page the table spans.

5.2.5 Itemization and numeration

Since ODF and OOXML differ in the way they handle numbering (e.g. of lists or headings), the

following two subsections contain a short discussion of each document format's approach.

Numbering in this context includes the handling of bulleted (itemized) lists as both document

formats handle them the same way as numbered lists.

5.2.5.1 Numbering in ODF

ODF contains two ways of expressing lists: an approach based on the nesting of the individual XML

tags used to define the list (structural approach) and an approach where regular paragraphs are

marked as belonging to a list (attribute approach). The numbering and list formatting applied to a list

item or heading is determined by a list style associated with the list (or numbered paragraph).

The structural approach is reminiscent of the way lists are constructed in XHTML24 with specialized

tags denoting lists and list items and the list level being determined by the nesting of list tags in the

XML representation of the document content. The attribute approach simply annotates regular

paragraphs with attributes identifying them as items of a specific list style at a certain list level. Both

approaches are functionally equivalent, however only the attribute approach can be used to apply

numbering information to headings.

Unfortunately, the ODF standard is worded ambiguously and thus allows for different interpretations

of the attribute approach described above. The standard does not specify whether the numbering

logically resides with the list style, or if there is a global counter for each list level which needs to be

restarted manually. For example, the XML code shown in Figure 36 is rendered as shown in Figure 37

when the numbering resides with the list style. However, when a global counter is used, the list

would display as shown in Figure 38.

24 (W3C, 2002)

68 Functionalities and Translatability

 68

Figure 36: Numeration in ODF - XML

Figure 37: Numeration in ODF - Counter associated with list style

Figure 38: Numeration in ODF - Global counter

5.2.5.2 Numbering in OOXML

OOXML has no distinct concept of lists. Instead, it uses an approach similar to the ODF "attribute

approach" explained above. List items (and headings) are simply regular paragraphs to which special

properties are attached which contain information about list structure (an identifier for the list the

paragraph belongs to and its list level) and a reference to the formatting information for the list.

Headings are treated in the same way, except that they contain additional information about the

heading’s outline level within the document.

A detailed explanation of the concepts used for numbering information in OOXML is contained in

Part 1, section 17.9 of the OOXML standard. Numbering information may be applied to a paragraph

in three different ways.

 In the simplest case, the paragraph is annotated with a reference to a numbering definition

which in turn inherits the actual numbering settings from an abstract numbering definition.

 Alternatively, a numbering style may be applied to the paragraph via one of two distinct yet

equivalent approaches. In both cases, the numbering style is not referenced directly; rather,

a numbering definition which references the style via its associated abstract numbering

definition is applied as shown above.

 The numbering style may also reference a separate numbering definition.

5.2.5.3 Comparison of numbering and enumeration

Both document formats offer a comparable level of support for numbered and/or bulleted lists.

OOXML allows for more flexibility when specifying the formatting of nested numbering. To give an

Functionalities and Translatability 69

 69

example: using individual suffixes, prefixes, and separators on each level, in OOXML the third-level

heading - 1.2.3 heading - looks like:

Section I,2.b) heading

ODF allows the specification of one common prefix, suffix, and separator for the whole numbering.

Thus using the prefix: "Section ", and the suffix: ")" the example will look like:

 Section I.2.b) heading

Since both formats offer multiple ways of applying numbering information to text segments, a

translation implementation will most likely require fairly complex processing in order to retain the

best possible fidelity.

5.2.5.4 Metadata language entries

Under both standards, the code is defined by a two or three letter language code taken from the ISO

639 standard optionally followed by a hyphen (-) and a two-letter country code taken from the ISO

3166 standard.

This is how the default language for a run would be specified using OOXML:

<w:lang w:val="fr-CA"/>

This language definition is quite similar for ODF. Metadata for language information can generally be

adequately translated from one format to the other.

5.2.6 Indices

Office documents may contain various types of indices, including the table of contents, but also

indices of figures, tables, etc. Since the two document formats follow different approaches in the

way indices are represented, this section offers an overview of both approaches in subsections

5.2.6.1 and 5.2.6.2.

5.2.6.1 Indices in ODF

ODF supports three different types of indices: tables of content, alphabetical indices and user-

defined indices. Each index in turn is composed of two parts: an index template specifying all the

information needed to generate the index and an index body containing a rendition of the index,

using standard text processing markup.

The information contained within the index template varies according to the index type. The index

template specifies the source material for the index, along with an optional title and a template

specifying how the title and each index entry should be rendered.

For example, the table of contents described in the use case 4.1.6 is built from the document's

headings. Since this table of contents has no title, the template would not specify one. Each entry is

built from:

70 Functionalities and Translatability

 70

 The entry's title (the section heading in the document)

 A tab stop

 The page number where the heading appears in the document

ODF has three ways to specify the source material for the table of contents:

 Text outline: the document structure, i.e. the headings and their associated outline level are

used to generate the table of contents.

 Index marks: this approach only indexes paragraphs and headings which are explicitly

marked with an index mark.

 Styles: the index is built from paragraphs to which certain text formatting styles are applied.

5.2.6.2 Indices in OOXML

In OOXML, the concepts of tables of contents and indices are implemented as dynamic content

fields. Thus, a table of content is represented by a TOC field, and its presentation and source material

are specified by the field's switches.

The source material may be based on the following:

 Paragraph-outline level. This approach corresponds to ODF's approach to using the

document structure.

 Index marks (implemented via TOC fields in OOXML) or bookmarks.

 Styles: This approach is similar to the styles-approach offered by ODF.

 A sequence (commonly used for lists of figures/tables/etc.)

5.2.6.3 Summary

Although the two document formats differ in their approaches to the generation of tables of

contents and indices, they do offer comparable levels of support for these features. Implementations

will have to take into account the different models, which causes some complexity, especially when

documents combine many of the approaches outlined above.

5.2.7 Change tracking and annotations

Both document formats offer support for change tracking and textual annotations in word processing

documents. In addition to the common operations, OOXML allows highlighting text regions with a

limited set of colors (for more information, see section 5.2.1). ODF’s change tracking support is more

coarsely-grained than that of OOXML in that formatting changes, including those in tables, are

recorded but no information about the previous state is kept so that the previous state cannot be

reconstructed by simply rejecting the changes.

Functionalities and Translatability 71

 71

Table 5: Annotations

Functionality
Sub-

functionality
OOXML ODF

Translata-
bility

Notes

Text insertion Yes

17.13.5

Yes

4.6.3

Medium Change tracking in lists may
cause problems in ODF.

Text deletion Yes

17.13.5

Yes

4.6.4

Medium Changing tracking in lists may
cause problems in ODF.

Formatting
changes

 Yes

17.13.5

Yes

4.6.5

Medium ODF only records the fact that a
change has occurred. No further
information is recorded, so it is
impossible to fully reconstruct
the previous state.

Comments Yes

17.13.4

No Medium OOXML allows adding comments
to arbitrary text ranges. This is
not supported by ODF, however
similar functionality may be
provided by inserting notes
(associated with a point in the
text, not a range).

Text
highlighting

 Yes

17.3.2.15

No High Although ODF does not support
text highlighting, the
functionality may be emulated
by setting the text background
color (see the section on text
formatting).

Metadata

Name Yes

17.13

Yes

3.1.6

High

Date / Time Yes

17.13

Yes

3.1.9

High

Author
shorthand for
comments

Yes

17.13

17.13.4

Yes

12.3

8.3.3

High

5.3 Spreadsheets

5.3.1 Introduction

This section describes the properties which may be applied to the elements of spreadsheet

documents. For the purposes of this paper, the properties to be examined have been narrowed

down to formatting and calculation functions and those in any way related to such.

ODF spreadsheets have tables as root elements. Tables in turn contain rows. Rows are divided into

cells by columns. ODF does not differentiate between tables embedded in word processing

documents and those which make up spreadsheets. Essentially the same XML structures, nodes and

72 Functionalities and Translatability

 72

attributes are used in both cases. The only difference is the <spreadsheet> element used within the

<body> element as against the <text> element used in word processing documents.

In a similar vein, OOXML has workbooks as root elements. Workbooks contain worksheets. These

sheets are further divided into a grid of cells.

5.3.2 Formatting

The cell is the most elementary unit of a spreadsheet to which properties can be applied. Properties

of rows, columns and tables (ODF) or worksheets (OOXML) can also be manipulated

The following table summarizes the features pertaining to spreadsheet formatting for the use cases

covered.

Table 6: Spreadsheet formatting

Functionality
Sub-

functionality
OOXML ODF

Translata-
bility

Notes

Row fixing Yes

18.3.1.66

Yes

Medium This functionality can be applied

in ODF only by manipulating the

horizontal / vertical “split mode”

and “split position” attributes via

the "seetings.xml" file. This file is

not defined within the ODF

specification and is application-

specific.

Cell / Row
background
Shading

 Yes

17.4.33

Yes

15.11.6

15.10.3

High

Colored text in
a single cell.

 Yes

18.3.1.53

18.4.7

Yes

14.7.7

15.4.3

High

Highlighted
color frame on
single row

 Yes

18.8.5

Yes

15.5.25

High

Date
formatting

 Yes

18.17.4

Yes

6.7.7

High

Graphic cell
content

Linked Yes

21.2.2.63

Yes

9.3.2

High

Embedded Yes

21.2.2.63

Yes

9.3.2

Medium When using embedded images,

the use of vector graphics could

prove problematic due to the

different vector graphic formats

used by ODF and OOXML.

Functionalities and Translatability 73

 73

Functionality
Sub-

functionality
OOXML ODF

Translata-
bility

Notes

Spreadsheet-
embedding in
other
applications

 Yes

18.3.1.60

Yes

9.3.7

Medium A few problems could arise due to

OOXML’s use of VML - which is

not supported by ODF - in certain

areas.

5.3.3 Calculation

OOXML and ODF calculations are performed using equations also known as formulas.

In OOXML named formulas are known as functions. Formulas are represented by the text of the

formula and the text version of the last computed value for that formula. The return value of a

function is specified within the "t"-attribute of the cell containing the formula.

The ODF spreadsheet content model contains a spreadsheet calculation setting for formulas.

The presentation of the value of a variable is set using a <text:variable-set> variable setter element in

which the attribute <text:formula> contains the formula used to compute the value of the variable

field. Settings pertaining to the calculation of formulas are set via the <table:calculation-settings>

element. The <table:formula> attribute generally contains the formula for a table cell.

This section describes the translation of functionality provided by the properties used in applying

formulas to cells as well as their behavior and underlying logic operations as used in the use case

example given in section 4.2.2.

Table 7: Spreadsheet calculation

Functionality
Sub-

functionality
OOXML ODF

Translata-
bility

Notes

Assigning
formulas/
functions to a
cell

 Yes

18.3.1.40

Yes

8.1.3

High

Manual/
automatic
calc. mode

 Yes

18.18.4

No Low In OOXML the formulas can be
executed whenever a cell value
changes or when a user initiates an
action.

Shared
formulas

 Yes

18.3.1.40

No Low In OOXML primary/ shared formulas
are used to cut down redundancy
where a formula is used more than
once. This functionality is not
present in ODF.

Externally
referenced
formulas

 Yes

18.14

18.14.1

18.18.11

No Medium In ODF cells can be referenced but
not formulas. OOXML allows the
direct referencing of both.

74 Functionalities and Translatability

 74

Functionality
Sub-

functionality
OOXML ODF

Translata-
bility

Notes

Caching of
externally
referenced
workbook

 Yes

18.10.1.95

18.14.7

No Low External workbooks cannot be
referenced in ODF.

Defined
names in
place of cell
references in
formulas

 Yes

18.17.2.5

No Low Names to be used in place of
references or formulas do not exist
in ODF.

Auto filtering Yes

18.3.1.2

No Low In ODF no tags exist to specify the
criteria for which cells in a table
should be displayed. Instead cell
validation content rules can be
defined that determine which
content may be allowed in cells.

5.3.4 Additional properties

This table contains an extended list relating to the analysis of the translatability of selected

functionalities for spreadsheet documents.

Table 8: Additional spreadsheet functionality

Functionality
Sub-

functionality
OOXML ODF

Translata-
bility

Notes

Width
adjustment

 Yes

18.3.1.13

Yes

8.1.1

15.7.4

Medium In ODF columns must have fixed

width; relative width is only an

option, specified as a percentage.

Alignment Yes

18.8.1

Yes

15.11.1

8.1.3

Medium In ODF L, R, C, margins exist.

Additionally, OOXML offers header
and footer margins.

Vertical
alignment

Yes

18.8.1

18.18.88

Yes

15.11.1

8.1.3

High

Horizontal

alignment

Yes

18.8.1

18.18.40

No Low

Rotation
angle/ align

Yes

18.8.1

Yes

15.11.12

15.11.13

High

Page number Yes

13.3.3

Yes

6.2.3

15.2.2

High

Functionalities and Translatability 75

 75

Functionality
Sub-

functionality
OOXML ODF

Translata-
bility

Notes

Table or
worksheet
background/
image

 Yes

18.3.1.67

Yes

15.5.24

High

Shadow Yes

18.8.36

Yes

15.2.9

Medium OOXML (SpreadsheetML)
applications are not required to
render according to the "shadow"
flag.

Cell border Yes

18.8.4

Yes

15.11.7

8.1.3

High

Cell protect Yes

18.8.33

Yes

15.11.14

8.1.3

Medium In OOXML cell protection does not
take effect unless the sheet has
been protected.

5.4 Presentations

5.4.1 Introduction

ODF and OOXML use different approaches to define presentation documents. In ODF, presentation

documents are composed of a set of <draw:page> elements within an <office:presentation> element.

A <draw:page> element acts as a container for content.

OOXML presentation documents are based on PresentationML (a framework loosely based on SMIL)

in which all definitions are stored as a schema (XSD) which can be one of either structural or

presentation level data types.

5.4.2 Slides

5.4.2.1 OOXML slides

In OOXML, the transition from one slide to another is performed via animation effects that are

displayed in between slides. Slides, layouts and notes can be defined via "masters". These master

layout components can be overridden individually by specifying local attribute values within each

presentation slide.

Hierarchy and inheritance are central to the concept of slides in OOXML.

5.4.2.2 ODF slides

ODF animation effects are carried out on "presentation shapes" (these are differentiated from

drawing shapes by the <presentation:class> attribute).

76 Functionalities and Translatability

 76

It is possible to specify multiple effects for each shape within a page. However this could be

hampered by the application on which the presentation is running which can in some cases restrict

the extent to which this feature can be utilized.

Several effects can also be initiated at the same time via animation groups:

Executed when page

is displayed

<presentation:animations>

element

Animation effects

Presentation Page

Figure 39 - Animation effects

As an alternative, the animations in ODF presentation documents can be manipulated using the XML

based SMIL meta language on which the OOXML PresentationML schema is loosely based.

5.4.3 Text formatting

This section describes properties which may be applied to text in presentation documents, based on

the use cases discussed in section 4.3. Text formatting in presentation documents is similar to text

formatting in word processing and spreadsheet documents.

Table 9: Text formatting

Functionality
Sub-

functionality
OOXML ODF

Translata-
bility

Notes

Bold type Yes

19.2.1.1

Yes

14.6.3

15.4.32

Medium In addition to bold, ODF allows
font weight to be specified
numerically (100-900).

Listing and
itemization

 Yes

21.1.2.4.1

(19.3.1.5,

19.3.1.35

19.3.1.52)

Yes

7.1

Medium Since both formats offer multiple

ways of applying numbering

information to text segments, an

implementation would most likely

require fairly complex processing

in order to retain the best

possible graphical fidelity.

Text
animation

 Yes

19.5

M.3.4.7

Yes

15.15

Medium ODF sets attributes via <draw :
frames> controlling style or SMIL.

OOXML applies build animations.

Functionalities and Translatability 77

 77

Functionality
Sub-

functionality
OOXML ODF

Translata-
bility

Notes

Text language Yes

21.1.2.3.9

Yes

15.4.23

High

5.4.4 Master layout

ODF makes use of master pages for creating slides. A “master page” is actually a reference to a

specific page layout which is used as a base template when beginning to develop a presentation. This

template specifies properties common to each page, such as size, content, headers, and footers,

which are displayed on every page in a presentation. ODF specifies that all documents must contain

at least one master page element.

OOXML follows a similar principle. In Microsoft Office 2007, these layout templates are known as

"slide masters". Slide layouts can override definitions preset by slide masters, and can also be applied

to individual Office presentation slides. This approach offers greater layout flexibility than that

offered by ODF.

The following table compares presentation document functionality, based on the use cases discussed

in section 4.3.8:

Table 10 – Master layout

Functionality
Sub-

functionality
OOXML ODF

Translata-
bility

Notes

Layout and
positioning

 Yes

19.7.15

Yes

14.15

High

Animations Yes

19.5.1

Yes

9.7

Medium OOXML specified animations can
be applied in a greater number of
ways than ODF specified ones.
This allows for finer granularity in
creating slide animations.

Specialized
path
descriptions

Yes

19.5.4

No Low OOXML provides for animation
via motion descriptions over
polyline or Bezier paths. ODF does
not support this.

Timeline
functionality
(using time
nodes)

Yes

19.3.1.48

19.5.87

No Low In addition to inheritance from, or
overriding of, master-layouts,
OOXML makes use of "timelines"
to orchestrate its animations. ODF
does not support the concept of
timelines.

Slide
synchroni-
zation

 Yes

19.6

No Low An update function used by
OOXML for synchronizing slides
being loaded from SharePoint
servers. ODF documents can at
most load texts stored in a SQL
database if an appropriate driver
has been installed.

78 Functionalities and Translatability

 78

Functionality
Sub-

functionality
OOXML ODF

Translata-
bility

Notes

Applying
sounds to
slides

 Yes

19.5.69

Yes

9.7.1

High

Diagrams Yes

20.1.2.2.1

2

Yes

9.7.2

High

Slide blending
and effects

 Yes

19.3.1.50

Yes

9.7

9.8.1

15.36.2

Medium In ODF specification of multiple
effects could become problematic
since the application on which the
presentation is being run can in
some cases restrict the extent to
which this feature can be utilized.
The restriction varies from
application to application.

Multimedia
content

 Yes

19.3.1.33

Yes

9.8

13.

15.36.10

Medium In OOXML media can be
orchestrated to play in sync with
a slides timeline. If the media
supplying the sound for instance
is a CD other attributes such as
track indexes or the start or end
track can be specified.

Vector

graphics

 Yes

20.1

M.5

Yes

9.2.6

14.14.2

Low Due to the use of different

graphic engines, the vector

graphics are not translatable.

However both ODF and OOXML

individually support the

representation of vector graphics.

Master layout Yes

19.2.1.36

Yes

14.4

High

5.5 Common Aspects

This section covers functionalities spanning multiple document types.

5.5.1 Alternative presentations

Metadata, such as alternative text representations for non-text entities within a document, play an

important role not only in granting people with disabilities better access to document content, but

also in improving the automated extraction and processing of information contained within a

document.

The following table gives a brief comparison of alternative presentations supported by ODF and

OOXML.

Functionalities and Translatability 79

 79

Table 11: Alternative presentations

Functionality
Sub-

functionality
OOXML ODF

Translata-
bility

Notes

Alternative
text

Images Yes

18.3.1.56

17.3.3.19

Yes

9.3.9

High

Image maps No Yes

9.3.11

Low OOXML does not support image
maps.

Lines / Arrows

Yes

18.3.1.56

17.3.3.19

Yes

9.3.9

High

Auto shapes

Yes

18.3.1.56

17.3.3.19

Yes
9.3

High

Grouped
objects

Yes
18.3.1.56

17.3.3.19

Yes
9.3.9

High

Sounds

Yes

18.3.1.56

17.3.3.19

No Low Possible alternative:

ODF supports alternative text for
OLE-Objects which could be video
or audio objects.

Videos

Yes

18.3.1.56

17.3.3.19

No Low Possible alternative:

ODF supports alternative text for
OLE-Objects which could be video
or audio objects.

Charts

Yes

18.3.1.56

17.3.3.19

Yes

9.3

High

Text-box,
titles,
captions

Yes

18.3.1.56

17.3.3.19

Yes

9.3.9

High

Links

Yes

18.3.1.56

17.3.3.19

Yes

9.3.10

High

5.5.2 Custom XML parts

Custom parts of documents contain arbitrary XML markup not necessarily defined by the document's

standard itself. OOXML (section 22.5) allows arbitrary XML instance to be stored in a document, and

the nodes of that XML instance may be bound to form controls (content controls). ODF does not

support arbitrary custom XML parts, so these would be lost in a round-trip to ODF.

80 Conclusion

 80

6 Conclusion

This White Paper in its two main parts describes typical effects which occur during the mixed usage

of documents based on the standardized formats ISO/IEC 29500:2008 (OOXML) and ISO/IEC

26300:2006 (ODF). In the first main part use cases describe the interchange of documents between

different office applications supporting different document standards. The use cases focus on

situations in which documents are exchanged between different public administrations, and public

administrations and citizens respectively. The effects occurring during the interchange, their origins

as well as useful ways of avoiding incompatibilities are described. The scope of the research covers

word-processing, spreadsheet and presentation documents.

In the second part of the White Paper the two ISO Standards ISO/IEC 29500:2008 (OOXML) and

ISO/IEC 26300:2006 (ODF) are analyzed in more detail in terms of the identified functionalities. Each

functionality’s underlying principles and concepts are analyzed in both standards, collected in a

spreadsheet table and compared with regard to their mutual translatability. A three value metric is

used to characterize missing, possible and good translatability. References to the corresponding

passages in the standards are added to the tables in order to nurture an in-depth understanding of

the given characterizations for each specific functionality.

It may be concluded that many of the functionalities, especially those found in simpler documents,

can be translated between the standards, while the translation of other functionalities can prove

complex or even impossible. Frequently in individual cases it has to be decided, if the conversion of a

document is completely translatable, translatable only to a limited extend or not at all. The individual

cases are determined by different constraints. First and foremost translatability depends on the

document itself together with its characteristics. In addition the application or tool used for the

transformation has also to be considered. In this study statements on translatability and its quality in

principle are made. As the rules used for transformation are not standardized however, each

application is allowed to use its own specific rules. Under certain circumstances specific rules can

neglect certain properties and make specific assumptions which could enhance translatability. In

addition, the direction of the transformation has to be considered. In many cases a document can be

translated without any major loss from one format to the other. Even so, on a round-trip conversion

it cannot be guaranteed that the initial document and the document resulting from the conversion

will be identical.

For each use case the following issues must have to be considered:

 Why translate a document from one standard to another?

 Which is the optimal document format to be used in the translation?

 Is it necessary to have a round-trip conversion of the document and if so, why?

 Which are the best tools to achieve these goals and who should use them?

 With regard to the findings of this White Paper, it should be borne in mind that the two standards

were analyzed in the form published by ISO. Between these two versions of the standard there will

most likely never be a need for translation. Thus far there is no application completely supporting

ISO/IEC 29500-1/2/3:2008. Even the upcoming version of Microsoft Office 2010 will be implemented

according to part four (transitional conformance) of the standard to achieve backward compatibility

Conclusion 81

 81

with prior Office versions. Applications supporting ISO/IEC 26300:2006 have been switching (2009) to

the latest OASIS versions of the standard ODF 1.1 and 1.2 (committee draft). These versions,

however, are not ISO standards. The White Paper thus gives information on the basic concepts,

similarities and differences of the two ISO standards. It demonstrates the possibilities and limitations

of the translation of important functionalities between the two document formats. Newer versions

and error corrections of the standards have to be considered in the each individual case.

There are other important limitations when translating between both standards. In fact, two versions

of the same document saved in separate standards should also look the same and have the same

layout. However, from a technical point of view layout will be determined by the rendering engine

and the available hardware and software (resolution, text fonts, colors, etc.). Layout thus only

indirectly depends on the standards. There could be differences in terms of the inner structure, even

when two documents look alike. On the other hand, two documents with different layouts could

have the same inner structure and contents. For this reason it is extremely important to be aware of

the invariable aspects of those documents that must be transferred between different organizations,

and to decide on a document format by taking into account the reasons for document exchange.

Application interoperability is not only determined by the interoperability of the implemented

standards. Ambiguous specifications, which partly occur within the standards, reduce the

unambiguousness of document implementations as well as the standard conformity of the

documents. Also the usage of standard extensions makes translation of documents difficult, even if

the extensions are inserted in a standards compliant way. To enhance application and document

interoperability, the development of validators25 for ODF and OOXML documents together with the

provisioning of test suites comprising test scenarios and documents26 is of the essence. The first

projects in this context have already been launched and are currently in progress. 27

There are still many unanswered questions in the field of document interoperability. However,

current developments in the field of the standardization as well as interested communities in the

Open Source environment are working on and providing solutions to solvable questions and

providing clearer views on limitations. Thus, before choosing the format of the document and the

tools, it is essential to be aware of the proper reasons why the exchange of documents is necessary

and what requirements are needed for the translation.

25 (Probatron, 2009), (FhI Fokus, 2009)
26 (opendocsociety.org, 2009) (OASIS), (FhI Fokus, 2009)
27 (DII, 2009)

82 <References

 82

7 References

Altova. XML Spy. XML Editor, Data Management, UML and Web Services tools. [Online] [Cited: 12

July 2009.] http://www.altova.com/.

DII. 2009. DII implementer's notes. ODF 1.1. [Online] June 2009. [Cited: 12 July 2009.]

http://www.documentinteropinitiative.org/OASISODF1.1/reference.aspx.

Ditch, Walter. 2007. XML-based Office Documents. JISC Technology and Standards Watch. August

2007.

ECMA-376-1, Second Edition. 2008. Office Open XML File Formats, Part 1: Fundamentals and Markup

Language Reference. December 2008.

ECMA-376-2, Second Edition. 2008. Office Open XML Formats, Part 2: Open Packaging Conventions.

December 2008.

ECMA-376-3, Second Edition. 2008. Office Open XML File Formats, Part 3: Markup Compatibility and

Extensibility. December 2008.

ECMA-376-4, Second Edition. 2008. Office Open XML File Formats, Part 4: Transitional Migration

Features. December 2008.

FhI Fokus. 2009. OOXML Validator. [Online] July 2009. [Cited: 12 July 2009.]

http://www.is29500.com/.

ISO. 1989. ODA/ODIF ISO 8613-1:1989. [Online] 1989. [Cited: 12 July 2009.]

http://www.iso.org/iso/iso_catalogue/catalogue_ics/catalogue_detail_ics.htm?csnumber=15926.

—. 2006. OpenDocument Format ODF. 30 November 2006. ISO/IEC 26300:2006(E).

—. 1986. SGML ISO 8879:1986. [Online] ISO, 1986. [Cited: 12 July 2009.]

http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=16387.

Microsoft. 2008. Microsoft Expands List of Formats Supported in Microsoft Office 2010. [Online]

2008. [Cited: 12 July 2009.] http://www.microsoft.com/Presspass/press/2008/may08/05-

21ExpandedFormatsPR.mspx.

—. 2006. Microsoft Open Specification Promise. [Online] 2006. [Cited: 12 July 2009.]

http://www.microsoft.com/interop/osp/default.mspx.

—. 2007. Open XML Developer Workshop. [Online] 2007. [Cited: 12 July 2009.]

http://openxmldeveloper.org/articles/DeveloperWorkshopContent.aspx.

OASIS. OpenDocument Fellowship. Test Suite. [Online] [Cited: 12 Juli 2009.]

http://develop.opendocumentfellowship.com/testsuite/.

—. 2005. OpenDocument v1.0 Specification. http://www.oasis-

open.org/committees/download.php/12572/OpenDocument-v1.0-os.pdf : s.n., May 2005.

<References 83

 83

—. 2007. OpenDocument v1.1 Specification. http://docs.oasis-

open.org/office/v1.1/OS/OpenDocument-v1.1.pdf : s.n., February 2007.

—. 2009. OpenDocument v1.2 Specification. http://www.oasis-

open.org/committees/download.php/32432/OpenDocument-v1.2-cd02.pdf : s.n., April 2009.

opendocsociety.org. 2009. ODF plugtest. [Online] June 2009. [Cited: 12 July 2009.]

http://plugtest.opendocsociety.org/doku.php.

OpenOffice. 2002. The OpenOffice.org community announces the availability of OpenOffice.org 1.0.

[Online] April 2002. [Cited: 12 July 2009.] http://www.openoffice.org/about_us/ooo_release.html.

Oxygen. Oxygen XML editor. [Online] [Cited: 12 July 2009.] http://www.oxygenxml.com/.

Probatron. 2009. Office-o-tron. Office Document Validation. [Online] June 2009. [Cited: 12 July

2009.] http://www.probatron.org:8080/officeotron/officeotron.html.

Schmidt, Kay-Uwe, et al. 2006. Document Interoperability for Use in eGovernment - Integration of

XML-based Document Content in Public Administration Processes. [ed.] Fraunhofer Institute for

Open Communication Systems FOKUS. FOKUS White Paper. May 2006.

Vugt, Wouter van. 2009. Open XML Package Explorer. [Online] June 2009. [Cited: 12 July 2009.]

http://packageexplorer.codeplex.com.

W3C. 2006. Extensible Markup Language (XML) 1.1 (Second Edition). [Online] November 2006.

[Cited: 12 July 2009.] http://www.w3.org/TR/2006/REC-xml11-20060816/.

—. 2003. Mathematical Markup Language (MathML) Version 2.0 (Second Edition). [Online] 21

October 2003. [Cited: 15 July 2009.] http://www.w3.org/TR/MathML2/.

—. 2003. XForm 1.0 (First edition). [Online] 14 October 2003. [Cited: 15 July 2009.]

http://www.w3.org/TR/xforms/.

—. 2002. XHTML 1.0 The Extensible HyperText Markup Language (Second Edition). [Online] August

2002. [Cited: 12 July 2009.] http://www.w3.org/TR/xhtml1/.

Editor

Fraunhofer-Institute for

Open Communication Systems FOKUS

Kaiserin-Augusta-Allee 31

10589 Berlin, Germany

Authors

Dr. Klaus-Peter Eckert

Jan Henrik Ziesing

Ucheoma Ishionwu

Contact

Competence Center ELAN

Electronic Government and Applications

Phone +49 (0)30 3463 7115

eMail elankontakt@fokus.fraunhofer.de

www.fokus.fraunhofer.de/go/egov-lab

Publisher

Fraunhofer Verlag

ISBN 978-3-8396-0047-4

© Fraunhofer FOKUS, Berlin 2009

www.fokus.fraunhofer.de/go/egov-lab

	Imprint
	Contents
	Introduction
	XML based Document File Formats
	eXtensible Markup Language
	Office Open XML
	Open Document Format

	Basic Principles
	Structure of the White Paper
	Use case template
	Use case scenario

	Approach

	Use Cases
	Word Processing Documents
	Empty document
	Simple text formatting
	Documents of public authorities
	Tables and field functions
	Itemization and numeration
	Index and table of contents
	Metadata and settings
	Change tracking and collaboration functions
	Forms
	Vector graphics
	Generic fields
	Font metrics and C-fonts
	Equations

	Spreadsheets
	Listing and structural features
	Formulas and calculation
	Embedded spreadsheet documents
	Simple text formatting and embedded documents

	Presentation
	Simple text formatting
	Itemization and numeration
	Positioning and layout
	Slide blending and effects
	Animations
	Diagrams
	Multimedia content
	Master layout

	Functionalities and Translatability
	Introduction
	Word Processing Documents
	Text formatting
	Paragraph formatting
	Header and footer
	Tables
	Itemization and numeration
	Numbering in ODF
	Numbering in OOXML
	Comparison of numbering and enumeration
	Metadata language entries

	Indices
	Indices in ODF
	Indices in OOXML
	Summary

	Change tracking and annotations

	Spreadsheets
	Introduction
	Formatting
	Calculation
	Additional properties

	Presentations
	Introduction
	Slides
	OOXML slides
	ODF slides

	Text formatting
	Master layout

	Common Aspects
	Alternative presentations
	Custom XML parts

	Conclusion
	References

