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1. Introduction

1.1. Intensity modulated radiotherapy planning

The main goal of intensity modulated radiation therapy planning is to find a treatment
plan that realizes sufficiently high doses in the tumor structures in order to destroy the
cancerous cells with a high probability while keeping the dose deposit in the healthy
structures reasonably low to bound the risk of future complications. A treatment plan
is characterized by some configuration & of parameters like intensity values or beam
positions, and its dose distribution d(x) is represented by dose values corresponding
to the elements of a volume discretization. The large number of plan parameters and
dose values makes a formulation as an optimization problem clearly favorable. For this
purpose, the assessment of a dose distribution d with respect to planning structures is
modeled with evaluation functions f. Reformulation of the planner’s strict requirements
on the dose distribution and aspired planning objectives with respect to these evaluation
functions yields the optimization problem of intensity modulated radiotherapy planning.

1.2. The role of the modeling parameters

The many evaluation functions used in planning practice trace back to comparably few
different types of functions, that just differ in the function parameters chosen according
to the corresponding planning structures [Romeijn et al., 2004].

In some software tools for IMRT planning, these function parameters are set to
empirically derived default values. In some others, their individual choice is up to
the physical planner, who will in general use well-approved values obtained from
statistical analysis over many planning cases [Niemierko, 2006]. Both approaches suffer
of some uncertainty in the exact choice of function parameters. This also affects the
interpretation of the resulting function values f(d).

The numerical solution of the IMRT planning problem also requires the reduction of
a complex shaped dose distribution to a single value representing its radiobiological
impact on a planning structure. This complicates the choice of appropriate value bounds
and reference values to represent strict planning requirements and aspired planning
objectives even more.

All these modeling parameters affect the optimization problem of IMRT planning and
thus the resulting optimal treatment plan. This implies the following questions:

e [s the treatment plan sufficiently robust with respect to the parameter choice to
compensate for the uncertainties in the choice of parameters, that is how does it
vary under slight parameter changes?

e What is the influence of each modeling parameter on the treatment plan, that is

how strongly does it depend on the individually chosen values?

This publication addresses these questions with the mathematical concepts of sensitivity
and elasticity from convex optimization. These concepts allow for a profound
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mathematical analysis, which provides clear statements about the importance of the
different modeling parameters and simple rules of thumb for their appropriate choice.

2. Material and methods

2.1. Terminology and notation

Denote the volume elements (voxels) obtained from the discretization of the considered
body volume by V; (j € J), and represent dose distributions by the vectors

d = (d(V)))jes € R

of corresponding dose values. Let the positions and geometry of the emitting beams be
given. Treatment plans are then represented by the vectors

0 <x=(2)ier € R,
where the value z; represents the radiation emitted through the ith beamlet. For
radiation modalities with linearly superposing dose absorption such as photons, the

dose distribution corresponding to a treatment plan is then obtained with the linear
dose mapping

d: x — d(xz) =P -x= (p(Vj))jej -,
The row vectors p(V;) = (p;(V;));cr € RVl describe the dose deposits for each unit of
radiation x; = 1 in the corresponding voxels V;. The matrix P € R IXIZI thus describes
the whole dose mapping and is therefore called the dose information.
Let each of the involved planning structures be given as a family of voxels V; (j € J'),

where J' C J. The quality of a dose distribution with respect to a planning structure
is modeled by an evaluation function

RV R,
d — f(d),
which is required to be convex and twice continuously differentiable in this context. For

example, the following functions, which are well established in planning practice, fulfill
these requirements:

e The radiobiological impact on a planning structure can be measured using the
equivalent uniform dose (EUD) concept of NIEMIERKO [Niemierko, 1999],
foon(d) = (3 VD7 D7 Vi - d(vyyee) e, (1)
JjeJ’ jeJ’
where |V}| denotes the voxel volume and the parameter grup is chosen 2 or larger
for risk structures and less than 0 for target structures;
e The average underdose of a target structure below a certain dose value dy,qer can
be measured with the function
Funter (@) = (3 V372 3 V5 max {0, g — (V) 005 Y oer2)
jeJ’ jeJ’
with ¢uaer > 2.
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e The average exceedance of a certain dose value dy.., in a planning structure, for
example the inhomogeneity in a target structure, can be measured with the function

Jower(@) = (32 VD™ D7 V3| max {0,d(V) = dover} ™)™ (3)

jeJ’ jeJ’
Wlth Qover Z 2

All these functions are of a very general form, but their individual characteristics may
strongly depend on the individual choice of function parameters.

2.2. An exemplary IMRT optimization problem

Figure 1. An exemplary horse shoe target case

Consider the following exemplary IMRT planning problem of a horse shoe target
case as shown in Figure 1. The planning goal is to reduce the dose deposit in the
risk structure as much as possible while simultaneously fulfilling the strict planning
requirements of a sufficient high dose level in the surrounding target structure and
keeping the inhomogeneities in the target structure and the high dose deposits in
the remaining unclassified tissue acceptably low. The beam setup consists of five
equidistantly located positions at 0, 72, 144, 216 and 288 degrees with 63 beamlets
altogether. The corresponding optimization problem could then attain the form

feupr(d(x)) — min  s.t. (4)
funder,7(d()) < Sunder,T

foverr(d(x)) < SoyerT

fover,u(d())

—&

Sover,U

IA A

o,
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where the value bounds synder, T, Sover,7 @0d Soveru describe the maximally acceptable
underdose and overdose in the target and overdose in the unclassified tissue. Altogether,
this problem has the modeling parameters

qEUD,R; Qunder,T5 Yover,T5 Yover,U,

dundor,T7 dover,Tu dovor,U7 Sunder, Ty Sover,T; Sover,U-

2.3. Dose volume histogram and modeling parameters

A first understanding of these modeling parameters in terms of dose evaluation is
obtained with the cumulative dose volume histogram (DVH). The planning problem
of Figure 1 was treated as a paraspinal tumor case and the optimization problem (4)
was thus computed for the following modeling parameters:

For the risk structure representing the spinal cord, ggupr = 13 was chosen according
to [Niemierko, 2006]. The underdose of the target structure was kept acceptably low
by setting dyngerr = 66Gy according to [Radiation Therapy Oncology Group (RTOG),
2006/, Gunder, T = 2 and Sypder,r = 0.5Gy. In conjunction with the values doyer v = 72Gy,
Qover, 7 = 2 and Sguerr = 0.5Gy for bounding the target inhomogeneity, this resulted
in a dose distribution with a median target dose of 67Gy =: 100% and only moderate
exceedances of the 98% and the 107% thresholds, see Figure 2. For the unclassified
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Figure 2. The dose volume histogram of the optimum

tissue, doveru = T2GY, Qover,y = 2 and Sover,y = 1Gy. Altogether, these constraints
resulted in a plan with an acceptable maximal dose in the risk structure of 42Gy, see
[Wambersie and Landberg, 1999].

The dose value dypger,r determines which target voxels are actually considered to evaluate
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the target underdose with the function (2). The higher this value is, the more voxels
contribute to the function value funger v(d()). This function value somehow measures
the area between the dose volume curve, the horizontal 100%-line and a vertical line
at dynder,r- The higher the function value is, the larger is this area and thus the target
underdose. The value gunder,7 describes in which way voxels with a different underdose
contribute to the function. It thus characterizes the preferable shape of the underdose:
using a small value would favor dose volume curves with high volume percentages for
dose values slightly below dynger 7, and the higher the value is, the more preferable
are dose volume curves that match with the 100% line as much as possible. The dose
value doyver, v determines which voxels of the unclassified tissue actually contribute to the
function value foer,u(d(x)). This function value measures the area between the dose
volume curve, the horizontal 0%-line and a vertical line at doyer 7. The value goverr
again describes in which way voxels with a different overdose contribute to the function.
The target overdose with foyer 1 is the same, and the EUD frup r, which "measures the
exceedance” of 0Gy, is completely analogous.

2.4. Sensitivity and elasticity

The dependence of the optimization problem (4) on the corresponding modeling
parameters implies the question, in which way their individual choice and possible
modifications influence the resulting solution. For this purpose, define the vector

A= (AQEUD,Ra A(]under,Ta A(]over,Ta Aqover,U>
Adunder,Ta Adover,T> Adover,Ua ASunder,Ta ASover,Ta ASover,U)

of parameter perturbations, denote for example the perturbed EUD function (1) by
fEUD(d(-’B), A) = ((Z |Vj‘)_1 . Z ‘Vj| . d(‘/}>QEUD+A¢]EUD)(QEUD+AQEUD)7

jeT’ jeT’

1

and the other functions likewise. The optimization problem (4) under the parameter
perturbation A then attains the form

feupr(d(x), A) — min  s.t. (5)
funderr(d(x), A) < Synder,T + ASunder,T

fover,T(d(a:)a A)
foveru(d(z), A)

—T

S Sover, T + ASover,T
<

Sover,U + ASover,U

IN

0.

There are several concepts to evaluate optimization problems with respect to such
parameter perturbations, which may appear in literature under different names and
meanings. This publication considers the following ones:

e Sensitivity basically describes, how an optimum varies under moderate parameter
changes. Many sensitivity results trace back to the basic sensitivity theorem
[Fiacco, 1976, Section 3.2]. This theorem assumes the involved functions to fulfill a
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sufficiently high order of differentiability and the objective function and the active
constraint functions to fulfill certain regularity conditions at the optimum x* of the
unperturbed problem. It then states, that (a) the optimum is uniquely determined
even under small perturbations, (b) there exists a function describing its changes
under such perturbations and (c) the active constraint functions stay the same
under small perturbations.

e Flasticity is derived from sensitivity analysis in the context of economics. It
describes the ratio in limit of a relative change in one value caused by a relative
change in a second value and this relative change. For example, the elasticity of
the modeling parameter ggup r With respect to the optimal value s* of the problem
(4) is defined as

As*(Agrup,R)
E¥ (geupr) = lim  — % (6)

Agrup,R—0 Adeup.R
4EUD,R

If |E* (geupr)] > 1 (|E¥ (grupr)| = 00), then grupr is (perfectly) elastic, if
|E* (qeupr)| < 1 (|E* (grupr)| = 0), it is (perfectly) inelastic. Hence, elasticity is
a good concept to compare the importance of different parameters with each other,
and may serve as a stability measure for the optimum, since smaller elasticity means
higher stability of the optimum.

IMRT planning problems in general comprise several planning goals, which results in
multi-criteria optimization problems [Yu, 1997; Kiifer et al., 2000; Cotrutz et al., 2001].
For example, treating the homogeneity of the dose distribution in the target structure
as a second objective function would turn problem (4) into a bi-criteria problem. The
simultaneous minimization of multiple criteria may be conducted by various methods,
see [Miettinen, 1999]. However, the following considerations and results, which focus
on single-criteria problems, can be most naturally extended to the case of multi-criteria
problems, see [Krause, 2007].

3. Results and Discussion

3.1. Sensitivity of the plan optimization problem

One application of sensitivity analysis is, that it allows for simulating small parameter
changes with respect to a treatment plan, which is not satisfying. For example, take
into account the function which is assigned to in the Basic Sensitivity Theorem. This
function describes the optimum and corresponding Lagrangian multipliers in dependence
of the perturbation and can be approximated in first order thoroughly, that is for the

optimum
d
A * *
X, =X + —X, 7
est dA ( )
where ﬁx* can be determined by explicit formulae which involve partial derivatives

of first and second order of the Lagrangian and of the active constraint functions.
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These are the constraints for which equality holds. Results of sensitivity analysis are
restricted to a certain area, the sensitivity domain. This multi-dimensional cuboid gives
an estimation for an interval for each modeling parameter, in which the parameter can
be modified without altering the set of active constraints. The active constraints are
in the example case - besides all of the constraint functions - w7, xs, 39, T45, 56 and
257 = 0. According to [Biiskens and Maurer, 2001, pp. 12-13], an approximation of a
perturbation A = (0, A;, 0)" of the j-th parameter causing the k-th active constraint
to leave the active set is given by

*
Ug

ke —
U )|

This is derived from the corresponding Lagrange multiplier u; equaling 0 in that case.

A=0

Vice-versa, an approximation of a perturbation A = (0, A;, 0)* causing the inactive
constraint f; to enter the active set is given by

fe(d(x7),0)
(& feldee), ) |

which is due to the fact, that the constraint attains its bound. Note that the denominator

AF ne -

J

is is required to be nonzero in both equations. An approximation of a domain, in
which the set of active indices stays the same, is obtained when combining those
considerations for each modeling parameter. For the example case we got the following
sensitivity domain: Numerical experiments on the sensitivity domain show that the

AQEUD R Aqunder,T Aqover,T Aqover,U Adunder,T Adover,T Adover,U
-9.75 -0.31 -1.07 -1.24 -1.51 -1.11 -4.16
7.19 0.35 1.26 1.20 1.13 1.50 3.98

ASundor,T ASovor,T ASovor,U
-0.19 -0.46 -1.16
0.18 0.56 1.07

Table 1. Sensitivity domain for the example case

approximation of first order (7) is a good estimation for the real optimum of the
optimization problem with modified parameters. Consider for example perturbations of
Sunder,T 0 8\derr = 0.65 and s34, 1 := 0.35. The resulting changes in the dose-volume
histograms for the optimum of the original problem and the optima of the perturbed
problems are shown in Figure 3. For both perturbations, the DVHs of the estimate
and the perturbed optimum are compared in Figures 4 and 5. In both cases, the dose-
volume curves match almost exactly. A comparison of the estimates with the perturbed
optima in terms of intensity vectors is done in Table 2. The changes of the optima in the
Euclidean norm are significant in comparison with the norm of the original optimum.

However, the deviations of the estimate from the real perturbed optimum is rather
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Figure 3. DVHs for the unperturbed problem and the perturbed problems with
AS{mdenT = 40.15 and Asﬁnder,T =-0.15
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Figure 4. Original and estimated DVH for s’ T = 0.65
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Figure 5. Original and estimated DVH for s . = 0.35

small. This also indicates, that the concept of sensitivity facilitates very good guesses,
how the optimum changes under parameter perturbations. Also, the corresponding

Sundert[IX o [T = x4l i —x A2
035 16721  11.29 1.99
0.65 16721  11.28 2.43

Table 2. The norm differences of the real and the perturbed optima and between
estimates and perturbed optima

optimal value of the estimate x.4 gives a good approximation of the optimal value of
the real perturbed optimization problem: In Table 3 we compare the optimal values for
the perturbed problems with s} ..+ and s} 4., - Alternative approximations for the

Sunder T fEUDR(0,X)  frupr(A,x*?)  frupr(A, X:’stA)
0.35 34.67 33.52 33.47
0.65 34.67 35.94 35.89

Table 3. Value comparisons for the two perturbations of s,nqer, T

perturbed optimal value can be obtained by using Taylor’s series expansion:

fevpr(A,x(AQ)) ~  feupr(0,x") + (d%fEUD,R(Aax(A)”A:O) A

1

d2
—|— 5 . At . (WfEUDvR(A’X(A)”A:O) . A + Ce
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From the Lagrange condition, one can explicitly determine the total derivatives
with respect to A. The approximations are compared with each other in Table 4,
where fé%tgff{ refers to the first order approximation and féﬁgf}f to the second order

approximation. All approaches yield good estimates, so it may be a question of

Sunder, T fEUD,R(Av X*7A> fEUD,R(A7 X:;tA) }%Lgbl,sl;(A7 X*7A> Eﬁgrg(A7 X*7A)
0.35 33.52 33.47 33.47 33.52
0.65 35.94 35.89 35.88 35.93

Table 4. Different optimal value estimates for the two perturbations of synder,T
preference and suitability which one to choose.

3.2. Elasticity of the plan optimization problem

[Krause, 2007| has shown, that the elasticity (6) of a parameter with respect to
the optimal value s* attained for an optimum x* and Lagrangian multipliers u* is
the product of the partial derivative of the Lagrangian function with respect to the
parameter and the quotient of the parameter and the optimal value. The following
elasticity computations focus on the the particular case of the problem (4) with
the parameters settings of Section 2.3. However, the results can be most naturally

transferred to other planning cases.

3.2.1. Elasticity in the risk EUD Consider the parameter ggupr in the objective
function frypr. To also take the shape of the dose distribution over the voxels of
the risk structure into account, each dose value is rewritten as

d(V) = s"-(1+6(V;)) (J € Tn),

where §(V;) denotes its relative deviation from the equivalent uniform dose. The
elasticity of grup r With respect to s* then follows as

: Vil -6V,
B (eun) = (1 + (g 7)) - Y L0
JjEIR ZjEJR | J|

for ||(6(V;))jemmll — 0. Hence, ggupr is in general inelastic and tends to be perfectly

+0((6())jeanl?)

inelastic for increasingly homogeneous dose distributions in the risk structure. This
means, the plan quality with respect to the risk structure is rather stable in the value
of the EUD parameter.

For the optimum of Section 2.3, the elasticity attains the value E* (13) = 0.106.
Exemplary computations for different values of ggup r validate the small influence of
this parameter. Table 5 gives the resulting optimal values and Figure 6 shows the
corresponding dose-volume histograms.  The resulting optimal values and the dose-
volume curves for the risk structure are almost the same. Only the value ¢grupr = 3
yields a slightly different result, which is also confirmed by the different elasticity
E*"(3) = 0.193. The elasticities for the other parameter choices of gguypr are pretty
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qEUD,R 3 8 13 18
s* [Gy] 27.9 327 347 358

Table 5. The optimal values for different gpup r
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Figure 6. The dose-volume curves of the optima for different ggup r

similar. The elasticities of the other modeling parameters vary only moderately over
the optima, which is also the same for the subsequent computations.

3.2.2. Elasticity in the target underdose The elasticity in the dose value dynder, iS

Es* (dundenT) _ Uynder, T * dundor,T ) (ZjejT H/J| )qunlder,T (8)

s* Zjejf |‘/}|
+ Uynder,T * dunder,T : (Qunder,T - 1) . (ZjeJT |V}| )qunlder,T
s* Zjejf |V}|
Vil -o(V5)
> 2+ 0(100) e ).
jegs —iedr 17

where jT< refers to the voxels with dose values

dundor,T > d(%) (9)
* Z 1 |v‘ ql?nl er,

= [dundcr,T - fundor,T(d(w )) : (M> ‘ Ti| . (1 + 5(‘/;))

Zjejf |‘/]|

Hence, dynder, v is in general elastic and tends to be perfectly elastic for increasingly

homogeneous underdose occurring in a small volume fraction ) ;. 75 Vil (3 e Vi)~
of the target structure. Shifting this dose value is thus a very efficient means to influence
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the dose quality with respect to the risk structure. This fact is well-known from clinical
routine: reduction of the dose value aspired for most of the target volume provides new
possibilities to spare vicinal risk structures.

For the considered optimum, E*" (dunder,r) = 5.88. This indicates a strong influence of
this parameters, which is confirmed by exemplary computations, see Table 6 and Figure
7. In the case, the optimal values and dose-volume curves for the risk structure

dunder,T [GY] 61 66 71
s* [Gy] 20.8 34.7 52.3

Table 6. The optimal values for different dynger, T

100 1 sy T ; ;
e \ =
e h N \ Risk (dunde:,T'61)
90 . AN N \ . Target (dumem:sl) I
B N .+ Uncl. tissue (dumeﬂzsl)
SN RISK (0,,7266)
80 N . — — —Target (d, ,,, =66)
\ i ~ — — Uncl. tissue (d,, ., 1766)
701 AN ) Risk (4, 4, =71)
W - Target (4, =71
\ R Unl. tissue (d, . +=71)
60 . L |
\
\
& 50 \ i
\
\
. \ L
40+ SN : i
. \ . !
AY
. \ L
30 . \ o -
\ \
\
20 -
10 -
0 1 1 | L | | | Nl I
0 10 20 30 40 50 60 70 80 920 100

Gy

Figure 7. The dose-volume curves of the optima for different dynger, T

show major shifts. Again, the elasticities attain their highest values for the case
dunder = 61Gy, for example E° (dyngert) = 7.24, which provides the most degrees
of freedom to influence the shape of the dose distribution in the risk structure.

The elasticity in the exponent gunder,T 1S

E*" (Gunder,T) = Uunder,T * funder,r(d(@”)) In 2jear Vil
5% . Gunder, T Zjejqf |V]|

- Sunder T fander,r(d(2"))  2jeq Vil

v Y jeas Vil

ZjejT H/J|)

1+ Gunder, T In funder,T(d(w*)) —In
( Zjej; H/J|
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Vil - 0(V5)
=+ OI00) e ).
This indicates, that @under, v 15 In general inelastic, in particular for increasingly

homogeneous underdose occurring in a large volume fraction » s Vil- O ez Vi)~
of the target structure. Hence, modifications of this parameter do not really change the
quality of the dose distribution in the risk structure.

For the considered optimum, the elasticity attains the value E* (qunder,r) = 0.132, which
is by one magnitude smaller than E*" (dunder,T). The possibilities to influence the optimal
value and the dose-volume histogram by changes of this parameter are thus as limited
as in Section 3.2.1.

The case is similar for the elasticity of the bound value Synder,T,

Uynder,T '*Sunder,T’ (10)
s

which in general attains values less than 1 indicating inelasticity, for example

ES* (Sunder,T) - -

E* (Sundert) = —0.116 for the considered optimum. Hence, modifications of this
parameter also affect the dose distribution in the risk structure only in a minor way.

3.2.8. Blasticity in target overdose and unclassified tissue The elasticities of doyer 7 and
dover v differ from (8) just by minus signs instead of plus, the different subscripts and
substitutions analogous to (9). The drawn conclusions are thus also the same. For the
considered optimum, the elasticity of doyer v attains the value E* (72Gy) = —3.64, which
indicates strong influence on the EUD objective function in the risk structure. This
validates the rule of thumb from clinical routine, that the steeper dose-volume curves
for target structures result shall be, the worse the situation in vicinal risk structures
gets.

The elasticity in the parameter dyyer,u attains the smaller value E* (72Gy) = —0.976,
which gives no clear statement about its influence for this particular case. Computations
for other parameter settings indicated moderate inelasticity for problems with stricter
planning requirements and moderate elasticity for more relaxed optimization problems.
However, the major difference to the elasticity in doyer 7 remained due to the intuitive
fact, that a homogeneity requirement on the dose distribution in the target structure
contradicts with the dose quality in the risk structure much more than a requirement
on the overdose in the unclassified tissue.

This behavior is also reflected by the corresponding Lagrangian multipliers. The
larger a multiplier is, the more the corresponding constraint opposes the objective
function. For the considered optimum, the Lagrangian multiplier of the target overdose
iS Uoyer, 7 = 6.16, whereas the multiplier for the unclassified tissue is just uover,u = 2.07.
In comparison, the value of wuynger, 7 = 8.04 shows, that attaining a sufficiently high
target dose is the strongest opponent of sparing the risk structure.

The elasticities of goyer T and Gover,u are the same as (10) with different subscripts and
imply the same conclusions. The elasticity of gover, 7 attains the value ES*(Q) = 0.123
and the elasticity in goyer v is £* (2) = 0.097, which both indicate their small influence
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on the EUD in the risk structure.

The elasticities of Sover T and Soyer,u are the same as (10) with different subscripts. The
conclusions are the same, as verified for the considered optimum with the elasticity value
E¥(2) = —0.089 in Soyer,r and E¥ (2) = —0.060 in Sover,u. Both values indicate their
small influence on the EUD in the risk structure, see for example Table 7.

Sover,t [Gy] 05 1.0 15
s* [Gy] 36.6 34.7 338

Table 7. The optimal values for different sqyer U

3.2.4. FElasticities of differently shaped planning structures An aspect with major
influence on the case-specific limitations of IMRT treatment planning is the geometry
of the considered planning structures. The possibilities to give a dose distribution the
desired shape are to some extent predefined by the relative position of target and risk
structures with respect to each other, a fact that must not be underestimated in the
choice of modeling parameters. This influence is in general impossible to quantify,
however, the concept of elasticity, which numerically describes the influence of modeling
parameters, may provide some deeper insight.

In the exemplary planning case of Figure 1, the ring-shaped target structure had a
sparing of 90°. Consider the family of planning cases shown in Figure 8.

Figure 8. Horse shoe planning cases with different spared angle segments

The target structures of these cases differ in the spared angle segments of 45, 90, 135,
180 and 225 degrees. Consider the optimization problem (4) with the parameter settings
of Section 2.3 on these cases. The more the risk structure is surrounded by the target
structure, the more difficult it is to spare. This means, in cases with smaller spared
angle segments the shape of the optimal dose distribution is almost predefined by the
geometry of the planning structure and the influence of the modeling parameters is
rather small. This is confirmed by the elasticities in the modeling parameters for the
resulting solutions, see Table 8. The elasticities for the modeling parameters referring
to target and risk structure decrease within their above mentioned magnitudes for
decreasing angles. For example, ggup has almost no influence in the case of 45°, since
the shape of the dose distribution in the risk structure is almost fully characterized by
the large target structure. The almost perfect inelasticity of the parameters gunderT
Qover, T5 Sunder,T aNd Sover T also shows that there is practically no possibility to shift dose
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Angle 45° 90°  135°  180°  225°
E* (ggupr) 0.022 0.106 0.190 0.258 0.268
E (dugert) 475 588 794 125 117
(qundert)  0.089  0.132 0283 0.382 0.275
(Sundert) -0.087 -0.116 -0.200 -0.301 -0.246
(dovert)  -2.25 -3.64 -657 -108 -10.2
“(Govert)  0.089  0.123 0210 0.296 0.220
(
(
(
(

*

9

)
Sovert)  -0.061 -0.89 -0.152 -0.234 -0.196
werv)  -1.28 -0.976 -0.023 -0.077 -0.075
)
)

QU

0.112  0.097 0.003 0.010 0.011
-0.074 -0.060 -0.002 -0.006 -0.006

Gover,U
Sover,U

Table 8. The elasticities for different spared angle segments

deposits inside the target structure to allow for an improved sparing of the risk structure.
The only sensible way to do so is a relaxation of the homogeneity requirements on the
target structure by lowering dynger 7 Or increasing doyer 7, Which is confirmed by their
comparably high elasticities. For bigger angles and thus smaller target structures, all
these elasticities increase, in particular for the latter two parameters, since then there
are many more degrees of freedom to obtain a well-shaped dose distribution, which
better spares the risk structure.

The requirement of sufficiently high dose deposits in a target structure obviously implies
high dose deposits in some adjacent parts of the unclassified tissue. The smaller the
target structure is, the smaller are these volume parts and the less important are these
high doses for the plan optimization. The decreasing relevance of the overdose in the
unclassified tissue is also reflected by the almost perfect inelasticity of the corresponding
parameters dover U, Gover,u ad Sover u for higher angles.

4. Conclusions

The appropriate choice of modeling parameters in IMRT plan optimization is a major
topic of ongoing research. The influence of the different parameters on the resulting
plan is still not fully understood and even more difficult to quantify. This publication
discusses the approaches of sensitivity and elasticity as a mathematical means to
profoundly answer to these questions.

4.1. Sensitivity: predicting the possible changes of a plan

The sequential computation of IMRT plans typically involves a trial and error search
for the appropriate changes of the modeling parameters in order to steer the current
plan in the desired direction. The concept of sensitivity is a sound approach to estimate
and analyze the consequences of possible parameter changes in a cheap way, which does
not require costly plan computations. The desired modification of the current treatment
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plan can thus be realized by first simulating the various outcomes of a plan computation
online, then generating a new fitting parameter configuration and finally conducting the
real plan optimization. This avoids many unneeded computation runs and thus allows
for an accelerated search for the desired treatment plan.

4.2. Elasticity: quantifying the influence of parameters

The concept of elasticity as being discussed here provides an approach to analyze
the connection between parameter values and resulting plan quality. It allows for a
profound classification of parameters according to their influence on the optimal value.
Small or even perfect inelasticity for a parameter can easily compensate for moderate
inaccuracies in the chosen value, a helpful aspect regarding its mostly statistical origin.
High elasticity shows, that the value choice is highly important in view of the resulting
plan. This deeper understanding may for example be used to incorporate appropriate
error thresholds into the statistical fitting of parameter values. High elasticity also
indicates, that modification of this parameter is a very effective means to influence the
shape of the corresponding dose distribution.
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