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Chapter 1

Introduction

To perform a complex task efficiently, a program must have insights into the
knowledge of the world in which it operates [1]. In recent years, it has emerged
that data has become more valuable than oil [2], and Knowledge Graph (KG) has
developed to be a methodical way to represent all these data of the world. Knowl-
edge Graphs are a representation of data as entities connected by their relations.
Entities behave like nodes and relations as the edges between the nodes of the
graph. Knowledge Graph strengthens the magnitude of other multitudes of fields,
such as Natural Language Processing, Artificial Intelligence, Machine Learning,
etc. However, Knowledge Graph suffers from the “incompleteness problem” [3],
and the Knowledge Graph Embedding model has appeared to be a popular solu-
tion to this. This model is a latent feature space representation of the Knowledge
Graph acting as a learning model [4]. With limited resources of the machinery
and exponential growth of the data, achieving a well-trained model with optimized
time and utilizing more inexpensive but available machinery should be opted as
an important sector to explore.
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1.1 Problem Statement

Over the last few years, constructing a more efficient scoring function and loss func-
tion has been the most focused sector for improving different Knowledge Graph
Embedding models [5]. Even some researchers use different optimization algo-
rithms for a well-trained model [6] [7] [8]. However, avoiding the generation of
nonsensical negatives samples is important for these models and is often over-
looked [9]. For example, Knowledge Graph Embedding models can suffer from the
vanishing gradient problem if the generated negative samples are not proper [10].
Hence, it is safe to convey that creating meaningful negative samples might help
a better-trained model.

There are various attempts of creating meaningful negative samples for the Knowl-
edge Graph Embedding models [5] [9] [11]. The Knowledge Graph follows the
concept of the closed world assumption [11]. Anything that is not present in
Knowledge Graph is considered unknown. Thus, the Knowledge Graph Embed-
ding model’s generic structure imposes checking if the generated negative sample
is unknown to the Knowledge Graph. Even if it is a meaningful negative sample.
In the real world, the sizes of these Knowledge Graphs are large in number. In
consequence, this checking can contribute to the training time of the model. With
limited amounts of machinery resources, reducing the Knowledge Graph Embed-
ding model’s processing time might be beneficial.

The principal target of the various Knowledge Graph Embedding models is con-
tributing to the Knowledge Graph Completion process [3]. Hence, the performance
of these models is the supreme factor. All the researchers embarked upon this
area are focused on proposing efficient model training. Therefore, exploring the
proposition of optimizing the training time should be carefully crafted to avoid
compromising the model’s performance.

With the elevation of the Knowledge Graphs in terms of the graph’s number of
facts, their model’s execution time also explodes. This demands an increase in
the computation power of the computing machinery [12]. Distributed Computing
comes as a scalable solution in such a scenario, which facilitates the applications
into multiple machines [13]. Application of the Knowledge Graph Embedding
models in a distributed computing manner maintaining the scalability surely will
have a huge advantage.
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Optimization of the Knowledge Graph Embedding models runs on the embeddings
per epoch. However, distributing this optimization is a big challenge since it comes
with its own benefits and constraints [14]. In a sequential approach, the training
phase takes one batch, computes the loss, and optimizes the entity and relation
embeddings with respect to that loss [15]. Thus for distributed models, the crucial
query is how the parameters are updated per batch such that no information gets
lost.

1.2 Research Questions

To understand the core idea behind the problem statement, four research questions
are crafted carefully. Based on these questions, three variants of Negative Sam-
pling Algorithms and a distributed approach of the Knowledge Graph Embedding
models are proposed in this thesis. These research questions and how they are
unraveled in this thesis are mentioned below:

Question 1. Can meaningful negative sampling improve

the training of the Knowledge Graph Embedding mod-

els?
Three original Negative Sampling Algorithms: RNS [15], DNS [9], and
ADNS [11] are considered to explore this inquiry. Three variants of Negative
Sampling Algorithms are proposed in this thesis by injecting a new concept
into these algorithms. This question is addressed in two sections. First, it is
checked if the proposed algorithm’s variants create more meaningful nega-
tive samples than RNS. Second, it is checked how they are performing with
respect to DNS and ADNS since both of these algorithms aim for creating
meaningful negative samples. The proposed Negative Sampling Algorithms
are implemented with PyTorch. The evaluation metrics related to the link
prediction problem are checked for the trained KGE model’s wellness.
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Question 2. Can training time of the Knowledge Graph

Embedding models be improved with the available Neg-

ative Sampling Algorithms?

Training time with DNS and ADNS is exponential compared to RNS, the
first proposed Negative Sampling Algorithm. In fact, one of the inspirations
of ADNS has been an attempt to reduce the processing time of DNS. The
three variants of the Negative Sampling Algorithms proposed in this thesis
check how the processing time can be optimized with respect to both DNS
and ADNS.

Question 3. Does the improvement of the training time

compromise the performance of the Knowledge Graph

Embedding models?

Principally, the proposed Negative Sampling Algorithm’s motivation has
been optimizing the training time compared to the current Negative Sam-
pling Algorithms. It is observed as well if the performance is not compro-
mised with the help of evaluation metrics.

Question 4. How does the distributed approach of

Knowledge Graph Embedding models perform?

To inspect this question, three Knowledge Graph Embedding models:
TransE [15], DistMult [16], and ComplEx [17] are implemented with a popu-
lar distributed framework called Spark and BigDL library. BigDL is a library
built on the top of Spark, which offers various optimizers. The implemented
model’s performances are assessed with respect to evaluation metrics related
to the link prediction problem.

Keeping all these research questions in mind, the goal of this thesis can be defined
as:

"Create meaningful negative sampling with optimized training time and explore
distributed Knowledge Graph Embedding model’s scalability."
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1.3 Methodology

Figure 1.1: Overall methodology of the thesis

Fundamentally, an in-depth exploration of the literature review has been done
to acknowledge the most important aspects of the KGE models and their func-
tionalities. This study acted as the motivation to address the problem statement
mentioned in Section 1.1 which sets the direction of this thesis. With the com-
prehensive research to acknowledge the research questions elaborated in Section
1.2, three variants of Negative Sampling Algorithms and distributed approaches
of three KGE models have been proposed. The overall methodology of this thesis
is shown in Figure 1.1.

RNS[15], DNS[9], ADNS[11] Negative Sampling Algorithms are considered to eval-
uate how injecting a new concept named Indexed Dataset benefits the KGE
models with respect to the performance and optimization of the training time.
The proposed Negative Sampling Algorithms are identified as Indexed RNS,
Indexed DNS and Indexed ADNS respectively. In general they can be rec-
ognized as Indexed Negative Sampling Algorithms. TransE [15], DistMult [16]
and ComplEx [17] KGE models are selected to test these proposed algorithms.
Additionally, the selected KGE model’s distributed approach is explored in this
thesis, and their performances are evaluated.
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The overall contribution of this thesis can be structured into three major parts
elaborated in the following chapters. The contributions are:

1. Data preparation with both Python and Spark frameworks.

2. Implementation of the three proposed Negative Sampling algorithms with
PyTorch.

3. Exploration of distributed Knowledge Graph Embedding models with Spark
and BigDL.

Chapter 2 details the conceptual and technical background required for this the-
sis. Chapter 3 describes related work regarding different Knowledge Graph Em-
bedding models and different Negative Sampling Algorithms. Chapter 4 focuses
on how the data are prepared to fit the structure of training the Knowledge Graph
Embedding models. Everything in this chapter is implemented in both Python
and Spark. Chapter 5 proposes three variants of Negative Sampling Algorithms
and the motivation behind them. These algorithms are implemented with Py-
Torch. Chapter 6 explores the distributed implementations of three Knowledge
Graph Embedding models with Spark framework and BigDL library. Chapter 7
is the chapter where all the results and findings of the contributions of this thesis
are elaborated. Chapter 8 outlines the conclusion and future work of this thesis.



Chapter 2

Background

This chapter is categorized into two parts, the conceptual background and the tech-
nical background required for this thesis. Section 2.1 emphasizes the background
of the Knowledge Graph, the basic understanding of the Knowledge Graph Embed-
ding models, their fundamental architecture, and ranges of applications. Section
2.2 briefly illustrates the implementation tools, programming languages, and the
necessary libraries.

7
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2.1 Conceptual Background

2.1.1 Knowledge Graph

A Knowledge Graph (KG) is structured information of entities connected through
a set of relations. In the history of Artificial Intelligence, this form of data repre-
sentation has been in practice for years. Scientists are trying to develop competent
concepts to delineate the data so that machines can solve human-level problems
efficiently for quite some time now. The earliest attempt at the modern KG was
introduced by R. H. Richnes in 1956 [18]. He established a preprogramming for
mechanical translation by representing sentences as graphs by linking nodes with
respect to the relation shown in Figure 2.1.

Figure 2.1: R. H. Richnes’ example of mechanical translation of relation “on”
and entities “cat” and “mat” from a sentence

Modern Knowledge Graph (KG) consists of a head (h), a tail (t), and the relation
(r) between the head and tail. This is depicted as a triple format of the KG.
The triple can be considered as the subject, predicate, and object of the natural
language. The head (h) or subject and the tail (t) or object are considered as
entities, and the relation (r) or predicate can be considered as the relation. The
entire KG is connected through these triples as shown in Figure 2.2.

Figure 2.2: A sample Knowledge Graph with a list of entities and relations
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There are various available KGs, which are: DBpedia [19], Freebase [20], WordNet
[21], YAGO [22], Kinship [23], Nations [24], UMLS [25] etc. In 2012, Google
announced an addition of Knowledge Graph to their search engine to facilitate a
broader, deeper and easier search for the user [26].

2.1.2 Knowledge Graph Embedding (KGE) Models

Knowledge Graph Embeddings (KGE) are low dimension vector representations
of all the entities and the relations of a Knowledge Graph. Various models are
introduced in the past couple of years that use these KGE to infer the Knowl-
edge Graph’s relations. This thesis is focused on the latent feature models. These
models intend to apprehend the semantics, their homogeneity, and corresponding
pattern. The input of these models is in the RDF triple format of the Knowledge
Graph, and they are trained to predict future unknown facts. For example, in
Figure 2.2 a missing fact (Bonn, is in, Europe) is indicated by the dotted line,
which can be predicted with these trained KGE models. The entities and rela-
tions are mapped to latent feature vector spaces, which can be named embedding
vectors, and the weights of these vectors are learned while training. Some of the
most popular KGE models are RESCAL [4], TransE [15], TransH [10], TransR [3],
DistMult [16], ComplEx [17], RotatE [27], etc. The following section will discuss
the basic anatomy of these KGE models.

2.1.3 General Architecture Of KGE Models

KGE models thoroughly follow a neural architecture for learning the embedding
vectors of the graph. The basic architecture of the KGE models are shown in Algo-
rithm 1 and explained in the following sections. Initially, the KGE model creates
a vector embedding space with the provided dimension, and then the embeddings
are randomly initialized. Until the loss of the model is not optimal or iteration
has not reached a maximum number, the following steps are repeated: generating
a sample batch of positive triples, creating negative samples of the positive batch,
Score calculation of the positive and negative batch, loss calculation, optimization
of the embedding with respect to loss at a given learning rate.



Background 10

Algorithm 1 General Architecture of the KGE Models
Input Triple (h, r, t) of Knowledge Graph, dimension K of the embeddings,
learning rate l of the gradient step
Returns Trained embeddings of entities E and relation R

1: Map the list of entities e to K dimension vector space E
2: Map the list of relations r to K dimension vector space R
3: Initialize E and R randomly
4: while loss is not optimal or minimum number of epochs do
5: Generate P ← batch of positive triples
6: Generate N ← batch of negative triples
7: P score ← Score(P )
8: N score ← Score(N)
9: Calculate Loss(P score, N score)
10: Update embeddings E and R w.r.t Loss and l
11: end while
12: return E and R

2.1.3.1 Embedding Initialization

Proper initialization of the embedding vector is important for fast convergence,
and feasible learning process [28]. KGE models like TransE, DistMult, ComplEx
etc. initialize the embedding by Equation 2.1 proposed a decade ago [29].

W ij ← U [− 1√
n
,

1√
n
] (2.1)

Here, W ij is the weight of the embeddings and U indicates uniform distribution
within a range and n is the dimension of the embeddings.

2.1.3.2 Negative Sampling

Knowledge Graphs are built on true facts. Thus, a negative sample for KGE
models are those triples that are not present in the Knowledge Graph, similar to
the closed world assumption problem. For the Knowledge Graph shown in Figure
2.2 (Bonn, lives in, Bonn) will be a negative sample. For better training of the
KGE models, meaningful negative sampling is important [9][11][30]. The basic
structure of generating these negative samples is either consider head (h) or tail
(t) to be replaced by another entity which will not create a triple true for the
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Knowledge Graph as shown in Equation 2.2.

S- = {(h′, r, t)|h′ ∈ ε, h′ 6= h where (h, r, t) ∈ S+}

OR

{(h, r, t′)|t′ ∈ ε, t′ 6= t where (h, r, t) ∈ S+}

(2.2)

Parameters of the Equation 2.2 depicts, S+ the set of positive samples, S- set of
negative samples, h′ as the replaced entity in head position, and t′ is the replaced
entity in the tail position of the triple (h, r, t) of the Knowledge Graph.

2.1.3.3 Score Function

The score function of the KGE models refers to the scalar value calculation in-
dicating the wellness of the trained KGE model. During training, KGE models
calculate the score of the positive sample and the negative sample. This calcula-
tion aims to generalize the models on the training data to predict unknown facts of
the Knowledge Graph with higher accuracy. The goal is to have higher scores for
positive samples and lower scores for negative samples. Also, this score is the basis
to compute the overall loss of the model. Different KGE algorithms use different
scoring functions [15][16][17].

2.1.3.4 Loss Function

The scores of positive and negative samples are passed through a loss function
which is the pathway to optimize the embedding vectors of KGE models. Loss
function basically calculates the difference between the true facts and false facts
of the Knowledge Graph; hence the difference can also be labeled as Error. To
train the model better, this error or loss needs to be minimized. The loss of
the model tends to be higher at the beginning of the training phase. However,
with each iteration, it reduces, which can indicate adequate learning of the model.
There are many available loss functions [15][27][31][32][33] to help the model’s
performance.



Background 12

2.1.3.5 Optimization

The optimization, more precisely the loss optimization phase, is the most impor-
tant segment of the training process of the KGE models. This optimization’s
ultimate goal is to minimize the loss while training the model to estimate the
model parameters. Gradient descent is one of the basic optimizations of any neu-
ral network [34]. There are other optimization algorithms available such as Adam
[7], AdaGrad [8], SGD [6] etc. In each iteration, the KGE model’s parameters are
updated by taking a gradient step with a constant learning rate [15]. Learning
rate is significant for the optimization, which essentially determines how big steps
the gradient descent will take to achieve the local minimum of the loss of the KGE
models.

2.1.4 Applications Of KGE Models

There are different applications of the KGE models that yield to the benefit of the
process, like Knowledge Graph Completion [3]. These applications can be classified
into two sectors, the ”in−KG applications” and the ”out−of−KG applications”

[35]. An ”in − KG” applications are exercised inside of the Knowledge Graph,
mostly for evaluation protocols of the KGE models [36]. This includes link predic-
tion, triple classification, entity classification, and entity resolution. The ”out −
of−KG” applications target the wider fields of Knowledge Graphs such as relation
extraction, question answering, recommender systems, etc.

2.1.4.1 Link Prediction

The core concept of link prediction is predicting an entity that has a specific
relation with another entity. For a triple (h, r, t) where h denotes head, r denotes
relation, and t denotes tail of a fact, link prediction is defined as either (?, r, t) or
(h, r, ?). For instance, (?, lives in, Bonn) means to find out who lives in Bonn.
This task is done by a simple procedure of ranking the scores of a possible set of
entities for the missing position of the triple. Link prediction can also be known
as entity prediction [37].
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2.1.4.2 Triple Classification

Triple classification is a binary classification task [38] which estimates whether a
triple is true or false. A threshold value of the triple score with respect to a relation
is set to margin the positive triples from the negative triples. For example, a
threshold value δ is set for relation r, and the topmost scores for any triple (h, r, t)
are considered true fact [35].

2.1.4.3 Entity Classification

Entity classification aims to predict entities that are referred to the same semantic
categories. For example, for triple (Bonn, is a, city), relation ”is a” can encode
the entities to a certain type from the learned Knowledge Graph. Hence, it is
restricted to predict (_, is a, ?) where ’_’ denoted any given entity. Entity
classification can also be called a version of link prediction [35].

2.1.4.4 Entity Resolution

Entity resolution can be used to prune entities with the same semantics since in
Knowledge Graphs one entity can be represented in several ways, for example,
name, place, etc. This entity resolution can be obtained in two ways. First,
by the help of the learned model of a Knowledge Graph, which indicates the
similar semantics with a relation, such as (a, equals to, b) [39]. In such a case,
measuring the triple score’s correctness will achieve entity resolution similar to
triple classification. However, such indicating relations may not be provided by
the Knowledge Graphs. Thus, likelihood of two entities (a, b) is calculated with
a formula e-||a-b||2/c [4] , where c is a constant for entity resolution.

2.1.4.5 Relation extraction

Relation Extraction aims to predict semantic relations between pairs of entities
from a text, given that the entities are already learned, which can be denoted as
(h, ?, t) [40]. For example, ”Tasneem lives in Bonn” where ”Tasneem” and
”Bonn” are detected as entities, the relation extraction task will detect ”lives in”
as a relation. This is a very pivotal aspect of NLP. One way of performing this
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task is to combine a KGE model with a text-based extractor from a text corpus
[41] and calculate a new score as shown in Equation 2.3.

Stext+KG(h, r, t) =
∑

m∈Mh,t

Stext(m, r) + SKG(h, r, t) (2.3)

Stext(m, r) is the text-based extractor score between relation r and its textual
mention m and SKG(h, r, t) is the score from the KGE model.

2.1.4.6 Question Answering

Question answering system with respect to the Knowledge Graph basically depicts
how to acquire the correct answer as a form of triple or set of triples from a
Knowledge Graph [42][43]. For example: ”Who lives in Bonn?” should result
in (Tasneem, lives in, Bonn) from the corresponding Knowledge Graph shown
in Figure 2.2. This method aims to embed both the Knowledge Graph and the
question into a lower vector space to keep the question’s embedding vector and its
corresponding answer closer.

2.1.4.7 Recommender Systems

Recommender systems suggest ”relevant” items to users which can interest them
for further wishful acquisitions or prospective applications. One of the possible
approaches of this recommender system aims to combine collaborative filtering of
the different semantic reparations of the item from the Knowledge Graph. The
facts of the triples, the textual knowledge, and the domain’s visual knowledge are
integrated into the approach for improvement [44].
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2.2 Technical Background

2.2.1 PyTorch

PyTorch1 is a fast-maturing machine learning framework that provides easy appli-
cation of mathematical functions and computes their gradients, and supports the
Graphical Processing Unit (GPU) [45]. PyTorch offers simpler Tensor operations2,
high-level optimization3 tasks by implementing neural network structures4.

2.2.2 Pandas

Pandas5 is a library written for Python as the foundation for Data Analysis and
Statistics [46]. Pandas helps to read data as DataFrames6, offers a magnitude of
numerical libraries such as NumPy7, SciPy8 etc.

2.2.3 Python

Python9 is a functional, imperative, and object-oriented programming language
which provides fundamental numerical libraries [47]. Python brings the benefits
of PyTorch and Pandas under one platform.

1https://pytorch.org/
2https://pytorch.org/docs/stable/torch.html
3https://pytorch.org/docs/stable/optim.html
4https://pytorch.org/docs/stable/generated/torch.nn.Module.htmltorch.nn.Module
5https://pandas.pydata.org/
6https://pandas.pydata.org/docs/reference/frame.html
7https://numpy.org/
8https://www.scipy.org/
9https://www.python.org/
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2.2.4 Spark

Apache Spark10 is a distributed computing system for big data enabling jobs to be
completed faster and better than previous big data tools [48]. Spark provides the
opportunity to run applications in clusters11 and read RDDs12 in a good manner.

2.2.5 BigDL

BigDL13 is a distributed deep learning framework built on the top of Apache Spark.
Providing the distributed datasets to the neural network helps perform distributed
training on Spark [49]. BigDL covers vast applications of Tensors14 (modeled after
Torch15) and optimizers16 running on the Spark clusters.

2.2.6 Scala

Scala17 is one of the languages Spark provides for its developed APIs. Scala is a
high-level language offering a combination of object-oriented and functional pro-
gramming under one platform [50]. Advantages of Spark and BigDL are achieved
through Scala applications.

10https://spark.apache.org/
11https://spark.apache.org/docs/latest/rdd-programming-guide.htmlinitializing-spark
12https://spark.apache.org/docs/latest/rdd-programming-guide.html
13https://bigdl-project.github.io/0.10.0/
14https://bigdl-project.github.io/0.10.0/APIGuide/Data/tensor
15http://torch.ch/
16https://bigdl-project.github.io/0.10.0/APIGuide/Optimizers/Optim-Methods/adam
17https://docs.scala-lang.org/tour/tour-of-scala.html



Chapter 3

Related Work

This chapter briefly discusses the scholarly studies related to the core areas of this
thesis. Section 3.1 will emphasize on different KGE models and Section 3.2 will
focus on different Negative Sampling Algorithms.

17
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3.1 Knowledge Graph Embedding (KGE) Models

3.1.1 RESCAL

RESCAL [4] is one of the primary approaches of KGE models. It is a factorization
of multi-relational data that basically computes a three-way factorization of adja-
cent tensors of the Knowledge Graph. Entities are represented as d - dimensional
vector x ( xh for head and xt for tail) and each relation is represented as d × d

dimensional vector W r and the corresponding score function of the model is given
by Equation 3.1.

fRESCAL = xh
TW rxt (3.1)

3.1.2 SME

SME [39] regards the relation embedding equal to entity embedding. This method
aims to apprehend the correlation between them by multiple linear matrix prod-
ucts.

3.1.3 TransH

TransH [10] proposes to translate the relations (r) on a hyperplane with a normal
vector. The entity embeddings head (h) and tail (t) are translated on the hyper-
plane of W r for r denoted as h_ and t_. Then Equation 3.2 is used as the score
function of the model.

fTransH = ||h_ + r − t_||22 (3.2)

3.1.4 TransR

TransR [3] proposes two distinct spaces. One for entities, and the other is relation-
specified entity space to capture the diversity of the relations denoted as Mr. Score,
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as shown in Equation 3.4, of the model is calculated by the translated entities (h, t)
with respect to corresponding relation (r) as shown in Equation 3.3.

hr = hM r , tr = tM r (3.3)

fTransR = ||hM r + r − tM r||22 (3.4)

3.1.5 RotatE

RotatE [27] proposes a model where each relation is presented as a rotation from
the source entity to target entity in a complex vector. Score function of this model
is defined as shown in Equation 3.5.

fRotatE = ||h◦r − t|| (3.5)

Here h◦r depicts the element wise rotation (r) of relation from head (h) to tail (t).

3.2 Negative Sampling Algorithms Of KGE Mod-

els

3.2.1 Random Negative Sampling (RNS)

Random Negative Sampling algorithm or RNS is the simplest technique for gen-
erating negative samples for positive samples in the training datasets. Head (h)

or tail (t) of a triple (h, r, t) is selected randomly to be replaced by another entity
from the entire entity set. This chosen entity is also selected randomly. TransE
[15] used RNS for triple corruption. Negative samples produced by RNS may not
be useful. There is no guarantee that the negative sample is not true for the
training dataset and meaningful, affecting the KGE model’s performance.



Related work 20

3.2.2 Corrupting Positive Instances (C)

Corrupting Positive Instances (C) [51] creates a pool of heads (h) and tail (t) with
respect to the relation (r). Then it selects randomly from the pool to corrupt the
triple (h, r, t) for closer proximity of the chosen entity with the replaced entity.
Adding to that, the entity is chosen so that the generated negative sample is not
true for the training set. A problem with this algorithm is the scarcity of the
available pool.

3.2.3 Typed Negative Sampling (TNS)

Typed Negative Sampling (T) [30] uses datasets that have strong typed relations
such as NELL [52], FreeBase [20]. Which means a relation is always connected
to a particular type of entity. While generating a negative sample, the entity is
chosen from the same typed entity list for a more coherent training process.

3.2.4 Distributional Negative Sampling (DNS)

Distributional Negative Sampling or DNS [9] attempt to create meaningful nega-
tive sampling by calculating cosine similarity [53] between the vectors of the entity
embeddings and the replacement candidate. The core concept of DNS is similar to
TNS without providing a typed dataset. Principally, the cosine similarity learns
the type of entity, and negative samples are created with the highest cosine sim-
ilarity among the entire entity list. To create multiple negative samples for each
positive triple, the entire process of calculating the cosine similarity is executed
again and again, which creates an overhead of the model’s training time. The
formula for cosine similarities between vectors is given in Equation 3.6.

Similarity(X, Y ) =
X · Y
|X| × |Y |

=

∑n
i=1WXi ×WYi√∑n

i=1WXi
2 ×

√∑n
i=1WYi

2
(3.6)

Here, X = [WX0,WX1....WXn] and Y = [WY0,WY1....WYn] are two vectors. WXi

and WYi can be considered as the embedding weights.
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3.2.5 Affinity Dependent Negative Sampling (ADNS)

Affinity Dependent Negative Sampling or ADNS [11] solves the calculation looping
issue of DNS by introducing an additional affinity function or fitness function that
acts as a probability vector for each entity in the list of entities. This enables the
algorithm to choose multiple entities to create multiple negative samples for one
positive triple at once. This function is defined as shown in Equation 3.7 where
M i is the cosine similarity score for one entity at ith position and

∑
j M j is the

summation of cosine similarity scores of all the entities.

Fitnessi =
M i∑
j M j

(3.7)



Chapter 4

Data Preparation

This chapter focuses on preparing the dataset in a manner to use them inside
the KGE models. Section 4.1 emphasises on how dictionaries from entities and
relations are created. Section 4.2 shows how the original datasets are translated
according to the created dictionaries, Section 4.3 elaborates how datasets are di-
vided into the train, test, and validation datasets, and Section 4.4 describes the
process of creating a probability table that is used to generate meaningful negative
samples during the training phase of the KGE models. Finally, Section 4.5 ex-
plains the motivation behind creating a new version of the training dataset called
Indexed dataset and the algorithm behind generating it. This dataset is used
inside the proposed Indexed Negative Sampling Algorithms in this thesis.

22
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Figure 4.1: Architecture of the dataset preparation

In the real world, available datasets are Strings, represented in triple format. To fit
these datasets into the KGE models, some pre-processings of the original datasets
must be executed. This step can be called Data Preparation as shown in Figure
4.1. Successful completion of this phase will have the following files:

• Entity dictionary.

• Relation dictionary.

• Translated dataset from the original dataset using the dictionaries.

• Train, Test and validation dataset.

• The probability table for the corruption of the triples.

• The indexed dataset from the original dataset.

All these files are produced by both Python and Spark frameworks and will be
discussed in the following parts of this chapter.
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Head (h) Relation (r) Tail (t)
Tasneem lives is Bonn
Bonn is in Germany
Germany is in Europe
Uni bonn is located at Bonn
Drea lives in Bonn

Table 4.1: Sample training dataset

4.1 Creation Of The Dictionary

Algorithm 2 Dictionary Creation
Input Original dataset S = {(h, r , t)}
Returns Entity dictionary ε, Relation dictionary R

1: ε,R = φ B Initialization of the dictionaries
2: H ← Select unique heads (h) from the dataset
3: T ← Select unique tails (t) from the dataset
4: E ← (H ∩ T )
5: entityCount = 0
6: for entity ∈ E do
7: Append (entity, entityCount) to ε
8: Increment (entityCount)
9: end for
10: R← Select unique relations (r) from the dataset
11: relationCount = 0
12: for relation ∈ R do
13: Append (relation, relationCount) to R
14: Increment (relationCount)
15: end for
16: return (ε,R)

Algorithm 2 shows the procedure to create the entity and relation dictionary from
the original dataset, which is stored in String format. The steps are pretty sim-
ple. All the heads and tails are put under one list for entity dictionary with no
duplicates. Once this process is done, a unique number is assigned to each of
the entities. Similarly, for the relation dictionary, the list of unique relations is
extracted from the entire dataset, and a unique number is set against each of the
relations. The numbers for the dictionaries start at 0 from Python1 implementa-
tion and at 1 from Spark2 implementation and are incremented by 1. In this way,

1Index of Tensor in PyTorch starts at 0
2Index of Tensor in BigDL starts at 1
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the dictionaries shown in Figure 4.2 generated from Table 4.1 will help indicate
which index in the embedding vector corresponds to which entity or relation.

Figure 4.2: Sample dictionaries

4.1.1 Python Implementation

Creating a dictionary with Python is relatively straightforward. The dataset is
read as a DataFrame and sent as the input of the function shown in Figure 4.3.
The unique combination of all the heads and tails is extracted in a column, as
shown in lines 2 - 3. Another column is created by line 4 with a numerical value
starting from 0. This column is considered as the corresponding ID of the entities.
Similarly, all the unique relations are extracted in one column, and in the second
column, an incremental number is set. The column headers of the dictionaries are
set as string and id.

1 def create_dictionary(data):
2 entity = pd.DataFrame(data=data[’h’]
3 .append(data[’t’]).unique())
4 entity[1] = np.arange(len(entity))
5 entity = entity.rename(columns={0: ’string’, 1: ’id’})
6 relation = pd.DataFrame(data=data[’r’].unique())
7 relation[1] = np.arange(len(relation))
8 relation = relation.rename(columns={0: ’string’, 1: ’id’})
9 return (entity, relation)

Figure 4.3: Python code for creating the dictionary from the original dataset
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4.1.2 Spark Implementation

1 val entityList = data.select("h").withColumnRenamed("h","t")
2 .union(data.select("t")).distinct.collect
3 .map(r => {r(0).asInstanceOf[String]})
4 val relationList = data.select("r").distinct.collect
5 .map(r => {r(0).asInstanceOf[String]})
6
7 def CreateDictionary(entityList:Array[String],
8 relationList:Array[String],
9 spark:SparkSession): (DataFrame, DataFrame) = {
10 val schema = new StructType().add("string",StringType,true)
11 .add("id",IntegerType,true)
12 val sc = spark.sparkContext
13 val entityDictionary = spark.createDataFrame(
14 sc.parallelize(entityList)
15 .map(r => {
16 Row(r, entityList.indexOf(r)+1)}),
17 schema)
18 val relationDictionary = spark.createDataFrame(
19 sc.parallelize(relationList)
20 .map(r => {
21 Row(r, relationList.indexOf(r)+1)}),
22 schema)
23 (entityDictionary, relationDictionary)
24 }

Figure 4.4: Spark code for creating the dictionary from the original dataset

Figure 4.4 shows the implementation of Algorithm 2 with Spark using Scala.
CreateDictionary function takes the lists of unique entities and unique relations,
and a SparkSession3. The lists are created before calling the functions with basic
Spark Action and Transformation methods4[48] as shown in lines 1 - 5. The
function returns the created entity and relation dictionaries as DataFrames. At
the beginning of the Data Preparation phase, entities and relations are extracted
as a list of arrays. Since this phase has the liberty to create the dictionaries, the
list’s index is set as the corresponding ID of entity or relation for the easiest so-
lution. Generally, the index of a list or array starts at 0. Thus, for creating the
dictionary IDs, the index of the list will be incremented by 1 so that IDs start
at 15 as shown in lines 13 - 22. To save the dictionaries, two DataFrames are

3SparkSession is the entry point to programming Dataset and DataFrame API
4https://spark.apache.org/docs/latest/rdd-programming-guide.html
5For training in BigDL, the Tensor’s index starts at 1
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created by mapping the String and the ID as rows of a RDD using SparkContext6.
The RDD[Row] is then converted to DataFrames with a defined Schema, which
basically depicts the column’s structure type. Column names (string and id) can
also be mentioned inside the schema. If the column’s fields can contain null value,
true is set as the schema’s parameter.

4.2 Translation Of The Original Dataset

Algorithm 3 Data Translation
Input Original dataset S = {(h, r , t)}, entity dictionary ε and relation dictionary
R
Returns Translated dataset S ′

1: S ′ ← φ B Stores the converted dataset
2: for triple ∈ S do
3: h← head of the triple
4: r ← relation of the triple
5: t← tail of the triple
6: h′ ← Extract ID of h from ε
7: r′ ← Extract ID of r from R
8: t′ ← Extract ID of t from ε
9: Append (h′, r′, t′,) to S ′
10: end for
11: return S ′

The basic structure of translating the original dataset from String to numerical
format with respect to the dictionaries of entities and relation is shown in Algo-
rithm 3. Using the dictionaries created from Algorithm 2 as shown in Figure 4.2,
Table 4.1 is translated to Table 4.2.

Head (h) Relation (r) Tail (t)
4 0 1
1 1 5
5 1 0
3 2 1
2 0 1

Table 4.2: Translated dataset from the original sample dataset using the dic-
tionaries

6SparkContext renders the connection to a Spark cluster which can create RDD
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4.2.1 Python Implementation

For the implementation of the Algorithm 3 in Python shown in Figure 4.5, the
original dataset, entity dictionary, and relation dictionary are taken as DataFrames
as input. First, the entity and relation DataFrames are converted into dictionaries
with the command set_index, which sets the index of the DataFrame using one or
more existing columns. Then the column representing the IDs is taken as shown in
lines 3-4. Following this, the triple dataset is mapped with respect to the modified
dictionaries, as shown in lines 5-7.

1 def data_translation(data, entity, relation):
2 new_data = data
3 entity_dict = entity.set_index(’string’)[’id’]
4 relation_dict = relation.set_index(’string’)[’id’]
5 new_data[’h’] = new_data[’h’].map(entity_dict)
6 new_data[’r’] = new_data[’r’].map(relation_dict)
7 new_data[’t’] = new_data[’t’].map(entity_dict)
8 return new_data

Figure 4.5: Python code for translating original dataset with respect to the
dictionaries

4.2.2 Spark Implementation

DataFrames are immutable in Spark [48]. Hence, one can not change any value
inside a current DataFrame rather map a new one. As previously mentioned
in Section 4.1 (1 + index of the entity or relation list) is set as the ID. Thus, to
translate the original dataset, function indexOf() is used to get the corresponding
ID (index) and mapped to a new set of rows. The function DataTranslation

shown in Figure 4.6 takes the original dataset, entity list, relation list, and a
SparkSession as input and returns the translated dataset as a new DataFrame.
The output DataFrame is created similarly to the process mentioned in Section
4.1 with a schema.
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1 val entityList = data.select("h").withColumnRenamed("h","t")
2 .union(data.select("t")).distinct.collect
3 .map(r => {r(0).asInstanceOf[String]})
4 val relationList = data.select("r").distinct.collect
5 .map(r => {r(0).asInstanceOf[String]})
6
7 def DataTranslation (data:DataFrame, entityList:Array[String],
8 relationList:Array[String], spark:SparkSession):
9 (DataFrame) = {
10 val schema = new StructType().add("h",IntegerType,true)
11 .add("r",IntegerType,true)
12 .add("t",IntegerType,true)
13 val newData = spark.createDataFrame(data.rdd
14 .map(r => {
15 Row((entityList.indexOf(r(0))+1).toString,
16 (relationList.indexOf(r(1))+1).toString,
17 (entityList.indexOf(r(2))+1).toString)}),
18 schema)
19 (newData)
20 }

Figure 4.6: Spark code for translating original dataset with respect to the
dictionaries

4.3 Division Of Dataset

The original dataset should be divided into three different datasets. They are the
train dataset - used to train the KGE model, the valid dataset that validates the
training, and the test dataset, which tests how well the model is trained. Generally,
80:10:10 is the ratio of splitting into three datasets.

4.3.1 Python Implementation

1 train = data.sample(frac=0.80, replace=False, random_state=0)
2 temp = data.drop(train.index)
3 test = temp.sample(frac=0.50, replace=False, random_state=0)
4 valid = temp.drop(test.index)

Figure 4.7: Python code to divide original dataset to train, test and validation
datasets
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Figure 4.7 shows how datasets can be split into multiple datasets. Dataset is read
as a Pandas DataFrame. This splitting is performed in two steps. First the 80%
from the dataset is taken into the train variable with the command sample().
Parameters of this command depict as following: frac = 0.80 means the fraction
of the sample to be taken. The second parameter is replace, which is set to false
so that rows are not repeated while creating the sample. Lastly, random_state is
set to 0 because this acts as a seed. This seed ensures that the same results will
be returned even after executing the command several times. To create the test
and valid dataset, line 2 - 4 is executed in Figure 4.7. The rest of the 20% dataset
is stored in temp variables that are not present in train data. This temp dataset
is divided into 50-50 to achieve the ratio of 80:10:10 of the train, valid and test
datasets.

4.3.2 Spark Implementation

1 val temp = data.randomSplit(Array(0.80, 0.10, 0.10), 11L)
2 val trainSet = temp(0)
3 val testSet = temp(1)
4 val validSet = temp(2)

Figure 4.8: Spark code to divide original dataset to train, test and validation
datasets

Figure 4.8 shows the Scala command to split the dataset in line 1. The method
is called randomSplit(weights, seed). This method takes parameters of an array
with the weights that the dataset should be divided into and a long value that
acts as the seed. The split datasets are stored as an array of datasets.

4.4 Creation Of The Probability Table

This probability table is inspired from TransH [10]. In this paper, the probabilities
for replacing the head or tail for creating negative samples depend on the mapping
type of the relation, for example, one-to-many, many-to-one, many-to-many. If
the relation is mapped to one-to-many, then the higher probability is given to
replace the head. If the relation is mapped to many-to-one, then the tail is given
a higher probability to be replaced for creating negative samples. The target for
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this approach is to reduce the generation of false-negative samples. Therefore two
calculations are made: the average number of tails per heads denoted as tph shown
in Equation 4.1 and the average number of heads per tails denoted as hpt shown
in Equation 4.2.

tail per head (tph) =
number of all tails

number of unique heads
(4.1)

head per tail (hpt) =
number of all heads

number of unique tails
(4.2)

A Bernoulli distribution [54] is used to get the corresponding probability of replac-
ing the head or tail with the tph and hpt. Given a triple (h, r, t) the probability
of corrupting a head, P h is as shown in Equation 4.3 and the probability of cor-
rupting tail, P t is as shown in Equation 4.4 and a table is created with these two
probabilities.

ph =
tph

tph + hpt
(4.3)

pt =
hpt

tph + hpt
(4.4)

4.4.1 Python Implementation

For this implementation, the dataset sent in the function shown in Figure 4.9
has to be a translated dataset as mentioned in Section 4.2. Also, the number of
entities and relations are passed as parameters. Two empty n-dimensional arrays
are created to calculate the head and tail entity’s occurrences with respect to a
particular relation, as shown in lines 2 - 6. Then, the probability table is created
for the Equation 4.3 and Equation 4.4. Function sum(hr[i, :]) calculates the total
number of head or tail entities that appeared per relation. This includes duplicate
entities as well. Function np.sum(hr[i, :] > 0) is used to calculate how many
indices are non-zero in the array, as shown in lines 9 - 10, which basically indicates
how many unique head or tail entities appeared per relation.
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1 def probability_table(data, n_entity, n_relation):
2 hr = np.zeros([n_relation, n_entity])
3 tr = np.zeros([n_relation, n_entity])
4 for index, row in new_data.iterrows():
5 hr[row[’r’], row[’h’]] += 1
6 tr[row[’r’], row[’t’]] += 1
7 prob_table = np.zeros([n_relation, 2])
8 for i in range(0, n_relation):
9 prob_table[i, 0] = sum(hr[i, :]) / np.sum(hr[i, :] > 0)
10 prob_table[i, 1] = sum(tr[i, :]) / np.sum(tr[i, :] > 0)
11 prob_table = pd.DataFrame(prob_table,
12 columns=[’tph’, ’hpt’])
13 return prob_table

Figure 4.9: Python code to create the probability table

1 def ProbabilityTable(data:DataFrame, spark:SparkSession){
2 import spark.implicits._

3 var probabilityTable = "tph\thpt\n"
4 val relation = data.select("r").distinct.collect.map(r =>
5 {r(0).asInstanceOf[String]})
6 relation.foreach(r => {
7 val temp = data.where($"r" === r)
8 val totalOccurence = temp.count.toDouble
9 val head = temp.select("h").distinct.count.toDouble
10 val tail = temp.select("t").distinct.count.toDouble
11 probabilityTable = probabilityTable + totalOccurence/head + "\t"
12 + totalOccurence/tail + "\n"
13 })
14 (probabilityTable)
15 }

Figure 4.10: Spark code to create the probability table

4.4.2 Spark Implementation

Figure 4.10 illustrates the Scala implementation of creating the probability table.
Lists of relations are extracted from the input dataset. For each relation, the sub-
dataset is extracted, having only one unique relation, as shown in line 7. After
that, the number of total occurrences of the rows, unique numbers of head and
tail in the sub-dataset are calculated as shown in lines 8 - 10. With these three
values tph and hpt is calculated. Again, DataFrame in Scala is immutable. Thus
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for a simpler approach, the table is returned as a tab-separated string which will
be saved in the local machine as a tsv (tab-separated) file.

4.5 Creation Of The Indexed Dataset

Creating the Indexed Dataset is important for the proposed variants of the Nega-
tive Sampling Algorithms in this thesis. Basically, the original datasets are indexed
in a new table to improve the current variants of Negative Sampling Algorithms
with respect to processing time.

4.5.1 Motivation

Figure 4.11: Example of checking if the corrupted triple exists in the training
dataset

As indicated in Chapter 1, one of this thesis’s primary tasks is to find a way to
minimize the training time of the KGE models without compromising the results.
Triple corruption or creating negative samples is one of the most important com-
ponents of these models. RNS [15], DNS [9] and ADNS [11] mentioned in Chapter
3 do not guarantee that the generated negative sample is not true for the train-
ing dataset. Moreover, the KGE model’s training algorithm with these Negative
Sampling Algorithms includes a check box to refine the acceptable negative sam-
ples. Let’s take a basic example of how the worst-case scenario of checking the
generated triple in the training dataset will look. Figure 4.11 shows an example
of the scenario. Head of the triple (Tasneem, lives in, Bonn) is selected for cor-
ruption. None of the negative sampling algorithms mentioned above can ensure
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that Drea will not be chosen as the replacement entity. In this case, negative
triple (Drea, lives in, Bonn) is true for the training dataset, and to check it,
the entire dataset has to be traversed. This issue motivated the idea that before
creating the negative triple, if the KGE algorithm already knows which entities
are bad and ignores them, the check box is unnecessary. Now the question comes,
how to tell the algorithm which entities should be ignored for each relation while
corrupting the head or the tail. Here the concept Indexed Dataset comes in the
benefit of the training. For example, if the relation is ′lives in′ the corresponding
column headers of the Indexed Dataset will be ′sub : lives in′ and ′obj : lives in′

as shown in Figure 4.127 . This advantage will be detailed in Chapter 5.

Figure 4.12: Creation of indexed dataset from the original dataset

7For better understanding original dataset will be used as an example rather than the trans-
lated dataset, which is the real scenario for KGE training
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4.5.2 Algorithm And Implementation

Algorithm 4 shows the pseudo-code of creating Indexed Dataset from the trans-
lated training dataset.

Algorithm 4 Creation of Indexed Dataset
Input Training set S = {(h, r , t)}
Returns Indexed dataset I

1: I ← φ B Stores list of heads and tails per relation
2: R← extract list of relations from S
3: for r ∈ R do
4: h← List of unique heads for r
5: Ch ← h as Column with header "sub:r"
6: t← List of unique tails for r
7: Ct ← t as Column with header "obj:r"
8: C ← Join (Ch, Ct)
9: I ← Join (I, C)
10: end for
11: return I

4.5.2.1 Python Implementation

1 def indexed_dataset(data):
2 relation = data[’r’].unique()
3 indexed_data = pd.DataFrame()
4 for r in relation:
5 head = pd.DataFrame(data.loc[data[’r’] == r][’h’]
6 .unique()).rename(columns={0: ’sub:’ + r})
7 tail = pd.DataFrame(data.loc[data[’r’] == r][’t’]
8 .unique()).rename(columns={0: ’obj:’ + r})
9 temp = pd.concat([head, tail], axis=1)
10 indexed_data = pd.concat([indexed_data, temp], axis=1)
11 return indexed_data

Figure 4.13: Python code to create the indexed dataset

For Python implementation of Algorithm 4, as shown in Figure 4.13, the original
dataset is taken as the input, and the indexed dataset is returned. For each
relation, all the unique heads are extracted in a column that is renamed as ′sub :′

concatenated with the relation as shown in lines 5 - 6. In the same process, for
each relation, all the unique tails are extracted in a column that is renamed as
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′obj :′ concatenated with the relation as shown in lines 7 - 8. Once the two columns
are ready, they are added to the output data.

4.5.2.2 Spark Implementation

1 def IndexedDataSet(data:DataFrame, spark:SparkSession): (DataFrame) = {
2 import spark.implicits._

3 val relation = data.select("r").collect
4 .map(r => {r(0).asInstanceOf[String]})
5 var indexedData = spark.emptyDataFrame
6 var temp = spark.emptyDataFrame
7 var flag = false
8 relation.foreach(r => {
9 val head = data.where($"r" === r).select("h").distinct
10 .withColumn("ID",
11 row_number.over(Window.orderBy("h")))
12 .withColumnRenamed("h", "sub:"+r)
13 val tail = data.where($"r" === r).select("t").distinct
14 .withColumn("ID",
15 row_number.over(Window.orderBy("t")))
16 .withColumnRenamed("t", "obj:"+r)
17 if(head.count < tail.count){
18 temp = tail.join(head,Seq("ID"),"left_outer") }
19 else{
20 temp = head.join(tail, Seq("ID"),"left_outer") }
21 if(!flag){
22 indexedData = temp
23 flag = true
24 }else{
25 if(indexedData.count > temp.count){
26 indexedData = indexedData.join(temp,
27 Seq("ID"),"left_outer")
28 }else{
29 indexedData = temp.join(indexedData,
30 Seq("ID"),"left_outer")} }})
31 (indexedData.drop("ID"))
32 }

Figure 4.14: Spark code to create the indexed dataset

The IndexedDataSet function shown in Figure 4.14 is the Scala implementation
of creating indexed dataset from the original dataset. Left outer join of the
DataFrame is the key concept to construct the Figure 4.12. The original dataset
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and a SparkSession are the function parameters and Indexed Dataset is the out-
put. For each relation in the train dataset, the list of unique head entities is
extracted as a column, and the header of the column is renamed to ′sub :′ con-
catenated with the relation. A new column named ID with the row numbers is
created to join the column, as shown in lines 9 - 11. Likewise, the columns with the
unique tails with the column name ′obj :′ concatenated with the relation, and the
row numbers are created. It is important to set the larger DataFrame on the left
of the .join method with left_outer settings. Otherwise, the result will be cast
to the size of the DataFrame on the left side. Information may get lost if the size
of the DataFrame on the right side of the method is larger. Thus, a check block
is kept to see which DataFrame is bigger. Everything is joined with the column
ID, which is the only common column among all the DataFrames. This column
will be dropped before returning the final result since it is created for the joining
purpose. A mutable variable called indexedData is created at the beginning to
hold the coming columns. A flag is kept to set the first outcome of the relation
list directly inside the indexedData variable, and then the flag is set to true to
execute the joining of the produced DataFrames as shown in lines 17 - 30.



Chapter 5

Indexed Negative Sampling

Algorithm

This chapter proposes three variants of the Negative Sampling Algorithms with
the help of Indexed Dataset created in Chapter 4. They can be named the
Indexed Negative Sampling Algorithms in general. Multiple negative triples
are generated per positive triple in these algorithms to help train the KGE mod-
els more efficiently [9][11]. General structure of the proposed algorithm is de-
scribed in Section 5.1, pseudo-codes and their implementations of Indexed RNS,
Indexed DNS and Indexed ADNS, the three proposed variants, are elaborated
in Section 5.2, Section 5.3 and Section 5.4 respectively. An overall architecture of
the framework is described in Section 5.5.

38
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5.1 General Structure Of The Indexed Negative

Sampling Algorithm

Algorithm 5 General Structure Of The Indexed Negative Sampling Algorithm
Input Triple (h, r, t), Entity set ε, Indexed dataset SI

Returns Available entity list for triple corruption εI

1: Select head or tail to be replaced for triple corruption
2: εI ← φ B Initialize the indexed entity set
3: if Corrupt head h then
4: εh ← Select column with column name ′sub : r′ B ′sub : r′ is the column

where all the heads h w.r.t. the relation r of the triple are available
5: εI ← ε - εh

6: else if Corrupt tail t then
7: εt ← Select column with column name ′obj : r′ B ′obj : r′ is the column

where all the tails t w.r.t. the relation r of the triple are available
8: εI ← ε - εt

9: end if
10: return εI

For each relation, Indexed dataset shown in Figure 4.12 will have two columns.
One consisting of all the entities acting as the head, and the second consisting of
all the entities acting as the tail per relation. Then Negative Sampling Algorithm
takes an entity that is not present in the Indexed Dataset with respect to the
relation instead of the entire entity set to select the replacement entity. Algorithm
5 shows the basic mechanism of this process. For example, to corrupt the head of
the triple (Tasneem, lives in, Bonn) the proposed Negative Sampling Algorithm
will first extract the list of entities by matching the column header as ′sub : lives in′

from the table. Then the list will be excluded from the entire entity set. If any
entity from this set is chosen to replace the head, there is no chance that the
created triple will be true for the training dataset. Thus, from the current KGE
models, the checking box while creating the negative sample can be discarded.
Special case: The inquisitive minds may have the concern what will be the
scenario when εh or εt from Algorithm 5 will be equal to ε. In this case, the
available pool εI used to create a good corrupted triple will be empty.
Solution: If this exception occurs, then the general rule of triple corruption will
be followed by the algorithm of choosing an entity. This process will be elaborated
in Section 5.2, Section 5.3 and Section 5.4.



Indexed Negative Sampling Algorithms 40

5.2 Indexed Random Negative Sampling (Indexed

RNS)

Algorithm 6 Indexed Random Negative Sampling
Input Training set S = {(h, r , t)}, indexed training set Sindexed, entity and
relation sets ε and R, batch size b, number of negative samples C.
Returns Given a batch B = {(h, r , t)k}, 1 ≤ k ≤ b, return corrupted triples B′
for each triple in the batch.

1: B′ = φ B Stores the negative triples for batch B
2: for triple = (h, r, t) ∈ batch B do
3: Use Random distribution to conclude that t should be corrupted
4: εindexed ← extract Set(tr) from Sindexed

B tr denotes set of all the t’s w.r.t. r from Sindexed

5: ε′ ← ε− εindexed

B ε′ denotes set of all the entities which are not as t for r
6: negative_entities = Random(ε′, C)

B Randomly chooses C entities from ε′ to create negative triples
7: N ← Create(h, r, negative_entities)

B N denotes the generated C negative triples for triple
8: B′ ← B′ ∪N
9: end for
10: return B′

In the Indexed RNS as illustrated in Algorithm 6, the entity set extracted from
Algorithm 5 will be the pool of entities to choose from randomly. Algorithm 6 is an
example of when the tail should be corrupted. The rest of the procedure is similar
to RNS. Another addition to the Indexed RNS from RNS [15] is, this algorithm
creates multiple negative triples for each positive triple. This implementation will
be elaborated in Figure 5.1.

Implementation: The function indexed_random from Figure 5.1 takes four pa-
rameters. The positive batch from the training, the number of negative triples to
be generated per positive triple (C), the number of entities, and the Indexed Dataset.
The output of this function is the corresponding C numbers of negative triples per
positive triple. For each triple, an empty array N is created with the dimension of
[C × 3]. To store triple (h, r, t) 3 is used. Created negative samples will be stored
here. corrupt_index , as shown in line 6, basically indicates whether the head or
the tail should be replaced. Since the head is in index 0 and tail is in index 2 of the
triple, with the help of numpy library, the probability of randomly choosing any
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1 def indexed_random(positive_batch, C, number_of_entities, indexed_table):
2 negative_batch = []
3 t = positive_batch.copy()
4 for triple in t:
5 N = np.zeros((C, 3), dtype=int)
6 corrupt_index = np.random.choice([0, 2], p=[0.5, 0.5])
7 candidate = triple[corrupt_index]
8 all_entity = np.arange(0, number_of_entities, 1)
9 if corrupt_index == 0:
10 des_str = ’sub:’ + str(triple[1])
11 else:
12 des_str = ’obj:’ + str(triple[1])
13 temp_data = [i for i in np.array(indexed_table[des_str])
14 if ~np.isnan(i)]
15 all_unique_entity = np.setxor1d(all_entity, temp_data)
16 .astype(int)
17 try:
18 N = np.random.choice(all_unique_entity, C, replace=False)
19 except:
20 all_entity_candidate_removed = np.delete(all_entity,
21 list(all_entity).index(candidate))
22 N = np.random.choice(all_entity_candidate_removed,
23 C, replace=False)
24 temp_triple = np.copy(triple)
25 temp_matrix = np.tile(temp_triple, (C, 1))
26 for i in range(len(temp_matrix)):
27 temp_matrix[i][corrupt_index] = N[i]
28 for i in range(len(temp_matrix)):
29 negative_batch.append(temp_matrix[i])
30 return np.array(negative_batch)

Figure 5.1: PyTorch code for Indexed RNS

one of the indices is given as 50-50. Then the corresponding entity is extracted
as candidate in line 7 of the Figure 5.1. As mentioned in Chapter 4, the strings
of entities and relations are represented as numerical values. Thus, a set of all
entities can be easily created with the number of the entities (line 8 of the code).
Depending on replacing either the head or the tail, the available pool of the entities
is calculated from lines 9 - 15 of the Figure 5.1. In line 13, a list comprehension is
enacted, which returns the Indexed Data as a list without any null values. Before
choosing the replacement entity randomly, the special case mentioned at the be-
ginning of this chapter must be handled. For which a try-catch block is executed
in the implementation. If an error is thrown, the available pool will be calculated
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by subtracting the candidate from the entire entity set all_entity as shown from
lines 17 - 23. Method np.random.choice supports choosing multiple elements from
a set at once. Thus all_unique_entity or all_entity_candidate_removed is set
as one of the parameters of this method, as shown in line 18 and line 22 to indicate
the available pool. The number of the chosen elements C and replace = False,
which restricts the repetition of the chosen elements, are set as the parameters of
the random choice method. Finally, the C numbers of negative triples are created
and appended to the negative batch sample. This negative batch will be the C
times the positive batch size because for each triple C numbers of negative samples
are generated.

5.3 Indexed Distributional Negative Sampling (In-

dexed DNS)

Indexed Dataset is injected to DNS[9] to create another variant of the Negative
Sampling Algorithm. This proposed algorithm will be named Indexed Distribu-
tional Negative Sampling or Indexed DNS as shown in Algorithm 7. The prob-
ability table explained in Chapter 4 which contains the fraction of head per tail
and tail per head for each relation, is utilized in this algorithm. This table is
set as the probability parameter inside the Bernoulli distribution[54] to select
whether to corrupt head or tail per triple. Algorithm 7 examples when the tail
is selected for triple corruption. The main component of Indexed DNS is calcu-
lating the cosine − similarity [53] between the candidate, tail in this case, and
the initialized embeddings of the available pool of entities. This will be stored
as a matrix M . The probability of taking an entity will be calculated while enu-
merating the matrix M . One crucial factor of the original DNS algorithm is, to
create C numbers of negative samples, the enumeration through the matrix M

will be executed C times. This impacts the training time of the KGE models.
However, Indexed DNS improves this training time by removing the chances of
generated negative samples true for the train dataset. This performance issue is
explained comprehensively in Chapter 7. There is a possibility that the entity set
provided from following the Algorithm 5 might throw some exceptions for being
empty. This special case is handled in the implementation.
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Algorithm 7 Indexed Distributional Negative Sampling
Input Training set S = {(h, r , t)}, indexed training set Sindexed, entity and
relation sets ε and R, batch size b, number of negative samples C.
Returns Given a batch B = {(h, r , t)k}, 1 ≤ k ≤ b, return corrupted triples B′
for each triple in the batch.

1: B′ = φ B Stores the negative triples for batch B
2: for triple = (h, r , t) ∈ batch B do
3: N = φ B Stores negative triples for triple
4: Use Bernoulli sampling to conclude that t should be corrupted.
5: εindexed ← extract Set(tr) from Sindexed

B tr denotes set of all the t’s w.r.t. r from Sindexed

6: ε′ ← ε− εindexed

7: M ← cosine-sim(t , ε′)
8: for (i,m) ∈ enumerate(M) do
9: paccept ← max(0,m)
10: preject ← 1− paccept

11: With probability paccept choose entity i.
12: if entity i is chosen then
13: N ← N ∪ (h, r, ε′[i]) [Continue C times] B ε′[i] denotes entity i
14: end if
15: end for
16: B′ ← B′ ∪N
17: end for
18: return B′

Implementation: The PyTorch code shown in Figure 5.2 is the implementation
of Algorithm 7. There are six parameters for this function. They are the posi-
tive batch of triples (h, r, t) and the number of negative triples C to be generated
from each positive triple, the number of the entities, the probability table and
the Indexed Dataset mentioned in Chapter 4. The last input parameter of the
function indexed_DNS is the model, which gives access to the initialized embed-
dings of entities by the KGE models. A [C× 3] matrix N is created to store the
negative triples. variable current_relation extracts the relation r of the triple.
Head per tail (hpt) and tail per head (tpt) for the corresponding relation are ex-
tracted from the probability table. Using these hpt and tpt, the head corruption
probability as shown in the Equation 4.3 and tail corruption probability as shown
in Equation 4.4 are calculated from lines 7 - 10 in the Figure 5.2. Using these
calculated probability Bernoulli distribution determines which entity should be
replaced, head or tail of the triple. Once the candidate is selected, the correspond-
ing vector embedding is extracted in line 15 from Figure 5.2 with the command



Indexed Negative Sampling Algorithms 44

model.get_embedding(candidate), which gives access to the corresponding em-
beddings of entities or relations initialized by the KGE model. A check block is
kept to investigate whether the available pool created from the Indexed Dataset
is empty or not. If the pool’s size is 0, the entire entity set minus the candidate
is considered the available pool, and their corresponding vector embeddings are
extracted as shown from lines 23 - 30. Afterward, the cosine similarity of the
candidate with respect to the available pool - all_entity_embedding is calculated
with the help of Torch’s convolution functions as shown in line 31 and stored in a
matrix M . The dimension of M is [size of the available pool × 1], which means
there will be one scalar value from cosine similarity for each entity.

While enumerating through M , for each position i which denotes the entity ID
is set in the corrupt_index in line 37. Probability for accepting and rejecting
the entity i is calculated lines 38 - 40. Now, there is a possibility that the value
of the cosine similarity is negative. For this cause, max(0, cosinesimilarity) is
taken as shown in lines 38 - 39. The matrix M is in Torch and random.choice is
a numpy function. Thus M is converted by the function M.detach().cpu().numpy

to numpy. Thereafter, the probabilities are passed through the random.choice to
decide whether to take or not take the replacement entity, as shown in lines 43
- 47. One drawback of both DNS and Indexed_DNS is that the entire process
is rerun C times for generating C numbers of negative triple per positive triple.
At the end of traversing, the negative triples are appended to a matrix, and the
function returns the matrix.
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1 def indexed_DNS(positive_batch, C, model, number_of_entities,
2 probability_tabl, indexed_table): negative_batch = []
3 t = positive_batch.copy()
4 for triple in t:
5 N = np.zeros((C, 3), dtype=int)
6 current_relation = triple[1]
7 tph = probability_tabl[’tph’][current_relation]
8 hpt = probability_tabl[’hpt’][current_relation]
9 head_corruption_probability = tph / (tph + hpt)
10 tail_corruption_probability = hpt / (tph + hpt)
11 corrupt_index = np.random.choice([0, 2],
12 p=[head_corruption_probability,
13 tail_corruption_probability])
14 candidate = triple[corrupt_index]
15 candidate_embedding = model.get_embedding(candidate).view(1, -1)
16 all_entity = np.arange(0, number_of_entities, 1)
17 if corrupt_index == 0:
18 des_str = ’sub:’ + str(triple[1])
19 else:
20 des_str = ’obj:’ + str(triple[1])
21 inter_data =[i for i in np.array(indexed_table[des_str])if~np.isnan(i)]
22 all_unique_entity = np.setxor1d(all_entity, inter_data).astype(int)
23 if all_unique_entity.size == 0:
24 all_entity_candidate_removed = np.delete(all_entity,
25 list(all_entity).index(candidate))
26 all_entity_embedding = model.get_vectorized_embedding(
27 all_entity_candidate_removed)
28 else:
29 all_entity_embedding = model.get_vectorized_embedding
30 (all_unique_entity)
31 M = F.cosine_similarity(all_entity_embedding, candidate_embedding)
32 c = 0
33 for i, m in enumerate(M):
34 if c == C:
35 break
36 clone_triple = triple.copy()
37 clone_triple[corrupt_index] = i
38 p_accept = torch.max(torch.tensor(0.0).cuda(),
39 m.cuda()).detach().cpu().numpy()
40 p_reject = 1 - p_accept
41 take = np.random.choice([’take’, ’not_take’], 1,
42 p=[p_accept, p_reject])
43 if (take == ’take’) and (c < C):
44 N[c] = clone_triple
45 c += 1
46 else: continue
47 for index in range(len(N)):
48 negative_batch.append(np.array(N[index]))
49 return np.array(negative_batch)

Figure 5.2: PyTorch code for Indexed DNS



Indexed Negative Sampling Algorithms 46

5.4 Indexed Affinity Dependent Negative Sampling

(Indexed ADNS)

Algorithm 8 Indexed Affinity Dependent Negative Sampling
Input Training set S(h, r, t) , indexed training set Sindexed, entity Set ε, relation set
R, batch size b, number of negatives C
Returns Given a batch B = {(h, r , t)k}, 1 ≤ k ≤ b, return corrupted triples B′
for each triple in the batch.

1: B′ = φ B Stores the negative triples for batch B
2: for triple = (h, r , t) ∈ batch B do
3: N = φ B Stores negative triples for triple
4: Use Bernoulli sampling to conclude that t should be corrupted.
5: εindexed ← extract Set(tr) from Sindexed

B tr denotes set of all the t’s w.r.t. r from Sindexed

6: ε′ = ε - εindexed B subtract εindexed from total entity set
7: M score = CosineSimilarity(candidate, ε′)
8: M score = max(0,M score)
9: for i ∈ length(M score) do
10: probability_fitnessi = M scorei ÷

∑
j M scorej

Bgenerate the fitness vector
11: end for
12: selected_entities = random_choice(ε′, C, probability_fitness)
13: N =

FormNegative(t, selected_entities, candidate_position)
B C negative triples per positive

14: B′ ← B′ ∪N
15: end for
16: return B′

Indexed Affinity Dependent Negative Sampling or Indexed ADNS is a variant of
ADNS [11]. The Indexed Dataset is injected into the original algorithm to im-
prove the training time of the KGE models. ADNS itself is a variant of DNS, which
includes an additional fitness function. Indexed ADNS preserves this additional
function well by selecting multiple entities to create multiple negative triples per
positive triple at once. Principally this fitness function is the probability of choos-
ing each element among the available pool of entities. In Indexed ADNS, first,
the cosine similarity is calculated with respect to the chosen replacement entity
with Bernoulli distribution over the probability table similar to DNS explained
in Section 5.3. The matrix dimension is [available pool size × 1] because for each
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entity in the available pool, one scalar value is set by the cosine similarity calcula-
tion. These scalar values can be negative, and in this case, calculating the fitness
function will result in an error. Thus max of 0 and the value of cosine similarity is
taken. The fitness function’s use solves the problem for both Indexed DNS and
DNS of repeating the same process depending on the number of negative triples
since it allows to choose multiple entities with similar meaning at once. As well as
injecting the indexed table shows a promising improvement of the training time
for Indexed ADNS, which will be illustrated in Chapter 7.
Implementation: Input parameters of the function indexed_ADNS shown in
Figure 5.3 are the positive batch, the number of negative triples C per positive
triple, number of the entities, the probability table, the Indexed Dataset, and
finally the model which is used to extract embeddings for cosine similarity calcu-
lation. Lines 4 - 33 of Figure 5.3 is similar to Indexed DNS explained in Section
5.3. This block of code basically selects if head or tail should be replaced with
Bernoulli distribution. The available pool is created with respect to the replace-
ment entity by using the Indexed Dataset. Also, the vector embedding of the
candidate and the available pool is extracted. Finally, the cosine similarity using
numpy library is calculated between the candidate and the available pool. Having
negative values in the matrix containing the cosine similarity cannot be afforded.
Thus, all the negative values are set to 0. The special case mentioned in Section
5.5 is handled from lines 28 - 33.

However, the fitness function can also throw some exceptions. Since the sum
of the cosine similarity is the divisor of the fitness function, if all the values of
the matrix M are 0 then an arithmetic exception will occur. In this scenario,
another check block is kept from lines 36 - 42. This basically depicts that, if there
is an arithmetic error, C numbers of entities will be chosen randomly from the
entity set where the candidate is subtracted. Again, as mentioned previously, The
function random.choice is a numpy function. Thus, the Torch value is converted
into numpy as shown in lines 37 - 39. C numbers of negative triples per positive
triple are appended in the negative_batch, and this will be the return value of
the function.
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1 def indexed_ADNS(positive_batch, C, model, number_of_entities,
2 probability_table, indexed_table):
3 negative_batch = []
4 t = positive_batch.copy()
5 for triple in t:
6 current_relation = triple[2]
7 tph = probability_table[’tph’][current_relation]
8 hpt = probability_table[’hpt’][current_relation]
9 head_corruption_probability = tph / (tph + hpt)
10 tail_corruption_probability = hpt / (tph + hpt)
11 corrupt_index = np.random.choice([0, 1],
12 p=[head_corruption_probability,
13 tail_corruption_probability])
14 candidate = triple[corrupt_index]
15 candidate_embedding = model.get_embedding(candidate)
16 .view(1, -1)
17 all_entity = np.arange(0, number_of_entities, 1)
18 if corrupt_index == 0:
19 des_str = ’sub:’ + str(triple[2])
20 else:
21 des_str = ’obj:’ + str(triple[2])
22 inter_data = [i for i in np.array(indexed_table[des_str]) if
23 ~np.isnan(i)]
24 all_unique_entity = np.setxor1d(all_entity, inter_data)
25 .astype(int)
26 all_entity_candidate_removed = np.delete(all_entity,
27 list(all_entity).index(candidate))
28 if all_unique_entity.size == 0:
29 all_entity_embedding = model.get_vectorized_embedding(
30 all_entity_candidate_removed)
31 else:
32 all_entity_embedding = model.get_vectorized_embedding(
33 all_unique_entity)
34 M = F.cosine_similarity(all_entity_embedding, candidate_embedding)
35 M[M < 0] = 0
36 try:
37 N = np.random.choice(all_unique_entity, C,
38 p=M.detach().cpu().numpy()
39 / sum(M.detach().cpu().numpy()),
40 replace=False)
41 except:
42 N = np.random.choice(all_entity_candidate_removed, C)
43 temp_triple = np.copy(triple)
44 temp_matrix = np.tile(temp_triple, (C, 1))
45 for i in range(len(temp_matrix)):
46 temp_matrix[i][corrupt_index] = N[i]
47 for i in range(len(temp_matrix)):
48 negative_batch.append(temp_matrix[i])
49 return np.array(negative_batch)

Figure 5.3: PyTorch code for Indexed ADNS
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5.5 Overall Architecture Of The Approach

Figure 5.4: KGE Framework

The KGE framework, illustrated in Figure 5.4, adapted from another functioning
framework [55], is used to test the efficiency of the three proposed Indexed Nega-
tive Sampling Algorithms. It has two packages, one main file and one folder for the
datasets. The names of the two packages are utilities and model_utiliteis. The
package model_utilities has a class file where the KGE models are implemented
as shown in Figure 5.4. The package utilities has three classes: one for calcu-
lating the loss, one for creating the negative samples, and one for evaluating the
trained models. The implemented algorithms explained in Section 5.2, Section 5.3
and Section 5.4 are set inside the utilities package’s negative_sampling.py file.
Alongside, the files generated from the pre-processing phase explained in Chapter
4 are kept inside the dataset folder. For results, the train.py file is executed with
the proper parameter, which will be mentioned in Chapter 7.
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Distributed KGE Models

This chapter focuses on the distributed approach of three popular KGE mod-
els with Spark framework and BigDL library. This approach is inspired by the
implementation of TransE [15] which is still in the development phase1 by the
SANSA-Stack [13] : an open-source structured data processing engine2. The ap-
proach of this thesis shows prospective aptitude compared to the SANSA team’s
version and solves a bug3 of the current system which will be elaborated in Chapter
7. Not only that, this chapter illustrates the implementations of two other KGE
models: DistMult and ComplEx, which are other contributions of this thesis.
Section 6.1 will describe the basic concepts of the selected KGE models and Sec-
tion 6.2 explains the basic structure of the distributed models. Implementations of
distributed TransE, DistMult and ComplEx are elaborated in Section 6.3, Section
6.4 and Section 6.5 respectively. The architecture of the distributed KGE model’s
framework is explained in Section 6.6.

1https://github.com/SANSA-Stack/Archived-SANSA-ML/tree/master/sansa-ml-spark
2https://github.com/SANSA-Stack
3https://github.com/SANSA-Stack/Archived-SANSA-ML/issues/18
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6.1 Selected KGE Models

To test the distributed approach, three KGE models are selected. They are TransE
[15], DistMult [16] and ComplEx [17]. RNS, as discussed in Chapter 3, is used
as the selected Negative Sampling Algorithm. Margin Ranking Loss is used to
calculate the loss function. AdaGrad [8] optimizer is employed to train the KGE
models instead of the basic SGD [6] optimizer.

6.1.1 TransE

TrasnE [15] translates the embeddings of the head (h) towards the tail (t) with re-
spect to the relation (r) of the triple (h, r, t) to a lower dimension. This model uses
norm L1 or L2 ( || . || ) as the scoring function which calculates the dissimilarity
measure d, between translated head and tail, shown in Equation 6.1.

fTransE = d(h+ r, t) = ||h+ r − t|| (6.1)

This scoring function is then used on positive triple (h, r, t) and negative triple
(h′, r, t′) inside the loss function as shown in Equation 6.2.

L =
∑

(h,r,t)∈S

∑
(h′,r,t′)∈S′

(h, r, t)

[λ+ d(h+ r, t)− d(h′ + r, t′)]+ (6.2)

Equation 6.2 is known as Margin-Based Ranking Criterion [56] where λ is the
margin, h′ and t′ represent random replacement of the h or t for a particular
triple.

6.1.2 DistMult

DistMult [16] is a bilinear diagonal model which uses the trilinear dot product
by multiplying the head (h) and the tail (t) with their corresponding relational
matrix W r as the scoring function.

fDistMult =< Eh,W r, Et > (6.3)
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Equation 6.3 is the scoring function of DistMult where Eh and Et are the embed-
dings of head and tail of the triple and W r is a diagonal matrix of the relation.
DistMult uses margin-based ranking criterion shown in Equation 6.2, as the loss
function similar to TransE. Regularization [16] is used to improve the model.

6.1.3 ComplEx

ComplEx [17] is an extension of DistMult This model has real Re and imaginary Im

parts for both entities and relation embeddings. The ComplEx uses the trilinear
Hermitian dot product as the scoring function as shown in Equation 6.4.

fComplEx = Re < Eh,W r, Et >

=< Re(W r), Re(Eh), Re(Et) >

+ < Re(W r), Im(Eh), Im(Et) >

+ < Im(W r), Re(Eh), Im(Et) >

- < Im(W r), Im(Eh), Re(Et) >

(6.4)

In Equation 6.4 Eh and Et are the embeddings of the head and the tail of the triple
and W r is the relation embedding space. ComplEx also uses the loss function and
the regularization similar to DistMult.
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6.2 General Structure Of The Distributed KGE

Model

Algorithm 9 General training structure of the distributed KGE model
1: Create Spark Session
2: Initialize BigDL Engine
3: Read data
4: Initialize embeddings
5: for each epoch do
6: Function TrainModel : BFunction that returns the loss of the batch
7: Normalize entity embedding
8: Get positive sample
9: Set negative sample
10: Calculate Score
11: Calculate Loss
12: Optimize TrainModel
13: end for

The general structure of the distributed KGE model’s training is shown in Al-
gorithm 9. The differences among TransE, DistMult, and ComplEx models are
calculating the score function and the loss function. The rest of the procedure is
the same for all. The common processes will be discussed in this Section and the
score loss calculation of the different KGE models will be discussed in Section 6.3,
Section 6.4 and Section 6.5.

1. Create Spark session and initialize BigDL engine: Initializing the Engine
of BigDL with Engine.init can contribute to a good performance of the models
by setting the environment variables correctly4. To do so, SparkContext needs
to be created by using the SparkConf returned by Engine as shown in Figure
6.1. In the spark configuration (SparkConf 5), the app name is set with respect
to the model’s name, and to run the Spark in 4 cores of the machine locally,
setMaster(local[4]) is set. SparkSession is also created with SparkConf for
working with RDDs as shown in Figure 6.1.

4https://bigdl-project.github.io/0.10.0/APIGuide/Engine/
5https://spark.apache.org/docs/latest/configuration.htmlspark-properties
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1 val conf = Engine.createSparkConf().setAppName("TransE")
2 .setMaster("local[4]")
3 val sc = new SparkContext(conf)
4 val spark = SparkSession.builder.config(conf).getOrCreate()
5
6 Engine.init
7

Figure 6.1: Create SparkSession and initialize Engine of BigDL

2. Read data: This step follows the basics of reading RDDs with Spark. Since
the files are saved in tsv format, for reading the RDDs ‘\t′ is set as the separa-
tion settings. For training the model, a minimum of three datasets are required
to be read. They are the train dataset, list of entities, and list of relations as
demonstrated in Figure 6.2.

1 val trainSet = spark.read.option("sep", "\t")
2 .csv(resourceDir + "train.tsv").rdd
3 val entityList = spark.read.option("sep", "\t")
4 .csv(resourceDir + "entityToID.tsv")
5 .select("_c1").rdd
6 .map(r => r(0).asInstanceOf[Object])
7 .collect
8 val relationList = spark.read.option("sep", "\t")
9 .csv(resourceDir + "relationToID.tsv")
10 .select("_c1").rdd
11 .map(r => r(0).asInstanceOf[Object])
12 .collect
13

Figure 6.2: Read data for Distributed KGE models

3. Initialize embeddings: As shown in the Algorithm 9, this stage is the
beginning of executing the KGE models. And the first step is to initialize the
embeddings of relation and entity. For the distributed approach of the KGE
models, entity embeddings and relation embeddings are kept as one Tensor to
benefit Optimization. The reason will be elaborated later in Chapter 7. As
shown in Figure 6.3, embeddings for entity and relation are created as Tensors
with the entityListLength, relationListLength and the dimension (k). Their
values are set randomly within the range mentioned in TransE. Relation embed-
dings are normalized before starting the epochs of training. Thus, as shown in
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line 5 in the Figure 6.3, the relation Tensor is normalized with a built-in func-
tion Normalize(2).forward(Tensor) where 2 indicates L_2 normalization. As
mentioned before, for the benefit of optimizing the models with BigDL, the em-
beddings are kept in one Tensor. Therefore, a function Join as shown in Figure
6.4 is implemented, which combines the entity Tensors and the relation Tensor.
Entity Tensor is set before Relation Tensor. This condition is important because
the relation embedding’s position will start from (index + length of entity list).
In brief, the Join function creates a Tensor with the summation of the lengths of
entity and relation list and the dimension (k). While traversing through it, the
rows are updated with entity Tensor or relation Tensor depending on the position
of the combined Tensor index, as shown in lines 6 - 11 of the Figure 6.4.

1 def CreateEmbedding (entityListLength:Int, relationListLength:Int,
2 k:Int) : (Tensor[Float]) = {
3 val entityEmbedding = Tensor(entityListLength, k)
4 .rand(-6/Math.sqrt(k), 6/Math.sqrt(k))
5 val relationEmbedding = Normalize(2).forward(
6 Tensor(relationListLength, k)
7 .rand(-6/Math.sqrt(k), 6/Math.sqrt(k)))
8 var embedding = Join(entityEmbedding, entityListLength,
9 relationEmbedding, relationListLength, k)
10 (embedding)
11 }

Figure 6.3: Initialize embeddings

1 def Join (entityEmbedding:Tensor[Float], entityListLength:Int,
2 relationEmbedding:Tensor[Float], relationListLength:Int,
3 k:Int) : (Tensor[Float]) = {
4 var embedding = Tensor(entityListLength + relationListLength, k)
5 for(count <- 1 to (entityListLength + relationListLength)){
6 (count<=entityListLength) match {
7 case true => embedding.update(count,
8 entityEmbedding.apply(count))
9 case false => embedding.update(count,
10 relationEmbedding
11 .apply(count-entityListLength))
12 }
13 }
14 (embedding)
15 }

Figure 6.4: Join embeddings
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1 val optim = new Adagrad(learningRate = learningRate)
2 for(epoch <- 1 to nEpoch){
3 //Function for updating the embedding
4 def Update(x: Tensor[Float]) = {
5 (TrainModel(trainSet, entityList, entityListLength,
6 relationListLength, embedding, L,
7 gamma, k, trainSize), x)
8 }
9 optim.optimize(Update, embedding)
10 }

Figure 6.5: Run n numbers of training epochs

4. Run n number of epochs (nEpoch) for training the model: Once the
embeddings are initialized, the epoch starts training the KGE models as shown
in Figure 6.5. This part is very crucial. First the optimizer is initialized as
optim with a learningRate as shown in line 1 of Figure 6.5. Inside the loop
for running the epochs to train the models, optim is used to call the optimizer.
optim.optimizer (function, input tensor) is the structure of calling the optimiz-
ers in BigDL6. The function defines how a value is calculated with respect to an
equation over the input tensor and returns the results and the gradients of the
equation as a Tensor. From the KGE model’s perspective, the float value from the
loss calculation can be considered as the loss and the embedding itself as the gra-
dient. Therefore, inside the loop for running the epochs, a function called Update
is created, which returns the model’s loss value - the outcome of the TrainModel

function, and the embeddings of the entities and relations. This approach is in-
spired by the SANSA team’s current implementation7. However, a bug8 has been
reported for this implementation. Executing the training in this manner sorts out
the issue and improves the approach which will be discussed in Chapter 7.

4.1 Function TrainModel: Function TrainModel is called in each epoch inside
the optimizer as shown in Figure 6.5. This function basically takes the positive
sample and creates the corresponding negative sample. Thereafter calculates the
score and loss of the model. The loss is returned. However, before all these,
the entity embeddings are normalized with the function name Normalization as
shown in Figure 6.7.

6https://bigdl-project.github.io/0.10.0/APIGuide/Optimizers/Optim-Methods/adagrad
7See footnote 2
8See footnote 3
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1 def TrainModel(trainSet: RDD[Row], entityList:Array[Object],
2 entityListLength:Int, relationListLength:Int,
3 embedding: Tensor[Float], L:Int, gamma:Float,
4 k: Int, trainSize: Long) : (Float) = {
5 embedding.copy(Normalization(embedding, entityListLength,
6 relationListLength, k))
7 val positiveSample = trainSet.collect
8 val negativeSample = positiveSample
9 .map(row => {NegativeSample(row,entityList)})
10 val positiveDistance = Score(positiveSample,
11 entityListLength,
12 embedding, L, gamma)
13 val negativeDistance = Score(negativeSample,
14 entityListLength,
15 embedding, L, gamma)
16 (LossFunction(positiveDistance,negativeDistance,gamma,k,trainSize))
17 }

Figure 6.6: Function to train the distributed model

4.1.1 Normalization of the embedding: This step aims to improve the models
by imposing a unit embedding length after each gradient step. As indicated before,
the distributed approach has one embedding combining entity and relation embed-
dings. Hence to normalize only the entity embedding, the total embedding must
be split to extract the entity embeddings. The method Tensor.split(size, dim)

in BigDL basically splits the Tensor into a table of Tensors of the size along the
dimension dim. As shown in line 4 of Figure 6.7, the total embedding is split by
the rows with the entity list’s length since entity embedding is put first in the total
embedding. Then after calling the built-in L_2 normalize function from BigDL on
the extracted entity embedding, the split Tensors are joined by the Join function
shown in Figure 6.4.

1 def Normalization(embedding:Tensor[Float], entityListLength:Int,
2 relationListLength:Int, k:Int) :
3 (Tensor[Float]) = {
4 val temp = embedding.split(entityListLength, 1)
5 (Join(Normalize(2).forward(temp(0)), entityListLength, temp(1),
6 relationListLength, k))
7 }

Figure 6.7: Normalization function for distributed KGE models
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4.1.2 Negative sample generation: The distributed approach implements the
RNS as shown in Figure 6.8. This function executes the RDDs, and since RDDs
are immutable in Spark, a new set of RDD for the negative sample is created.
RDD[Row] of the positive sample is mapped with a new Row by randomly cor-
rupting the head or tail from the entity list where the replacement candidate is
removed as shown in lines 7 - 11.

1 def NegativeSample(row:Row, entityList:Array[Object]):
2 (Row) = {
3 val sub = row.get(0).asInstanceOf[Object]
4 val pred = row.get(1).asInstanceOf[Object]
5 val obj = row.get(2).asInstanceOf[Object]
6 if(Random.nextInt(2) == 0){ //change head
7 val subList = entityList.diff(Array(sub))
8 val negSub = subList(Random.nextInt(subList.length))
9 (RowFactory.create(negSub, pred, obj))
10 }else{
11 val objList = entityList.diff(Array(obj))
12 val negObj = objList(Random.nextInt(objList.length))
13 (RowFactory.create(sub, pred, negObj))
14 }
15 }

Figure 6.8: RNS for distributed KGE models

4.1.3 Score and Loss calculation: these two calculations are the unique features
of each for different KGE models. Hence, they will be explained separately in
Section 6.3, Section 6.4 and Section 6.5.
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6.3 Distributed TransE

Adapting the basics explained in Section 6.2 following score and loss calculations
are executed for TransE to complete the Algorithm 9.

Score function: The Equation 6.1 is implemented in Figure 6.9 and Figure
6.10. The function shown in Figure 6.9 takes the sample as the combination of
Array[Row], the entity’s length for extracting corresponding entity and relation
embeddings from the total embedding, indication to which norm to calculate as
L. To calculate the score, embeddings of the triple are extracted as shown from
lines 7 - 10 of Figure 6.9. The values of the triples (h, r, t) are principally the

1 def Score(sample:Array[Row], entityListLength:Integer,
2 embedding:Tensor[Float], L:Int, gamma:Float):
3 (Tensor[Float]) = {
4 val sampleDistance = Tensor(sample.size, embedding.size(2))
5 var count = 1
6 sample.map(row => {
7 val subTensor = embedding.select(1, row.get(0).toString.toInt)
8 val predTensor = embedding.select(1, row.get(1).toString.toInt +
9 entityListLength)
10 val objTensor = embedding.select(1, row.get(2).toString.toInt)
11 val dist = L_p_norm(subTensor, predTensor, objTensor, L)
12 sampleDistance.update(count,dist)
13 count += 1
14 })
15 (sampleDistance)
16 }

Figure 6.9: Score function of distributed TransE

1 def L_p_norm(SubTensor:Tensor[Float], predTensor:Tensor[Float],
2 objTensor:Tensor[Float], L:Int): (Tensor[Float]) = {
3 L match {
4 case 1 => ((SubTensor + predTensor - objTensor).abs)//L1-norm
5 case _ => ((SubTensor.pow(2) + predTensor.pow(2) -
6 objTensor.pow(2)).sqrt.abs)//L2-norm
7 }
8 }

Figure 6.10: L_p norm of distributed TransE
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corresponding embedding index due to the mapping nature in the earlier stages
of KGE models. Embeddings of the relations are extracted with the (index +
length of the entity) due to the embedding structure discussed previously. Once
the embeddings are extracted L1, or L2 norm is calculated as shown in Figure
6.10 with the basic Tensor functionalities from BigDL.

Loss function: Figure 6.11 implements the Equation 6.2 for loss calculation. As
shown in Figure 6.6, once the positive score and negative score are calculated, they
are sent to the LossFunction as showed in Figure 6.11 which basically subtracts
the summation of the positive score and gamma from the negative score. Now,
Equation 6.2 takes the positive values only. Therefore, ReLU , a built-in function
from BigDL, is used over the resulting Tensor of loss. Finally, the average loss of
the entire Tensor is calculated as shown in line 4 of Figure 6.11.

1 def LossFunction(posDist:Tensor[Float], negDist:Tensor[Float],
2 gamma:Float, k:Int, trainSize: Long):
3 (Float) = {
4 val loss = (ReLU().forward(posDist + gamma - negDist)).sum
5 /trainSize
6 println(loss)
7 (loss)
8 }

Figure 6.11: Margin Ranking Loss for distributed KGE models



Distributed KGE Models 61

6.4 Distributed DistMult

Adapting the basics explained in Section 6.2 following score and loss calculations
are executed for DistMult to complete the Algorithm 9.

Score function: The implementation of Equation 6.3 is shown in Figure 6.12 for
DistMult. Similar to the score function of TransE, the embeddings of each triple
are extracted. Since the score function of DistMult uses the trilinear dot product
of the embeddings, the built-in map function is used to multiply the embedding
values by the row indices of the embedding Tensors as illustrated from lines 12 -
13. This multiplication is executing two Tensors at a time since BigDL’s Tensor
operation allows to put two Tensors for the mapping.

1 def Score(sample:Array[Row], entityListLength:Integer,
2 embedding:Tensor[Float], L:Int, gamma:Float):
3 (Tensor[Float]) = {
4 val sampleDistance = Tensor(sample.size, embedding.size(2))
5 var count = 1
6 sample.map(row => {
7 val subTensor = embedding.select(1, row.get(0).toString.toInt)
8 val predTensor = embedding.select(1, row.get(1).toString.toInt
9 + entityListLength)
10 val objTensor = embedding.select(1, row.get(2).toString.toInt)
11 val cloneSubTensor = subTensor.clone
12 val dist = cloneSubTensor.map(predTensor, (a, b) => a*b)
13 .map(objTensor, (c, d) => c*d).sum
14 sampleDistance.update(count,dist)
15 count += 1
16 })
17 (sampleDistance)
18 }

Figure 6.12: Score function of distributed DistMult

Loss function: One specialty of DistMult’s loss function is, it uses the regulariza-
tion of the positive sample’s embeddings. The distributed approach of DistMult
also uses the margin-based ranking criterion as shown in Equation 6.2. The loss is
added with the multiplication of regularized embeddings ( denoted as regul) with
the learning rate as shown in Figure 6.14. The implementation of regularization is
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1 def Regularization(sample:Array[Row], entityListLength:Integer,
2 embedding:Tensor[Float]) : (Float) = {
3 val subTensor = Tensor(sample.size, embedding.size(2))
4 val predTendor = Tensor(sample.size, embedding.size(2))
5 val objTensor = Tensor(sample.size, embedding.size(2))
6 var count = 1
7 sample.map( row => {
8 subTensor.update(count, embedding.select(1, row.get(0)
9 .toString.toInt))
10 predTendor.update(count, embedding.select(1, row.get(1)
11 .toString.toInt
12 + entityListLength))
13 objTensor.update(count, embedding.select(1, row.get(2)
14 .toString.toInt))
15 count += 1
16 })
17 (subTensor.pow(2).mean+predTendor.pow(2).mean+objTensor.pow(2).mean)
18 }

Figure 6.13: Regularization for distributed KGE models

1 return (LossFunction(positiveDistance, negativeDistance, gamma, k,
2 trainSize) + learningRate * regul)

Figure 6.14: Loss calculation with regularization for distributed KGE models

illustrated in Figure 6.13 where extraction of embeddings of the entity and relation
of each triple is executed, and the summation of the mean squared values of the
embeddings is calculated as shown in line 17.
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6.5 Distributed ComplEx

Adapting the basics explained in Section 6.2 following score and loss calculations
are executed for ComplEx to complete the Algorithm 9.

Score function: Embeddings of the ComplEx model are divided into two parts:
real and imaginary. To implement the score function of ComplEx as shown in
Equation 6.4, the embeddings are split into two sections as exhibited in Figure
6.15. One for the imaginary part and the other for the real part. For each triple
in the sample, embeddings are extracted as shown in lines 7 - 9 of Figure 6.15.
Corresponding embeddings are split into real and imaginary embedding, as shown
in lines 13, 15, 17. The rest of the calculation is very trivial. The real score and
imaginary score are calculated to get the model’s score, as shown from lines 18 -
21.

1 def Score(sample:Array[Row], entityListLength:Integer,
2 embedding:Tensor[Float], L:Int, gamma:Float, k:Int):
3 (Tensor[Float]) = {
4 val sampleDistance = Tensor(sample.size, embedding.size(2))
5 var count = 1
6 sample.map(row => {
7 val subTensor = embedding.select(1, row.get(0).toString.toInt)
8 val predTensor = embedding.select(1, row.get(1).toString.toInt
9 + entityListLength)
10 val objTensor = embedding.select(1, row.get(2).toString.toInt)
11 val splitValue = k/2
12 var splitTensor = subTensor.split(splitValue,1)
13 val (realSub, imgSub) = (splitTensor(0), splitTensor(1))
14 splitTensor = predTensor.split(splitValue,1)
15 val (realPred, imgPred) = (splitTensor(0), splitTensor(1))
16 splitTensor = objTensor.split(splitValue,1)
17 val (realObj, imgObj) = (splitTensor(0), splitTensor(1))
18 val realScore = (realSub * realPred - imgSub * imgPred).sum
19 val imgScore = (realSub * imgPred + imgSub * realPred).sum
20 val dis = ((realObj * realScore) + (imgObj * realScore)).sum
21 sampleDistance.update(count,dist)
22 count += 1
23 })
24 (sampleDistance)
25 }

Figure 6.15: Score function of distributed ComplEx
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Loss function: Loss calculation of ComplEx is the same as DistMult explained
in Section 6.4.

6.6 Overall Architecture Of The Approach

Figure 6.16: Distributed KGE framework

Distribution of the data is achieved by implementing the algorithm with Spark
and BigDL. BigDL is also built on Spark. Optimization works in two ways with
BigDL. Over direct Tensor manipulation, which is similar to general implementa-
tions of the KGE models. The second way of using optimizers with BigDL is by
creating a neural network of the task. In this thesis, KGE models are optimized
over the first process of updating the gradients. Creating a neural network of the
KGE models is a future work that will be discussed in Chapter 8.
The distributed KGE framework is illustrated in Figure 6.16, consists of three pack-
ages: PreProcessing, Models and Evaluation. PreProcessing package takes
the original dataset and generated the files explained in Chapter 4. With proper
parameters and the input dataset, KGE models from the Models package is run
to prepare the trained model. This trained model is used by Evaluation.scala to
acquire the results, which will be illustrated in Chapter 7.



Chapter 7

Evaluation

This chapter evaluates the different Negative Sampling Algorithms proposed in
Chapter 5 over different KGE models. Furthermore, implementing the KGE mod-
els in a distributed way with Spark is discussed in this chapter. The chapter starts
with the description of the datasets in Section 7.1, metrics used to evaluate the
approaches in Section 7.2, experimental setup in Section 7.3 and finally the results
and findings in Section 7.4.
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7.1 Dataset

Three datasets are used for the evaluation purpose. They are Kinship, UMLS,
and Nations. The datasets are divided into three parts: train set, test set, and
validation set with the ratio of 80:10:10. Table 7.1 shows the number of entities
and relations and the triples in the train, test, and valid dataset. All the datasets
contain only positive triples.

Dataset Number of Number of triples in
Entities (e) Relations (r) Train set Test set Valid set Total set

Kinship 104 25 8544 1068 1074 10686
UMLS 135 46 5216 652 661 6529
Nations 14 55 1592 199 201 1992

Table 7.1: Statistics of the datasets

7.1.1 Kinship

Kinship dataset contains ‘Aboriginal kinship of Alyawarra Tribe in Central Aus-
tralia’ [23]. The dataset is formed as triple (h, r, t) where relation (r) indicates the
kinship among the people who act as entities (h, t). Table 7.1 indicates 25 kinship
terms and 104 persons, making the total size of the dataset 10686.

7.1.2 UMLS

UMLS dataset consists of data from a Biomedical Domain called ’Unified Medical
Language System’ (UMLS) [25]. In this dataset, the entities (h, t) are different
biomedical concepts like hormone, cell_functions etc. Relations (r) are the con-
nection among them, for example: complicates, affects etc. As mentioned in the
Table 7.1, there are 135 entities and 46 relations and the size of the total dataset
is 6529.



Evaluation 67

7.1.3 Nations

Nations dataset represents the paired relationships among 14 nations, for example
economic, diplomatic, military etc [24]. All the nations are represented as entities
(h, t) for example: Uk, Netherlands etc. and the interactions among these nations
are represented as relations (r) of the dataset. Sample relations are: independence,
conferences etc. There are 1992 numbers of triples (h, r, t) in the dataset from
14 entities and 55 relations as shown in the Table 7.1.

7.2 Evaluation Metrics

The evaluations of the models are based on the link prediction problem [57]. Stan-
dard evaluation metrics for these link predictions are used to evaluate the models.
They are: Mean Rank (MR), Mean Reciprocal Rank (MRR) and Hit@N (N =
1,3,5,10). Before testing with the evaluation metric following steps are executed:

• For each positive triple (h, r, t) in the test set, a set of a sample (S) is created.
The head or the tail entity is replaced to create a set of corrupted triples
(h′, r, t′) from the entire set where h′ is not equaled to h and t′ is not equaled
to t.

• Triples in the sample set are removed, which are true for the training dataset.
This setting is referred to as the filtered setting. Otherwise, the setting is
considered a raw setting.

• Thereafter, triples from the sample set created in the previous steps are
ranked against the trained model by calculating the score. The rank of true
triple (h, r, t) is the position in the scored sample set (S), sorted in ascending
order. Rank of the triple is denoted by rank(h, r, t).

• Once the rank of the S (raw or filtered) is created, the following evaluation
metrics are computed with the help of |S| which denotes the size of the S.
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7.2.1 Mean Rank (MR)

MR is the average rank of all the true test triples and calculated as shown in
Equation 7.1.

MR =
1

|S|
∑

(h,r,t)∈S

rank(h, r, t) (7.1)

7.2.2 Mean Reciprocal Rank (MRR)

MRR is the average inverse rank of the true test triples are calculated as shown
in Equation 7.2.

MRR =
∑
(h,r,t)

1

rank(h, r, t)
(7.2)

7.2.3 Hit@N

Hit@N is the average number of times the rank of the true test triples are less
than the value of N as shown in Equation 7.3 where the rank which is only added
if it is less than or equals to N .

Hit@N =
1

|S|
∑
(h,r,t)

if(rank(h, r, t) ≤ N) (7.3)

A well-trained model indicates a higher MRR and Hit@N and a lower MR.

7.3 Experiment Parameters

The following two sections contain all the experiment’s input parameters with
their brief description and possible ranges of the values used.
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7.3.1 Experimental Setup For Indexed Negative Sampling

Algorithms

Table 7.2 shows which values are used for which parameter for the KGE framework
shown in Figure 5.4. Python 3.8.5, Pandas 1.1.5, and PyTorch 1.7.1 versions are
used for this evaluation.

Parameter Name Description Value Range
name Name of the KGE model [transE, distmult, complEx]
data_dir Directory of the datasets Path of the data folder
dim Dimension of the embeddings [20, 50, 100, 200]
batch_size Batch size of the samples [500 ∼2750]
lr Learning rate [0.001, 0.01, 0.1]
max_epoch Number of max epochs [100 ∼1000]
gamma Gamma [1, 2, 10]

negsample_num Number of negative triple [1, 2, 3, 5]per positive triple
regul Regularization [True, False]

neg_sampling
Name of the Negative [rand, indexed_rand, dns,

Sampling Algorithms indexed_dns, adns,
indexed_adns]

optim Optimizer AdaGrad

Table 7.2: Name, description and value range of the parameters of train.py
from KGE framework

7.3.2 Experimental Setup For Distributed KGE Models

Table 7.3 shows which values are used for which parameter for the distributed
KGE framework proposed in this thesis. Spark 2.4.4, Scala 2.11.11, and BigDL
0.10.0 versions are used for this evaluation.

Parameter Name Description Value Range
resourceDir Directory of the datasets Path of the data folder
K Dimension of the embeddings [20, 50, 100, 200]
gamma Gamma [1, 2, 10]
learningRate Learning rate [0.001, 0.01, 0.1]
L L_1 or L_2 norm [1, 2]
nEpoch Number of maximum epochs [100 ∼1000]
optim Optimizers [SGD, Adagrad, Adam]

Table 7.3: Name, description and value range of the parameters of distributed
KGE framework
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7.4 Results And Findings

The following sections of this chapter explain the results and findings of the work
that went behind this thesis. The evaluations of this thesis are illustrated in two
sections. The first one focuses on the performances of the proposed Negative
Sampling Algorithms. The other one is for the implementation of different KGE
models in a distributed way. The parameters for each of these approaches are
exhibited in Section 7.3.

7.4.1 Results And Findings of Indexed Negative Sampling

Algorithms

This section exclusively focuses on the training time and performances (mostly for
the filtered setting) of different variants of Negative Sampling Algorithms (NSA)
for each dataset mentioned in Section 7.1.

KGE
model NSA Training

time (s)
MR MRR hit@1

(%)
hit@3
(%)

hit@5
(%)

hit@10
(%)

raw filter raw filter raw filter raw filter raw filter raw filter

ComplEx

RNS 71 15 9 0.1718 0.4368 3.26 27.7 14.06 50.42 25.84 63.08 51.91 78.54
Indexed
RNS 387.16 11 3 0.1924 0.6894 5.87 55.45 18.25 78.45 30.17 86.55 56.75 94.55

DNS 7577.51 8 2 0.2588 0.8909 8.24 76.16 27.19 91.39 45.34 93.90 76.68 96.79
Indexed
DNS 3664.23 11 5 0.2273 0.8324 7.96 76.82 22.86 86.71 35.80 84.26 62.24 94.15

ADNS 992.18 9 2 0.2205 0.84 14.84 85.01 18.2 91.11 32.26 94.23 64.39 96.88
Indexed
ADNS 800.72 13 7 0.2008 0.8102 7.91 73.43 22.25 88.84 33.8 88.76 57.45 92.22

DistMult

RNS 41.16 16 9 0.1529 0.4007 3.54 20.58 12.24 42.04 21.23 55.91 42.32 74.02
Indexed
RNS 367.39 13 6 0.1786 0.4404 5.59 28.17 16.62 49.53 25.56 57.77 47.21 76.54

DNS 8639.2 12 6 0.1921 0.5261 6.28 38.87 18.02 57.87 28.82 67.32 50.33 83.75
Indexed
DNS 3831.29 14 8 0.1989 0.3688 7.03 24.3 18.81 45.34 29.42 62.29 51.49 83.10

ADNS 1039.47 13 6 0.1812 0.4827 6.19 33.89 16.67 53.45 26.35 63.92 45.25 82.82
Indexed
ADNS 902.95 15 7 0.1621 0.3806 3.91 22.02 14.2 43.58 23.74 55.26 43.76 74.26

TransE

RNS 39.42 15 8 0.1249 0.4031 6.21 58.7 11.86 50.01 24.19 55.07 58.05 70.95
Indexed
RNS 358.54 9 3 0.1508 0.5774 7.65 61.29 13.07 64.05 26.1 66.98 61.22 81.45

DNS 2871.61 14 7 0.1385 0.427 6.21 59.8 11.3 51.63 23.35 45.40 51.03 81.19
Indexed
DNS 2030.37 12 6 0.1402 0.4433 8.044 63.95 11.72 51.82 23.77 54.1 45.88 75.98

ADNS 956.67 13 7 0.1449 0.496 7.99 64.89 12.65 62.93 24.47 55.19 51.02 76.15
Indexed
ADNS 820.48 8 2 0.1484 0.5382 8.39 60.16 12.51 62.79 24.98 56.1 51.103 81.27

Table 7.4: Evaluations of KGE models with Kinship dataset

Kinship dataset: The performances for Negative Sampling Algorithms for Kin-
ship dataset are elaborated in Table 7.4 . This table is generated with dimension, k
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= 50, batch size= 2750, learning rate= 0.1, gamma= 10 and number of negative samples
= 3 for 1000 epochs.

To address the first research question mentioned in Chapter 1, it is important to
know the significance of creating a meaningful negative sample for the positive
sample. Figure 7.1 shows that major times, all the Negative Sampling Algorithms
work better than RNS with respect to different KGE models.

Figure 7.1: Performances of Negative Sampling Algorithm for each KGE mod-
els for Kinship dataset

DNS and ADNS algorithms aim to create more meaningful negative samplings
[9][11], although the training time of these algorithms is much higher than RNS.
Figure 7.2 shows the training time comparison between DNS and Indexed DNS
among all three KGE models for the Kinship dataset. The processing time for In-
dexed DNS with TransE algorithm decreases by 17%. For DistMult and ComplEx,
the time decreases by 38.6% and 34.8% correspondingly for Indexed DNS.

From Figure 7.1 and Table 7.4, it can be perceived that for TransE model, Indexed DNS
performs better than DNS with respect toHit@1 (increased from 59.8% to 63.95%),
Hit@3 (increased from 51.63% to 51.82%) and Hit@5 (increased from 45.40% to
54.1%). For the DistMult model, Indexed DNS performs closely to DNS with
respect to Hit@10 since for Indexed DNS it is 83.10% and for DNS it is 83.75%.
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Figure 7.2: Training time comparison between DNS and Indexed DNS for
Kinship

Lastly, for the ComplEx model, Indexed DNS is performing better than DNS at
Hit@1 (increased from 76.16% to 76.82%).

Figure 7.3: Training time comparison between ADNS and Indexed ADNS
for Kinship

Training time for Indexed ADNS with respect to ADNS is decreased by 7.6% for
TransE, 7% for DistMult and 10.6% for ComplEx, shown in Figure 7.3. Figure
7.1 and Table 7.4 shows that, for TransE model, Hit@5 increases to 56.1% with
Indexed ADNS from 55.19% with ADNS. Both Indexed ADNS and ADNS
perform closely for TransE by havingHit@3 as 62.79% and as 62.93%, respectively.
MR of ADNS for TransE is 7, higher than MR of Indexed ADNS, which is 2.
For the ComplEx model, Indexed ADNS (88.84%) and ADNS (91.11%) perform
closely with respect to Hit@3. Also, MRR of Indexed ADNS is 0.8102, close to
0.84, the MRR of ADNS for ComplEx.
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Figure 7.4: Training time comparison between Indexed DNS and
Indexed ADNS for Kinship

To compare the performances of Indexed DNS and Indexed ADNS, Table
7.4 shows that for ComplEx, Hit@3 for Indexed DNS is 86.71% whereas, for
Indexed ADNS, it is 88.84%. Figure 7.4 shows that the training time for Indexed ADNS
is around 64% which is less than Indexed DNS. Similarly, for TransE, Hit@5 in-
creases by 3.5% for Indexed ADNS with a 42% reduced training time. For TransE
MR of Indexed ADNS is 2, and MR of Indexed DNS is 6, which is higher in
value. This pattern can be seen in Table 7.4 for DistMult as well. Similarly, MRR

shows the potentiality of Indexed ADNS over Indexed DNS. For DistMult,
MRR of Indexed DNS is 0.3688. This is lower than MRR of Indexed ADNS,
which is 0.3806.

Figure 7.5: Training time comparison between RNS and Indexed RNS for
Kinship

Training time for Indexed RNS is more than RNS as shown in Figure 7.5. How-
ever, Table 7.5 shows most of the time, Indexed RNS creates more meaningful
negative samples to elevate the KGE model’s performances than RNS does. Not
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Hit@1 Hit@3 Hit@5 Hit@10
KGE_NSA % KGE_NSA % KGE_NSA % KGE_NSA %

DistMult_RNS 20.58 DistMult_RNS 42.04 TransE_DNS 45.396 TransE_RNS 70.954
DistMult_Indexed ADNS 22.02 DistMult_Indexed ADNS 43.58 TransE_Indexed DNS 54.1 DistMult_RNS 74.02
DistMult_Indexed DNS 24.3 DistMult_Indexed DNS 45.34 TransE_RNS 55.07 DistMult_Indexed ADNS 74.26
ComplEx_RNS 27.7 DistMult_Indexed RNS 49.53 TransE_ADNS 55.19 TransE_Indexed DNS 75.982
DistMult_Indexed RNS 28.17 TransE_RNS 50.01 DistMult_Indexed ADNS 55.26 TransE_ADNS 76.145
DistMult_ADNS 33.89 ComplEx_RNS 50.42 DistMult_RNS 55.91 DistMult_Indexed RNS 76.54
DistMult_DNS 38.87 TransE_DNS 51.63 TransE_Indexed ADNS 56.1 ComplEx_RNS 78.54
ComplEx_Indexed RNS 55.45 TransE_Indexed DNS 51.82 DistMult_Indexed RNS 57.77 TransE_DNS 81.192
TransE_RNS 58.7 DistMult_ADNS 53.45 DistMult_Indexed DNS 62.29 TransE_Indexed ADNS 81.266
TransE_DNS 59.8 DistMult_DNS 57.87 ComplEx_RNS 63.08 TransE_Indexed RNS 81.448
TransE_Indexed ADNS 60.16 TransE_Indexed ADNS 62.79 DistMult_ADNS 63.92 DistMult_ADNS 82.82
TransE_Indexed RNS 61.29 TransE_ADNS 62.93 TransE_Indexed RNS 66.98 DistMult_Indexed DNS 83.1
TransE_Indexed DNS 63.95 TransE_Indexed RNS 64.05 DistMult_DNS 67.32 DistMult_DNS 83.75
TransE_ADNS 64.89 ComplEx_Indexed RNS 78.45 ComplEx_Indexed DNS 84.26 ComplEx_Indexed ADNS 92.22
ComplEx_Indexed ADNS 73.43 ComplEx_Indexed DNS 86.71 ComplEx_Indexed RNS 86.55 ComplEx_Indexed DNS 94.15
ComplEx_DNS 76.16 ComplEx_Indexed ADNS 88.84 ComplEx_Indexed ADNS 88.76 ComplEx_Indexed RNS 94.55
ComplEx_Indexed DNS 76.82 ComplEx_ADNS 91.11 ComplEx_DNS 93.9 ComplEx_DNS 96.79
ComplEx_ADNS 85.01 ComplEx_DNS 91.39 ComplEx_ADNS 94.23 ComplEx_ADNS 96.88

Table 7.5: Comparison of performances among all the Negative Sampling Al-
gorithms (NSA) over different KGE models for Kinship

only that, sometimes Indexed RNS outperforms other Negative Sampling Algo-
rithms as well. Table 7.5 shows Hit@10 with Indexed RNS for ComplEx model
works better than DNS and ADNS with TransE and DistMult models for Kinship
dataset. Indexed RNS sometimes is one of the top performers regardless of the
model.
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UMLS dataset: Table 7.6 is generated for UMLS datasets for 1000 epochs with
dimension, k = 50, batch size = 2750, learning rate = 0.1, gamma = 10 and
number of negative samples = 3 as the parameters that illustrate the perfor-
mances among the Negative Sampling Algorithms (NSA) and KGE models.

KGE
model NSA Training

time (s)
MR MRR hit@1

(%)
hit@3
(%)

hit@5
(%)

hit@10
(%)

raw filter raw filter raw filter raw filter raw filter raw filter

ComplEx

RNS 46.63 20 4 0.1088 0.6438 1.13 48.87 6.81 74.96 13.46 84.87 33.43 93.12
Indexed
RNS 274 14 4 0.2037 0.7641 5.9 64.52 20.27 85.7 34.19 91.15 57.11 95.01

DNS 3452.89 13 2 0.2298 0.9452 8.55 91.75 23.75 97.05 36.38 97.66 58.4 98.56
Indexed
DNS 1568.61 13 2 0.2072 0.7959 5.9 68 21.03 89.79 33.81 94.25 58.4 96.52

ADNS 713.26 16 2 0.1683 0.861 4.92 79.27 15.28 91.6 23.75 94.55 45.46 97.81
Indexed
ADNS 653 14 4 0.2045 0.6871 6.66 54.31 20.65 80.11 32 87.97 55.3 94.55

DistMult

RNS 30.18 23 7 0.0977 0.4586 0.91 28.52 6.28 55.98 11.04 66.11 29.05 79.35
Indexed
RNS 253.36 18 7 0.1867 0.606 5.98 46.44 17.47 69.06 27 78.37 51.29 86.99

DNS 4235.31 17 5 0.1914 0.5749 6.96 56.35 18 66.26 28.74 74.81 49.7 87.29
Indexed
DNS 2872.31 16 5 0.2014 0.6647 6.28 43.12 20.27 71.33 30.26 78.82 49.45 86.38

ADNS 731.2 21 6 0.1239 0.6044 12.65 47.58 8.47 68.31 15.58 74.81 33.89 84.04
Indexed
ADNS 690.96 16 5 0.1963 0.632 6.73 49.92 18.84 71.26 29.43 78.72 52.27 88.65

TransE

RNS 22.64 20 9 0.1388 0.2999 1.51 6.35 13.92 44.4 22.39 55.6 39.94 74.36
Indexed
RNS 247.78 17 7 0.1661 0.3976 3.25 13.24 16.94 59.38 26.55 71.18 45.61 83.13

DNS 2633.33 20 10 0.1547 0.345 2.87 10.06 15.66 51.13 25.72 62.63 44.25 75.95
Indexed
DNS 1694.97 19 9 0.1626 0.3839 3.56 16.11 16.26 53.56 26.4 62.93 45.54 77.69

ADNS 620.36 17 7 0.1644 0.3923 3.1 12.48 16.26 58.55 26.55 70.65 48.49 84.11
Indexed
ADNS 559.73 16 6 0.1743 0.4424 3.78 17.47 17.1 65.51 28.37 77.84 49.55 88.12

Table 7.6: Evaluations of KGE models with UMLS dataset

From Table 7.6 and Figure 7.6, it can be perceived that for each KGE model, all
other Negative Sampling Algorithms appeared to be performing better than RNS.
For Instance, Hit@3 of ComplEx model with RNS is 74.96%, which increases
to 80.11% and 89.79% with Indexed ADNS and Indexed DNS, respectively.
Indexed RNS sometimes performs better than RNS. Hit@3 for ComplEx in-
creases to 85.7% with Indexed RNS. Raw MR of RNS is as high as 20 as shown
in Table 7.6.

For Hit@5, all the KGE models respond closely between DNS and Indexed DNS.
For ComplEx, Hit@5 for DNS is 97.66%, and for Indexed DNS, it is 94.25%.
However, the difference is only around 3%. Hit@5 for TransE with DNS is 62.63%,
and with Indexed DNS, it is 62.93%, and the difference is less than 0.5%. Some-
times, Indexed DNS outperforms DNS. For instance, Hit@5 for DistMult, with
Indexed DNS, increases to 78.82% from 74.81% which is the model’s Hit@5 with
DNS. For Hit@3 and Hit@10 of TransE, Indexed DNS achieves more accuracy
than DNS as found in Table 7.6 and Figure 7.6. MR for Indexed DNS is 9, which
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Figure 7.6: Performances of Negative Sampling Algorithm for each KGE mod-
els for UMLS dataset

is lower than 10, the MR of DNS for TransE. MRR of TransE also indicates that
Indexed DNS can be more effective than DNS as shown in Table 7.6. For ex-
ample, MRR for Indexed DNS, which is 0.3839, is greater than MRR for DNS,
which is 0.345.

Figure 7.7: Training time comparison between DNS and Indexed DNS for
UMLS

Figure 7.7 shows the training time comparison between DNS and Indexed DNS
among all three KGEmodels for UMLS dataset. The processing time for Indexed DNS
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with TransE algorithm decreases by 21.6%. For DistMult and ComplEx, the time
decreases by 19.2% and 37.6% correspondingly.

Figure 7.8: Training time comparison between ADNS and Indexed ADNS
for UMLS

Indexed ADNS reduces the model’s processing time as exhibited in Figure 7.8.
This reduction in training time is 4.4%, 2.8%, and 5.2% correspondingly for Com-
plEx, DistMult, and TransE models.

The evaluation shows that for Hit@10 all the KGE models work well or closely
between Indexed ADNS and ADNS. Hit@10 for TransE with Indexed ADNS

is 88.12%, and with ADNS, it is 84.11%. Similarly, performance for ComplEx
with Indexed ADNS is 94.55%, and with ADNS, it is 97.81%, and a differ-
ence is less than 5%. For DistMult model, the accuracy with Indexed ADNS

(88.65%) is higher than ADNS (84.04%) by more than 4.5%. For TransE, Hit@1

for Indexed ADNS is 17.47%, and for ADNS, it is 12.48%, which depicts the bet-
ter performance of Indexed ADNS by around 10%. MRR for Indexed ADNS
is 0.2045, which is higher than MRR of ADNS valued as 0.1683. For DistMult,
MR for Indexed ADNS is 5, and for ADNS, it is 6, so MR of Indexed ADNS
is better.

Figure 7.6 and Table 7.6 indicates that Indexed ADNS works more satisfactorily
than Indexed DNS. For example,Hit@10 for TransE model with Indexed ADNS
is 88.12%, which is much higher than the Hit@10 with Indexed DNS (77.69%).
Processing time for DistMult model with Indexed ADNS is reduced by 50%
from Indexed DNS as illustrated in Figure 7.9 and the Hit@10 for the model
with Indexed ADNS is increased to 88.65% from 86.38% (the Hit@10 with
Indexed DNS). Figure 7.9 shows training time for Indexed ADNS is around
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Figure 7.9: Training time comparison between Indexed DNS and
Indexed ADNS for UMLS

60% less than Indexed DNS for ComplEx model. For the TransE model, MR

of Indexed ADNS is 6, but MR of Indexed DNS is 9, which indicates a better
performance of Indexed ADNS. On top of that, the processing time for TransE is
reduced around 21% for Indexed DNS compared to Indexed ADNS. Moreover,
MRR for TransE with Indexed ADNS is 0.1743, and MRR for Indexed DNS
is 0.1626. This reveals that Indexed ADNS may show promising benefits than
Indexed DNS.

Figure 7.10: Training time comparison between RNS and Indexed RNS for
UMLS

Even though ADNS and DNS are much better than RNS in theory, Indexed RNS
sometimes performs better than other Negative Sampling Algorithms. Training
time for Indexed RNS is more than RNS exhibited in Figure 7.10. However, it
is less than all other variants of the Negative Sampling Algorithms. Table 7.7
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shows that Indexed RNS is among top 4 performers. This shows the optimistic
performances of the KGE models with an optimized time.

Hit@1 Hit@3 Hit@5 Hit@10
KGE_NSA % KGE_NSA % KGE_NSA % KGE_NSA %

TransE_RNS 6.35 TransE_RNS 44.4 TransE_RNS 55.6 TransE_RNS 74.36
TransE_DNS 10.06 TransE_DNS 51.13 TransE_DNS 62.63 TransE_DNS 75.95
TransE_ADNS 12.48 TransE_Indexed DNS 53.56 TransE_Indexed DNS 62.93 TransE_Indexed DNS 77.69
TransE_Indexed RNS 13.24 DistMult_RNS 55.98 DistMult_RNS 66.11 DistMult_RNS 79.35
TransE_Indexed DNS 16.11 TransE_ADNS 58.55 TransE_ADNS 70.65 TransE_Indexed RNS 83.13
TransE_Indexed ADNS 17.47 TransE_Indexed RNS 59.38 TransE_Indexed RNS 71.18 DistMult_ADNS 84.04
DistMult_RNS 28.52 TransE_Indexed ADNS 65.51 DistMult_DNS 74.81 TransE_ADNS 84.11
DistMult_Indexed DNS 43.12 DistMult_DNS 66.26 DistMult_ADNS 74.81 DistMult_Indexed DNS 86.38
DistMult_Indexed RNS 46.44 DistMult_ADNS 68.31 TransE_Indexed ADNS 77.84 DistMult_Indexed RNS 86.99
DistMult_ADNS 47.58 DistMult_Indexed RNS 69.06 DistMult_Indexed RNS 78.37 DistMult_DNS 87.29
ComplEx_RNS 48.87 DistMult_Indexed ADNS 71.26 DistMult_Indexed ADNS 78.72 TransE_Indexed ADNS 88.12
DistMult_Indexed ADNS 49.92 DistMult_Indexed DNS 71.33 DistMult_Indexed DNS 78.82 DistMult_Indexed ADNS 88.65
ComplEx_Indexed ADNS 54.31 ComplEx_RNS 74.96 ComplEx_RNS 84.87 ComplEx_RNS 93.12
DistMult_DNS 56.35 ComplEx_Indexed ADNS 80.11 ComplEx_Indexed ADNS 87.97 ComplEx_Indexed ADNS 94.55
ComplEx_Indexed RNS 64.52 ComplEx_Indexed RNS 85.7 ComplEx_Indexed RNS 91.15 ComplEx_Indexed RNS 95.01
ComplEx_Indexed DNS 68 ComplEx_Indexed DNS 89.79 ComplEx_Indexed DNS 94.25 ComplEx_Indexed DNS 96.52
ComplEx_ADNS 79.27 ComplEx_ADNS 91.6 ComplEx_ADNS 94.55 ComplEx_ADNS 97.81
ComplEx_DNS 91.75 ComplEx_DNS 97.05 ComplEx_DNS 97.66 ComplEx_DNS 98.56

Table 7.7: Comparison of performances among all the Negative Sampling Al-
gorithms (NSA) over different KGE models for UMLS

Nations dataset: The performances for Negative Sampling Algorithms (NSA)
for Nations dataset are exhibited in Table 7.8 . This table is generated with
dimension, k = 50, batch size = 2750, learning rate = 0.1, gamma = 10 and
number of negative samples = 3 for 1000 epochs.

KGE
model NSA Training

time (s)
MR MRR hit@1

(%)
hit@3
(%)

hit@5
(%)

hit@10
(%)

raw filter raw filter raw filter raw filter raw filter raw filter

ComplEx

RNS 8.29 8 2 0.179 0.6377 2.49 45.02 12.19 78.11 23.88 90.8 76.62 98.1
Indexed
RNS 27.86 8 2 0.1992 0.7031 4.23 55.22 15.67 83.83 29.1 90.8 77.11 99.5

DNS 303.95 6 1 0.2998 0.9324 9.95 90.8 33.58 94.53 50.25 96.27 92.29 99.5
Indexed
DNS 141.56 6 2 0.2756 0.6231 7.46 42.04 33.08 78.86 48.26 90.55 82.59 99.75

ADNS 224.24 7 2 0.2024 0.8412 2.74 75.37 16.92 91.04 34.08 96.27 83.58 99.5
Indexed
ADNS 105.53 7 2 0.2117 0.7244 5.72 56.47 16.17 86.57 31.34 94.78 80.35 99.9

DistMult

RNS 6.43 7 2 0.2123 0.6704 4.73 38.06 18.41 77.61 33.58 87.52 79.85 97.51
Indexed
RNS 26.88 7 2 0.2444 0.7142 8.21 56.72 22.14 82.59 36.82 89.8 81.34 99.25

DNS 220.4 6 2 0.2998 0.8 10.7 70.9 32.84 85.32 50 92.79 85.82 98.01
Indexed
DNS 138.47 6 3 0.2756 0.5853 9.45 51.49 29.6 72.39 46.27 89.05 81.84 98.76

ADNS 189.78 6 2 0.2549 0.7581 7.46 63.43 24.63 83.33 43.53 95.52 84.33 99.25
Indexed
ADNS 125.34 7 2 0.2518 0.7212 8.71 57.96 21.89 81.84 39.8 92.29 81.09 99

TransE

RNS 6.59 8 4 0.1882 0.3463 0.75 1.99 17.66 57.96 35.82 77.1 73.88 95.27
Indexed
RNS 25.04 7 3 0.2203 0.405 2.74 6.97 23.38 66.92 41.29 84.58 79.6 97.26

DNS 195.54 7 3 0.2356 0.482 4.23 20.15 24.13 69.9 45.02 85.07 79.6 97.01
Indexed
DNS 166.15 7 4 0.2423 0.4046 5.47 13.18 26.87 58.71 42.54 78.61 75.12 97.76

ADNS 278.32 7 3 0.2462 0.477 5.72 18.41 26.62 70.9 43.78 84.08 80.6 97.51
Indexed
ADNS 116.7 7 4 0.2094 0.3923 1.74 6.22 22.89 65.92 38.56 82.59 80.1 96.77

Table 7.8: Evaluations of KGE models with Nations dataset
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Figure 7.11: Performances of Negative Sampling Algorithm for each KGE
models for Nations dataset

For Nations Dataset, most of the time, RNS performs less than other Negative
Sampling Algorithms as illustrated in Table 7.8 and Figure 7.11. For instance,
Hit@1 for TransE with RNS is 1.99%. However, at least 6.22% accuracy is
achieved with Indexed ADNS. Figure 7.11 exhibits, sometimes the accuracy of
Indexed DNS loses to RNS. For example, Hit@1 for ComplEx, Hit@3 for Dist-
Mult supports the statement. Nevertheless, other Negative Sampling Algorithms
mostly work better than RNS.

Although Nations is a smaller dataset than Kinship and UMLS, supported by Sec-
tion 7.1, training time does get optimized for Indexed DNS and Indexed ADNS
as well. Training time for ComplEx with Indexed DNS is optimized by 36.4%
with respect to DNS as shown in Figure 7.12. Similarly, training time for DistMult
with Indexed DNS is reduced by 22.8%, and for TransE it is reduced by 8.2%
compared to the training time of DNS.

Hit@10 for all the KGE models performs better with Indexed DNS than DNS.
For TransE, with Indexed DNS, the Hit@10 is 97.76%, whereas, with DNS, it is
97.01%. For DistMult with Indexed DNS, the Hit@10 is 98.76%, which is higher
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Figure 7.12: Training time comparison between DNS and Indexed DNS for
Nations

than the accuracy with DNS (98.01%). For ComplEx, with Indexed DNS the
Hit@10 is 99.75%, and with DNS it is less, valued at 99.5% as shown in Table 7.8.

Figure 7.13: Training time comparison between ADNS and Indexed ADNS
for Nations

On the other hand, Indexed ADNS too improves the training time with respect
to ADNS. For ComplEx, the training time is reduced by 36%, for DistMult it is
reduced by 20.4%, and for TransE it is reduced 41%. These improvements are
illustrated in Figure 7.13.

Outcomes of Indexed ADNS and ADNS also indicate Indexed ADNS can work
better as found in Figure 7.11. For ComplEx, Hit@10 with Indexed ADNS is
99.9% which is the highest performing Negative Sampling Algorithm as shown in
Table 7.9. For other cases, Indexed ADNS and ADNS perform closely to each
other. For example, as shown in Table 7.8Hit@3 for DistMult with Indexed ADNS
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is 81.84% which is close to 83.33% ofHit@3 with ADNS. For rawMRR, Indexed ADNS
increased to 0.2117 from 0.2024, raw MRR of ADNS.

Figure 7.14: Training time comparison between Indexed DNS and
Indexed ADNS for Nations

As shown in Figure 7.14 illustrates that the training time of ComplEx with
Indexed ADNS is around 14.6% less than the training time with Indexed DNS.
As shown in Table 7.8 Hit@3 for ComplEx with Indexed ADNS is 86.57% con-
trarily, Hit@3 with Indexed DNS is 78.86%. This indicates a better performance
of Indexed ADNS. For DistMult, Indexed DNS takes 5% more training time
than Indexed ADNS, and for TransE, Indexed ADNS takes 17.4% less training
time than Indexed DNS as exhibited in Figure 7.14.

Figure 7.15: Training time comparison between RNS and Indexed RNS for
Nations

Indexed RNS for Nations dataset contributes to creating meaningful negative
samples. This can be found in Table 7.9. This table shows that among all the
KGE models, Indexed RNS can be one of the top performers. For example, with
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Hit@3 for ComplEx, Indexed RNS outperforms ADNS for DistMult and TransE,
DNS for TransE.

Hit@1 Hit@3 Hit@5 Hit@10
KGE_NSA % KGE_NSA % KGE_NSA % KGE_NSA %

TransE_RNS 1.99 TransE_RNS 57.96 TransE_RNS 77.1 TransE_RNS 95.27
TransE_Indexed ADNS 6.22 TransE_Indexed DNS 58.71 TransE_Indexed DNS 78.61 TransE_Indexed ADNS 96.77
TransE_Indexed RNS 6.97 TransE_Indexed ADNS 65.92 TransE_Indexed ADNS 82.59 TransE_DNS 97.01
TransE_Indexed DNS 13.18 TransE_Indexed RNS 66.92 TransE_ADNS 84.08 TransE_Indexed RNS 97.26
TransE_ADNS 18.41 TransE_DNS 69.9 TransE_Indexed RNS 84.58 DistMult_RNS 97.51
TransE_DNS 20.15 TransE_ADNS 70.9 TransE_DNS 85.07 TransE_ADNS 97.51
DistMult_RNS 38.06 DistMult_Indexed DNS 72.39 DistMult_RNS 87.52 TransE_Indexed DNS 97.76
ComplEx_Indexed DNS 42.04 DistMult_RNS 77.61 DistMult_Indexed DNS 89.05 DistMult_DNS 98.01
ComplEx_RNS 45.02 ComplEx_RNS 78.11 DistMult_Indexed RNS 89.8 ComplEx_RNS 98.1
DistMult_Indexed DNS 51.49 ComplEx_Indexed DNS 78.86 ComplEx_Indexed DNS 90.55 DistMult_Indexed DNS 98.76
ComplEx_Indexed RNS 55.22 DistMult_Indexed ADNS 81.84 ComplEx_RNS 90.8 DistMult_Indexed ADNS 99
ComplEx_Indexed ADNS 56.47 DistMult_Indexed RNS 82.59 ComplEx_Indexed RNS 90.8 DistMult_Indexed RNS 99.25
DistMult_Indexed RNS 56.72 DistMult_ADNS 83.33 DistMult_Indexed ADNS 92.29 DistMult_ADNS 99.25
DistMult_Indexed ADNS 57.96 ComplEx_Indexed RNS 83.83 DistMult_DNS 92.79 ComplEx_Indexed RNS 99.5
DistMult_ADNS 63.43 DistMult_DNS 85.32 ComplEx_Indexed ADNS 94.78 ComplEx_DNS 99.5
DistMult_DNS 70.9 ComplEx_Indexed ADNS 86.57 DistMult_ADNS 95.52 ComplEx_ADNS 99.5
ComplEx_ADNS 75.37 ComplEx_ADNS 91.04 ComplEx_DNS 96.27 ComplEx_Indexed DNS 99.75
ComplEx_DNS 90.8 ComplEx_DNS 94.53 ComplEx_ADNS 96.27 ComplEx_Indexed ADNS 99.9

Table 7.9: Comparison of performances among all the Negative Sampling Al-
gorithms (NSA) over different KGE models for Nations

Findings: Overall, it can be qualified that Indexed DNS and Indexed ADNS
positively reduces the training time with respect to DNS and ADNS. And this
training time reduction formula can direct to the acceleration of the KGE model’s
performances or may at least reside at a non-threatening level. Even though the
training time of Indexed RNS is higher than RNS, it is much lower than the
training times of Indexed DNS, Indexed ADNS, DNS, and ADNS. As a bonus,
sometimes Indexed RNS is found to be performing outstanding with respect to
other Negative Sampling Algorithms.
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7.4.2 Results And Findings Of Distributed KGE Models

This section distinctively elaborates the results and findings of distributed KGE
model’s implementations with Spark framework and BigDL library. As mentioned
in Chapter 6, distributed approaches of different KGE models are inspired by the
implementation of TransE by SANSA-Stack [13]. Nevertheless, the application is
still incomplete1. The following sections of this chapter will address the wellness
of the solution to this issue as proposed in Chapter 6. Simultaneously this section
will focus on how distributed TransE, DistMult, and ComplEx perform over three
datasets and discuss the approach’s impediments.

Figure 7.16: Code snippet from
SANSA team’s implementation

Figure 7.17: Reported bug from
SANSA team’s implementation

Solution to the reported bug in SANSA-Stack:

By the time this thesis work has been in progress, a bug is reported in the GitHub
repository of SANSA-Stack2 on the TransE implementation as shown in Figure
7.17. Upon investigating thoroughly, the apparent reason is found due to different
sizes of relation and entity embeddings. In their implementation, as shown in
Figure 7.16, two different embeddings are maintained: one for the entity and the
other for relation, which is the general scenario of the KGE models the optimizers
are called twice, as shown in line 63 and line 64 of Figure 7.163. However, calling

1https://github.com/SANSA-Stack/Archived-SANSA-ML/issues/18.
2https://github.com/SANSA-Stack
3This screenshot from the git repository is taken from the author’s local machine



Evaluation 85

the optimizer on the loss for relation embedding is producing an error as shown
in Figure 7.174.

The optimizers in BigDL expect two parameters - the loss of the function and
all the gradients of the function combined in one tensor5 Probably, due to this
built-in nature, when first the entity embeddings are passed as the gradients, the
optimizers may consider it’s size as the standard. Numbers of entities and relations
may differ, so as their embeddings since the respective embedding’s size depends on
the number of entities or relations and the dimension given. Thus, when relation
embedding with a different size is passed through the same optimizer on the same
loss, the dense tensors are not recognized by the optimizers. To solve this, the
distributed approach of this thesis proposed maintaining one embedding to hold
both relation and entity embeddings.

Figure 7.18: Loss vs epoch comparison between SANSA team’s implementa-
tion and the proposed implementation of this thesis

Improved loss:

In the SANSA team’s implementation, the optimizer is called over two different
tensors, which may often throw an exception. If not, then the loss does not decrease
per epoch rather fluctuates. Generally, good training should include a decline in
loss after each epoch. Figure 7.18 shows a comparison of loss per epoch for the
SANSA team’s implementation vs. distributed approach followed in this thesis.

4See footnote 3
5https://bigdl-project.github.io/0.10.0/APIGuide/Optimizers/Optim-Methods/adagrad
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Evidently, the loss does not fluctuate with the distributed approach for having one
embedding.

Dataset KGE model MR MRR Hit@1 (%) Hit@5 (%) Hit@10 (%) Hit@50 (%)
Raw Filter Raw Filter Raw Filter Raw Filter Raw Filter Raw Filter

Kinship
TransE 51 47 1.82E-05 1.97E-05 0.93 0.93 4.93 5.12 9.86 10.52 50.18 53.72
DistMult 52 48 1.79E-05 1.93E-05 0.74 0.74 2.88 3.16 6.42 7.16 45.62 51.39
ComplEx 51 48 1.80E-05 1.94E-05 1.58 1.58 5.02 5.21 9.86 10.42 46.18 50

UMLS
TransE 68 60 2.21E-05 2.49E-05 0.75 0.9 2.72 3.32 5.9 6.8 35.24 40.99
DistMult 60 53 2.48E-05 2.81E-05 0.15 0.3 2.26 2.87 5.44 7.41 42.51 50.07
ComplEx 65 57 2.31E-05 2.63E-05 0.75 0.75 2.57 3.47 6.95 7.71 38.12 43.72

Nations
TransE 7 4 7.03E-04 1.08E-03 4.97 7.46 36.31 65.17 84.07 99.5 100 100
DistMult 6 4 7.71E-04 1.18E-03 6.46 13.93 39.8 71.64 86.56 98.5 100 100
ComplEx 6 3 8.07E-04 1.25E-03 7.96 18.4 41.79 73.63 87.06 99.5 100 100

Table 7.10: Evaluations of distributed KGE models for different datasets

Table 7.10 shows the results of different distributed KGE models for RNS with
dimension, k = 20, learning rate = 0.001, gamma = 2 and optimizer = Adam for
100 epochs. Distributed approaches of these KGE models need more research to
figure out why they are performing unexpectedly, as shown in Table 7.10. The MR
for Kinship and UMLS datasets are higher, which stipulates that the models are
not training immaculately. Upon further inquiry, it is found that the mechanism of
the optimizers in BigDL needs more thorough research to fix this issue. A general
comparison of Tensor calculation between BigDL and PyTorch has been made to
check if the problem resides in the implementation’s architecture. However, it is
found to be working correctly. Thus, the optimizer is the suspected part to be
different in BigDL.

To get into more detail on the probable cause of the non-optimized model, Figure
7.19 can help. Since the nature of loss per epoch in Figure 7.18 implied the un-
fitting architecture of the KGE models, Figure 7.19 shows a similar pattern. This
points out an issue with normalizing the entity embedding. Following the process
of normalizing the entity embedding mentioned in Chapter 6, the loss is seen to
be fluctuating in Figure 7.19. On the contrary, when the normalization of the
embedding is restricted, the loss declines per epoch. One probable cause for such
a situation can be, the optimizer may be unable to backtrack the normalization
by using a built-in layered function of BigDL as elaborated in Chapter 6. This
inspires more into the idea of researching the mechanism of BigDL’s optimizer in
depth.
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Figure 7.19: Loss vs epoch for all KGE models and datasets

Another cause can be constructed from both Figure 7.18 and Figure 7.19. After
certain epochs, the loss gets to a plateau by the value of the margin of the margin-
based rank criterion. Suppose the margin’s value is 1, then the loss per epoch
graph gets to a plateau at 1. This can be a case of vanishing or exploding gradi-
ents. An issue6 is put in the community for any experts opinions. By the time of
writing this thesis, no one responded. Even by changing parameters, this matter
remains unsorted, which compels studying the infrastructure of the optimizer of
BigDL even more.

An interesting factor can be seen from Table 7.10. Even though the models are
behaving unexpectedly for the Kinship and the UMLS dataset, the evaluation
metric’s results show impressive behavior for Nations dataset. Hit@10 for all the
KGE models are more than 99%. MR for Nations dataset, as shown in Table 7.8,
are 8 (raw) and 4 (filter) for TransE, 7 (raw) and 2 (filter) for DistMult, and 8 (raw)
and 2 (filter) for ComplEx implemented with PyTorch. Table 7.10 shows that the
MR for the distributed approach is comparatively close to the sequential approach.
The nature of Nations dataset is different from Kinship and UMLS dataset, which

6https://stackoverflow.com/questions/61714137/loss-of-transe-gets-plateau-at-the-margin-
value-with-bigdl-library
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is the ratio of entity and relation numbers as illustrated in Table 4.1. For Nations
dataset, the number of entities is higher than the number of relations. Most of
the entities are connected by multiple relations. Perhaps the modest training of
the distributed KGE models with BigDL results in an outstanding performance
for Nations datasets due to these characteristics.

Findings: Considering all the distributed approach’s findings comprehensively,
it is safe to conclude that studying the optimizer’s mechanism from BigDL will
enhance future work prospects based on this thesis’s findings. For some datasets,
the proposed distributed KGE models are working well; however, resolving the
current issues with all the acquired insights will help achieve the KGE model’s
scalability for other datasets.



Chapter 8

Conclusion And Future Work

A part of this thesis considered the Negative Sampling Algorithm, an important
but often overlooked part of the Knowledge Graph Embedding models. Creat-
ing meaningful negative samples is important for better training. Better trained
Knowledge Graph Embedding models mean better applications of the Knowledge
Graph can be achieved. This thesis has been interested in optimizing the Knowl-
edge Graph Embedding model’s overall training time, which is another important
aspect concerning the growing Knowledge Graphs in the Big Data scenario. Imple-
menting the models with the proposed Indexed Negative Sampling Algorithm can
reduce a significant amount of processing time without compromising the perfor-
mance much. Another part of this thesis is focused on the distributed approach of
the Knowledge Graph Embedding models. Again, with the exponentially growing
Knowledge Graphs, upgrading the computing machines frequently to execute the
models is a big obstacle. Thus, accomplishing the distributed Knowledge Graph
Embedding models can help with this overhead.

89
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8.1 Conclusion

Three Negative Sampling Algorithms: RNS, DNS, and ADNS have been chosen
to inject the proposed concept named Indexed Dataset to create meaning neg-
ative samples with an optimized training time. The three proposed variants are
named Indexed RNS, Indexed DNS, and Indexed ADNS. Indexed Dataset

fundamentally arranges the train dataset’s indexes in a new table so that the
KGE model can know which entities should not be chosen to corrupt a triple.
This excludes the general necessity of checking if the generated corrupted triple is
true for the train data. This helps to reduce the processing time of original algo-
rithms of DNS and ADNS notably. Not only that, Indexed RNS, Indexed DNS,
and Indexed ADNS can create more meaningful negative samples compared to
RNS. Moreover, Indexed RNS, which is a variation of RNS, seldom performs ex-
ceptionally well compared to other Negative Sampling Algorithms. The training
time with Indexed RNS is the lowest among DNS, ADNS, Indexed DNS, and
Indexed ADNS. Three KGE models: TransE, DistMult, and ComplEx are used
to evaluate the performances of the Negative Sampling Algorithms with Kinship,
UMLS, and Nations datasets. For all three datasets, often ComplEx with Indexed
Negative Sampling Algorithm outperforms other models with other Negative Sam-
pling Algorithms. The training time’s trimming is also among the highest ones for
ComplEx and Indexed Negative Sampling Algorithms.

Although distributed KGE models should be continued for further research pur-
poses, much deeper insights into the BigDL library are achieved in this thesis.
The learning curve of the library is found to be steep for a beginner. Optimization
with BigDL still needs some exploration to properly implement the distributed
KGE models, although the basic structure is proposed in this thesis. The data
preparation and the evaluation implemented in this thesis with Spark are running
at full throttle. Even the data preparation and the testing of the KGE models
with big datasets may impose an overhead. The codes prepared for these purposes
can be parallelly executed by multiple worker nodes with Spark easily. So far, even
the training is running with multiple cores of the local machine. Kinship, UMLS,
and Nations datasets are used for the evaluation. Surprisingly, Nations dataset
outperforms all three distributed KGE models.
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8.2 Future Work

Firstly, the proposed Indexed Negative Sampling Algorithm′s evaluations need
to be conducted in the future with bigger datasets. For example, FB15K, WN18,
etc. Another future work with these algorithms is to create deeper clusters of the
Indexed Dataset proposed in this thesis. For example, the Indexed Dataset

comprises a list of heads and tails with respect to a specific relation. How-
ever, some heads may only pair with certain tails and vice versa. For example,
”lives in” relation in the KG has three triples: (Tasneem, lives in, Bonn),
(Drea, lives in, Bonn) and (Faheem, lives in, Bangladesh). Now, for the
relation, the list of heads will include {Tasneem, Drea, Faheem} and the list
of tails will be {Bonn, Bangladesh}. While corrupting the head of the triple
(Tasneem, lives in, Bonn), entity ”Faheem” can be a notable option. However,
the current Indexed Dataset will not allow that because it is subtracted from
the entire entity list. If the Indexed Dataset can separate the list of heads with
”Tasneem” and ”Drea” from ”Faheem” as they both live in ”Bonn” then it can
be checked if the results of the models increase by selecting ”Faheem”.

Distributed KGE models have much in-depth future work. As mentioned already,
the optimizer’s mechanism with BigDL needs more research. Solving the obstacles
that have appeared in this thesis can contribute to achieving the distributed KGE
model’s scalability. BigDL is more famous for training neural network models in
parallel mode over batches. This thesis’s further future work is to create a layered
model of the KGE models to exploit this benefit provided by the library.

Combining parallel optimization with meaningful Indexed Negative Sampling Al-
gorithm shows great future aspects of the processing time and the KGE model’s
performance.
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