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A B S T R A C T

Programmable metamaterials establish a new subset of metamaterials offering controllable and variable
physical properties. As metamaterials, they are artificial materials and exhibit exotic and counter-intuitive
material behavior, but are more specifically tailored for engineering purposes. Whereas for metamaterials
a mostly homogeneous layout of unit cells is considered, programmable materials are constructed by an
individual distribution in order to satisfy custom intentions regarding a specific shape change under given
loading conditions. In order to tackle this customization of material response, a computational optimization
framework similar to topology or material optimization is proposed. Our work is based on a multiscale and
data approach, allowing a broad range of application with different classes of unit cells and target functions
under finite strains. In this contribution, we present the complete process chain from a parametrized unit cell
to the final model of the programmable material, ready to be manufactured. We show numerical results with
different unit cells and compare them to fully resolved simulations. Further, with the development of new
generative manufacturing processes, the production of such programmable materials consisting of spatially
varying cells has also become possible on an industrial scale. One example of lab-scale production is shown
in the paper and compared to simulation results.
1. Introduction

Metamaterials consist of a periodic array of unit cells and are similar
in this property to biological organisms, which are also composed of
cells. However, metamaterials are often proposed with uniform unit
cells, whereas biological cells differ from stem cells. In this way, they
adapt to environmental conditions such as wind loads and moisture
during growth.

PMs should also possess this basic property of biological structures,
but should not have such a complex structure. In contrast to biological
tissue, which adapts to changing conditions by remodeling, the meta-
materials considered here have a cellular structure that does not change
over time and can therefore only execute a fixed program, i.e. cannot
be reprogrammed. It is therefore programmed during the production
process. One possibility of programming is a change of geometry under
given loading conditions.

In particular, PMs are intended to simplify and replace complex
systems where the reaction to environmental conditions is implemented
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with the help of sensors and actors. For instance, mechatronic systems
with switchable states can be replaced by a single material ‘‘pro-
grammed’’ to work in the same way (Fratzl et al., 2019; Weisheit et al.,
2020). Assuming the unit cells can be sufficiently scaled, the final
manufactured PM can be considered as continuum material with locally
varying properties. They offer the possibility for distributed control,
i.e. the reaction to environmental conditions is triggered and performed
locally, in contrast to systems which are controlled by external power
sources, actuators sensors and control circuits (Aubin et al., 2022). As a
consequence, the material with programmed behavior is more unlikely
to fail and, hence, more robust in application compared to a complex
mechatronic system.

PMs can be applied wherever a tailored reaction to environmental
and operating conditions of a material or a component is required.
One example are the wings of an aircraft which have to adapt to
starting, climbing, cruising and landing. Adaptable wing structures
implemented through a mechanical system as proposed in Grant et al.
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(2010) and Andersen et al. (2007) are one potential field of application.
By ‘‘programming’’ an intended behavior of these structures through
an optimal inner design of the material simplifies their construction
and offers advantages in robustness and weight. Different solutions can
be found in the literature, e.g., based on bistable laminates (Daynes
et al., 2009) or also topology optimization (Stanford and Ifju, 2008).
Also in soft robotics (Mark et al., 2016; Aubin et al., 2022) and
prosthetics (Awad et al., 2017) a controlled response of components
to individual environmental conditions is necessary and suggests them
to be replaced by a PM. Further, whenever standard metamaterials are
used there is a potential of enhancement by introducing a spatial gra-
dient in the material. One example are light-weight applications where
metamaterials are widely used due to their extreme properties (Chen
et al., 2016; Maconachie et al., 2019).

For optimizing the properties of a metamaterial with uniform cells,
the optimization of a single cell is sufficient. This can be done with
topology optimization where the distribution of material in a specific
domain is optimized. Homogenization based approaches (Bendsøe and
Kikuchi, 1988), where a density distribution is optimized, are widely
used. The topic is extensively treated in the text-books of Allaire
et al. (1997) and Bendsøe and Sigmund (2004). A different approach
are level-set methods where the boundary of a component is moved
according to a specific criterion such as the strain energy distribu-
tion (Sethian and Wiegmann, 2000). Another aspect is optimization
with the aim to find optimal local material properties at every point
of a component. Examples are the optimization of fiber orientation
distribution (Frei et al., 2013) or the distribution of different unit-
cells inside a component (Ferrer et al., 2018). In order to ensure
connectivity between the cells and manufacturability, the unit cell
design is restricted, e.g., through a parametrization at the expense
of optimality (Wu et al., 2021). Then a mapping from the design
to the effective mechanical properties of the cells is necessary. This
leads to surrogate based optimization, which is a common technique
when the evaluation of the target function is too expensive or its
derivative cannot be computed (Booker et al., 1999). One example is
the space-mapping technique (Bandler et al., 1994) where a surrogate
or coarse model is coupled with a fine model. Most function evaluations
are conducted on the coarse model while the fine model is used to
verify and iteratively improve the coarse model. Recent approaches in
material optimization use high-order polynomials (Imediegwu et al.,
2019; Wang et al., 2020) and neuronal networks (White et al., 2019;
Zheng et al., 2021) for the mapping of cell design to its mechanical
properties.

We aim to establish a target shape under given boundary conditions
in an array of cells undergoing large deformations. This is done by
optimizing the distribution of design parameters, e.g., a beam thickness
or an angle inside an array of cells. In contrast to topology optimization
no cells inside the design domain are removed, taking into account
robustness of the material and manufacturability. Therefore, several
challenges have to be tackled. A boundary value problem (BVP) with
a strong coupling between macro- and micro-scale has to be solved.
Various cells with highly nonlinear, load case and design dependent
behavior have to be considered. The size of these arrays must be
sufficiently large, such that it is perceived as a material and to be
able to resolve gradients in the design parameters. Further, each cell
may have multiple design parameters opening a huge design space. In
contrast to recent publications we aim to handle large strains, which
poses additional challenges especially for the surrogate model and the
derivation of the adjoint problem.

We obtained the results in this paper by combining a surrogate
model with a gradient-based optimization method as it was recently
done in multiscale topology optimization (Imediegwu et al., 2019;
Wang et al., 2020; White et al., 2019; Zheng et al., 2021). Because of
the large amount of degrees of freedom in the design space, we consider
the adjoint approach. Extensive treatment of this optimization method
2

can be found in Hinze et al. (2009). The domain, which we consider to i
be programmed, is divided into subdomains, each of which represents
a unit cell of the same type, but with different design parameters.
In Ferrer et al. (2018) a similar way is presented, but in each subdomain
a different unit cell can be placed. In this work, however, the emphasis
lies in parametrized unit cells. The total amount of degrees of freedom
is then the product of number of design parameters and number of
subdomains. Because of the presence of many design possibilities, we
follow the common procedure, known from topology optimization, and
apply the adjoint sensitivity approach. In addition to the multiscale
BVP, this approach requires the solution of a dual BVP.

Within the scope of programming materials we couple the design
parameters and the final mechanical properties through upscaling.
Due to the complex relation between those we follow a data-driven
approach in order to handle individually designed unit cells. The
surrogate model must provide a fast representation of the data, re-
gardless of the number of dimensions, be able to capture the high
nonlinearities and provide smooth derivatives w.r.t. the strain and the
design. For that purpose we establish for each unit cell a database
filled with homogenized stresses, stored as multidimensional tensor
as in Yvonnet et al. (2009). In contrast to the work in that ref-
erence, we extend the order of the data tensor by the number of
design variables. By the tensor rank decomposition (Tamara and Kolda,
2009) we compress the data size and are further able to interpolate
within the tensor entries (Le et al., 2015). In our contribution we
use the canonical one-rank decomposition, known as PARAFAC or
CANDECOMP. More advanced decomposition methods are the Tucker
decomposition (Tamara and Kolda, 2009) or Tensor Train (Oseledets,
011; Savostyanov and Oseledets, 2011), which may be applied in
ur optimization framework, too. Concerning data decomposition and
econstruction, the proper generalized decomposition (Chinesta et al.,
013) is also worth mentioning. It considers the same approach by
eparated variable interpolation as in our work. In Hirschler et al.
2021) another promising approach via look-up tables of effective prop-
rties can be considered for optimization problems, too. The authors
n Orlik et al. (2016) show, that an analytical approach for textile-like
icrostructures is also possible: Instead of creating a database with
recomputed stiffnesses and stresses, the necessary gradients for the
ptimization are obtained through symbolic differentiation.

The paper is structured as follows: In Section 2 we give an overview
ver the methods and approaches which are used in our optimization
ramework. First, we start with the concept of unit cell composition and
arameters and their connection to the macroscopic properties. After
hat, the multiscale optimization problem is presented, more precisely
s optimization task with an equilibrium equation as constraint. The
arget is to establish a desired shape under given boundary conditions
hrough an optimal distribution of design parameters. Our solution
pproach uses the adjoint sensitivity, which is the most convenient
ay for our optimal control problem. Since this kind of approach

elies on differentiation, the need for differentiable functions, describ-
ng material behavior, is evident. Therefore, we briefly introduce the
ensor rank decomposition and show how to reconstruct and interpolate
ata for the adjoint sensitivity approach and the gradient descent. For
omputing the data we consider standard homogenization methods by
olume averaging.

In Section 3 we present examples from our optimization and vali-
ate the results. The solutions using the surrogate model are compared
o fully resolved simulations and experimental results, confirming the
ccuracy of our method. Further different unit cells are compared for
programming task. A large scale example demonstrates the efficiency
f the presented framework.

. Mathematical formulation and solution algorithm for optimal
esign of PMs

In this section we give an overview over PMs and present our ideas

n context of implementing certain material behaviors. First, we explain
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Fig. 1. Multiscale optimization problem and examples of unit cells from our work and the literature.
the geometrical framework, we currently consider for PMs and explain
the issues with these. After that, we show how we tackle those and
emphasize the important relation between unit cell parameters and the
programming itself.

2.1. Composition of unit cells and the relation to design

In Section 1 we introduced our notion of PMs and explained the
difference to classical metamaterials. Here, we want to describe the
geometrical conditions which are important to our work: A PM is
considered as a domain �̂� which is the union of finitely many unit cells
�̃�𝑖, for 𝑖 = 1,… , 𝑁 :

�̂� =
𝑁
⋃

𝑖=1
�̃�𝑖. (1)

An example is sketched in Fig. 1(a). There, each box represents a unit
cell as a subdomain, which we denote with �̃�𝑖 (or �̃�). If we consider
a certain sub- or micro-domain with emphasis on its set of design
parameter, we use �̃�𝑖(𝜶) as notation. The composition of all unit cells is
regarded as computational mesh in this work. Each unit cell is equipped
with its own set of design parameters 𝜶. In this contribution, design
variables mostly describe geometric properties, e.g. angles, beam thick-
nesses or lengths which significantly influence mechanical properties of
unit cells. Possible unit cells �̃� from our work and from the literature
that can be used within an array �̂� are shown in Fig. 1(b). In this paper
we focus on the stacked Miura-Ori cell ((1)) and the honeycomb cell
((2) and (4)) where the parametrization is chosen in a way to influence
their transversal contraction, meeting the requirement to optimize the
outer shape of a material under load. Figs. 3(b) and 3(c) the influence
of the parametrization of the Miura-Ori cell. The consideration of many
other types of unit cells and parametrizations would be possible, such as
the example from Wenz et al. (2021) in Fig. 1(b), (3), where a changing
transversal contraction is combined with an adjustable stiffness and
inner contact.

We assume, that the dimensional scaling is sufficiently large, such
that the macroscopic domain �̂� can be considered as ‘‘homogeneous’’
material, i.e. the deformation gradient is sufficiently resolved in such
a way, that a further miniaturization of the cells will not change the
resulting behavior. Note that due to current manufacturing limitations
this might not apply in reality, yet. We call a composition of unit cells
an array.

The macroscopic behavior of a PM is mainly determined by the
3

distribution of design variables inside the array. Therefore, the meaning
of the design parameters 𝜶 in each cell �̃�𝑖 for 𝑖 = 1,… , 𝑁 is substantial:
They are the actual control and allow many different design cases. More
precisely, each unit cell in an array may have different parameters. Due
to the chosen discretization, the parameters are constant in each �̃�𝑖,
i.e. 𝜶 is a piece-wise constant function over �̂�

𝜶
|�̃�𝑖

=
⎡

⎢

⎢

⎣

𝜶1
⋮

𝜶𝑀𝜶

⎤

⎥

⎥

⎦

∈ R𝑀𝜶 , (2)

where 𝜶𝑗 are constants for 𝑗 = 1,… ,𝑀𝜶 . Through this choice of
parametrical distribution the assembly of the final design as a resolved
array of cells is straight forward. The goal of implementing material
behavior is to induce desired mechanical properties by manipulating
design parameters. Hence, it is only natural that the programming task
is defined as an optimization problem where a mechanical BVP is con-
sidered to be the constraints. Therefore, the aim of the optimization is
to find a suitable, piece-wise constant parameter distribution 𝜶 over �̂�.
This optimization task can be considered as equivalent to programming
a material behavior.

Due to the complex inner structure of unit cells, they reveal un-
conventional deformation behavior when subjected to large strains. In
general, the design-dependent strain–stress relation cannot be given
explicitly and an analytical description is only possible for limited and
simple cases. Especially the link between deformation of the array and
the design 𝜶 is not trivial and will be of special interest for this work.
The following sections deal with this difficulty. Further, we define the
following set of admissible designs or parameter distribution:

 ∶=
{

𝝆 ∈
[

𝐻1(�̂�)
]𝑀𝜶 |

|

|

𝑐𝑗 ≤ 𝝆𝑗 ≤ 𝐶𝑗 , 𝑗 = 1,… ,𝑀𝜶

}

(3)

where 𝑐𝑗 and 𝐶𝑗 are constants and can be understood as production
restrictions.

2.2. Multiscale optimization problem

In Section 2.1 we explain the concept of PMs as arrays of
parametrized unit cells. In this section the focus is on the ‘‘program-
ming’’ aspect of these arrays.

The multiscale coupling originates from the decomposition of the
domain �̂� into unit cell domains �̃�𝑖, 𝑖 = 1,… , 𝑁 , see definition in (1).
Therefore, the (macroscopic) displacements �̂� are defined as function
of the (microscopic) design in this work:

�̂� = �̂�(𝜶). (4)
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By adjusting the distribution of design parameters 𝜶 on the micro-scale,
one can perform the ‘‘programming’’ at macro-scale. The macroscopic
deformation behavior has to be considered, too, hence it is subject to
the equivalent optimization problem, here for a given cost functional
 as a function of the displacements and design variables:

min
𝜶∈

 (�̂�(𝜶),𝜶)

s.t.
Div(�̂� �̂�) = 0 in �̂�,

�̂� = �̂�𝑑 on 𝛤𝑑 ,

�̂� �̂� �̂� = �̂�𝑛 on 𝛤𝑛,

(5)

here �̂� is the second Piola–Kirchhoff stress tensor on the macro-scale,
̂ is the outward normal on 𝛤𝑛 and Div(∙) is the divergence w.r.t.
he reference configuration. Further, �̂� is the macroscopic deformation
radient defined by

̂ = ∇𝐗�̂� + 𝟏. (6)

Dirichlet and Neumann boundary conditions are applied on 𝛤𝑑 and 𝛤𝑛
y �̂�𝑑 and �̂�𝑛, respectively. By assuming a sufficiently large array of cells
e can use an hyperelastic constitutive law on the macro-scale which
escribes the stresses and the tangential stiffness Ĉ depending on the
train state �̂� and the design 𝜶:

̂ = �̂�(�̂�,𝜶), Ĉ =
𝜕�̂�(�̂�,𝜶)

𝜕�̂�
. (7)

ote that Ĉ and its derivative w.r.t. 𝜶 are needed later within the opti-
ization (see Section 2.3). Here, �̂� is the macroscopic Green–Lagrange

train tensor which is defined by

̂ = 1
2
(�̂�𝑇 �̂� − 𝟏) = 1

2
(�̂� − 𝟏), (8)

where �̂� is the macroscopic right Cauchy–Green tensor. The macro-
scopic stress in (7) is calculated by homogenizing the stress obtained
from the solution of a corresponding microscopic BVP:

Div(�̃� �̃�) = 𝟎 in �̃�𝑖(𝜶) ⊂ �̂�,

�̃� = (�̂�1∕2 − 𝟏)�̃� + �̃�𝑝 on 𝛤 ,

�̃� �̃� �̃� anti-periodic on 𝛤 ,

(9)

where �̃� and �̃� are the microscopic deformation gradient and second
iola–Kirchhoff stress tensor, respectively. The transition from macro-
o micro-scale is obtained in terms of the design 𝜶 and by applying the
isplacements on the boundary 𝛤 of a cell through the macroscopic
train. Note that when calculating 𝐂1∕2 we assume the absence of

rotations, which is admissible as the constitutive law (7) is independent
from rigid body rotations. Further, �̃�𝑝 is a periodic function over 𝛤 to
ensure a periodic deformation of the cell. Consequently, tractions are
anti-periodic over 𝛤 . The constitutive law on the micro-scale depends
on the unit cell’s base material:

�̃� =
𝜕�̃� (�̃�, 𝜷)

𝜕�̃�
(10)

where 𝜷 are material constants of the microscopic unit cell. In the
cope of this work we choose an hyperelastic material law for both,
acro- and microscale as all deformations should be fully elastic.
yperelasticity assumes the existence of an elastic potential (Ogden,
984) which is suitable for our application.

Note that through the multiscale coupling defined in (4) the cost
unctional can be simplified, such that ̌ (𝜶) =  (�̂�(𝜶),𝜶) is a function

only of the design 𝜶. In this work, the cost functional is the difference
to a desired state such as a target displacement �̂�∗ on the boundary 𝛤 ∗

of the array, see Fig. 1(a):

̌ (𝜶) =  (�̂�(𝜶),𝜶) = 1
‖�̂�(𝜶)−�̂�∗‖2 d𝛾+ 𝜅

‖𝜶‖2+∇𝜶⋅∇𝜶 d𝐗. (11)
4

2 ∫𝛤 ∗ 2 ∫�̂� Υ
he first integral emphasizes that we consider inverse problems in
ur work: We track certain distortions or displacements �̂�∗ on chosen
oundary sides 𝛤 ∗ of the macroscopic geometry �̂�. The second integral
s added as Tikhonov based smoothing regulator (Hinze et al., 2009;
rei et al., 2013). The parameter 𝜅 ≥ 0 is a penalization factor and
an be chosen arbitrarily. A smooth distribution of design parameters
s necessary such that the metamaterial shows the intended mechan-
cal behavior and also due to manufacturing restrictions. This can be
chieved by using Tikhonov regularization which penalizes the 𝐻1-
orm of the design parameters in the cost functional in (11). Beside
nverse problems and in general, the cost functional can be a function
f stresses, strains, displacements or any other mechanical property.
ecall the (discrete) piece-wise constant description of the design vari-
bles in (2), such that we may consider parameter functions 𝜶 ∈  for
he cost functional in (11).

The constraints in (5) are formulated as BVP in strong form. For
he solution method, these equations are written as the residual of the
echanical virtual work or the weak form of the BVP:

(�̂�,𝜶), �̂�⟩ ∶= ⟨(�̂�,𝜶), �̂�⟩ − ∫𝛤𝑛
�̂�𝑛 ⋅ �̂� d𝛾,

⟨(�̂�,𝜶), �̂�⟩ ∶= ∫�̂�
�̂�(�̂�,𝜶) ⋅ 𝛿�̂� d𝐗,

(12)

here 𝛿�̂� = (�̂�𝑇∇�̂� + ∇�̂�𝑇 �̂�)∕2 is the variational strain tensor. Here,
he functional (�̂�,𝜶) takes into account the internal mechanical work.
ence the constraint in (5) can be equivalently written in variational
r weak sense:

Find �̂� ∈ �̂�𝑑 + 𝑉 , such that

(�̂�, �̂�), �̂�⟩ = 0 ∀�̂� ∈ 𝑉 , (13)

here 𝑉 = {𝐯 ∈ 𝐻1(�̂�) | 𝐯 = 0 on 𝛤𝑑} is the trial or solution space.
irichlet boundary conditions on 𝛤𝑑 are often enforced by considering

he Lagrangian or dual formulation. A similar adjoint or dual approach
s also used for the optimization problem in (5).

.3. Optimization method

In this subsection we focus on a solution method for the optimiza-
ion problem (5). For our work we use the standard gradient descent,
hich presumes the existence of a sufficiently smooth (Frechét) gradi-
nt or derivative of ̌ (𝜶) w.r.t. the design variable 𝜶. In general, the
esulting solution procedure can be written in iterative form:
(𝑗+1) = 𝜶(𝑗) − 𝜃𝐷𝜶̌

(

𝜶(𝑗)) , (14)

here 𝑗 = 1, 2, 3,… . The parameter 𝜃 is the step size which can be
djusted by some scaling criteria.

In Appendix A we deduce an optimization method, for which we
eplaced  in (12) with ̄ from (A.2), which is assumed to be linear. As
onsequence, the constraint  in (13) is replaced by a linear alternative
̄ . Hence, we call this optimization approach also linear. The idea
ehind our optimization method is to apply this linear optimization
pproach to our nonlinear multiscale optimization problem (5).

This means that we replace the self-adjoint, linear operator ̄(�̂�,𝜶)
n the adjoint problem (A.5) with the original (�̂�,𝜶) from (12) and,
onsidering the definition of the cost functional in (11), obtain the
djoint residual :

(�̂�, �̂�,𝜶), �̂�
⟩

∶= ⟨𝜕�̂� (�̂�,𝜶), �̂�⟩𝑉 ′ +
⟨

(�̂�,𝜶), �̂�
⟩

= ∫𝛤 ∗
(�̂� − �̂�∗) ⋅ �̂� d𝛾 + ∫�̂�

�̂�(Ξ̂,𝜶) ⋅ 𝛿Ξ̂ d𝐗,
(15)

here analogously to (8) the dual strain tensor Ξ̂ and dual deformation
radient Υ̂ is defined as:

Ξ̂ = 1
2
(Υ̂𝑇 Υ̂ − 𝟏),

̂
(16)
= ∇�̂� + 𝟏,
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such that 𝛿Ξ̂ = (Υ̂𝑇∇�̂� + ∇�̂�𝑇 Υ̂)∕2 (compare with weak form in (12)).
The variational problem for the total gradient in (A.6) can be obtained
analogously to the adjoint problem in (15). The resulting weak form
can be written like this:

⟨ ,𝝆⟩ = ⟨𝜕𝜶 (�̂�,𝜶),𝝆⟩ +
⟨

𝜕𝜶(�̂�, �̂�,𝜶),𝝆
⟩

for 𝝆 ∈
[

𝐻1(�̂�)
]𝑀𝜶 , (17)

where we used the abbreviation  = 𝐷𝜶̌ (𝜶) and the other terms are
defined as:
⟨

𝐷𝜶̌ (𝜶),𝝆
⟩

 ∶= ∫�̂�
 ⋅ 𝝆 + ∇ ⋅ ∇𝝆 d𝐗,

⟨𝜕𝜶 (�̂�,𝜶),𝝆⟩ ∶= 𝜅 ∫�̂�
𝜶 ⋅ 𝝆 + ∇𝜶 ⋅ ∇𝝆 d𝐗,

⟨

𝜕𝜶(�̂�, �̂�,𝜶),𝝆
⟩

∶= 1
2 ∫�̂�

[

𝜕𝜶 �̂�(Ξ̂,𝜶) ⋅ (Υ̂𝑇∇�̂� + ∇�̂�𝑇 Υ̂)
]

𝝆 d𝐗.

(18)

Because of the complicated form of the last integral in (18) we replace
 with an operator ̊ similar to ̄ from (A.2). In the end, we choose for
the gradient w.r.t. 𝜶 the derivative 𝜕𝜶 ̊ defined as:
⟨

𝜕𝜶 ̊(�̂�, �̂�,𝜶),𝝆
⟩

∶= ∫�̂�

[

∇�̂� ⋅ 𝜕𝜶Ĉ(�̂�,𝜶) ⋅ ∇�̂�
]

𝝆 d𝐗. (19)

Note that 𝜕𝜶Ĉ(Ξ̂,𝜶) is also a possible choice, but with 𝜕𝜶Ĉ(�̂�,𝜶) we ob-
served better numerical results. The following iterative method results
from the gradient descent (14) applied to the multiscale optimization
task from (5). Because of the derivation from previous section, the
method consists of three problems, including the primal and adjoint
weak forms in (12) and (15), respectively, as well as the design gradient
in (18) and (19). Then, given a feasible 𝜶 ∈ :

1. Solve the basis or primal problem, i.e. find a primal solution
satisfying the constraints in the optimization problem (5) for the
given design 𝜶. The following variational problem corresponds
to the second equation of the saddle point problem (A.3) based
on the weak forms in (12):
Find �̂�𝑠 ∈ �̂�𝑑 + 𝑉 , such that

⟨(�̂�𝑠,𝜶), �̂�⟩ = 0 ∀�̂� ∈ 𝑉 . (20)

2. Solve the adjoint or dual problem (A.5). The following varia-
tional problem corresponds to the first equation of the saddle
point problem (A.3) based on the weak forms in (15):
Find �̂�𝑠 ∈ 𝑉 , such that
⟨

(�̂�𝑠, �̂�𝑠,𝜶), �̂�
⟩

= 0 ∀�̂� ∈ 𝑉 . (21)

3. Solve the variational problem (A.6) using the expressions from
(18) and (19) in order to compute the gradient and update the
design:
For 𝑖 = 1,… ,𝑀𝜶 find 𝑖 ∈ 𝐻1(�̂�), such that:

∫�̂�
𝑖𝜌 + ∇𝑖 ⋅ ∇𝜌 d𝐗 = 𝜅𝑖 ∫�̂�

𝜶𝑖𝜌 + ∇𝜶𝑖 ⋅ ∇𝜌 d𝐗

+
⟨

𝜕𝜶𝑖
̊(�̂�𝑠, �̂�𝑠,𝜶), 𝜌

⟩

∀𝜌 ∈ 𝐻1(�̂�),

𝜶𝑖 ← 𝜶𝑖 − 𝜃
𝑖

‖𝑖‖
.

(22)

e repeat these three steps until convergence has been reached. Note
hat we update the design variables 𝜶 entry-wise. Furthermore, we
xtend the (general) formulation of the Tikhonov regularization in (11)
nd assign each individual design variable 𝜶𝑖 its own penalization
actor 𝜅𝑖. As simplification, we may reduce the regularity of the deriva-
ive, i.e. 𝑖 ∈ 𝐿2(�̂�). Then, all differentiations of 𝜌 vanish in the first
quation in (22) (since also 𝜌 ∈ 𝐿2(�̂�)) and we obtain a possibly less
moother solution to 𝐷𝜶̌ (𝜶) resp. . In order to ensure that 𝜶 ∈ , we

simply project 𝜶𝑗 onto 𝑐𝑗 and 𝐶𝑗 for 𝑗 = 1,… ,𝑀𝜶 , if they are smaller
or larger than the corresponding threshold (see definition of  in (3)).

From those three steps two critical problems, which are mainly
relevant to our work, arise: The evaluation of the stress tensor �̂�(�̂�,𝜶)

̂ ̂
5

and the stiffness tensor C(𝐄,𝜶) as well as the computation of its
derivative 𝜕𝜶Ĉ(�̂�,𝜶) as functions of the design 𝜶. For the weak form of
the adjoint problem (15) we need to evaluate �̂�(Ξ̂,𝜶), but this can be
done analogously to �̂�(�̂�,𝜶). In the following, we give some comments
on that.

The evaluation of the stresses is necessary since we apply linear
solvers for the numerical solution to the BVP in the multiscale opti-
mization problem (5). Hence, the residual equation in (20) is linearized,
for which the material tangent C is necessary. Because we consider
arrays of freely designed unit cells, analytical expressions for stress–
strain-relations are not at hand. The computation and final assembly of
𝜕𝜶Ĉ is also not trivial, but very important for our work. As mentioned,
for unit cells there are no general explicit relations between design 𝜶
and �̂� on the one hand and the stresses �̂� and stiffness C on the other,
hence those derivatives are not available, too.

Our approach is to approximate the material law by a data based
surrogate model, which is easy to evaluate. For that purpose we con-
struct a multidimensional, smooth interpolation between different cases
of designs and loadcases. The resulting virtual material model allows
the evaluation of both the material tangent and its design derivative.
In addition, fully resolved computational meshes can be avoided when
using surrogate models and the final computational mesh can be re-
duced to the structured grid we defined in (1). Obviously, this reduces
the computational time tremendously, which we demonstrate in our
numerical experiments.

2.4. Surrogate material model

To compute the derivatives for the gradient descent algorithm, a
smooth and differentiable function of the nonlinear mechanical behav-
ior of unit cells is needed. Especially the dependence of the mechanical
behavior on the design 𝜶 can be highly nonlinear. In addition, the
nonlinear influence of the strain state has to be considered as well.
Especially when dealing with arbitrary unit cells, closed analytic ex-
pressions are difficult to find. Therefore, numerical homogenization is
used to establish a database for surrogate models describing them. In
contrast to typical homogenization applications with microstructures of
composite materials, the separation of scales is smaller in our applica-
tion. Therefore the accuracy of the macroscopic computation depends
on the number of unit cells and the gradients of 𝜶 in the final array.
As mentioned in Section 1, our data space is high dimensional as we
interpolate in both, the strain and the design space. Further due to the
optimization context, the smoothness of the derivatives is crucial. We
therefore chose to store the data in a structured tensor and use tensor
decomposition and spline reconstruction for our surrogate model.

2.4.1. Homogenization and data sampling
In order to establish a database for the surrogate model, the mechan-

ical response of a unit cell �̃� (recall set-up in Fig. 1(a)) is computed for
all relevant design and strain possibilities (in the following we skip the
subscription for the subdomain �̃� of the unit cell). This data sampling
can be considered as precomputing part of the material programming
and has to be done only once.

The purpose of the database and the resulting surrogate model
is to replace the macroscopic constitutive law (7) by providing an
accurate mapping from design and macroscopic strain values to the
stress response within an array of unit cells. Instead of solving the
microscopic BVP for each cell (see (9)) during the optimization, a
surrogate model is evaluated which provides the macroscopic stress
�̂� = �̂�(�̂�,𝜶) which is a function of the strain state and the design.

During the sampling process, the macroscopic stress is obtained by
solving the microscopic BVP (see (9)) for given �̂� and 𝜶 and volume
averaging over the unit cell:

�̂� = �̂�−1 ⟨�̃�
⟩

with
⟨

�̃�
⟩

= 1 �̃� d𝐗
(23)
|�̃�|

∫�̃�
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Fig. 2. Multiscale optimization algorithm: Precomputation part with generation of the database through numerical homogenization and adjoint optimization algorithm based on
the data based surrogate model.
where |�̃�| is the volume of the periodicity cell �̃� = �̃�(𝜶). Note that
the volume of the periodicity cell is independent from the design 𝜶 in
order to allow an arrangement of cells on a Cartesian grid. Further,
�̂� is known from the BVP (see (9)). By making use of the divergence
theorem and the balance of momentum the volume integral in (23) can
be rewritten as an integral over the cell’s boundaries (Hill, 1972):
⟨

�̃�
⟩

= 1
|�̃�|

∫𝛤
𝒕⊗ 𝐗 d𝛾 (24)

where ⊗ denotes the dyadic product.
For the construction of the database, we traverse all design and

strain cases in a canonical way, and solve the microscopic BVP in (9)
in order to obtain the macroscopic stress tensor �̂� for all of those cases.
These stress data are then understood as sample points and are ordered
on a Cartesian grid, see Fig. 2. Due to the nonlinear behavior of the
unit cells, the microscopic BVP in (9) has to be solved iteratively. To
accelerate the sampling procedure, we adjust the iteration steps to lie
on sampling points for our database, which can be stored at the same
time. After sampling, the collected data points can be represented by
a high-dimensional hypercube, whose dimensions correspond both to a
design variables 𝜶𝑗 where 𝑗 = 1,… ,𝑀𝜶 and strain variables �̂�𝑖 where
𝑖 = 1,… ,𝑀𝐄 (in Voigt notation) where 𝑀𝜶 and 𝑀𝐄 are the number of
design variables and strain components, respectively. Mathematically,
this hypercube can be written as multidimensional tensor:

𝐃 = (𝐃𝐼 )𝐼∈ = (𝐃𝑖1 ,…,𝑖𝑀 )(𝑖1 ,…,𝑖𝑀 )∈ ∈ R𝑚1×⋯×𝑚𝑀 (25)

where 𝑀 is the order of the tensor and the multi index 𝐼 = (𝑖1,… , 𝑖𝑀 )
describes the expansions of the variable space. Each index 𝑖𝑘 for 𝑘 =
1,… ,𝑀 runs within its specific interval in 𝑘 resulting in a multidimen-
sional hypercube represented as Cartesian product of the design and
strain possibilities. More precisely, we consider the canonical product
 = 1×⋯×𝑀 such that 𝑖𝑘 ∈ 𝑘 = {1,… , 𝑚𝑘} where 𝑚𝑘 is the number
of sampling points of the 𝑘-th design or strain variable. Each entry
𝐃 stores an entry �̂� of the homogenized stress tensor �̂� for different
6

𝐼 𝑗
design and strain cases, hence we need between three and six different
data tensors in total (depending on the spatial dimension).

For later purposes it is necessary to distinguish between the design
and strain variables. Therefore, we sort the index space  accordingly:

 = 1 ×⋯ × 𝑀𝜶
× 𝑀𝜶+1 ×⋯ × 𝑀𝜶+𝑀𝐄

∶= 1 ×⋯ × 𝑀𝜶
× 1 ×⋯ × 𝑀𝐄

(26)

such that we have 𝑀𝜶 design variables and 𝑀𝐄 strain variables, hence
𝑀 = 𝑀𝜶 + 𝑀𝐄. For a more convenient notation we write 𝑗 ∶=
𝑀𝜶+𝑗 for 𝑗 = 1,… ,𝑀𝐄. In general, the entry 𝐃𝑖1 ,…,𝑖𝑀 of the data
tensor represents the solution to the microscopic BVP in (9) with the
configuration:

(𝜶𝑖1 ,… ,𝜶𝑖𝑀𝜶
, �̂�𝑗1 ,… , �̂�𝑗𝑀𝐄

), (27)

where (𝑖1,… , 𝑖𝑀𝜶
) ∈ 1 × ⋯ × 𝑀𝜶

and (𝑗1,… , 𝑗𝑀𝐄
) ∈ 1 × ⋯ ×

𝑀𝐄
. The term configuration refers to a feasible design and loadcase

scenario for the microscopic BVP in (9). According to the data sampling
for 𝐃, we have to solve the microscopic BVP for 𝑚1 ⋯𝑚𝑀 different
configurations.

Retrieving the data points 𝐃𝐼 is partly done by solving the mi-
croscopic BVP in (9) and partly through reconstruction of (possibly
inaccessible) data points: As the database is structured as a hypercube,
it is possible that inaccessible points are required for which the mi-
croscopic BVP in (9) cannot be solved. Further, the high number of
dimensions (1 or more in the design space and 3 or 6 in the strain space)
leads to a high number of data points that has to be sampled. Therefore,
a possibility to reconstruct missing data points is needed. Here we use
the idea presented in Yvonnet et al. (2013). At locations of missing data
points we discretize the Laplacian with finite differences (FD). In this
way we construct an overdetermined system of equations which can be
solved iteratively. In contrast to Yvonnet et al. (2013) we use higher
order FD which yields smoother reconstruction and allows to compute
only a small part of the required data points.
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2.4.2. Tensor rank decomposition and interpolation
Recall from previous sections that the knowledge about the stress–

strain relation of a unit cell array is generally not on hand. Since
analytical or approximative methods are not available (yet), we con-
sider data based material models. In the previous subsection we explain
how to establish the database and retrieve the stress data. Now we
continue with the processing of this database.

For the final optimization method, we seek a more convenient
representation of the data tensor 𝐃. To this end, we follow the ap-
proach from Yvonnet et al. (2009) and introduce the tensor rank
decomposition (TRD) as least squares problem:

inf
𝐷𝑟
𝑖

‖

‖

‖

‖

‖

‖

𝐃 −
𝑅
∑

𝑟=1

𝑀
⨂

𝑖=1
𝐷𝑟

𝑖

‖

‖

‖

‖

‖

‖

2

, (28)

where 𝑅 is a given integer and is called rank. If the quadratic error in
(28) is exactly zero, then 𝑅 is the rank of the tensor 𝐃 and is defined
s the minimal integer for that equation to hold (Tamara and Kolda,
009), assuming such a decomposition exists. Note that 𝐷𝑟

𝑘 ∈ R𝑚𝑘

are one-rank tensors (or ordinary vectors). Hence, the data tensor is
approximated by a series of outer products of vectors, denoted by ‘‘⊗’’.

e rewrite the least squares problem in (28) by means of the split index
pace from (26):

≈
𝑅
∑

𝑟=1
𝐷𝑟

1 ⊗⋯⊗𝐷𝑟
𝑀𝜶

⊗𝐷𝑟
𝑀𝜶+1

⊗⋯⊗𝐷𝑟
𝑀𝜶+𝑀𝐄

∶=
𝑅
∑

𝑟=1
𝐷𝑟

1 ⊗⋯⊗𝐷𝑟
𝑀𝜶

⊗𝐶𝑟
1 ⊗⋯⊗𝐶𝑟

𝑀𝐄

(29)

here we write for convenience 𝐶𝑟
𝑗 ∶= 𝐷𝑟

𝑀𝜶+𝑗
for 𝑗 = 1,… ,𝑀𝐄. This

epresentation yields the component-wise expression according to (26)

𝑖1 ,…,𝑖𝑀 ≈
𝑅
∑

𝑟=1

(𝑀𝜶
∏

𝑘=1

(

𝐷𝑟
𝑘
)

𝑖𝑘

𝑀𝐄
∏

𝑙=1

(

𝐶𝑟
𝑙
)

𝑗𝑙

)

, (30)

here
(

𝐷𝑟
𝑘
)

𝑖𝑘
is the 𝑖𝑘th component of the vector 𝐷𝑟

𝑘 and
(

𝐶𝑟
𝑙
)

𝑗𝑗
is the

𝑙th component of the vector 𝐶𝑟
𝑙 , respectively. Through that distinction

etween designs and strains the construction of the design gradient
ecomes easier, which is necessary for the optimization method de-
cribed by (20)–(22). Because of the BVP in the optimization problem
5), the evaluation of the stress tensor between different configura-
ions (see definition in (27)) is crucial: Given any design parameters
𝜶1,… ,𝜶𝑀𝜶

), we pursue the tensor 𝐒 at the (arbitrary) load case
�̂�1,… , �̂�𝑀𝐄

) for which there is no data entry in 𝐃. In this case, we
anonically interpolate within the nearest data interval around the
onsidered configuration. Note we consider only design and loading
onfigurations within the interval product 𝐼 , i.e. min{𝜶𝑖𝑘}𝑖𝑘∈𝑘 ≤ 𝜶𝑘 ≤
ax{𝜶𝑖𝑘}𝑖𝑘∈𝑘 , for 𝑘 = 1,… ,𝑀𝜶 . Analogous for �̂�𝑙 and 𝑙 = 1,… ,𝑀𝐄

uch that min{�̂�𝑗𝑙}𝑗𝑙∈𝑙 ≤ �̂�𝑙 ≤ max{�̂�𝑗𝑙}𝑗𝑙∈𝑙 .
For the interpolation we use the vectors 𝐷𝑟

𝑘 ∈ R𝑚𝑘 as interpolation
odes for 𝑘 = 1,… ,𝑀𝜶 . Then the interpolating function is defined as:

̄ 𝑟
𝑘(𝜶𝑘) ∶=

𝑚𝑘
∑

𝑛=1
𝑁𝑛(𝜶𝑘) (𝐷𝑟

𝑘)𝑛, (31)

here 𝑚𝑘 = |𝑘| is the number of indices. Analogously we define the
nterpolating function �̄�𝑟

𝑙 (�̂�𝑙) for the vectors 𝐶𝑟
𝑙 and 𝑙 = 1,… ,𝑀𝐄.

or the basis interpolating functions 𝑁𝑛 we choose B-Splines (de Boor,
978) due to their smoothing properties and the local influence of data
oints, but any other choice works here, too. The final interpolating
unction is defined similarly to the component representation (30):

̄ (𝜶1,… ,𝜶𝑀𝜶
, �̂�1,… , �̂�𝑀𝐄

) =
𝑅
∑

𝑟=1

(𝑀𝜶
∏

𝑘=1
�̄�𝑟

𝑘(𝜶𝑘)
𝑀𝐄
∏

𝑙=1
�̄�𝑟
𝑙 (�̂�𝑙)

)

. (32)

he interpolating function �̄� approximates the data tensor 𝐃 with the
ollowing property:

̄ (𝜶 ,… ,𝜶 , �̂� ,… , �̂� ) = 𝐃 + 𝛿 (33)
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𝑖1 𝑖𝑀𝜶 𝑗1 𝑗𝑀𝐄 𝑖1 ,…,𝑖𝑀 𝑖1 ,…,𝑖𝑀 c
here 𝛿𝑖1 ,…,𝑖𝑀 is the error originating from interpolating at the given
onfiguration and from the TRD of the least squares problem (28).
n Yvonnet et al. (2009) the authors call the idea in (32) the separated
ariables interpolation (SVI) which describes the convenient property
f this approach well: This variable separation allows now a very
imple differentiation w.r.t. to the design, i.e. only �̄�𝑟

𝑘 in (32) has
o be differentiated for 𝑟 = 1,… , 𝑅 and 𝑘 = 1,…𝑀𝜶 . Since we use

smooth B-Splines, the evaluation of both the interpolating functions
𝑁𝑛 and their derivatives are based on the same efficient algorithm.
The differentiation of �̄� w.r.t. the strain variables �̂�𝑙 can be done
analogously for 𝑙 = 1,… ,𝑀𝐄, but now we have to consider �̄�𝑟

𝑙 . Since
stores (homogenized) stress data, the differentiation of �̄� w.r.t. �̂�𝑙

yields the tangential stiffness Ĉ.
Obviously, the amount of components in 𝐃 is equal to ∏𝑀

𝑛=1 𝑚𝑛 =
𝑀𝜶
𝑘=1 |𝑘|

∏𝑀𝐄
𝑙=1 |𝑙|. Hence, unit cells with several design parameters,

.e. a high number 𝑀𝜶 , become an issue: The data to the 𝑀𝐄 strain
ases are then multiplied with the number of design parameters. Before
ollecting all data (we explain this in Section 2.4.1) one has to think
bout the amount of data points for the strain cases. Considering the
ultiplicative character of the workload, one has to decide carefully

bout the number of design cases for each design parameter. Neverthe-
ess, it is inevitable, that the data tensor 𝐃 might become very large.
hrough the TRD, however, it is possible to approximate a large amount
f data with one-rank tensors, such that the total data amount can be
educed to 𝑅

∑𝑀
𝑘=1 𝑚𝑘. Note that in most cases the rank 𝑅 is so small,

hat this data compression leads indeed to a smaller data storage. In
ur case, the amount of storage typically reduces to approx. 1 × 10−3

imes the original storage requirement ∏𝑀
𝑘=1 𝑚𝑘.

In Appendix B we give some more insights of how the tensor rank
ecomposition can be used for our purposes. However, we skipped so
ar the important question whether a TRD exists for all data tensors 𝐃
n (28), or if there are always vectors 𝐷𝑟

𝑖 such that the quadratic error
n (28) can be sufficiently minimized. Since we intend to only show
ow the TRD can be applied to our use case, we refer to Tamara and
olda (2009) and Savostyanov and Oseledets (2011), Ballester-Ripoll
t al. (2016) for some comments about that issue.

.5. Algorithm and code

As conclusion to this section we summarize all presented approaches
nto an algorithm, which we use in our software ProgMatSim (Prog-
atSim, 2022) in order to obtain our numerical results. The actual

lgorithm is divided into a precomputing part (see Sections 2.4.1 and
.4.2) and an optimization part (see Sections 2.2 and 2.3). In Fig. 2 a
low chart presents the two main items of the complete algorithm and
ow they depend on each other.

All algorithms in pseudocode are presented in Appendix C: The pre-
omputing part is sketched in Algorithm 2, where we apply the methods
rom the python package TensorLy for the TRD. Note that we precom-
ute the database only once for every unit cell. In Algorithm 3 we
how how the SVI can be implemented. As interpolating basis functions
e use B-Splines from the python package scipy. The actual ‘‘material
rogramming’’ is presented in Algorithm 1, where we describe the
sage of the interpolating function �̄� as surrogate model. In principle,
t is a algorithmic summary of the Eqs. (20)–(22). Note that we skip the
umerical treatment of the primal and dual problems in the algorithmic
ketch, since it would be out of the scope of this paper. However,
e apply the open-source finite element software CalculiX (Calculix,
021) to the microscopic BVPs for generating the database and to both
acroscopic BVPs: (20) and its adjoint version (21). The first equation

n (22) is solved via the finite difference method, where we transform
he weak form into strong form. Furthermore, we pad the macroscopic
omain �̂� with additional, artificial cells, so called ghost cells, on each
oundary face and apply homogeneous boundary conditions on those

ells.
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Fig. 3. Miura-Ori unit cell based on folded sheets.
3. Results

In this section we present some examples for PMs which we com-
puted by means of our in-house software ProgMatCode (Programmable,
2021). In Section 3.1 we consider examples with a cell based on
stacked Miura-Ori foils for which we use a data-driven surrogate model.
In Section 3.2 we show the applicability of our algorithm to a 2D
honeycomb cell described by an analytical model. Comparison to fully
resolved models and, in case of the Miura-Ori cell, to manufactured
samples are provided as well.

The geometries in all examples are arrays of cells where 𝐿𝑖, 𝛿𝑖, 𝑛𝑖
are the size of the array, the size of the cell and the number of cells in
the respective direction 𝑖 ∈ {𝑥, 𝑦, 𝑧}. The left and right boundaries are
denoted by 𝑋1 and 𝑋2, analogously for 𝑌 and 𝑍.

3.1. Stacked Miura-Ori foil

In this section we present some numerical and real experiments
with a Miura-Ori based unit cell. First the geometry is described and a
surrogate model established. Subsequently, the influence of array sizes
and design gradients are analyzed. Finally two optimization examples
of medium and large size are shown.

3.1.1. Unit cell geometry
The concept of metamaterials made from stacked Miura-Ori is

known from the literature (Schenk et al., 2014). The cell geometry
consists of four parallelograms with a thickness of 0.4mm which are
arranged to an arrow like shape as shown in Fig. 3. The parameters

𝛿𝑥 = 10mm, 𝛿𝑦 = 2mm, 𝛿𝑧 = 14.14mm (34)

are the dimensions of the cell and must remain constant when changing
the design of the cell. Consequently the offset 𝑑𝑜 and the height of the
lower layer ℎ2 remain variable where 𝛿𝑦 = ℎ1 − ℎ2 = const.

The cell shows an anisotropic auxetic behavior. In the scope of this
work we are especially interested in the Poisson’s ratio

�̂�𝑥𝑧 =
d�̂�𝑧𝑧 (35)
8

d�̂�𝑥𝑥
which is the transversal contraction in 𝑧-direction following an elon-
gation in 𝑥-direction. It can be controlled by the design parameters 𝑑𝑜
and ℎ2, respectively as shown in Figs. 3(b) and 3(c). It is calculated
by applying a strain in 𝑥-direction and measuring the elongation in
𝑧-direction for a single cell. For large 𝑑𝑜 the cell shows an auxetic
behavior with �̂�𝑥𝑧 < 0 which is caused by the unfolding of the
parallelograms. This effect decreases up to �̂�𝑥𝑧(𝑑𝑜 = 0) ≈ 0. The
Poisson’s ratio decreases with strain in 𝑥-direction when the foils are
increasingly stretched. Due to the different heights ℎ1 and ℎ2 of the
stacked cells (see Fig. 3(a)) unfolding of the lower layer is completed
earlier. Therefore, we can influence the transversal contraction with ℎ2
as well. For ℎ2 = 1.0mm (see blue curve in Fig. 3(c)) we can observe
a change in sign of the transverse contraction which indicates that the
lower foil is stretched completely and the contraction is dominated by
the effective behavior of the base material.

The design parameters of the Miura-Ori cell influence its outer
shape, which makes a periodic arrangement of cells with different de-
signs impossible. To tackle this problem, the boundary points of neigh-
boring cells are averaged. When connecting two cells in 𝑥-direction, the
points 𝑃3, 𝑃6 and 𝑃9 are merged with 𝑃1, 𝑃4 and 𝑃7 of the neighboring
cell. In 𝑦-direction, the cells are connected at 𝑃2, 𝑃5 and 𝑃8 on the upper
side and 𝑃10, 𝑃11 and 𝑃12 on the lower side. Therefore, a gradient in the
design parameters introduces an error to the constitutive law as the
microscopic domain �̃� in the BVP (see (9)) is assumed to be a periodic
cell. Therefore the parameter distribution must be sufficiently smooth
in order to reduce the distortion of cells.

3.1.2. Establishing the surrogate model
For the Miura-Ori cell a two dimensional design space for 𝑑𝑜 and

ℎ2 is covered. Additionally, the 3D strain space is covered in order to
capture the nonlinear effect especially of ℎ2 at large strains shown in
Fig. 3(c). Therefore we establish a surrogate model depending on the
design space and the strain space in terms of the Green–Lagrange tensor



International Journal of Solids and Structures 252 (2022) 111769T. Lichti et al.

r
C
f
r
g
o
m

s

�̂� according to (27). We sample homogenized stresses for

𝜶1 → 𝑑𝑜 ∈{0,… , 16}mm, 𝑛 = 5

𝜶2 → ℎ2 ∈{0,… , 3.0}mm, 𝑛 = 7

�̂�1, �̂�3 → �̂�𝑥𝑥, �̂�𝑧𝑧 ∈{0.05,… , 0.15}, 𝑛 = 9

�̂�2 → �̂�𝑦𝑦 ∈{−0.1,…0.2}, 𝑛 = 7

�̂�4, �̂�5, �̂�6 → �̂�𝑥𝑦, �̂�𝑥𝑧, �̂�𝑦𝑧 ∈{−0.045,… , 0.045}, 𝑛 = 7

(36)

resulting in an overall number of 6 806 335 data points. Due to the
symmetry of shear stresses the amount of data points that is sampled
reduces to 1 270 080. For each data point, the BVP (9) has to be solved.
Due to unfeasible boundary conditions in certain points, especially on
the boundaries of the strain domain, a solution is not possible such that
in the end, we sample 603 111 data points. The missing points are a
posteriori reconstructed using a FD approximation and by mirroring
w.r.t. the shear strains (Yvonnet et al., 2013).

The geometries and meshes are generated using Gmsh (Geuzaine
and Remacle, 2009). Each cell is discretized with approximately 650
to 1800 linear triangular shell elements, depending on 𝑑𝑜 and ℎ2.
The microscopic BVPs are solved using the open source FE-solver
CalculiX (Calculix, 2021).

The TRD is done with 𝑅 = 50 and second order B-splines are used
for the interpolation of the data. A high value of 𝑅 was necessary to
improve the approximation at the border of the strain and design space,
which in turn improves the robustness of the simulation.

3.1.3. Validation of the surrogate model
The surrogate model described in Section 2.4 is computed through

homogenization of a periodic unit cells under periodic boundary condi-
tions. Therefore, it is only applicable if the separation of scales is large
enough, i.e. for sufficiently large arrays. Further, the gradient of the
design parameters must be sufficiently small. The aim of this section is
to estimate the error introduced by the surrogate model depending on
the size of the unit cell array. We will focus on the one hand on the
influence of boundary conditions and on the other hand the influence
of the gradient 𝜕𝑑𝑜∕𝜕𝑥 as representative example of the design variables
𝜶.

In addition to the accuracy we will rate the efficiency of the surro-
gate model. Therefore, we will compare computation times using the
surrogate model to solving a fully resolved model.

For this study, arrays with

𝑛𝑥 ∈ {4, 8, 16, 32, 64}, 𝑛𝑦 = 4, 𝑛𝑧 = 1

cells are studied. Fig. 4(a) shows a description of the geometry and
the boundary conditions for the case 𝑛𝑥 = 4. The dimensions of the
geometry are given by

𝐿𝑥 = 𝑛𝑥𝛿𝑥, 𝐿𝑦 = 𝑛𝑦𝛿𝑦, 𝐿𝑧 = 𝑛𝑧𝛿𝑧

where 𝛿𝑥, 𝛿𝑦 and 𝛿𝑧 are the dimensions of the cell defined in (34) and
Fig. 3(a). The design parameter 𝑑𝑜 is varied along 𝑥 with

𝑑𝑜 = 𝑓 (𝑥) = 10 + 5 sin
(

2𝑥 − 𝐿𝑥
2𝐿𝑥

𝜋
)

𝑥 ∈ [0, 𝐿𝑥] (37)

esulting in a smooth transition between 𝑑𝑜(𝑋1) = 5 and 𝑑𝑜(𝑋2) = 15.
onsequently, 𝜕𝑑𝑜∕𝜕𝑥 decreases with increased 𝐿𝑥 (and 𝑛𝑥). The meshes

or the resolved and the surrogate model are shown in Fig. 4(b). The
esolved model is meshed with the same element size used in the data
eneration process for the surrogate model. The surrogate model uses
ne brick-element per cell. Both, the surrogate model and the resolved
odel are solved using Calculix (2021).

We compare the displacements of the surrogate model and a re-
olved simulation in 𝑧-direction under tension in 𝑥-direction. Each
9

Table 1
Comparison of computation times between resolved and surrogate model. Each time is
the average of 3 runs.

Number of cells [−] 16 32 64 128 256

Resolved [s] 10.77 36.05 65.07 141.33 328.33
Surrogate [s] 0.38 0.78 1.50 3.00 6.31
Speed-up [−] 28.34 46.21 43.38 47.11 51.98

variant is subjected to a macroscopic strain of 5% and simulated with
confined and unconfined boundary conditions:

Confined: Unconfined:
𝑋1 ∶�̂�𝑥 = �̂�𝑧 = 0 𝑋1 ∶ �̂�𝑥 = 0

𝑌1 ∶�̂�𝑦 = 0 𝑌1 ∶ �̂�𝑦 = 0

𝑍1 ∶�̂�𝑧 = 0 𝑍1 ∶ �̂�𝑧 = 0

𝑋2 ∶�̂�𝑥 = 0.05𝐿𝑥 𝑋2 ∶ �̂�𝑥 = 0.05𝐿𝑥

�̂�𝑧 = 0.

(38)

The influence of the boundary conditions is reported in Fig. 5(a)
where �̂�𝑧 is plotted over the normalized 𝑋-coordinate. For clarity, only
the plots for 𝑛𝑥 ∈ {4, 8, 16} are shown. The displacements �̂�𝑧 on the
boundary 𝑍2 of the resolved model are calculated at discrete locations
𝑥𝑖 = 𝑖 ⋅ 𝛿𝑥 for 𝑖 ∈ {0, 1,… , 𝑛𝑥} by averaging the nodal displacements in
the interval (𝑥𝑖 − 𝛿𝑥∕2) < 𝑋 ≤ (𝑥𝑖 + 𝛿𝑥∕2).

One can see that on the left boundary, after the first cell, the value
of �̂�𝑧 is almost equal in the confined and unconfined configuration. On
the right boundary, displacements on the first two cells are different.
Recall that on the left boundary 𝑑𝑜 = 5mm while on the right boundary
𝑑𝑜 = 15mm. Therefore �̂�𝑧 is larger on the right boundary due to
the larger Poisson’s ratio (see Fig. 3(b)) and thus also the difference
to the unconfined configuration. Due to the displacement BCs, the
cell boundary is forced to remain planar. However, the out-of-plane
deformation under periodic BCs increases with 𝑑𝑜. Therefore the auxetic
unfolding of the cell is suppressed on the boundary—an effect that
increases with 𝑑𝑜. From this, we conclude that an influence of the
boundary conditions takes place only in the first 1–2 cells.

Next we define an error as mean absolute difference of �̂�𝑧 at the
locations 𝑥𝑖 defined above. In Fig. 5(b) this error is plotted versus
𝑛𝑥 with red lines. Further we calculate the same error in the domain
𝑋∕𝐿𝑥 ∈ [0.125, 0.625] indicated in Fig. 5(a) where we have indepen-
dence of the boundary conditions. Both errors decrease when more
cells are used in 𝑥-direction. The large error across the entire domain
of the unconfined configuration (red dashed line) is introduced due
to the different behavior of the resolved and the surrogate model on
the boundary. In contrast to the resolved cell, the surrogate model can
deform freely as its faces remain planar due to the discretization by
one brick-element per unit cell. The error in the confined configuration
is smaller as the error on the boundary is zero due to the applied BCs
(�̂�𝑧(𝑋1) = �̂�𝑧(𝑋2) = 0). The decrease of the error in the middle of the
geometry (blue lines) should be independent of boundary effects and is
therefore attributed to the lower gradient of the design parameter. For
𝑛𝑥 > 16 we see almost no decrease anymore.

We can conclude that unconfined BCs introduce a large error as the
surrogate does not resolve out of plane deformations on the bound-
aries and therefore deforms freely. Besides the boundary effects, the
influence of the gradient 𝜕𝑑𝑜∕𝜕𝑥 is rather small. Nevertheless a smooth
distribution of 𝑑𝑜 and ℎ2 is important to ensure manufacturability of
the cells.

To rate the efficiency of surrogate model, computation times of each
simulation are measured. The results are shown in Table 1. Each mea-
sured time is the average of 3 runs. The amount of Newton–Raphson
iterations is between 9 and 10 in each computation. As stated above,
we use one element per unit cell in the surrogate model whereas in
the resolved model approximately 1000 finite elements are necessary.

However, the evaluation of the equations for our surrogate model (see
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Fig. 4. Problem description for the validation study.
Fig. 5. Results of the study with different array sizes and BCs.
(B.1)) take longer than the evaluation of a standard elastic material
law. Therefore, the computation time does not scale with the number
of elements. In this study we could observe a speed-up of approximately
50 for arrays with more than 16 cells.

3.1.4. Sinusoidal shape with foil
In this section we treat the problem shown in Fig. 6: Optimize the

shape of an array consisting of 40×2×12 = 960 cells, each equipped with
two design parameters. The resulting optimization problem has 1920
design parameters. Based on the conclusions of Section 3.1.3 and for
comparison with experimental results, we define boundary conditions
comparable to a tensile test with a macroscopic strain of 5% on the
array:

�̂�(𝑋1) = [0, 0, 0]

�̂�(𝑋2) = [20mm, 0, 0]

�̂�𝑦(𝑌2) = 0.

(39)

Under the given boundary conditions we want to minimize the cost-
function (see Eq. (11)) where the desired shape on the boundaries 𝑍1
and 𝑍2 is given by a displacement �̂�∗𝑧 described by

𝑓1(𝑥) = 𝑝1 sin(𝑝2(𝑥 + 𝑝3)) + 𝑝4(𝑥 + 𝑝5) on 𝑍1

𝑓2(𝑥) = −𝑓1(−𝑥 + 400) on 𝑍2

with 𝑝1 = 1.87, 𝑝2 = 0.0187, 𝑝3 = 9.04, 𝑝4 = −2.22 × 10−3, 𝑝5 = 329.1.

(40)

The same target function will be used in Section 3.2.2 with a different
cell.
10
The initial guess for the design parameters is a uniform distribution
of 𝑑𝑜 = 7.5mm for the offset and ℎ2 = 1.5mm for the height of the
second layer. The parameters 𝑑𝑜 and ℎ2 are restricted between 1mm
and 15mm and 0.1mm and 2.9mm, respectively.

The programmed behavior of the final result is validated on the
one hand with a resolved simulation. Therefore, the geometry is re-
constructed and meshed with approximately 6 × 105 linear triangular
shells using Gmsh (Geuzaine and Remacle, 2009).

On the other hand, the practical implementation of our programmed
material is demonstrated with a manufactured sample. As mentioned
above, the Miura-Ori cell is based on folded, stacked foils. The base
material is the thermoplastic polyurethane (TPU) Platilon U2102A by
Covestro in the form of thin films with a thickness of 300 μm. The
folding is done in a thermoforming process on a ILLIG KFG 37a at a
temperature of 380 °C within 30 s followed by cooling with a blower.
Therefore, molds are 3D-printed with thermoplastic ABS. Due to fabri-
cation restrictions, the original resolved geometry in Fig. 7(c) is scaled
down by 25%. The molds can be used multiple times which enables
the scaling of the process. After thermoforming, the single layers are
connected point-wise with solvent welding. For the solution, 15% TPU
are solved in dimethylformamide and applied with a pipette. The
tensile test is performed on a Hegewald & Peschke Inspekt Table Blue
with a load-cell of 500N. Boundary conditions according to (39) are
applied: The sample is clamped on 𝑍1 and 𝑍2. A spacer is used between
the layers to compensate the height difference. Finally a displacement
of 0.75 ⋅ 20mm = 15mm is applied at a testing speed of 5mm s−1. The
displacements on the surface of the sample are measured with digital
image correlation using the software GOM Correlate (Gom, 2021).
The correlated displacements are shifted by a constant to compensate
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Fig. 6. Description of the optimization problem: Array of 40 × 2 × 12 cells under tensile-test conditions and a target shape on 𝑍1 and 𝑍2.

Fig. 7. Optimization of a sinusoidal shape for a Miura-Ori foil stack with two layers.
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for relative movements between camera and sample such that the
displacements are centered around zero.

The results of the optimization and comparison to resolved simula-
tion and manufactured sample are shown in Fig. 7. The error evolution
in every iteration is plotted in Fig. 7(a). The optimization converges
after approximately 20 iterations. We start with a large step length 𝜃 in
he gradient descent (22) and reduce the step when the error increases.

The solution is a distribution of the design parameters 𝑑𝑜 and ℎ2 and
s shown in Fig. 7(c), along with the resolved geometry. Smoothness of
he design parameters is imposed by using a Tikhonov regularization in
22) with 𝜅 = 1 × 10−7 for 𝑑𝑜 and 𝜅 = 1 × 10−4 for ℎ2 in order to ensure
anufacturability of the optimized geometry.

In Fig. 7(b) the target displacement �̂�∗𝑧, the displacement on the
oundary when using the surrogate model �̂�surr

𝑧 and when using a
esolved model �̂�res

𝑧 are shown for the boundary 𝑍1. For clarity, only
he side 𝑍1 is shown in the plots as the target function and the solution
re point-wise symmetric (see Fig. 6). The displacements �̂�res

𝑧 on the
boundary of the resolved geometry are again calculated by averaging
(see Section 3.1.3) and are therefore considered to be macroscopic
quantities. In the initial configuration one can see that the geometry
expands in 𝑧-direction under tension in 𝑥-direction due to the auxetic
properties of the cell. After the optimization, the surrogate model and
the resolved simulation agree very well with the target displacement.
The displacement fields of the surrogate model, the resolved model
and the manufactured sample are shown in Fig. 7(d) together with
the minimum and maximum values. In general, the agreement of
the three cases to the target is very good. The higher minimum and
maximum values in the displacement field of the resolved model and
the manufactured sample are attributed to larger fluctuations compared
to macroscopic fields where quantities are homogenized. The largest
relative difference to the target is observed in the manufactured sample
where the magnitude of displacements are approximately 10% larger.
Here, an additional source of error may be the initial clamping force at
the beginning of the measurement which causes an additional loading
of the sample.

In general, parametrized Miura-Ori cells can be used to program
the behavior of foils. The production of samples in a lab-scale and the
accordance of their deformation behavior to the optimization target
could be demonstrated. Further, the thermoforming procedure has the
potential to be used for the production on an industrial scale.

3.1.5. Large scale optimization: two sides of a die
Generating the database for our surrogate model is computationally

expensive due to the large amount of microscopic BVP that have to
be solved. Nevertheless a precomputed surrogate model gives access to
large scale problems. To demonstrate the efficiency of our approach,
we optimize the design of a cube with 50 × 250 × 35 = 437 500
cells via 𝑑𝑜 and ℎ2, i.e. 875 000 design parameters. The problem setup
is shown in Fig. 8. The geometry is fully clamped on 𝑋1 and 𝑋2. On
𝑋2 a displacement of 1.5mm is applied. On 𝑌1 and 𝑌2 �̂�𝑦 and �̂�𝑧 are
restricted. The target shapes are two sides of a die with flat surfaces
and 4 eyes on 𝑍1 and 3 eyes on 𝑍2 as depicted in Figs. 9(b) and 9(c)
ight side. It combines two length scales, the flat face on the one hand
nd local elevations on the other hand. As initial guess we use a uniform
istribution of 𝑑𝑜 = 10mm and ℎ2 = 1.5mm.

The optimization converges after approximately 20 iterations,
here the error is reduced by a factor of 100 as shown in Fig. 9(a).

Again, the step length 𝜃 in the gradient descent is reduced as soon as the
error increases. In Figs. 9(b) and 9(c) the displacements in 𝑧-direction
are shown. In the initial configuration there is a rounded elevation
on both faces. In the optimized configuration both the flat shape
and the local elevations fit very well with the target. The optimized
distributions of 𝑑𝑜 and ℎ2 are shown in Figs. 9(d) and 9(d). Similar
to the target, the solution varies on a small scale in the region of the
clampings and the local elevations and on a large scale through the
12

whole volume.
Fig. 8. Problem description for the large scale example. Magnification is in true scale
and shows the arrangement of the cells. Blue circles symbolize the target shape �̂�∗.

Reconstructing a resolved geometry for this example would require
.5 × 106 surfaces (8 per cell) and the resulting mesh between 300 × 106

nd 800 × 106 finite elements (650–1800 per cell, see Section 3.1.2).
ecall that during the optimization the FE problem has to be set up
nd solved twice per iteration (once for basis problem (20) and the
djoint problem (21), see also Fig. 2), which is not possible and makes
he usage of a surrogate model necessary. Both, the generation of
uch geometries and the FE-simulation of such large scale problems is
hallenging and beyond the scope of this paper.

.2. Honeycomb cell

Our optimization method is applicable to a wide range of unit-cells
here the description of their design-dependent mechanical behavior

s not restricted to data-based surrogate models used in the previ-
us examples. If available, analytical models are well suited due to
heir efficiency. To demonstrate the flexibility of our optimization
pproach, we present in this section the optimization of the problem
n Section 3.1.4, albeit with a different unit cell.

.2.1. Cell geometry and model
The cell is depicted in Fig. 10 and referred to as honeycomb-cell.

t is made of thin plates that form a hexagon. The angle 𝛾 can be
hanged to obtain a specific Poisson’s ratio (Han and Lu, 2018; Mirzaali
t al., 2018). For angles larger than 90 degrees the Poisson’s ratio is
ositive, otherwise negative (auxetic). The cells can be connected to an
rray with locally different behavior. To ensure connectivity, nodes that
re shared by more than one cell have to be averaged. Similar to the
iura-Ori cell (see Section 3.1.1), this leads to slightly unsymmetrical

ells. To make sure that we can assume periodic behavior the gradient
f 𝛾 between neighbor cells should be low. For small deformations, a
omogenized model can be obtained analytically under the assumption
f elastic beams at plane strain. The size of the unit cells is constant
ℎ, 𝑙) and the chosen angle is changing the lengths of the single beams
espectively. More detail can be found in Wenz et al. (2021), Appendix.

.2.2. Sinusoidal shape with honeycomb array
As stated above, this example uses the same geometry, boundary

onditions and target function as in Section 3.1.4 (see Fig. 6). Therefore
e have an array of 40 × 12 = 480 cells with one design parameter
er cell. The geometry is stretched by 5% and our initial design is a
niform distribution of the design parameter with 𝛾 = 60° in every cell.

For the optimization we restrict 𝛾 in a range between 45° and 120°,
exploiting the capability of the cell to change between positive and
negative Poisson’s ratio. Fig. 11 shows a comparison of target, initial
and final displacement on the boundary of the surrogate model and a

comparison to the resolved model.
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Fig. 9. Results of the optimization. Optimized distributions in (d) of 𝑑𝑜 (min: 2.7mm, max: 15mm) and ℎ2. The geometry is split in half on 𝑥∕𝑧-plane to show the parameter
distribution inside the array. The microstructure for selected regions is displayed in between. The feature edges are highlighted in blue.
Fig. 10. Honeycomb cells.
Again, for clarity we only show the lines for 𝑍1 as target and
solution are point-wise symmetric. With the initial design, the array
expands due to the auxetic properties of the cell for 𝛾 = 60°. The
optimization yields a smooth distribution of 𝛾 shown in Fig. 11(c)
without using regularization. Also the final solution does not exploit
the whole range of 𝛾 that was allowed. Therefore, convergence is
faster and the final error smaller compared to the optimization with
the Miura-Ori cell as one can see in the error plots Figs. 11(a) and
7(a). The displacements on the boundary of the optimized geometry
depicted in Fig. 11(b) match very well with the target. Again there
is a mismatch between the surrogate model and the resolved model
13
due to the gradients in the strain fields and the design parameter.
The distortions of the cells can be seen in the deformed resolved
geometry (see Fig. 11(c)). Besides this, the large deformations introduce
an additional error as the analytically derived surrogate model is only
suitable for small deformations. This can be shown by reducing the
stretching by a factor of 10 to 0.5%. As a consequence, the distance
norm between surrogate and resolved model decreases by a factor of
approximately 40 from 2.70mm to 6.74 × 10−2 mm which is larger than
the decrease expected due to the scaled displacements by approx 0.1.
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Fig. 11. Optimization of a sinusoidal shape with a beam-based honeycomb cell.
Algorithm 1 Programming Materials through Optimization
1: Initialize the design 𝜶
2: Initialize error 𝑒 ← ∞
3: Choose error tolerance 𝛿 < ∞
4: while 𝑒 > 𝛿 do
5: Solve the original BVP (20):
6: Compute 𝐒(�̂�,𝜶) and C(�̂�,𝜶) using the surrogate model in

(32)
7: Apply numerical solver, e.g. Newton-Raphson
8: Solve the adjoint problem (21):
9: Compute 𝐒(Ξ̂,𝜶) and C(Ξ̂,𝜶) using the surrogate model in

(32)
10: Apply numerical solver, e.g. Newton-Raphson
11: Update the design as described in (22):
12: Compute derivative 𝜕𝜶C(�̂�,𝜶) using the surrogate model in

(32)
13: Compute design derivative  = 𝐷𝜶̌ and apply gradient

descent
14: Update the error:
15: 𝑒 ← ̌ (𝜶)
16: end while

4. Discussion

We propose a framework to program a desired mechanical response
and shape morphing of unit cell based metamaterials under given
boundary conditions through the distribution of design variables. We
consider arrays of unit cells, equipped with design parameters that are
used to adjust the mechanical behavior of each cell. The distribution of
those design parameters is subject of our optimization.

The resulting multiscale optimization problem has a large number of
design parameters and is therefore solved using an adjoint optimization
approach. The macroscopic BVP and the adjoint problem are solved
using a surrogate model describing the nonlinear design dependent
14
mechanical behavior of the cells. This allows us to compute the deriva-
tives w.r.t. the design that are needed in the optimization. At the same
time it provides a fast solution method for the structural analysis. The
mechanical behavior of simple cells can be described using analytical
models, which are very efficient. For more complex cases, arbitrary
cells and large deformation we use a data-driven approach. A database
of effective stresses on a multidimensional grid of strains and cell
designs is precomputed. The database is then compressed using tensor
rank decomposition. Interpolation within the tensor entries is done
using B-spline interpolation. The precomputation of the database can
easily be done in parallel as all sampling points are independent. The
generation of the database is further accelerated by reconstruction
of missing points and using the symmetry of stress data w.r.t. shear
strains. By using parametrized unit cells, manufacturability of the
programmed material is ensured.

Many publications deal with the optimization of multiscale struc-
tures, especially their topology (Wu et al., 2021). We extent the state
of the art by applying the optimization to large deformations. Thus,
new challenges especially regarding the derivation of the adjoint opti-
mization problem and the surrogate model have to be tackled. Recent
publications use data based surrogate models with polynomials (Ime-
diegwu et al., 2019; Wang et al., 2020) or neural networks (White
et al., 2019; Zheng et al., 2021) to interpolate in the design space.
In contrast to these, we expand the tensor based surrogate model for
finite deformations of hyperelastic materials introduced in Yvonnet
et al. (2013) and map both, design and strain space. Further our work
distinguishes from classical topology optimization as no cells are added
or removed and relies on the distribution of design parameters only.
This leads to a robust design regarding the failure of single cells and
production imperfections.

By combining computational homogenization, a data-driven surro-
gate model and adjoint optimization, a modular framework which is
applicable to various kind of unit cells and highly nonlinear material
behaviors is obtained.

We show numerical examples with two different cells: A stacked
Miura-Ori cell described with a data-driven surrogate model and a
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honeycomb cell which is analytically described. In a first example,
we study the applicability of the data-driven model depending on the
size of cell array by comparing its results to those of a fully resolved
model. Especially unconfined boundary conditions introduce a large
error near the boundary while the variation of design parameters
between neighboring cells causes only small errors.

Based on these findings, we optimize the distribution of 𝑑𝑜 and
2 in an array of Miura-Ori cells to form a curved boundary under
ension. Comparison of target, surrogate model, resolved model and a
anufactured sample show a good agreement.

The same target is used to optimize an array of honeycomb cells. In
he optimized solution there are cells with 𝛾 > 90° and 𝛾 < 90°, resulting

in a local positive and negative Poisson’s ratio. The difference to the
resolved model is slightly larger compared to the previous example as
the analytical model only applies for small strains.

To demonstrate the efficiency of our framework, we optimize a large
scale example with 437 500 cells. The target shapes are two surfaces of
a die, combining different length scales. Due to the high resolution,
the target is matched very well. The optimization yields a smooth
distribution of the design parameters through the whole design domain.

Different issues deserve further investigations. First, an ideal step
size would lead to faster convergence. However, adjusting the step size
is a difficult task as it depends on the problem setup and has to be
adjusted for each parameter for all cells. Second, the computational
expense for generating the surrogate model can be reduced. The recon-
struction of missing data points can potentially be used for a majority of
the data points. The identification of points to compute is a crucial task
to reduce the amount of precomputations. Third, the estimation of the
error introduced in the surrogate model as a consequence of gradients
between neighboring cells needs further investigations. Within this
work, we studied the error depending on the gradient of a single design
parameter in one direction. A general method to quantify the error
depending on local gradients of the design parameters is desirable.
Finally, a comparison of optimization at different scales of the target
function considered in this paper could be interesting. We generate a
material while classical topology optimization generates a structure. In
general, an optimization of all scales will yield results that are closest
to the optimum. An investigation on which scale to optimize regarding
the trade-off between optimality, computational expense, robustness
and manufacturability seems interesting but is beyond the scope of this
paper.

In general we believe that the presented framework is applicable
for a large class of problems that are not limited to elasticity. An
application to inelastic behavior such as viscoelasticity and plasticity
will be studied in the future. Also an extension to other target functions,
such as distributions of tractions, stresses or dissipated energies are
topics which deserve further attention.
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Appendix A. Adjoint solution approach

In order to satisfy the constraint condition in the optimization prob-
lem (5) we follow the adjoint solution approach. At first we consider
the Lagrangian for a different residual functional ̄:

(�̂�, �̂�,𝜶) =  (�̂�,𝜶) +
⟨

�̂�, ̄(�̂�,𝜶)
⟩

𝑉 ′′ . (A.1)

The Lagrange multiplier �̂� is also called the dual variable to the primal
variable �̂�. Now we return to the enforcement of the constraint in
variational form from (13): We assume that ̄(�̂�,𝜶) has an identical
form as in (12), but now is a linear operator w.r.t. �̂�, hence the
corresponding ̄(�̂�,𝜶) is linear, too. In particular, we define ̄(�̂�,𝜶) as:
⟨

̄(�̂�,𝜶), �̂�
⟩

∶= ∫�̂�
∇�̂� ⋅ C(𝜶) ⋅ ∇�̂� d𝐗 (A.2)

here C(𝜶) is a symmetrical, fourth order tensor and a function of the
esign 𝜶. Hence, ̄(�̂�,𝜶) ∈ 𝑉 ′ (and also ̄(�̂�,𝜶) ∈ 𝑉 ′), which is the dual
pace of 𝑉 , the space of all linear operators from 𝑉 to the real numbers.
herefore, the dual �̂� is an element of the bidual space 𝑉 ′′ and ⟨�̂�, ⋅⟩𝑉 ′′

enotes the application of �̂� on 𝑉 ′.
Primal and dual variable form a saddle point (�̂�𝑠, �̂�𝑠), if �̂�𝑠 is the

inimizer and �̂�𝑠 the maximizer of the Lagrange functional , or if
hey fulfill the necessary condition for extrema:
⟨

𝜕�̂�(�̂�𝑠, �̂�𝑠,𝜶), �̂�
⟩

𝑉 ′ = 0 ∀�̂� ∈ 𝑉 ,

𝜕�̂�(�̂�𝑠, �̂�𝑠,𝜶), �̂�
⟩

𝑉 ′′′
= 0 ∀�̂� ∈ 𝑉 ′′.

(A.3)

ote, that we pursue a simple presentation of the adjoint solution
ethod. Therefore we reduce notations and skip variational terms as

ften as possible in the following in order to avoid complicated terms.
or a more mathematically detailed deduction we refer to Frei et al.
2013), Hinze et al. (2009) and Michaleris et al. (1994).

It is known that there exists an isometry between 𝑉 and 𝑉 ′′ and
hat 𝑉 is a reflexive Hilbert space. From that fact it can be shown that
he second equation in (A.3) is identical to the equilibrium equation in
13), if we replace  with ̄ there. Therefore only the first equation in
A.3) leads us to a solution for the multiplier via:

= 𝜕�̂�(�̂�𝑠, �̂�𝑠,𝜶) = 𝜕�̂� (�̂�𝑠,𝜶) +
⟨

�̂�𝑠, 𝜕�̂�̄(�̂�𝑠,𝜶)
⟩

𝑉 ′′ (A.4)

hich is called dual or adjoint problem. Note that the differentiated
erms have to be understood in variational sense. Then, using the
efinition from (A.2) the adjoint problem can be written as:

Find �̂�𝑠 ∈ 𝑉 , such that

=
⟨

𝜕�̂�(�̂�𝑠, �̂�𝑠,𝜶), �̂�
⟩

𝑉 ′

= ⟨𝜕�̂� (�̂�𝑠,𝜶), �̂�⟩𝑉 ′ +
⟨

�̂�𝑠, ̄(�̂�,𝜶)
⟩

𝑉 ′′

= ⟨𝜕�̂� (�̂�𝑠,𝜶), �̂�⟩𝑉 ′ +
⟨

̄∗(�̂�𝑠,𝜶), �̂�
⟩

𝑉 ′ ∀�̂� ∈ 𝑉 ,

(A.5)

here ̄∗ denotes the adjoint of ̄. Note that the derivative 𝜕�̂�̄ in (A.4)
educes to ̄ since ̄ is linear. Besides, we may take �̂�𝑠 ∈ 𝑉 , since 𝑉 is
eflexive. Furthermore, from (A.2) it is clear that ̄ is self-adjoint, such
hat ̄∗ = ̄ in the last term.

Now, the saddle point simplifies the computation of the total deriva-
ive of the cost functional 𝐷𝜶̌ for the scheme in (14). Note that
he primal variable of the saddle point �̂�𝑠(𝜶) satisfies the constraint
ondition in (5), too. Hence, we can conclude:

𝜶̌ (𝜶) = 𝐷𝜶(�̂�𝑠(𝜶), �̂�𝑠,𝜶)
= 𝜕𝜶(�̂�𝑠(𝜶), �̂�𝑠,𝜶) + 𝜕�̂�(�̂�𝑠(𝜶), �̂�𝑠,𝜶)𝜕𝜶 �̂�𝑠(𝜶)
(A.4)
= 𝜕𝜶(�̂�𝑠(𝜶), �̂�𝑠,𝜶)

= 𝜕𝜶 (�̂�𝑠(𝜶),𝜶) + 𝜕𝜶 ̄(�̂�𝑠, �̂�𝑠,𝜶).

(A.6)

he derivative 𝜕𝜶 ̄ is also self-adjoint because of ̄. Note that all
quations in (A.6) are considered in variational sense.
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Algorithm 2 Precomputing the data base and TRD
1: Initialize data tensor 𝐃 ∈ R𝑚1×…×𝑚𝑀

2: for 𝑘 = 1,… ,𝑀𝜶 do ⊳ Set up of the design variants
3: Define 𝑘
4: for 𝑖𝑘 ∈ 𝑘 do
5: Define the discrete design parameter 𝜶𝑖𝑘
6: end for
7: end for
8: for 𝑘 = 1,… ,𝑀𝐄 do ⊳ Set up of the strain variants
9: Define 𝑘
0: for 𝑗𝑘 ∈ 𝑘 do
1: Define the discrete strain value �̂�𝑗𝑘
2: end for
3: end for
4: for 𝐼 ∈  do
5: (𝑖1,… , 𝑖𝑀𝜶

, 𝑗1,… , 𝑗𝑀𝐄
) ← 𝐼

6: Process configuration (𝜶𝑖1 ,… ,𝜶𝑖𝑀𝜶
, �̂�𝑗1 ,… , �̂�𝑗𝑀𝐄

):
7: Solve the microscopic BVP in (9) to obtain �̂�𝑙 ⊳ �̂�𝑙 can be

any entry of �̂�
8: Insert in the data tensor: 𝐃𝐼 ← �̂�𝑙
9: end for
0:

[

𝐷𝑟
𝑘
]

𝑟=1,…,𝑅,𝑘=1,…,𝑀 ← TRD(𝐃) ⊳ TRD from (28)
21: return

[

𝐷𝑟
𝑘
]

𝑟=1,…,𝑅,𝑘=1,…,𝑀

Algorithm 3 SVI from (32)

1: Required: Configuration (𝜶1,… ,𝜶𝑀𝜶
, �̂�1,… , �̂�𝑀𝐄

)
2: �̄� ← 0
3: for 𝑟 = 1,… , 𝑅 do ⊳ In this loop 𝑁𝑙 are interpolating basis

functions
4: �̄�𝑟 ← 1
5: for 𝑘 = 1,… ,𝑀𝜶 do
6: �̄�𝑟 ← �̄�𝑟 ∗

∑𝑚𝑘
𝑙=1(𝐷

𝑟
𝑘)𝑙 𝑁𝑙(𝜶𝑘) ⊳ Here: 𝑚𝑘 = |𝑘|

7: end for
8: for 𝑘 = 1,… ,𝑀𝐄 do
9: �̄�𝑟 ← �̄�𝑟 ∗

∑𝑚𝑘
𝑙=1(𝐷

𝑟
𝑘)𝑙 𝑁𝑙(�̂�𝑘) ⊳ Here: 𝑚𝑘 = |𝑘|

10: end for
11: �̄� ← �̄� + �̄�𝑟
12: end for
13: return �̄�

Appendix B. Differentiation of interpolating functions

In Section 2.4.2 we explain how the SVI allows to easily interpolate
and differentiate at data points, within the structured data hypercube.
Note that differentiations w.r.t. design variables (here 𝜶) are often
difficult to compute for problems dealing with topology or shape
optimization. A great advantage of our approach is that these deriva-
tives can now be computed by differentiating common interpolating
functions. For instance, if we want to assemble the design derivative
of the stiffness tensor 𝜕𝜶Ĉ in (19), we differentiate the interpolating
function in (32). Assuming we sampled the 𝑖th entry of the stress tensor
�̂� (in Voigt notation) for the data tensor 𝐃, the differentiation of the
following entry of C is straightforward:

𝜕Ĉ𝑖𝑗

𝜕𝜶𝑛
=

𝜕2�̂�𝑖
𝜕𝜶𝑛𝜕�̂�𝑗

≈ 𝜕2�̄�
𝜕𝜶𝑛𝜕�̂�𝑗

=
𝑅
∑

𝑟=1

⎛

⎜

⎜

⎜

⎝

𝑀𝜶
∏

𝑘=1,
𝑘≠𝑛

�̄�𝑟
𝑘

𝑀𝐄
∏

𝑙=1,
𝑙≠𝑗

�̄�𝑟
𝑙

⎞

⎟

⎟

⎟

⎠

𝜕�̄�𝑟
𝑛

𝜕𝜶𝑛

𝜕�̄�𝑟
𝑗

𝜕�̂�𝑗
(B.1)

here 𝑛 = 1,… ,𝑀𝜶 and 𝑖, 𝑗 = 1,… ,𝑀𝐄. If only the entry C𝑖𝑗 is
desired, the differentiation w.r.t. 𝜶𝑛 is simply skipped. Continuing this
rocedure for all entries of �̂�, 𝜶 and 𝐄, we get the whole tensor 𝜕𝜶Ĉ.
ecall from (19) that this tensor is important for our optimization

ramework.
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See Algorithms 1, 2 and 3.
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