

Process analysis for magnetic pulse welding of aluminium-copper joints

Verena Psyk, Christian Scheffler, Maik Linnemann, Dirk Landgrebe I²FG workshop on impulse metalworking 2016

December 1st-2nd, 2016

Nantes, France

Agenda

- Introduction to the JOIN'EM project
- Process analysis for magnetic pulse welding of aluminium-copper joints
 - Setup and process parameters
 - Welding experiments
 - Characterisation of the joint
 - Correlation of adjustable process parameters and weld quality
 - Quantification of collision parameters via numerical simulation
 - Correlation of collision parameters and weld quality
 - Summary

JOIN'EM – facts and figures

• Titel **JOIN**ing of copper to aluminium by **E**lectro**M**agnetic fields

Acronym JOIN'EM

Duration 01.09.2015 - 31.08.2018

Budget 4.7 Mio. €

• Grant 4.1 Mio. €

Coordinator Fraunhofer IWU (Dr.-Ing. Verena Psyk)

Project partners

JOIN'EM - overall aims

- Supplementing the heavy use of full copper components in applications related to electrical and thermal conductivity by hybrid copper – aluminium solutions
 - Reduce material costs
 - Reduce product weight

- → magnetic pulse welding (MPW)
- Enabling the industrial implementation of MPW and facilitating the exploitation of known process advantages in series production

	Copper	Aluminium
Electrical conductivity	58 MS/m	36 MS/m
Thermal conductivity	401 W/mK	236 W/mK
Density	8.9 g/cm³	2.7 g/cm³
Price	4.478 €/ton*	1.550 €/ton*

Source: http://www.boerse-online.de/rohstoffe; 2016-11-04;

JOIN'EM – objectives

- Experimental and numerical process analysis and design
- Development of validated process and joint design concepts
- Development of multiscale simulation strategies
- Development of optimized tools for industrial implementation
- Development and automation of nondestructive testing and quality control
- Design, realization, and evaluation of industrial demonstrators
- Economic process and product evaluation via life cycle cost analysis

Fields of application and suggested demonstrators

High power electronics passive cooling

White goods

Battery systems

HVAC

Transport/automotive components

Setup and process parameters

Parameters considered for detailed investigation

Capacitor charging energy E (10 up to 40 kJ)

Flyer thickness t_{flyer} (0.3 up to 1.5 mm)

Initial gap between flyer and target $g_{
m initial}$ (1.0 up to 3.0 mm)

x-position of the flyer edge x_{flyer} (-2 up to +2 mm)

Target (EN AW-1050)

Experimental setup Coil conductor $\mathcal{X}_{\mathrm{target}}$ $\mathcal{X}_{\mathrm{flyer}}$ Spacer Flyer (Cu-DHP) Support

Fixed parameters

Capacitance C (300 μ F)

Target thickness t_{target} (2 mm)

x-position of target edge x_{target} (14 mm)

Free length l (16 mm)

Width of flyer and target $w_{flyer} = w_{target}$ (100 mm)

Tool coil

Welding experiments

- Electrical resistance measurement
- Lap shear test
- Metallographic analysis

Position of specimens in the hybrid sheet

- Electrical resistance measurement
- Lap shear test
- Metallographic analysis

Imposed current: $\emph{\textbf{I}}$ =4 A Resistance $\emph{\textbf{R}}=\frac{\emph{\textbf{I}}}{\emph{\textbf{U}}}$

Resistance of the joining partners is negligible if measurement points are close to the joining zone.

→ Calculated resistance corresponds to resistance of the joint.

Electrical resistance measurement

- Lap shear test
- Metallographic analysis

Failure in the joint (occurs for all flyer thicknesses)

Failure cases

Failure in the copper base material (occurs for flyer thicknesses of 0.5 mm only)

aluminium

copper

10 20 30 Elongation in mm

Hybrid

Al-Cu part

Failure in the aluminium base material (occurs for flyer thicknesses ≥ 1 mm)

All cases: Welding of copper flyers to aluminium targets

- Electrical resistance measurement
- Lap shear test
- Metallographic analysis

Correlation of adjustable process parameters and weld quality

Maximum transferable force in a lap shear test is considered for mechanical joint characterisation

Numerical modelling

Experiment

V109: 30kJ, 544kA, 22.2kHz, tflyer=2, gap=3, x=-2

Corresponding macroscopic simulations

V109: 30kJ, 544kA, 22.2kHz, t_{flyer}=2, gap=3, x=-2

Numerical calculation of collision parameters

Process parameters

Capacitor charging energy: 30 kJ Initial gap flyer / target: 3mm

Flyer

Material: Cu-DHP
Thickness: 1 mm
Edge position: -2 mm

Target

Material: EN AW-1050 Thickness: 2 mm Edge position: 14 mm

Correlation of adjustable process parameters and collision parameters

Collision parameters at a distance of 2 mm from the flyer edge are considered because typically this area is welded if welding occurs at all.

Correlation of collision parameters and joint quality

Maximum transferable force in a lap shear test is considered for mechanical joint characterisation

Summary

- JOIN'EM aims at reducing the heavy use of copper to reduce cost and weight.
- Hybrid aluminium copper parts shall replace current full copper solutions.
- MPW is a promising technology for manufacturing copper aluminium joints.
- An experimental and numerical process analysis considering MPW of aluminium copper joints has shown that high quality joints require by trend
 - high impacting velocity (i.e. >250 m/s for welding of Cu-DHP and EN AW-1050) and
 - low impacting angle (i.e. 5°-20° for welding of Cu-DHP and EN AW-1050).
- The impacting velocity is higher if
 - high capacitor charging energy (and consequently higher force) is applied and
 - the flyer thickness (and consequently the flyer mass to be accelerated) is low.
- The impacting angle is lower if
 - the initial gap width between flyer and target is small and
 - the overlap of flyer and tool is relatively long.

Acknowledgement

The JOIN'EM project has received funding from the European Union's Horizon 2020 research and innovation program under grant agreement No. 677660.

