
Towards a Self-Adaptive Architecture for Federated
Learning of Industrial Automation Systems

Nicola Franco, Hoai My Van, Marc Dreiser, Gereon Weiss
Fraunhofer Institute for Cognitive Systems IKS

Munich, Germany
{name.surname}@iks.fraunhofer.de

Abstract—Emerging Industry 4.0 architectures deploy data-
driven applications and artificial intelligence services across mul-
tiple locations under varying ownership, and require specific data
protection and privacy considerations to not expose confidential
data to third parties. For this reason, federated learning provides
a framework for optimizing machine learning models in single
manufacturing facilities without requiring access to training
data. In this paper, we propose a self-adaptive architecture
for federated learning of industrial automation systems. Our
approach considers the involved entities on the different levels
of abstraction of an industrial ecosystem. To achieve the goal
of global model optimization and reduction of communication
cycles, each factory internally trains the model in a self-adaptive
manner and sends it to the centralized cloud server for global
aggregation. We model a multi-assignment optimization problem
by dividing the dataset into a number of subsets equal to the
number of devices. Each device chooses the right subset to opti-
mize the model at each local iteration. Our initial analysis shows
the convergence property of the algorithm on a training dataset
with different numbers of factories and devices. Moreover, these
results demonstrate higher model accuracy with our self-adaptive
architecture than the federated averaging approach for the same
number of communication cycles.

Index Terms—Self-Adaptive systems, federated learning, dis-
tributed simplex, Industry 4.0.

I. INTRODUCTION

Distributed architectures for Industry 4.0 consist of horizon-
tal, vertical, and end-to-end integration of the data processing
chain [1]. Horizontal integration involves real-time coopera-
tion between sensors, actuators, and controllers, implemented
by distributed control systems, supervisory control and data
acquisition, and programmable logic controllers. Vertical inte-
gration leads to information flow from the field to the cloud,
i.e. from raw data acquisition to cloud processing, storage,
and monitoring. In addition, end-to-end integration requires
real-time responses for cyber-physical systems by ensuring
at the same time the quality-of-service and by allocating
machine learning functions close to the edge. For a successful
realization, an underlying architecture should demonstrate the
ability to integrate all these layers.

The nature of data captured by production systems is het-
erogeneous, therefore automatic pattern recognition and data
mining functions suffer from the integration of different data
formats and sources [2]. New procedures for analytical model
management should promote decentralized and automated
decision making to reduce the complexity of analyzing data
from a centralized machine. To this end, data management

and development, as well as the use of analytical models
are inextricably linked and must be considered uniformly. For
dynamic and horizontal scaling, approaches such as federated
learning are currently being explored. Federated learning [3],
[4], is a distributed machine learning approach, that allows
analytical models to be trained and used on large amounts
of data stored on different devices. For horizontal scaling of
federated learning, new methods need to be developed to make
the heterogeneous landscape of data sources available to the
learning process and to enable the data processing chain.

An example use case is a third-party industrial partner
who sells smart devices to several manufacturing facilities
and wants to globally optimize a machine learning model
by training it on each device without requiring confidential
customer data. Therefore, the main goal of this use case is
finding a good universal model that fits to different industrial
data sets. We propose a self-adaptive architecture composed
of entities on three different levels: centralized cloud server,
smart factory, and smart industrial device. In our approach, we
model the self-adaptive behaviour of the architecture through
a MAPE-K control loop (Monitor, Analyze, Plan, and Execute
over a shared Knowledge [5]).

The main contribution of this work is the proposal of a
self-adaptive architecture that decreases the global aggregation
cycles of the training procedure by using a decentralized
optimization approach. A first analysis demonstrates the con-
vergence property of the algorithm and highlights the self-
adaptive behavior of the architecture. We evaluate our ap-
proach with respect to the federated averaging approach [4] on
a varying number of factories and devices. The results show
higher model accuracy for the same rounds of communication.

The paper is structured as follows: in Section II an overview
of related works is given. In Section III our framework for the
federated learning and in Section IV our self-adaptive archi-
tecture are presented. Section V presents the simulation-based
evaluation of our approach. Finally, the paper is concluded and
future developments are outlined.

II. FUNDAMENTALS AND RELATED WORK

Nowadays, several industries, researchers, and developers
are actively working in the context of system architectures
to provide solutions for flexibly integrating state-of-the-art
artificial intelligent functions and components into the layered

industrial structures. Typically, industrial architectures are de-
signed to meet the requirements of a subset of layers of the
entire system hierarchy, depending on the real-time or non-
real-time target. In this section, we present some of the existing
industrial architectures focused on heterogeneous integration
of the data processing chain, then highlight the impact of
self-adaptation on the industrial domain, and conclude the
section with a brief review of self-adaptive and heterogeneous
federated learning techniques.

A. Industry 4.0

An important step towards efficient integration of industrial
data analytics is the availability of machine learning and big
data technologies in a dynamic distributed architecture. To
support the implementation of Industry 4.0 into production
environments, the key concept of an Asset Administration
Shell (AAS) is predominant [6]. The AAS creates a digital
representation of any industrial component (also including
metadata descriptions) and identifies it with a unique address.

Recent surveys [7], [8], discuss the newest architectures
and standards, such as BaSyx 4.0 [9], and the Reference
Architecture Model of Industry 4.0 (RAMI 4.0) [10]. RAMI
4.0 is an abstract multi-layer standard capturing the factory
hierarchy, OSI communication layers, and the product’s life
cycle. Based on RAMI 4.0, Basyx 4.0 implements a virtual
middleware called Virtual Automation Bus (VAB) [11] that
supports the AAS. The VAB connects existing protocols and
network topologies into one virtual network able to handle
real-time as well as non-real-time requirements. Other ar-
chitectures targeting Industry 4.0 have common properties
and share the idea of flexibility, such as IMPROVE [2].
The IMPROVE architecture relies on a common data model
embedded inside the middleware to overcome the drawbacks
of heterogeneous data handling, proprietary tools, and a unique
way of data processing. According to [12], the implementation
of the standard interface is made by the data management and
integration broker, which transfers and routes data between the
components and layers of the so-called Unified Data Transfer
Architecture.

B. Self-Adaptation

In recent years, the focus of self-adaptation on industrial
processes has shifted from sole development perspective to
execution time aspects. The self-adaptive properties are typi-
cally implemented through feedback of software systems and
achieved by MAPE-K control loops [5]. According to [13], the
self-adaptive behavior of a system consists of a reconfiguration
process based on changing external or internal conditions. In
case of safety requirements, in [14] guarantees are provided for
the self-adaptive behavior of the architecture and the running
processes. In addition, machine learning approaches have been
studied in [15] and [16] to manage the challenge of exploring
wide spaces of possible behaviors within optimal times.

In line with this, our research targets multi-agent industrial
systems, where the self-adaption of agents leads to collab-
oration and utilizes decentralized optimization to solve con-

Fig. 1: Graphical representation of the framework: (a) Fed-
erated aggregation, (b) Decentralized optimization, (c) Model
training.

strained decision-making. A related approach was presented in
[17], where the decentralized aggregation process for shared
knowledge resolves decision conflicts through subjective logic.

C. Federated Learning

Federated approaches to learning have been studied ex-
tensively in various settings. Some of the early works [3],
[4] present the framework as a global shared model, trained
between different devices under the coordination of a cen-
tral server. The distribution of computing power to edge
components and preservation of data privacy are some of
prominent advantages of the federated approach. Recently,
heterogeneous setups have been proposed and considered from
different perspectives [18]–[20]. During federated aggregation,
the resource availability changes at runtime, and [20] defined
it as a constrained optimization problem. In their case, the
adaptive behavior makes use of a control algorithm to adapt
the computing power to the availability of resources.

In our approach we assume that the smart factory dataset
can be accessed from any device in this factory, which leads
to a relaxation of the purely distributed framework. Our work
focuses on the industrial settings of the federated aggregation
and on greater accuracy achieved through the self-adaptive
behavior of the architecture.

III. FRAMEWORK FOR FEDERATED LEARNING

In this section, we propose our framework, shown in Fig. 1.
We conceptually divide the industrial structure into entities of
three different levels: centralized cloud server, smart factory,
and smart industrial device. This division is intended to reflect
the existing industrial automation systems architecture as well
as the training procedure of a machine learning model in this
environment. For this reason, each entity level implements one
of the following three stages of our training procedure:
• Federated aggregation
• Decentralized optimization
• Model training
Federated Aggregation: the centralized cloud server re-

ceives one machine learning model from each smart factory

TABLE I: Main Notations

N Number of smart factories
Ni Number of smart industrial devices for factory i
T Number of global rounds
L Number of local rounds
E Number of epochs
I Set of smart factories
Ni Set of smart industrial devices for factory i
Ga
i Assignment graph for factory i

Gc
i Communication graph for factory i

xk Measurements vector
yk Labels vector
{xk,yk} Subset of the dataset
Di Dataset for smart factory i
w0 Initial global model
wt Global model at time t
wt

j Local model for device/factory j at time t

Fi(w) Global loss for factory i
¯̀
j Average loss for model j on dataset Di

`jk Local loss for model j on subset {xk,yk}
L Vector of losses
Lj Vector of losses for device j
A Matrix of constraints

for the global aggregation round. Afterwards, following the
Federated Averaging algorithm [4], all models are averaged
together. At the end of this stage, the server sends back the
aggregated model to the factories.

Decentralized Optimization: each smart factory sends the
aggregated model to its own devices and splits the dataset
into a number of subsets equal to the number of devices.
At each local round, all devices calculate the loss for each
subset. To solve the multi-assignment problem, the devices
run the Distributed Simplex algorithm [21] and agree on a
common solution that minimizes the sum of the loss functions
and assigns the correct subset. In the final step, the factory
chooses the best model among the devices for the federated
aggregation.

Model Training: each smart industrial device trains the
machine learning model on a subset previously selected by
the decentralized optimization step. The model is updated
according to an optimization method.

A. Problem formulation

In order to describe the application scenario in the federated
learning framework, we introduce main notations which are
summarized in Table I.

We consider a set I = {1, . . . , N} of smart factories
(Fig. 1(a)), where each factory i has a loss function Fi(w)
and a model vector w ∈ Rd, with equal dimension d between
all factories. For the centralized cloud server, the optimization
problem is considered as follows,

min
w∈Rd

1

N

∑
i∈I

Fi(w), (1)

where N is the total number of smart factories. To avoid large
amounts of data transferring and to reduce the number of
communication rounds, each factory sends one model to the
central server for the federated aggregation. In this context,

this model is the one that achieved the best accuracy on the
entire factory dataset.

From Fig. 1(b), we see that each factory has its own set
of devices Ni, ∀i ∈ I with |Ni| = Ni, where | · | express
the cardinality of the set. We consider a unique dataset Di =
{x,y}i for factory i accessible to each device of that factory,
with measurements x and labels y.

Assumption 1 (Shared Knowledge). Each device of factory i,
has access to the entire dataset Di = {x,y}i of that factory.

To deal with a decentralized framework, the dataset is par-
titioned into Ni subsets, Di = {{x1,y1}, . . . , {xNi

,yNi
}},

where {xr,yr} ∩ {xk,yk} = ∅, ∀r, k ∈ Ni with r 6= k.
Each device receives a machine learning model w from the
factory, Fig. 1(c), and updates it according to an optimization
method, i.e. the Stochastic Gradient Descent (SGD) method,
with the same learning rate and number of epochs used on
each device. We name wj the updated version of the model
w in device j. Furthermore, we define `jk , `(wj ;xk,yk) as
the loss of model j on subset k, and ¯̀

j = 1
Ni

∑
k∈Di

`jk as
the average loss of model j over the entire dataset Di, where
Ni is the number of devices. Without loss of generality, we
assume having the same number of data points in each subset.

We further address problem (1) by rewriting the factory i’s
loss Fi(w) as sum of individual losses ¯̀

j , as follows,

Fi =
1

Ni

∑
j∈Ni

¯̀
j =

1

N2
i

∑
j∈Ni

∑
k∈Di

`jk. (2)

As previously mentioned, our approach focuses on the local
optimization of (1). Therefore, we describe our problem in
terms of minimizing each loss Fi individually, which leads to
the following formulation,

min
w1,...,wNi

1

N2
i

∑
j∈Ni

∑
k∈Di

`jk, (3)

where the minimization is made with respect to the models
w1, . . . ,wNi . We shift our attention from minimizing the sum
of losses with respect to the models, and instead we focus on
the subsets. Therefore, we propose to handle this problem as
primal assignment problem, following the standard from [22],
[23].

Let’s consider a bipartite graph Gai = {Ni,Di;Eai }, as in
Fig. 2, where Eai is the set of edges and the edge (j, k) ∈
Eai exists if and only if the device j can be assigned to the
subset k. For each edge (j, k), we introduce the binary decision
variable pjk ∈ {0, 1}, which associates the subset k to the
device j. In other words, if pjk = 1 then subset k is assigned
to device j, 0 otherwise. Problem (3) is now modelled as multi-
assignment problem as follows,

min
p≥0

1

N2
i

∑
(j,k)∈Ea

i

`jkpjk

subject to
∑

{k|(j,k)∈Ea
i }

pjk = 1, ∀j ∈ {1, . . . , Ni},∑
{j|(j,k)∈Ea

i }

pjk = 1, ∀k ∈ {1, . . . , Ni},

(4)

Fig. 2: Dataset assignment graph Gai of smart factory i.

where p = [p11, p12, . . . , pNi,Ni]
ᵀ represents the vector of

decision variables. Both the first and second constraints show
that each device must be assigned to a subset and each subset
must be assigned to a device, respectively. Without loss of
generality, we assume that Gai is complete1. Note that (4) has
N2
i = |Eai | decision variables, and di = 2Ni constraints.

B. Decentralized optimization

We write problem (4) in matrix form, following the standard
linear programming set-up:

min
p≥0

Lᵀp

subject to Ap = b,
(5)

where L ∈ RN2
i represents the vector of losses L =

[`11, `12, . . . , `NiNi
]
ᵀ, and p ∈ RN2

i the vector of decision
variables. A ∈ Rdi×N2

i is the matrix of constraints and
b ∈ Rdi is a vector of ones. We make use of the distributed
simplex algorithm [21] to solve problem (5). Since our setup
is not completely distributed and each device is connected to
the factory that has access to the industrial data set, we adjust
some of the original assumptions.

We model the network between the Ni devices of factory
i by a directed graph (digraph) Gci = (Ni, Eci). The device
set is represented by Ni and the edge set by Eci ⊆ Ni ×Ni,
where (j, k) ∈ Eai if there is an edge which goes from device
j to device k.

Assumption 2 (Strong Connectivity). The graph Gci is strongly
connected, therefore, for every pair of nodes (i, j), there exists
a path of directed edges that goes from i to j.

The distributed simplex algorithm relies on a distributed
information structure, where each device initially knows a
subset of the problem columns. A column of problem (5) is

1i.e. there exists an edge between every device j ∈ Ni and every subset
k ∈ Di.

hj ∈ R1+di and is defined as hj ,
[
`jk, Aᵀ

:j

]ᵀ
, where `jk ∈

R is the loss of model wj on subset k, and A:j ∈ Rdi×1 is the
j-th column of the matrix A. To fully represent (5), we use the
notation (H, b), where H = {hj}j∈Ni

is the set of all columns.
We assume there exists a partitioning P =

{
P[1], . . . ,P[Ni]

}
of

the problem columns with H = ∪j∈Ni
P[j] and P[j]∩P[k] = ∅.

The distributed linear program is a tuple (Gai , (H, b) ,P) which
consists of the communication graph Gai , the linear program
(H, b) and the problem partition P. Considering the distributed
linear program (Gai , (H, b) ,P), there always exists a solution
of (H, b) as proven in [21].

IV. SELF-ADAPTIVE ARCHITECTURE FOR FEDERATED
LEARNING

In this section, we describe our main contribution. The
approach consists of managing the stages of the training
procedure following the MAPE-K control loop. As mention
in Section III, each entity implements different stages of
the training procedure and has different roles. In the context
of self-adaptation, the roles are monitor, analyze, plan and
execute. The smart industrial devices are responsible for the
monitoring and executing phase. The smart factory analyzes
the model and plans the next local round. In the following,
we introduce each role individually.

Algorithm 1: Centralized Cloud Server
Input: I = {1, . . . , N}, T
Output: w
SERVER:

initialize: w0

for each global round t = 0, 1, 2, ..., T − 1 do
for each factory i ∈ I do

wt+1
i ← FACTORYi(wt)

end
wt+1 ← 1

N

∑
i∈I w

t
i

end
return wT

Analysis. Starting from the centralized cloud server in
Algorithm 1, the model vector w0 is randomly initialized and
sent to each factory. T is the number of global aggregation
rounds. When the factory receives the model, it starts the local
training procedure, as shown in Algorithm 2. Once the local
training is complete, the factory selects the model with the
minimal loss and sends it to the central server for the global
aggregation phase. The analysis takes place in this phase,
where each model received from the smart devices is evaluated
and only the one that had the best performance on the whole
dataset, is sent to the central server.

Plan. In Algorithm 2, each smart factory plans the local
training procedure by initializing the available devices and
partitioning the dataset. L is the number of local training
rounds, Ni is the set of devices and Di is the factory dataset.
At global round t, factory i receives the global model wt from
the centralized server and initializes the local model w0

j of

Algorithm 2: Smart Factory
Input: wt, Ni = {1, . . . , Ni}, Di = {x,y}i, L
Output: wt+1

i

FACTORYi (wt):
initialize: w0

j ← wt ∀j ∈ Ni
Split the dataset Di into Ni subsets
for each local round l = 0, 1, 2, ..., L− 1 do

for each device j ∈ Ni do
wl+1
j , ¯̀

j ← DEVICEj(wl
j ,Di)

end
end
/* Find the minimum at last step */
wt+1
i ← wL

min : {min ∈ Ni | ¯̀
min < ¯̀

j ∀j ∈ Ni}
return wt+1

i

each device j with it. Before the first local round, the factory
sends the model to each device and gives access to the entire
partitioned dataset Di. Afterwards, the factory receives the
updated model wl+1

j and the corresponding average loss ¯̀
j .

Finally, after the last local round, each factory sends the model
with the minimum loss back to the server.

Algorithm 3: Smart Industrial Device

Input: wl
j , Di = {{x1,y1}, . . . , {xNi

,yNi
}}, E

Output: wl+1
j

DEVICEj (wl
j ,Di):

/* Initialize α at first step */
if l is equal to 0 then α← j

wl+1
j ← SGD(wl

j ;xα,yα) for E epochs
for each {xk,yk} ∈ Di do

`jk ← `(wl
j ;xk,yk)

end
¯̀
j ← 1

Ni

∑
k∈Di

`jk
/* Penalize previous subset */
`jα ← 1
Lj ← [`j1, . . . , `jk, . . . , `jNi

]ᵀ

α← Decentralized Optimization(Lj , Ni) ref. [21]
return wl+1

j , ¯̀
j

Execute. In Algorithm 3, each device creates its vector Lj of
losses, where the entries correspond to the computed losses of
model wl

j on each subset. Lj and Ni are used to initialize the
Decentralized Optimization function. The function executes
the Distributed Simplex algorithm [21] and solves the multi-
assignment problem. α is a scalar and represents the solution
of the assignment problem, in other words, it makes the choice
on which subset the model will be trained in the next local
round. In the first local round, α is initialized with value j,
corresponding to the device number, so each device initially
trains the model on the subset j. In this algorithm, the updated
model wl+1

j = wl
j−η∇`(wl

j ;xα,yα) is computed according
to the Stochastic Gradient Descent [24], on the subset chosen
by α. E corresponds to the number of epochs and η is the

learning rate. Before the next local round, we penalize the
decision to train the model in the previously chosen subset,
therefore we assign the maximum value 1 to the loss `jα,
which corresponds to the previous choice.

Monitor. During the training phase, in Algorithm 3, the de-
vice computes the loss on each subset. Afterwards, it calculates
the average ¯̀

j of the previously computed losses and send it
to the smart factory. As mentioned above, the average is used
to analyze which device performed best.

V. EVALUATION

A. Setup

We evaluate the performance of our algorithm by conduct-
ing simulation experiments with i.i.d. data. The environment
we modeled with the deep learning toolbox in MATLAB2

consists of a varying number of factories, between 3 to 5,
and devices, between 10 to 15. We choose a convolutional
neural network (CNN) model and train it on the Digits3

dataset, which consists of 10,000 synthetic grayscale images
of handwritten digits and (1-9) labels. The neural network has
a 28×28 input layer, 3 convolution bi-dimensional layers with
pooling layers in between and a fully connected layer with the
softmax function for classification at the end.

First, we divide the dataset with equal sizes into factories
and split it up further into the number of devices. Each factory
has a different portion of the dataset, but with the same number
of images and labels. We initialize each factory and device
with an equal NN model. We compare our approach with the
federated averaging (FA) [4] for the same number of devices
and iterations, i.e. the number of rounds used for FA is equal
to T · L. The evaluation consists on averaging the resulting
loss of each device (¯̀

j) of all factories. The average accuracy
is shown in figure 3 for both self-adaptive and federated
averaging approaches. Each iteration corresponds to training
the model on a batch. We performed our simulations with a
number of epochs E = 30, learning rate η = 0.001 and batch
size equal to 128.

B. Results and Discussions

In Figure 3, the average accuracy is displayed for both
the federated averaging and self-adaptive approaches. We
notice that after an initial phase, the self-adaptation algorithm
achieves better model accuracy than federated averaging. The
self-adaptive behaviour creates small adjustments during the
transition between local decentralized optimization and global
aggregation. During local rounds, the accuracy asymptotically
reaches a stable value and after a global round it jumps to a
higher value. The number of global aggregations is L times
lower than FA, because the model is internally trained for L
local rounds and later sent to the server. In FA each device
sends the model to the central server at each global round,
therefore, high accuracy is reached faster than the self-adaptive
but requires more communication between the central server

2www.mathworks.com/products/deep-learning.html
3www.mathworks.com/help/deeplearning/ug/create-simple-deep-learning-

network-for-classification.html

0 1000 2000 3000 4000 5000 6000

Iterations

0.9

0.92

0.94

0.96

0.98

1

A
c
c
u

ra
c
y

Self-Adaptive Federated Averaging

(a) Average accuracy of 3 smart factories with 10 devices each trained
for 10 global and local rounds.

0 500 1000 1500 2000 2500 3000 3500 4000

Iterations

0.9

0.92

0.94

0.96

0.98

1

A
c
c
u

ra
c
y

Self-Adaptive Federated Averaging

(b) Average accuracy of 3 smart factories with 15 devices each trained
for 15 global and local rounds.

0 500 1000 1500 2000 2500 3000

Iterations

0.9

0.92

0.94

0.96

0.98

1

A
c
c
u

ra
c
y

Self-Adaptive Federated Averaging

(c) Average accuracy of 4 smart factories with 10 devices each trained
for 10 global and local rounds.

0 500 1000 1500 2000 2500 3000

Iterations

0.9

0.92

0.94

0.96

0.98

1

A
c
c
u

ra
c
y

Self-Adaptive Federated Averaging

(d) Average accuracy of 5 smart factories with 10 devices each trained
for 10 global and local rounds.

Fig. 3: Comparison of results between self-adaptive and fed-
erated averaging approaches.

and the device. In our approach, the model is trained internally
for a number of local cycles and then sent to the central
server. The slow behavior of the self-adaptive approach is due
to the internal training constraint and generates more internal
cycles of communication between devices than with the central
server.

VI. CONCLUSIONS AND OUTLOOK

In this paper, we propose a self-adaptive architecture for
federated learning of industrial automation systems. Our ap-
proach consists on defining the industrial setting into entities
of three different levels: centralized cloud server, smart fac-
tory, and smart industrial device. We model the self-adaptive
behaviour of the architecture through MAPE-K control loops.
Based on this, we define the training procedure as a multi-
assignment problem and use decentralized optimization. The
results of our solution show a greater model accuracy than
the federated averaging approach [4], for the same rounds of
communication.

Despite these recent findings, the proposed architecture can
be evaluated further. For instance, different neural networks
and datasets will be tested and communication errors taken
into account. Furthermore, the adoption of the architecture in
a real industrial scenario may lead to unanticipated challenges.
For this reason, the integration with current Industry 4.0
solutions is one of our targeted next steps.

ACKNOWLEDGMENT

This work was funded by the Bavarian Ministry for Eco-
nomic Affairs, Regional Development and Energy as part of
a project to support the thematic development of the Institute
for Cognitive Systems.

REFERENCES

[1] Keliang Zhou, Taigang Liu, and Lifeng Zhou. Industry 4.0: Towards
future industrial opportunities and challenges. In 2015 12th International
conference on fuzzy systems and knowledge discovery (FSKD), pages
2147–2152. IEEE, 2015.

[2] Emanuel Trunzer, Iris Kirchen, Jens Folmer, Gennadiy Koltun, and
Birgit Vogel-Heuser. A flexible architecture for data mining from
heterogeneous data sources in automated production systems. In 2017
IEEE International Conference on Industrial Technology (ICIT), pages
1106–1111. IEEE, 2017.

[3] Jakub Konečnỳ, H Brendan McMahan, Felix X Yu, Peter Richtárik,
Ananda Theertha Suresh, and Dave Bacon. Federated learning:
Strategies for improving communication efficiency. arXiv preprint
arXiv:1610.05492, 2016.

[4] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and
Blaise Aguera y Arcas. Communication-efficient learning of deep
networks from decentralized data. In Artificial Intelligence and Statistics,
pages 1273–1282. PMLR, 2017.

[5] Jeffrey O Kephart and David M Chess. The vision of autonomic
computing. Computer, 36(1):41–50, 2003.

[6] Constantin Wagner, Julian Grothoff, Ulrich Epple, Rainer Drath, So-
mayeh Malakuti, Sten Grüner, Michael Hoffmeister, and Patrick Zimer-
mann. The role of the industry 4.0 asset administration shell and
the digital twin during the life cycle of a plant. In 2017 22nd
IEEE International Conference on Emerging Technologies and Factory
Automation (ETFA), pages 1–8. IEEE, 2017.

[7] Emanuel Trunzer, Ambra Calà, Paulo Leitão, Michael Gepp, Jakob
Kinghorst, Arndt Lüder, Hubertus Schauerte, Markus Reifferscheid, and
Birgit Vogel-Heuser. System architectures for industrie 4.0 applications.
Production Engineering, 13(3-4):247–257, 2019.

[8] Matti Yli-Ojanperä, Seppo Sierla, Nikolaos Papakonstantinou, and Va-
leriy Vyatkin. Adapting an agile manufacturing concept to the reference
architecture model industry 4.0: A survey and case study. Journal of
Industrial Information Integration, 15:147–160, 2019.

[9] Tarik Terzimehic, Monika Wenger, Alois Zoitl, Andreas Bayha, Klaus
Becker, Thorsten Müller, and Hubertus Schauerte. Towards an industry
4.0 compliant control software architecture using iec 61499 & opc ua.
In 2017 22nd IEEE International Conference on Emerging Technologies
and Factory Automation (ETFA), pages 1–4. IEEE, 2017.

[10] Karsten Schweichhart. Reference architectural model industrie 4.0 (rami
4.0). An Introduction. Available online: https://www. plattform-i40. de
I, 40, 2016.

[11] Thomas Kuhn, Pablo Oliveira Antonino, and Frank Schnicke. Industrie
4.0 virtual automation bus architecture. In European Conference on
Software Architecture, pages 477–489. Springer, 2020.

[12] Emanuel Trunzer, Simon Lötzerich, and Birgit Vogel-Heuser. Concept
and implementation of a software architecture for unifying data transfer
in automated production systems. In IMPROVE-Innovative Modelling
Approaches for Production Systems to Raise Validatable Efficiency,
pages 1–17. Springer Vieweg, Berlin, Heidelberg, 2018.

[13] Danny Weyns. Software engineering of self-adaptive systems: an
organised tour and future challenges. Chapter in Handbook of Software
Engineering, 2017.

[14] Danny Weyns, Nelly Bencomo, Radu Calinescu, Javier Camara, Carlo
Ghezzi, Vincenzo Grassi, Lars Grunske, Paola Inverardi, Jean-Marc
Jezequel, Sam Malek, et al. Perpetual assurances for self-adaptive sys-
tems. In Software Engineering for Self-Adaptive Systems III. Assurances,
pages 31–63. Springer, 2017.

[15] Federico Quin, Thomas Bamelis, Singh Buttar Sarpreet, and Sam
Michiels. Efficient analysis of large adaptation spaces in self-adaptive
systems using machine learning. In 2019 IEEE/ACM 14th International
Symposium on Software Engineering for Adaptive and Self-Managing
Systems (SEAMS), pages 1–12. IEEE, 2019.

[16] Jeroen Van Der Donckt, Danny Weyns, Federico Quin, Jonas Van
Der Donckt, and Sam Michiels. Applying deep learning to reduce
large adaptation spaces of self-adaptive systems with multiple types of
goals. In Proceedings of the IEEE/ACM 15th International Symposium
on Software Engineering for Adaptive and Self-Managing Systems, pages
20–30, 2020.

[17] Ana Petrovska, Sergio Quijano, Ilias Gerostathopoulos, and Alexander
Pretschner. Knowledge aggregation with subjective logic in multi-agent
self-adaptive cyber-physical systems. SEAMS ’20, 2020.

[18] Avishek Ghosh, Justin Hong, Dong Yin, and Kannan Ramchandran.
Robust federated learning in a heterogeneous environment. arXiv
preprint arXiv:1906.06629, 2019.

[19] Felix Sattler, Klaus-Robert Müller, and Wojciech Samek. Clustered
federated learning: Model-agnostic distributed multitask optimization
under privacy constraints. IEEE Transactions on Neural Networks and
Learning Systems, 2020.

[20] Shiqiang Wang, Tiffany Tuor, Theodoros Salonidis, Kin K Leung,
Christian Makaya, Ting He, and Kevin Chan. Adaptive federated
learning in resource constrained edge computing systems. IEEE Journal
on Selected Areas in Communications, 37(6):1205–1221, 2019.

[21] Mathias Bürger, Giuseppe Notarstefano, Francesco Bullo, and Frank
Allgöwer. A distributed simplex algorithm for degenerate linear pro-
grams and multi-agent assignments. Automatica, 48(9):2298–2304,
2012.

[22] Dimitri P Bertsekas. The auction algorithm: A distributed relaxation
method for the assignment problem. Annals of operations research,
14(1):105–123, 1988.

[23] Dimitri P Bertsekas. Network optimization: continuous and discrete
models. Athena Scientific Belmont, MA, 1998.

[24] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning,
volume 1. The MIT Press, 2016.

	Introduction
	Fundamentals and Related Work
	Industry 4.0
	Self-Adaptation
	Federated Learning

	Framework for Federated Learning
	Problem formulation
	Decentralized optimization

	Self-Adaptive Architecture for Federated Learning
	Evaluation
	Setup
	Results and Discussions

	Conclusions and Outlook
	References

