

Quantization Considerations of Dense Layers in

Convolutional Neural Networks for Resistive

Crossbar Implementation

Lei Zhang

Circuits and Systems

Fraunhofer Research Institution for Microsystems and Solid

State Technologies EMFT

Munich, Germany

lei.zhang@emft.fraunhofer.de

Frank Vanselow

Circuits and Systems

Fraunhofer Research Institution for Microsystems and Solid

State Technologies EMFT

Munich, Germany

frank.venselow@emft.fraunhofer.de

David Borggreve

Circuits and Systems

Fraunhofer Research Institution for Microsystems and Solid

State Technologies EMFT

Munich, Germany

david.borggreve@emft.fraunhofer.de

Ralf Brederlow

Chair of Circuit Design

Technical University of Munich

Munich, Germany

r.brederlow@tum.de

Abstract— The accuracy and power consumption of resistive

crossbar circuits in use for neuromorphic computing is

restricted by the process variation of the resistance-switching

(memristive) device and the power overhead of the mixed-signal

circuits, such as analog-digital converters (ADCs) and digital-

analog converters (DACs). Reducing the signal- and weight-

resolution can improve the robustness against process variation,

relax requirements for mixed-signal devices, and simplify the

implementation of crossbar circuits. This work aims to establish

a methodology to achieve low-resolution dense layers for CNNs

in terms of network architecture selection and quantization

method. To this end, this work studies the impact of the dense

layer configuration on the required resolution for its inputs and

weights in a small convolutional neural network (CNN). This

analysis shows that carefully selecting the network architecture

for the dense layer can significantly reduce the required

resolution for its input signals and weights. This work reviews

criteria for appropriate architecture selection and the

quantization method for the binary and ternary neural network

(BNN and TNN) to reduce the weight resolution of CNN dense

layers. Furthermore, this work presents a method to reduce the

input resolution for the dense layer down to one bit by analyzing

the distribution of the input values. A small CNN for inference

with one-bit quantization for inputs signals and weights can be

realized with only 0.68% accuracy degradation for MNIST

Dataset.

Keywords—Convolutional Neural Network, Neuromorphic

Computing Hardware, Approximate Computing, Neural Network

Quantization, Resistive Crossbar, Memristive Devices

I. INTRODUCTION

The resistive crossbar circuit has received much attention
in recent years due to its analog property, which performs the
matrix-vector multiplication by following Kirchhoff’s law and
offers a sharply reduced computing time complexity of O (1)
for matrix-vector multiplication in comparison to the time
complexity of the digital computing method O(N^2) [1]. It
means that the computation time of crossbar is independent of
amount of inputs and outputs. With the benefit of using this
analog property, the application of resistive crossbar circuits

has been extended to not only the matrix-vector
multiplication, convolution for the dense layer and
convolutional layer but also the application level for Discrete
Fourier Transform [2] and image processing [3].

There are still many design considerations to be taken into
account during the circuit implementation due to process
variations and the power overhead of mixed-signal devices.
Notably, the process variation has been continuously
confining the scalability of most implementations of the
memristive array [4] [5]. To mitigate the effects of the process
variation of devices, either the in-situ learning (e.g. [6]) or the
closed-loop verification algorithm is utilized so far for finding
an optimal weight mapping value for memristive devices (e.g.
[7], [8]). Moreover, the power overhead of mixed-signal
devices cannot be neglected during the design. In ISAAC [9],
which consists of many analog cores to compute convolution
and matrix-vector multiplication, ADCs and DACs contribute
more than 60% to the total power consumption [9].

Recently, digital neuromorphic computing hardware with
approximate computing techniques have generated
considerable research interest due to sharply reduced
computation complexity. The research shows that the binary
neural network (BNN) [10] and ternary neural network (TNN)
[11], which contain only binary weights (-1, +1) and ternary
weights (-1, 0, +1) respectively, can achieve high inference
accuracy and accelerate the computing speed of the digital
core using digital implementations with XNOR’s [12]. It
indicates that a good hardware/software co-design not only
improves the computation speed but also reduces the design
complexity for the digital circuit implementation.

The concept of hardware/software co-design can also be
performed for the analog/mixed-signal design to enable an
optimal circuit implementation. Especially mixed-signal
circuits and memory cells may benefit from these approximate
computing techniques, by not only reducing the resolution
requirements, but adding robustness to process variability,
allowing for more power and area efficient design options
using relatively simple circuit blocks. In our case, a hardware

accelerator for CNNs is investigated, in which the full-precise
convolutional layers and the low-resolution dense layers will
be implemented with digital and analog circuits, respectively.
To this end, this work aims to provide some guidelines for
selecting proper dense layer architecture and using
quantization methods to simplify the implementation of the
dense layer with crossbar circuits. In section II, this work
explains roughly the basic idea of the resistive crossbar circuit.
The results of experimental explorations for the impact of the
dense layer’s configuration are discussed in section III. In
section IV, this work reviews quantization techniques for the
BNN/TNN and proposes a 1-bit quantization method for
inputs of the dense layer in CNNs based on analyzing its
probability distribution. In the end, section V will summarize
the observations as a conclusion.

II. RESISTIVE CROSSBAR CIRCUIT

The crossbar circuit is a well-known circuit architecture
because of its widespread use for memory implementation.
Every memory cell connects to two perpendicular wires,
which are called bit-line (BL) and word-line (WL). By
activating a certain BL and WL, the memory can be accessed
for writing and reading. Inspired by this, densely located
neurons with high parallelism can be realized with wires as
axons and dendrites, and resistance-switching cells (e.g.
memristor) as elementary synapses [13].

Fig.1 shows a possible arrangement of the resistive
crossbar circuit for the dense layer. The matrix-vector
multiplication for the dense layer can be performed by
applying Ohm’s law and Kirchhoff’s laws on the crossbar
circuit as following: Firstly, the DAC𝑖 converts the digital
signal to the analog voltage 𝑉𝑖𝑛,𝑖 as input for the dense layer,

where the input voltage vector 𝑉𝑖𝑛 can be written as Eq. (1).

 𝑉𝑖𝑛 = [

𝑉𝑖𝑛,1

𝑉𝑖𝑛,2

⋮
𝑉𝑖𝑛,𝑚

] (1)

Then, the current, which flow through resistance-
switching devices (memristors), can be calculated as the
product of the input voltage vector and the memristor
conductance matrix G. (Eq. (2).)

 𝐺 = [

𝐺1,1 ⋯ 𝐺1,𝑛

⋮ ⋱ ⋮
𝐺𝑚,1 ⋯ 𝐺𝑚,𝑛

] (2)

Output current 𝐼 can be written as the product of the
matrix-vector multiplication of the conductance matrix G and
input voltage vector 𝑉𝑖𝑛by neglecting the sneak-path problem
[14] and the floating voltage at the output (Eq. (3)). The output
of the crossbar circuit can be fed into either an analog or a
digital activation function. In latter case, additional ADC’s are
needed.

𝐼 = 𝐺𝑇 ∙ 𝑉𝑖𝑛 = [

𝐺1,1 ⋯ 𝐺𝑚,1

⋮ ⋱ ⋮
𝐺1,𝑛 ⋯ 𝐺𝑚,𝑛

] ∙ [

𝑉𝑖𝑛,1

𝑉𝑖𝑛,2

⋮
𝑉𝑖𝑛,𝑚

] (3)

However, the one-to-one mapping of the weight values
from neural network to the crossbar circuit does not result in
the expected output, because of the non-idealities of the
memory cell [7]. Overcoming this problem requires an
optimal mapping algorithm, which converts weights to proper
conductance. Additionally, high-resolution DACs and ADCs
require a significant amount of energy per conversion [9]. The
low-resolution representation of the weight and input strongly
simplifies the mapping algorithm, making weight storage
more robust and decreasing the required resolution or rather
the power overhead of the DACs and ADCs. By selecting an
optimal network configuration of the dense layers, a lower-
resolution implementation can be made at a limited overall
inference accuracy penalty. The next section will explore the
impact of architecture on the required resolution for weights
and inputs of dense layers in CNNs.

III. EXPLORATION OF THE ARCHITECTURE

Fig.2 illustrates the initial configuration of the CNN,
which consists of 2 convolutional layers with respectively 32
and 64 extracted features, a max-pooling layer for every
convolutional layer and 2 dense layers with 128 and 10

This project has received funding partly from the Electronics Components

and Systems for European Leadership Joint Undertaking under grant

agreement No 826655. This Joint Undertaking receives support from the
European Union’s Horizon 2020 research and innovation program from

Belgium, France, Germany, Switzerland and the Netherlands. This project is

also partly funded by German Federal Ministry of Education and Research
(BMBF) under Grant No 16ESE0407.

Fig. 1. The basic concept for crossbar implementation of matrix-vector

multiplication, which might be used for the dense layer in our design. The
DACs convert the digital signals from the convolutional layer to analog

voltages, and the multiplication can be performed by applying the ohm’s

law for every programmable resistor (memristor). The resulted current is
the product of the multiplication. If required, the output current can

converted back to digital value by using ADCs.

Fig. 2. The initial configuration of the convolutional neural network,
which is used in this experiment and consists of two convolutional layers

and two dense layers with 128 neurons and 10 neurons, respectively. Relu

and Sigmoid functions are used as activation function for convolutional

layers and dense layers, respectively.

neurons as the hidden layer and output layer. In order to
explore the impact of the dense layer’s configuration on the
entire network’s accuracy, this CNN is trained with different
widths and depths of the dense layer to recognize the
handwritten digits from the MNIST dataset [15]. The width
and depth denote the amount of the neurons in the hidden layer
and the number of the layer as the dense layer, respectively.

Table I shows groups of configurations studied according
to the width and depth of the dense layer. The following cases
have been studied: The Initial dense layer’s configuration 128-
10 is the reference from which the two groups deviate in Depth
and Width, respectively. The Depth-0 case is a special case,
since it does not have any hidden layer, and the output of the
last convolutional layer connects directly with a dense output
layer.

In this experiment, the 3-bits means that only the first 3
bits of the original value is used, instead of using full-precision
values.

A. Accuracy vs. Width and Depth of the dense layer

The first experiment compares the impact of the different
dense layer configurations on the total accuracy of this CNN
for MNIST. Fig.3 indicates that the accuracy of the entire
CNN is rarely dependent on the width and depth of the dense
layer. Even if the classification is performed with only one
dense layer (Depth 0), the accuracy remains 99.42%, which is
just 0.09% less than maximal accuracy with Width 2.
Additionally, the deeper or wider dense layer does not help
too much to improve the network accuracy.

B. Accuracy vs. weight with limited resolution

Although the accuracy of the entire CNN does not change
too much, the required resolution for weights and inputs of the
dense layer still varies in terms of keeping possible small
accuracy degradation according to the distinctive dense layer
configurations.

Fig.4(a) shows the accuracy degradation of networks with
Tab.1 listed configurations if full-precise weights of dense
layers are converted to 2-, 3- and 4-bits. The result illustrates
that dense layers require at least 3-bits weights to maintain
network works since the accuracy degradation reaches at least
22.17% with 2-bits weights by using Width 1. With the deeper
network, the accuracy degradation fluctuates slightly, and no
reduction of the required resolution for weights can be
observed.

 On the other hand, the wider structure for the 2-bits
weighted dense layer does not necessarily reduce the accuracy
degradation, either. As illustrated in Fig.4(a), two-layers dense
layer with 256 neurons (Width 1) in the hidden layer yields
the smallest accuracy degradation of 22.17%. If more neurons
are arranged in the hidden layer of this configuration, such as

Width 2 and Width 3, the accuracy degradation grows even. It
leads to that only a proper amount of parameters or neurons
reduces accuracy degradation if weights are converted to low
resolution.

C. Accuracy vs. input with limited resolution

If the weight of the dense layer has a full-precise resolution,
the required resolution for the input of the dense layer is
shown as Fig.4(b) according to its configurations. Fig.4(b)
illustrates that Depth 0 achieves the largest accuracy
degradation of 27.49% and the deeper structures (Depth 1 and
Depth 2) have generally less accuracy degradation if 2-bit
inputs are used for all. Similar to the previous experiment for
the resolution of weights, a proper amount of neurons in the
hidden layer (Width 2) can result in less accuracy degradation
if a 2-layer dense layer is used.

The observation points out that it is better to pick deeper
structure in order to have less required resolution for inputs.

D. Accuracy vs. limited resolution for both weights and

inputs

In this experiment, the resolution for both weights and
inputs is limited in order to investigate how few bits can be
used for weights and inputs of the dense layer without huge
accuracy degradation. The resolution of the weight is fixed as
3-bits, which has maximal accuracy degradation of 2.69%, is
observed as Fig.4(a). However, if a 2-bits resolution limitation
is applied to the input at the same time, Fig.4(c) illustrates that
the minimal accuracy degradation can achieve 2.93% with
Width 2.

The deeper structures Depth 2 and Depth 3 generally have
less accuracy degradation around 4% in comparison to
shallower structures except Width 2, as illustrated in Fig.4(c).
In order to achieve less accuracy degradation, at least 3-bits
inputs should be used. In this case, Depth 0 still has 14.45%
accuracy degradation while other configurations have less
than 1.6% accuracy degradation.

Generally, at least 3-bits weights and 3-bits inputs are
required for the dense layer of this CNN for MNIST
applications, in case no huge accuracy degradation shall
occur. Fewer bits can be used if the structure is carefully set
up.

E. Accuracy vs. BNN and TNN

Another way to further reducing the required resolution for
weights is by considering the limited resolution during the
training phase. For the BNN and TNN presented by [10] and
[11], networks are trained with only binary (1-bit) and ternary
(2-bits) weights, respectively. To this end, all weights with
real value WR should be mapped to either a binary WB or a

TABLE I. THE CONFIGURATIONS OF THE DENSE LAYER IN CNN

Group: Depth

Name Depth 0 Initial Depth 2 Depth 3

Configuration
of dense layer

10

128 – 10 128 – 256
– 10

128 – 256
– 128 – 10

Group: Width

Name Initial Width 1 Width 2 Width 3

Neurons 128 – 10 256 – 10 512 – 10 1024 – 10

Fig. 3. A comparison for different configuration of the dense layer of

CNN is shown in terms of the total accuracy of the entire CNN.

ternary WT value by using the sign function (4) or modified
threshold sign function (5).

 𝑊𝑏 = 𝑠𝑖𝑔𝑛(𝑊𝑟) ()

 𝑊𝑇 = {
1

−1

0

𝑊𝑅 ≥ 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

𝑊𝑅 ≤ −𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 ()

However, the weight updating for those networks is not
similar to the normal training process, because the derivative
of sign function (4) is zero for all non-zero inputs and the sign
function is not differentiable at zero. Similarly, the function
(5) faces the same problem that its derivative is always zero
for all value except the positive and negative threshold value
as the input. It means that the direct weight updating by using
the derivative of those functions is unfortunately not possible.
The Straight-Though Estimator (STE) [16] can solve this
problem by updating only the weight with real value WT and
neglecting the sign function, which maps the real weight to
binary and ternary weights.

Fig.4(f) shows that the achieved accuracy by using BNN
and TNN for the dense layer is from 97.09% to 99.33%, which
is very close to the achieved accuracy by using the
conventional dense layer. As Fig.4(f) illustrated, the deeper

binary and ternary dense layer configurations have worse
performance than the shallow structure.

Fig.4(d) and (e) illustrate that the accuracy degradation can
become larger if the limited resolution is applied to inputs of
the binary and ternary weighted dense layer. At least a 3-bits
input is needed for ternary weighted dense layer if the
accuracy degradation is expected around 1% to 2%.
Furthermore, this degradation becomes more obvious if the
binary-weighted dense layer is used. If the accuracy
degradation of the binary-weighted dense layer is not
supposed to be greater than 2%, at least 4-bits input should be
expected at the input because 3-bits input with BNN can still
achieve more than 2% accuracy degradation.

F. Short Summary

It is shown that the architecture of dense layers for CNN
applications is less critical regarding accuracy. Experiment A
illustrates that Depth 0, which has only ten parameters or
neurons at the output, can also perform the classification well.
However, Depth 0 has the most critical resolution
requirements for weights and inputs in comparison to other
experiment. Experiments B, C, D indicate that the deeper
structure of dense layers of CNNs can generally have fewer
bits for inputs and weights. Additionally, only a proper
amount of parameters or neurons of hidden layers can obtain
minimal accuracy degradation with limited resolution of
weights and inputs. This observation leads to the conclusion

Fig. 4. In this experimental exploration, the networks are trained with seven different configurations of dense layers. (a) and (b) shows the accuracy
degradations of the networks in comparison to initial accuracy if weights and inputs of their dense layer are converted to lower resolution, respectively. In

addition, while weights of dense layers are converted to 3-bits, (c) shows the accuracy degradation if inputs of dense layer are also converted to lower

resolution. (a), (b) and (c) result in that dense layers of CNNs require at least 3-bits weights and 3-bits input to keep reasonable accuracy in conventional way.
In order to further needed resolution for weights and inputs, the required resolution for weights can be reduced down to 1-bit by using BNN and TNN training

technique. However, even if BNN and TNN are applied, (d) and (e) illustrate that at least 3-bits resolution for inputs of dense layers is still needed. (f)

compares the accuracy of networks with binary and ternary dense layers to networks with conventional dense layers.

that the neural network, which has better generalization
ability, will also have a more relaxed requirement for the
resolution of weights and inputs.

At least 3-bits weights and 3-bits inputs are required to
keep accuracy by using the conventional method. However,
the resolution of weights can be reduced to 1 bit or 2 bits with
BNN and TNN technique, respectively. By using this
technique, 1-/2-bits weights and 3-bits inputs can be used
without large accuracy degradation according to Fig.4(d) and
(e).

From a conventional digital perspective, if such
configuration is implemented with a crossbar circuit and the
output signal of crossbars should be recovered without any
loss, an ADC with a certain resolution is needed and the
required resolution can be written as Eq.(6) [9][17].

 𝑧 = {
 𝑙𝑜𝑔2𝑑 + 𝑤 + 𝑙 𝑤 > 1 𝑎𝑛𝑑 𝑙 > 1

𝑙𝑜𝑔2𝑑 + 𝑤 + 𝑙 − 1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 ()

In Eq.(6), z denotes the width of the output signal, d is the
row of the memristive crossbar, w and l represent the width of
weights and inputs, respectively. The 1- and 2-bits resolution
can be reduced for the ADC by using BNN and TNN training
techniques because the weights resolution can be decreased
down to 1- and 2-bits, respectively.

IV. FULLY ONE-BIT DENSE LAYER IN CNN

As observed before, the binary dense layer of CNNs may
need at least 3-bits or 4-bits input to ensure that the accuracy
does not decrease too much. To decrease the required
resolution for inputs, this section investigates the value
distribution of the input with Configuration Initial in order to
find a proper threshold value to binarize inputs.

Fig.5(a) illustrates that almost one third of values locates
at zero and therefore, it cannot match any meaningful
probability distribution at all. To keep only useful data, all
zeros should be removed because the zeros do not needed to
be converted. Fig.6(b) shows that the input value for the dense
layer without zeros can exhibit an exponential distribution
approximately. Typically, the exponential distribution can be
written as Eq. (7).

 𝑓𝛽(𝑥) = {

1

𝛽
𝑒−(𝑥−𝑥0)/𝛽 𝑥 ≥ 𝑥0

0 𝑥 < 𝑥0

 ()

In Eq. (7),  and x0 represent the scale parameter and
location parameter of the exponential distribution,
respectively. Fig.5(b) shows a fitted exponential function

(purple line) with  equal to 6.3375 and x0 equal to 3.28E-04,
which matches very well with the distribution of the collected
input values. The mean and third quartile are selected as the
threshold value to binarize inputs. The mean is the expected
value of the exponential distribution and exactly equal to the

scale parameter , and the third quartile splits the amount of
the value to 3:1. All input values, which are greater than the
threshold value, are interpreted as one and the values, which
are less than the threshold value, are converted to zero. The
test accuracy remains 98.22% and 98.23% for mean and third
quantile as the threshold value, respectively.

In order to verify the general application of this method,
the binary, ternary, and conventional 3-bits weighted dense
layer of the CNN are tested and compared, as shown in Fig.6.
Fig.6(a) – (c) indicate that the binarized input can be used for
any configurations of the dense layer, and the binarized input
can achieve less accuracy degradation in comparison to the
conventional 3-bits input.

Additionally, Fig.6 (a) and (b) show that this method can
achieve maximal 1.78% accuracy degradation for the binary
and ternary dense layer of CNN in comparison to 4.77%
accuracy degradation with the conventional 3-bits quantized
input and BNN, respectively. Fig.6 (c) illustrates that this
method can also be applied for the conventionally 3-bits
weighted dense layer and exhibits only 1.24% maximal

Fig. 5. The inputs of dense layer are collected. (a) shows the original

distribution of values, that most values are located at 0. Then, all zeros are

removed. (b) input values (without zeros) exhibit an exponentional

distribution. The purple line is the resolved exponentional function.

Fig. 6. The proposed quantization is used for inputs of the dense layer with

different configurations. (a), (b) and (c) compare the accuracy degradation
of the CNNs if those methods are applied to original pre-trained binar

(BNN), ternary (TNN) and conventionally 3-bits quantized dense layer of

CNNs. It results in that a fully 1-bits (both inputs and weights) dense layer
of the CNN can be achieved by using porposed method and only litte

accuracy degradation occurs for MNIST Dataset.

accuracy degradation for Depth 0 in comparison to 14.45%
accuracy degradation with the same configuration. It indicates
that the model can still keep accuracy if the binary input and
binary weight are used in a dense layer, which can strongly
simplify the required model for the dense layer of CNN and
implementation with crossbar circuits. Furthermore, as shown
in Fig.6(a) and (b), this method can gain a big advantage for
the binary and ternary dense layer of CNN, because this
method can generally achieve much less accuracy degradation
in comparison to conventionally 3-bits quantized input.

As illustrated in Fig.6 (a) and (b), the deeper structure,
Depth 3, does not have much less accuracy degradation using
this method in contrast to others. The binarized input seems to
introduce unavoidably noise to the model. The noise could be
transferred into the next layer, leading to relatively more
accuracy degradation if more layers are used.

To verify if this method could be applied not only to the
MNIST dataset, further three models are built for the CIFAR-
10 and CIFAR-100 dataset. Two models with six
convolutional layers for 128 features and two binary weighted
dense layers are trained for CIFAR-10 by using the BNN
technique. The difference is that they have 128 neurons and
256 neurons in the hidden layer, respectively. A model with
six convolutional layers for 192 features and two with BNN
technique 2-bits weighted dense layers, which have 256
neurons and 100 neurons in the hidden layer and output layer
respectively, is trained for CIFAR-100. For comparison, an
MNIST’s model with Configuration Initial and the fully
binarized dense layer is used.

Table II shows that the model CIFAR-10(128) has the
largest accuracy degradation of 3.86% and CIFAR-10(256)
has 3.10% accuracy degradation. Because of limited
computational resources, only a simple model is trained for
CIFAR-100 and therefore, CIFAR-100 has only 32.74%
accuracy in the end. For CIFAR-100, the binarized input and
weight lead to only 1.96% accuracy degradation from this
comparison. We can conclude that little accuracy degradation
can occurs if a fully one-bit dense layer of CNN is used. At
least, this should work with 6-layers convolutional neural
networks for CIFAR and MNIST datasets. If such accuracy
degradation is acceptable for the final implementation, this
method in combination with BNN technique can be used to
capture a fully 1-bit dense layer, which means dense layer with
1-bit inputs and 1-bit weights. For such dense layer, only 8-
bits ADCs and 1-bit DACs are required to recover the data
without any loss in comparison to 12-bits ADCs and 3-bits
DACs for binary and ternary dense layer, 13-bits ADCs and
3-bits DACs for conventionally quantized dense layer if a 128
rows crossbar is assumed.

V. CONCLUSION

This work aims to provide a guideline for simplifying the
implementation of dense layers of CNNs with crossbar
circuits regarding selecting the proper configuration of dense
layers in CNNs in combination of different quantization
methods. The results show that starting with the appropriate
configuration of dense layers, a trained model can be adapted
to a reduced resolution model with both the weights and inputs
of dense layers reduced to 3-bits and maintain reasonable
accuracy without the need for retraining. Based on a BNN
training technique and input value distribution analysis, the
required resolution can further be reduced down to 1-bit. The

result suggests that the implementation of dense layer with
crossbar circuits can be strongly simplified by considering
architecture selection and quantization before final
implementation.

REFERENCES

[1] T. Gokmen and Y. Vlasov, Acceleration of Deep Neural Network
Training with Resistive Cross-Point Devices: Design Consideration,
vol.10, Frontiers in Neuroscience, 2016, pp.330.

[2] M. Hu and J. P. Strachan, Accelerating Discrete Fourier Transforms
with dot-product engine, IEEE International Conference on Rebooting
Computing, San Diego, CA, 2016, pp. 1-5

[3] C. Li et al, Analogue signal and image processing with large memristor
crossbars, Nature Electronics, vol.1, 2019, pp. 52-59

[4] Q. Xia and J. Yang, Memristive Crossbar Arrays for Brain-Inspired
Computing, Nature Materials, 18, 2019, pp.309-323

[5] I. Charkraborty, D. Roy and K. Roy, Technology Aware Training in
Memristive Neuromorphic System for Nonideal Synaptic Crossbars,
IEEE Transactions on Emerging Topics in Computational Intelligence,
vol.2, 2018, pp. 335-344

[6] M. Prezioso, F. Merrikh-Bayat, B. D. Hoskins, G. C. Adam, K. K.
Likharev and D.B. Strukov, Training and Operation of An Integrated
Neuromorphic Network based on Metal-Oxide Memristors, Nature
521, 2016, pp.61-64

[7] M. Hu et al, Dot-Product Engine for Neuromorphic Computing:
Programming 1T1M Crossbar to Acclerate Matrix-Vector
Multiplication, 53rd ACM/EDAC/IEEE Design Automation
Conference (DAC), Austin, TX, 2016, pp. 1-6.

[8] P. Gu et al, Technological Exploration of RRAM Crossbar Array for
Matrix-Vector Multiplication, the 20th Asia and South Pacific Design
Automation Conference, Chiba, 2015, pp. 106-111

[9] A. Shafiee et al, ISAAC: A Convolutional Neural Network Accelerator
with In-Situ Analog Arithmetic in Crossbars, ACM/IEEE 43rd Annual
International Symmposium on Computer Architecture (ISCA), Seoul,
2016, pp. 14-46

[10] M. Courbariaux, I. Hubara, D. Soudry, R. EI-Yaniv and Y. Bengio,
Binarized Neural Networks: Training Deep Neural Networks with
Weights and Activations Constrained to +1 or -1, arXiv preprint
arXiv:1602.02830, 2016

[11] C. Zhu, S. Han, H. Mao and W. J. Dally, Trained Ternary Quanzization,
arXiv preprint arXiv:1612.01064, 2016

[12] M. Rastegari, V. Ordonez, J. Redmon, A.Farhadi, XNOR-Net:
ImageNet Classification Using Binary Convolutional Neural
Networks, arXiv prerpint arXiv:1603.05279

[13] Konstantin. K. Likharev, CorssNet: Neuromorphic Hybrid
CMOS/Nanoelectronic Networks, Science of Advanced Materials, vol.
3, 2011, pp.322-331

[14] J. Zhou, K. Kim, W.Lu, Crossbar RRAM Arrays: Selector Device
Requirements During Read Operation, IEEE Transactions on Electron
Devices, vol.61, no.5, May 2017, pp. 1369-1376

[15] Y. LeCun, C. Cortes and C. J.C. Burges, The MNIST Database of
handwritten digits, http://yann.lecun.com/exdb/mnist/

[16] Y. Bengio, N. Leonard, A. Courville, Estimating or Propagting
Gradients Through Stochastic Neurons for Conditional Computation,
arXiv preprint arXiv:1308.3432

[17] S. Gupta, A. Agrawal, K.Gopalakrishnan, P. Narayanan, Deep
Learning with Limited Numerical Precision, arXiv preprint
arXiv:1502.02551

TABLE II. INPUT BINARIZATION WITH MEAN OF DISTRIBUTION

Application MNIST
CIFAR-

10 (128)

CIFAR-

10 (256)

CIFAR-

100

Test Accuracy with

binary dense layer
98,87% 72,73% 73,08% 32,74%

Accuracy with 1-bit

input
98,22% 68,87% 69,98% 30,78%

