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Abstract— The accuracy and power consumption of resistive 

crossbar circuits in use for neuromorphic computing is 

restricted by the process variation of the resistance-switching 

(memristive) device and the power overhead of the mixed-signal 

circuits, such as analog-digital converters (ADCs) and digital-

analog converters (DACs). Reducing the signal- and weight- 

resolution can improve the robustness against process variation, 

relax requirements for mixed-signal devices, and simplify the 

implementation of crossbar circuits. This work aims to establish 

a methodology to achieve low-resolution dense layers for CNNs 

in terms of network architecture selection and quantization 

method. To this end, this work studies the impact of the dense 

layer configuration on the required resolution for its inputs and 

weights in a small convolutional neural network (CNN). This 

analysis shows that carefully selecting the network architecture 

for the dense layer can significantly reduce the required 

resolution for its input signals and weights. This work reviews 

criteria for appropriate architecture selection and the 

quantization method for the binary and ternary neural network 

(BNN and TNN) to reduce the weight resolution of CNN dense 

layers. Furthermore, this work presents a method to reduce the 

input resolution for the dense layer down to one bit by analyzing 

the distribution of the input values. A small CNN for inference 

with one-bit quantization for inputs signals and weights can be 

realized with only 0.68% accuracy degradation for MNIST 

Dataset. 

Keywords—Convolutional Neural Network, Neuromorphic 

Computing Hardware, Approximate Computing, Neural Network 

Quantization, Resistive Crossbar, Memristive Devices 

I. INTRODUCTION 

The resistive crossbar circuit has received much attention 
in recent years due to its analog property, which performs the 
matrix-vector multiplication by following Kirchhoff’s law and 
offers a sharply reduced computing time complexity of O (1) 
for matrix-vector multiplication in comparison to the time 
complexity of the digital computing method O(N^2) [1]. It 
means that the computation time of crossbar is independent of 
amount of inputs and outputs. With the benefit of using this 
analog property, the application of resistive crossbar circuits 

has been extended to not only the matrix-vector 
multiplication, convolution for the dense layer and 
convolutional layer but also the application level for Discrete 
Fourier Transform [2] and image processing [3]. 

There are still many design considerations to be taken into 
account during the circuit implementation due to process 
variations and the power overhead of mixed-signal devices. 
Notably, the process variation has been continuously 
confining the scalability of most implementations of the 
memristive array [4] [5]. To mitigate the effects of the process 
variation of devices, either the in-situ learning (e.g.  [6]) or the 
closed-loop verification algorithm is utilized so far for finding 
an optimal weight mapping value for memristive devices (e.g. 
[7], [8]). Moreover, the power overhead of mixed-signal 
devices cannot be neglected during the design. In ISAAC [9], 
which consists of many analog cores to compute convolution 
and matrix-vector multiplication, ADCs and DACs contribute 
more than 60% to the total power consumption [9].  

Recently, digital neuromorphic computing hardware with 
approximate computing techniques have generated 
considerable research interest due to sharply reduced 
computation complexity. The research shows that the binary 
neural network (BNN) [10] and ternary neural network (TNN) 
[11], which contain only binary weights (-1, +1) and ternary 
weights (-1, 0, +1) respectively, can achieve high inference 
accuracy and accelerate the computing speed of the digital 
core using digital implementations with XNOR’s [12]. It 
indicates that a good hardware/software co-design not only 
improves the computation speed but also reduces the design 
complexity for the digital circuit implementation. 

The concept of hardware/software co-design can also be 
performed for the analog/mixed-signal design to enable an 
optimal circuit implementation. Especially mixed-signal 
circuits and memory cells may benefit from these approximate 
computing techniques, by not only reducing the resolution 
requirements, but adding robustness to process variability, 
allowing for more power and area efficient design options 
using relatively simple circuit blocks. In our case, a hardware 



 

 

accelerator for CNNs is investigated, in which the full-precise 
convolutional layers and the low-resolution dense layers will 
be implemented with digital and analog circuits, respectively. 
To this end, this work aims to provide some guidelines for 
selecting proper dense layer architecture and using 
quantization methods to simplify the implementation of the 
dense layer with crossbar circuits. In section II, this work 
explains roughly the basic idea of the resistive crossbar circuit. 
The results of experimental explorations for the impact of the 
dense layer’s configuration are discussed in section III. In 
section IV, this work reviews quantization techniques for the 
BNN/TNN and proposes a 1-bit quantization method for 
inputs of the dense layer in CNNs based on analyzing its 
probability distribution. In the end, section V will summarize 
the observations as a conclusion. 

II. RESISTIVE CROSSBAR CIRCUIT 

The crossbar circuit is a well-known circuit architecture 
because of its widespread use for memory implementation. 
Every memory cell connects to two perpendicular wires, 
which are called bit-line (BL) and word-line (WL). By 
activating a certain BL and WL, the memory can be accessed 
for writing and reading. Inspired by this, densely located 
neurons with high parallelism can be realized with wires as 
axons and dendrites, and resistance-switching cells (e.g. 
memristor) as elementary synapses [13].  

Fig.1 shows a possible arrangement of the resistive 
crossbar circuit for the dense layer. The matrix-vector 
multiplication for the dense layer can be performed by 
applying Ohm’s law and Kirchhoff’s laws on the crossbar 
circuit as following: Firstly, the DAC𝑖  converts the digital 
signal to the analog voltage 𝑉𝑖𝑛,𝑖 as input for the dense layer, 

where the input voltage vector  𝑉𝑖𝑛 can be written as Eq. (1). 

   𝑉𝑖𝑛 = [

𝑉𝑖𝑛,1

𝑉𝑖𝑛,2

⋮
𝑉𝑖𝑛,𝑚

]   (1) 

Then, the current, which flow through resistance-
switching devices (memristors), can be calculated as the 
product of the input voltage vector and the memristor 
conductance matrix G. (Eq. (2).) 

  𝐺 =  [

𝐺1,1 ⋯ 𝐺1,𝑛

⋮ ⋱ ⋮
𝐺𝑚,1 ⋯ 𝐺𝑚,𝑛

]        (2) 

Output current 𝐼  can be written as the product of the 
matrix-vector multiplication of the conductance matrix G and 
input voltage vector 𝑉𝑖𝑛by neglecting the sneak-path problem 
[14] and the floating voltage at the output (Eq. (3)). The output 
of the crossbar circuit can be fed into either an analog or a 
digital activation function. In latter case, additional ADC’s are 
needed. 

𝐼 =  𝐺𝑇 ∙ 𝑉𝑖𝑛 =  [

𝐺1,1 ⋯ 𝐺𝑚,1

⋮ ⋱ ⋮
𝐺1,𝑛 ⋯ 𝐺𝑚,𝑛

]  ∙  [

𝑉𝑖𝑛,1

𝑉𝑖𝑛,2

⋮
𝑉𝑖𝑛,𝑚

] (3) 

However, the one-to-one mapping of the weight values 
from neural network to the crossbar circuit does not result in 
the expected output, because of the non-idealities of the 
memory cell [7]. Overcoming this problem requires an 
optimal mapping algorithm, which converts weights to proper 
conductance. Additionally, high-resolution DACs and ADCs 
require a significant amount of energy per conversion [9]. The 
low-resolution representation of the weight and input strongly 
simplifies the mapping algorithm, making weight storage 
more robust and decreasing the required resolution or rather 
the power overhead of the DACs and ADCs. By selecting an 
optimal network configuration of the dense layers, a lower-
resolution implementation can be made at a limited overall 
inference accuracy penalty. The next section will explore the 
impact of architecture on the required resolution for weights 
and inputs of dense layers in CNNs. 

III. EXPLORATION OF THE ARCHITECTURE 

Fig.2 illustrates the initial configuration of the CNN, 
which consists of 2 convolutional layers with respectively 32 
and 64 extracted features, a max-pooling layer for every 
convolutional layer and 2 dense layers with 128 and 10 
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Fig. 1. The basic concept for crossbar implementation of matrix-vector 

multiplication, which might be used for the dense layer in our design. The 
DACs convert the digital signals from the convolutional layer to analog 

voltages, and the multiplication can be performed by applying the ohm’s 

law for every programmable resistor (memristor). The resulted current is 
the product of the multiplication. If required, the output current can 

converted back to digital value by using ADCs. 

 

Fig. 2. The initial configuration of the convolutional neural network, 
which is used in this experiment and consists of two convolutional layers 

and two dense layers with 128 neurons and 10 neurons, respectively.  Relu 

and Sigmoid functions are used as activation function for convolutional 

layers and dense layers, respectively. 



 

 

neurons as the hidden layer and output layer. In order to 
explore the impact of the dense layer’s configuration on the 
entire network’s accuracy, this CNN is trained with different 
widths and depths of the dense layer to recognize the 
handwritten digits from the MNIST dataset [15]. The width 
and depth denote the amount of the neurons in the hidden layer 
and the number of the layer as the dense layer, respectively. 

Table I shows groups of configurations studied according 
to the width and depth of the dense layer. The following cases 
have been studied: The Initial dense layer’s configuration 128-
10 is the reference from which the two groups deviate in Depth 
and Width, respectively. The Depth-0 case is a special case, 
since it does not have any hidden layer, and the output of the 
last convolutional layer connects directly with a dense output 
layer.  

In this experiment, the 3-bits means that only the first 3 
bits of the original value is used, instead of using full-precision 
values. 

A. Accuracy vs. Width and Depth of the dense layer 

The first experiment compares the impact of the different 
dense layer configurations on the total accuracy of this CNN 
for MNIST. Fig.3 indicates that the accuracy of the entire 
CNN is rarely dependent on the width and depth of the dense 
layer. Even if the classification is performed with only one 
dense layer (Depth 0), the accuracy remains 99.42%, which is 
just 0.09% less than maximal accuracy with Width 2.  
Additionally, the deeper or wider dense layer does not help 
too much to improve the network accuracy. 

B. Accuracy vs. weight with limited resolution 

Although the accuracy of the entire CNN does not change 
too much, the required resolution for weights and inputs of the 
dense layer still varies in terms of keeping possible small 
accuracy degradation according to the distinctive dense layer 
configurations. 

Fig.4(a) shows the accuracy degradation of networks with 
Tab.1 listed configurations if full-precise weights of dense 
layers are converted to 2-, 3- and 4-bits. The result illustrates 
that dense layers require at least 3-bits weights to maintain 
network works since the accuracy degradation reaches at least 
22.17% with 2-bits weights by using Width 1. With the deeper 
network, the accuracy degradation fluctuates slightly, and no 
reduction of the required resolution for weights can be 
observed.  

 On the other hand, the wider structure for the 2-bits 
weighted dense layer does not necessarily reduce the accuracy 
degradation, either. As illustrated in Fig.4(a), two-layers dense 
layer with 256 neurons (Width 1) in the hidden layer yields 
the smallest accuracy degradation of 22.17%. If more neurons 
are arranged in the hidden layer of this configuration, such as 

Width 2 and Width 3, the accuracy degradation grows even. It 
leads to that only a proper amount of parameters or neurons 
reduces accuracy degradation if weights are converted to low 
resolution. 

C. Accuracy vs. input with limited resolution 

If the weight of the dense layer has a full-precise resolution, 
the required resolution for the input of the dense layer is 
shown as Fig.4(b) according to its configurations. Fig.4(b) 
illustrates that Depth 0 achieves the largest accuracy 
degradation of 27.49% and the deeper structures (Depth 1 and 
Depth 2) have generally less accuracy degradation if 2-bit 
inputs are used for all. Similar to the previous experiment for 
the resolution of weights, a proper amount of neurons in the 
hidden layer (Width 2) can result in less accuracy degradation 
if a 2-layer dense layer is used. 

The observation points out that it is better to pick deeper 
structure in order to have less required resolution for inputs.  

D. Accuracy vs. limited resolution for both weights and 

inputs 

In this experiment, the resolution for both weights and 
inputs is limited in order to investigate how few bits can be 
used for weights and inputs of the dense layer without huge 
accuracy degradation. The resolution of the weight is fixed as 
3-bits, which has maximal accuracy degradation of 2.69%, is 
observed as Fig.4(a). However, if a 2-bits resolution limitation 
is applied to the input at the same time, Fig.4(c) illustrates that 
the minimal accuracy degradation can achieve 2.93% with 
Width 2.  

The deeper structures Depth 2 and Depth 3 generally have 
less accuracy degradation around 4% in comparison to 
shallower structures except Width 2, as illustrated in Fig.4(c). 
In order to achieve less accuracy degradation, at least 3-bits 
inputs should be used. In this case, Depth 0 still has 14.45% 
accuracy degradation while other configurations have less 
than 1.6% accuracy degradation. 

Generally, at least 3-bits weights and 3-bits inputs are 
required for the dense layer of this CNN for MNIST 
applications, in case no huge accuracy degradation shall 
occur. Fewer bits can be used if the structure is carefully set 
up.  

E. Accuracy vs. BNN and TNN  

Another way to further reducing the required resolution for 
weights is by considering the limited resolution during the 
training phase. For the BNN and TNN presented by [10] and 
[11], networks are trained with only binary (1-bit) and ternary 
(2-bits) weights, respectively. To this end, all weights with 
real value WR should be mapped to either a binary WB or a 

TABLE I.  THE CONFIGURATIONS OF THE DENSE LAYER IN CNN 

Group: Depth 

Name Depth 0 Initial Depth 2 Depth 3 

Configuration 
of dense layer 

10 
 

128 – 10 128 – 256 
– 10 

128 – 256 
– 128 – 10 

Group: Width 

Name Initial Width 1 Width 2 Width 3 

# Neurons  128 – 10 256 – 10 512 – 10 1024 – 10 

 

 

Fig. 3. A comparison for different configuration of the dense layer of 

CNN is shown in terms of the total accuracy of the entire CNN.  

 



 

 

ternary WT value by using the sign function (4) or modified 
threshold sign function (5).  

 𝑊𝑏 = 𝑠𝑖𝑔𝑛(𝑊𝑟) () 

 𝑊𝑇 = {
1

−1

0

          

𝑊𝑅 ≥   𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

𝑊𝑅 ≤ −𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 () 

However, the weight updating for those networks is not 
similar to the normal training process, because the derivative 
of sign function (4) is zero for all non-zero inputs and the sign 
function is not differentiable at zero. Similarly, the function 
(5) faces the same problem that its derivative is always zero 
for all value except the positive and negative threshold value 
as the input. It means that the direct weight updating by using 
the derivative of those functions is unfortunately not possible. 
The Straight-Though Estimator (STE) [16] can solve this 
problem by updating only the weight with real value WT and 
neglecting the sign function, which maps the real weight to 
binary and ternary weights. 

Fig.4(f) shows that the achieved accuracy by using BNN 
and TNN for the dense layer is from 97.09% to 99.33%, which 
is very close to the achieved accuracy by using the 
conventional dense layer. As Fig.4(f) illustrated, the  deeper 

binary and ternary dense layer configurations have worse 
performance than the shallow structure.  

Fig.4(d) and (e) illustrate that the accuracy degradation can 
become larger if the limited resolution is applied to inputs of 
the binary and ternary weighted dense layer. At least a 3-bits 
input is needed for ternary weighted dense layer if the 
accuracy degradation is expected around 1% to 2%. 
Furthermore, this degradation becomes more obvious if the 
binary-weighted dense layer is used. If the accuracy 
degradation of the binary-weighted dense layer is not 
supposed to be greater than 2%, at least 4-bits input should be 
expected at the input because 3-bits input with BNN can still 
achieve more than 2% accuracy degradation. 

F. Short Summary  

It is shown that the architecture of dense layers for CNN 
applications is less critical regarding accuracy. Experiment A 
illustrates that Depth 0, which has only ten parameters or 
neurons at the output, can also perform the classification well. 
However, Depth 0 has the most critical resolution 
requirements for weights and inputs in comparison to other 
experiment. Experiments B, C, D indicate that the deeper 
structure of dense layers of CNNs can generally have fewer 
bits for inputs and weights. Additionally, only a proper 
amount of parameters or neurons of hidden layers can obtain 
minimal accuracy degradation with limited resolution of 
weights and inputs. This observation leads to the conclusion 

 

Fig. 4. In this experimental exploration, the networks are trained with seven different configurations of dense layers. (a) and (b) shows the accuracy 
degradations of the networks in comparison to initial accuracy if weights and inputs of their dense layer are converted to lower resolution, respectively. In 

addition, while weights of dense layers are converted to 3-bits, (c) shows the accuracy degradation if inputs of dense layer are also converted to lower 

resolution. (a), (b) and (c) result in that dense layers of CNNs require at least 3-bits weights and 3-bits input to keep reasonable accuracy in conventional way. 
In order to further needed resolution for weights and inputs, the required resolution for weights can be reduced down to 1-bit by using BNN and TNN training 

technique. However, even if BNN and TNN are applied, (d) and (e) illustrate that at least 3-bits resolution for inputs of dense layers is still needed. (f) 

compares the accuracy of networks with binary and ternary dense layers to networks with conventional dense layers.  

 



 

 

that the neural network, which has better generalization 
ability, will also have a more relaxed requirement for the 
resolution of weights and inputs.  

At least 3-bits weights and 3-bits inputs are required to 
keep accuracy by using the conventional method. However, 
the resolution of weights can be reduced to 1 bit or 2 bits with 
BNN and TNN technique, respectively. By using this 
technique, 1-/2-bits weights and 3-bits inputs can be used 
without large accuracy degradation according to Fig.4(d) and 
(e). 

From a conventional digital perspective, if such 
configuration is implemented with a crossbar circuit and the 
output signal of crossbars should be recovered without any 
loss, an ADC with a certain resolution is needed and the 
required resolution can be written as Eq.(6) [9][17].  

 𝑧 = {
   𝑙𝑜𝑔2𝑑 + 𝑤 + 𝑙      𝑤 > 1 𝑎𝑛𝑑 𝑙 > 1   

𝑙𝑜𝑔2𝑑 + 𝑤 + 𝑙 − 1           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
   () 

In Eq.(6), z denotes the width of the output signal, d is the 
row of the memristive crossbar, w and l represent the width of 
weights and inputs, respectively. The 1- and 2-bits resolution 
can be reduced for the ADC by using BNN and TNN training 
techniques because the weights resolution can be decreased 
down to 1- and 2-bits, respectively. 

IV. FULLY ONE-BIT DENSE LAYER IN CNN 

As observed before, the binary dense layer of CNNs may 
need at least 3-bits or 4-bits input to ensure that the accuracy 
does not decrease too much. To decrease the required 
resolution for inputs, this section investigates the value 
distribution of the input with Configuration Initial in order to 
find a proper threshold value to binarize inputs. 

Fig.5(a) illustrates that almost one third of values locates 
at zero and therefore, it cannot match any meaningful 
probability distribution at all. To keep only useful data, all 
zeros should be removed because the zeros do not needed to 
be converted. Fig.6(b) shows that the input value for the dense 
layer without zeros can exhibit an exponential distribution 
approximately. Typically, the exponential distribution can be 
written as Eq. (7). 

 𝑓𝛽(𝑥) =  {

1

𝛽
𝑒−(𝑥−𝑥0)/𝛽 𝑥 ≥ 𝑥0

0                      𝑥 < 𝑥0

 () 

In Eq. (7),  and x0 represent the scale parameter and 
location parameter of the exponential distribution, 
respectively. Fig.5(b) shows a fitted exponential function 

(purple line) with  equal to 6.3375 and x0 equal to 3.28E-04, 
which matches very well with the distribution of the collected 
input values. The mean and third quartile are selected as the 
threshold value to binarize inputs. The mean is the expected 
value of the exponential distribution and exactly equal to the 

scale parameter , and the third quartile splits the amount of 
the value to 3:1. All input values, which are greater than the 
threshold value, are interpreted as one and the values, which 
are less than the threshold value, are converted to zero. The 
test accuracy remains 98.22% and 98.23% for mean and third 
quantile as the threshold value, respectively. 

In order to verify the general application of this method, 
the binary, ternary, and conventional 3-bits weighted dense 
layer of the CNN are tested and compared, as shown in Fig.6. 
Fig.6(a) – (c) indicate that the binarized input can be used for 
any configurations of the dense layer, and the binarized input 
can achieve less accuracy degradation in comparison to the 
conventional 3-bits input.  

Additionally, Fig.6 (a) and (b) show that this method can 
achieve maximal 1.78% accuracy degradation for the binary 
and ternary dense layer of CNN in comparison to 4.77% 
accuracy degradation with the conventional 3-bits quantized 
input and BNN, respectively. Fig.6 (c) illustrates that this 
method can also be applied for the conventionally 3-bits 
weighted dense layer and exhibits only 1.24% maximal 

 

Fig. 5. The inputs of dense layer are collected. (a) shows the original 

distribution of values, that most values are located at 0. Then, all zeros are 

removed. (b) input values (without zeros) exhibit an exponentional 

distribution. The purple line is the resolved exponentional function. 

 

 

Fig. 6.  The proposed quantization is used for inputs of the dense layer with 

different configurations. (a), (b) and (c) compare the accuracy degradation 
of the CNNs if those methods are applied to original pre-trained binar 

(BNN), ternary (TNN) and conventionally 3-bits quantized dense layer of 

CNNs. It results in that a fully 1-bits (both inputs and weights) dense layer 
of the CNN can be achieved by using porposed method and only litte 

accuracy degradation occurs for MNIST Dataset. 



 

 

accuracy degradation for Depth 0 in comparison to 14.45% 
accuracy degradation with the same configuration. It indicates 
that the model can still keep accuracy if the binary input and 
binary weight are used in a dense layer, which can strongly 
simplify the required model for the dense layer of CNN and 
implementation with crossbar circuits. Furthermore, as shown 
in Fig.6(a) and (b), this method can gain a big advantage for 
the binary and ternary dense layer of CNN, because this 
method can generally achieve much less accuracy degradation 
in comparison to conventionally 3-bits quantized input. 

As illustrated in Fig.6 (a) and (b), the deeper structure, 
Depth 3, does not have much less accuracy degradation using 
this method in contrast to others. The binarized input seems to 
introduce unavoidably noise to the model. The noise could be 
transferred into the next layer, leading to relatively more 
accuracy degradation if more layers are used.  

To verify if this method could be applied not only to the 
MNIST dataset, further three models are built for the CIFAR-
10 and CIFAR-100 dataset. Two models with six 
convolutional layers for 128 features and two binary weighted 
dense layers are trained for CIFAR-10 by using the BNN 
technique. The difference is that they have 128 neurons and 
256 neurons in the hidden layer, respectively. A model with 
six convolutional layers for 192 features and two with BNN 
technique 2-bits weighted dense layers, which have 256 
neurons and 100 neurons in the hidden layer and output layer 
respectively, is trained for CIFAR-100. For comparison, an 
MNIST’s model with Configuration Initial and the fully 
binarized dense layer is used. 

Table II shows that the model CIFAR-10(128) has the 
largest accuracy degradation of 3.86% and CIFAR-10(256) 
has 3.10% accuracy degradation. Because of limited 
computational resources, only a simple model is trained for 
CIFAR-100 and therefore, CIFAR-100 has only 32.74% 
accuracy in the end. For CIFAR-100, the binarized input and 
weight lead to only 1.96% accuracy degradation from this 
comparison. We can conclude that little accuracy degradation 
can occurs if a fully one-bit dense layer of CNN is used. At 
least, this should work with 6-layers convolutional neural 
networks for CIFAR and MNIST datasets. If such accuracy 
degradation is acceptable for the final implementation, this 
method in combination with BNN technique can be used to 
capture a fully 1-bit dense layer, which means dense layer with 
1-bit inputs and 1-bit weights. For such dense layer, only 8-
bits ADCs and 1-bit DACs are required to recover the data 
without any loss in comparison to 12-bits ADCs and 3-bits 
DACs for binary and ternary dense layer, 13-bits ADCs and 
3-bits DACs for conventionally quantized dense layer if a 128 
rows crossbar is assumed. 

V. CONCLUSION  

This work aims to provide a guideline for simplifying the 
implementation of dense layers of CNNs with crossbar 
circuits regarding selecting the proper configuration of dense 
layers in CNNs in combination of different quantization 
methods. The results show that starting with the appropriate 
configuration of dense layers, a trained model can be adapted 
to a reduced resolution model with both the weights and inputs 
of dense layers reduced to 3-bits and maintain reasonable 
accuracy without the need for retraining. Based on a BNN 
training technique and input value distribution analysis, the 
required resolution can further be reduced down to 1-bit. The 

result suggests that the implementation of dense layer with 
crossbar circuits can be strongly simplified by considering 
architecture selection and quantization before final 
implementation.  
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TABLE II.  INPUT BINARIZATION WITH MEAN OF DISTRIBUTION 

Application MNIST 
CIFAR-

10 (128) 

CIFAR-

10 (256) 

CIFAR-

100 

Test Accuracy with 

binary dense layer 
98,87% 72,73% 73,08% 32,74% 

Accuracy with 1-bit 

input 
98,22% 68,87% 69,98% 30,78% 

 


