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Abstract— A mobile robot is reliant on precise and robust
localization and mapping for autonomous navigation. For this
purpose, sensor fusion techniques are employed to combine
measurements of multiple sensor data sources. The well-known
Extended Kalman filter is the standard approach to integrate
absolute measurements; however, multiple relative measure-
ments, i.e., measured differences between the current system
state and a past system state, cannot be directly incorporated
into the filter. This paper presents a fusion algorithm for the
integration of absolute and multiple relative measurements for
localization and mapping of mobile robots. A novel approach
exploiting concurrent stochastic cloning and smoothing is intro-
duced for robust inclusion of additional relative measurements.
The proposed fusion method is applied to perform simultaneous
localization and mapping with sensor data from an IMU, a GPS,
wheel odometry, and scan matching of data from a 3D LiDAR.

Index Terms—Navigation, localization, mapping, SLAM,
stochastic cloning, smoothing, loop closure.

I. INTRODUCTION

Autonomous navigation for mobile robots is reliant on
precise self-localization based on sensor measurements. Since
these measurements are subject to noise and errors, multiple
sensors may be combined by means of sensor fusion in order
to improve both precision and robustness.

An Extended Kalman filter (EKF) is a well-known and
effective fusion algorithm. In its basic form, the EKF is
capable of fusing a system model or at most one relative
sensor with multiple absolute sensors; measurements of
additional relative sensors cannot be integrated directly.

Precision and robustness of the localization can be further
improved with perception sensors for simultaneous mapping.
Therefore, algorithms for simultaneous localization and map-
ping (SLAM) incorporate methods to model the dependencies
between the localization and the map. SLAM algorithms may
also include loop closure handling to enhance the estimation.

In this paper, a novel fusion algorithm based on the EKF
is presented. An inertial measurement unit (IMU) sensor, a
GPS, and a wheel odometry sensor are combined with scan
matching of 3D LiDAR data for simultaneous localization
and mapping. Therefore, additional relative measurements
are integrated into the fusion algorithm by employing an
augmentation scheme. A supplementary smoothing step is
introduced to the augmentation for a stable filtering.

The following section covers related work. Afterwards, the
proposed sensor fusion method is described and the mapping

scheme is explained. Thereafter, results are discussed and
finally a conclusion closes the paper.

II. RELATED WORK

For localization, Extended Kalman filters have been widely
used for sensor fusion, e.g. [1] and [2]. In most systems
the sensors are not synchronized, which means their mea-
surements have to be processed asynchronously. Therefore,
Welch et al. proposed a fusion framework based on an
EKF capable of processing measurements from asynchronous
sensors [3]. If multiple relative sensors are present, the
standard EKF formulation is not sufficient anymore because
past states become correlated with the current state and an
augmented state estimation is necessary. Roumeliotis et al.
introduced Stochastic Cloning for augmentation by cloning
the respective states connected by a relative measurement [4].
The stochastic cloning method was included in an EKF-based
framework with explicit handling of asynchronous sensors
by interpolating the respective proprioceptive measurements
to get the best available linearization point by Lynen et al.
[5].

In [6] it is shown that if the variance of the heading
remains small, EKF-based 2D SLAM is robust concerning
loops closures and consistent maps can be built. For the
FastSLAM 2.0 algorithm, convergence was proven with only
one particle which is similar to EKF-SLAM [7]. The paper
presenting the Hector SLAM algorithm additionally shows
that no explicit loop closure may be necessary if localization
is very precise [8]. When additionally incorporating absolute
sensors like GPS, loop closure is even more robust, as shown
in [9], where a FastSLAM 2.0 algorithm combined with a grid
map successfully closes a large loop with only one particle.

3D SLAM is much more elaborate due to the increased
degrees of freedom and memory requirements. For 3D
mapping, often graph-based methods are used [10]; however,
achieving real-time performance is difficult and requires a
combination with filtering [11].

In order to estimate the relative pose between scans from
a 3D LiDAR sensor, scan matching algorithms have been
developed. In the Velodyne SLAM algorithm, surfaces are
extracted from the scans to efficiently estimate the poses,
which makes it well suited for urban scenarios [12]. Point
based methods like iterative closest point (ICP) make no
assumptions on the scenario and thus are better suited



for off-road or heterogeneous environments [13]. A variant
especially developed for scanning sensors is the Generalized-
ICP (GICP) algorithm [14].

III. SENSOR FUSION

For localization, the full 6DoF pose is estimated. The
fusion framework is based on an EKF and all measurements
can be processed asynchronously. In order to avoid local
discontinuities due to geodetic projections, the global position
is estimated in latitude, longitude, and altitude. Attitude and
heading is represented by a quaternion. The filtering state is
formulated in the error state space:

x̃base = [∆p ∆Θ ∆v ∆bω ∆bacc ∆sodo]T (1)

with the metric errors of the 3D position, 3D angular
errors, 3D velocity errors, bias errors of the gyroscopes and
accelerometers of the IMU, and a scale factor error of the
wheel odometer. The error state space estimation has the
advantage that although the position is estimated in latitude
and longitude, the correction can be processed in a local
metric space. The same applies to the attitude and heading
quaternion, which can be corrected with angular deltas.

The prediction is computed with a strapdown algorithm
from high-rate IMU measurements. The accelerometers of
the IMU are used for attitude stabilization, and measurements
of the GPS are integrated as absolute position and velocity
updates. The yaw angle is supported by a heading estimator
from past GPS position measurements and also updated by
a non-holonomic constraint based on the kinematic model
of the mobile robot. The wheel odometry measures the
forward velocity of the vehicle. For scan matching, the GICP
algorithm [14] is used on inertially corrected scans. The
integration of the relative updates of the scan matching can
be interpreted as LiDAR odometry and is described in the
following paragraph.

A. Stochastic Cloning EKF

The integration of relative measurements from scan match-
ing into the EKF is not straightforward. The EKF is based on
the Markov assumption, which means the current state incor-
porates all information about the processed measurements and
past states. A relative measurement introduces dependencies
between states which violates the Markov assumption, and
for its integration an augmentation of the state vector is
necessary.

For augmentation, a stochastic cloning update is employed
according to [4] and [5]. Assuming a relative measurement
zk,k+m between the two states at time k and k + m respec-
tively the augmented state and covariance matrix become:

x̆k+m|k = [x̂T
k|k x̂T

k+m|k]T and (2)

P̆k+m|k =

[
Pk|k Pk|kFT

k+m,k

Fk+m,kPk|k Pk+m|k

]
(3)

with the cumulative product of the system dynamic matrixes

Fk+m,k =
m∏
i=1

Fk+i.

The measurement residual is

yk+m = zk,k+m − ẑk,k+m (4)

where ẑk,k+m is the estimated difference between state xk

and xk+m.
The Kalman gain is computed by

K̆ = P̆k+m|kH̆TS̆−1k+m (5)

with
S̆k+m = H̆P̆k+m|kH̆T + Rk,k+m (6)

where Rk,k+m is the covariance of the scan matching.
H̆ = [Hk|k Hk+m|k] contains both measurement Jacobians
related to the respective states xk and xk+m.

Finally the new estimate and covariance matrix are given
by

x̂k+m|k+m = x̂k+m|k + Kk+myk+m and (7)

Pk+m|k+m = Pk+m|k − Kk+mS̆k+mKT
k+m, (8)

where Kk+m can be retrieved from

K̆ = [KT
k KT

k+m]T. (9)

B. Smoothing

When absolute measurements from GPS are available, a
severe problem may arise if they are not synchronized to the
relative updates of scan matching. If a GPS measurement
at time tk+n is incorporated as a filter update, it will intro-
duce an absolute correction. However, a following relative
measurement update at time tk+m with m > n may be
related to a filter state tk, which did not get the correction
by the absolute measurement at time tk+n. This means the
estimates corrected only by the relative measurements are
subject to drift despite the presence of an absolute sensor.
If no GPS measurement updates the filter at the exact same
time as a relative measurement, the error of theses updates
is unbounded. Because the relative measurements obtained
from scan matching are very accurate, this will lead to a
jagged and diverging path and ultimately to a degenerating
filter, cf. Fig. 1.

0 2 4 6 8 10 12 14

x [m]

2

3

4

5

6

y 
[m

]

estimated path
GPS

tk+n

tk tk+m

Fig. 1. Jagged path due to asynchronous absolute measurements.

Thus, the absolute updates of GPS should also impact
previous updates from relative measurements. Therefore, a
backpropagation of the current absolute localization informa-
tion to earlier estimates by applying a smoothing scheme
to the filtered estimates is proposed. For a new relative



measurement at time tk+m, the estimates are smoothed in
reverse order up until its related state at time tk.

The smoothing is performed with a Rauch-Tung-Striebel
smoother [15]. For the smoothing scheme, the predicted state
and covariance matrix of the standard Kalman filter

x̂k+1|k = Fk+1x̂k|k and (10)

Pk+1|k = Fk+1Pk|kFT
k+1 + Qk (11)

are fed into the backward recursion yielding the smoothed
state and covariance matrix denoted with a superscripted s:

Ak = PkFT
k+1P

−1
k+1|k, (12)

x̂s
k = x̂k + Ak(x̂s

k+1 − x̂k+1|k) and (13)

Ps
k = Pk + Ak(Ps

k+1 − Pk+1|k)AT
k. (14)

Upon receiving a relative measurement between states at
time tk and tk+m, smoothing is performed feeding back
information to state x̂k. Afterwards, the stochastic cloning
update is based on x̂s

k, thus also utilizing newer information
up to time tk+m. In contrast to a fixed-lag smoother, this
scheme does not introduce any delay, because the smoothing
is not reliant on future measurements or estimates.

Fig. 2 shows how the smoothing feeds back the information
to earlier states and prevents the path from diverging as seen
before in Fig. 1. Please note, that in Fig. 1 to Fig. 2 for
clarity reasons, the estimates of the updates by GPS and scan
matching are plotted only as the predictions and updates by
the IMU have a tenfold rate.
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Fig. 2. Path with smoothing.

In Lynen et al. [5] filter divergence does not occur as their
realization adds a 6DoF offset to the state accounting for
the drift between the world frame and the frame the relative
sensor measurements are expressed in. With our proposed
smoothing method, the estimation of an additional 6DoF
offset is not necessary and the relative motion can be included
directly.

IV. MAPPING

A map is not built explicitly on-line but by subsequently
performing an implicit mapping process incorporating the lo-
calization with relative scan matching updates as explained in
Section III. A map can be built after a completed exploration
tour or continuously with intermittent map calculations and
updates.

A. Map Format

For mapping a Normal Distributions Transform (NDT)
voxel map is chosen [16]. An NDT map is built by tessellating
the environment into a voxel grid. For the points inside each
voxel, the respective normal distributions are estimated. This
allows for a compact representation while still preserving
shape information.

To correct errors and cope with dynamic objects, which
should not be integrated into the map, a method for taking
negative information into account is included. An existence
probability is attached to each voxel, which is increased by
each observation. While tracing the laser ray through free
space in the voxel map with a 3D Bresenham algorithm [17],
existence probability per voxel is decreased. Voxels with an
existence probability falling below a certain threshold are
eliminated.

B. Final Path Smoothing

By applying the aforementioned smoothing for the entire
path a further refinement of the estimated path can be
achieved for mapping, cf. Fig. 3 compared to Fig. 2. Of
course, the final smoothing has no impact on the precision of
the on-line localization but enhances the mapping by reducing
jumps in the localization.
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Fig. 3. Path with final smoothing over the entire path.

C. Loop Closure Handling

In modern GPS receivers, most error sources can be
mitigated, especially with correction services like SBAS. The
remaining errors are dominated by multipath phenomenons,
which may lead to deviations up to several meters [18]. The
multipath situation is dependent both on the environment and
on the satellite constellation. Due to the latter varying over
time the errors may change between visits of a position, i.e.
loop closures.

The GICP matching between consecutive scans can also
be used for loop closure. For each current scan, a check for
a potential loop closure is performed backwards in time by
calculating the horizontal Euclidean distance of the respective
poses. Afterwards, the GICP algorithm is executed and the
fitness score of the matching is additionally used to verify or
reject the occurrence of a loop closure. The relative motion
estimated by the GICP cannot be used as a direct update via
stochastic cloning because due to the long time between the
two states the assumption of linearization of F does not hold
true and would lead to instabilities of the filter.



The GPS, being the only absolute sensor concerning the po-
sition, has a high impact on the estimated position. Therefore,
an additional GPS offset is introduced to the continuously
estimated state vector to allow for more robust loop closure. It
is sufficient to include the position offsets because the attitude
and heading are reasonably well stabilized by accelerometer
and GPS heading updates. The error state space of Equation 1
expanded with the 3D GPS offset error becomes

x̃loop = [x̃T
base ∆oGPS]T. (15)

V. RESULTS
In the following results, qualitative evaluations and quan-

titative comparisons are presented because no ground truth
is available. The IMU and GPS measurements are from an
Xsens MTi-G-700 and the LiDAR data is from a Velodyne
HDL-64E. The Xsens has rates of 100 Hz and 4 Hz for its
IMU and GPS respectively. The wheel odometry sensor is
custom-made and has a rate of 10 Hz. The Velodyne has
a scanning rate of 10 Hz, i.e., a rotation takes 100 ms. The
vehicle moves during this time leading to a skewing of the
scan; hence, the resulting scan has to be rectified. This is
accomplished by inertial correction based on the high-rate
6DoF pose estimation of the EKF.

A. Impact of Scan Matching
Using only the raw measurements of the IMU, GPS, and

wheel odometry, the heading is not observable. As mentioned
before, the heading is supported by an estimator from past
GPS positions. Although this provides absolute stabilization
to the heading, there are still inaccuracies in certain areas,
especially in areas where the vehicle is exposed to quick
turns. Fig. 4(a) shows a part of the map where inaccuracies
in the heading angle lead to skewed and multiply mapped
walls.

(a) (b)

Fig. 4. Mapping with IMU, GPS, and wheel odometry only (a) compared
to including additional scan matching (b). The height is color coded from
blue (low) via green to red (high).

Additional scan matching integrated by stochastic cloning
increases the accuracy of the estimates and especially the
heading is stabilized much more robustly. The resulting map
is very precise, only few areas with small visible inaccuracies
remain. Fig. 4(b) shows the same area as Fig. 4(a) and the
higher precision can be clearly seen.

B. Simulated GPS Outage
In order to evaluate the robustness of the fusion algorithm

against failure of an absolute sensor, an outage of the GPS
for about 35 seconds or 130.7 m is simulated. Fig. 5 shows
the fusion of IMU, GPS, and wheel odometry (purple)
compared to the fusion with additionally included scan
matching (green). The gray area depicts the interval of the
simulated GPS outage. The position error is evaluated with
reference to the respective fusion without the outage. Hence,
the error is zero before the outage occurs and converges to
zero after the outage. The maximum error is nearly four
times higher without scan matching but the errors of both
paths converge to zero, showing the robustness of the fusion
framework against sensor outages.
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Fig. 5. Simulated GPS Outage (during gray area).

Fig. 6 shows the same simulated GPS outage, this time,
the entire path is subsequently smoothed for mapping as
explained in Section IV-B. The maximum error of the path
without scan matching (purple) is reduced to less than half
compared to Fig. 5. The maximum error of path with scan
matching (green) is not reduced but the steep correction at
the time the GPS outage ended is avoided, which enhances
the final mapping.
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Fig. 6. Simulated GPS Outage (during gray area) with final smoothing.

C. Loop Closure
The altitude above the earths’ ellipsoid measured by

GPS is much more inaccurate compared to latitude and



longitude [19]. Thus, the performance of the loop closure
is demonstrated with the estimated altitude in the following.

Fig. 7 shows a section of the path where a loop closure
occurred in a flat area, which means the altitude should be
nearly constant. The circle marks the beginning of the tour.
In this evaluation, the vehicle is traveling to the north and
coming back from the south after a circle of about 550 meters
and continuing on the same path for a second turn. The
altitude is plotted over the UTM northing; the UTM easting
of the path is nearly constant in this section. Without the loop
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Fig. 7. Altitude in the region of a loop closure.

closure, a difference of about 5 meters can be observed (blue
path). Employing the loop closure via estimation of a GPS
offset the red and yellow paths clearly show how the path is
pulled towards the previous path upon loop closure. While
the red path, where no final smoothing is performed, needs a
long time to reach the previous path and still does not match
it completely. Performing the final smoothing improves both
the time to approach the previous path and the alignment.
Although errors along the path may be several meters due to
poor GPS quality, the error can be decreased to well below
one meter in the areas of a loop closure. The remaining error
in the altitude may be further reduced especially along the
path by including a pressure sensor [20].

D. Complete Map

Fig. 8 shows the final NDT map over a satellite image and
the superimposed path in blue. The altitude is shown from
blue (low) via green to red (high). A path of about 1.8 km
has been covered covering both urban and unstructured off-
road scenery with multiple large and small loop closures. The
final smoothing further enhances the precision for mapping,
because it is possible to also correct backwards, which would
not be possible with pure filtering.

E. Timing

To achieve real-time performance and be able to use
the filter for on-line localization of a mobile robot, the
processing of the measurements has to fulfill specific timing
requirements. First, the time to integrate each measurements
has to be below the respective sensor rate and below a
maximum admissible delay required by algorithms utilizing
the localization like path planning and control or safety
features. The following results have been measured on an
i7-7600U CPU, a mobile processor with two cores running
at 2.8 GHz, and 16 GB RAM.

Fig. 8. NDT map over satellite image and superimposed path in blue.
The height is color coded from blue (low) via green to red (high). UTM
coordinates in zone 32U.

TABLE I
TIMINGS OF EKF UPDATES IN µs

tmin tavg tmax σt

IMU @ 100 Hz 63.0 84.9 303.0 18.9
GPS @ 4 Hz 13.0 55.5 152.0 12.9
Odometry @ 10 Hz 19.0 31.1 176.0 7.0
LiDAR @ 10 Hz 259.0 336.1 442.0 23.5

The amounts of time to integrate the measurements into
the estimation are listed in Table I. The IMU measurements
are used to process the strapdown algorithm for prediction,
an attitude update. The IMU processing also includes the
update with a non-holonomic constraint. The processing of
the GPS measurements includes the position and velocity
updates plus the heading estimator. Wheel odometry only
involves a normal filter update. The integration of retaliative
motion derived from the 3D LiDAR comprises the smoothing
with the stochastic cloning update. Even the tmax of each data
type and processing is well below their inverse measuring
rate and combining all sensor data of one second would
take below 35 ms in the worst case. The maximum delay
for a single update is below 0.5 ms, which is more than
sufficient for path planning and control. The timing for GICP

TABLE II
TIMINGS OF GICP MATCHING IN ms

tmin tavg tmax σt

GICP 84.1 265.8 567.5 106.4

scan matching is listed in Table II. The average processing
time of more than 250 ms is above the 100 ms interval of
measurement updates. Therefore, scan matching cannot be
processed for every single pair of scans in real-time.



Although omitting pairs of scans for matching in principle
allows for real-time processing, a severe delay of up to
more than half a second would be too much for autonomous
path planning and safe navigation. Therefore, a parallel filter
structure is implemented, which is explained in detail in [21].
Two filters are running in parallel. While an on-line EKF
processes only GPS and IMU data, a mapping EKF processes
all data at the cost of being delayed. However, the mapping
filter is only delayed while processing LiDAR data and will
catch up with the on-line filter subsequently. Upon eventually
catching up, the estimate of the mapping filter is copied
to the on-line filter. This synchronization takes only less
than 4 ms, thus reducing the possible delay significantly.
A delay this small is again more than sufficient for path
planning and control. While [5] more elegantly handles
delayed measurements in a single filter the structure proposed
in this paper allows for a high output rate with delays below
4 ms thanks to multi-threaded parallel processing. Inserting
a delayed measurement and recalculating the subsequent
updates would take up to more than 20 ms in the worst case
according to the evaluation of Table I. For a desired planning
and control rate of 100 Hz, this would already be too much.

Final smoothing takes about 25 seconds for the afore-
mentioned path of about 1.8 km and more than 60,000
measurements of all sensors. The insertion of one LiDAR
scan with approximately 120,000 3D points takes about 7 ms
plus 32 ms for including negative information. Thus, building
the whole map (Fig. 8) with about 5,000 scans takes roughly
200 seconds with integration of negative information. When
operating in environments where no dynamic objects are to
be expected or only mapping over short time intervals is
necessary, negative information may be omitted resulting in
a more than fivefold speedup.

VI. CONCLUSIONS

This paper presented an EKF based fusion framework
for localization and mapping. By employing a combination
of stochastic cloning and smoothing, the robust inclusion
of multiple relative measurements can be achieved. Adding
scan matching updates greatly improves the precision of the
localization and allows for the realization of loop closure
handling via GPS offset estimation. A final smoothing step
of the whole path further enhances the precision for mapping.

The implementation of a synchronized parallel filter struc-
ture allows for high-rate on-line processing with low delays.

Future work includes the implementation of a parallel
pipeline for scan matching to allow for processing of all
scan pairs to further enhance the real-time capabilities.
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