
A Framework for Agent-based Human Interaction Support

Axel BÜRKLE, Wilmuth MÜLLER, Uwe PFIRRMANN, Manfred SCHENK
Fraunhofer Institute for Information and Data Processing

Fraunhoferstraße 1, 76131 Karlsruhe, Germany

ABSTRACT

In this paper we describe an agent-based infrastructure for multi-
modal perceptual systems which aims at developing and realiz-
ing computer services that are delivered to humans in an implicit
and unobtrusive way. The framework presented here supports
the implementation of human-centric context-aware applications
providing non-obtrusive assistance to participants in events such
as meetings, lectures, conferences and presentations taking place
in indoor “smart spaces”. We emphasize on the design and im-
plementation of an agent-based framework that supports “plug-
gable” service logic in the sense that the service developer can
concentrate on coding the service logic independently of the un-
derlying middleware. Furthermore, we give an example of the
architecture’s ability to support the cooperation of multiple ser-
vices in a meeting scenario using an intelligent connector service
and a semantic web oriented travel service.

Keywords: Human Interaction Support, Sensor Infrastruc-
ture, Cognitive Architecture, Ubiquitous Services, Context-
Awareness, Software Agents

1. INTRODUCTION

Services supporting human interaction should be delivered to hu-
mans in an implicit and unobtrusive way. This implies that a
service is aware of the current context of its user in order to
react adequately to the user’s situation and environment. The
CHIL (Computers in the Human Interaction Loop) project [1] [2],
within which our work described in this paper was performed,
develops such context-aware, implicit, and unobtrusive services.
Repositioned in the background the machines discretely observe
the humans and attempt to anticipate and serve their needs like
electronic butlers.

The selected scenarios are situations in which people interact
with people, exchange information, and collaborate to jointly
solve problems. The project focuses on two scenarios: meeting
and lecture rooms. They were chosen because human-human in-
teraction plays a central role and is often critical for achieving the
different goals of the participants in both scenarios. In the scope
of CHIL, the following services relevant to this paper have been
implemented:

• Connector: The Connector is a context-aware service en-
suring that two parties get connected by the most appropri-
ate media at the right time and place. Based on the observed
context and each party’s preferences, it decides when and
how it is most appropriate and desirable for both parties to
be connected.

• Travel Service: The Travel Service detects if a user is go-
ing to miss a scheduled travel connection e.g. due to the de-

lay of a meeting, and automatically searches for alternative
travel possibilities. Based on user preferences, it provides a
selection of the “best” travel possibilities found.

• Memory Jog: The Memory Jog Service provides non-
obtrusive information to boost productivity in the scope of
meetings, lectures and presentations in “smart rooms”. The
current functionality of the Memory Jog focuses on tracking
humans and their activities within a room, and accordingly
providing pertinent information to participants. Information
is provided both when users request it, but also automati-
cally, based on context. Information pertains to people, as
well as their activities in the scope of a meeting or lecture,
such as the topics, keywords, agenda items.

• Meeting Manager: The Meeting Manager Service handles
all meeting related issues. It keeps track of organizational
meeting data, e.g. the meeting location, the time schedule
and the list of planned participants. It can display a per-
sonalized welcome message when a participant enters the
meeting room. Furthermore, the Meeting Manager Service
provides support during a meeting. One of its functionali-
ties is to automatically start the corresponding presentation
when a presenter approaches the presentation area.

Other services such as a Socially Supportive Workspace [1] [2]
were implemented by the various CHIL partners. In addition, a
series of basic services for common and elementary domain tasks
are available. In order to realize the CHIL vision, an appropriate
architecture and system infrastructure has been essential. Within
our work we developed the architecture and especially collabora-
tive context-aware agents which enable the implementation and
provision of the specified services.

This paper is structured as follows: Section 2 addresses related
research on architectures for systems supporting human interac-
tion. Section 3 introduces the CHIL reference model architecture.
Sections 4 and 5 describe the infrastructures for sensors and ser-
vices. An example scenario with several cooperating services is
shown in section 6. Section 7 concludes this paper with an out-
look on future work.

2. RELATED WORK

The increasing distribution of mobile devices, efficient algo-
rithms for the processing of visual and acoustic signals and the
progress in the domain of semantic reasoning have promoted
context-aware human interaction support as an important and
worthwhile research area. In the last few years several interna-
tional projects have been initiated and a lot of research work has
been done to develop context-aware components as well as sup-
porting architectures.

The m4 project (multimodal meeting manager) [3] presents a
client-server architecture using JSP-generated frames in a meet-



ing browser to produce the output of audio and video streams and
services. The AMI Project (Augmented Multi-Party Interaction)
[4], probably the project most closely related to CHIL, focuses
on technologies, which are integrated by a plug-in mechanism of
a relatively simple, browser-based framework that allows indirect
communication between the modules. Both of them concentrate
on technologies and adapt existing software for integration pur-
poses. CHIL in contrast developed an architecture that is partic-
ularly designed for the integration of and direct communication
between context-aware services.

Other previous research focused on distributed middleware in-
frastructures [5], on architecture frameworks for developers and
administrators [6], on the design process and the development of
frameworks and toolkits [7], on context-aware broker agents [8],
on client-server architectures with a central server and multiple
clients to support the management of multiple sensor input for
different services [9], on flexible, decentralized networks con-
necting dynamically changing configurations of self-identifying
mobile and stationary devices [10], on architectures for coordina-
tion of I/O-devices and the exploitation of contextual information
[11], and on systems that span wearable, handheld, desktop and
infrastructure computers [12].

The CHIL research does not only focus on context-aware tech-
nologies and services in the scope of human interaction, but also
on the specification of a flexible agent-based architecture, which
allows an easy integration, combination and communication on
several layers of abstraction. The architecture presented in the
following sections is proposed as a reference model architecture
for multi-modal perceptual systems.

3. CHIL REFERENCE MODEL ARCHITECTURE

Due to the scale of the CHIL project with its large number of part-
ners contributing to the system with a diversity of technical com-
ponents such as services and perceptual components, as well as
their complexity, a flexible architecture that facilitates integration
of components at different levels is essential. A layered architec-
ture model was found to best meet these requirements and allow a
structured method for interfacing with sensors, integrating tech-
nology components, processing sensorial input and composing
services. Furthermore, the architecture described here supports
flexible exchange of components and the replacement of unavail-
able components with simulators through well-defined interfaces.

CHIL Layer Model
In order to realize proactive and intelligent services, both context-
delivering and collaborating components have to be integrated. In
our project, context is provided by perceptual components as well
as learning modules. Perceptual components continuously track
human activities, using all perception modalities available, and
build static and dynamic models of the scene. Learning mod-
ules within the agents model the concepts and relations of the
ontology. Collaboration is enabled by a set of intelligent soft-
ware agents communicating on a semantic level with each other.
The layered system architecture that facilitates the integration of
different components is presented in Figure 1. The lower layers
deal with the management and the interpretation of continuous
streams of video and audio signals in terms of event detection and
situation adaptation and contain the perceptual components. The
upper layers of the infrastructure enable reasoning and manage-
ment of a variety of services and user interfacing devices, based
on agent communication. All layers use a common ontology as

a backbone. A detailed description of the layers is given below.
The agent infrastructure of the CHIL system is described in more
detail in section 5.

Figure 1: CHIL architecture layer model

Description of the Layers
User Front-End: The User Front-End contains all user-related

components such as the Personal Agents, Device Agents
and the User Profile of a CHIL user. The Personal Agent
acts as the user’s personal assistant taking care of his de-
mands. It interacts with its master through personal devices
(e.g. notebook, PDA, smartphone) which are represented
by corresponding Device Agents. The User Profile stores
personal data and service-related preferences of a user.

Services and Control: This layer comprises the service agents
and their management. Services include reusable basic ser-
vices as well as complex higher-level services composed
of suitable basic services. The interaction with other agents
within this layer and the User Front-End layer uses the com-
munication mechanisms of the agent platform, while com-
munication with the other layers uses internal mechanisms.

Situation Modelling: The Situation Modelling layer is a col-
lection of abstractions representing the environmental con-
text in which the user acts. The context information ac-
quired helps services to respond better to varying user activ-
ities and environmental changes. For example, the Situation
Modelling answers questions such as: Is there a meeting go-
ing on in the smart room? Is there a person speaking at the
whiteboard? Who is the person speaking at the whiteboard?
An ontological knowledge-base maintains up-to-date state
of objects (people, artifacts, situations) and their relation-
ships. Additionally it serves as an “inference engine” that
regularly deduces and generalizes facts during the process
of updating the context models as a result of events coming
from the underlying layer of Perceptual Components.

Perceptual Components: Perceptual components are software
components which operate on data streams coming from
various sensors such as audio, video and RFID-based po-
sition trackers. They process the streams, interpret them,
and extract information relating to people’s actions such as
people’s locations, IDs, hand gestures, pose recognition etc.



The design of the Perceptual Components tier does not de-
fine the parameters of the core signal processing algorithm,
but pertain to the input and output data modeling aspects of
it. It specifies and gives guidelines, how perceptual com-
ponents shall operate, “advertise” themselves, subscribe to
receiving a specific sensor data stream and how they shall
forward their extracted context to the higher layer of the
CHIL Reference Architecture.

Logical Sensors and Actuators: Sensors and actuators are keys
in the design and implementation of multi-modal percep-
tual services. They act as the “eyes and ears” of the system
and provide a continuous flow of output data to the process-
ing components which extract pertinent information by ap-
plying algorithms able to extract elementary context. This
layer comprises several abstractions which wrap the sensor
control and transmission components for each one of the
sensors in the smart space. Several APIs for initializing the
component, capturing the sensor data, for configuring the
component, and for starting and stopping it are provided.
Each sensor is controlled by a specified sensor controller,
which provides the low-level commands to the sensor. The
sensors, and therewith the logical sensor components pro-
duce a continuous flow of information which is transmitted
using a particularly designed interface.

Control and Metadata: Control and Metadata provide mech-
anisms for data annotation, synchronous and asynchronous
system control, synchronizing data flows, effective storing
and searching multi-media content and metadata generated
by data sources.

Low-level Distributed Data Transfer: The Low-level Dis-
tributed Data Transfer layer is responsible for transferring
high-volume and/or high-frequency data from sensors to
perceptual components or between perceptual components.
This layer is implemented by the “ChilFlow” data-transfer
middleware. In order to free developers from handling
networking issues and managing the connections between
components, ChilFlow offers an easy to master, yet power-
ful object-oriented programming interface, which provides
type-safe network transparent one-to-many communication
channels for data exchange between components.

CHIL Utilities: This layer provides basic functionality that is
needed by components in all layers of the framework. One
particular example is global timing, an important issue in
distributed, event driven systems like CHIL where a great
number of time-stamped messages and streams are sent
through the infrastructure.

Ontology: In order to enable the intended cognitive capabilities
of the CHIL software environment, it is necessary to con-
ceptualize entities and to formally describe relations among
them. Through the ontology, CHIL software components
both know the meaning of the data they are operating on
and expose their functionality according to a common clas-
sification scheme. The CHIL ontology is defined using the
Web Ontology Language OWL [13]. It comprises several
modules that are physically represented by separate Web
resources with distinct URLs, among them the fully inte-
grated CHIL agent communication ontology. For managing
the ontological data, as well as for reasoning and detecting
inconsistencies, access to an ontology is typically backed by
a central knowledge base management system. The CHIL
Knowledge Base Server exposes the functionality of arbi-
trary off-the-shelf ontology management systems by a well
defined API based on OWL. As such, it provides unified

access to the central ontological knowledge base for hetero-
geneous platforms, programming languages and communi-
cation protocols. Together with this API and the CHIL on-
tology, the knowledge base server constitutes the Ontology
layer of the CHIL architecture.

4. SENSOR INFRASTRUCTURE AND
CONTEXT-AWARENESS

Sensing infrastructures are a key prerequisite for realizing
context-aware applications. Within CHIL several sites have con-
structed in-door environments comprising multi-sensor infras-
tructures called “smart rooms”. They include:

• Microphones and microphone arrays [14]

• Cameras (fixed, active with pan, tilt and zoom (PTZ) or
panoramic (fish-eye))

• RFID-based location trackers [15]

Based on these sensor infrastructures, a variety of perceptual
components have been built and evaluated such as 2D and 3D-
visual perceptual components, acoustic components, audio-visual
components, RFID-based location tracking, as well as output per-
ceptual components such as multimodal speech synthesis and tar-
geted audio.

Situation Recognition
Perceptual components derive elementary contextual informa-
tion, however in general they lack information about the over-
all current status of the people’s interactions and environmental
conditions. To be able to “fuse” many of these perceptual com-
ponents together in order to determine more sophisticated and
meaningful states, additional middleware interfaces have been
developed to facilitate the intercommunication of these compo-
nents. The middleware acts as a receptor of the whole range of
the elementary context cues and processes them in order to map
the resulting contextual information into a complicated situation.
This process is called situation recognition and is a major part of
every human-centric ubiquitous application.

Situation recognition in our implementation follows the network
of situation approach. This scheme allows the interconnection of
distinct cases (situations), which are connected with edges, form-
ing a directed graph. A transition from one situation to another
occurs if given constraints are satisfied. As soon as this transi-
tion is feasible, the service logic is applied, and the active state is
reflected by the newly reached one. Context-awareness is hence
modeled by this network. Figure 2 illustrates such a network of
situations which can be used to track situations during meetings
in a “smart room”.

A meeting is a sequence of three situations: “MeetingSetup”,
“OngoingMeeting” and “MeetingFinished”. Starting with the
“Arrival” state of the initial “MeetingSetup” situation, the state
changes to “WelcomeParticipant” when the Person Identification
perceptual component signals that a person is entering the room;
the incoming person is welcomed by displaying a message on
the whiteboard and the state switches back to “Arrival”. A Meet-
ing Detector perceptual component retrieves and compiles loca-
tion and activity information about all attendees, recognizes, in
connection with its knowledge about the scheduled participants,
the start of the meeting and triggers the transition to the “On-
goingMeeting” situation. During the meeting, the Body Tracker
perceptual component tracks the locations of the participants;



Figure 2: A network of situations model for tracking meetings in
a smart room

it detects when a person approaches or leaves the presentation
area and switches the state accordingly between “Discussion” and
“Presentation”. The Meeting Detector again determines the end
of the meeting by means of the attendees’ locations and activities
and triggers the final “MeetingFinished” situation.

5. AGENT-BASED SERVICE INFRASTRUCTURE

Ubiquitous services are usually based on complex heteroge-
neous distributed systems comprising sensors, actuators, percep-
tual components, as well as information fusion middleware. In
projects like CHIL, where a number of service developers con-
centrate on radically different services, it is of high value that a
framework ensures reusability in the scope of a range of services.
To this end, we have devised a multi-agent framework that meets
the following target objectives:

• Facilitates integration of diverse context-aware services de-
veloped by different service providers.

• Facilitates services in leveraging basic services (e.g. sensor
and actuator control) available within the smart rooms.

• Allows augmentation and evolution of the underlying in-
frastructure independently of the services installed in the
room.

• Controls user access to services.
• Supports service personalization through maintaining ap-

propriate profiles.
• Enables discovery, involvement and collaboration of ser-

vices.

Agent Description
Figure 3 shows the CHIL software agent infrastructure, com-
posed of three levels of agents: personal and device agents that
are close to the user, basic agents providing elementary tasks in-
cluding a communication ontology and specific service agents.

Figure 3: Agent infrastructure

User-related Agents: Every person in the CHIL environment
has his own Personal Agent, that acts as a personal sec-
retary. Users interact with the system only via their self-
adapting personal agents assigned during the login proce-
dure. The Personal Agent manages (via dedicated device
agents, bound to specific devices) interactions with its mas-
ter: It knows what front-end devices its master has ac-
cess to, how it can best receive or provide information and
what input and notification types he prefers. Moreover, the
personal agent communicates with the Situation Watching
Agent to be updated about its master’s current context (e.g.
location, activity) in order to act or react in an appropriate
way. Furthermore, the Personal Agent provides and con-
trols access to its master’s profile and preferences, thus en-
suring user data privacy.

Each device has its own Device Agent that manages com-
munication between the device and a user’s Personal Agent.
The Notebook Device Agent is a concrete implementation
of a Device Agent managing the communication between
the graphical user front-end on the user’s notebook and the
user’s Personal Agent. The Cellphone Device Agent is a



concrete Device Agent communicating with the user’s cell-
phone.
The Cellphone Listener Agent watches a specific port; in
case of an incoming call from a cell phone, it creates a Cell-
phone Device Agent and passes over the socket connection
to it. The new device agent will then handle further com-
munication between the cell phone and the user’s Personal
Agent.

Basic Agents and Communication Ontology: The main basic
agents are the CHIL Agent and the CHIL Agent Manager.
CHIL Agent is the basic abstract class for all agents used
in the CHIL environment. It provides methods for essen-
tial agent administrative functionality (agent setup and take-
down), for ontology-based messaging (create, send, receive
messages and extract the message content), utility jobs like
logging, and, in cooperation with the CHIL Agent Man-
ager, for directory facilitator service (DF service) tasks such
as register and deregister agents, modify agent and service
descriptions and search service-providing agents based on
a semantic service description. Special importance is at-
tached to keep the agent communication conform to FIPA
(Foundation for Intelligent Physical Agents) [16] i.e. to
comply with the FIPA Interaction Protocols and the FIPA
Communicative Acts. The message transfer is based on a
well-defined communication ontology as recommended by
the FIPA Abstract Architecture Specification.
The CHIL Agent Manager is a central instance encapsulat-
ing and adding functionality to the JADE Directory Facili-
tator (DF) and coordinating the selection and use of agents.
Each CHIL agent registers its services with the Agent Man-
ager; hence, the agent manager is, at any time, aware of all
available agents, their abilities and the resources required by
the agents for carrying out their services. The CHIL Agent
Manager can act both as a matchmaker or a broker. As a
matchmaker it provides a requesting agent with a handle to
appropriate service agents capable of satisfying the request.
As a broker, the CHIL Agent Manager decomposes the re-
quest into sub problems, computes a problem solving strat-
egy and invokes the subtasks on appropriate service agents.
Having received all necessary partial results, it computes
the overall solution and returns the final result to the initial
requester.

Service Agents: Each Service Agent is associated with a spe-
cific service and provides access to the service functional-
ity both to users and other agents. Service agents register
their functions with the CHIL Agent Manager using ontol-
ogy based service descriptions, thus mapping the syntactical
level of services to the semantic level of the agent commu-
nity. These service descriptions can be queried both by Per-
sonal Agents in order to provide the service to human users,
as well as by Service Agents, which may compose various
functions from other services in order to supply their own
one.
The basic Service Agent is an abstract ancestor class for
all specific service agents; it provides the methods for the
registration of service features including the necessary re-
sources. Specialized service agents comprise the core func-
tionality of the associated service; the service itself may ei-
ther be implemented as agent or be covered by an agent
providing a suitable interface to the service. This applies
to the Connector Agent, the Memory Jog Agent, the Travel
Agent and the Meeting Manager Agent (not shown in figure
3). The functionality of these agents and the corresponding

services have been specified in section 1, section 6 describes
the Connector Service and the Travel Service in detail.
Two special agents provide common abilities, which are
useful for the whole agent society: the Smart Room Agent
and the Situation Watching Agent. The Smart Room Agent
controls the various optical and acoustic output devices in
the smart room. It may communicate messages to all at-
tendees in the smart room by displaying them on the white-
board or transmitting them via loudspeaker. Furthermore, it
is able to notify single participants without affecting other
attendees, using the steerable video projector or targeted au-
dio, dependant on the user’s preferences.
The Situation Watching Agent wraps the Situation Model of
the smart room. It monitors the smart room and tracks situ-
ation specific user information such as the current location,
movement and activity on different semantic levels (sim-
ple coordinates as well as hints like “attendee X approaches
whiteboard”). For example it is informed via subscription to
the situation model when a meeting participant has entered
the meeting room, when the meeting has started and when a
presenter enters or leaves the presentation area. Moreover, it
can provide location information of important artifacts like
notebooks, whiteboards, tables etc. Other agents may query
the current situation at the Situation Watching Agent as well
as subscribe to events; both information retrieving methods
are supplied by well-defined access and subscription APIs
to the Situation Model.

Personalization
A CHIL computing environment aims to radically change the
way we use computers. Rather than expecting a human to attend
to technology, CHIL attempts to develop computer assistants that
attend to human activities, interactions and intentions. Instead of
reacting only to explicit user requests, such assistants proactively
provide services by observing the implicit human request or need,
much like a personal butler would.

Each CHIL user is described by a user profile, which contains a
set of personal attributes including administrative data relevant to
the CHIL system (e.g. access rights, user capabilities and charac-
teristics) and individual personality information like professional
and personal interests, contacts and the social relationships be-
tween the contacts and the user (VIP, business or personal) as
well as interaction, device and notification preferences such as
notebook, PDA, cell phone call, SMS, MMS, targeted audio, etc.
The administrative part of the user profile is maintained by the
system administrator; personal data can be added and modified
exclusively by the user with a suitable GUI.

Access to and control of the user profile is managed by the user’s
Personal Agent. Thus, the Personal Agent does not only operate
as a personal assistant, but also as a privacy guard to both sen-
sitive and public user data. Since the Personal Agent is the only
one having access to the user’s profile, it ensures user data pri-
vacy. The Personal Agent controls, via dedicated Device Agents,
the complete interaction between its master and the CHIL system:
it knows what front-end devices its master has access to, how it
can best receive or send information to and from its master and
what input and notification types its master prefers. Furthermore,
the Personal Agent communicates (using both requests and sub-
scriptions) with the Situation Watching Agent to be permanently
updated about its master’s current context (location, activity, state
of the environment) and the availability of the various devices in
a dynamically changing situation. Based on the static data of



the user profile and the dynamic context information, the Per-
sonal Agent handles user input and connection and notification
requests to its master the best way and with the most appropriate
media possible.

Intelligent Messaging
In a distributed system with various cooperating services it is of
high importance that the services understand each other correctly
in order to successfully complete their tasks. The significance of
semantic understanding is even increased by the fact that these
services are implemented by a great number of developers in dif-
ferent places. To this end, the information exchange between
agents is completely based upon a well-defined communication
ontology, as proposed in the FIPA Abstract Architecture Speci-
fication [16], ensuring that the semantic content of messages is
preserved across agents.

The CHIL Communication Ontology is based upon the “Simple
JADE Abstract Ontology”, an elementary ontology provided by
JADE [17] that has to be used for every ontology-based message
exchange within the JADE agent management system, and com-
pletely defined using the Web Ontology Language OWL [13].
It is fully integrated in the overall CHIL domain ontology, ex-
tending it by tokens which are necessary for agent communica-
tion, particularly agent actions for requesting services and re-
sponse classes to hold the results of the services. The ontol-
ogy classes are used in the Java environment by means of the
JADE abs package, an abstract agent communication API found
in jade.core.abs. Their handling is implemented by the basic
CHIL Agent, which provides appropriate methods for ontology-
based encoding, sending, receiving and decoding ACL (Agent
Communication Language) messages to the agent community.

A second level of intelligent messaging is achieved by the imple-
mentation of an advanced agent coordination. Coordination of
agents can be performed using well-defined conversation proto-
cols [18]. As a first approach, we use the interaction protocols and
communicative acts specified by FIPA [16]. The CHIL Agents’
communication methods and initiator and responder classes for
submitting and receiving messages ensure that the agent commu-
nication is strictly compliant to the FIPA specification. Together
with the CHIL Agent Manger as the central agent coordinating
instance, the FIPA compliance and the ontology-based message
transfer form a highly sophisticated approach of Intelligent Mes-
saging.

Pluggable Behaviors
One of the major goals of the CHIL agent infrastructure was to
provide a mechanism that allows the distributed development, an
easy integration and configuration of multiple services. The rea-
son is that several complex context-aware services had to be im-
plemented in different places by a great number of developers
and had to be integrated in the CHIL system. The target frame-
work should minimize the integration effort and allow the service
developers to concentrate on the core service functionality.
A simple service can easily be integrated in the CHIL system by
creating an agent which handles the framework tasks and the ser-
vice control, and integrate the agent in the agent framework. In
this way the agent acts as a wrapper for the service; the agent
could also embed the service logic itself. But usually a service is
more complex and requires specific functions from other agents.
For example, the Connector Service needs knowledge about the
user’s connection preferences (phone call, SMS, notebook, au-
dio) and the social relationship between two or more participants

(VIP, business or personal contact) to be able to establish a con-
nection the best way and at the best time possible. Although this
personal information is only used by the Connector Service, it
must be controlled by the Personal Agent of each user in order
to ensure user privacy. Thus, a service may require exclusive ser-
vice specific functionality that is or must be realized by another
agent than the service agent itself. Implementing such function-
ality in the agent itself implicates that all service providers using
this agent would have to synchronize the agent’s code. A tech-
nique like this would quickly raise significant problems concern-
ing the coordination of the implementation and the configuration
of software components.

To this end, a plug-in mechanism has been designed that al-
lows an easy integration of service specific functionality in other
agents without modifying the agents’ code: service specific agent
behaviors are moved to pluggable handlers, which are agent in-
dependent and plugged into appropriate agents during their start-
up phase. Using this mechanism, the agents themselves remain
service independent, contain only the common methods and at-
tributes all partners have agreed on, and thus become stable mod-
ules. Three types of pluggable handlers have been considered to
be necessary, namely:

Setup handler: are responsible for service specific initialization
in the setup phase of an agent.

Event handler: are registered for certain events from outside the
agent world, e.g. the user’s GUI, a perceptual component,
the situation model or a web service.

Pluggable responder: are triggered by incoming ontology
based ACL (Agent Communication Language) messages
sent by other agents.

At start-up time each agent parses the service configuration files,
determines which behaviors are dedicated to it and have to be in-
stantiated, and adds them to its behavior queue. Since the code
for this mechanism is concentrated in the basic CHIL Agent,
the plug-in mechanism is available for all agents without addi-
tional implementation work for the agent developer. Moreover,
the source of the configuration data could easily be switched; in-
stead of using XML-based files, the service configuration could
similarly be imported from a knowledge base.

Plug-in Support for Multiple Services
The Pluggable Behaviors mechanism allows a service provider
to plug new service specific functions in multiple agents without
the need for recompilation (see figure 4, left side). However, to

Figure 4: Pluggable handlers and scalable services

fully exploit the features of all CHIL services and to raise the
functionality of the whole system beyond the sum of its compo-
nents, a service must be able to define new messages, which can
be understood and compiled by other services. This means that
each service provider should be able to define his own service



specific ontology. As a consequence, each agent participating
in such a multi-service communication has to be able to handle
messages from different services and to work with several service
ontologies, as illustrated in figure 4, right side. Hence, service
specific ontologies have to be handled in the same way as Plug-
gable Behaviors: the framework must be capable to plug them in
without the need for recompiling the agent’s code. To this end,
the Pluggable Behaviors mechanism has been extended to Scal-
able Services by realizing a plug-in technique for service specific
communication ontologies.

A new service is specified and integrated into the CHIL system
by means of a XML-based configuration file. The file defines the
service ontology, all agents participating in the service and their
handlers; the structure of the file can be seen as an XML schema
definition in figure 5. Each pluggable handler is specified by its

Figure 5: Service configuration XML schema

type (setup, event and responder) and its class name. A priority
value assigned to each handler can be used to determine the order
of execution, which is particularly important for setup behaviors.
The service ontology is specified by a name, the namespace, the
location and the class name of the ontology class. Furthermore,
the configuration file provides an additional feature to system de-
velopers and administrators: it allows enabling/disabling certain
functionality by simply adding/removing the appropriate config-
uration elements in the configuration file, without having to re-
compile the source code.

Similar to a service configuration file that informs a service about
all participating agents, a master configuration file informs the
CHIL system about all participating services. This file is based on
XML, too, and specifies the services that are activated on system
start-up by their names and the location of their configuration
files. Again, enabling and disabling complete services can easily
be done by adding or removing the appropriate XML elements.

Advantages of the Agent Framework
The CHIL multi-agent framework has manifold advantages. On
the one hand, the architecture undertakes a wide range of tedious
tasks, easing the deployment of new services, and on the other

hand it provides a transparent layer to the developer in terms
of information retrieval. It offers high flexibility, scalability and
reusability and it facilitates the integration of components at dif-
ferent levels, like

• Services,

• Perceptual Components,

• Sensors and Actuators, and

• User Interfaces.

Particularly the plug-in mechanism for agent behaviors consti-
tutes a powerful technique for the development, test, integration,
configuration and deployment of new services and components.
Developers may create new agents and behaviors and use this
mechanism for easy behavior integration and agent configuration,
thus facilitating and accelerating the process of development and
testing. They may benefit from the reusability feature of the agent
framework by including own behaviors in already existing agents
in order to use the functionality of these agents. And they may
profit from the flexible configuration facility in the development
and test phase as well as in the deployment and integration phase
by allocating behaviors to different agents and turning behaviors
and even complete services on and off.

Another important quality factor is the use of an ontology based
agent communication. Elevating the collaboration of components
on a semantic level does not only augment the robustness of the
system in terms of mutual understanding of internal components,
but also reduces the error-proneness when integrating new com-
ponents and enhances the interoperability with external systems
significantly. A high level of scalability is ensured by the fact that
all agents can be distributed to a theoretically unlimited number
of computers.

Furthermore, the described technology for service composition
enhances the scalability of the CHIL agent framework in terms
of functionality. Additionally, detailed guidelines for service in-
tegrators are available, which help service developers to integrate
their services into the CHIL architecture framework.

6. PROTOTYPE APPLICATIONS

We have utilized this architectural framework for implement-
ing three different non-intrusive applications, namely the “Travel
Service”, the “Connector”, and the “Meeting Manager”. These
applications demonstrate how this agent framework is indeed ap-
propriate for developing context-aware cooperating applications.
Specifically, implementations have shown that it is possible to use
this framework to interface with situation modeling logic, as well
as to invoke basic services. The full value of the framework is
demonstrated by plugging three services into the same instance
of the framework based on the same underlying infrastructure
for sensing and context-awareness. The following paragraphs
present briefly the functionality of the current implementations.
A fourth CHIL service not covered in this section, the Memory
Jog Service, has been implemented by one of our project partners
using the same reference architecture [19].

The Connector
The goal of the Connector Service is to facilitate human com-
munication during events that occur in in-door environments. It
manages intelligent communication links (connections and notifi-
cations) and handles connection and notification requests, either



simple requests (e.g. a meeting participant wants to talk to an-
other) or more complex requests (e.g. a meeting participant wants
to notify all other participants). The corresponding Connector
Agent mediates between various Personal Agents and handles
communications affecting two or more Personal Agents. Personal
Agents may communicate with each other directly if there is only
a direct communication between two Personal Agents. The Con-
nector Service stores all pending connections and finds a suitable
point of time for these connections to take place.

In order to describe the complex behavior of the Connector Ser-
vice, we consider a sample scenario described in detail in [20].
In this scenario a meeting is scheduled in a CHIL smart room,
where most of the meeting participants are already present in the
meeting room. Another participant (Jeff) realizes that he will be
late for the meeting and wants to inform the other participants
about his delay.

Figure 6: Smartphone client to access multiple CHIL services

Jeff uses his smartphone (Fig. 6, left) to trigger his Personal
Agent (via the smartphone’s Device Agent) which informs the
Agent Manager of the delay. The Agent Manager asks the Meet-
ing Agent for the meeting room number and a list of all scheduled
meeting participants to inform them in the most efficient way.
With this information the Agent Manager requests the responsi-
ble Connector Agent to deliver Jeff’s message in an appropriate
manner. After contacting the situation model via the Situation
Watching Agent, the Connector Agent (being aware of a list of
participants already in the meeting room) decides to notify them
via the Smart Room Agent, which is aware of the output devices
available in the meeting room. The Smart Room Agent chooses
to display the delay message with the central video projector. For
those participants who are not yet in the meeting room, the Con-
nector Agent informs their Personal Agents which in turn may
choose an appropriate output medium for their masters (e.g. note-
book, PDA, mobile phone, etc.) according to their current situ-
ation and user profile. Finally Jeff is informed again by his Per-
sonal Agent that his message has been delivered to all meeting
participants.

The Travel Service
The Travel Service provides assistance with planning and re-
arranging itineraries. It can either be evoked directly by the user
through one of his personal devices (cf. Fig. 6, right) or trig-
gered by another CHIL service. An example scenario has been
implemented which demonstrates close cooperation between the
Connector Service, the Travel Service and the Meeting Manager
Service as well as a number of elementary services such as Meet-
ing Service and Smart Room Service. All CHIL services are in-
tegrated into the CHIL reference architecture using the plug-in
mechanism described in section 5.

This scenario follows up the Connector Service scenario where
one participant (Jeff) is late for a meeting. The begin of the meet-
ing will be delayed until Jeff arrives. The Personal Agents of the
other participants know the planned itineraries of their masters.
Triggered by Jeff’s delay message each Personal Agent deter-
mines whether the delay is likely to let its master miss his return
connection. If this is the case the Personal Agent providently ini-
tiates a search for alternative connections. It provides the Travel
Agent with the necessary information including user preferences,
e.g. if its master prefers to fly or take a train. The Travel Agent
processes the request by retrieving information from (currently
simulated) semantic web services of rail way operators, airlines
and travel agencies. Eventually, it sends a list of possible connec-
tions to the Personal Agent, which notifies its user. Notification
is done unobtrusively taking into account the current environment
situation of its master (e.g. “in meeting”), the currently available
output devices (i.e. personal devices like smartphones, PDAs,
notebooks and output devices of the smart room, e.g. targeted
audio or steerable video projector) and the preferred way of noti-
fication (e.g. pop-up box or voice message). A possible outcome
of the search could also be that the Personal Agent has to inform
its master that he should leave the meeting as planned, since there
is no suitable alternative itinerary.

If the CHIL user is not satisfied with any of the proposed
itineraries or wants to look up travel connections by himself, he
can use his CHIL-enabled personal device to do so. Figure 6,
right, shows the query mask on a smartphone. An equivalent user
front end is also available for other personal devices.

The Meeting Manager Service
The Meeting Manager provides assistance with organizing and
running a meeting. The Meeting Manager keeps track with the
people planned to attend a meeting and those already arrived in
the meeting room. For keeping track with the time schedules and
meeting room schedules, it invokes the elementary service Meet-
ing Service. When a meeting participant enters the meeting room,
it welcomes the participant in a personalized way. As soon as all
planned participants are in the meeting room, the Meeting Man-
ager automatically starts the meeting by displaying the agenda.

In the case that a participant is late, and following up the above
described scenario ”Jeff is late”, the Meeting Manager is in-
formed by the Connector Agent about the delay. It then decides,
depending on the amount of the delay and the other meetings
scheduled in the meeting room, if the meeting should start or if it
should be delayed until Jeff arrives.

After having started the meeting, the Meeting Manager is in-
formed by the Situation Watching Agent if a presenter enters the
presentation area. It then automatically starts the presentation
planned to be given by the presenter. Additionally, it keeps track



of the agenda and marks the agenda topics already discussed as
well as those which are still open. At the end of the meeting,
which is again detected via cooperation with the Situation Watch-
ing Agent, it displays the farewell message on the screen.

7. CONCLUSION

In this paper we have presented a reference model architecture
for multi-model perceptual systems. Main focus was put on a
distributed agent framework allowing developers of different ser-
vices to concentrate on their service logic, while exploiting exist-
ing infrastructures for perceptual processing, information fusion,
sensors and actuators control. The core concept of this frame-
work is to decouple service logic from context-aware and sen-
sor/actuator control middleware. Hence, service logic can be
“plugged” in a specific placeholder based on well defined in-
terfaces. The agent framework has been implemented based on
the JADE environment [17], and accordingly instantiated within
two real life smart rooms comprising a wide range of sensors
and context-aware middleware components. The benefits of this
framework have been manifested in the development of two co-
operating applications, one providing assistance during meetings
and conferences, and another facilitating human communication.

As future work we will provide a set of tools to facilitate the de-
velopment and integration of services, e.g. by the automatic gen-
eration of pluggable handler skeletons. We are also working on a
semantic service description, which will be part of the common
CHIL ontology. Raising service specification onto a semantic
level will allow dynamic service discovery and integration and a
more sophisticated service composition by the use of an inference
engine and rules from the ontological knowledge base.

ACKNOWLEDGEMENTS

This work is part of the project CHIL, an Integrated Project (IP
506909), partially funded by the European Commission under the
Information Society Technology (IST) program. The authors ac-
knowledge valuable help and contributions from all partners of
the project.

REFERENCES

[1] R. Stiefelhagen, H. Steusloff, and A. Waibel, “CHIL - Com-
puters in the Human Interaction Loop,” in 5th Interna-
tional Workshop on Image Analysis for Multimedia In-
teractive Services, Lisbon, Portugal, Apr. 2004.

[2] CHIL - Computers in the Human Interaction Loop.
[Online]. Available: http://chil.server.de/

[3] m4 - multimodal meeting manager. [Online]. Available:
http://www.m4project.org

[4] AMI: Augmented Multi-party Interaction. [Online]. Avail-
able: http://www.amiproject.org

[5] M. Roman, C. Hess, R. Cerqueira, A. Ranganat, R. H.
Campbell, and K. Nahrstedt, “Gaia: A Middleware Infras-
tructure to Enable Active Spaces,” IEEE Pervasive Com-
puting, vol. 1, no. 4, pp. 74–83, Oct.-Dec. 2002.

[6] R. Grimm, T. Anderson, B. Bershad, and D. Wetherall,
“A System Architecture for Pervasive Computing,” in Pro-

ceedings of the 9th ACM SIGOPS European Workshop,
Kolding, Denmark, Sept. 2000, pp. 177–182.

[7] A. K. Dey, “Providing Architectural Support for Building
Context-Aware Applications,” Ph.D. dissertation, Georgia
Institute of Technology, Nov. 2000.

[8] H. Chen, T. Finin, A. Joshi, F. Perich, D. Chakraborty, and
L. Kagal, “Intelligent Agents Meet the Semantic Web in
Smart Spaces,” IEEE Internet Computing, vol. 8, no. 6,
Nov. 2004.

[9] B. Johanson, A. Fox, and T. Winograd, “The Interactive
Workspaces Project: Experiences with Ubiquitous Comput-
ing Rooms,” IEEE Pervasive Computing, vol. 01, no. 2,
pp. 67–74, 2002.

[10] M. Coen, B. Phillips, N. Warshawsky, L. Weisman, S. Pe-
ters, and P. Finin, “Meeting the Computational Needs of
Intelligent Environments: The Metaglue System,” in Pro-
ceedings of MANSE’99, Dublin, Ireland, Dec. 1999, pp.
201–212.

[11] S. Shafer, J. Krumm, B. Brumitt, B. Meyers, M. Czerwin-
ski, and D. Robbins, “The New EasyLiving Project at Mi-
crosoft Research,” in Proc. of Joint DARPA / NIST Work-
shop on Smart Spaces, July 30-31 1998, pp. 127–130.

[12] D. Garlan, D. Siewiorek, A. Smailagic, and P. Steenkiste,
“Project Aura: Towards Distraction-Free Pervasive Com-
puting,” IEEE Pervasive Computing, special issue
on ”Integrated Pervasive Computing Environments”,
vol. 1, no. 2, pp. 22–31, Apr.-June 2002.

[13] W3C Semantic Web, Web Ontology Language (OWL).
[Online]. Available: http://www.w3.org/2004/OWL

[14] M. Brandstein and D. Ward, Microphone Arrays: Tech-
niques and Applications. New York: Springer-Verlag,
2001.

[15] Ubisense. [Online]. Available: http://www.ubisense.net

[16] The Foundation for Intelligent Physical Agents. [Online].
Available: http://www.fipa.org

[17] Java Agent DEvelopent Framework. [Online]. Available:
http://jade.tilab.com

[18] R. S. Cost, Y. Labrou, and T. Finin, “Coordinating Agents
using Agent Communication Languages Conversations,” in
Coordination of Internet Agents: Models, Technologies,
and Applications, A. Omicini, F. Zambonelli, M. Klusch,
and R. Tolksdorf, Eds. Springer, Mar. 2001, ch. 7, pp.
183–196.

[19] N. Dimakis, J. Soldatos, L. Polymenakos, M. Schenk,
U. Pfirrmann, and A. Bürkle, “Perceptive Middleware and
Intelligent Agents Enhancing Service Autonomy in Smart
Spaces,” in IEEE/WIC/ACM International Conference
on Intelligent Agent Technology (IAT-06), Hong Kong,
Dec. 2006.

[20] M. Danninger, G. Flaherty, K. Bernardin, H. Ekenel,
T. Köhler, R. Malkin, R. Stiefelhagen, and A. Waibel,
“The connector: facilitating context-aware communica-
tion,” in 7th Int. Conference on Multimodal Interfaces
(ICMI’05). New York, USA: ACM Press, 2005.


