GMD Report
01

Informationstechnik
GmbH

European Research Consortium
for Informatics and Mathematics

ERCIM

Stefania Gnesi, Ina Schieferdecker,
Axel Rennoch (Eds.)

«

5th International

ERCIM Workshop on
Formal Methods for
Industrial Critical Systems

Proceedings of FMICS‘2000
April 3-4, 2000 in Berlin

April 2000

© GMD 2000

GMD —

Forschungszentrum Informationstechnik GmbH
Schlof3 Birlinghoven

D-53754 Sankt Augustin

Germany

Telefon +49 -2241 -14 -0

Telefax +49 -2241 -14 -2618
http://www.gmd.de

In der Reihe GMD Report werden Forschungs- und Entwicklungser-
gebnisse aus der GMD zum wissenschaftlichen, nichtkommerziellen
Gebrauch veroffentlicht. Jegliche Inhaltsanderung des Dokuments
sowie die entgeltliche Weitergabe sind verboten.

The purpose of the GMD Report is the dissemination of research
work for scientific non-commercial use. The commercial distribution
of this document is prohibited, as is any modification

of its content.

Anschriften der Herausgeber/Addresses of the editors:
Dr. Stefania Gnesi

Istituto di Elaborazione della Informazione

CNR - Consiglio Nazionale delle Ricerche

Area della Ricerca di Pisa

Via Alfieri, 1

[-56010 Ghezzano - Pisa

E-mail: gnesi@iei.pi.cnr.it

Dr. Ina Schieferdecker

Axel Rennoch

Institut fir Offene Kommunikationssysteme

GMD — Forschungszentrum Informationstechnik GmbH
Kaiserin-Augusta-Allee 31

D-10589 Berlin

E-mail: {schieferdecker, rennoch}@fokus.gmd.de

ISSN 1435-2702

Preface

The European Research Consortium for Informatics and Mathematics (ERCIM) has
recently celebrated its 10th anniversary. The ERCIM Working Group on Formal Methods
for Industrial Critical Systems (FMICS) is organizing its 5th International Workshop.
FMICS workshops are dedicated to interested researchers at ERCIM sites, universities
and industry active in the industrial application of formal methods. Among a variety of
formal methods conferences and workshops FMICS is increasing its popularity. The idea
of FMICS workshops is to attract people with industrial relevant topics, with
internationally well-known invited speakers and with high-quality technical papers in
combination with a discussion podium for the exchange of ideas. The workshop character
of FMICS is realized on a minimal cost base.This time, FMICS is organized right after
ETAPS2000 - the European Joint Conferences on Theory and Practice of Software in
Berlin.

After starting the FMICS workshop series 1996 in Oxford (UK) further workshops
followed 1997 in Cesena (I), 1998 in Amsterdam (NL) and 1999 in Trento (I). In 2000,
the workshop is hosted and organized at the GMD Research Institute for Open
Communication Systems (FOKUS) in Berlin, Germany.

This year' workshop includes sessions on modelling, verification, testing and software
development, MSC/SDL, and various applications and case studies. We are pleased to
present two interesting invited talks: Giinter Karjoth, IBM Zurich (CH), addresses the
value of formal methods for security properties such as confidentiality and authenticity.
Holger Hermanns, University of Twente (NL), investigates in the performance and
reliability model checking and construction.

We wish to thank the members of the programme committee, especially the FMICS
working group chairman Hubert Garavel, for the excellent assistance during the planing
of the workshop, the invited speakers, the authors and the reviewers for their scientific
contributions, the people from the GMD Fokus Competence Center TIP for preparing the
workshop event, and ERCIM and GMD for their financial and organizational support of
FMICS.

Berlin, April 2000

Stefania Gnesi, Ina Schieferdecker, Axel Rennoch

Keywords: Formal Methods, Formal Description Techniques (FDT), Modelling,
Specification, Verification, Prototyping, Testing, Software development, Industrial
applications.

Further information: FMICS homepage http://www.inrialpes.fr/vasy/fmics/

Vorwort

Das Europiische Forschungskonsortium fiir Informatik und Mathematik (ERCIM) hat
gerade sein 10jdhriges Jubildum gefeiert und die ERCIM Arbeitsgruppe zu Formalen
Methoden fiir Industrie-kritische Systeme (FMICS) organisiert bereits ihren fiinften
internationalen Workshop. FMICS Workshops wenden sich an interessierte Forscher aus
ERCIM Instituten, Universititen und der Industrie, die sich aktiv an der Anwendung
formaler Methoden fiir industrielle Anwendungen beteiligen. Trotz der Vielzahl von
Konferenzen und Workshops iiber formale Methoden erfreut sich FMICS wachsender
Beliebtheit. Es ist der Gedanke von FMICS Workshops die Fachleute mit industrie-
relevanten Themen anzusprechen, mit international anerkannten eingeladenen
Vortragenden und mit hochqualifizierten technischen Beitrigen in Kombination mit
einem Forum fiir den Austausch von Ideen. Der Workshop Charakter von FMICS wird
auf der Basis niedriger Kosten durchgefiihrt. Diesmal wird FMICS direkt im Anschluf3 an
ETAPS2000 - den Européischen Konferenzen fiir Softwaretheorie und -praxis in Berlin
organisiert.

Nach dem Start der FMICS Workshops 1996 in Oxford (UK) folgten Workshops 1997 in
Cesena (I), 1998 in Amsterdam (NL) und 1999 in Trento (I). Im Jahr 2000 findet der
Workshop beim GMD Forschungsinstitut fiir Offene Kommunikationssysteme (FOKUS)
in Berlin statt.

Der diesjdhrige Workshop umfafit die Themengebiete Modelling, Verification, Testing
und Software Entwicklung, MSC/SDL, sowie vielfiltige Anwendungen und Fallstudien.
Wir freuen uns sehr zwei interessante eingeladene Vortrige zu prisentieren: Glinter
Karjoth, IBM Ziirich (CH), erortert den Wert formaler Methoden fiir Sicherheitsaspekte
wie Vertraulichkeit und Authentizitit. Holger Hermanns, Universitdt Twente (NL), geht
ein auf die Konstruktion und Uberpriifung von Leistungs- und Zuverlissigkeitsmodellen.

Abschiefend mochten wir den Mitgliedern des Programmkommitees danken,
insbesondere dem Vorsitzenden der FMICS Arbeitsgruppe Hubert Garavel, fiir die
hervorragende Unterstiitzung bei der Vorbereitung des Workshops, auBlerdem den
eingeladenen Vortragenden, den Autoren der Beitrdge und den Gutachtern fiir ihre
wissenschaftlichen Beitriage, den Mitarbeitern des GMD Fokus Competence Center TIP
bei der Ausrichtung des Workshops, sowie ERCIM und der GMD fiir ihre finanzielle und
organisatorische Unterstiitzung von FMICS.

Berlin, April 2000

Stefania Gnesi, Ina Schieferdecker, Axel Rennoch

Schlagworte: Formal Methods, Formal Description Techniques (FDT), Modelling,
Specification, Verification, Prototyping, Testing, Software development, Industrial
applications.

Weitere Informationen: FMICS homepage http://www.inrialpes.fr/vasy/fmics/

Programme Committee

Juan Bicarregui (CLRC Abington, UK)
Lars-ake Fredlund (SICS Stockholm, S)
Hubert Garavel (INRIA Rhone-Alpes, F), FMICS chair
Stefania Gnesi (CNR/IEI Pisa, I), PC co-chair
Jan Frisco Groote (CWI Amsterdam, NL)
Diego Latella (CNR/CNUCE Pisa, I)
Axel Poigné (GMD/AIS Birlinghofen, D)
Ina Schieferdecker (GMD/Fokus Berlin, D), PC co-chair
Jan Tretmans (University of Twente, NL)
Ulrich Ultes-Nitsche (University of Southampton, UK)
Adam Wolisz (TU Berlin, D)

List of Reviewers

Axel Belinfante, Pierfrancesco Bellini, Juan Bicarregui, Michael J. Butler, Gennady Chugunov,
Alessandro Fantechi, Lars-ake Fredlund, Hubert Garavel, Pablo Giambiagi, Stefania Gnesi, Jan Friso
Groote, Dilian Gurov, Izak van Langevelde, Diego Latella, Gabriele Lenzini, Mang Li, Giuseppe
Manco, Andrew Martin, Mieke Massink, Radu Mateescu, Brian M. Matthews, Franco Mazzanti,
Thomas Noll, Axel Poigné, Jaco van de Pol, Michel Reniers, Axel Rennoch, Brian Ritchie, Eric
Rutten, Ina Schieferdecker, Jan Tretmans, Ulrich Ultes-Nitsche, Adam Wolisz.

Organizing Committee
(GMD/Fokus Berlin, D)

Birgit Benner
Axel Rennoch
Ina Schieferdecker
Theofanis Vassiliou-Gioles

Contents

Invited Talks

* G. Karjoth:
From Dining Philosphers to Dining Cryptographers

* H. Hermanns:
Performance and reliability model checking and model construction

Session 1: Applications

* A. Requet:
A B Model for Ensuring Soundness of a Large Subset of the Java Card
Virtual Machine.

* F. Maraninchi, Y. Rémond:
Applying Formal Methods to Industrial Cases:
The Language Approach (The Production-Cell and Mode-Automata)

Session 2: Verification

* R. Mateescu, M. Sighireanu:
Efficient On-the-Fly Model-Checking for Regular Alternation-Free
Mu-Calculus

* F. Baray, P. Wodey:
Verification in the Codesign process by means of LOTOS based
model-checking. e

* D. Gurov, G. Chugunov:
Verification of Erlang Programs: Factoring out the Side-effect-free Fragment. . .

Session 3: Testing & Software development

L. du Bousquet, F. Ouabdesselam, I. Parissis, J.-L. Richier, N. Zuanon:
Specificaton-based Testing of Synchronous Software

» [Schieferdecker, M. Li, A. Rennoch:
Formalization and Testing of Reference Point Facets

* B. Wu, LM. Lai, D.R.W. Holton:
Towards a Mechanised Software Development Method

e P. Bertoli, A. Cimatti, P. Traverso:
Integrating formal methods into the development cycle of a safety-critical
embedded software System

Session 4: MSC / SDL

e L. Hélouét, C. Jard:
Conditions for synthesis of communicating automata from HMSCs

* M.M. Gallardo, P. Merino:

A Practical Method to Integrate Abstractions into SDL and MSC based Tools. . .
* R. Schroder, M. v. Lowis of Menar:

Experiences with Tool development of SDL in Combination with ASN.1

for Communication Protocol Applications,

Session 5: Modelling

R.J. Back, C. Cerschi: Modeling and Verifying a Temperature Control
System using Hybrid Action System iiiiiiinnenn....

D. Beyer, C. Lewerentz, H. Rust:
Modelling and Analysing the Railroad Crossing in a Modular Way

S. Gnesi, D. Latella, G. Lenzini, C. Abbaneo, A. Amendola, P. Marmo:
A Formal Specification and Verification of a Safety Critical Control System . . .

Session 6: Cases Studies

T. Willemse, J. Tretmans, A. Klomp: A Case Study in Formal Methods:
Specification and Validation of the OM/RR Protocol
P. Carreira, M. Costa: Automatically Verifying an Object-Oriented
Specification of the Steam-Boiler System
N. Aoumeur, G. Saake:

Cooperative Information Systems Modelling and Validation Using
the Co-nets Approach: The Chessmen Making Shop Case Study

From Dining Philosophers to Dining Cryptographers

Giinter Karjoth
IBM Research
Zurich Research Laboratory

Abstract

In theory, formal methods give us the ability to determine whether properties we ascribe to spec-
ifications or software systems hold for certain. However, the assurance that can be obtained from
formal methods comes at a price. In the eighties, the computer networks community invested a lot
in tools, theories, and case studies. They used formal methods to provide a rigorous and unambigu-
ous way of designing and documenting protocols, to allow formal analysis (verification/performance
analysis) before protocols are implemented, and to allow automatic code generation from the for-
mal specification. The seminal work on Communicating Finite State Machines was followed by
approaches based on process algebra and temporal logic, to give an example. In the last decade,
however, attention shifted to computer security as an application area where the expense of faulty
software would make the application of formal methods cost-effective. But security properties such
as confidentiality and authenticity are often difficult to characterize formally (or even informally). In
our presentation, we review ways in which above communities describe their domain-specific prop-
erties, how mechanisms are captured, and how protocols are analyzed. We conclude that despite the
different objectives, even “traditional” methods can be sucessfully applied in the field of computer
security. As an example, we describe our work on giving an operational semantics of the JavaCard
Virtual Machine and using a well-known model checker for analysis.

10

Performance and reliability model checking
and model construction

H. Hermanns

University of Twente, Faculty of Computer Science, Formal Methods and Tools Group,
P.O. Box 217, 7500 AE Enschede, the Netherlands

hermanns@cs.utwente.nl

Abstract

Over the last decade formal methods have been extended towards performance
and reliability evaluation. This paper tries to provide a rather intuitive explanation
of the basic concepts and features in this area. The intention is to give an illustrative
introduction to the basics of stochastic models, to stochastic modelling using process
algebra, and to model checking as a technique to analyse stochastic models.

1 Introduction

Modern industrial systems, such as communication networks, transport systems, or man-
ufacturing systems, are more and more operating in a stochastic context: communication
lines can break, buffers can overflow, a lorry with material for a just-in-time production
line might get stuck in a traffic jam. Each of these phenomena is stochastic by nature,
its absence or presence can only be predicted up to some probability. Since these stochas-
tic phenomena have impact on the system under consideration, it is nowadays commonly
agreed that the systems themselves exhibit stochastic behaviour. As a consequence, per-
formance and reliability studies of industrial systems have to take into account that rigid
assessments (It is impossible that the system fails”) only hold under unrealistic assump-
tions.

The construction and analysis of models suited for performance and reliability studies
of real-world phenomena is a difficult task. To a large extent this problem is attacked using
human intelligence and experience. Due to increasing size and complexity of systems, this
tendency seems even growing: performance as well as reliability modelling becomes a task
dedicated to specialists, in particular for systems exhibiting a high degree of irregularity.
Traditional performance models such as queueing networks lack hierarchical composition
an abstraction means, significantly hampering the modelling of systems that are developed
nowadays.

On the other hand, for describing the plain functional behaviour of systems various
specification formalisms have been developed that are strongly focussed on the facility to
model systems in a compositional, hierarchical manner. A prominent example of such
specification formalisms is the class of process algebra [14]. Developed on a strong math-
ematical basis, process algebra has emerged as an important framework to achieve com-
positionality. Process algebra provides a formal apparatus for reasoning about structure
and behaviour of systems in a compositional way.

During the last decade, stochastic process algebra (SPA) has emerged as a promising
way to carry out compositional performance and reliability modelling, mostly on the basis

11

of continuous time Markov chains (CTMCs). Following the same philosophy as ordinary
process algebra, the stochastic behaviour of a system is described as the composition of
the stochastic behaviours of its components.

To analyse properties of formally specified models model checking is a very successful
technique to establish the correctness of the model, relative to a given set of temporal logic
properties the model is supposed to satisfy [9, 10]. Using efficient encoding techniques,
model checking has been applied to industrial size designs involving more than 1019 states.

It appears valuable to apply efficient model checking techniques also to performance
and reliability properties of industrial systems. Since performance and reliability models
are stochastic in nature, the properties of interest are stochastic as well, and have to be
described in an appropriate extension of a temporal logic. The model checking algorithm
then involves the calculation (or approximation) of probabilities of certain properties to
hold.

This paper tries to provide a rather intuitive explanation of the basic concepts and
features of stochastic models, of stochastic modelling using process algebra, and of model
checking as a technique to analyse stochastic models. For the sake of being illustrative the
paper tends to treat various fine points much more simplistic than the advanced reader
probably desires.

The paper is organised as follows. Section 2 introduces the basic concepts of stochastic
models. Section 3 exemplifies the use of process algebra for modelling stochastic phenom-
ena by means of a real-world example, and Section 4 describes the model checking approach
to analyse stochastic models. Section 5 concludes the paper.

2 Stochastic models

A stochastic model is basically a means to describe the evolution of a real-world phe-
nomenon as time! passes, with a particular emphasis on phenomena with stochastic timing
characteristics. In other words, repeated observations of the same phenomenon can have
varying timing characteristics, but their variation exhibits a specific kind of randomness.

Figure 1: At the door of a gambler

As an example, consider a gambler that throws a die every minute. Observing the
gambler, one might wish to study a phenomenon, such as the time that it takes to throw
a six. Starting the observation at some arbitrary minute, one counts the minutes till the

!t is a bit narrow minded to consider the time domain as the only possible domain of variability. Spatial
Markov processes, for instance, are used to describe the evolution of some phenomenon as its position in
some appropriate space changes, as opposed to the time.

12

die shows a six. Obviously, repeated observations will usually lead to different results,
at least if gambling with a fair die. Nevertheless, the variation among these observations
exhibits a specific kind of randomness: The time needed to throw a six is known to follow
the so-called geometric probability distribution.

Probability distribution A probability distribution is a function that assigns a prob-
ability (a real value between 0 and 1) to each element of some given set. For instance,
the geometric probability distribution P assigns probabilities to natural numbers. For the
gambler, these numbers enumerate the minutes he is already gambling (remind that he
throws the die once per minute). For some ¢, P(t) is the probability to see the first six
after ¢ minutes, and is given by:

5\
P(see the first six after ¢ minutes) = 1 — (6) ,

or complementary,

t
P(still no six after ¢ minutes) = (g) .

For instance, the probability of not having seen a six after ¢ = 2 minutes (i.e. after
throwing the die twice) is 25/36.

To make the example a bit more interesting, assume that the gambler is throwing the
die somewhere outside his office. Before leaving his office he has put a note on the door,
as depicted in Figure 1. In fact, his intention is to return to his office as soon as the die
shows a six. Now let us assume that someone arrives at his door, finding the door closed.
How long will he have to wait for the gambler? Probably just a minute, but probably
(more likely) more than a minute, probably (unlikely) more than ten minutes. Since this
experiment is governed by the above geometric distribution, the probability of having
to wait more than a minute is 5/6, the probability of waiting more than ten minutes is
(5/6)10. Figure 2 depicts these probabilities for the first 15 minutes.

1
oo
o8
a7
L8]

o5

[]

a3 II

0z

"; Illllllll

B 8 10 11 1 13 13 1§

Figure 2: A geometric probability distribution: Will the gambler still be absent at time ¢7

Markov chain Having explained the gambler’s behaviour, we are now in the position
to specify a stochastic model of his behaviour. It is depicted in Figure 3. As many other
(formal or semi-formal) models, the model is a graph, consisting of states and transitions.
There are two states in this model. One state represents the absence of the gambler, one
represents his presence in the office. The model contains three transitions representing
possible events that might induce a change of state. One transition indicates that every

13

minute the absent gambler has a 1-out-of-6 chance to return to his office. Another tran-
sition indicates that with probability 5/6 the absent gambler will miss the six, and hence
has to stay absent for at least another minute. In case he is back in his office, the third
transition indicates that he stays there (ad infinitum). The small arrow on top of the left
state indicates the initial state. i.e. the state occupied at time zero.

36 s !
(&= =P

Figure 3: A discrete-time Markov chain describing the gambler’s behaviour

The stochastic model of the gambler’s behaviour is a very simple one. It is a Markov
chain, named after A.A. Markov who studied models of this kind in the beginning of
the last century. More specific, it is a discrete-time Markov chain (DTMC), since state
changes are only possible at discrete points in time: The gambler can return to his office
precisely every minute only. DTMCs restrict the possible time points for state changes to
a discrete subset of dense real time. As in our example, these time points are often (but
not necessarily) equidistant.

Markov chain analysis For a given stochastic model, such as a Markov chain, there is
usually a variety of interesting properties that one might want to study. Two substantially
different classes of properties can be distinguished. Transient analysis investigates the
evolution of the model up to a given point in time. On the contrary, steady-state analysis
focusses on the long-run average behaviour. It requires that on the long-run initial start-up
effects (the transient phase) do not have a measurable impact.

A trivial steady-state property for the gambler is that with probability 0 he will be
absent on the long-run. As an example for a transient property, we have already indicated
that the probability of still being absent after 10 minutes is (5/6)'°. A variant of transient
analysis gives us that on the average it takes the gambler six minutes to throw a six. So,
the sign on the office door is essentially right, the gambler will be back in six minutes, on
the average.

Analysis techniques In practice, three fundamentally different techniques are used to
analyse stochastic models. They differ with respect to accuracy, applicability and com-
putational requirements. Here, we only give a concise subjective summary on differences
and similarities, and refer to Jain’s textbook [25] for a more elaborate discussion.

Simulation The stochastic model is mimicked by a simulator throwing dice and producing
statistics of simulation time spent in states. The fraction of simulation time spent
in a particular state is used as an estimate for the state probability. This technique
is generally applicable, in particular it is suitable also for non-Markov stochastic
models. However, it should be noticed that good accuracy tends to require long
simulation runs, and hence limits applicability in practice.

Numerical solution The transient or steady-state behaviour of a stochastic model is ob-
tained by an exact or approximate algorithm where model parameters are instan-
tiated with numerical values. This approach gives accurate results in general, up

14

to numerical precision. On the other hand, its applicability is restricted to finite
Markov chains (with a few exceptions, see e.g. [17, 24]). Furthermore the number of
states of the model is a limiting factor, because of computational requirements. A
very readable textbook on numerical solution methods is [26].

Analytical solution The transient or steady state property of interest is expressed as a
closed formula over the parameters of the model. This is the most simple, accurate
and elegant technique. However, analytical solutions are available only for highly
restricted classes of stochastic models.

Absence of memory Markov chains are widely used as stochastic models of real-world
phenomena. This is mainly because they possess a distinguishing feature that simplifies
both modelling and analysis. They obey the so called memoryless property: The future
evolution of a Markov chain model is independent of the past, it only depends on the
state currently occupied. This property is best explained in terms of the absent gambler.
The probability that the gambler returns to his office after one minute from now is 1/6,
independent of the fact that someone might be waiting for him in front of his door for
ten minutes (or years) already. This is a direct consequence of the fact that a fair die has
no memory; the die does not change if it has not shown a six for ages. This should not
be mixed with the fact that the probability of actually having to wait for ten minutes is
low, (5/6)1°. Under the assumption that this unlikely case becomes reality, it still needs
another six minutes waiting time on the average, as the sign on the door indicates.

Discrete vs. continuous time Discrete-time Markov chains are convenient to describe
the stochastic evolution of sequential systems. In each state, the outgoing transitions define
how the probability mass will be spread at the next time instant. Since DTMCs evolve
in a discrete time domain, the flow of probability is not continuous, instead it possesses
jumps, and remains unchanged in the time interval between two relevant time points,
such as between t = 2 and ¢t = 3. This is relatively convenient for sequential systems. But
it is not convenient in a concurrent probabilistic setting, for both theoretical as well as
pragmatic reasons.

As an example, imagine that the gambler’s office door is checked by some customer.
In case he finds the door closed he probabilistically decides to check again after either 24
or 48 seconds. Note that the basic time unit of this DTMC is 24 seconds. For instance,
one might want to study the probability that the customer finds an open door after 72
seconds.

Figure 4: A discrete-time Markov chain describing the gambler’s behaviour if observed
every 12 seconds

Without specifying the model in all detail, we are already in the position to understand
the problem: In order to develop a concurrent probabilistic model of both gambler and

15

customer, we have to relate events that may happen at every 24 seconds to events that
happen may every 60 seconds. One solution is to change the basic time unit of both models
to 12 seconds, the greatest common divisor of their basic time units. In other words, the
gambler’s model is blown up to record in 4 additional states that while being absent, four
times 12 seconds pass till he may throw the die in the last twelve seconds of the minute
(cf. Figure 4).2 After a similar change in the customer’s sub-model, one can combine both
models (by essentially taking the crossproduct of states and the products of transition
probabilities). To determine the concurrent stochastic behaviour at the next point in
time (i.e. after 12 seconds) one synchronously updates the respective states in the two
sub-models, because state changes now occur exactly at the same time. The probability
for such a joined transition is given by the product of the transition probabilities in the
sub-models.

This strategy has two practical limitations, at least. First, it tends to induce a tremen-
dous blow-up of the size of the model, caused by the number of auxiliary states needed
in general. Second, it fails if there is no greatest common divisor, for instance if the cus-
tomer shows up every 7 seconds, or if time points are not equidistant. As a consequence,
virtually all stochastic models of concurrent systems are developed in a continuous time
domain, including models of modern computer systems (even though each component of
such a system can be considered as working in discrete time, changing state according to
fixed frequency clock ticks).

Continuous-time Markov chains Continuous-time Markov chains (CTMCs) are
Markov chains interpreted over continuous time, in contrast to DTMCs. They are widely
used to model the stochastic behaviour of concurrent real-world phenomena, due to their
mathematical simplicity, paired with modelling convenience.

How does the continuous-time variant of the gambler look like? In a continuous time
setting, the absent gambler is able to return to his office at arbitrary time points. Still we
may assume that he has a 1-out-of-6 chance to return within the first minute, and so on.
Under these assumptions, we get the following probability distribution:

P(still no six after + minutes) = (5/6)".

What is this? It perfectly resembles the geometric distribution appearing in the discrete
time case, but it is different. The difference is that the domain of this function is the
real line, instead of the natural numbers. In other words, the above function assigns a
probability to all time points one may think of, instead of only to each minute. Hence,
there is now a non-zero probability of returning within the first second already, namely
1 — (5/6)Y/%0 Instead of being a geometric distribution, this function belongs to the class
of so-called (negative) exponential probability distributions, because (5/6)! can be rewrit-
ten to e, with A =1In6—1In 5 ~ 0.18232. The value) is a parameter of the distribution,
usually called ’rate’. For ¢ < 15, the probabilities determined by this exponential proba-
bility distribution are depicted (by the dark plot) in Figure 5. The expected value of an
exponential distribution (i.e. the average duration) is 1/, the reciprocal value of the rate.
So, the (continuously gambling) gambler returns after 5.48 minutes on the average, not
after six minutes.?

2Note that this change encodes some kind of memory in an otherwise memoryless model: A sequence
of states is used to keep track of the time already spent in the original state.

3Remark that since the probability mass is flowing continuously, a sixth of the mass leaks prior to
the first minute tick. Hence, to some extent the probability mass flows earlier than in the discrete-time
case, where a sixth of the probability mass jumps a bit later, at each minute tick. As a consequence, the
average time needed for the continuously gambling gambler is slightly smaller than 6 minutes. To obtain
an average duration of 6 minutes, one has to adjust A to 1/6.

16

1
o,
o8
a7
0,6
0,5
o4
8,3
02
0,1

o

o 49 2 3 4 65 B T B B 10 11 12 13 14 15

Figure 5: A negative exponential probability distribution with A = In6 — In5: Will the
gambler still be absent at time t7

A continuous-time Markov chain model of this absent gambler is depicted in Figure 6.
It consists of two states, and one transition. The transition represents that the gambler
can return to his office with rate A. The gambler stays absent as long as needed to throw
a six. According to the value of A the probability mass flows from state to state as time
passes, that is, a fraction of 1 — e* = 1/6 of the probability mass flows from the left state

to the right state per minute.*
@D

Figure 6: A continuous-time Markov chain describing the gambler’s behaviour

Though the above example shows one of the simplest CTMCs one can think of, it
exhibits all relevant ingredients: states and transitions, the latter labelled with rates
of exponential distributions. It is worth to note that — in correspondence to geometric
distributions — exponential distributions are memoryless: The future evolution of a CTMC
model is independent of the past, it only depends on the state currently occupied. In terms
of the gambler, the probability that the absent gambler returns to his office within the
next minute is 1/6, independent of the fact he might have been absent for ages already.

Figure 5 allows us to illustrate the memoryless property in a graphical way [1]. Consider
the case that the gambler is still gambling after minute 10. We obtain the probability that
he will still be gambling at time 10 + ¢ by stretching the tail of the distribution (from
time 10 to oco) upwards in such a way that it reaches probability 1 for minute 10, i.e.
t = 0. As a matter of fact, this stretching returns precisely the original distribution, as
indicated by the light-grey plot in Figure 5, except that it is shifted by 10 minutes. (The
same graphical illustration holds for the geometric distribution, but for no other discrete
or continuous distribution.)

From a pragmatic point of view, the memoryless property is rather convenient. It
simplifies analysis, but it also simplifies modelling. In particular, it fits well to concurrent
stochastic phenomena: If two sub-models, both described in terms of CTMCs, are to

4Since the gambler continuously tries to return to his office, there is no need to record by an explicit
(looping) transition that he might fail for some (continuous) time. For CTMCs, this fact is implicit, while
in the DTMC scenario it is not.

17

be considered concurrently, one can simply interleave their evolution: If one sub-model
changes from one state to another, the other sub-model is not affected. The fact that the
latter has been staying in some state for some time (the time it took the former sub-model
to change state) does not need to be recorded somehow, because it does not alter the
future behaviour of the latter sub-model, due to the memoryless property.

Anyway, it should be clearly stated that absence of memory is an assumption that is
by far not always justified when modelling real-world phenomena.®

3 Formal specification of continuous-time Markov chains

In this section we illustrate the use of formal methods to model a specific aspect of a real-
world example as a CTMC. Several formal notations exist that map on CTMCs, among
them stochastic Petri nets and stochastic process algebra. Here we restrict ourselves to
illustrate the use of process algebra; an introduction to the Petri net based approach can
be found for instance in [1]. As opposed to Petri nets, process algebra allows one to
compose models out of smaller sub-models, by means of general composition operators
such as parallel composition and choice [14], and also more specific constructs, such as
exception handling [16]. We will make use of these operators to model a simplified view
on the performance and reliability of the Hubble space telescope.

The Hubble Space Telescope The Hubble space telescope (HST) is an orbiting as-
tronomical observatory operating from the near-infrared into the ultraviolet (cf. Figure 7).
Launched in 1990 and scheduled to operate through 2010, the HST carries a variety of
instruments producing imaging, spectrographic, astrometric, and photometric data.

The HST was first conceived in the 1940. It was designed and built in the 1970s
and 1980s, aiming at a life span of 15 years with on-orbit servicing taking place on 3
year intervals. The HST is a cooperative program of the National Aeronautics and Space
Administration(NASA) and the European Space Agency (ESA). Originally, the HST was
designed to be returned to earth via the space shuttle every 5 years with on-orbit servicing
every 2.5 years as well. This concept was later scrapped as it was felt there was a too
great risk of contamination and structural load to make the concept sound. By the time
it was launched the HST cost $1.5 billion U.S. dollars.

Since the telescope has been launched in April 1990, three servicing missions were
carried out: in December 1993, in February 1997, and in December 1999. During the last
mission the stabilising unit of the HST was repaired. This was necessary, since severe
problems with the reliability of the gyroscopes contained therein had forced the HST to
turn into a sleep mode.

The gyroscopes are part of HST pointing system. They provide a frame of reference
to determine where it is pointing and how that pointing changes as the telescope moves
across the sky. They report any small movements of the spacecraft to the HST pointing
and control system. The computers then command the spinning reaction wheels to keep
the spacecraft stable or moving at the desired rate in order to avoid that the telescope
pointing device staggers. This is of particular importance to avoid that pictures taken by
the telescope are blurred. The gyroscopes work by comparing the HST motion relative to
the axes of the spinning masses inside the gyroscopes.

5Tt is possible to incorporate a notion of memory into the model, similar to what we have used to realise
synchronisation of DTMCs (cf. footnote 2). In this way, general non-exponential probability distributions
(so-called phase-type distributions) can be represented. The price to pay for this is usually a blow up of
the model.

18

_. High Gain Antenna

Secondary
frror Aperture Door

Primary

Mirror) Light Shield

Reaction Whee| Assemblies

Fine Guidance
Sensors (3)

Aft Shroud

e Tl@5C0OPE COmpanment

’ Wa
Axial Instruments Solar Array
(FOC, NICMOS, COSTAR, STIS) —
Radial Instrument (WFPC2) .
Telescope] Vi
Painting
System

Figure 7: The Hubble space telescope [23].

The HST has a total of six gyroscopes, grouped into three fine guidance sensors. They
are arranged in such a way that any three gyroscopes can keep the HST operating with full
accuracy. Two fine guidance sensors had been replaced already during the first servicing
mission in 1993. Till the end of the second servicing mission in 1997, all six gyroscopes
were working normally, but then one after the other failed. Starting from January 1999
the HST had been operating with only 3 functional gyroscopes. As a consequence of a
fourth gyro failure on November 13, 1999, HST turned itself into a sleep mode and the
science program was suspended. Without operational gyro the telescope would have run
the risk to crash. In December 1999, a space shuttle mission was sent to the HST to
replace (among others) the complete stabilising unit. This mission was successful.

In order to judge whether the problems of the HST could have been expected be-
forehand, one might want to study the reliability of the stabilising unit by means of an
abstract stochastic model. Here we construct a simple Markov chain model of the gyros,
and of their controller. The model is a toy example, developed to give a flavour of Markov
chain modelling with process algebra. The model is developed in the algebra of interactive
Markov chains (IMC) [18, 20], an extension of basic Lotos [6].

Basic processes FEach gyro might FAIL after an exponentially distributed amount of
time (it is known that exponential distributions fit relatively well to failures of technical
equipment). The failure rate A is the same for all gyros. A GYRO specification is as
follows:

GYRO = (A). rFalL. STOP

This specification corresponds to a graphical representation depicted in Figure 8. Apart
from a transition labelled A representing the delay prior to failure, there is a second kind

19

of transition, indicated by a dotted arrow labelled FAIL. In abstract terms, this transition
represents the potential of interaction, i.e. of synchronising with a partner transition (la-
belled with the same name) in a different sub-model. The potential of interaction between
sub-models is one of the well known features offered by a process algebraic approach [6].

Figure 8: A simple interactive Markov chain describing the gyroscope’s behaviour

Parallel composition Six of these gyros coexist independently in the stabilising unit,
together with a controller that keeps track of the status of each gyro, by means of syn-
chronisation on FAIL. This is realized using the operator |[FAIL]| for synchronisation, and
|| to denote independent parallelism (among the gyros):

STABILISER = CONTROLLER
|[FAIL]|
(GYRO[||GYRO|||GYRO|||GYRO|||GYRO|||GYRO)

The controller counts the number of failures, and mechanically turns the telescope
into sleep mode in case four gyros have failed. To turn into sleep mode requires some
time. For the moment we just assume an exponential distribution with rate p. We will
explain shortly how to deal with other distributions. After turning on the sleep mode, the
controller notifies the base station by means of a SLEEP signal. In the meantime, further
gyro failures might occur. If the last gyro fails, a CRASH is assumed to be inevitable. The
graphical representation of the controller is depicted in Figure 9.

é j.L,',':-t:ji B O # "t:) ,}

"IIII SLEEF;
I-!-."-ulg

& “'D' seiie

Figure 9: An interactive Markov chain describing the controller

LT '.':‘; SLEES

CONTROLLER = FAIL. FAIL. FAIL. FAIL.
((u). sLEep. STOP ||| FAIL. FAIL. CRASH. STOP))

To complete the picture, we consider the stabilising unit of the HST in the context of the
base station. The base station listens to the SLEEP notification and reacts accordingly:

20

launch a space shuttle mission to repair — and then restart — the telescope.

BASE = SLEEP. PREPARE. LAUNCH. REPAIR. RESTART. BASE

Exception handling The complete specification consists of the STABILISER and the
BASE station synchronising on SLEEP. Two events may alter the functioning of the
system. If a CRASH occurs, the whole system is extinguished, but if the shuttle mission
manages to repair the stabilising unit in time, the whole system will be restarted anew.5

HST = trap
CRASH —> STOP
RESTART —> HST
in STABILISER |[sLEEP]| BASE

Time constraints Of course, preparing the shuttle mission takes time, and one might
wish to incorporate the expected (random) delay in the model. To do so, we can use a
constraint-oriented style, as advocated in [20]. This style allows one to add constraints on
the timing of certain sequences of interactions, such as between PREPARE and LAUNCH by
means of a dedicated operator. For instance,

on PREPARE
delay LAUNCH

by (v). STOP
in HST

adds an exponentially distributed delay with rate » between PREPARE and
LAUNCH. Semantically speaking, this will have the same effect as specifying
BASE = SLEEP. PREPARE. (V). LAUNCH. REPAIR. RESTART. BASE, but it is much more
modular and flexible, in particular because it can be used to impose very general time
constraints, instead of only exponentially distributed ones, see [20]. In short, one can
insert an arbitrary (phase-type distributed) delay between PREPARE and LAUNCH, by re-
placing (v). STOP in the above expression by some appropriate term (in fact, an encoding
of the distribution as a CTMC).

For the sake of the presentation we do not add further time constraints, even though a
realistic model would at least impose some nontrivial delay between LAUNCH and REPAIR,
(as well as a non-exponential delay to set up the SLEEP mode.)

Extracting the Markov chain The complete HST specification gives rise to a stochas-
tic model, a CTMC depicted in Figure 10. It is obtained from the specification by applying
the formal semantics of the process algebra, and compressing the model by means of an
appropriate weak bisimulation afterwards.” The states are labelled from left to right with
the number of gyros that are currently operational, except if the system is sleeping, or
crashed.

Remark that in this CTMC the failure rate A appears weighted with different multi-
plying factors. The intuitive reason is that if six gyros are operational, the time to the
first failure is six times smaller than if only one gyro is left. This increased failure rate for
multiple identical components is correctly derived by the formal approach outlined above.

5The semantics of this exception handling is similar to [16].

As explained in [20], constructing the Markov chain requires to hide all possible interactions beforehand.
This is necessary but not always sufficient to extract a CTMC, since interactive Markov chains are strictly
more expressive than CTMCs (because of the absence on nondeterminism in CTMCs).

21

Figure 10: A continuous-time Markov chain corresponding to the stochastic behaviour of
the telescope

4 Performance and reliability via model checking

In this section we illustrate the use of model checking to analyse performance and reliability
properties of CTMC models. We discuss the main ingredients of this approach, and apply
model checking to the simple Hubble space telescope example of Section 3.

Temporal logic The model checking approach relies on the use of temporal logic for
specifying properties one is interested in. For this purpose temporal logic provides means
to specify undesired (or — dually — desired) evolutions. Typical specifications of proper-
ties are ’something undesired never happens’ or ’eventually a desired state is
reached’. A temporal logic specification is usually considered in the context of a given
model (provided by some process algebraic specification, for instance). The mechanic ver-
ification whether a model satisfies a temporal logic specification is called model checking.
It is worth to mention that basic temporal logic does not allow one to reason about delays
and time points (although the name might suggest the converse). It is 'temporal’ in the
sense that it allows one to refer to the ordering of events as the model evolves in time.

Temporal logics for Markov chains In the context of Markov chain models, the
temporal logic approach turns into a probabilistic temporal one. It is not sufficient to
decide whether ’eventually a desired state is reached’. Instead the probability of
eventually reaching a desired state is much more interesting. For the gambler example
in Figure 3 the standard interpretation of eventually the gambler will be present’
would return false, because it is in principle possible to stay absent ad infinitum. However,
this evolution is extremely unlikely, it has probability zero. So, a quantitative interpreta-
tion of temporal logic is needed, quantifying the likelihood of satisfying a given property.
This allows one to specify properties such as >a desired state is eventually reached
with at least probability 0.95°.

Moreover, since the evolution of a Markov chain model in time is measurable (in the
true sense of the word), it is possible to reason about time instances within the temporal
logic. Timed properties such as ’with at most probability 0.2 the gambler will
still be absent after 10 minutes’ are possible.

Continuous stochastic logic The continuous stochastic logic (CSL), first proposed in
[2] and further refined in [4, 3] provides means to reason about continuous-time Markov
chain models. It is a branching time logic based on CTL [8] with dedicated means to
specify time intervals, and to quantify probability. As explained in Section 2, there are

22

two substantially different classes of properties of a CTMC: transient and steady-state
properties. Therefore, CSL provides two complementary means to quantify the probability
mass: a steady-state operator S, to quantify the long-run likelihood, and a transient
probability operator P.

For instance, a steady-state property S<,(®) is true if the long-run likelihood of prop-
erty ® is at most p.® ® can be a basic property (usually called atomic proposition) valid
(or invalid) in some state. It can also be an arbitrary nested property of the logic. The
transient probability operator is used to quantify the likelihood of evolving in a specified
way, from a given state and a given time point on. For example P<,(X @) is true in
a particular state if the probability of moving (in one step) to a state where ® holds is
bounded by p. Apart from X ®, there can be various other arguments for the operator P,
such as

e (O & quantifies the probability mass evolving in such a way that eventually a state
is reached where ® holds (called a ®-state in the sequel).

e 001 & characterises the amount of probability reaching a ®-state within ¢ time
units.

e & U Py characterises the amount of probability evolving only along ®;-states until
a ®o-state is reached.

o &Yl &y quantifies the probability mass evolving only along ®-states until a
d,-state is reached, under the additional constraint that ®; holds at least up to time
t1, and ®5 holds at time 5 the latest.

Model checking CSL Model checking a CTMC with respect to a given CSL property
involves different algorithms. Since the details are not of vital importance for a proper
understanding of the approach — at least relative to the logical means to specify properties
— we only give a concise overview of the ingredients.

As in other model checking strategies, a couple of graph algorithms are used. In
addition, algorithms to quantify the probability mass of satisfying the above criteria are
needed. In principle, these probabilities could be derived using simulation, numerical
solution, or sometimes via analytical solutions. Since numerical solution of CTMCs is
well studied and generally applicable, it seems wise to use numerical solution methods
to model check CSL properties [4]. In this way, model checking involves matrix-vector
multiplications (for X), solutions of linear systems of equations (for ¢, # and for S), and
solutions of systems of Volterra integral equations (for U ["']). Linear systems of equations
can be iteratively solved by standard numerical methods [26]. Systems of integral equations
can be solved either by piecewise integration after discretisation, or they can be reduced
to standard transient analysis [3]. A prototypical model checker for CSL, E— MC?, is
available [21], We shall make use of E - MC? to investigate properties of the Hubble space
telescope.

Properties of the telescope model CSL provides a rich framework to study perfor-
mance and reliability properties of the HST. Here we consider a few illustrative cases. In
order to allow the calculation of numerical values, we first need to fix the model parame-
ters A, u, and v of the CTMC in Figure 10. Assuming a basic time unit of one year, we
set A = 0.1, i.e. we assume that each gyro has an average lifetime of 10 years. (Remind
that 1/ gives the average duration of an exponential distribution with rate A.) To turn

8Instead of ’<’ one may use arbitrary comparison operators, or specify intervals of probabilities instead.

23

on the sleep mode may require a hundredth of a year (a bit more than three days and a
half) on the average, whence we set © = 100. Further assuming that preparing the repair
mission will take about two months, we set v = 6. Unless otherwise stated we consider
the validity of CSL properties in the initial state, i.e. the state labelled 6 in Figure 10.
The state labels appearing in this figure serve as atomic state propositions for the logic.

First, let us look into long-run averages. An interesting property, often called availabil-
ity, is the probability that the system will be available — i.e. neither crashed nor sleeping —
on the long-run average. In CSL we assure an availability higher than p by specifying

Ssp(— ('sleep V crash)).

None of the states of the HST satisfies this property (whatever the value of p may be). This
should not be surprising, because the telescope is not constructed for the long run. In fact,
the availability of the telescope is zero, because on the long run, the modelled telescope
will crash, all the probability mass will eventually be cumulated in the crash-state (cf.
Figure 10).°

While checking standard availability does not make much sense for the HST, the in-
stantaneous availability is of interest. Instantaneous availability is a typical transient
property, it is the probability that the system is operational at a given time point ¢. This
time point could for instance be given by the need to observe a rare astronomic event.
Assuming that an interesting comet passes the telescope in five years, we specify

P>0.05(0P= (sleep V' crash))

in order to assure that with at least probability 0.95 the telescope is neither sleeping nor
crashed then. (Note that the time interval [t,¢] denotes just a single time point.) This
property is satisfied, we compute a probability of more than 0.98.

In the same direction, we may wonder about the probability to obtain blurred data
at that time from the telescope, because less than three gyros are operational, but sleep
mode is not yet turned on. This is a very unlikely situation, and one might accept at most
a probability of 107%. One way of characterising the relevant states is to isolate those
(non-sleep) state that (with positive probability) can turn on the sleep mode in the next
step. This gives us

Pio-6 (0P (= sleep N Pso(X sleep)),

a property that is not satisfied, because the probability of being in the specified states
after 5 years is in the dimension of 107°.

Another quantity of interest is the time until first sleep, i.e. the time span before the
(fully operational) telescope has to be put into sleep mode for the first time. In reality, this
happened within 2.7 years: All gyros were operational at the end of the second servicing
mission in early 1997, and the sleep mode was turned on in November 1999. We specify
a less than 10 % chance of such a first sleep within 2.7 years by

Poo.1(—sleep UL2T sleep)

It turns out that this property is valid, E~ MC? computes that the probability of a first
sleep within 2.7 years amounts to about 0.03. A related question is whether it was likely
not to witness any gyro failure within the four years between the first (1993) and the second

9Generally speaking, steady-state properties provide very useful insight in the model, in particular for
the widespread class of models where the probability mass can flow forever without gradually leaking into
some sink (so to speak), or where more than one sink exists. Each of these sink may in general consist of
a set of mutually reachable states.

24

servicing mission (1997). We answer this question by checking whether the probability to
leave the state 6 within 4 years is between, say, 0.3 and 0.7. (Notice that leaving state 6
corresponds to a gyro failure).

Pl0.3,0,7] (0[0’4} - 6)

In fact, this property is invalid, because the probability of a gyro failure within 4 years is
approximately 0.9, thus exceeding the upper bound 0.7.

As a last example property, be reminded that the HST is planned to stay on orbit
through 2010. Hence, it seems worth to study whether a crash before reaching the year
2010 can hardly be expected. To do so, we model check a property saying that there is
at most a 1% chance that the system will erash within the next 10 years (given that the
system was reset to state 6 in late 1999):

P<o.o1 (0[0’10} crash).

This property is satisfied, the probability of crashing within 10 years is calculated by
E — MC? to be 0.00036. Be reminded that the model is a toy example, and that its timing
parameters are not claimed to reflect reality.

5 Concluding remarks

In this paper, we have tried to give an illustrative introduction to the basics of stochastic
models, to stochastic modelling using process algebra, and to model checking as a technique
to analyse stochastic models.

A few questions have not been addressed to a satisfactory extent. In particular we
have negligently skipped the discussion how to label states of a CTMC generated from a
process algebra in such a way that these labels can be used in temporal logic property
specifications. One solution to this problem is to move from a state based logic towards a
transition-based formalism [22].

Another important issue for industrial strength formal analysis is the availability of
tool support. At the current state, prototypical tool support is available for both the
stochastic modelling and the analysis phase: A couple of prototypes exist that allow
a process algebraic modelling of CTMCs [19, 7, 5]. So far, performance models with
up to 107 states have been modelled and analysed compositionally [20]. A prototypical
model checker for Markov chains, E — MC?, is also available [21], it was used to check the
above CSL properties of the Hublle space telescope. More effort is nevertheless needed
to enhance modelling and analysis convenience. In addition, it seems favourable to link
stochastic features to existing modelling and analysis tools with open architecture. We
are currently making efforts to incorporate stochastic modelling and analysis features into
the CADP toolset [13, 15].

Markov chain models have been the clear focus of this paper. Their memoryless prop-
erty considerably simplifies both modelling and analysis, but the property also implies
that many real-world phenomena can only roughly be approximated with Markov chains.
Hence there is a need to extend the framework sketched in this paper beyond Markov
models. The work of D’Argenio et al. [11, 12] develops a process algebra, called SPADES,
to specify non-Markov performance and reliability models in an elegant way. So, the
benefits of a process algebraic formalism extend to performance and reliability modelling
in general. Anyhow, the analysis of such models needs further investigations. Since nu-
merical solution methods are impractical in general, we are currently developing an open
simulation environment to analyse SPADES specifications.

25

Acknowledgements Pedro R. D’Argenio and Joost-Pieter Katoen have provided valu-
able comments on an earlier version of this paper.

References

[1] M. Ajmone Marsan, G. Balbo, G. Conte, S. Donatelli, and G. Franceschinis. Modelling
with Generalized Stochastic Petri Nets. Wiley, 1995.

[2] A. Aziz, K. Sanwal, V. Singhal and R. Brayton. Verifying continuous time Markov
chains. In Computer Aided Verification (CAV 96), LNCS 1102, pp. 269-276, Springer,
1996.

[3] C. Baier, B.R. Haverkort, H. Hermanns and J.-P. Katoen. Model checking continuous-
time Markov chains by transient analysis. In Computer Aided Verification (CAV 2000),
LNCS, Springer, 2000 (to appear).

[4] C. Baier, J.-P. Katoen and H. Hermanns. Approximate symbolic model checking of
continuous-time Markov chains. In Concurrency Theory (CONCUR 99), LNCS 1664,
pp- 146-162, Springer, 1999.

[5] M. Bernardo, W.R. Cleaveland, S.T. Sims, and W.J. Stewart. TwoTowers: A tool
integrating function and performance analysis of concurrent systems. In Proc. of IFIP
Joint Int. Conf. on Formal Description Techniques and Protocol Specification, Testing
and Verification. North Holland (IFIP), 1998.

[6] T. Bolognesi and E. Brinksma. Introduction to the ISO Specification Language LO-
TOS. Computer Networks and ISDN Systems 14:25-59, 1987.

[7] G. Clark, S. Gilmore, J. Hillston, and N. Thomas. Experiences with the PEPA per-
formance modelling tools. IEE Proceedings—Software 146(1):11-19, February 1999.

[8] E.M. Clarke, E.A. Emerson and A.P. Sistla. Automatic verification of finite-state
concurrent systems using temporal logic specifications. ACM Tr. on Progr. Lang. and
Sys. 8(2):244-263, 1986.

[9] E.M. Clarke and R.P. Kurshan. Computer-aided verification. IEEE Spectrum 33(6):61—
67, 1996.

[10] E.M. Clarke, O. Grumberg and D. Peled. Model Checking. MIT Press, 1999.

[11] P.R D’Argenio. Algebras and Automata for Timed and Stochastic Systems. PhD-
Thesis, University of Twente, November 1999.

[12] P.R. D’Argenio, J.-P. Katoen E. Brinksma. Specification and Analysis of Soft Real-
Time Systems: Quantity and Quality. In Proc. of the 20th IEEE Real-Time Systems
Symposium, pp. 104-114, Phoenix, Arizona, December 1999. IEEE Computer Society
Press.

[13] J.-C. Fernandez, H. Garavel, A. Kerbrat, R. Mateescu, L. Mounier and M. Sighireanu.
CADP (Caesar/Aldébaran Development Package): A protocol validation and verifica-
tion toolbox. In Computer Aided Verification (CAV 96), LNCS 1102, pp. 437-440,
Springer, 1996.

[14] W.J. Fokkink. Introduction to Process Algebra. Texts in Theoretical Computer Sci-
ence, Springer, 2000.

26

[15] H. Garavel. OPEN/CESAR: An open software architecture for verification, simulation,
and testing. In B. Steffen, ed, Tools and Algorithms for the Construction and Analysis
of Systems (TACAS 98), LNCS 1384, pp. 68-84, Springer, 1998.

[16] H. Garavel and M. Sighireanu. On the Introduction of Exceptions in E-LOTOS. In
R. Gotzhein and J. Bredereke, editors, Formal Description Techniques IX, pp. 469-484,
Chapman and Hall, 1996.

[17] B. Haverkort. SPN2MGM: Tool support for matrix-geometric stochastic Petri nets.
In Proc. of IEEFE International Computer Performance and Dependability Symposium,
pp- 219228, Urbana-Champaign, Illinois, September 1996. IEEE Computer Society
Press.

[18] H. Hermanns. Interactive Markov Chains. PhD thesis, Universitat Erlangen-Niirn-
berg, 1998.

[19] H. Hermanns, U. Herzog, U. Klehmet, V. Mertsiotakis and M. Siegle. Compositional
performance modelling with the TIPPTOOL. Performance Evaluation 39(1-4):5-35,
2000.

[20] H. Hermanns and J.P. Katoen. Automated compositional Markov chain generation
for a plain-old telephony system. Science of Computer Programming 36(1):97-127,
2000.

[21] H. Hermanns, J.-P. Katoen, J. Meyer-Kayser and M. Siegle. A Markov chain model
checker. In Tools and Algorithms for the Construction and Analysis of Systems
(TACAS 2000), LNCS 1786, Springer, 2000.

[22] H. Hermanns, J.-P. Katoen, and J. Meyer-Kayser. Towards model checking stochastic
process algebra, 2000 (submitted).

[23] The Hubble space telescope. http://astro.sau.edu/~astro/html/MARAC/HST.html

[24] C. Lindemann and R. German. Modeling discrete event systems with state-dependent
deterministic service times. Discrete Event Dynamic Systems: Theory and Applications

3:249-270, July 1993.

[25] Raj Jain. The Art of Computer Systems Performance Analysis. J. Wiley, New York,
1991.

[26] W.J. Stewart. Introduction to the Numerical Solution of Markov Chains. Princeton
Univ. Press, 1994.

27

28

A B Model for Ensuring Soundness of a Large Subset
of the Java Card Virtual Machine

Antoine Requet

Gemplus Research Laboratory, Av du Pic de Bertagne,
13881 Gémenos cedex BP 100.
antoine.requet @ gemplus.com

Abstract: Java Cards are a new generation of smart cards that use the Java
programming language. As smart cards are usually used to supply security to a
system, security requirements are very strong and certification can become a
competitive advantage. Such a certification to a high Common Criteria or
ITSEC level requires the proof of all the security mechanisms. Those security
mechanisms include the byte code interpreter and verifier of the virtual
machine. Previous works have been done on methodology for proving the
soundness of the byte code interpreter and verifier using the B method. It
refines an abstract defensive interpreter into a byte code verifier and a byte code
interpreter. However, this work had only been tested on a very small subset of
the Java Card instruction set. This paper presents a work aiming at verifying the
scalability of this previous work. The original instruction subset of about ten
instructions has been extended to more than one hundred instructions, and the
additional cost of the proof has been managed by modifying the specification in
order to group opcodes by properties.

Keywords: B method, Java Card, formal specification

1. Introduction

A smart card is a small embedded system generally used to supply security to an
information system. Traditionally, the application and the operating system were
developed in a secure environment by the card issuer. For few years, platforms (e.g.,
Java Card, MultOS and Smart Card for Windows) have provided new facilities for
application developers. They allow dynamic storage and execution of downloaded
executable content. Those platforms are based on a virtual machine both for
portability across multiple smart card micro-controllers and for security reasons. Such
architecture introduces new risks: the most important one is the possibility to attack
the card from an applet by exploiting some implementation faults. In order to avoid
such a risk, card manufacturers have a fairly extensive qualification process. Quality
insurance requirements for smart cards are very strong. To convince the customer that
the system is secure enough, card manufacturers propose to evaluate their system
through a certification process.

This certification is a means for the card issuer to promote its products against its
competitors. Sometimes the customer or the targeted market requires the certification.

29

For example, the German market requires each product that uses an electronic
signature to be certified at the E4 level of the ITSEC scheme. According to the
certification rule and the requested level, the card issuer must provide all the elements
needed by the authority to guarantee the quality of the development process. At some
high levels, it is required to use formal methods and to provide the proof that security
mechanisms satisfy the security policy. One of the trickiest problems is to prove the
coherence of the different security mechanisms of the system. Since there are strong
size constraints on the chip, the amount of memory is small. This leads Java Card to
modify the security scheme. It becomes more crucial to be able to prove the
correctness of the whole system security.

After a brief presentation of the Java Card security mechanisms, we sum up the state-
of-the art on the formal verification of the Java byte code semantics. We emphasise
the proof of the static and dynamic semantics coherence using our approach. Then, we
conclude with the extension of our work and its integration in the whole Java Card
model.

2. Security of the Java Card

The Java Card 2.1 standard [Sun-99] defines the CAP file (Converted APplet) i.e., the
structure of the input files. For each byte code, the standard defines the conditions
required for a correct execution, but not the way to ensure that those conditions are
met. The Java Card virtual machine is specially designed for smart card; several
features have been removed, compared to the Java virtual machine, while others
features have been added (e.g., the applet firewall). The Java Card API is a set of
tools or services aimed to help programmers designing Java Card applets. Due to the
limited resources of the smart card (CPU, memories...), most of the tests (the verifier
and part of the loader) must be done statically, outside the card. A secure link
mechanism allows the card to check the integrity of the cap file; i.e., after having
verified the signature, the card can safely assume that the downloaded program has
the required properties, and that a valid verifier has checked it. Of course the
certificate can only be provided by a trusted third-party authority.

In fact, the security provisions are scattered across different components: a verifier, a
converter, an on-card loader, a firewall and an interpreter (see figure 1). Moreover a
specific applet is used to manage the applet: the Java Card Runtime Environment
(JCRE). It is used to select and deselect applets, and also contain the registers of the
selected applets and of the currently active applet.

While the virtual machine insures Java language-level security, the firewall performs
additional runtime checks. This mechanism is in charge of the applet isolation and of
the control of object accesses. For example, it prevents unauthorized accesses to the
fields and the methods of class instances. An applet may share objects with other
applets, so the applet firewall must control the access to the shareable interface of
these objects. This component is of prime importance for the system security.

30

compiler ¢

*.java *.class (Byte code verifier and
B) converter
y i Java Card Virtual Machine :__?ff‘_ c_a_rc_i parts
On-car: parts/)_______________________' >L off-card loader J
L
On-card
Interpreter Loader <
Firewall Linker
*.cap

Fig.1: Java Card environment

The security policy has to express the correct confinement of the applets and the
correct access to shared objects. The respect of the typing rules associated to the
access rules of the firewall guarantee this security policy. Thus, we have to verify that
the elements performing those checks are correctly implemented and that they are
consistent. A formal specification of these mechanisms must be done even if the
formal proof is costly. Several elements have already been modelled: the verifier
[Cas-99] and partially the JCRE with an emphasis on the firewall [Mot-00]. We
present here a method guaranteeing that the security policy is correctly implemented
by the different mechanisms.

3. Related Work

There has been much work on a formal treatment of Java but no work has been done
in order to formally verify whether a given security policy is correctly implemented
by a virtual machine. All the works on Java and the Java byte code focus on a formal
definition of the semantics. At the Java language level, [Nip-98] and [Sym-97] define
a formal semantics for a subset of Java in order to prove the soundness of its type
system. [Qia-98] considers a subset of the byte code and aims at proving the runtime
correctness from its static typing. Then, he proposes the proof of a verifier that can be
deducted from the virtual machine specification.

An interesting work has been done by [Coh-96]. He proposes a formal
implementation of a defensive virtual machine. It is possible to prove that his model is
equivalent to an offensive interpreter plus a sound byte code verifier. Posegga and
Vogt [Pos-98] propose a verification mechanism based on a model checker. They
shown the easiness of the proof process using the SMV tool. Goldberg [Gol-97]
proposes a formal specification of the byte code verifier for the data flows analysis.
His approach is close to the implementation but he simplifies the problem when

31

neglecting to check subroutines. In the Bali project [Pus-99], Push proves a part of the
Java Virtual Machine using the prover Isabelle/HOL. Qian works [Qia-98] gives a
specification of the byte code verifier and then proves its correctness.

4. The approach used

The main purpose of our approach is to ensure the soundness of the type system.
Principles described in [Cas-99] are used to formally specify the Java byte code
interpreter. The main idea is to start with a formal description of an abstract defensive
byte code interpreter that defines the checks needed to ensure a safe byte code
execution. This defensive byte code interpreter defines the expected security policy.

Defensive abstract interpreter
T refines

Aggressive abstract interpreter
and static constraints
refines

Merging of verifier and
interpreter

includes

Verifier specification Interpreter specification

A refinements A refinements
| |

Verifier implementation Interpreter implementation

Fig 2: Overview of the approach

The runtime checks performed by the defensive interpreter are removed and
converted to static constraints on the byte code during the refinement process. During
this process, the proof obligations of the refinement ensure the validity of the static
constraints specified.

At the last refinement step, the machine is separated in a byte code verifier, which
enforces the static constraints, and an aggressive interpreter, corresponding to the
implementation of the Java Card virtual machine. The refinement mechanism ensures
that the security policy defined in the abstract interpreter is preserved by the
aggressive one.

This approach ensures the soundness of the byte code verifier and the interpreter. That
is, the byte code interpreter relies only on tests that are performed. Moreover, from
the verifier point of view, this proves that the properties verified are enough to
guarantee a safe byte code execution: a property that would not have been verified
would generate unprovable proof obligations in the verifier part. Lastly, generating

32

the code for the interpreter and the verifier ensures the correctness of the
implementation.

Initially, a small instruction set composed of about ten instructions and a simplified
lattice has been used. This approach was adapted to this small instruction set, but
extending it to the whole Java Card instruction set did not scale well. More exactly,
each instruction needed several manual proofs and both the response time and
memory requirement of the prover was too large to completely demonstrate the
proofs. The next part focuses on describing how the approach has been extended for a
large subset of the Java Card virtual machine.

5. Machine considered

5.1. Instruction set

The Java Card subset considered consists of all the stack manipulation instructions,
most of the control flow instructions and instructions manipulating local variables.

As the aim of this work was to verify the scalability of the approach, instructions that
would drastically increase the complexity of the model have been left out. Especially,
those instructions include the instructions used for subroutines, for method calls and
for objects handling. The difficulties implied by those instructions have already been
widely studied, and there are known solutions for handling them. Moreover, those
difficulties usually involve few instructions, and are not subject to scalability
problems. The handling of exceptions and subroutines will be added later, when the
scalability of the model will be resolved. We will use a model developed as an
extension of [Lan-98] based on [Aba-98] and very close to [Fre-99].

So, the chosen instruction set is neither representative of the full Java Card instruction
set nor representative of the tricky parts of the full instruction set. However, it appears
as a valid choice to study the problems that can be encountered when extending a ten
instructions subset to the full instruction set.

A subset of instructions manipulating the stack is created. Each of those instructions
is considered as first removing elements from the stack, and adding new elements to
the resulting stack. For example, the instruction iadd, which adds the two topmost
elements of the stack together, and replaces them by the result, is considered as being
an instruction that pops two integers from the stack and pushes an integer.

To model this, two constants have been added: tpushed and tpopped. Those constants
are defined as partial maps from opcodes to sequence of types. tpopped defines the
types that are expected to be removed from the top of the stack, and tpushed defines
the types to be pushed onto the stack when the instruction is executed. In the previous
example, tpushed(iadd) is equal to the one element sequence [integer], and
tpopped(iadd) is equal to the sequence [integer, integer].

In order to simplify the specification and the proof process, the opcodes are grouped
by properties. Sets are defined to contain opcodes with similar properties. For
example, the following sets are used:

33

e OP_NEXT. This set contains opcodes that can go to the next instruction after
execution. This include nearly all the instruction, excepted the unconditional
jumps.

e OP_BRANCH and OP_BRANCH_W: the set of opcodes that may perform a
relative branch, where the target is defined by the first parameter. There are two
sets, since the branch can be defined by a signed byte parameter (OP_BRANCH)
or a signed short parameter (OP_BRANCH_W)

e OP_NEXT_FRAME_READ: the set of opcodes reading a value from the local
variables.

A given opcode can be part of several sets. For example, instructions that perform

conditional branch are both elements of OP_NEXT and OP_BRANCH. Although

every Java Card opcodes can not fit in a group, such a grouping scheme highly
simplifies the specification.

One drawback is that grouping opcodes by properties generates more complicated

proof obligations that require increased manual interaction. However, those proof

obligations are more generic and can usually be used to discharge nearly all the proof
obligations corresponding to the opcodes within the group.

5.2. State of the machine

We consider the execution of one method. This is enough to verify the consistency
between the interpreter and the verifier. Thus the verification can be performed a
method at a time, provided that some information about the global context is
accessible.

A set BYTE is defined, the method being considered as a sequence of BYTE. Since its
content does not change during the interpretation, it is defined as a constant. Some
additional information on the method is added: max_stack corresponds to the
maximum size of the local stack during the execution of the method, and max_local to
the maximum number of local variables used. Lastly, the set opcode_locations
corresponds to the set of valid adresses within the method. As this last information is
not directly available within the classfile, it has to be computed before the method is
executed.

max_locals € NAT A
max_stack € NAT A
method € seq1(BYTE) A

opcode_locations < dom(method)

Fig 3: Constants used to represent a method

For the most abstract specification, we are only interested in the types contained in the
stack and the frame. So, the state consists of:

e the program counter, which points to the instruction currently being executed,

e the typing of the runtime stack,

e the typing of the frame.

This state is defined by the variables shown on figure 4. For now, the variable
frame_type contains the content of the frame, and is defined as a partial map from

34

integer to type (more exactly, from the interval O to the maximum variable number to
type). The variable stack_type represents the content of the stack, and is defined as a
sequence of types. apc is defined as beeing a value in opcode_locations, always
ensuring the applet confinement. An additional invariant ensures that the stack never
overflows.

frame_type € 0..max_locals-1 +> TYPE A
stack_type € seq(TYPE) A
size(stack_type) < max_stack

apc € opcode_locations

Fig 4: Variables representing the state of the machine

Since we manipulate byte, and not more abstract data types, we need some functions
converting bytes to opcodes or values. Figure 5 lists some of the B functions defined.
The functions BYTE_to_signed and BYTE2_to_signed allow converting a byte or a
short into a signed value useable within the specification. Those functions are defined
as constants, and are used to get the opcodes and the parameters from the method.

BYTE to_OPCODE € BYTE — OPCODE A
BYTE to_signed € BYTE — INT A
BYTE2_to_signed : (BYTEXBYTE) — INT

Fig 5: Functions handling byte conversions

6. The defensive interpreter

The defensive interpreter performs an abstract execution of the method, and ensures
that every instruction can be executed in a safe way by runtime tests. Each Java
opcode has an associated B operation describing the expected semantics.

To simplify the specification, a few more definitions have to be introduced (Fig 6).

opcode(pc) == BYTE_to_OPCODE(method(pc));
parameter(pc, xx) == method(pc+xx);
succ_pc(pc) == pc + parameters_size(opcode(pc)) + 1;
can_update_stack(pc) == size(stack_type) = size(tpopped(opcode(pc))) a
size(stack_type)-size(tpopped(opcode(pc)))+size(tpushed(opcode(pc)))
< max_stack A
stack_type Tsize(tpopped(opcode (pc)))=tpopped(opcode (pc))
Fig 6: Definitions

The first definition corresponds to a function returning the opcode for the specified
location in the method. The second one is used to access parameters associated to
opcodes. The next one computes the address of the next instruction based on the

35

number of additional parameters of the opcode. The last definition is a predicate
ensuring that the stack can be updated according to the definition of the current
opcode. That is, it ensures that the execution of the instruction will not introduce stack
underflow or overflow, and that the types expected are present on top of the stack.

To specify the operations, we use event driven B, and associate a guard corresponding
to the expected opcode of the operation. The operation will be triggered when the
guard is true, that is, when the corresponding opcode is encountered.

Each operation performs tests ensuring that it can safely be executed and then updates
the state of the machine. For example, the specification of the iload instruction, which
loads an integer local variable onto the stack is given figure 7.

op_iload=
SELECT
opcode(apc) = ILOAD
THEN
IF
BYTE_to_unsigned(parameter(apc, 1)) € 0..max_locals-1 A
frame_type(BYTE_to_unsigned(parameter(apc, 1))) =
frame_type_used(opcode(apc)) A
succ_pc(apc) € opcode_locations A
can_update_stack(apc)
THEN
apc := succ_pc(ape) |l
stack_type = tpushed(opcode(apc))
N(stack_typelsize(tpopped(opcode(apc))))
END
END;

Fig 7: Specification of the operation corresponding to the iload opcode

In this example, the content of the SELECT clause means that this operation will be
triggered when an iload opcode is encountered within the method. Then, the tests
within the IF clause correspond to the runtime tests performed when executing the
instruction: the two first checks ensure that the local variable exists and is defined,
and that the types it uses match with the expected types, ensuring correct typing. The
next checks ensure the confinement of the applet execution, by testing if the program
counter is still within the method body after the operation is performed. The last
check tests for the stack underflow and overflow, and ensures that the types expected
within the stack match with the types found.

As this defensive interpreter only operates on types, its specification cannot be
deterministic: some instruction behaviour may depend on the values stored in the
stack or within the variables. An example of this is the instructions performing
conditional branch depending on stack values. As only the type of those values is
known, it isn’t possible to decide if the branch is taken. Instead, it is specified that,
either the jump is performed, either the execution continues to the next instruction.
The specification of the ifle instruction is given on figure 8.

36

op_ifle=
SELECT
opcode(apc) = IFLE
THEN
CHOICE
IF
succ_pc(apc) € opcode_locations A
can_update_stack(apc)
THEN
apc = succ_pc(apc) ll
stack_type = tpushed(opcode(apc))
N(stack_typelsize(tpopped(opcode(apc))))
END
OR
IF
apc + parameter(apc, 1) € opcode_locations A
can_update_stack(apc)
THEN
apc := apc + parameter(apc, 1) |l
stack_type = tpushed(opcode(apc))
N(stack_typelsize(tpopped(opcode(apc))))
END
END
END;

Fig 8:Specification of the operation corresponding to the ifle opcode

The B substitution CHOICE represents a non-deterministic choice. The first part of
the clause represents the case where the execution continue to the next instruction,
and the second to the case where the execution continue to the branch target.
Determinism will be added within the interpreter specification, since the values stored
within the stack are not available before.

7. Replacement of runtime tests by static properties

7.1. Introduction of new variables

Replacing the runtime checks by static properties implies adding additional
information about the method. Especially, we need to know the typing content of the
stack, and the type of the potentially used local variables for each instruction. This
information is provided by a type inference performed by the verifier. It is possible to
infer this information, because a valid Java program has to be verifiable in a finite
time [Lin-96]. The verifier would reject any program where this information could not
be computed.

37

Two new variables are introduced (figure 9): stack_type_s and frame_type_s,
representing the result of the type inference. For each instruction of the method, they
define the expected content of the stack and the frame. These variables are linked to
the state of the interpreter, by stating that the current state of the interpreter must
match the expected state.

frame_type_s € seq(0..max_locals-1 + TYPE) A
stack_type_s € seq(seq(TYPE)) A
stack_type_s(apc)=stack_type A
frame_type_s(apc)=frame_type

Fig 9: Definition of the static variables

7.2. Definition of the static properties

We currently consider three different static properties. These properties correspond to
properties on the control flow (applet confinement), on the stack (correct typing and
no underflow/overflow), and on the validity of local variables access (correct typing).
These static properties are expressed as invariants of the machine, by predicates
linking the state of the interpreter before execution of an instruction to its state after
execution.

The confinement property is expressed by defining properties that must be enforced
for opcodes of different groups.

static_flow_checked ==

Vpe.((pce dom(method) A opcode(pc) € OP_NEXT)
=

succ_pc(pc) € opcode_locations) A

Vpe.((pce dom(method) A opcode(pc) € OP_BRANCH)
=

pc+BYTE_to_signed(method(pc+1)) € opcode_locations)

Vpe.((pce dom(method) A opcode(pc) € OP_BRANCH_W)
=

pc+BYTE2_to_signed(method(pc+1),method(pc+2)) € opcode_locations)
Fig 10: Static properties for confinement

The stack properties are expressed in a similar way. They relate the content of the
static typing stacks before the instruction to the content of those stacks after the
instruction is executed. For example, in the case of branching opcode, it is stated that:
e the size of the stack after the execution of the instruction is less than max_stack,

e the stack does not underflow during the execution of the instruction,

e theresulting stack does not underflow,

e the static stack for the branch target matches with the resulting stack.

The property associated to the stack for branching opcodes are given on figure 11.

38

static_stack_checked ==

Vpc.((pce dom(method) A opcode(pc)e OP_BRANCH)
=
-max_stack < size(stack_type_s(pc)) + size(tpopped(opcode (pc)))
- size(tpushed(opcode(pc))) A
size(tpopped(opcode(pc))) < size(stack_type_s(pc)) A
0 < max_stack - size(stack_types_s(pc)) + size(tpopped(opcode(pc)))
- size(tpushed(opcode(pc))) A
stack_type_s(pc) Tsize(popped(opcode(pc))) = tpopped(opcode(pc)) A
stack_type_s(pc+1+BYTE_to_signed(method(pc+1))) =
tpushed(opcode(pc)) ™ (stack_type_s(pc)dsize(popped(opcode(pc))))) A

Fig 11: Stack property for branching opcodes

Note that the inequalities describing the size of the stack are written in such a way
that they are suitable to the normalisation used by the prover. Although the
specification is less straightforward to read, proving its correctness is far easier. For
example, in some cases, the number of commands needed to achieve the proof can be
divided by more than two.

The last set of properties ensures the consistency of the frame accesses. It uses
functions similar to tpopped and tpushed: frame_type_used to get the expected type of
the local variable used.

static_frame_checked ==
Vpc.((pce dom(method) A opcode(pc) € OP_NEXT_FRAME_READ)
=
BYTE_to_unsigned(method(pc+1)) € 0..max_locals-1 A
frame_type_s(pc)(BYTE_to_unsigned(method(pc+1)))=frame_type_used(opcode(
JZ)IN
frame_type_s(pc+1+parameters_size(opcode(pc))) < frame_type_s(pc))
Fig 12: Frame property for opcodes reading the frame

Three boolean variables are defined: flow_checked, stack_checked and
frame_checked. Those variables correspond to the result of the verifier, and are set to
true only if the program has the corresponding property. Invariants are added to link
those values to the static properties defined as shown on figure 13.

39

flow_checked € BOOL A
(flow_checked = TRUE => static_flow_checked)

stack_checked € BOOL A
(stack_checked = TRUE = static_stack_checked) n

frame_checked € BOOL A
(frame_checked = TRUE => static_frame_checked)

Fig 13: Invariant defining static properties

The specification of the operations is nearly the same as previously. The difference is
that tests against the values of the checks variable are placed within the guard, and
that the dynamic tests are removed. For example, the specification of the iload
operation is given on figure 14.

op_iload=
SELECT
opcode(apc) = ILOAD A flow_checked A stack_checked A frame_checked
THEN
apc := succ_pc(ape) |l
stack_type =
tpushed(opcode(apc))(stack_typeldsize(tpopped(opcode(apc))))

END;

Fig 14: Specification of the iload opcode

The refinement mechanism ensures that every refined operation can occur only in a
state corresponding to one in which the abstract operation could occur, and that the
refined operation behaves as the abstract operation. So, proving that the new
specification is a valid refinement of the defensive interpreter ensures the soundness
of the byte code verifier and the interpreter.

The main difference between the defensive interpreter and the refined interpreter,
apart the fact that no runtime tests are performed is that there is not a strict
correspondence between the operations triggered by the defensive interpreter and the
refined one. If the method can be checked, then the operations triggered will be the
same as the abstract ones. However, if the method contain an error, the abstract
operations will be called until the program counter reach the error, but no refined
operation will be called at all.

40

8. Inclusion of the verifier and the interpreter

This refinement is mainly used to include both the verifier and a “real” interpreter. By
real, we mean an interpreter that does not perform an abstract interpretation of the
method based on the types of the values, but only uses values.

8.1. Verifier specification

The verifier specification contains only one operation, which performs the byte code
verification, and returns a boolean value corresponding to the result of the
verification. The specification of the verify_method corresponding to the previously
described properties is given on figure 15.

flow_ok, stack_ok, frame_ok < verify_method =
ANY fl_ok, st_ok, fr_ok WHERE
fl_ok € BOOL A st_ok € BOOL A fr_ok € BOOL A
(fl_ok = TRUE = static_flow_checked) A
(st_ok = TRUE = static_stack_checked) n
(fr_ok = TRUE = static_frame_checked)
THEN
flow_ok, stack_ok, frame_ok = fl_ok, st_ok, fr_ok
END

Fig 15: Specification of the verify_method operation

The verifier machine is included in the refinement, and called during the initialisation
to define the values of the variables flow_checked, stack_checked and frame_checked
as shown on the following figure.

INITIALISATION
flow_checked, stack_checked, frame_checked < verify_method |l

Fig 16: Call of the verify_method operation

The implementation of the verifier performs the type inference using a fixpoint
computation as described in [Cas-99]. The presence of embedded loops increases the
difficulty of the proof process. Splitting the implementation in several small
operations allows the automatic prover to discharge up to 95% of the proof
obligations. However, proving the remaining 5% proof obligations is still costly.

8.2. Interpreter specification

The interpreter is defined as a machine similar to the abstract interpreter, excepted
that it is an aggressive interpreter, and that it operates on values instead of types. Its
state consists of a pointer to the current instruction executed (dpc, for dynamic

41

program counter), the values stored in the stack (stack_value) and the values stored in
the frame (frame_value).

To ensure the consistency between the abstract interpreter and the concrete
interpreter, we have to glue the state of the abstract interpreter to the state of the
concrete interpreter using additional invariants. For the stack, it is ensured that both
the stack containing the values and the stack containing the types have the same size.
That is, every defined value has a type, and every type has a value. The invariant
relating the types frame to the values frame is not as simple: it is stated that the
domain of the typing frame has to be included within the domain of the value frame.
That is, every variable that may be used is defined. The domain value_frame can be
larger than the domain of rype_frame, since every local variable has a value even if its
type is not defined. Last, the current instruction executed must be the same for both
interpreters. Those three invariants, shown on figure 17 ensure that we have not
specified two different and unrelated interpreters.

apc = dpc A
size(stack_type) = size(stack_value) A
dom(frame_type) < dom(frame_value)

Fig 17: Gluing of the interpreter

The guards corresponding to the operations are unchanged. However the body of the
operation now only calls the associated operation of the interpreter. For example,
figure 18 shows the operation op_iload, that calls the corresponding operation
int_iload of the interpreter.

op_iload=
SELECT

opcode(apc) = ILOAD A flow_checked A stack_checked A frame_checked
THEN

int_iload

END;

Fig 18: iload operation for the second refinement

int_iload is the operation corresponding to the opcode iload within the interpreter
machine (figure 19). It pushes the value contained in the specified local variable onto
the stack. As this interpreter is implemented in a separate machine that has no
knowledge of the constraints enforced on the byte code, the preconditions ensuring
that the execution can be performed have to be provided. Preconditions are
specification substitutions that specify the conditions that have to be true when the
operation is called. They are used to generate proof obligations, and to achieve the
proof.

The consistency between those preconditions and the byte code verification is ensured
by the proof obligations generated when the operation int_iload is called from the
operation op_iload: it will be needed to prove that the content of the op_iload guard
implies the int_iload precondition.

42

int_iload=
PRE
succ_pc(dpc) € opcode_locations A
size(stack_value) < max_stack
BYTE_to_unsigned(parameter(1)) € dom(frame_value)
THEN
dpc := succ_pc(dpe) |l
LET var_value BE
var_value = frame_value(BYTE_to_unsigned(parameter(1)))
IN
stack_value = var_value — stack_value
END

END;

Fig 19: iload operation for the interpreter

Another point is that, instead of using a different machine, the interpreter could have
been treated as a refinement of the abstract defensive machine, in a way similar to
what has been done in [Lan-98]. However, separating the interpreter from the abstract
specification seems to be a better solution, since less proof obligations will be
generated: proofs are needed when the interpreter is included within the refinement,
but not in later refinements of the interpreter, allowing to focus on the interpreter
implementation. Moreover, implementing the interpreter as distinct machines allows
to clearly separate the proof of consistency and the implementation.

9. Proof of the specification

The specification of the defensive virtual machine and its refinement is about 10000
lines of B specification. The Atelier B tool, that we used for this specification
generates nearly 3000 proof obligations. It should be noted, however that the proofs
are not complicated by themselves. The main difficulty lies in their number: proving
the correctness of the specification corresponds to discharge a lot of simple proof
obligations.

For this specification, the main goal is to limit the cost of the proof process. We focus
on obtaining similar proof obligations, so that a single demonstration could be used to
demonstrate several similar proof obligations. This is achieved by specifying opcodes
properties and constraints in a generic way. This involves grouping opcodes by
properties, but also using generic description. For example, using the functions
tpushed and tpopped allows specifying nearly all operations that manipulate the stack
the same way.

To illustrate the advantages of using generic specification, figure 20 presents two
simplified proof obligations, the first corresponding to a specification that does not
groups opcodes, and the second to the specification previously described.

Discharging the proof obligation without groups is quite straightforward: it involves
using hypothesis (1.2) and (1.3) with hypothesis (/.1). However, in the Java Card

43

case, there will be one hypothesis similar to (/.1) by opcode, and the automatic prover
will not be able to choose the right one, requiring user interaction. Moreover, as the
opcode considered is explicitly used, this interaction will be required for every
opcodes. For the complete Java Card interpreter, this means that proving this property
for each opcode will need approximately two hundred different, but very similar
proofs with user interaction.

PO without groups PO with groups

(1.1) Vpc.((pce dom(method) A (2.1) OP_NEXT ={ ..., ILOAD, ... } A

opcode(pc) = ILOAD) (2.2) ¥pe ((pce dom(method) A

= opcode(pc) € OP_NEXT)

pc + Ieopcode_locations)a =
(1.2) opcode(apc) = ILOAD A succ_pc(pc)e opcode_locations)a
(1.3) apce dom(method) (2.3) opcode(apc) = ILOAD A
= (2.4) apce dom(method)
apc + 1 € opcode_locations =

succ_pc(apc) € opcode_locations

Fig 20: Comparison between proof obligations with and without using groups

In the case where groups are used, the hypothesis opcode(apc)e OP_NEXT (2.5) can
be added. This hypothesis is automatically accepted by the prover thanks to (2.7) and
(2.3), and user interaction will not be needed. The new hypothesis (2.5) can then be
used with hypothesis (2.2) to discharge the goal. The important point is that the
commands used to demonstrate this goal does not consider the opcode names, and can
be directly reused to prove similar proof obligations for opcodes that are elements of
the set OP_NEXT. This means that there will be one user interaction for nearly two
hundred proof obligations. This is all the more important, since the response times of
the interactive prover can be very large for such a specification. However, those gains
have to be balanced by the fact that the proof obligations are often more complicated
to prove, and the initial proof can take some time to be carried out. Moreover, all the
Java Card opcodes can not fit in a group, and some opcodes will still need to be
treated as special cases.

Another important point with opcode groups is that it also reduces the number of
predicates within the invariant. This reduction drastically increases the performance
of the tool.

10. Conclusion

Proving the correctness and the soundness of the type system is a first step to a
certification of Java Card. Other parts of the security policy are implemented by
different functions such as the firewall, that controls access policies. As one of the
common criteria requirements is to guarantee the coherence of all the security
mechanisms, it is needed to integrate this model into a more generic model
encompassing the whole security policies.

44

Future works will focus on integrating the firewall specification defined in [Mot-00]
with the interpreter. Then, the model will be extended in order to model the complete
Java Card interpreter. This will allow, not only to prove the soundness of the byte
code verifier and of the interpreter, but also will ensure the correctness of their
implementation.

Acknowledgement: Thanks to G. Mornet and L.Casset for their work on the model,
discussions and feedback.

References:

[Aba-98] M. Abadi, R. Stata, A Type System for Byte Code Subroutines,
Proc. 25" ACM Symposium on Principle of Programming Languages,
January 1998

[Cas-99] L. Casset, J.-L. Lanet, A Formal Specification of the Java Byte Code
Semantics using the B method, Proceedings of the ECOOP’99 workshop on
Formal Techniques for Java Programs, June 1999.

[Coh-96] Cohen, Defensive Java Virtual Machine Specification,
http://www.cli.com/software/djvm

[Fre-99] S.N. Freund, J.C. Mitchell, Specification and Verification of Java Bytecode
Subroutines and Exceptions,
Stanford Computer Science Technical Note, August 1999

[Gol-97] A. Goldberg, A Specification of Java Loading and Byte Code Verification,
Kestrel Institute, December 1997,
http://www.kestrel .edu/HTML/people/goldberg

[Lan-98] J.L. Lanet, A. Requet, Formal Proof of Smart Card Applets Correctness,
Proceedings of the Third Smart Card Research and Advanced Application
Conference (CARDIS’98), Louvain-la-Neuve, Belgium, September 1998

[Lin-96] T. Lindholm, F. Yellin, The Java Virtual Machine Specification, Addison
Wesley, 1996

[Mot-00] S. Motré, Formal Proof of the Applet Firewall, AFADL 2000, Grenoble,
France, February 2000.

[Nip-98] T. Nipkow, D. Oheimb, Javalight is Type-Safe - Definitely, 25" ACM
Symposium on Principle of Programming Languages, January 1998.

[Pus-99] C. Pusch, Proving the Soundness of a Java Bytecode Verifier Specification
in Isabelle / HOL, TACAS 1999, http://www.in.tum.de/~pusch/

45

[Pos-98] J. Posegga, H. Vogt, Byte Code Verification for Java Smart Cards Based on
Model Checking, 5™ European Symposium on Research in Computer Security
(ESORICS 98), Springer LNCS 1998.

[Qia-98] Z. Qian, Least Types for Memory Locations in Java Byte Code, Kestrel
Institute, Technical Report, 1998.

[Sun-99] Sun Microsystems, Java Card 2.1 Virtual Machine Specification, March
1999.

[Sym-97] D. Syme, Proving Java Type Soundness, Technical Report, University of
Cambridge, Computer Laboratory, 1997.

46

Applying Formal Methods to Industrial Cases:
The Language Approach
(The Production-Cell and Mode-Automata)*

Florence Maraninchi Yann Rémond

VERIMAGT- Centre Equation, 2 Av. de Vignate — F38610 GIERES
http://www-verimag.imag.fr/PEOPLE/Florence.Maraninchi
(Florence.Maraninchi|Yann.Remond)@imag. fr

Fax : (33) 4.76.63.48.50

keywords

Real-time systems, safety-critical, regulation systems, running-modes, language design
and implementation, case-study, production cell

Abstract

In this paper we comment on the “language approach” to applying formal methods
to real industrial problems. Our opinion is that it is always a good idea to let the
user tell as much as he knows about the structure of a complex system. When he
has a given structure in mind but needs to encode it into the available constructs of a
language, the interesting information is likely to be lost somewhere on the way from
the original design to the actual implementation. This may have consequences on the
efficiency of the code produced, or even on the correctness of the design.

Following this idea, the family of synchronous languages [BB91] has been very
successful in offering domain-specific, formally defined languages and programming
environments for safety-critical systems. We are particularly interested in the data-
flow language Lustre, well-suited for the description of regulation systems. These
systems are often specified using the notion of running modes, which appears in infor-
mal designs. However, there seemed to exist no language in which the mode-structure
of a complex system could be expressed directly. We proposed to extend Lustre with a
new construct devoted to the description of these running modes of regulation systems.

The language extension is based upon the model of mode-automata [MR98]. We
now have a running implementation of this extension [MRRO00], which has been applied
successfully to the industrial case-studies of the SYRF project [SYR99], proposed by
SAAB M.A. (a temperature regulation system) and Schneider Electric (the control of
the starting and shut-down phases in a nuclear plant).

We are now working on a case-study proposed by Aerospatiale (a piece of soft-
ware of the Airbus A340-600, for the development of which Aerospatiale has chosen
SCADE, the commercial version of Lustre), under a non-disclosure agreement. How-
ever, some of the ideas that this example already suggested to us can also be illustrated
with a simpler example. In this paper we show how to program the production-cell
case-study [LL95] using mode-automata (a pure Lustre version, written by Leszek
Holenderski at GMD Birlinghoven, appeared in [LL95]). We used the environment
simulator in TCL-TK provided by FZI Karlsruhe.

*This work has been partially supported by Esprit LTR Project SYRF 22703
"Verimag is a joint laboratory of Université Joseph Fourier, CNRS and INPG

47

1 Introduction

Real-time Systems, in particular regulation systems, are often specified using the notion of
running modes. For instance, the commands of an aircraft may be specified by identifying
take-off mode and landing mode; the commands for a robot arm are likely to be completely
different when it moves right, and when it starts moving left because it has reached an
obstacle, etc. This notion of a running mode appears frequently in informal designs, and
we met it several times in the informal documentation of operational industrial critical
systems from Schneider Electric, Aerospatiale, etc.

However, at least to our knowledge, there exist no language (be it a formal specification
language, or a programming one), in which the mode-structure of a complex system can
be expressed directly. Hence the mode-structure of the system is usually encoded in a
variety of ways, depending on the language used, and on the kind of criteria one wants
to improve (efficiency, size of the code for embedded systems, etc.). See [MR98, MRROO]
for comments on the notion of mode and related work (Modecharts [JM88], the “state”
Design pattern [GHJV95], real-time mode-machines [Pay96], SignalGTI [RM95], etc.)

The family of synchronous languages [BB91] has been very successful, over the ten past
years, in offering formally defined languages and programming environments for safety-
critical systems. We are particularly interested in the language Lustre [CHPP87], and in
the industrial version of it, called SCADE and sold by Verilog S.A. Lustre is a data-flow
language, well-suited for the description of regulation systems. We proposed to extend
Lustre with a new construct devoted to modes in regulation systems. This language ex-
tension is based upon the mathematical model of mode-automata [MR98]. We now have a
running implementation of this extension, by compilation into an intermediate format of
the compilation chain from Lustre to imperative sequential code (C, Ada, Java) [MRRO0O].
The language extension allows flat mode-automata and composed ones. We use the compo-
sition operators from Argos [Mar92], which gives the language a hierarchic state-structure
like in Statecharts [Har87].

The definition of mode-automata is a result of the task entitled “combination of for-
malisms” of the SYRF [SYR99] Esprit Project, in which various approaches have been
studied. One of them was to describe complex systems partly in Lustre (data-flow declar-
ative style) and partly in Esterel (parallel imperative style), and to perform link-editing
at the level of an intermediate format of the compilation chains. To our opinion, this
approach is too complex, and that is the reason why we chose to extend Lustre with
a bit of imperative style, yet keeping the essential style and structure of the language,
for the programming habits not to be modified deeply. An approach similar to ours —
tight integration of styles, as opposed to full multi-language programming — is that of
synchronousEifel (formerly “The Synchronie Workbench”) [sE] developed at the GMD
(Sankt Augustin).

In the family of synchronous languages, formal verification [HLR92] and automatic
generation of test cases [RWNHO98| are based upon the use of so-called synchronous ob-
servers [HLR93]. An observer O is itself a synchronous program, which can be composed
in parallel with a program P to observe, without modifying the behavior of P. This is
a consequence of the synchronous broadcast communication mechanism (which is asym-
metrical), provided the outputs of O are not connected back to the inputs of P. For

48

verification purposes, observers are used to describe the safety properties ot a program to
verify. For generating test sequences, observers are used for both the oracle and the envi-
ronment. The environment-observer is used as a generator, for producing only sequences
of inputs to P, that are relevant w.r.t. a model of the physical environment.

Numerous case studies have shown that, when the program is written in Lustre, it is
often convenient to write the observers in a more imperative style. For instance, expressing
the safety property: “the outputs a and b alternate’ is easy with a two-states automaton,
and a bit more difficult with a Lustre program. A language based on regular expressions
has been used (via an efficient translation into Lustre [Ray96]). In this paper, we use
mode-automata for both the controller and the model of the environment. We could use
them for describing safety properties as well.

The rest of the paper is organized as follows: Section 2 is a brief introduction to
data-flow synchronous languages and the mode-automaton model; Section 3 briefly recalls
the production-cell case-study ; Section 4 describes the program written using composed
mode-automata. Section 5 concludes and gives some directions for further work.

2 Data-flow Synchronous Languages
and Mode-Automata

2.1 Data-flow Synchronous Languages

In a data-flow language for reactive systems, both the inputs and outputs of the system
are described by their flows of values along time. Time is discrete and instants may be
numbered by integers. If x is a flow, we will note z,, its value at the nth reaction (or nth
instant) of the program.

A program consumes input flows and computes output flows, possibly using local flows
which are not visible from the environment. Local and output flows are defined by equa-
tions. An equation “x = y + z” defines the flow x from the flows y and z in such a way
that, at each instant n, x,, = y,, + 2.

A set of such equations, using arithmetic, Boolean, etc. operators, describes a network
of operators, and is essentially equivalent to the description of a combinational circuit.
The same constraints apply: one should not write sets of equations with instantaneous
loops, like : {z =y + 2,z =2+ 1,...}. This is a set of fix point equations that perhaps
has solutions, but it is not accepted as a data-flow program. For referencing the past, the
operator pre is introduced : VYn > 0, (preX), = X, 1.

One typically writes T = pre(T) + i ; , where T is an output, and i is an input. It
means that, at each instant, the value of the flow T is obtained by adding the value of the
current input i to the previous value of T. Initialization of flows is provided by the ->
operator. The equation X = 0 -> pre(X) + 1 defines the flow of integers; as a reactive
program, it produces values on the basic clock.

The language is structured by the definition of reusable nodes that can be called
anywhere in expressions defining variables, and programs usually input a library of small
well-identified reactive behaviors, like a “two-states” with reset, a “bounded counter”, etc.

49

2.2 Motivations for Mode-Automata

In a data-flow language, the notion of running mode corresponds to the fact that there may
exist several definitions (equations) for the same output, that should be used in distinct
periods of time. Faced with this kind of system, users usually write Lustre programs in
which modes are encoded by Boolean flows, and the outputs that depend on modes are
described by equations of the following form: X = if (model) then ... else if (mode2)
then ... There was an obvious need for something more readable and modifiable than
this encoding of modes by conditional structures.

Another important motivation has to do with code efficiency. In reactive systems, the
base clock is imposed by the environment: it should be quick enough in order not to miss
some relevant changes in the environment signals sensed by the system. For this base
clock to be respected by the actual implementation of the system, the code of the reactive
kernel should execute in less than a clock period. Hence there are strong constraints on
the sequential code produced from a synchronous language.

The natural translation of a simple data-flow synchronous program into sequential code
yields a program in which all nodes of the data-flow network do perform computations at
each step of the base clock. In particular the IF is strict: in the program X = if (model)
then exprl else if (mode2) then expr? else ... both exprl and expr2 are computed at
each step, before choosing one of them according to the mode. If X has different equations
depending on the current mode, it is not a good idea to compute all equations at each
step.

It appears that, in critical cases, users would like to put some of their knowledge about
the running modes of the system, into the corresponding data-flow programs. Doing so,
they hope that a compiler be able to generate more efficient code, namely some code in
which not all of the data-flow network nodes work at each step. If they simply encode
modes into conditionals, there is no hope to obtain better code. The only way of specifying
that parts of the data-flow network should not perform computations, for some given steps,
is to use the clock language feature, but it is not so easy to describe modes using clocks.
That is the reason why we propose a new language feature for talking about exclusive
modes in a data-flow language. It can be viewed as a high-level construct that offers part
of the clock feature, but is easier to use when the system clearly has running modes.

2.3 Mode-Automata: A Proposal
2.3.1 Flat mode-automata

Suppose we need to program in Lustre the behavior of an output variable X (the command
to an actuator, for instance), as specified by the timing diagram of figure 1; in this simple
case the behavior only depends on time (no explicit inputs are specified).

We identify three running modes: in the first one, X increases by 1 at each step; in
the second one, it increases by 2; in the third one, it decreases by 3, and then back to the
first mode. We would like to give separately :

— The behavior of X in the first mode : X = pre (X) + 1 ;
— The behavior of X in the second mode : X = pre (X) + 2 ;

50

— The behavior of X in the third mode : X = pre (X) - 3 ;

— The global initial value of X (0 in the example)

— The way these three modes are organized into the global behavior of the system, in
particular the conditions for changing modes.

This is exactly what you can do with a mode-automaton (see Figure 2). Notice that,
in real cases, the behavior of the system in a given mode is likely to be a large system of
equations, while the mode-structure remains relatively simple.

1234|567 |8|9|101112|13]14|15|16 |17 |18]19
9
7 7
6 6
X
3 > 3 3 > 3
2 2
1 1
0 0 0
1234|567 |89 1011 |12|13]14|15|16|17|18]|19

Figure 2: An example with modes: a mode-automaton for computing X

Mode-automata can be considered as a discrete version of hybrid automata [MMP91],
in which the states are labeled by systems of differential equations that describe how the
continuous environment evolves. In our model, states represent the running modes of a
system, and the equations associated with the states could be obtained by discretizing
the control laws. Mode-automata are designed as the basis of a programming (not only
specification) language.

Note that, if we use no pre operator and do not mention the input variables in the
equations attached to states, then the mode-automaton is merely a Moore machine. Test-
ing inputs is limited to the conditions of the transitions, and equations of the form: X =
true or X = false are attached to states, for defining an output X. It may be a bit more
complex, because the set of outputs may be defined by a set of equations, like: X = Y+1
; Y=0; Z =X — Y ;, provided there is no dependency cycle. However, the behavior
is essentially that of a Moore machine, with the usual one-instant delay between inputs
and the actual influence on outputs. For sampled systems, the delay is not important.

51

2.3.2 Composing mode-automata

Mode-automata can be composed in parallel, with shared variables (in the graphical syntax
we use the Statecharts notation, with a dashed line separating the components). When
n components are in parallel, sharing the variable X, at most one component may define
X; all the other components may only read it. We also forbid instantaneous loops. The
parallel composition with shared variables corresponds to the classical data-flow connection
of Lustre nodes, where wires are identified according to their names: if the input of
a component and the output of another one have the same name, they are connected
together.

The semantics of parallel composition is easy to understand, by explaining how to
flatten a composed mode-automaton into a flat one. Let us consider two mode-automata
M1 and M?2. The set of modes of their parallel composition is the Cartesian product of the
sets of modes of M1 and M2. The set of equations attached to a composed mode A1A42
(where Al is a mode in M1 and A2 is a mode in M2) is the union of the equations attached
to Al in M1 and those attached to A2 in M2. The guard of a composed transition is
the conjunction of the guards of the component transitions. The parallel composition of
two mode-automata is correct if all the Lustre programs attached to the flat modes are
correct, i.e., there is no instantaneous dependency loop, and each variable has exactly one
equation.

Mode-automata can also be refined: a composition of mode-automata may be put
inside the state of a mode-automaton (see examples in the case-study). The flattening is
as follows: the equations attached to the refined state are distributed to all the sub-states;
the transitions sourced in a refined state also apply to all the states inside; a transition
that enters a refined state should go to the initial state (among all the states inside); a
transition between two states inside may happen only if no transition from the refined
state can fire (the outermost transitions have priority). The correctness of a refined mode-
automaton is also related to the correctness of all the Lustre programs attached to the
flat states; for this reason, a variable may not be defined at two distinct levels, because
the flattening will yield a flat state with which two equations defining the same variable
are associated.

2.3.3 Implementation

Mode-automata are described using a textual syntax, and compiled into DC code by the
tool MATOU [Rém99]. DC is then translated into C using the DRAC tool-set developed
in the SYRF project [SYR99]. DC is a data-flow language with activation conditions, that
allow to specify that some sub-networks are not always alive. This notion is exactly what
we need for implementing modes.

The current implementation of mode-automata guarantees the following property: The
C code corresponding to the equations attached to a flat state S, and to the conditions of
the transitions sourced in S, are computed exactly when this state S is active [MRRO0].

In the code produced for the small 3-modes example, we find the following piece of
code for computing the new value of X at each step, depending on the previous value pX: if
(mode==1) { X = pX+1 ; } else if (mode==2) { X=pX+2 ; } else { X=pX-3;}.

52

When large pieces of code are attached to modes, this yields a significant improve-
ment on the code obtained from a pure Lustre version of the system, which would have
the following form: { X1 = pX+1 ; X2 = pX+2 ; X3 = pX-3; if (mode==1) { X = X1
; } else if (mode==2) { X=X2 ; } else { X=X3 ; }

When we have the mode-structure of the system in mind, the code produced by MA-
TOU is clearly the best sequential code we can hope for.

3 The Production-Cell case-study

In this section, we quote the technical report on the production cell, for a brief presentation
of the case-study.

In order to demonstrate the benefits of formal methods for industrial applications,
and to evaluate and compare existing approaches for constructing and verifying control
software for reactive systems, FZI launched the Case Study Production Cell in 1993 as
an activity inside the German Korso Project. The architecture of the system is shown on
Figure 3.

On the bottom left the feed belt is shown which conveys the blanks to an elevating
rotary table. This table has to be between the feed belt and the robot to bring the blanks
into the right position so that the robot can pick them up. To increase the utilization
of the press, the robot is fitted with two arms — one always used for loading, the other
one for unloading the press. The two belts are not at the same vertical position; both the
press and the rotary table can move vertically.

In order to perform demonstrations of the graphic visualization of the toy model, the
production sequence should be able to run without an operator. The ”forged” metal plates
— which the press in the model does not actually modify — are therefore taken from the
deposit belt back to the feed belt by a traveling crane, thus making the entire sequence
cyclical.

The production cell is composed of 14 sensors and 13 actuators. Actuators can switch
motors on or off or change their directions. Sensors return Boolean or continuous values,
though the latter can be made discrete to return a few interesting values. The table of
Figure 5 gives the list of sensors and actuators, together with the variable names in the
mode-automata programs.

In the simulation environment provided by FZI, the belt moves are managed by the
TCL-TK part, as a reaction to the controller commands that switch the motors on and
off. This simulated environment is intended to be physically relevant. (An example of
irrelevant situation would occur with the sensors SBDB and SBFB being true at the same
instant, while there is only one object in the plant).

4 The Production-Cell and Mode-Automata

The first interesting aspect is the need for a simulated environment. This is usually
the case for reactive systems that are used as controllers of some physical activity. If

53

S[RUSIS [RUIOIU] PUR 9ORLIDIUT G 2INSIg

uoinisod Jamo| sl 18 sl sued) dy| | seg) |ooq
1)2g usodsq sy1 uo 1nd si 193fqo uy | gqdd |ooq
129 sod

-9Q 9Yy1 wouy panowal s 193[qo uy | gged |ooq
199 ps94 Y1 uo Ind s1 193[qo uy | g4dd jooq
1°g

poa4 9yl wouy parowsai si 123fqo uy | g4ad |ooq
9|qel Aiejoy sy1 uo ind si103fqo uy | 1ydd |ooq
2|qe]

Kie10y syl wouy panowss st 1afqouy | Jyad |ooq
$s9yd 9yl uo 1nd si 193[qo uy | yddd |ooq
SS9y d 9yl wouj panowal s 193[qo uy | yYdad |ooq
1199 P93} 3yl uo s123(qo Jo saquiny g4N 1l
139 usodsp syl uo s3o9fqo jo ssquiny | ganN ul
9|3ue uoney

-04 ulw 3Yy31 saydeau so|qe1 Aiejoa ay | 0L looq
9|3ue uonel
-04 Xew ay3 sayoeaJ sa|qel Alejod ay | INL [ooq

JUOWUOIIAUS PIYR[IWIS 9} PUR IS[[OIJUO0D YT, :F oInSrq

&3RPq pa’) /y3 {339 usodap sy}
JO pus swWaJIXa 9y3 1e a1eld e auayl S| g44gsS || Jo pus swaiixa ay1 1e 91e|d B 3I9Y] S| aags
i4eddug sy jo ;129 pa9y 3y
uoiysod |ed1149A JURLIND Yl SI JBYAA JAsod || 1ano pauoinisod sueid SuipAes] Yy S| q4D
$119q usodap ayz
1970 pauoinisod suesd 3uljpaeal sy S| aad ipa1e104 3|qe] 3yl Sey Jej MOH ysod
juoinsod uad juoiisod 1omo|
-dn s11 ui s|qe1 Aiejos Suneas|s ays sj HL || su uw s|ge1r Aiejos Suneasp syi s a1
iP91e104 10904 3Y1 Sey Jey MOH ysod || jpopuslIxe uddq WJe pug Sey Jej MOH ZHsod
;PopUIXe U9 WIe IST Sey Jej MOH THsod ;uoiyisod saddn ay3 ui ssaud a3 S| Hd
juoiusod s|ppiw ay3 ul ssaid ay1 s| Nd juonisod Jamo| ay1 ui ssaud ays s ad
suesd Juippaeny jo
Jaddus yum a1e|d e doup pue dn yoid J1e
1j2q 1sodsp 91eAI10EBSP pUEB 91BAIIDE gqe 1|9q P93} 91BAIIDESP pUE 9]1BAIIDE g410e
K||ea1an A|je1uozuioy
suesd> S3uipaesy jo Jaddu3 snow J1eA || suesd> Suipaesy jo 1addud saow J30eH
Kjjeonian sjqel Aiejos 3uileas|s snow | | YA1oe 3|qe1 AJe1os Suneaspe s1e1od | | Yyi1oe
wJe
10qoJ 91e30. vioe (| puz yum oa1eid e doisp pue dn yoid Ve
wue 1sT yum a1e|d e doup pue dn yoid 1y1oe ssaid ay3 jJo 1ed Jamo| syl snow ydwe
wJe 10qoJ pug 1984134 pue pualxd ZHWe wJe 10qo4 1ST 10BJ194 PUB PudIXd TH1o®e
QINIDNIYDIY [[9)) UOIIONPOIJ O, ¢ 9INS1q
a|qe} Aiejou
bBuneas|g Haq p9s4

SJ01EN30Y

A

J3[j0J1u0?)

e }USWUOJINUT g

uoneaasqQ 10SUSG

apPpy

BuijanesL

aueld

Heq usodeq

54

we want to pertorm tormal proots, or to generate test sequences, we need to model the
environment. The global picture is that of Figure 4. We built two distinct programs using
mode-automata:

e A complete simulation program, comprising the simulation of the physical environ-
ment and the controller; in this case, the program we obtain has a single Boolean
input AddB, telling it when an object is put on the deposit belt (it is always put
at the same place; we should not put more than 5 objects). In this simulated en-
vironment, the speed of the belts is supposed to be constant. This program has a
cyclic behavior. It can be run with an arbitrary sequence of inputs, and we can
save the simulation results for observation or formal analysis purposes. On the other
hand, the component that simulates the environment may be used by a tool like
Lurette [RWNH98] that generates tests sequences relevant to a given specification
of the environment.

e A controller that can be put in the TCL-TK simulated environment (the language
of mode-automata is compiled into DC, which is then compiled into C, and the
necessary interfacing is done at the C level). The controller written with mode-
automata, and the environment simulated in TCL-TK, form a system that has a
cyclical behavior. The controller is simply a part of the first specification, in which
we removed the components representing the environment. Hence the interface is
exactly the set of sensors and actuators of Figure 5, plus the AddB input. The piece
of C code that interfaces our controller with the TCL-TK environment generates
this input: it is true (meaning that an object is put in the plant) five times at the
beginning, and then false forever. We could test other situations, of course. This
little reactive behavior could also be described with a mode-automaton.

We cannot explain all the details of the programs in this paper. Our intension is only
to show small pieces of programs, in order to illustrate the use of mode-automata. The
program that simulates the environment makes use of full-featured mode-automata; the
controller itself is almost a Moore machine (see comments on Moore machines being a
special form of Mode-automata, in section 2.3.1 above). The automaton structures (and
the parallel and hierarchic constructs) are well-suited for the description of the cyclical
behavior of the plant.

4.1 The controller

The main structure of the data-flow program for the controller is given in Figure 6. The six
modules are mode-automata composed in parallel with shared variables; this operation is
exactly the data-flow connection as shown on the picture. The meaning of internal signals
is shown Figure 5.

Figure 8 shows the rotary table component. Figure 9 shows the traveling crane com-
ponent. Figure 10 shows the press component. The Robot component is the most complex
one. It is given in Figure 7. It illustrates the cyclical behavior of the robot, which has two
arms, sometimes moving together. The robot task is a cycle, as follows:

— State B : the robot extends first arm, then takes an object on the rotary table, then
retracts first arm (necessary before rotating). In this state, the robot must wait for the

55

PB
PM

PosA
PosH1
PosH2

SBDB

TH

PosR

B
AddB

PosVC
CFB
SBFB

CDB

PH
PM
pePR Press actPr
ppPR
PosH1
PosH?2
actA
Eﬁiﬁl actAl
PosH2 actA2
™ actH1
TH Robot actH2
SBDB ppDB
NDB peRT
—= PM pePr L
,9' actH1 ppPr
ppPRT
= e
TH Rotary Table %—CM N
™ TO
TO
PosR
ppFB
_FI’_PBRT actFB
Feed Belt NFB —
AddB ppRT
— SBFB
PosVC actC
CFB VactC
SBFB HactC
= NFB Crane peDB
CDB CBas —
SBDB ppFB]
eDB
= EDB Deposit Belt aNc?gB
— CBas
SBDB

56

Figure 6: Architecture of the controller program

actPr

actA

actAl
actA2
actH1
actH2

actVRT
actRRT

actFB

actC
VactC
HactC

actDB

rotary table to be 1n the correct position, and tor an object to be present on 1t.

— State C : the robot is rotating towards the press (actA=1) until the position is OK
(PosA=A2P). It must wait for the press to be in the appropriate vertical position (PB)
and not moving (actPR=0). If PB, actPR=0 and PosA=A2P happen exactly at the same
time when in state C>A, the transition is to state D>A directly; otherwise the system
may wait in state C>B for a while.

— State D : the robot extends its second arm towards the press (actH2=1), puts an object
on it (actA2=1 while actH2=0), and then retracts (actH2=-1).

— State E : the robot is rotating until second arm is over the deposit belt

— State F : the robot extends its second arm towards the deposit belt, puts the object on
the belt, and then retracts. It may wait for the belt to be free.

— State G : the robot rotates for the first arm to reach the press. It may wait for the
press to be at the appropriate vertical position.

— State H : the robot extends its first arm towards the press, puts the object on it, and
then retracts.

— State A : the robot rotates for the first arm to reach the rotary table.

4.2 The environment

When modeling the environment, all the signals that are sensors for the controller (PB,
PM, PH, posH1, posH2, posA, TB, TH, posR, CDB, CFB, posVC, SBDB, and SBFB) are
computed. Modeling the environment consists in defining how the inputs of the controller
are influenced by its outputs. We model a very simple environment (all moving parts have
constant speeds).

The first component is written in pure Lustre: there is no state. Actually, it is a
particular case of a mode-automaton in which there is only one mode, and a set of Lustre
equations attached to it.

We model an environment in which the motor that rotates the robot is supposed to
work; hence, when actA=1 (rotate in one direction) or actA =-1 (rotate in the other
direction), the position is given by the equation: posA = pre(posA) + (actA * DeltaA),
where posA is an angle and DeltaA is a constant related to the rotation speed (via the
base clock of the system, which defines the duration of one instant). When the motor is
off (actA=0), the same equation holds, meaning posA=pre(posA), i.e. the robot does not
rotate. The same holds for computing PosH1, PosH2, PosPr, PosV, PosR, PosC and PosVC,
which gives:

PosA = pre(PosA) + (actA #Deltad) ; PosVC = pre(PosVC) + (VactC *DeltaVC) ;
PosH1 = pre(PosH1) + (actH1 *DeltaH1) ; PosH2 = pre(PosH2) + (actH2 *DeltaH2) ;
PosPr = pre(PosPr) + (actPr *DeltaPr) ; PosV pre(PosV) + (actVRT#DeltaV) ;
PosR pre(PosR) + (actRRT#DeltaR) ; PosC pre(PosC) + (HactC *DeltaC) ;

Once the positions are available, computing the values of the sensors is simple: we just
have to compare the positions to some constant values: PH=(PosPr=prH), etc. This is
done for PH, PB, PM, TH, TB, CFB and CDB, which gives:

PH = (PosPr=PrH) ; PB = (PosPr=PrB) ; PM = (PosPr=PrM)
TH = (PosV=Vmax) ; TB = (PosV=Vmin)
CFB = (PosC=Cmin) ; CDB = (PosC=Cmax)

57

as|ej=idad
os|ej=.4dd
as|eyj=gqdd
as|ej=| yad| p=y108e
0=cCH1o¢e
0=TH¥®| D

dIvV=Vvsod

I=ve

9s|ej=gy1oe
NN=TVYPE ([-=gH1oe) pue

(cutwH=gHsod)

Psjej=gqdd
“=CH®
ps|ej=gy1oe

any

((aags pue 1=gan) 4o (0=9an))

ann=gqdd
as|ey=14ad oHNm__.n_”_“om ou pue (gQgxewH=gHsod)
as|ej=4ddd asjej=zy10e
as|e)= ¥yod =gqdd
sno—io1(8ga pue 1=gaN) 1o (0=8aN)) on—ote
- ue XeWH=gHSO, -
T=viod | pue (gQgxewH=¢Hsod)
acv=vsod g
as|ey=idd
[-=¢H12e) pue
AANC_EI N_.wmo&v as|ej=1qdd
bs|ej=gqdd
n=igod e Lied
0=cHIe as|ej=i4dd 0=TH108
PMA=TYRE | asiey=gadd Loy oo
as|ej=idoad asjej=1y3d onI=Ty10e
I-=¢H®P 1ygzxewy=gQsoy | 0= TH®E 1=vy3oe
pNIl=gy10e gt CH anNn=1vise
0=Vvie
asjej=ig4ad
T=CH®
9S|Bj=¢V1oe 0=4dP ue
a (dzv=vsod)

(0=4410e) pue
Wd pue (dTv=Vvsod)

as|ej=i14dd

T-=TH®
S|BJ=TV1oe
wm_m“_H_n_MM anu=iqdd
9s[ej=4d -
as|ej=_ yod wm_molwﬂwwm as|eyj=.4dd
0=gHe |1 [=THe
as|ej=gye IdTXewH=THsod oni1=TYy1ioe
|”<HUN I
HL Pue N1 as|ej= yod
0=TH3o¢®
anul1=] yad as|ej=1y1e
0=TH®
PR (HL pue n1) jou pue
os|ej=1gad /(1| pue 1) v:mﬁ \TXBWH=THsod)
as|ej=14dd _
ssjej—gqdd (LY TXeWH=THsod)
0=cCH1o¢e asjej=]yad asjej=] yad
9s|gj=¢yIoe I-=TH1o®e I=THme
0=V¥e|g aNN=Ty1oe as|ej=Ty1oe
(1-=TH30e) pue
(TutwH=THsod)
1TV=Vsod
0=V3e as|ej=idad
as|ej=1gdd 3s|ej=idad
asjey=gqdd as|ej=iddd
= _ d asjey=gqdd
dev=Vvsod os[ey=14° as1e1— 1 ad
O”NIHUN _mn—ll_lN_O
0=TH® 0=CH1E
= 0=TH®eE
— as|ey=gy1oe
I=ve w:__ijMum as|ey=gy1oe
J N as|ej=Ty1oe
I-=vie

Figure 7: The Robot component

58

actVRT=0

actVRT=-1

actRRT:ON PPRT actRRT=1
TM=false TM=(PosR=Rmax)
TO=true TO=false

TO ™

T

I

I

I

I

I

I

I

I

I

I

I actRRT=-1 actRRT=0

! TM=false TM=true
'IJI i TO0=false

I

0=(PosR=Rmin)
peRT

peRT

Figure 8: The Rotary Table component

actC=true
VactC=0
peDB=false
ppFB=false
CBas=false

CFB a
(SBFB

actC=true
VactC=-
HactC=0 actC=true
peDB=false VactC=0
ppFB=false HactC=0
5 CBas=false peDB=true
ppFB=false
CBas=true actC=false
o acte= PosVC=CVmin VactC=0
HactC=0
CFB peDB=false
ppFB=false
° HactC—0 CBas=true
BDB
actC=false actC=false S
nd ((NFB=0) or VactC=0 VactC=1 actC=false
and (NFB=1))) HactC=1 HactC=0 VactC=0
peDB=false peDB=false HactC=0
actC=false ppFB=false ppFB=false peDB=false
VactC=0 CBas=false CBas=false ppFB=false
HactC=0 : CBas=true
_ rue
peDB=false PosVC=CVmax
ppFB=true
CBas=false CDB

Figure 9: The Crane component

actPr=-1 actPr= pePR actPr=0 PosH2=Hmin2 actPr=1

RO O

PH

PM

actPr=1 actPr=0

PosH1=Hminl ppPr
v

actPr=0

Figure 10: The Press component

59

This simple component is in parallel with two mode-automata, one for each belt.

Modeling the behavior of the belts is a bit more complex: in fact, we also have to
model the behavior of the objects that travel on the belts. At least we need to specify
that they do not vanish, and remain on the belt, moving with it, until they are taken by
the crane or pushed to the rotary table.

The belt component in the controller and the belt component in the environment have
the same automaton structure, with 6 states, as follows:

— State B : There is one object on the belt, and it is moving

— State D : Reached from B when the object reaches the sensor (SBFB) while the rotary
table is at the appropriate rotation angle and vertical position (TB and T0); the object is
being pushed to the rotary table; ppRT becomes true as soon as the value of the sensor is
false.

— State C : Reached from B when the object reaches the sensor (SBFB) while the rotary
table is not in the appropriate position; if it reaches it and no object has been put on the
belt (ppFB or AddB), go to D; if an object is put on the belt, go to C or E, depending on
the position of the rotary table;

— State E : Waiting state, like C, but with 2 objects

— State F : Waiting state, like D, but with 2 objects

— State A : Reached from D, when the object has left the belt and is on the rotary table,
provided no other object is put on the belt.

In the global behavior of the system (controller+environment), the two mode-automata
always evolve synchronously (they are always in corresponding states). We could have
merged the two, but the separate version allows to deal with the controller alone, or with
the complete system, just by adding one component (see the conclusion for a comment on
reusing the same automaton structure in several places).

In the controller, we simply compute NFB (the number of objects on the belt); actFB
(the command for the motor); ppRT (an object is put on the rotary table, which is detected
by the belt when an object reaches its rightmost extremity). The complexity of the
automaton is mainly due to the potential interleavings of events like addB (an object is
put on the belt, by the external user) or ppFB (an object is put on the belt, by the rest of
the system, namely the crane) or SBFB (an object reaches the end of the belt), etc.

In the component that models the environment, we also need to compute:

— the timer tF. It is an integer variable that counts instants, and is compared to a constant
DeltaTF, representing the amount of time needed by an object to pass in front of the sensor.
It depends on the speed of the belt and on the size of the object. It determines how long
the value of the sensor is true.

— a memory MaPFB, used to store the current position of the belt when an object is put
on it.

— the actual position of the belt PFB

— the actual value of the sensor SBFB: it starts being true when (PFB — MaPFB) =
GammaPFB (where GammaPFB is yet another constant), and remains true until tF >
DeltaTF. In fact, this is not so simple, because the way SBFB is computed depends on the
mode, but the idea is essentially that one.

60

NFB=1
actFB=true
ppRT=false

NFB=0
actFB=false ppFB or AddB

ppRT=false

ppRT and
(ppFB or AddB)

RT and FB and not (TB and TO)
pp and not

(ppFB or AddB)

(TB and T0) and SBFB

NFB=1
actFB=false
ppRT=false

(ppFB or AddB) and
not (TB and TO)

NFB=2
actFB=false
ppRT=false

NFB=1
actFB=true
ppRT=not SBFB

(TB and T0) and not
(ppFB or AddB)

(ppFB or AddB
and not ppR

NFB=2
actFB=true
ppRT=not SBFB

Figure 11: The Feed-Belt component of the controller.

MAPFB=pre(MaPFB)
SBFB=((PFB-MaPFB)=GammaFB)

PFB=pre(PFB)-+deltaFB
tF=0

MaPFB—PFB

SBFB=false ppFB or AddB
PFB=pre(PFB)
tF—

ppRT and
(ppFB or AddB)

ppRT and not
(ppFB or AddB)

FB and not (TB and TO)

MaPFB=PFB
SBFB=true

(ppFB or AddB) and
not (TB and TO)

MaPFB=pre(MaPFB

)
MaPFB=PFB
tF=pre(tF)+1
PFB=pre(PFB)+deltahB
SBFB=(tF<DeltaTF)

(TB and T0) and not
(ppFB or AddB)

(ppFB or AddB
and not ppR

MaPFB=pre(MaPFB)
SBFB=(tf<DeltaTF)
PFB=pre(PFB)+deltaFB
tF=pre(tF)+1

Figure 12: The Feed-Belt component in the environment.

61

5 Conclusion and further work

The aim of the case-study was to demonstrate the use of an imperative construct in a
data-flow language for regulation systems, and the influence of this new construct in all
stages of development (modeling the environment, programming the controller, simulating
the behavior, etc.).

We think that the result is promising: when the mode-structure is part of the informal
specification, the new construct is appropriate. Here is a list of benefits.

Readability: The controller is more readable than the Lustre version. When we
observe the mode-structure of the mode-automaton, we clearly see where the modes differ,
and the conditions for changing modes. The hierarchy of modes allows a set of states to
share some equations, thus avoiding duplication of code. Explicit parallelism is used for
almost independent behaviors, i.e., with a little interface. (see the mode-automaton on
Figure 8).

Size of the code: The C code produced from the mode-automaton version (let us
denote it by Cp,) is a little smaller than the one produced from the pure Lustre version
(Cy), because the conditionals are better structured; but this is not the more significant
improvement. Intrinsically, the code for each mode has to be written somewhere.

Execution time: The real gain concerns execution time. The classical compilation
techniques for Lustre are single-loop sequential programs of two kinds: 1) no control
structure: each equation, as it is written in the source, is computed; 2) explicit control
structure: an automaton is defined whose states correspond to all the valuations of the
Boolean variables in the program; at each step, only a specialized version of the equations
is computed (for a given value of all the Boolean variables, just rewrite the whole program,
by propagating constants); this gives a better code, as far as the speed is concerned but,
in practical cases, the control structure explodes. The size of the code is exponential in
the size of the source. We would need a way to specify, for instance, which of the Boolean
variables should be expanded into control states, and which of them should be considered
as data, and therefore not expanded. Now, what is the picture for mode-automata? In
the single-loop sequential program produced from a mode-automaton program, only the
code corresponding to the current mode is computed at each step (and the transition
from this mode). Hence the worst-case-execution-time (WCET) is the maximal execution
time of the modes. Of course, if the system is described using a lot of trivial modes, and
one complex one, the gain is low. But the key point is that, by defining explicit running
modes, the user influences the control structure of the code produced, which is somewhere
between the one-state program and the full-automaton program.

Now that the benefits for readability and code efficiency have been established, we are
working on the definition of a kind of assume/quarantee scheme for modes, mimicking the
assume-guarantee schemes that already exist for proving properties of parallel systems in
a compositional way. This would show that offering the appropriate language construct
to the users can also allow them to give hints that simplify proofs.

As far as language design is concerned, we are also working on a less restrictive defini-
tion of the hierarchic composition of mode-automata. With the present definition of the

62

language, a variable is defined at one level only. We would like to allow several definitions
of the same variable at different levels of the hierarchy. This makes sense if refinement
is thought of as a kind of inheritance mechanism (which is the case in UML behavioral
models, where the innermost transitions have priority over the outermost ones).

Finally, the example of the two feed belt components (Figures 11 and 12) having the
same automaton structure suggests an extension of the language in which (flat or even
composed) automaton structures can be defined once and reused in different contexts,
with different sets of equations attached to states.

References

[BBO1]

[CHPPS87]

[GHJV95]
[Har87]

[HLRO2]

[HLR93]

[IMSS]

[LLO5]

[Mar92]

[MMPY1]

[MROS]

[MRRO0]

[Pay96]

A. Benveniste and G. Berry. Another look at real-time programming. Special Section
of the Proceedings of the IEEE, 79(9), September 1991.

P. Caspi, N. Halbwachs, D. Pilaud, and J. Plaice. LUSTRE, a declarative language for
programming synchronous systems. In 14th Symposium on Principles of Programming
Languages, Munich, January 1987.

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns.
Addison Wesley, Reading, MA, 1995.

D. Harel. Statecharts : A visual approach to complex systems. Science of Computer
Programming, 8:231-275, 1987.

N. Halbwachs, F. Lagnier, and C. Ratel. Programming and verifying critical systems
by means of the synchronous data-flow programming language LUSTRE. IEEFE Trans-
actions on Software Ingeneering, Special Issue on the Specification and Analysis of
Real-Time Systems, September 1992.

N. Halbwachs, F. Lagnier, and P. Raymond. Synchronous observers and the verification
of reactive systems. In M. Nivat, C. Rattray, T. Rus, and G. Scollo, editors, Third Int.
Conf. on Algebraic Methodology and Software Technology, AMAST’93, Twente, June
1993. Workshops in Computing, Springer Verlag.

Farnam Jahanian and Aloysius Mok. Modechart: A specification language for real-time
systems. IEEE Transactions on Software Engineering, 14, 1988.

Claus Lewerentz and Thomas Lindner. Formal Development of Reactive Systems: Case
Study Production Cell. Number 891 in Lecture Notes in Computer Science. Springer
Verlag, January 1995.

F. Maraninchi. Operational and compositional semantics of synchronous automaton
compositions. In CONCUR. LNCS 630, Springer Verlag, August 1992.

O. Maler, Z. Manna, and A. Pnueli. From timed to hybrid systems. In REx Workshop
on Real-Time: Theory in Practice, DePlasmolen (Netherlands), June 1991. LNCS 600,
Springer Verlag.

F. Maraninchi and Y. Rémond. Mode-automata: About modes and states for reactive
systems. In European Symposium On Programming, Lisbon (Portugal), March 1998.
Springer Verlag, LNCS 1381.

F. Maraninchi, Y. Rémond, and Y. Raoul. Matou: An implementation of mode-
automata. In International Conference on Compiler Construction, Berlin (Germany),
March 2000. Springer Verlag.

S. Paynter. Real-time mode-machines. In Formal Techniques for Real-Time and Fault
Tolerance (FTRTFT), pages 90-109. LNCS 1135, Springer Verlag, 1996.

63

[Ray96]

[Rém99)]

[RM95]

[RWNH9S]
[sE]

[SYR99]

P. Raymond. Recognizing regular expressions by means of dataflows networks. In 23rd
International Colloquium on Automata, Languages, and Programming, (ICALP’96)
Paderborn, Germany. Springer Verlag, July 1996.

Yann Rémond. Matou home page. Technical report, VERIMAG, June 1999.
http://www-verimag.imag.fr/PEOPLE/Florence.Maraninchi/MATOU.

E. Rutten and F. Martinez. SIGNALGTI, implementing task preemption and time
interval in the synchronous data-flow language SIGNAL. In 7th Euromicro Workshop
on Real Time Systems, Odense (Denmark), June 1995.

P. Raymond, D. Weber, X. Nicollin, and N. Halbwachs. Automatic testing of reactive
systems. In 19th IEEFE Real-Time Systems Symposium, Madrid, Spain, December 1998.

synchronousEifel. http://ais.gmd.de/"budde/ — GMD SET-EES, Schloss Bir-
linghoven, 53754 Sankt Augustin, Germany.

SYRF. Esprit LTR 22703, ”synchronous reactive formalisms”. Technical report, 1996-
1999. http://www-verimag.imag.fr/SYNCHRONE/SYRF/syrf .html.

64

Efficient On-the-Fly Model-Checking for
Regular Alternation-Free Mu-Calculus

Radu Mateescu® and Mihaela Sighireanu?

! INrIA Rhone-Alpes / VASY, 655, avenue de I'Europe
F-38330 Montbonnot Saint Martin, France
Radu.Mateescu@inria.fr
2 Université Paris 7 / LIAFA, 2, place Jussieu
F-75251 Paris, France

Mihaela.Sighireanu@liafa. jussieu.fr

Abstract. Model-checking is a successful technique for automatically
verifying concurrent finite-state systems. When building a model-checker,
a good compromise must be made between the expressive power of the
property description formalism, the complexity of the model-checking
problem, and the user-friendliness of the interface. We present a tempo-
ral logic and an associated model-checking method that attempt to fulfill
these criteria. The logic is an extension of the alternation-free u-calculus
with AcTL-like action formulas and Ppr-like regular expressions, allow-
ing a concise and intuitive description of safety, liveness, and fairness
properties over labeled transition systems. The model-checking method
is based upon a succinct translation of the verification problem into a
boolean equation system, which is solved by means of an efficient local
algorithm having a good average complexity. The algorithm also allows
to generate full diagnostic information (examples and counterexamples)
for temporal formulas. This method is at the heart of the EVALUATOR 3.0
model-checker that we implemented within the CADP toolset using the
generic OPEN/CESAR environment for on-the-fly verification.

Key-words: boolean equation system, diagnostic, model-checking,
p-calculus, specification, temporal logic, verification

1 Introduction

Formal verification is essential in order to improve the reliability of complex,
critical applications such as communication protocols and distributed systems.
A state-of-the-art technique for automatic verification of concurrent finite-state
systems is called model-checking. In this approach, the application under design
is first translated into a finite labeled transition system (LTs) model, on which
the desired correctness properties (expressed e.g., as temporal logic formulas)
are verified using appropriate model-checking algorithms.

When designing and building a model-checker, several important criteria
must be considered. Firstly, the specification formalism should be sufficiently
powerful to describe the main temporal property classes usually encountered

65

(safety, liveness, fairness). Among the wide range of temporal logics proposed
in the literature, the modal p-calculus [18] is particularly powerful, subsuming
linear-time logics as LTL [22], branching-time logics as CTL [4] or ACTL [25], and
regular logics as PpL [12] or PDL-A [27].

Secondly, the underlying model-checking problem should have a sufficiently
low complexity, in order to offer reasonable response times on practical appli-
cations. Optimizing this is often contradictory with the first criterion above,
because the model-checking complexity of temporal logics usually increases with
their expressive power. Since the model-checking problem of the full p-calculus
is exponential-time, various sublogics of lower complexity have been defined.
Among these, the alternation-free fragment [7] makes a good compromise be-
tween expressiveness (allowing direct encodings of CTL and AcTL) and efficiency
of model-checking (several linear-time algorithms being available [5, 1,29, 20]).

Thirdly, the model-checker interface should allow an intuitive, concise, and
flexible description of properties, in order to avoid specification errors and to
facilitate the verification task for non-expert users. Moreover, the model-checker
must provide enough feedback information to make the debugging of the applica-
tions feasible; in practice, this means to provide a precise diagnostic in addition
to a simple yes/no answer for a temporal property.

In this paper, we present a temporal logic and an associated model-checking
method attempting to fulfill the aforementioned criteria. The temporal logic
adopted is an extension of the alternation-free p-calculus with AcTL-like action
formulas and PDL-like regular expressions, allowing a concise and intuitive de-
scription of safety, liveness, and (some) fairness properties without sacrificing
the efficiency of verification. The method proposed for verifying a temporal for-
mula over an LTs has a linear-time worst-case complexity (both in LTS size and
formula size) and is based upon a succinct translation of the verification problem
into a boolean equation system (BES). The method works on-the-fly, by explor-
ing the Lrs in a demand-driven way during the verification of the formula. The
resulting BES is solved using a new linear-time local algorithm based on a depth-
first search of the corresponding boolean graph. Compared to other linear-time
local algorithms [1,29], our algorithm is simpler to understand and has a good
average complexity, achieved by a careful bookkeeping of the information in the
portion of boolean graph visited during the search. Moreover, our algorithm is
easily connected to the diagnostic generation algorithms given in [24], allowing
to produce examples and counterexamples (subgraphs of the L1s) fully explain-
ing the truth values of the formulas. This verification method has been used as a
basis for the EVALUATOR 3.0 model-checker that we developed within the CADP
(CaSAR/ALDEBARAN) toolset [9] using the generic OPEN/CASAR environment
for on-the-fly verification [13].

The paper is organized as follows. Section 2 defines the syntax and seman-
tics of the temporal logic proposed and illustrates its use by means of various
examples of properties. Section 3 presents in detail the model-checking method
and Section 4 discusses its implementation within the CADP toolset. Finally,
Section 5 gives some concluding remarks and directions for future work.

66

2 Regular alternation-free p-calculus

The logic that we propose, called regular alternation-free p-calculus, is an exten-
sion of the alternation-free fragment of the modal p-calculus [18,7] with action
formulas as in ACTL [25] and with regular expressions over action sequences as
in PpL [12]. It allows direct encodings of “pure” branching-time logics like AcTL
or CtL [4], as well as of regular logics like PDL or PDL-A [27]. We first define
its syntax and semantics, and then we show its usefulness by means of several
examples of commonly encountered temporal properties.

2.1 Syntax and semantics

We consider as interpretation models finite labeled transition systems (LTSs),
which are particularly suitable for action-based description formalisms such as
process algebras. An Lrs is a tuple L = (S5, A, T, sq), where: S is a finite set of
states, A is a finite set of actions, T C SxAXxS is the transition relation, and
so € S is the initial state. A transition (s,a,s') € T, also noted s — s', indicates
that the system can move from state s to state s’ by performing action a.

The regular alternation-free p-calculus is built from three types of formulas,
according to the syntax given on Figure 1.

Action formulas an=a | o | a1 A\ as
Regular formulas 8 :=a | B1.6: | B1]B: | B°

State formulas pu=F | T | p1 V2 | P1 A @2 | (B) ¢ | 8] ¢ | Y | nY.p | vY.p

Fig. 1. Syntax of regular alternation-free p-calculus

Action formulas « are built from action names a € A by using the standard
boolean operators. Derived boolean connectives are defined as usual: F = a A —a
for some a, T = =F, ag V as = —(-a; A naz), etc. Regular formulas 3 are
built from action formulas « by using the standard regular expression operators:
concatenation (.), choice (]), and transitive-reflexive closure (*). The empty se-
quence operator ¢ and the transitive closure operator + are defined as ¢ = F*
and St = (.8*. State formulas ¢ are built from propositional variables Y € Y
by using the standard boolean operators, the possibility and necessity operators
(B) ¢ and [f] ¢, and the minimal and maximal fixed point operators uY.¢ and
vY.p. The p and v operators act as binders for Y variables in a way similar
to quantifiers in first-order logic. A formula ¢ without free occurrences of Y
variables is closed. Formulas ¢ are assumed to be alternation-free, i.e., without
mutually recursive minimal and maximal fixed point subformulas ((8)¢' and
[0] ¢' modalities, where 3 contains * operators, must be considered as “hidden”
minimal and maximal fixed point subformulas, respectively).

67

The semantics of the logic is shown on Figure 2. The interpretation [a] C A
of action formulas gives the set of LTS actions satisfying «. The interpretation
18] € S x S of regular formulas gives a binary relation between the source and
target states of transition sequences satisfying 3 (o, U, and * denote composition,
union, and transitive-reflexive closure of binary relations). The a regular formula
characterizes one-step sequences s — s’ such that a satisfies . The ;.05 formula
states that a sequence is the concatenation of two sequences satisfying 81 and (s;
(1|02 states that a sequence can satisfy 81 or 3»; and 8* states that a sequence
is the concatenation of (zero or more) sequences satisfying 3. The interpretation
[¢] p C S of state formulas, where the propositional context p : J — 2° assigns
state sets to propositional variables, gives the set of LTs states satisfying ¢
in the context of p (@ denotes context overriding). The modalities (3) ¢ and
[0] ¢ characterize the states for which some (all) outgoing transition sequences
satisfying (3 lead to states satisfying . The formulas pY.p and vY. denote the
minimal and maximal solutions (over 2°) of the fixed point equation ¥ = ¢.

[a] = {a}
Action formulas [-a] = A\ [¢]
[oa A az] = [aa] N [e]

lal = {(s,s') € SxS|Fae As S5 ANa € [a]}

161821 = 1B1] © 12|
lar formul.
Regular formulas 5151 — 181 U6
18°1 = 181"
[Flp =0
[Tlp=S5

ler V] p =[]l pUlea] p
ler Aol p =[]l pN 2] p
State formulas [(BYelp={s€S|3s' € S.(s,s") € |B| As" €[] p}
[Blelp={s€S|Vs' €5(ss) €|l =" €le]p}
[Ylp=p)

[nY.plp=({S' CS|2,(S)C S}
vl p=U{S' CS|S CP,(5)}

where @, : 2% — 2%, &,(8") = [¢] (p @ [$"/Y])

Fig. 2. Semantics of regular alternation-free p-calculus

Let L = (S,A,T,s0) be an LTS. An action a € A satisfies a formula «
(written as a =) iff a € [a]. A state s € S satisfies a closed formula ¢ (written
skE) iff s € [¢]. L is a p-model (written L |= ¢) iff [¢] = S. Since an on-the-
fly model-checker only decides whether sg |= ¢, the user should be aware that
verifying L = ¢ amounts to check on-the-fly the formula [T*] ¢ (equivalent to
the AcTL formula AGtyp), stating that ¢ holds on every state reachable from sg.

68

2.2 Examples

The regular alternation-free p-calculus allows to express intuitively and concisely
various useful properties of LTss. Table 1 shows several examples of typical
formulas representing safety, liveness, and fairness properties.

Table 1. Examples of properties in regular alternation-free p-calculus

| CLass | PROPERTY | FORMULA |
Absence of Error actions [T*.Error] F
Unreachability of a Recv action "

Safety before a Send [(—Send)*.Recv] F
Mutual exclusion of sections de- [T*.Opent.(~Close1)".Open2] F
limited by Open and Close pent.(mbiosel) Upen
Deadlock freedom: absence of|.__,
states without successors [THmT

. Potential reachability (via some|,_, R B

Liveness Errors) of a Recv after a Send (T*.Send.(T*.Error)*.Recv) T
Inevitable reachability of a|._,
Grant action after a Request [T Request] pY. (T) T A [~Grant] ¥
Livel(?ck .freedom: absence of [T] 4V [tau] Y

Fairness tau-circuits
Fair reachability (by skipping| ., . B
circuits) of a Recv after a Send [T.Send.(~Recv)] {(~Recv)" .Recv) T

Note that boolean connectives (negation in particular) over actions improve
the conciseness of formulas: without these operators, it would be impossible to
express the inevitable reachability of an action without referring to other ac-
tions in the Lrs. Also, regular operators (although theoretically they do not
increase the expressive power of the alternation-free modal p-calculus) improve
the readability of formulas: without these operators, the second liveness prop-
erty given in Table 1 would be described by the equivalent fixed point formula
1Y1.((Send) pY5.((Recv) TV pYs5.((Error) Yo V (T) Y3)) vV (T) Y1).

Other, more elaborate examples of generic temporal properties encoded in
regular alternation-free u-calculus can be found in Section 4.

3 On-the-fly model-checking

We present in this section a method for on-the-fly model-checking of regular
alternation-free p-calculus formulas over finite LTSs. The method works by trans-
lating the verification problem into a boolean equation system, which is simul-
taneously solved using an efficient local algorithm.

69

3.1 Translation into boolean equation systems

Consider an Lts L = (S, A, T, sg) and a closed formula ¢ in normal form (i.e.,
in which all propositional variables are unique). The verification problem we are
interested in consists of deciding whether so = ¢. An efficient method used for
the AcTL logic [8] and for the alternation-free p-calculus [5,1] is to translate the
problem into a boolean equation system (BES) [1,21], which is solved using spe-
cific local algorithms [1,29, 28]. For the regular alternation-free p-calculus, one
way to proceed could be first to translate a state formula ¢ in plain alternation-
free p-calculus and then to apply the above procedure. This means to encode
the regular modalities of ¢ using fixed point operators, e.g., by applying the
Emerson-Lei translation from PDL to alternation-free p-calculus [7]. This trans-
lation is succinct (it produces at most a linear blow-up in the size of ¢), but
requires the identification and sharing of common subformulas.

However, we can also devise a succinct translation of the verification problem
S0 | ¢ into a BES resolution without computing common subformulas, but
using instead an equational intermediate representation. The translation that
we propose involves three steps, described below.

Translation into PDL with recursion. The first step is to translate a regular
alternation-free p-calculus formula ¢ into PDL with recursion (PDLR), which is a
generalization of the Hennessy-Milner logic with recursion HMLR [19]. A PDLR
specification (see Figure 3) consists of a propositional variable ¥ and a fixed
point equation system with propositional variables in left-hand sides and PDL
formulas in right-hand sides. The equation system is given as a list Mj..... M, of
o-blocks (. denotes concatenation), i.e., subsystems of equations with the same
sign o € {u,v}. We consider here only alternation-free PDLR specifications, in
which every o-block M; (for 1 < j < p) depends only upon (has free variables
that may be bound in) Mj;i1,..., M,. The Y variable must be defined in one of
the o-blocks Mj, ..., M, (usually in M;). A PDLR specification is closed if all
variables occurring in it are bound in the equation system.

Syntax of a PDLR specification:
P=(Y,M..... M)

where M; = {Y}, 2 $jihi<i<n; forall 1 <5 <p

Semantics w.r.t. an LTs (S, A, T, so) and a context p: Y — 2°:
[(Y,M;..... M)lp=(p@[M;..... M,] p)(Y)
[Mj.... . Mplp = (IM;] (p @ [Mjt1. - .. . Mp] p))- [Mjgr.... . Mp] p
Y = wiih<i<nlp = 10595,/ (Yiys o Y5,)]

J

J
where @;,:(2%)" —(2%)", &; (U1, ..., Unj) = (il (p @ [U1/ Y1, .., Unj [Ynj])1<i<n;

Fig. 3. Syntax and semantics of PDLR

70

A PDLR specification (Y, M;..... M,) interpreted over an LTS yields the
set of states associated to Y in the solution of M;j..... M,,. The solution of
M..... M, is a propositional context in) — 2% obtained by concatenating the
solutions of all o-blocks M (1 < j < p), each one being calculated in the context
of the subsystem M;i..... My, The solution of a o-block M; with n; variables
is a context mapping Mj’s variables to the o; fixed point of a functional defined
over (2%)". The semantics of an empty system { } is the empty context [].

Before translating a closed regular alternation-free p-calculus formula ¢ in
PDLR, we must convert ¢ into ezpanded form, by performing two actions: (a) add
a new pY (vY') operator, where Y is a “fresh” variable, in front of every (8) ¢1
([8] ¢1) subformula of ¢ in which 3 contains a * operator (recall from Section 2.1
that these modalities are considered as “hidden” fixed point operators); (b) if the
resulting formula g is not a fixed point one, add in front of ¢ a oYy operator,
where 0 € {u,v} and Y} is another “fresh” variable.

The translation of an expanded formula ¢Yy.pg into a PDLR specification
(T1(0Yp-p0,0), T2(0Yy.p0,0)) is obtained using two syntactic functions T¢ and
T2, defined inductively in Figure 4. T1 (¢, o) yields a formula obtained from ¢ by
substituting each fixed point subformula by its corresponding variable. T2(¢, o)
yields a system containing, for each fixed point subformula of ¢, an equation with
the corresponding variable in the left-hand side and a PpL formula in the right-
hand side. The first o-block, denoted by hd(T2(p,c)), contains the equations of
sign o associated to the topmost fixed point subformulas of ¢. The remainder of
the system, denoted by t{(T2(¢,0)), contains the o-blocks already constructed
from subformulas of ¢. A new o-block is created every time that a fixed point
subformula with a sign 6 dual to o is encountered (i = v and 7 = p).

L e | T1(p,0) | T2(p,0)
F F
T T {}
(B) p1 (8) T1(p1,0)
18] 1 BIT1(p1,0) T2(p1,0)
w1V p2||Ta(p1,0) V Ti(p2,0) (hd(Tz(p1,0)) U hd(T2(p2,0)))-
@1 A @2 T1(p1,0) A Ta(p2,0) t1(T2(p1, g)?{_;l(rb(%a))
Y
oY.o Y ({Y = T1(p1,0)} Uhd(T2(p1,0)))-t(T2(p1,0))
Yo (3-({Y Z Ta(p1,)} U hd(Ta(p1,)))-H(Ta(p1,5))

Fig. 4. Translation of state formulas in PDLR

We illustrate this translation by an example. Consider the following formula
(already written in expanded form), stating that every Send action in the LTs
will be eventually followed by a Recv:

¢ =vYy.[T*.Send] uY:1. (T) T A [-Recv] V)

71

The translation (T1(p,v), T2(p,v)) yields the PDLR specification below:
(Yo, {Yo £ [T*.Send] V1 }.{V1 £ (T) T A [-Recv] V1 })

Using Bekié’s theorem [3], we can show that the translation from regu-
lar alternation-free p-calculus to PDLR preserves the semantics of formulas:
[oY.¢]p = [(T1(cY.0,0), T2(cY.0,0))] p for any context p : Y — 25 and
o € {u,v}. Note also that the size of the PDLR specification obtained is linear
in the size of ¢: there are as many equations in the system as variables in (the
expanded form of) ¢ and as many operators in the right-hand sides as opera-
tors in . However, in order to obtain a succinct translation into BESs, we need
simple PDLR specifications, i.e., in which all PDL formulas in right-hand sides
contain at most one boolean or modal operator. This is easily done by splitting
the PDL formulas and introducing new variables, and may cause at most a linear
blow-up in the size of the equation system. For the example above, we obtain
the following equivalent simple PDLR specification:

(Yo, {Yo £ [T*.Send] V1 }.{V1 £ Yo A Y3, Ys £ (T) T,Y; £ [-Recv] V1 })

Translation into HML with recursion. The second step is to translate a
simple PDLR specification into HMLR, which amounts to eliminate all regular
operators inside the modal formulas present in the right-hand sides of the equa-
tion system. This translation is performed by the syntactic function R defined
in Figure 5. Every equation containing a modality with a regular expression is
translated into (one or more) equations of the same sign that contain modalities
with simpler regular formulas (having less regular operators). This process con-
tinues recursively until all resulting modalities in the right-hand sides belong to
HwML, i.e., they contain only pure action formulas.

®)
R(Y = [a] ¢)
R(Y = (B1.52) ¢) 2
R(Y = [81.3:2]) = R(Y = [A] Y1) UR(Y: =[]
R(Y = (51]82) ¢))
R(Y = [51|B32] @)
R(Y = (8%) ¢)
R(Y = [8]¢)

Fig. 5. Translation of simple PDLR specifications in HMLR

72

For the simple PDLR specification obtained in the previous example, the
translation R yields the following (simple) HMLR specification:

(Yo, {Yo = Y3 A Y5, Yy = [Send] V1, Y5 = [T] Yo}
(M EY2 A Y3, Y £(T)T,Y3 & [-Recv] V1})

The translation from PDLR to HMLR preserves the semantics of specifica-
tions: [(Y, M;..... Mp)lp = [R(Y, M..... M,)] p for any context p : Y — 25.
Moreover, it is easy to see that R may cause at most a linear blow-up in the size
of the equation system.

Translation into BESs. The third step is to translate a simple HMLR specifi-
cation into an (alternation-free) boolean equation system. A BES (see Figure 6)
consists of a boolean variable z and a fixed point equation system Bj..... B,
with boolean variables in left-hand sides and boolean formulas in right-hand
sides. For simplicity, we consider only pure disjunctive or conjunctive boolean
formulas. An empty disjunction is equivalent to F and an empty conjunction is
equivalent to T. The semantics of a BES is defined in a way similar to a PDLR
specification, except that it produces the boolean value associated to x in the
solution of Bj..... B,.

Syntax of a BES:
E = (z,Bi.....B,)

where Bj = {z;;, 2 op; Xj hi<i<n;, 7j; € X, op;, € {V,A}, and X, C X
forall 1 <j<p,1<i<my

Semantics w.r.t. Bool = {F, T} and a context § : X — Bool:

[(z,Bi.....)]] §=(@ol[Bi..... B,] 6)(z)
N [Bj..... B,]é6 = ([Bij] (6 @ [Bjt1----- B,]6)).[Bj+1.---- B,]é
[[{xji 2o XJ1}1<z<n]]] = [oj Jé/(mjp'"vmjnj)]
where [[op{xl, o xp}] 6 =6(z1) op...op §(zx) and ¥, ;:Bool™i —~Bool™,

T, (b1 o) = (100 X8 0 /1. b s D,

Fig. 6. Syntax and semantics of boolean equation systems

The local model-checking of a (simple) HMLR specification (Y, M;..... Mp)
on the initial state sp of an Lts L = (S, A, T, sg) means to decide whether the set
of states denoted by Y contains s¢. This is translated into a BES by the semantic
function B defined inductively in Figure 7. To every propositional variable Y in
the left-hand side of an equation and to every state s € S is associated a boolean
variable Y, encoding the fact that s belongs to the set of states denoted by Y.
To every HML formula ¢ in a right-hand side and to every state s is associated
a boolean formula B(y, s) encoding the fact that s satisfies .

73

B(F,s)=F
B(T,s) =T
B(p1V p2,5) = B(p1,5) VB(p2,5)
B(<,01 A 90278) = B(‘Phs) A B(902>S)
Bl(abpr9) =V, e, .\ Blors)
Bllo)g.9) = Aoy o Bles)
B(Yi,s) = Yis

Fig. 7. Translation of simple HMLR specifications into BESs

The B function is similar to other translations from modal equation systems
to BEss [2,5,1,29,21]. B produces a BES whose size is linear in the size of the
HMLR specification (which in turn is linear in the size of the initial state formula)
and the size of the LTs (number of states and transitions). It is important to note
that during the translation of modal formulas (see Figure 7), the transitions in
the LTS are traversed forwards, which enables to construct the LTS in a demand-
driven way during the verification.

3.2 Local resolution of BESs

The final step of the model-checking procedure is the local resolution of the
alternation-free BES obtained by translating the local verification of a formula
@ on an L1s (S,A4,T,sp). As we saw in Section 3.1, the verification of a fixed
point formula Y. on the initial state so amounts to compute the value of the
boolean variable Yy, contained in the first o-block of the BES.

For simplicity, we consider here the resolution of BESs containing a single
p-block (the solving routine for w-blocks is completely dual). Multiple-block
alternation-free BEss can be handled by associating to each o-block in the BES
its corresponding solving routine. Every time a variable z; bound in a o-block
Bj is required in another block B; that depends on Bj, the solving routine of
Bj is called to compute z;. The computation of z; may require in turn the
values of other variables that are free in B; and defined in other blocks, leading
to calls of the routines corresponding to those blocks, and so on. This process
will eventually stop, because the BES being alternation-free, there are no cyclic
dependencies between blocks. During the resolution, the same variable of a block
may be required several times in other blocks; therefore, the computation results
must be persistent between subsequent calls of the same solving routine!.

! This resolution scheme could be naturally implemented using coroutines.

74

Extended Boolean Graphs. Our resolution algorithm is easier to develop
using a representation of BEss as extended boolean graphs [24], which are a slight
generalization of the boolean graphs proposed in [1]. An extended boolean graph
(EBG) is a tuple G = (V, E, L, F'), where: V is the set of vertices; E CV x V
is the set of edges; L : V' — {V,A} is the vertex labeling; and F C V is the
frontier of G. Intuitively, the frontier of an EBG G contains the only vertices of
G starting at which new edges can be added when G is embedded in another
EBG. The set of successors of a vertex z € V is noted E(z).

A closed BES can be represented by an EBG G = (V, E, L, (), where V denotes
the set of boolean variables, E denotes the dependencies between variables, and
L labels the vertices as disjunctive or conjunctive according to the operator in
the corresponding equation of the BES (the frontier set is empty since G is not
meant to be embedded in another graph). Figure 8 shows a closed BEs and
its associated EBG, where black (white) vertices denote variables that are true
(false) in the BEs solution. The grey area delimits a subgraph containing the
vertices {xo, z3, T4, x5, x5} and having the frontier {xg, x5, z5}.

wo%z‘1vw4vw9
Ilfwz/\zg 1 A
To = x1 N\ T3

$3£T

.uéws/\.m

Iséwg\/zs

zséau/\zs

$7£F 2
wséwgv.u A
zgéaw/\zg

Fig. 8. A BEs, its associated EBG, and a subgraph

Every EBG G = (V, E, L, F) induces a Kripke structure G = (V, E, L). Such
a Kripke structure is represented in an implicit manner when the “successor”
function E(z) can be computed for every vertex # € V without knowing the
whole set V' (this is the case for the successor function implemented by the
translation B given in Figure 7).

Let P, and P, be two atomic propositions denoting the V- and A-vertices of
a Kripke structure G induced by a BES. The BES solution can be characterized
by the following p-calculus formula interpreted over G [24]:

Ex = pY.(Py A(T)Y)V (P A[T]Y)

A variable z of the BES is true iff the vertex z satisfies EX in G, noted z =g EX.
Intuitively, EX expresses that some (all) successors of a V-vertex (A-vertex) lead,
in a finite number of steps, to vertices corresponding to T variables of the BEs
(these are A-vertices without successors, characterized by the formula Py A[T]F).
For the EBG in Figure 8, it is easy to check that the set {z¢,z3,z4, 5,28} of

75

black vertices is equal to the interpretation of EX on G, noted [EX]. Thus, the
local resolution of a BES amounts to the local model-checking of the EX formula
on the corresponding Kripke structure.

Consider an EBG G = (V,E, L,(), its associated Kripke structure G =
(V,E,L), and =z € V. The local model-checking of EX on = does not always
require to entirely explore G (e.g., on Figure 8, one could explore only the out-
lined subgraph in order to check EX on xg), but rather to explore a part G’ of
G such that the value of can be computed based only on the information in
G'. Formally, this means to compute a subgraph G’ = (V',E’, L', F') of G that
contains z and is solution-closed [24], i.e., the satisfaction of EX by z is the same
in G' and G: [Ex]g = [EX]g NV’. A subgraph G' is solution-closed iff the
satisfaction of Ex on its frontier F' can be decided using only the information in
G': F' C [(Py NEX) V (Py A =EX)] g/ - For the EBG on Figure 8, it is easy to see
that the subgraph outlined is solution-closed: its frontier {x,z5,zs} contains
only V-vertices satisfying EX.

Local resolution algorithm. The SOLVE algorithm that we propose (see Fig-
ure 9) takes as input an implicit Kripke structure G = (V, E, L) induced by an
EBG G and a vertex £ € V on which the EX formula must be checked. Start-
ing from x, SOLVE performs a depth-first search (DFs) of G and simultaneously
checks EX on all visited vertices, which are stored in a set A C V. Upon termina-
tion, the subgraph G4 of G containing all vertices in A and all edges traversed
during the DFs is solution-closed ([EX]g, = [EX]g N A), meaning that the
truth value of EX on z computed in G 4 is the same as that in G.

SOLVE is similar in spirit with other graph-based local resolution algorithms
like those of Andersen [1] and Vergauwen-Lewi [29]. However, since it implements
the DFs iteratively, using an explicit stack and two nested while-loops, we believe
that SOLVE is easier to understand than e.g., Andersen’s algorithm, which uses
a while-loop and two mutually recursive functions.

The successors E(y) of every vertex y € V are assumed to be ordered from
(E(y))y to (E(Y)) p(y)—1- For every vertex y € A, a counter p(y) denotes the
current successor of y that must be explored. Every time a vertex y such that
y Ec EX is encountered on top of the stack (this can be either a “new” A-sink
vertex, or an already visited vertex), the EX formula is reevaluated in G 4.

This reevaluation is carried out by the inner while-loop by keeping a work set
B C A containing the vertices u such that v =g, EX and EX has not yet been
reevaluated on the nodes that depend upon u. To keep track of these backward
dependencies, to each vertex y € A we associate the set d(y) C A containing the
currently visited predecessor vertices of y (these vertices directly depend upon y
and EX must be reevaluated on them when EX becomes true on y). To efficiently
perform the reevaluation of EX, we use the counter-based technique introduced
in [2,5]: to every vertex y € A, we associate a counter ¢(y) denoting the least
number of successors of y that currently have to satisfy EX in order to ensure
¥y Eca EX (¢(y) is initialized to 1 for V-vertices and to |E(y)| for A-vertices).
Thus, for every y € A, y Eg, EX iff ¢(y) = 0.

76

procedure SOLWVE (z, (V,E, L)) is
var A, B:2V;d:V —2";¢,p: V — Nat;
Yy, 2, u, w: V; stack : V™
c(z) := if L(z) = A then |E(z)| else 1;
p(x) := 0; d(z) := 0;
A = {z}; stack := push(z, nil);
while stack # nil do
y = top(stack);
if ¢(y) = 0 then
if d(y) # 0 then
B :={y};
while B # () do
let v € B; B := B\ {u};
forall w € d(u) do
if c(w) > 0 then
c(w) == c(w) — 1;
if ¢(w) = 0 then

B := BU{w}
endif
endif
end;
d(u) =0
end
else
stack := pop(stack)
endif

elsif p(y) < |E(y)| — 1 then
2= (EW)p); p(y) = p(y) + 15
if 2 € A then
d(z) := d(z) U{y}
if ¢(z) = 0 then
stack := push(z, stack)
endif
else
¢(z) :=if L(z) = A then |E(z)| else 1
p(z) = 0; d(2) := {y};
A = AU{z}; stack := push(z, stack)
endif
else
stack := pop(stack)
endif
end
end

Fig. 9. Graph-based local resolution of a BES with sign

77

Figure 10 shows the result of executing SOLVE for the variable zy and the
EBG in Figure 8 (during the DFs, the successors of each vertex are visited
as if the right-hand side of the corresponding equation was evaluated from
left to right). The subgraph G4 computed by SOLVE, containing the vertices
{zo, 21,2, 23, %4, 5}, is solution-closed, because its frontier {z¢,x5} contains
only V-vertices satisfying EX in Ga.

Fig. 10. A solution-closed subgraph computed by SOLVE

During the execution of SOLVE, the DFS stack repeatedly takes one of the
three forms outlined on Figure 11.

c>0 c>0

a) b)

a
~—

Fig. 11. Structure of the DFs stack during the execution of SOLVE

In form a), all vertices y pushed on the stack are “unstable” (¢(y) > 0),
meaning that the truth of EX on y depends on the portion V'\ A of G that has
not been explored yet: so, the DFs must continue. In form b), a vertex y that
is “stable” (c¢(y) = 0) has been encountered and pushed on top of the stack,
meaning that some vertices depending on y may also become stable: therefore,
Ex must be reevaluated in G 4. In form c), this reevaluation has been finished,
possibly leading to stabilization of some vertices in A: then, all stable vertices
present on the stack will be popped, since no further information is needed for

78

them. The DFS properties ensure that all stable vertices on the stack are adjacent
to the top?, and thus after they are popped the stack takes again the form a).

SOLVE has a linear-time worst-case complexity, since every edge in G4 is
traversed at most twice: forwards (when its target vertex is visited by the DFs)
and backwards (when EX is reevaluated on its source vertex). Moreover, SOLVE
has also a good average-case complexity, improving on Andersen and Vergauwen-
Lewi’s algorithms, since it stops as soon as z =g, EX and explores only vertices
that are likely to influence x. Also, backward dependencies d(u) of stable vertices
u are freed during the inner while-loop, thus reducing memory consumption.

Diagnostic generation. Practical applications of BES resolution, such as tem-
poral logic model-checking, often require a more detailed feedback than a simple
yes/no answer. To allow an efficient debugging of the temporal formulas, it is de-
sirable to have also diagnostic information explaining the truth value obtained
for the boolean variable of interest. Both positive diagnostics (examples) and
negative diagnostics (counterexamples) are needed in order to have a full expla-
nation of a temporal formula.

Let G = (V,E,L,F) be an EBG and = € V the variable of interest. A
diagnostic for z is a solution-closed subgraph G’ of G that contains z and is
minimal w.r.t. to subgraph inclusion, i.e., it contains the minimal amount of
information needed in order to decide the satisfaction of Ex by z. A diagnostic
G’ is called example if © =g EX and counterexzample if © g EX.

The SOLVE algorithm does not directly produce diagnostics; however, it can
be easily coupled with the diagnostic generation algorithms proposed in [24].
These algorithms take as input a solution-closed subgraph (in which the seman-
tics of EX has been already computed) and construct a diagnostic for a given
variable by performing efficient traversals of the subgraph. Figure 12 shows an
example for the variable zy obtained by traversing again the solution-closed
subgraph on Figure 10 previously computed by SOLVE.

Fig. 12. An example for zg

2 The reevaluation of EX, which involves a backwards traversal of edges in G4, can
affect only those vertices in the DFS tree that are descendants of stable vertices
present on the stack, outlined by the grey portion on Figure 11 c).

79

Since these diagnostic generation algorithms have a linear complexity in the
size of the solution-closed subgraph they are executed upon, they affect neither
the worst-case, nor the average-case complexity of SOLVE.

4 Implementation and use

We used the model-checking method presented in Section 3 as a basis for develop-
ing the EVALUATOR 3.0 model-checker within the CApp (C£SAR/ALDEBARAN)
toolset [9]. The tool has been built using the OPEN/CESAR environment [13],
which provides a generic API for on-the-fly exploration of transition systems. As
a consequence, EVALUATOR 3.0 can be used in conjunction with every compiler
that is OPEN/C&ESAR—compliant (i.e., that implements a translation from its
input language to the OPEN/CESAR API), and particularly with the CESAR
compiler [14] for LOTOS.

4.1 Additional operators and property patterns

Practical experience in using model-checking has shown the need for abstraction
mechanisms enabling the specifier to define and use his own temporal opera-
tors in addition to those predefined in the model-checker. The input language of
EVALUATOR 3.0 offers a macro-expansion mechanism allowing to define parame-
terized formulas and an inclusion mechanism allowing to group these definitions
into separate libraries that can be reused in temporal specifications.

An immediate application was to build libraries for particular logics like
CTL or ACTL by translating their temporal operators as fixed point formulas in
regular alternation-free p-calculus. For example, the E [<P1a1 Ua, 902] operator of

AcTL (stating the existence of a sequence s; Yo B3 < Sk LY Sk+1 such that
siEpiforalll <i<k,a;j =aqforalll <j <k, ar = as,and spy1 = p2) can
be encoded as a macro EU_A_A(p1, a1, a2, p2) = pY.(p1 A ((a2) 2 V {a1)Y)).
Of course, these particular operators can be freely mixed with the built-in ones
in temporal formulas, thus providing added flexibility to advanced users.

Another source of flexibility is provided by the use of wildcards (regular
expressions on character strings) instead of action names in the formulas. If
transition labels are represented as character strings (as it is currently the case
with the OPEN/CESAR API), this allows to specify a set of labels using a single
action predicate. For example, the wildcard >SEND.*’ represents all transition
labels denoting communication of 0 or more values on gate SEND.

In practice, it appears that in many cases, temporal properties tend to belong
to particular classes of high-level “property patterns”, such as absence, existence,
universality, precedence, and response. These patterns have been identified in [6]
after an important statistical study concerning over 500 applications of tem-
poral logic model-checking. The knowledge embedded in this pattern system is
important for both expert and non-expert users, since it reduces the risk of spec-
ification errors and facilitates the learning of temporal logic-based formalisms.

80

These property patterns have been expressed in [6] using several specifica-
tion formalisms (CTL, LTL, regular expressions, etc.) but none of them was
directly applicable to description languages with action-based semantics such as
process algebras. Therefore, we developed in EVALUATOR 3.0 a library of param-
eterized formulas implementing the property patterns in regular alternation-free
p-calculus. It turned out that many of them could be expressed in a much more
concise and readable form than with the other formalisms used in [6]. Table 2
shows the first three patterns contained in the library.

Table 2. Property patterns in regular alternation-free p-calculus

PATTERN | ScoPE | FORMULA
Globally [T*.a1]F
Before as [(ma2)*.a1. T .a2] F
Absence After as () .as.T".1] F

(1 is false)

Between ao and as|[T*.a2.(mas)*.a1. T .as]F

After ap until ag |[T".c2.(—as)".aa] F

Globally pwY (T)TA[-a1]Y
Before a» [(ma1)".az] F
Existence After as [(ma2)*.az] pY. (T) T A [~ai1] Y

(a1 becomes true)

Between as and as|[T*.az.(—a1)*.as] F

[T .a2] ([(ma1)”.as] F A

After oo until a3 pY. (1) T A [Fa1] V)

Globally [T*.ma1] F

Before as [(ma2)* .= (a1 V a2).(ma2)*.as] F
Universality After as [(ma2)*.a2. T .ma1] F

(a1 is true)

Between a» and as|[T".az2.(-as)" .= (a1 V a3). T .as]F

After as until az |[T*.a2.(nas)* .~ (a1 V as)]F

Besides facilitating the user task at the specification level, it is also important
to offer enough feedback on the verification results to allow an easy debugging
of the applications. This is achieved through the diagnostic generation facilities
provided by EVALUATOR 3.0, which allows to produce examples and counterex-

81

amples explaining the truth value of regular alternation-iree p-calculus rormu-
las. As a side effect, this enables the user to get full diagnostics for particular
temporal logics implemented as libraries, such as CTL and AcCTL. Moreover,
EvVALUATOR 3.0 can be used to search regular execution sequences in LTss, by
checking PDL basic modalities: a transition sequence starting at the initial state
and satisfying a regular formula 8 can be obtained either as an example for the
(8) T formula, or as a counterexample for the [5] F formula.

4.2 Experimental results

We illustrate below the behaviour of EVALUATOR 3.0 by means of a simple
benchmark example: the Alternating Bit Protocol (ABP for short) described in
Lotos. The protocol specification (available in the CADP release) contains four
parallel processes: a sender entity, a receiver entity, and two channels modelling
the communication of messages and acknowledgements, respectively. The sender
accepts messages from a local user through a gate Get and the receiver delivers
the messages to a remote user through a gate Put. Messages are represented by
natural numbers between 0 and n, where n is a parameter of the specification.

We formulated and verified several safety, liveness, and fairness properties of
the ABP (see Table 3). For each property, the table gives its informal meaning,
its corresponding regular alternation-free p-calculus formula, and its truth value
on the LOTOS specification. Action predicates Put; and Get; denote the commu-
nication of message ¢ on gates Put and Get, respectively. Predicates Put 4y, and
Getgny (wildcards) denote the communication of arbitrary messages on gates
Put and Get. Every property containing an occurrence of Put; and/or Get; has
been checked for all values of i between 0 and n.

Table 3. Properties of the Alternating Bit Protocol

[No.| PROPERTY | FORMULA | VALUE]
I izl;’cci}?ilg, a Put will be eventually Y (TY T A [~Putan,] Y false
P, izl;’cci}?ilg, a Put will be fairly [(=Putany)*] (T" Putany) T true
P |pfose the comesponding pa (725" Se%1F
Pt e s comosponding et | P0-(C0e) Putun]E | tue
s e s comsponding pus|[T” SeFeni(Pub) Gow] | tue
P o s eventially ronchaple |7 PRIV (DT AGen]Y | fale
P GAefzefs ?afr‘f;’rzgsh;ﬁ“ponding [T*.Put,.(~Get:)"] (~Get;)* Get:) T | true

82

Properties P; and Py, which express the inevitable reachability of Put and
Get actions, are false because of the livelocks (7-loops) present in the LOTOS
description. These two properties can be reformulated — as P, and Py, respec-
tively — in order to state the inevitable reachability only over fair execution
sequences (i.e., by skipping loops).

We performed several experiments with EVALUATOR 3.0, by checking all
properties on the ABP specification for different values of n. For comparison,
we also used the EVALUATOR 2.0 model-checker developed at VERIMAG, which
accepts as input plain alternation-free p-calculus formulas and implements the
Fernandez-Mounier local boolean resolution algorithm [11]. All experiments have
been performed on a Sparc Ultra 1 machine with 256 Mbytes of memory.

The results are shown in Table 4. For each experiment, the table gives the
number of states of the LiTs, the time (in minutes) required for the local model-
checking of each property, and the percentage of states explored by each tool.
The SOLVE algorithm performs uniformly better than the Fernandez-Mounier
algorithm, the time needed being at least 50% smaller and the percentage of
Lts states explored being always smaller or equal. For properties P, P,, and
Ps, which require to explore only a very small part of the LTS in order to decide
their truth value, EVALUATOR 3.0 stops almost instantaneously (less than a
second) in all cases, while EVALUATOR 2.0 takes up to one hour for n = 100.

Table 4. Local model-checking statistics

n =20 n =40 n = 60 n =80 n = 100

No. || [S] = 39800 ||S| = 153200/ |S| = 340200 | [S| = 600800 | [S] = 935 000
time expl. %| time Jexpl. %| time [expl.%| time [expl.%| time [expl.%

p, @ 0"”| o.01 0| 0.00 0"l 0.00 0"”| 0.00 0"”| 0.00
L[207 93.1[1742”| 96.4] 449" 97.6|10'04”| 98.2[18'23"| 98.5
p, 12 0| 0.01 0’| 0.00 0”| 0.00 0| 0.00 0| 0.00
2[p[[1702"] 100]5'11"| 100|14’29”"| 100]/30'59”| 100|56'28”| 100
p. @ 8”1 917 35" 95.7| 1'20"| 97.1| 2'28"| 97.8] 4'03"| 98.2
* b 16" 91.7] 1709”7 95.7] 2'53"| 97.1] 549" 97.8] 9’577 98.2
p, 1@ 9" 100{ 37" 100{ 1'25" 100{ 235" 100 413" 100
3 19" 100 1714"” 100| 3'05” 100| 605" 100{ 10"17” 100
p. @ 18" 100{ 1'15" 100{ 2'58" 100{ 5'48" 100{ 10'07" 100
° b 38" 100{ 3'01” 100{ 8'20” 100{ 17740" 100{ 31'53" 100
p.le 0" 0.02 0| 0.00 0| 0.00 0" 0.00 0" 0.00
S5] 48] 100|3'34”| 100| 9'16”7"| 100]/18'54”| 100|33'26”| 100
p. @ 10" 100| 38" 100{ 1'26" 100{ 236" 100{ 4'15" 100
N 20" 100[1718" 100| 3'06” 100| 608" 100{ 10"23" 100

(a) EVALUATOR 3.0 (SOLVE algorithm)
(b) EVALUATOR 2.0 (Fernandez-Mounier algorithm)

83

5 Conclusion and future work

We presented an efficient method for on-the-fly model-checking of regular
alternation-free p-calculus formulas over finite labeled transition systems. The
method is based on a succinct reduction of the verification problem to a boolean
equation system, which is solved using an efficient local algorithm. Used in con-
junction with specialized diagnostic generation algorithms [24], the method also
allows to produce examples and counterexamples fully explaining the truth val-
ues of the formulas. The method has been implemented in the model-checker
EVALUATOR 3.0 that we developed as part of the CADP (CESAR/ALDEBARAN)
protocol engineering toolset [9] using the OPEN/CESAR environment [13].

The input language of EVALUATOR 3.0 allows to define reusable libraries
containing new temporal logic operators expressed in regular alternation-free
p-calculus. At the present time, we developed libraries encoding the operators of
CrtL [4], AcTL [25], and a collection of generic property patterns proposed in [6]
intended to facilitate the temporal logic specification activity.

EVALUATOR 3.0 has been successfully experimented on various specifications
of communication protocols and distributed applications (see for instance the
examples in the CADP release). The diagnostic generation features and the pos-
sibility of defining separate libraries of temporal operators appeared to be ex-
tremely useful in practice. Moreover, a connection between EVALUATOR 3.0 and
the ORCCAD environment for robot controller design [26], including a graphical
interface for the property pattern system, is currently under development.

In the future, we plan to apply EVALUATOR 3.0 also for bisimulation /preorder
checking, by using the characteristic formula approach [16] that allows to com-
pare two labeled transition systems M; and M, by constructing a characteristic
formula of M; and verifying it on M,. Also, the diagnostic generation features
could be useful in the framework of test generation based on verification [10]. Us-
ing again the characteristic formula approach, test purposes could be described
as temporal formulas and the corresponding test cases would be obtained as
diagnostics for these formulas.

Finally, we plan to extend the logic of EVALUATOR 3.0 with data variables,
which allow to reason more naturally about systems described in value-passing
process algebras such as pCRL [15] and full LoTos [17]. This can be done by
translating data-based temporal logic formulas into parameterized boolean equa-
tion systems, which can be solved on-the-fly [23]. The implementation of these al-
gorithms within the CADP toolset will require the extension of the OPEN/CESAR
environment with data-handling facilities.

Acknowledgements

This work was partially supported by the INRIA Cooperative Research Action
TOLERE directed by Alain Girault. We are also grateful to Hubert Garavel for his
useful comments and for providing valuable assistance during the development
of the EVALUATOR 3.0 model-checker. Versions 1.0 and 2.0 of EVALUATOR [11]
were developed by Marius Bozga and Laurent Mounier from VERIMAG.

84

References

1

2.

10.

11.

12.

13.

H. R. Andersen. Model checking and boolean graphs. Theoretical Computer Sci-
ence, 126(1):3-30, April 1994.

A. Arnold and P. Crubillé. A linear algorithm to solve fixed-point equations on
transition systems. Information Processing Letters, 29:57-66, 1988.

H. Bekié¢. Definable operations in general algebras, and the theory of automata
and flowcharts. volume 177 of Lecture Notes in Computer Science, pages 30-55.
Springer Verlag, Berlin, 1984.

E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic Verification of Finite-
State Concurrent Systems using Temporal Logic Specifications. ACM Transactions
on Programming Languages and Systems, 8(2):244-263, April 1986.

R. Cleaveland and B. Steffen. A Linear-Time Model-Checking Algorithm for the
Alternation-Free Modal Mu-Calculus. In K. G. Larsen and A. Skou, editors, Pro-
ceedings of 3rd Workshop on Computer Aided Verification CAV ’91 (Aalborg, Den-
mark), volume 575 of Lecture Notes in Computer Science, pages 48-58, Berlin, July
1991. Springer Verlag.

Matthew B. Dwyer, George S. Avrunin, and James C. Corbett. Pat-
terns in Property Specifications for Finite-State Verification. In Proceed-
ings of the 21st International Conference on Software Engineering ICSE’99
(Los Angeles, CA, USA), May 1999. Full information available at the URL
http://wwu.cis.ksu.edu/santos/spec-patterns.

E. A. Emerson and C-L. Lei. Efficient Model Checking in Fragments of the Propo-
sitional Mu-Calculus. In Proceedings of the 1st LICS, pages 267-278, 1986.

A. Fantechi, S. Gnesi, F. Mazzanti, R. Pugliese, and E. Tronci. A Symbolic Model
Checker for ACTL. In Proceedings of the International Workshop on Current
Trends in Applied Formal Methods FM-Trends’98 (Boppard, Germany), volume
1641 of Lecture Notes in Computer Science. Springer Verlag, October 1998.
Jean-Claude Fernandez, Hubert Garavel, Alain Kerbrat, Radu Mateescu, Laurent
Mounier, and Mihaela Sighireanu. CADP (CESAR/ALDEBARAN Development
Package): A Protocol Validation and Verification Toolbox. In Rajeev Alur and
Thomas A. Henzinger, editors, Proceedings of the 8th Conference on Computer-
Aided Verification (New Brunswick, New Jersey, USA), volume 1102 of Lecture
Notes in Computer Science, pages 437-440. Springer Verlag, August 1996.
Jean-Claude Fernandez, Claude Jard, Thierry Jéron, Laurence Nedelka, and César
Viho. Using On-the-Fly Verification Techniques for the Generation of Test Suites.
In R. Alur and T. A. Henzinger, editors, Proceedings of the 8th International Con-
ference on Computer-Aided Verification (Rutgers University, New Brunswick, NJ,
USA), volume 1102 of Lecture Notes in Computer Science, pages 348-359. Springer
Verlag, August 1996. Also available as INRIA Research Report RR-2987.
Jean-Claude Fernandez and Laurent Mounier. A Local Checking Algorithm for
Boolean Equation Systems. Rapport SPECTRE 95-07, VERIMAG, Grenoble,
March 1995.

M. J. Fischer and R. E. Ladner. Propositional Dynamic Logic of Regular Programs.
Journal of Computer and System Sciences, (18):194-211, 1979.

Hubert Garavel. OPEN/CASAR: An Open Software Architecture for Verifica-
tion, Simulation, and Testing. In Bernhard Steffen, editor, Proceedings of the First
International Conference on Tools and Algorithms for the Construction and Anal-
ysis of Systems TACAS’98 (Lisbon, Portugal), volume 1384 of Lecture Notes in
Computer Science, pages 68-84, Berlin, March 1998. Springer Verlag. Full version
available as INRIA Research Report RR-3352.

85

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

Hubert Garavel and Joseph Sifakis. Compilation and Verification of LOTOS Spec-
ifications. In L. Logrippo, R. L. Probert, and H. Ural, editors, Proceedings of the
10th International Symposium on Protocol Specification, Testing and Verification
(Ottawa, Canada), pages 379-394. IFIP, North-Holland, June 1990.

J-F. Groote and A. Ponse. The syntax and semantics of uCRL. Technical Report
CS-R9076, CWI, Amsterdam, December 1990.

A. Ingolfsdottir and B. Steffen. Characteristic Formulae for Processes with Diver-
gence. Information and Computation, 110(1):149-163, June 1994.

ISO/IEC. LOTOS — A Formal Description Technique Based on the Temporal
Ordering of Observational Behaviour. International Standard 8807, International
Organization for Standardization — Information Processing Systems — Open Sys-
tems Interconnection, Genéve, September 1988.

D. Kozen. Results on the Propositional u-calculus. Theoretical Computer Science,
27:333-354, 1983.

K. G. Larsen. Proof Systems for Hennessy-Milner logic with Recursion. In Pro-
ceedings of the 13th Colloquium on Trees in Algebra and Programming CAAP ’88
(Nancy, France), volume 299 of Lecture Notes in Computer Science, pages 215-230,
Berlin, March 1988. Springer Verlag.

X. Liu, C. R. Ramakrishnan, and S. A. Smolka. Fully Local and Efficient Eval-
uation of Alternating Fixed Points. In Bernhard Steffen, editor, Proceedings of
1st International Conference on Tools and Algorithms for the Construction and
Analysis of Systems TACAS’98 (Lisbon, Portugal), volume 1384 of Lecture Notes
in Computer Science, pages 5-19, Berlin, March 1998. Springer Verlag.

Angelika Mader. Verification of Modal Properties Using Boolean Equation Systems.
VERSAL 8, Bertz Verlag, Berlin, 1997.

Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems,
volume I (Specification). Springer Verlag, 1992.

R. Mateescu. Local Model-Checking of an Alternation-Free Value-Based Modal
Mu-Calculus. In Annalisa Bossi, Agostino Cortesi, and Francesca Levi, editors,
Proceedings of the 2nd International Workshop on Verification, Model Checking
and Abstract Interpretation VMCAI’98 (Pisa, Italy). University Ca’ Foscari of
Venice, September 1998.

Radu Mateescu. Efficient Diagnostic Generation for Boolean Equation Systems.
In Proceedings of 6th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems TACAS’2000 (Berlin, Germany), Lecture
Notes in Computer Science. Springer Verlag, March 2000.

R. De Nicola and F. W. Vaandrager. Action versus State based Logics for Transition
Systems. In Proceedings Ecole de Printemps on Semantics of Concurrency, volume
469 of Lecture Notes in Computer Science, pages 407-419. Springer Verlag, 1990.
D. Simon, B. Espiau, K. Kapellos, R. Pissard-Gibollet, and al. The Orccad Archi-
tecture. International Journal of Robotics Research, 17(4):338-359, April 1998.
R. Streett. Propositional Dynamic Logic of Looping and Converse. Information
and Control, (54):121-141, 1982.

E. Tronci. Hardware Verification, Boolean Logic Programming, Boolean Functional
Programming. In Proceedings of the 10th Annual IEEE Symposium on Logic in
Computer Science LICS’95 (San Diego, California), pages 408-418. IEEE Com-
puter Society Press, June 1995.

B. Vergauwen and J. Lewi. Efficient Local Correctness Checking for Single and
Alternating Boolean Equation Systems. In S. Abiteboul and E. Shamir, editors,
Proceedings of the 21st ICALP (Vienna), volume 820 of Lecture Notes in Computer
Science, pages 304-315, Berlin, July 1994. Springer Verlag.

86

Verification in the Codesign process by means of
LoTos based model-checking

Fabrice Baray and Pierre Wodey

ISIMA /LIMOS Laboratory,
Blaise Pascal University Clermont Ferrand II,
BP 10125 F63173 Aubiere, France,

fabrice.baray@isima.fr,pierre.wodey@isima.fr

Abstract. When considering the design of complex systems, the de-
signers use ever more synthesis tools transform formal specifications into
an implementation of the system. Such tools are based on a given de-
scription of the system. The description is based on a model of compu-
tation including behaviour and communication mechanisms. The model
of computation depends on the level of representation of the system and
varies from the specification to the implementation. There exist generally
verification tools associated with the specification level but, for a more
implementation oriented model the verification is often inexistent. But
according to the semantic transformations in the design process (mainly
at the communication level), this verification is needed. As generally im-
plementation model of computation are composed of communicating fi-
nite state machines with datapath (CFSMD) in which the communications
are performed by mean of “hardware” signals (physical connections), we
propose to allow model checking verification on this model of compu-
tation. This paper presents the translation between the CFSMD and an
equivalent LOoTOS description in which the communication basic mech-
anism is the rendezvous. Based on process algebra a LOTOS description
is easily translated into a labelled transition system by existing model
checkers such as the CADP toolbox which we use in our experiment. We
apply this technique on the CosMos Codesign environment in which the
deadlock free property has to be verified at each step of transformation
in the design, the equivalence of communication semantics being not as-
sured by the transformations. The deadlock free property is described
by temporal logic formulas handled by the XTL model checker included
in the CADP toolbox.

Keywords. Verification, Model-Checking, LOTOS, Communicating Fi-
nite State Machine, Codesign.

1 Introduction

For the design of complex systems the designers use ever more CAD tools working
at the system level [GM93,Wol94,GV95,ELLSV97]. Such tools offer generally the
following capabilities :

— formal or abstract specification of the system,

87

— verlification at the specification level,

— architecture exploration linked with performance analysis,
— automatic synthesis of behaviour and communication,

— automatic code generation,

— simulation of the generated model.

Thus, such tools handle descriptions of the system based on model of com-
putation. A model is composed of a behavioural (control, action) model of indi-
vidual components and a communication model (communication mechanisms)
among components [LSVS98].

The abstraction level of the specification formalism and its model of compu-
tation offer the ability to perform easily formal verification by a model checking
technique for instance.

During the design, starting from the specification to the code generation,
the description evolves together with the model of computation. Actually, the
communication mechanisms at the specification level are quiet different from
those at the implementation level.

Furthermore, at the communication point of view, the generated system does
not implement a semantically equivalent mechanism as the one at the specifi-
cation level (which is too abstract for implementation). This induces that the
implemented system has not an equivalent global behaviour as the specified one.
So, the properties verified at the specification level are no more guaranteed at
the implementation level.

Thus, there is a need to be able to verify properties by applying model check-
ing at the implementation level or at any level in the design process [WB99]. This
needs to be able to generate a verifiable model from the model of computation
at the implementation level. This is the purpose of our paper.

The considered model of computation is the communicating finite state ma-
chines with datapath (CFSMD) where the only communication mechanism is the
“hardware” signal (connection net between components). This communication
mechanism is at a very low level of abstraction.

I I
| |
. Model M Lotos |
| with . specification |
—+— | Translation | ——
Abstract tool

tree XTL |

3 formulas

Fig. 1. Tool architecture

From such a description our tool generates (Fig. 1) :

— a semantically equivalent description in LoTOs language [ISO88,GLO91] in
order to use model checking tools,

88

— temporal logic formulas allowing to verify the deadlock free property which
is at this time the only one considered.

The choice of LOTOS is motivated by :

— Loros is an ISO standard [ISO88],

— LoTos is based on process algebra and induces clearly a Label Transition
System (LTS) needed for model checking,

— several verification tools accept LOTOS as entry.

The proposed translation has been applied considering the CADP toolbox
developed at INRIA [GS90,Gar89,FGM*91,Gar98], on one hand, and on the
Codesign environment Cosmos developed at TIMA Laboratory [1J95,VCJ96],
on another hand.

The CADP toolbox accepts LOTOS as entry and performs model checking on
a generated Lts. It includes also logic formula checking described in the XTL
language [SM98,Mat98].

The CosMoOs tool is a good representative of a complete and realistic Code-
sign tool.

This paper is structured as follow :

— introduction of an example used to illustrate the different part of the paper
and also pointing out a deadlock introduction in the CosMos tool,

— formal presentation of the implementation oriented model of computation
including behaviour and communications (CFSMD),

— the translation of the communications which are based on different mecha-
nism in the implementation model and in the LoTOS model (rendezvous),

— the translation of the behaviour into LOTOS,

— XTL formulas automatically generated for deadlock free checking,

— the application on CosMos Codesign tool.

2 Illustrating example

As example, we propose a system composed of three processes : two producers,
and one consumer. The consumer accepts data from the two producers, but in
some states, it limits to one specific producer. The structural representation of
this simple example is given in figure 2.

PRODUCER PRODUCER

CONSUMER

Fig. 2. Structural representation

89

The behavioural representation of the consumer is given in figure 3. The
system is described in SDL [SDL88] specification language. Each component be-
haviour is described by a finite state machine. At this high level of specification,
the consumer has three possible states. In one state, it waits independently a
data from the two producers and in others states, it waits data only from one
producer. In the communication point of view, in SDL, the components have
gates and are communicating by asynchronous signal exchange through buffer.
In the example, Prodi_-Cons_Value are Prod2-Cons_Value two gates on which
consumer read data. When a component send a data, it is not blocked and the
data is placed in the buffer. When a component received a data, it is blocked

until a data is in the buffer.

process P_Cons

-

t=1,
fi=1

M

etat_faux_faux

etat_faux_vrai

Prod1_Cons_Value
(recu)

<

Prod2_Cons_Value
(recu)

<

fi=f+1

dcl tinteger;
dcl f integer;
dcl temp integer;
del recu boolean;

=

Tests

t=t+1

Tests

Prod2_Cons_Value
(recu)

<

Prod1_Cons_Value
(recu)

t=t+1

Tests

fi=f+1

Tests

Fig. 3. Consumer behavioural representation

After one step of synthesis, a new description in a different model of compu-
tation is generated with a FIFO queue between the components (Fig. 4). There

are three differences between the two models :

— The structural view grows with a new component and new connections be-
tween all components.
— The producers and consumer behaviours change in terms of communication
protocol. The new communication principle implements hardware signals in
the computational model which becomes more concrete.
— The initial and generated descriptions are semantically different in term of
communication principle with the FIFO queue insertion.

3 Abstract model of communicating state machines

This section provides an abstract syntactic model definition of the considered
CFSMD. This model is presented by inference rules which are described with

90

<
FIFO E

CONSUMER

Fig. 4. Example after one step of communication synthesis

Backus-Naur syntax style. A system is a set of components communicating
through signals. The behaviours of these components are finite state machines.
Let M = {My, M,,... ,M,_1} be amodel composed of n = | M| components. A
signal e, used for the communication between components of the system, forms
a part of the global signal set &.

A signal communication is a non-blocking communication. Two components
connected with a hardware signal are communicating by using only two actions :

— a new value can be written on the signal, which contains only one value at
a time ;
— the current signal value can be read.

Hence to implement a more complicated communication protocol, many sig-
nals and many series of actions (read or write actions) are necessary. The blocking
communication is implemented with loop on a state until the expected value is
written by another component.

Each component M; is a tuple (7, V, E, S, \,d) where :

— m is the component name (identifier) ;

— V is alocal variable definition list. A variable, denoted by v (identifier), has
an initial value vi ;

— FE is a signal definition list. Each signal e € E is used for communication
between M and other components of the system. Furthermore, we have E C
&;

— S is the set of states (S = {so,...,5|s]-1})- Let s be a state, and s be the
initial state ;

— M\ is the “state-action” function ;

— J is the transition function.

With each variable v (respectively signal e) is associated its type t(v) (re-
spectively t(e)). The two functions (state-action and transition function) are
presented by an abstract syntax. The set of terminal symbols is composed of ¢
for a constant value, v for a variable identifier and e for a signal identifier. And
the set of nonterminal symbols is composed of ex for the expressions, ai for the
internal actions (associated to a state), a for the action associated to a transition
in the model, and §, for the transition function definition.

91

— Kixpressions (ex)
ex = c|v|e|uopexy| exo bop ex; (3.1)

The uwop and bop are unary and binary operators.
— Internal actions (ai)

ai z=¢€|v:=ex; aig | if ex then aig else aiy (3.2)

e ¢ corresponds to no internal action ;

e ; is the sequential operator ;

e v := ex is the assignment of a variable v with the value ez ;
e if is a conditional statement.

We denote by Ai the set of all internal actions. The A function of the machine
M is defined by A : S — Ai.
— Actions associated to transitions (a)

az=c|ap; a1 |e:=ex|if exthenag[else a] (3.3)

e in action associated to transitions, assignment operation := is only ap-
plied to signals ;
e in the if statement, the expression ex is a boolean expression.

— Transition expressions (J,)
8a = (s,a) | if ex then & [else 6}] (3.4)

We denote by A, the set of all transition expressions. The function ¢ is
defined by 6 : S — A,.

The figure 5 shows a part of consumer behaviour presented in figure 3 with
the finite state machine model.

/\(So)/v aio

o= (s1,a)
5a(80)“‘
Mo1).+| ain
(51>‘Q .= if(cond)
5a(81) then(s1,a1)
8a(s2)) else(sz,as)

A(Sz) v aily

Fig. 5. Statemachine example on behaviour example

92

As example, one producer component (producerl) is defined in our syntac-
tic model by M = (producerl,Vp1, Ep1, Sp1, Ap1,0p1) with Vpr = {}, Epp =
{bus_req, wr_req,wr_ack,data} and Sp,1 = {so, s1, S2, 53, 54,55 }. In order to il-
lustrate clearly the translation procedure, only two states s; and s are detailed.
For these two states, the functions Ap1 and d,1 are defined in box example 1.

)\;,1(51) = ai1 With ai1 =&
)\pl(s2) = aty with ais = ¢
_ : day = (82,0a1)
dp1(s1) = da; with { and as = bus_req = true
day = if (wr_ack = true) then d,: else 0,
2 2b
(5p1 (52) = (50,2 with and 6a’2 = (52, E)
and 0,y = (s3,data := 0; wr_req := true)

EXAMPLE 1. CFSMD example

4 Translation rules

LoTos is a high level specification language based on algebraic models CSP
(Communicating Sequential Processes) and CCS (Calculus of Communicating
Systems). A LoTos model of a system is composed of interconnected pro-
cesses via gates. Each process communicates through gates with rendezvous
communication protocol. For instance, if we cousider a gate GG, a general ren-
dezvous in LOTOs is written by G Oq ...0O, where Oy ...0O,, are offers defined
by O =:=1V | ?Xo,...X,, : S. One offer like 'V is the V' value emission on gate
G, and one offer like 7 Xy, ... X,, : S is n + 1 receptions of values of type S on
gate G.

The translated model of CrFsMD is composed of interconnected processes.
With each state machine is associated one LOTOS process. This section presents :

— the structure of the LOoTO0S generated model and the communication princi-
ples between these processes ;

— the translation of the internal behaviour of CFSMD into the LOTOS process
behaviour ;

4.1 Structure and communication principles

In order to reproduce the semantic of hardware signal in our communicating
finite state machine, one LOTOS process named signal is introduced between the
LoTos processes for each hardware signal. In figure 6, the structural view of the
generated LOTOS model of our example is presented.

93

PRODUCER
FIFO E

g
[signal |

PRODUCER

Fig. 6. Structural view of LOTOS generated model

CONSUMER

The behaviour of the signal process, which is defined in a LoTos library,
is shown below in the example 2. It reproduces the semantic of the hardware
signal communication. A signal is a physical link which take only one value at a
time. A component can write a new value, or read the current value. The LOoTOS
process is based on a choice statement ([]). In the read signal action the current
value is one offer of the synchronization. In the write signal action, the new
value is received and memorized. Hence this is a description of a non-blocking
communication with the rendezvous communication principle.

process signal[s](value : signaltype) : noexit :=
(slereadlvalue ; signal[s](value))
I
(slewrite?v : signaltype ; signalls](v))
endproc (* signal *)

ExAMPLE 2. LoT0S description of a signal process

4.2 Translation of internal behaviour of CFSMD

Each cFsMD is translated into one process. The state variable of the state ma-
chine is defined as a LOTOS process parameter. The transition between two states
is reproduced with a final recursive call of the process, with the new state value
in the state parameter.

The translation of the state machine behaviour is described by a set of infer-
ence rules. Only a commented subset of rules is presented in this paper. However,
this section presents some significant rules, in order to give a precise idea of our
translation method!. After three basic definitions, some notations and environ-
ments are defined. Then the global definition of the inference rules is described
for different syntactic parts of the model.

4.2.1 Basic definitions

! It is possible to contact the authors to obtain the global set of rules

94

Definition 1 (Inference rule). Let % be a rule where conditions =
c1,C2, ... ,Cn must be satisfied to validate the transformation rule of a into b.
O

Definition 2 (Partially defined functions). Let Dy and Ds be two discrete
domains. We consider the function f defined on these domains :

f : D1 — DQ
We define :

— L the undefined value. x € Dy ; f(x) =L means that f is undefined for the
value x ;

— let x € Dy and y € D,, we denote by [y/x] the function f defined only for
the value © and such that [y/z](z) =y :

ife; =2
Vz; € Dy [y/z)(z:) = {ZJ/_ fotherwz’se

|

Definition 3 (function increase). Let f and g be two functions defined on
domains Dy and D,. We denote by f < g the function defined by :

f<1g2D1—)D2

Vo € Dy (fag)(z) = {9(90) if g(x) #L

f(x) otherwise

4.2.2 Environment definitions

Let LC be a LoTos construction, and LC' =1 the empty LOTOS construc-
tion. The set of all LOTOS constructions which can be written is denoted by £C.
Let Id be the set of all identifiers. Two environments are defined :

— a = (m,ids, E,V) is a tuple constructed for each component of the system.
Let 7 be the component name, id, the state variable name of the component
behaviour, £ and V' the signal and variable sets. The LOTOS description of
one component consists of one recursive process, with parameters like the
state variable name, component variables and gates for the signal communi-
cation. The environment « is used in order to translate the recursive call of
this LOTOS process ;

— B is a second environment used to translate the signals contained in the
expressions. The function f associates with each signal a local variable name
to contain the signal value :

B:Id— 1d
e —v

95

Let Envg be the set of all possible environments 3. In order to translate
the signal communications, we define the function L used to generate a LOTOS
construct for all signals used in 3.

L: Envg — LC
15} — LC
with Ve; such that 8(e;) = v; #L LC; = e;leread?v; : t;
and LC = LC(), LCl, P

(4.1)

4.2.3 Global definition of transformation rules

Five rule types are necessary for the translation. They correspond to the
expressions translation, internal actions translation, the action translation, the
transition translation and finally one component and the whole model transla-
tion.

— let B+ ex — (B', LC) be the rule type for the expression ez translation.
In environment [the expression ex is translated into LOTOS construction
LC and returns a micro environment 3’ which contains the variable names
associated to signals used in the expression ;

— let (a,d,,0) F ai — (B', LC) be the rule type for the internal action ai
translation. In the couple of environment «, 3, and considering the 4, tran-
sition expression, the internal action ai is translated into LOTOS construction
LC and returns the micro environment 3’ ;

— let B+ a — (B, LC) be the rule type for the action a translation. In envi-
ronment 3, action a is translated into LOTOS construction LC' and returns
the micro environment 3’ ;

— let (o, B) F 6, — (B, LC) be the rule type for the §, transition translation.
In the couple of environment «, 3, the transition expression 4, is translated
into the LoTos expression LC and returns a micro environment 3’ ;

—let M — LC and M — LC be the rules for component and model
translation.

4.2.4 Inference rules for the translation

Signal identifier in expressions ez : according to the environment 3, the
translation of a signal identifier e is defined with the help of two rules. If the
signal has been used before, we just have to reuse its associated local variable.
Else we assume that the function “newid” gives a new variable identifier for the
signal e, and a new environment is constructed.

B(e) = ve
BFe— (L ve)

(4.2a)

B(e) =L, ve = newid()
B+ e— ([ve/e],ve)

(4.2b)

96

Binary operator in expressions : assuming that bop operator is declared
for LoTos language, a constructed environment for the binary operator in ex-
pressions with the addition of environments is defined as follows :

ﬂ F erg — <ﬂ’,LCo>,
Bap ker; — (8", LCY)
B+ exq bop exy — (' < (", LCy bop LCh)

(4.3)

Variable assignment for internal actions a¢ must be translated with
the let LoT0S operator such that :

Brex — (B',LCY),
(a,&a,ﬁqﬁ’) Faig — </3”7L02>
(a,00,8) Fv:i=ex; aig — (B <f",(let v:t =LCy in (LCs)))

(4.4)

Signal assignment for actions a are translated into a LOTOS communi-
cation on gate denoted by e. This communication is prefixed by the word cwrite
defined in the LOTOS model. It means that this is an assignment on the signal.
The LOTOS communication is a rendezvous communication. In order to repro-
duce the signal semantic communication, this rendezvous is not implemented
directly between the signal interconnected components in the model, but with a
“signal LoTOs component” (see rule 4.9) :

BFex — (', LC)
Bt e:=ex — (' elcwrite!(LC))

(4.5)

For instance, in example 1, the a; signal assignment on bus_req signal in g,
action is translated with this rules and gives the LOTOS expression :
bus_req!cwriteltrue.

Conditional statement for transition function J, : three rules are re-
quired to translate the conditional statement. The first one has a restrictive
condition such that it is applied when no else condition is present, and when
the condition is dependent only on one signal. Then a LOTOS communication
is derived with a predicate corresponding to the condition. The second rule is
applied when the condition depends on more than one signal. In this case, it is
not possible to create a LOTOS communication directly, thus a guarded LoTos
statement is used. The third rule is like the second one, with a else statement and
the use of the L function defined in 4.1 to generate the LOTOS synchronization
operator :

ﬁ Fer — <ﬁ”7L01> ’ /3” = [U/S]a
(a, BaB") o5 — (B', LCo)

(a,B) Fif exthen 89 — (B', sleread?v : T[LCY]; LCy) (4.6a)
Bt ex —>H(5”;L001) ; ,3”’ # [v/3],
(a,8<48") 680 — (8, LCy) o

(o, B) Fif ex then 69 — (B' < 8", ([LC1] — (LCh)))

97

Bt ex — (8", LCy),
(a,BaB") - dg — (B',LCo) , LCy = L(B'),
(a,Bap") F 6y — (B",LCy) , LCT = L(B")
[LCz] — (LC(’) ; LC())
ki s (2ot o))

(4.6¢)
(a,B) Fif exthen 09 else 0} —» </3///’

For instance, the rule 4.6c¢ is used to translate the condition statement of d,,
in the model example 1. In the LOTOS generated expression presented below,
the value of wr_ack is saved in a LOTOS variable v defined with the 4.2b rule :

([v] = producerl]...](s2)
[] [not(v)] = (LCY; producerl]...](ss3)))

Next state, action in transition function 4, : this rule generates a
recursive call for the process m, with the new values for all variables and the
next state of the component :

Bra— (B, LC), a=(rids,E,V),
E={eo,...,ep—1} V ={vo,...,vy-1}
(aaﬂ) + (s,a) — (/BlaLC;ﬂ'[eO; s 56\E\—1](7"ds;1)07- .- 5U|V|—1)>

(4.7)

For instance, this rule is used to generate the recursive call of LOTOS process
in dq,, day and d,, actions in the model example 1.

Component M : a LOTOS process construction is defined for one compo-
nent. The process gates are derived from the signal set E such that one signal
corresponds to one gate. A variable in the component implies a parameter in the
LoTos process. For each state of component M, the following LOTOS construct
is used in a choice statement based on the sate variable value of the process . :

V —LCy, E— LCs,
Vsi €S ai' = X(s;), 0L =6(si) , ((mer,ids, E,V),0L, L) F ai* — (B;, LC})
VBi LCY = L(Bi)
process 7w [LC5](ids : state, LCY) : noexit :=
[ids eq so] = LCY ; LC}
(m,V,E,S,\,6) — ...
[[ids eq s51-1] = LC|_y 5 LC|g_,

endproc

(4.8)

This rule can be used to generate the whole process statement, with the gate
parameters derived from Ej;, the parameters obtained from the state variable
and Vj1, and with all the LoTOs constructions for all the states in S,i. The
global LOTOS statement for this component is :

98

process producerl [bus_req, wr_req, wr_ack,data)
(ids : state) : noexit :=
[ids eq so] = ...
[[ids eq s1] — (bus_reqlcwriteltrue ;
producerllbus_req, ... ,datal(s2))
[[ids eq s2] — (wr_ackleread?v : bool ;
([v] = producerl]...](s2)
[] [not(v)] — (datalcwrite!0 of int ; wr_reqlcwriteltrue ;
producerl]...](s3))))
[[ids eq s5] — ...
endproc

ExAMPLE 3. LOTOS description of producer process

System M : whole the system is described in a LOTOS specification and a
library (signallib) which contains signal process definition. The specification is
made up of all the instantiations of the processes associated to the components
and a LoTos synchronization to the signal process instantiation. initvalue is a
function which associates an initial value at each variable.

M= {Mfo<i<n=|M},
Mi = (7”7 ‘/Z'a Ei; Si; Ai; 52);

viel0...n—1] Vi={vl} Vjel0...|Vi] - 1]initvalue(v}) = vi,
Ei ={eg,--- €|, -1}

i=|€]—1
£ = Uz:l) | E;, &={eo,... ,eig)-1}

: : : (4.9)
specification 7, [eo,... ,e|g‘_1] : noexit
library signallib endlib
behaviour
0 0 0 ,:0 0
(mo [€B, - gy] (58, vi8, - vl) I
n—1 n—1 n—1 n—1 n—1
Tn_1 [eo o€l 71} (sq " vig 5o, vi)
M | nfll | n 1‘

|[€0, ce ,€|g‘,1]|
(signalleo](Z) |||

signalle e()(Z))
where
LCy LCy ... LCp—
endspec

The simple system shown in figure 4 has been translated in LoTo0S by apply-
ing this rule. The generated LOTOS description has about 400 lines. It contains

99

some processes : tTWo producers, one consurner, the F1FU queue and some Signals
components. The structural view of the LOTOS description is given in figure 6.
A part of the global LOTOS statement for this system is in example 4

specification ProdCons[rd_req, rd_ack,bus_reql,wr_reql, wr_ackl,
bus_req2, wr_req2, wr_ack2, data) : noexit

behaviour
(
FIFO2[rd_req,rd.ack,bus_reql, wr_reql, wr_ackl,
bus_req2, wr_req2, wr_ack2, data](q0, nil, 20 fint) |||
Pllbus_reql, wr_reql, wr_ackl, data](q0) |||
P2[bus_req2, wr_req2, wr_ack2, data)(q0) |||
Clrd_req,rd_ack, data](q0, 0o fint, 0o fint, 0o fint)
)
| [rd_req, rd_ack,bus_reql, wr_reql, wr_ackl,
bus_req2, wr_req2, wr_ack2, data] |
(

signal[rd_req](zvalue) |||
stgnal[rd_ack](zvalue) |||
signallbus_reql](zvalue) |||
signal[wr_reql](zvalue) |||
stgnal{wr_ackl](zvalue) |||
signallbus_req2](zvalue) |||
signal[wr_req2](zvalue) |||
stgnal{wr_ack2](zvalue) |||
stgnal _int[data](0o fint)
)

where

endspec

EXAMPLE 4. LoT0s description of producer process

5 Deadlock free property verification

The CADP toolbox is used for deadlock free property verification. According to
the operational semantics of LoT0Os, the LOTOS system specification is trans-
lated into a (possibly infinite) Labelled Transition System (Lts for short), which
encodes all its possible execution sequences [SM98]. Ouly finite LTs can be gen-
erated with the CADP tool. An LTs is formally defined by :

Definition 4 (LTS). Let L = (Q, A, T, ginit) be a LTS such that :

100

— Q is the set of states of the program ;

— A is a set of actions performed by the program. An action a € A is a tuple
GVy,...V,, where G is a gate, and Vi, ...V, are the values exchanged (i.e.,
sent or received) during the rendezvous at G ;

— T C Qx AxQ is the transition relation. A transition (q1,a,q:) € T (written
also ¢ = g2) means that the program can move from state q to state g by
performing action a;

— Qinit € Q 1s the initial state of the program.

O

For each state ¢ € Q, we denote by Pathd(q) the set of all distinct paths
9(=q) 2 ¢ 2 qo... issued from g (such that Vi, j ¢; # q5)-

Typically, when an expert designs a LOTOS specification, the graph is an-
alyzed by searching deadlocks which appear as states ¢ in the Lrs such that
#{q,a,q'). No more communication can be done in the whole system if the be-
haviour reaches this sink state g. This technique is efficient when two conditions
are satisfied :

— the specification is written assuming this search of deadlocks. In other words,
it contains “true” blocking communications with the rendezvous semantics ;

— the deadlocks found are global in the system, meaning that no more com-
munication can be done in the whole system. With this technique, local
deadlocks in some processes are not detected. In a state, if one or more pro-
cesses never have communication, it is possible that they are waiting for
specific signal values. However other processes in the system continue their
communications. This is our local deadlock definition.

In our LS, a transition corresponds to one signal utilization. A signal uti-
lization can be a reading (labelled cread) or writing (labelled cwrite) task. The
signal processes introduced in the translated specification are designed in order
to respect the signal semantics. Hence, sink states do not appear in our LTS.
Furthermore, local deadlocks detection is an important issue in the context of
systems derived from Codesign design.

Considering these aspects, correctness properties can be expressed with for-
mulas inspired from ACTL temporal logic, and verified on the LTs model using
the XTL model-checker [Mat98]. First, some notations (described in [SM98]) are
presented, and then our deadlock correctness property are discussed.

5.1 Preliminary notations
Definition 5 extracted from [SM98] is presented for comprehension.
Definition 5 (Action Formulas). Let a be an action formula as specified by

the following context-free grammar :

a = true
I (GVi,.. .V}
-
| and

101

where {GV1,...V,,} denotes an “action pattern”, G a gate and all the values
Vi match with the corresponding values exchanged when the action is performed.

An action formula « is interpreted over an action a € A. a satisfaction by
an action a of the model (LTS) L, written with a =1 « (or simply a = o when
the model L is understood), is defined by :

a = true always;
a={GWV,.. Vo, }iffa=GVy,... Vy;

a =« iff a £ a;
al=ana if a Eaandal=d.

O

The satisfaction of a formula ¢ by a state ¢ € Q of a Lirs L is written with
q =1 ¢ (or simply ¢ = ¢ when the model L is understood).

5.2 The deadlock free property
In order to clearly present our verification, we introduce some formulas and
their semantics. First, consider a process which is waiting for a specific value

of a signal. The signal is read until it takes the expected value. This classical
behaviour induces in the generated LTS some state like ¢ in figure 7.

Cg) signal!cread?v:t

Fig. 7. One loop on a state

The ¢ formula EB, is defined by the equation 5.1. It detects the loop on a
state, with a specific label a. The global deadlocks in our system do not appear
as sink states, the AB, formula (equation 5.2) can be used to characterize a
global deadlock on a state by evaluating ¢ = ABypye. This formula is almost the
same as EB,, with a forall quantifier.

q = EB, iff 3¢ % ¢' such that ¢' = ¢ and a | « (5.1)

ql= AB, iffVg % ¢, ¢ =qand a = a (5.2)

The XTL implementation of the EB, formula is given as follows :

102

def EB(LS:labelset) : stateset =
{ S : state where
exists T : edge among out(S) in
((target(T)=S) and (label(T) among LS))
end_ezists

}
end_def

In order to detect local deadlocks, we define a ¢ formula F, by the equation
5.3. A state ¢ satisfies F,, if and only if all the reachable states from ¢ satisfy EB,,.
The second condition in 5.3 verifies that the transitions between two distinct
reachable states have actions not satisfying a. This is not useful in our translated
model because this is a deterministic model, and this condition is always true
for a state g of a deterministic model which satisfy the first part of F,. Figure
8 illustrates the equation 5.3

g Fyiff VP = (¢ 2% ¢ 25 ... 225 ¢4) € Pathd(g), (5.3)
Vi€ [0;k] g = EB, and Vi € [0k — 1] a; [~ @

Hence, if 3¢ € Q such that Ja € A such that q = F,, then the model does
not, contain any local deadlock.

Sitions se o
Transitions sequence w

a

Fig. 8. Temporal formula illustration

Let function succset be a transitive closure of the successor relation, which
can be achieved with a least fixed point function. Assuming that we have imple-
mented the succset function in XL, the ¢ formula F, is defined with :

def F(LS:labelset) : stateset =
let Bs : stateset = EB(LS) in
{ S : state among Bs where Bs includes succset(S) }
end_let
end_def

This formula must be evaluated with all labels contained in A. These labels
can be automatically obtained with the analysis of the communication in the first
model. In the translation, only the labels used in the XTL formulas are generated.
The verification with this technique is thus a push button like function.

103

6 Application on COSMOS Codesign tool

6.1 COSMOS presentation

This work has been applied in the scope of the Codesign domain. In our study
we consider the CosMOs tool developed at TIMA laboratory [IJ95]. The main
characteristics of the CosmMo0s method and tool are the following :

— the specification of the system is independent of the implementation technol-
ogy of the different parts of the system. This high level of abstraction descrip-
tion is written in SDL (Specification and Description Language [SDL88]) ;

— the use of an intermediate format SOLAR, describing the system and the
communication channels among processes (CFSMD like);

— the implementation of processes in hardware or software and the choices
of communications implementation (for instance a choice of a communica-
tion protocol between two or more components) are performed by several
iterations of refinement steps decided manually by the designer ;

— automatic generation of the C-VHDL virtual prototype from the completely
refined SOLAR description of the system ;

— cosimulation environment of the virtual prototype.

CO-DESIGN DOMAIN | VERIFICATION DOMAIN
COSMOS TOOLS)
SYSTEM SPECIFICATION !
(SDL) !
| AUTOMATIC TRANSLATION
AUTOMATIC STEP T :
INTERMEDIATE MODEL 1 !
(SOLAR)
T }
T | VERIFIABLE MODEL
USER-CONTROLLED STEP ™ : | (LOTOS)
i 1
: 1
USER-CONTROLLED STEP ™1 ! VERIFICATION
| ! TOOLS
INTERMEDIATE MODEL n 1
(SOLAR)
: VERIFIABLE MODEL
AUTOMATIC STEP | (LOTOS)
VIRTUAL PROTOTYPE !
VHDL/C !

Fig. 9. Linking Codesign and Verification Domains

The design flow of the CosMOS tool is a sequence of refinement steps. At each
step, a decision is taken by the designer, and the tool automatically integrates
this decision by transforming the SOLAR description of the system. Typically
this decision can be a communication synthesis among two components.

In such tools, the verification process is performed either by formal verifica-
tion on the entry specification level or by cosimulation at the virtual prototype

104

level [VCR1T95,LNV*97]. But, as the refinement is decided by the designer, and
as the choice concerns communication synthesis, deadlocks can be introduced
inadvertently in the system at each refinement step. The detection of such dead-
locks is performed at the virtual prototype level. However this task is difficult
and uncertain because :

deadlocks generally induce active loops in the generated model,

the link between the generated code and the initial description is not easy
to establish,

there can be several errors in the design at the virtual prototype level, yield-
ing several decisions to modify, but these are difficult to identify,

the virtual prototype describes the system at a low level of abstraction, the
description is thus complex.

Our work on the verification of CFSMD can be used to verify the SOLAR
description at each step of Codesign (Fig. 9). Our tool architecture is completed
with a front end analyzer of SOLAR description like shown in figure 10.

i Solar iyntlact.lc Model M Lotos |

. file nalysis with) specification |
_— and Translation| ——

| Ab Abstract tool |

: - stract tree tree XTL :

! eneration ‘ formulas !

Fig. 10. Tool architecture

6.2 Example results

Considering the consumer behaviour and the protocol communication choiced,
a deadlock appears in the system. This occurs when a non expected data is in
front of the FIFO queue. Table 5 presents the results of the verification tools on
the example. The graph generated by the CADP tool is minimized modulo strong
bisimulation. The time to compute the graph is calculated on a SUN ULTRA 30.
The last column presents the number of states satisfying the XTL formula Fy,,
with a = (wr_ack2!cread! false). The signal wr_ack2 is an acknowledgement for
the communication between the FIFO queue and the second producer. The F,
property verifies the correctness of the protocol in all execution cases.

On the reduced graphs, the XTL ABy,... property gives us one global dead-
lock. But, if the system is considered in an environment of other communications,
this type of sink state disappears. In fact, no more communication is done be-
tween the producers, consumer and FIFO queue, but communications are made
between the environment processes. This is a local deadlock. Hence the XTL
F, formula is performed on the LOTOS program to successfully find this local
deadlock.

105

Description Reduced Time to Number of | Number of

graph compute states states
satisfying | satisfying Fy
Batrue
states| trans.

FIFO size 1 322 | 1288 07 1 97

FIFO size 2 652 | 2608 13’ 1 179
FIFO size 2 with || 1304 | 6520 27 0 358

environment

ExAMPLE 5. CADP graph generation - XTL verification

7 Conclusion

In this paper, we have proposed an approach of verification of communicating fi-
nite state machines with datapath (CFsMD). This abstract model of computation
with a communication principle based on hardware signal has been translated
into an equivalent LOTOS description in which the communication basic mech-
anism is the rendezvous. Model checking verification techniques are applied on
the system in order to verify deadlock property.

Then, by using this translation, we propose an approach to link the Codesign
tool CosMmos with the CADP validation/verification toolbox and the X TL model-
checker. CosMos is based on refinements of the system and verification is needed
when the designer chooses the implementation of communications. We intend to
implement the verification as a push button function of the system. The results
show the usefulness and efficiency of our deadlock verification with temporal
logical formulas.

In order to apply this work with other tools, the extension of the CFSMD
model to different models of communication is to study. Future work will focus
on some abstractions of the communications. The goal is to study the influ-
ences of abstractions on the size of the generated LTS, and on the deadlocks
search. Furthermore, we will work on larger case studies, in order to examine
the complexity limits of this approach.

The study of other kind of properties which could be verified on such system
will lead to a more powerful tool. Perhaps it will interesting to generate XTL
formula which depend on the step of communication synthesis.

A other aspect is the study of verification based on IF language currently
developed at VERIMAG laboratory [BFGT99]. This language integrates prin-
ciples of communication which are different from the LOoTOS rendezvous, and
it is introduced in a complete open validation environment. Then we will work
on the feasibility study of the system modeling with IF, and on the comparison
between the verifications on a LOTOS generated model and the verifications on
a generated IF model.

106

References

[BFG199]

M. Bozga, J.C. Fernandez, L. Ghirvu, S. Graf, J.P. Krimm, L. Mounier, and
J. Sifakis. If: An Intermediate Representation for SDL and its Applications.
In Proceedings of SDL-FORUM’99, Montreal, Canada, June 1999.

[ELLSV97] S. Edwards, L. Lavagno, E.A. Lee, and A. Sangiovanni-Vincentelli. Design

[FGM*91]

[Gar89]

[Gar98]

[GLO91]

[GM93]

[GS90]

[GV95)
[1J95]
[1S088]

[LNV*97]

[LSVS98]

[Mat98]

[SDL8S]

[SMO8]

of Embedded Systems: Formal Models, Validation, and Synthesis. In Gio-
vanni De Micheli, editor, Proceedings of the IEEE, Special issue on Hard-
ware/Software Co-design, volume 85, pages 366—-390. The institute of elec-
trical and electronics engineers, inc., March 1997.

Jean-Claude Fernandez, Hubert Garavel, Laurent Mounier, Anne Rasse,
Carlos Rodriguez, and Joseph Sifakis. Une boite a outils pour la vérification
de programme LOTOS. In Actes du Collogue Francophone pour I’Ingénierie
des Protocoles, pages 479-500, September 1991.

H. Garavel. Compilation et vérification de programmes LOTOS. PhD the-
sis, Université Joseph Fourier, Grenoble, 1989.

Hubert Garavel. OPEN/CAESAR : An Open Software Architecture for
Verification, Simulation and Testing. In TACAS’98, Tools and Algorithms
for the Construction and Analysis of Systems, Lecture Notes in Computer
Science, 1998.

S. Gallouzi, L. Logrippo, and A. Obaid. Le LOTOS, Théorie, Outils, Ap-
plications. In O. Rafiq, editor, CFIP’91 - Ingénierie des Protocoles, pages
385-404. Hermes, 1991.

R.K. Gupta and G. de Micheli. Hardware-Software Cosynthesis for Digital
Systems. IEEE Design & Test of Computers, 10(3):29-41, September 1993.
Hubert Garavel and Joseph Sifakis. Compilation and Verification of LO-
TOS Specifications. In R.L. Probert L. Logrippo and H. Ural, editors, 10th
International Symposium on Protocol Specification, Testing and Verifica-
tion, pages 379-394. IFIP, North-Holland, June 1990.

D.D. Gajski and F. Vahid. Specification and Design of Embedded
Hardware-Software Systems. IEEE Design & Test of Computers, 1995.
T.B. Ismail and A.A. Jerraya. Synthesis Steps and Design Models for
Codesign. IEEE Computer, February 1995.

ISO-8807. LoTos, a formal description technic based on the temporal or-
dering of observational behaviour. 1988.

C. Liem, F. Nacabal, C. Valderrama, P. Paulin, and A. Jerraya. Co-
simulation and Software Compilation Methodologies for the System-on-
a-Chip in Multimedia. IEEE Design & Test of Computers, 1997. special
issue on " Design, Test & ECAD in Europe”.

Luciano Lavagno, Alberto Sangiovanni-Vincentelli, and Ellen Sentovich.
Models of computation for embedded system design. In A.A. Jerraya and
J. Mermet, editors, System-Level Synthesis, chapter Models for system-level
synthesis, pages 45-102. Kluwer Academic Publishers, 1998.

Radu Mateescu. Vérification des propriétés temporelles des programmes
paralléles. PhD thesis, Institut National Politecnique de Grenoble, 1998.
CCITT. Recommendation Z.100: Specification and Description Language,
volume X.1-X.5, 1988.

M. Sighireanu and R. Mateescu. Verification of the Link Layer Protocol
of the IEEE-1394 Serial Bus (“FireWire”): an Experiment with E-LOTOS.
Springer International Journal on Software Tools for Technology Transfer
(STTT), 2(1), 1998.

107

[VCJI96]

[VCR*95]

[WB99]

[Wol94]

C.A. Valderrama, A. Changuel, and A.A. Jerraya. Virtual Prototyping
For Modular And Flexible Hardware-Software Systems. Journal of Design
Automation for Embedded Systems, 1996.

C.A. Valderrama, A. Changuel, P.V. Raghavan, M. Abid, T. Ben Ismail,
and A.A. Jerraya. A Unified Model for Co-simulation and Co-synhesis
of Mixed Hardware/Software Systems. In The European Design and Test
Conference ED& TC’95, Paris (France), March 1995.

Pierre Wodey and Fabrice Baray. Linking Codesign and verification by
mean of E-LOTOS FDT. In Bob Werner, editor, Furomicro 99, Digital
Systems Design, volume 1. IEEE Computer Society, September 1999.
W.H. Wolf. Hardware-Software Co-Design of Embedded Systems. Proceed-
ings of the IEEE, 82(7), July 1994.

108

Verification of Erlang Programs:
Factoring out the Side-effect-free Fragment*

Dilian Gurov Gennady Chugunov

Swedish Institute of Computer Science,
Box 1263, SE-164 29 Kista, Sweden,

dilian|gena@sics.se

Abstract

Erlang is a functional programming language developed at Ericsson
for writing economical and yet powerful and efficient telecommunication
applications. Correctness is of major importance in such applications,
and since they usually exhibit a high degree of concurrency, testing is of-
ten not sufficient. Verification, namely formally proving that a system is
correct, is becoming a more and more widespread practice. Due to the
complexity of Erlang, there is no general method for verification of arbi-
trary Erlang programs which is effective and at the same time leads to
economic proofs. However, one can do much better in specialised cases
which are well-understood. A main direction of research is the identifica-
tion of fragments of Erlang for which efficient verification methods exist.
One such fragment is the side-effect-free one, in which an Erlang expres-
sion is evaluated purely for its value, and is not affecting the environment
in which it is evaluated in terms of sending messages, reading from the
message queue, or process spawning. This is furthermore a very common
situation, given the number of libraries of side-effect-free functions used
extensively in practice. The present paper presents work in progress and
outlines an idea for compositional reasoning about the behaviour of an
Erlang system modulo replacement of side-effect-free Erlang expressions
with the result of their evaluation.

Keywords: software verification, Erlang, side-effect-free evaluation, com-
positional reasoning.

*Work partially supported by the Computer Science Laboratory of Ericsson Utveck-
lings AB, Stockholm, the Swedish National Board for Technical and Industrial Development
(NUTEK) through the ASTEC competence centre, and a Swedish Foundation for Strategic
Research Junior Individual Grant.

109

1 Introduction

Software written for telecommunication applications has to meet high quality
demands. Correctness is one major concern; the activity of proving formally
that a system is correct is called verification. Telecommunications software is
highly concurrent, and testing is often not capable of guaranteeing correctness
to a satisfactory degree. The software we are faced with consists of many,
relatively small modules, written in the functional language Erlang [1]. These
modules define the behaviour of a number of processes operating in parallel and
communicating through asynchronous message-passing. New processes can be
generated during execution. Because of the complexity of such software, our
approach to verification is to prove that the software satisfies a set of properties
formalized in a suitable logic language. The specification language we use is
based on Park’s p-calculus [12, 11], extended with Erlang-specific features. This
is a very powerful logic, due to the presence of least and greatest fixed point
recursion, allowing the formalization of a wide range of behavioural properties.
Verification in this context is not decidable, but can be automated to a large
extent, requiring human intervention in a few, but critical points.

For a few years now, the Formal Design Techniques group at the Swedish In-
stitute of Computer Science has pursued a programme aimed at enabling formal
verification of complex open distributed systems (ODSs) through program code
verification. Previous work by the group has been directed towards establishing
the mathematical machinery [5, 6], providing basic tool support [3], performing
case studies [2], and motivating the chosen verification framework [8].

Due to the complexity of Erlang, there is obviously no general method for
verification of arbitrary Erlang programs which is effective and at the same time
leads to economic proofs. However, one can do much better in specialised cases
which are well-understood. A main direction of research is the identification
of fragments of Erlang for which efficient verification methods exist. One such
fragment is the side-effect-free one, in which an Erlang expression is evaluated
purely for its value, and is not affecting the environment in which it is evalu-
ated in terms of sending messages, reading from the message queue, or process
spawning. A very common situation are function calls to functions, the body
of the definition of which are side-effect-free expressions. A large number of
libraries of such functions are used extensively in practice. In all the case stud-
ies we have performed so far we had repeatedly to deal with library functions
for manipulation of lists, numbers etc. Following the compositional reasoning
paradigm used for reasoning about large component-based software, one would
like in such cases is to be able to reason modulo replacement of side-effect-free
function calls with the result of their evaluation. The present paper is dedicated
to technically achieving this goal in a systematic fashion within our verification
framework by factoring out the reasoning about the behaviour of side-effect-free
Erlang expressions from the reasoning about general Erlang systems.

The paper is organised as follows. The next section summarises our ver-

110

ification framework. Section 3 describes the general problem of factoring out
the reasoning about side-effect-free Erlang expressions from the reasoning about
general Erlang systems, and presents a systematic way of performing this within
our verification framework. The following section focuses on the subtask of
verifying side-effect-free Erlang expressions, which is illustrated on a concrete
example in section 5. The last section gives a summary and concluding remarks.

2 Verification of Erlang Programs

In this section we summarise our verification framework as presented in [3, 8].

The Erlang Programming Language. We consider a core fragment of the
Erlang programming language with dynamic networks of processes operating on
data types such as natural numbers, lists, tuples, or process identifiers (pid’s),
using asynchronous, first-order call-by-value communication via unbounded or-
dered message queues called mailboxes. Real Erlang has several additional fea-
tures such as communication guards, exception handling, modules, distribution
extensions, and a host of built-in functions.

Besides Erlang ezpressions e we operate with the syntactical categories of
matches m, patterns p, and values v. The abstract syntax of Core Erlang ex-
pressions is summarised as follows:

e == V |self |op(er,....en) |
e1 €2 |e1,es | case e of m | spawn(er,es) |

receive m end | e;les
m = p1 —€1; " ;Pn — €En
p u= op(P1,-pn) |V
m= op(vy, .., Up)

Here op ranges over a set of primitive constants and operations including zero
0, successor e + 1, tupling {e;,es}, the empty list [], list prefix [e1]es], pid
constants ranged over by pid, and atom constants ranged over by a, f, and
g- The constructs involving side effects are: self, evaluating to the pid of
the process evaluating this expression; spawn, resulting in a new process being
generated; receive for reading from the mailbox which is assotiated with the
process evaluating the expression; and “!” for sending a value to a process
identified by its pid. These constructs will not be discussed in further detail
here, since we focus on the side-effect-free part of the language.

To reason in a formal fashion about the behaviour of an Erlang program, a
suitable formal semantics of the Erlang language is needed. This can be done
in different styles, depending on the intended style of reasoning. Our approach
is tailored to small-step operational semantics, although other formal notions

111

Of benaviour are derivable 1N Our Iramework, SUpporting reasoning in direrent
flavours. Operational semantics are usually presented by transition rules in-
volving labelled transitions between structured states [13]. A natural approach
to handling the different conceptual layers of entities in the Erlang language,
namely expressions, processes, and systems, is to organise the semantics hier-
archically, in layers, using different sets of transition labels at each layer, and
extending at each layer the structure of the state with new components as
needed. A suitable formal semantics for Erlang has been recently developed,
and can be found in a (yet unpublished) manuscript by Fredlund [7].

The Property Specification Language. Reasoning about complex systems
requires compositional reasoning, i.e. the capability to reduce arguments about
the behaviour of compound entities to arguments about the behaviours of its
parts. To support compositional reasoning, a specification language should cap-
ture the labelled transitions at each layer of the transitional semantics. Poly-
modal logic is particularly suitable for the task, employing box and diamond
modalities labelled by the transition labels: a structured state s satisfies for-
mula (@) ® if there is an a-derivative of s (i.e. a state s’ such that s — s’ is a
valid labelled transition) satisfying ®, while s satisfies [a] ® if all a-derivatives
of s (if any) satisfy ®. Additionally, state predicates are needed to capture the
“local”, unobservable characteristics of structured states, such as e.g. the value
of a local variable. The presence of recursion on different layers requires also
the specification language to be recursive. Adding recursion in the form of least
and greatest fixed-points to the modalities described above results in a power-
ful specification language, broadly known as the p-calculus [12, 11]. Roughly
speaking, least fixed-point formulas puX.¢ express eventuality properties, while
greatest fixed-point formulas v X .¢ express invariant properties. Nesting of fixed
points allows complicated reactivity and fairness properties to be expressed.

This powerful logic is capable of expressing a wide range of important system
properties, ranging from type-like assertions to complex reactivity properties of
the interaction behaviour of a telecommunication system. For instance, the type
of natural numbers is the least set containing zero and closed under successor.
The property of being a natural number can hence be defined recursively as a
least fixed-point:

N :nat <
N=0
vVIV.(V:inat A N=V +1)

where < is used for least-fixed-point definitions (i.e., for denoting the least solu-

tion of a recursive definition), while = is used for greatest-fixed-point definitions
(overloaded with implication).

112

The Proof System. Reasoning about open distributed systems written in Er-
lang requires reasoning about their interface behaviour relativised by assump-
tions about certain system parameters. Technically, this can be achieved by
using Gentzen-style proof systems, allowing free parameters to occur within the
proof judgments of the proof system. The judgments are of the form , F A,
where , and A are sets of assertions. A judgment is deemed wvalid if, for any
interpretation of the free variables, some assertion in A is valid whenever all
assertions in , are v alid. Parameters are simply variables ranging over specific
types of entities, such as messages, functions, or processes. For example, the
proof judgment z : ¥ + P(z) : ® states that object P has property ® provided
the parameter x of P satisfies property W.

This idea of open correctness assertions gave rise to the development of a
Gentzen-style proof system [6] that serves as the basis for the implementation
of a verification tool. On top of a fairly standard proof system we added two
rules: the first a “term-cut” rule for decomposing proofs about a compound
system to proofs about the components, the second a discharge rule based on
detecting loops in the proof. Roughly, the goal is to identify situations where a
latter proof node is an instance of an earlier one on the same proof branch, and
where appropriate fixed points have been safely unfolded. The discharge rule
thus takes into account the history of assertions in the proof tree. In terms of
the implementation this requires the preservation of the proof tree during proof
construction. Combined, the term-cut rule and the discharge rule allow general
and powerful induction and co-induction principles to be applied, ranging from
induction on the dynamically evolving architecture of a system, to induction on
finitary and co-induction on infinitary datatypes.

The Erlang Verification Tool. From a user’s point of view, proving a prop-
erty of an Erlang program using the verification tool involves “backward” (i.e.,
goal-directed) construction of a proof tree (tableau). The user is provided with
commands for defining the initial node of the proof tree, for expanding a proof
tree node (‘the current proof node can be considered proved if the following
nodes are proved instead’), for navigating through the proof tree, for checking
whether the discharge rule is applicable, and for visualizing the current state of
the proof tree using the daVinci graph visualization tool. Since the whole proof
tree is maintained, proof reuse and sharing is greatly facilitated. Automation is
achieved through a set of proof tactics and tacticals.

At the present point in time a prototype tool has been completed with the
functionality described above. The largest case study performed so far is the
verification of a distributed database lookup manager written in Erlang [2].

A high degree of mechanization of the low-level reasoning steps is crucial
for making our verification method industrially applicable. This is the primary
motivation for the ideas presented below, since the side-effect-free fragment of
Erlang is well understood and classic methods exist to allow the treatment of

113

this fragment to be mechanized to a satisfactory degree.

3 Factoring out the Side-effect-free Fragment

Due to the complexity of Erlang, there is obviously no general method for ver-
ification of arbitrary Erlang programs, which is effective and at the same time
leads to economic proofs. However, one can do much better in specialised cases
which are well-understood. One such fragment is the side-effect-free one, in
which a (possibly recursively defined) Erlang expression is evaluated purely for
its value, and does not affect the environment in which it is evaluated in terms
of sending messages, reading from the message queue, or process spawning.

Compositional Verification. The essence of compositional verification is
the reduction of an argument about the behaviour of a compound system to
arguments about the behaviour of its components. A system P containing
component () can be represented through term substitution as P[Q/X], where
X is a variable ranging over entities of the type of (). We can relativize an
assertion P[Q/X] : ® about the compound object P[Q)/X] to a certain property
¥ of its component) by considering) as a parameter for which property ¥
is assumed, provided we can show that () indeed satisfies the assumed property
W. Technically, we achieve this through a term-cut proof rule of the shape:

FQ:9,A ,,X:¥F P:® A
, F PlQ/X]:®,A

(TermCut) -

We consider the case when component @) is a function call to a function the
evaluation of which involves no side-effects. In this case we can offer a more
powerful (de)composition principle than the one explained above.

Side-effect-free Function Calls. Let us consider a common situation when
verifying Erlang programs. Let proc<e, pid, g> be an Erlang process with
process identifier pid and message queue q evaluating expression e. Assume
now that the redex (i.e., the current control point) of e is a function call of the
shape £(Y), where Y is a value variable. Then e is equal to e’[£(Y)/X] for
some Erlang expression e’ (X) having a single occurrence of expression variable
X (at redex point). A proof goal involving this (open) process would generally
have the form:

, F proc<e, pid, q>:¢,A (1)

where ¢ is a desired property of the process, and where , might put some
constraints on the free variables in the process, such as Y. If function £(Y")
is side-effect-free, it is evaluated only for its value. The specification of the
process, and hence ¢, should not depend on the actual number of internal steps

114

which the evaluation of the Tunction call requires. L'heretore, we should be able
to replace the above proof goal with:

,,V:0(Y) F procce’(V), pid, g>:¢,A (2)

where V' is a value variable and 6 states the relation of V' to the input param-
eter(s) Y of function £. This reduction of goal (1) to goal (2) is what we call
factoring out the side-effect-free fragment, since it enables us to reason mod-
ulo replacement of (open) side-effect-free function calls with the result of their
evaluation.

The Reduction Steps. There is a systematic way of performing this reduc-
tion within our proof system. It is based on the following assumptions:

e the redex of expression e is a function call of the shape £(Y7,...,Y,,);
e the body of the definition of f is side-effect-free;

e property ¢ is insensitive to the number of side-effect-free actions (usually
denoted by 7), such as "eventually the process sends out a reply ...” e.g.
of the shape pZ.(¢' v (1) Z).

We explain the method on the example given above, i.e. starting with proof goal
(1). First, we relativize the goal w.r.t. the specification of £(Y"), which is given
as a formula of the shape prepost (1,) relating input values to output values of
£. Intuitively, prepost(%,) states that given pre-condition # holds of the input
value Y, evaluation of £(Y") terminates with a value satisfying post-condition 6.
Formalising prepost in our logic and verifying side-effect-free expressions is the
topic of the next section. This relativization can be achieved through applying
the term-cut rule, resulting in two new proof goals replacing goal (1):

, B £(Y): prepost(y,6), A (3)

, , X : prepost(y,0) F proc<e’(X), pid, @>: ¢, A 4)

where e’ is as explained above. Ideally, £(Y) is a library function which has
been already specified and verified; in this case goal (3) is (an instance of)
a lemma and can be eliminated. If not, we use the method described in the
next section to achieve this. It is also possible, that we have no access to the
implementation of the function; in this case we have to leave the goal open and
the final proof will be relative to the correctness of the specification. We focus
our attention on goal (4). Since we intend to show that the function call results
in a value, we obviously hope to be able to prove that the pre-condition ¢ is a
consequence of the assumptions ,. So, dealing with prepost should result in
the two proof goals replacing goal (4):

, FyA ()

115

, ,X :eval(f) F proc<e’(X), pid, q>:¢,A (6)

where eval is like prepost but is not relativised on a precondition. eval states,
that either (i) X is a value variable V satisfying 6, or otherwise (ii) X reduces via
a silent (i.e. side-effect-free) step to another expression X' satisfying eval(6).
In other words, dealing with eval should result in two proof goals replacing goal
(6):

,,V:0 F proc<e’(V), pid, q>:¢,A (7)

., X 5 X' X' :eval(d) F proc<e’(X), pid, q>: ¢, A (8)

where goal (7) is the desired goal (2). It remains to eliminate goal (8). We
assumed that variable X stands for a side-effect-free Erlang expression occurring
at redex point in e’. As a consequence, the only actions of e’ (X) are the silent
actions of X. We also assumed that property ¢ is insensitive to the number of
internal actions, e.g. of the shape uZ.(¢' V (7) Z). These considerations imply,
that dealing with ¢ should result in a goal replacing goal (8):

,, X' :eval(f) F proc<e’(X'), pid, q>: ¢, A (9)

This goal is an instance of goal (6). It was obtained through unfolding a least-
fixed-point formula (namely eval) on the left-hand side of the turnstyle symbol,
and can hence be eliminated by using the discharge mechanism mentioned in
the previous section.

For given shapes of formula ¢ the reduction outlined above can even be per-
formed algorithmically. An important such case is when ¢ is itself a prepost
formula; in this case the transition from goal (8) to goal (9) becomes straight-
forward and easy to mechanize.

4 Specification and Verification of Side-effect-
free Expressions

In general, specification of the interaction behaviour of Erlang programs is a
difficult task for which no systematic method has been developed so far. In the
previous section we showed how to factor out the reasoning about side-effect-free
Erlang expressions from the general reasoning about Erlang systems. Once we
are in the realm of side-effect-free Erlang expressions we can apply well-known
verification techniques.

Natural Semantics. Our verification method is based on a small-step op-
erational semantics for Erlang. The proof rules contain, among other types of
essertions, labelled-transition assertions of the shape P -5). When reasoning
about side-efect-free expressions, however, one usually prefers to work directly
with the reflexive and transitive closure e —™ v relating the expression e with

116

the value v resulting from the (terminating) evaluation (i.e. sequence of side-
effect-free computations) of e. This kind of assertion is usually denoted e | v,
and the semantics based on a set of rules for reasoning in this style is usually
called natural (operational) semantics [9]. It is the style of reasoning that we
would like to employ, and this is easy to achieve, since the | predicate is de-
finable as a least fixed-point formula through the transition relation. However,
there is one significant complication: such a semantics is sufficient only if we are
dealing with closed expressions e. But our specification and verification method
is parametric in its nature, and in this case we have to somehow relate in a single
construct the resulting values to the (free) parameters in e. This idea brings us
to another well-known concept, namely the one of (weakest) pre-conditions and
(strongest) post-conditions.

Pre-conditions and Post-conditions. A classical method for verification
of sequential programs is the axiomatic method of Hoare [10]. It is based on
assertions of the shape {¢)}e{0}, the intuitive semantics of which, in our context,
is: given the parameters of e satisfy the pre-condition v, then execution of e,
provided it terminates, results in a value satisfying the post-condition . We
follow the same idea, but require termination; a correctness notion known as
total correctness.
The typical sequent we have to consider is of the following shape:

, F£(Y1,...,Y,) : prepost (¢,6), A

where £(Y7, ..., Y},) is a function call, the body of the definition of which is side-
effect free, and where prepost relates the values resulting from evaluating the
function call to the values of the input parameters Y7, ...,Y,, of £f. Intuitively,
prepost (¥, 0) states that given v holds, evaluation of £(Y7,...,Y,,) terminates
with a value satisfying 6. In our property specification language prepost can
be defined as follows:

prepost(y,0) = (¢ = evalf)

evalf <«
AL : ErlangExpression.
3V :ErlangValue. (V=E A V)
V E: (1) trueA[r]evaléd

where 7 refers to side-effect-free (also called silent) computation steps.

The crucial question is how to handle function calls within the body of
£(Y1,...,Y,). A natural approach is to use the same technique as outlined in
the previous section. When ¢ is a prepost formula, the transition from goal
(8) to goal (9) becomes straightforward. We obtain the following admissable
proof rule, given that e, occurs at redex point of e; (and given ¢ is a prepost

117

formula):

, F ey :prepost(y,6),A , L Vi F e (V): o, A , Fy,A

(ValCut) , Foei(er) 0, A

which plays an important réle in our proofs.

5 Example: The Quicksort Algorithm

In this section we illustrate our approach on the well-known quicksort algorithm.
Figure 1 gives an implementation of the algorithm as an Erlang module.

Specification. The algorithm is to be specified as a satisfaction pair of the
shape sort(L) : ¢sort L where ¢gor¢ L is a formula of type prepost(¢sort L, OsortL)-
The pre-condition v,,+ L can be given as a satisfaction pair L : 1ist where
list is a list specification playing the réle of a list type. For the purposes of
the present paper it is sufficient to consider a list as either being the emptylist
or being decomposable into a head element and a tail list:

list <
AL : ErlangValue.
L=1]
V3P, R : ErlangValue.
L =[P|R]
AR:list

The post-condition 4,,; L should relate the resulting list L' to the argument
list L. The usual way to relate the two lists is to require L' to be a sorted
permutation of L:
asort L é
AL’ : ErlangValue.
isSorted L’
A isPermutation L L'

where the predicates isSorted and isPermutation are as expected (definitions
omitted).

We have also to specify the split function, which is called within the body
of sort (we omit the specification of append). As with sort, the specification
¢spiit (P, R) of split is given as a formula prepost(¢spiit (P, R), Ospiit (P, R)).
The pre-condition gy (P, R) can be taken to be R : 1ist. The post-condition
Ospiit (P, R) specifies the resulting value as a pair {S, B} of Erlang values (lists),
such that the concatenation S - B is a permutation of R, P is smaller than any

118

-moaule\soryv, .
-export ([sort/1]).

sort ([1) -> [1;
sort ([Pivot|Rest]) ->
case split(Pivot, Rest) of
{Smaller, Bigger} ->
append (sort(Smaller), [Pivot|sort(Bigger)])
end.

split(Pivot, L) ->
split(Pivot, L, [1, [1)

split(Pivot, [], Smaller, Bigger) ->
{Smaller, Bigger};

split(Pivot, [H|T], Smaller, Bigger) when H < Pivot ->
split(Pivot, T, [H|Smaller], Bigger);

split(Pivot, [HIT], Smaller, Bigger) when H >= Pivot ->
split(Pivot, T, Smaller, [H|Bigger]).

Figure 1: The Quicksort Algorithm as an Erlang Module.

119

element of B, and P is bigger than any element of S:

1>

asplit (Pa R) =
AV :ErlangValue.
3S, B : ErlangValue.
V ={S,B}
A isPermutation (S-B) R
A isSmaller P B
A isBigger P S

Verification. We now proceed with sketching a correctness proof. The initial
proof goal is as follows:
F sort(L) : ¢sort L (10)

Unfolding ¢s.+ leads to the new goal:
L:1list F sort(L) : eval(gsort L) (11)
Unfolding the definition of 1ist yields the two new goals:
F sort([1) : eval(¢ser [1) (12)

R:1list F sort([P|R]) : eval(¢sort [P|R]) (13)

Goal (12) is easily eliminated by chosing the empty list for the existentially
quantified Erlang value in the body of the eval property, since the empty list is
(trivially) both sorted and a permutation of itself. Proceeding with goal (13),
we unfold the definition of sort, obtaining the following goal:

R:1list b case split(P,R) of ... :eval(dsort [P|R]) (14)

We have reached a point where the redex of the expression is a function call.
This is where we can apply rule (ValCut) introduced in the previous section,
yielding three new goals:

R:1list F R:list (15)
R:1list F split(P,R) : ¢spiit (P, R) (16)
R :1list,V : 05y (P,R) | case V of ... :eval(¢so [P|R]) (17)

Goal (15) is trivial. Goal (16) is just another instance of the typical sequent
adressed in the previous section. By unfolding 6, and the case statement,
goal (17) is reduced to:

R:1list,, F append(sort(S), [P|sort(B)]) : eval(¢s+ [P|R]) (18)

120

where , is the form ula list:
isPermutation (S-B) R,isSmaller P B,isBigger P S

Here again we can apply rule (ValCut), as well as some properties of list, to
obtain:
S :1list,, F sort(S):eval(fsortS) 19)

(

B :1list,, F sort(B):eval(fs,: B) (20)
, F append(Lg, [P|Lg]) : ¢append (Ls, [P|LB]) (21)

s Ls :O0sort S, LB : Osort B, L : Oappend (Ls, [P|Lpl) F L : 6050+ [P|R] (22)

Goals (19) and (20) are instances of goal (11), and can therefore be eliminated
(note that the least fixed-point formula 1ist was unfolded along the way, al-
lowing application of the rule of discharge). Goal (21) is once again an instance
of the typical sequent adressed in the previous section. What is left is goal (22),
in which no Erlang expressions occur anymore, just variables. The treatment
of such sequents is entirely standard and outside the scope of this paper.

The details of the verification of the quicksort algorithm can be found in a
separate paper [4]. The approach to verification of side-effect free code is highly
compositional which greatly facilitated the reuse of proof results. Around 30
lemmata were proved and used to produce a well-structured and economic proof.

6 Conclusion

We outlined an idea for an approach for factoring out the reasoning about the
behaviour of side-effect-free Erlang expressions from the reasoning about general
Erlang systems, and the subtask of verifying side-effect-free Erlang expressions,
which was illustrated on the concrete example of the well-known quicksort algo-
rithm. Future effort is needed to support the proposed approach by theoretical
results, such as a proof of admissability of the ValCut rule.

Because of its simplicity, it is appealing to attempt to adapt the same rea-
soning scheme to Erlang expressions which do exhibit side-effects. This will in
general be connected with significant complications, especially when the side-
effects include process spawning, and remains a topic of future research.

Acknowledgement. The authors would like to thank Mads Dam and Lars-ake
Fredlund at the Swedish Institute of Computer Science for carefully reading and
commenting on the manuscript. Special thanks are also due to the anonymous
referree who rejected the paper but provided a series of excellent suggestions for
improving the scientific value of the paper.

121

References

[1] J. Armstrong, R. Virding, C. Wikstr6m, and M. Williams. Concurrent
Programming in Erlang (Second Edition). Prentice-Hall International (UK)
Ltd., 1996.

[2] T. Arts and M. Dam. Verifying a distributed database lookup manager
written in Erlang. In Proc. Formal Methods Europe’99, Lecture Notes in
Computer Science, 1708:682—-700, 1999.

[3] T. Arts, M. Dam, L.-a. Fredlund, and D. Gurov. System description: Veri-
fication of distributed Erlang programs. In Proc. CADE’98, Lecture Notes
in Artificial Intelligence, 1421:38-41, 1998.

[4] G. Chugunov and L.-&. Fredlund. Verifying sequential Erlang programs.
Technical Report T2000:02, Swedish Institute of Computer Science, 2000.

[5] M. Dam. Proving properties of dynamic process networks. Information
and Computation, 140:95-114, 1998.

[6] M. Dam, L.-a. Fredlund, and D. Gurov. Toward parametric verification of
open distributed systems. In Compositionality: the Significant Difference,
H. Langmaack, A. Pnueli and W.-P. de Roever (eds.), Springer, 1536:150—
185, 1998.

[7] L.-a. Fredlund. Towards a semantics for Erlang. Unpublished manuscript,
Swedish Institute of Computer Science, 1999.

[8] L.-a. Fredlund and D. Gurov. A framework for formal reasoning about
open distributed systems. In Proc. ASIAN’99, Lecture Notes in Computer
Science, 1742:87-100, 1999.

[9] C. A. Gunter. Semantics of Programming Languages. The MIT Press,
1992. (See chapter 4.1).

[10] C. A. R. Hoare. An axiomatic basis for computer programming. Commau-
nications of the ACM, 12:576-580, 1969.

[11] D. Kozen. Results on the propositional u-calculus. Theoretical Computer
Science, 27:333-354, 1983.

[12] D. Park. Finiteness is mu-Ineffable. Theoretical Computer Science, 3:173—
181, 1976.

[13] G. D. Plotkin. A structural approach to operational semantics. Aarhus
University report DAIMI FN-19, 1981.

122

Specification-based Testing of Synchronous Software*

L. du Bousquet F. Ouabdesselam I. Parissis J.-L. Richier N. Zuanon

LSR-IMAG, BP 72, 38402 Saint Martin d’Heres, France
E-mail: {Idubousq, ouabdess, parissis, richier, zuanon} @imag.fr

Abstract

Test data generation and test execution are both time-consuming activities when done manually. Au-
tomated testing methods promise to save a great deal of human effort. This especially applies to reactive
programs which have complex behaviors over time and which require long test sequences.

In this article, we present Lutess, a testing environment for synchronous reactive software. Lutess pro-
duces automatically and dynamically test data with respect to some environment constraints of the program
under test. Moreover, it allows to trace the test execution and spot the situations where the program violates
its properties.

Lutess offers several specification-based testing methods. They aim at simulating more realistic environ-
ment behaviors, producing relevant data to test thoroughly a given property or driving the program under
test into interesting situations. To produce the test data, the methods use different types of guides: statistical
distribution of the input generation, properties, or behavioral patterns.

Lutess proved to be powerful and easy to use in industrial case studies. Lutess won the Best Tool Award
of the First Feature Interaction Detection Contest. The tool is described hereafter from both practical and
formal points of view.

Keywords Automated testing, synchronous reactive software, telecommunications systems, Lustre.

1 Introduction

A reactive software must continually respond to signals from its environment, and must satisfy temporal
constraints so that it can capture all the external events of concern.

Synchronous programs are a sub-class of reactive software. They are deterministic, they are never
blocked, and they satisfy the synchrony hypothesis [2] which states that every reaction of the software
application to external events is theoretically instantaneous (actually, fast enough to ensure that the envi-
ronment remains invariant during the computation of the reaction).

Reactive or synchronous systems are often safety-critical and must be thoroughly validated to ensure
that they meet their requirements mostly by means of formal verification, or intensive simulation or testing.

In this paper, we are concerned with functional (black box) testing of synchronous pieces of software.
The purpose of functional testing is to reveal errors in order to help the tester get confidence in the software
correctness [14]. No testing hypotheses [3] is made on the software behavior (no regularity for example),
nor on the software input space (no uniformity for example). Therefore, the validation of reactive software
requires that it does maintain its relation with its environment over long sequences of exchanges and the
number of input-output relations (test cases) to be managed is really large. These relations can’t be easily
computed by hand, since the reactive system input and output usually depend on the system history (and not

*This work has been partially supported by a contract between CNET-France Telecom and University Joseph Fourier, #957B043.

This paper is a combination of three other articles [8, 10, 21].

123

only on its current input). Thus, testing should be automated in order to make it easier, improve its quality
and lower its cost.

Lutess is a testing environment that supports highly automated testing of synchronous reactive systems
[19]. Lutess is mainly suited to the test of the control part of reactive software since it deals with programs
involving only boolean input and output signals. High level specifications of telecommunication services
and control-command software are typical examples of Lutess application fields. Lutess offers different
testing methods in order to fit the tester needs as well as possible. For instance, test data can be produced so
that the most used operations would receive the most testing (as in [18]), others can be randomly generated
or based upon an input partition (as in [15]).

The aim of this paper is to provide an overview of the tool and its foundations. The usefulness of each
testing method is illustrated with an example concerning the validation of a telecommunication feature
specification, namely the Call Forwarding No Reply.

The paper is organized as follows. Section 2 gives a brief description of the principles of Lutess. Section
3 provides an example of the application of the synchronous approach to the modeling of a telephony sys-
tem. Section 4 presents the test data generation methods provided by Lutess from a practical point of view,
section 5 details their formal foundations and section 6 outlines the test data selection algorithms. Section
7 is devoted to the implementation of the tool. Section 8 explores the advantages and the shortcomings of
the tool. Section 9 introduces related work.

2 Lutess

Our approach to functional testing of synchronous software consists in examining whether a program
satisfies some stated properties. These properties are requirements imposed on the program behaviors, such
as “a user’s phone goes back to its idle state every time the user goes on the hook”. An important point of
this kind of validation is that it is done under assumptions about the possible behaviors of the environment
interacting with the software. When one is not concerned with the software robustness, it makes no sense to
take into account impossible environment behaviors. For example, it is physically impossible for the user of
a telephone to go on the hook twice without going off the hook in between. When considering a telephony
system, only sequences among which “go off”” and “go on” actions alternate are meaningful with respect to
testing.

2.1 Architectural overview

P .- .- }\Q ---
7

: dynamically produced input data .

!

I f input data umtte:tnder
: generator

program output
: . - verdict hrace
| LUTESS .| oracle coector
—= Communication link
V/7Z] Formulas provided by the user [] Executable unit provided by the user

Figure 1. Lutess

Lutess requires three elements: the unit under test (that is, the software or software component under
test), its environment description and an oracle (as shown in figure 1). The oracle is an implementation
of the software requirements. Lutess constructs automatically the test harness which builds a test data
generator, links the generator, the unit under test and the oracle, coordinates their executions and records
the sequences of input-output values and the associated oracle verdicts (test sequences).

124

The test is operated on a single action-reaction cycle, driven by the generator. The generator randomly
selects an input vector for the unit under test and sends it to the latter. The unit under test reacts with an
output vector and feeds back the generator with it. The generator proceeds by producing a new input vector
and the cycle is repeated. The oracle observes the program inputs and outputs, and determines whether the
software requirements are violated.

The test data generator is automatically built by Lutess from an environment description written in
Lustre'[4]. This description is provided as a single syntactical unit, called a testnode [20]. Examples of
environment description and oracle properties are given in section 3.

The unit under test and the oracle are both executable programs with boolean inputs and outputs. They
must have a synchronous behavior but they have not to be necessarily supplied as Lustre programs.

To begin the test data generation, one has to feed Lutess with a probability seed, which is used to initialize
a classical random number generator. Keeping in mind that the behavior of a synchronous program is
deterministic, i.e. in a given state, its response to a given input value is always the same, one can note
that the use of such a generator allows to reproduce any experiment, by using the same seed. For a given
program and a given environment description, Lutess requires different seeds in order to produce different
test sequences.

Moreover, the user has to specify the number (n) and the length (/) of the test sequences that Lutess has
to produce. The process which produces the n test sequences of [values is called a test run. During a test
run, the program is reset in its initial state at the beginning of each new test sequence.

Finally, Lutess includes a “trace collector” which provides 3 functions:

o Storing the input, output and oracle data (boolean values) into specific files.

¢ Displaying the traces in a textual mode, defined by the user (an example is given in table 1). This
makes the manual trace analysis more comfortable.

¢ Replaying a test sequence (for example using different oracles).

2.2 Lutess testing methods

During a test run, at each cycle (or step), the Lutess generator randomly selects an input vector for the
system under test. Basically, the input is selected using the environment description (black-box testing),
and assuming that the data distribution is uniform. But the user can also define:

e an input statistical (partial) distribution; the generator will produce inputs according to the given
distribution;

o some (safety) properties; the generator will select preferably inputs which potentially drive the system
under test toward those properties violation;

e some scenarios (behavioral patterns); the generator will select preferably inputs which follow the
scenario.

These methods are described in sections 4 and 5.

3 Example

As an illustration of Lutess application, we consider a telephony system offering the Call Forwarding
No Reply feature (CFNR)?. This feature allows a subscriber to have his incoming calls redirected when he
does not answer within a given delay. The feature is dynamically activated and deactivated. The number to
which calls are redirected is also dynamically set.

The telephony system is modeled from the users’ viewpoint. Its environment includes the physical
telephones which are linked to the system (figure 2). The system we consider is composed of 4 users
(called A, B, C, D).

System inputs (issued by the environment) are events describing the actions performed on the phones:
On;, Off;, Dial;(j), CFon;(j), CFoff;, with i and j € {A, B, C, D}). The event CFon;(j) indicates that the

Lustre is both a synchronous programming language and a temporal logic.
2This example is taken from a case study aiming at modeling feature specifications from their ETSI descriptions [7].

125

environment

Telephony system executable specification

Figure 2. Telephony System Model

user ¢ requires the activation of his CFNR feature to forward his calls towards j; the event CFoff; means
that user ¢ demands his CFNR feature to be deactivated.

Outputs are signals which produce specific tones at the terminal (such as Busy-Tone, Ringing-Tone,

...). Each output signal identifies the state of the phone. In this example, we use the traditionnal Basic
Call Model [16] which depicts the call processing as state machines. A phone has 7 states, which are idle
(1), dialing (D) waiting (W), alerting (A), talking (T), ringing (R), and exception (E)>.

We suppose that the telephony system has a synchronous behaviour: at a given instant, it reads its inputs
and computes instantaneously its outputs, and so on forever. Moreover, for sake of modelling simplicity, it
is assumed that at most one of the system inputs can be true at the same time.

To perform the validation of this system, the human tester has to exhibit the environment description
and the system requirements (oracle properties). In this example, the two sets of formulas are provided in
Lustre.

Lustre [4] is a programming language for synchronous programs, which is declarative and data-flow
oriented. It corresponds to a linear past temporal logic which offers usual arithmetic, boolean and condi-
tional operators and two specific temporal operators: pre, the “previous” operator, and —> the “followed-
by” operator. In Lustre any variable or expression is intended to be a function of a discrete time (time
is assimilated to the set of natural numbers, 0 denoting the initial instant). In other words, a Lustre
expression denotes the sequence of values it takes over the different instants of time. Let E and F be

two expressions denoting the sequences (g, €1, ..., €, ...) and (fo, f1,..., fn...); pre(F) denotes the
sequence (nil,eg,e1,...,6en—1...) Where nel is an undefined value. E — > F denotes the sequence
(eOafla"' afn)

Lustre allows the specifier to define its own logical or temporal operators to express invariants. For
example, in this paper, we use the temporal operator once_from_to(A, B, C) to specify that property A must
hold at least once between the instants where B and C occur. The exact Lustre definition is:

node once_from_to(A, B, C: bool) returns(X: bool);
let -- Note: implies(A, B) computes the value of A = B
X = implies (after(B) and C, once_since(A, B));

tel,
node once_since(C, A: bool) returns(X: bool);
let
X =if A then C
else if after(A) then C or pre(X)
else true;
tel,
node after(A: bool) returns(X: bool);
let
X = false —> pre(Xor A);
tel,

3A phone is waiting when a number has been dialed and the connection has not been established yet. It is alerting when the
connection is established but the party has not gone off the hook yet. When an error occurs, the phone enters the exception state until
its user goes on hook.

126

3.1 Environment description

1. As stated before, at most one event can occur at each instant of time. Considering the events to be
On;, Off;, Dial;(j), CFon;(j), CFoff;, withi and j € {A, B, C, D}, this constraint is written in Lustre
as below:

(E1) #(Ony, Offa, Dialy, ..., CFoffp)
where # is a Lustre operator stating that “at most one element of the parameter list is true”.

2. A user can’t go off (resp. on) the hook twice without going on (resp. off) the hook in between:
(E2) omnce_from_to(On;, pre Off;, Off;) and
once_from_to(Off,;, pre On;, On;).

3. A user should dial only if his telephone emits the DialingTone:
(E3) Dial; = DialingTone;

4. A user can (try to) activate and deactivate the CFNR service only when his telephone emits the
DialingTone:
(E4) Vj,(CFon;(j) or CFoff;) = DialingTone;

The environment constraints E1, E2, E3, E4 have to be inserted in a testnode (see below). As it can be
noted, the testnode inputs (resp. outputs) are the system’s outputs (resp. inputs). This should be understood
as “the generator receives the program outputs as inputs, and generates (i.e. returns) input data for the
program. The selected input data satisfies the properties contained in the environment argument list”.

testnode Environment (01, 02, ... , 0m : program_outputs)
returns (i, i2, ..., in : program_nputs);
varll, 12, ..., Il : local_variables;
let
environment(El, E2, E3, E4);
tel;

Obviously, achieving a complete specification of the environment is not realistic. Thus, any detected
violation of the software requirements has to be analyzed by the tester, since it can result from many
causes: an error in the tested unit, an environment behavior which should have been discarded, or an
incorrect requirement statement.

3.2 Oracle properties (system requirements)

As a preliminary definition, we say that the CFNR feature is invoked for a user, if the latter is a CFNR
subscriber which has activated this service, and if he/she does not answer a call within the time delay.

1. A call will be forwarded if (1) the callee feature is invoked and (2) the maximum number of forwards
is not reached. This bound is a service provider option which was set to 3 for our example.

2. A call can be forwarded only if the service has been previously activated by the callee, and if the
latter did not deactivate the service in the meantime.

3. A forwarded call will be redirected to the last user which has been designated by the subscriber.

It is easy to write in Lustre an oracle program from these properties. One has to express each property
in Lustre by defining intermediary variables and by using Lustre classical operators. Consider, for instance,
the predicate LastUser(x) that takes into account the last activation of the feature by user z:

LastUser(z) = if CFon(z,y) then y else pre LastUser(x)

With this predicate, we can express the last of the above properties as follows:

ps = (CallForward(x,y) => LastUser(x) = y)

127

CallForward(x, y) is true whenever a call for « is forwarded to y (z,y € {A, B, C, D}).

Then, from the Lustre expression of these properties, say p1, p» and ps, we build a Lustre program the
inputs of which are the inputs and outputs of the program under test. Its unique output is the conjunction of
the oracle properties expressed in Lustre:

node Oracle (program_inputs; program_outputs)
returns (res : boolean);

varll, 12, ..., I : local_variables;
let

res = p1 and p2 and ps ;
tel;

4 Principles and usages of the testing methods
4.1 Basic random testing

According to this basic technique test data are generated only with respect to the environment speci-
fication without any additionnal consideration (black-box testing). This is the weakest test data selection
criterion one can define for synchronous software. The test data generation is performed in such a manner
that the data distribution is uniform. Table 1 gives an example of a trace that Lutess has produced with this
method, according to an output format defined by the tester.

1: - - - - - - - - I III True
2: Offa - - - - - - - DIITI True
3: CFonA (D) - - - - - - EI I I True
4: - - - - - - - - EI I I True
5: - - - - - - OffD - E I I D True
6: - - - - - - DialD (D) E I I W True
7: - - - - offc - - - E I D W True
8: - - - - CFonC (B) - - E I E E True
9: - - OffB - - - - - E D E E True
10: - - DialB (A) - - - - E W E E True
11: - - - - OnC - - - EWIE True
12: - - - - - - OnD - E E I I True
13: OnA - - - - - - - I EI I True
14: - - - - - - - - I EI I True
15: OffA - - - - - - - DEI I True
16: CFonA (C) - - - - - - EE I I True
17: - - OnB - - - - - EI I I True
18: - - OffB - - - - - E DI I True
19: - - CFonB (D) - - - - E E I I True
20: - - - - offc - - - E E D I True
21: - - - - OnC - - - E E I I True
<@><------------------- b - - ><-- ¢ --><d >

< User A >< User B >< User C >< User D >

(a) Step number;

(b) User,, action and its parameter (Off, On,, Dial, (y), CFon,(y), CFoff,; v,y € {A, B, C,D}),
(c) Phone, state (Idle, Dialing, Waiting, Alerting, Talking, Ringing, Exception);

(d) Oracle verdict (issued by the oracle defined in section 3.2).

Table 1. A trace generated by Lutess

Empirical observations

Very often, a uniform distribution is far from the expected real software use. Indeed, test data in table 1
show that some users’ phones stay off the hook for long periods of time in Exception state (i.e. after
receiving a Busy Line indication), e.g. user A between states 4 and 13. In reality, a user would have quickly
gone on the hook in such a situation. Similarly, many generated behaviors consist in alternating going off
and on the hook, performing no action in between (user C, step 20 and 21), which is not a common behavior.
We also noticed that, on the whole, every user tries to call himself/herself as often as any other user (user

128

D, step 6) or to activate the CFNR feature several times in a row (user A, steps 3 and 16). In the real world,
such behaviors rarely occur, and are most of the time the result of wrong actions.

In order to test or analyze more realistic simulations, one may want to specify its own statistical environ-
ment distribution. With Lutess, this is possible thanks to probabilities that one can associate with program
nputs.

4.2 More realistic random testing

Lutess offers facilities to define in the testnode a multiple probability distribution [24] in terms of con-
ditional probabilities associated with the unit under test input variables [6]. The variables which have no
associated probabilities are assumed to be uniformly distributed. A conditional probability assignment de-
fines, for an input variable, its probability to be set to true when a given condition is met (when no condition
is provided the probability is unconditional). The conditions are Lustre expressions. An algorithm is im-
plemented in Lutess to automatically translate a set of conditional probabilities into an operational profile
(and vice versa).

An operational profile describes how users employ a system (a system usage). Using an operational
profile to guide testing insures that the operations involved in the system usage of concern will receive the
most testing [18].

Let us try this method on our example. The conditional probabilities are chosen in order to overcome
the problems exhibited by the previous empirical observations. For instance, to decrease the time spent by
one user’s phone in the Exception state, we specify that the probability to go on the hook is high while the
phone is in the Exception state.

(OnA, 0.9, pre ExceptionA)

Let ¢1,¢a,...,cs be a list of conditional probabilities. Similarly to the environment constraints, the
conditional probabilities are declared in the testnode, in the following way:

testnode Environment (01, 02, ... , 0m : program_outputs)
returns (i, i2, ..., i, : program_nputs);
varll, 12, ..., Il : local_variables;
let
environment(El, E2, E3, E4);
proba(ci,ca, ... ,Cs);
tel;

Empirical observations

Regarding the last unrealistic aspect mentioned in the previous subsection, we defined about 15 condi-
tional probabilities for each user. There are 5 possible actions for each user, and approximately 3 conditional
probabilities per action which may have different values depending on the phone states. For instance, the
probability to go on the hook is usually different in the states Exception, Dialing and Talking.

A realistic environment simulation may not produce data which test rare but important and interesting
features of the program. To overcome this problem, Lutess has two different methods which consist in
testing in a more relevant manner some given properties or to drive the program into interesting situations.
These methods produce data according to two types of guides: (invariant) properties and behavioral patterns.

4.3 Property-oriented testing

Property-oriented testing is aimed at selecting test data which facilitate the detection of property viola-
tions. At each cycle, this method automatically generates values which are relevant to test the considered
properties.

We say that an input data is relevant to test a property, when the program reaction is liable to cause an in-
stantaneous failure with respect to this property. For instance, let’s consider the simple property P : ¢z = o,
where ¢ (resp. o) is an input (resp. output) of the unit under test. When ¢ is false, the unit under test cannot

129

falsify . When ¢ is true, the unit under test will falsify P if it returns the value false for 0. Hence, ¢ =true
is relevant to test P.

Input values which are relevant to the considered properties are favored over the other input values. But
the random selection process is fair enough to let those latter values be exercised. In Lutess, the properties
chosen to guide the generator (s, s2, ..., s,) have to be defined with the environment description, in the
testnode, by means of the safety operator. Conditional probabilities can also be used in combination with
this method.

testnode Environment (01, 02, ... , 0m : program_outputs)
returns (i/, i2, ..., i, : program_nputs);
varll, 12, ..., Iy : local_variables;
let
environment(El, E2, E3, E4);
proba(ci,ca, ... ,cs);

safety(si, $2,...,8z);
tel;

Empirical observations

One property of the telephony system is that the user’s phone goes back to its idle state every time its
user goes on the hook. Driving the generation with such a property led to favor the considered action, thus
improving the tester’s confidence in the system’s reaction to this input. However, this resulted in every user
tending to go on the hook as soon as possible; thus, many more realistic behaviors are never tested.

4.4 Behavioral pattern-based testing

As complexity grows, reasonable behaviors for the environment may reduce to a small part of all possible
ones with respect to the constraints. Some interesting features of a system may not be tested efficiently since
their observation may require sequences of actions which are too long and complex to be randomly frequent.

The behavioral pattern-based method aims at guiding further the input generation so that the most in-
teresting sequences are produced. A behavioral pattern characterizes those sequences by listing the actions
to be produced, as well as the conditions that should hold on the intervals between two successive actions
(figure 3). Regarding input data generation, all sequences matching the pattern are favored and get higher
chance to occur. To that, desirable actions appearing in the pattern are preferred, while inputs that do
not satisfy interval conditions get lower chance to be chosen. The generation method is usually invoked
with environment constrained test data. Behavioral patterns are stated using a trace-like notation which is
automatically translated in Lustre expressions.

Empirical observations

To avoid loops in the forwarding, specifying the CFNR feature requires that no more than 3 redirections
are ever performed on a single call in a row. When checking what could happen in the case of more then 3
redirections, we noticed that this situation had little chance to occur. The use of a pattern has resulted in an
increase of the number of 3 redirections occurrences in shorter test sequences. Figure 3 shows the graphical
representation of such a pattern.

5 Formal framework

This section provides a formal framework for the testing methods, in order to show explicitly their
applicability and some of their limits.

In the following, for any set X of boolean variables, Vx denotes the set of values of the variables in X.
x € Vx is an assignment of values to all variables in X .

130

CFon(A,B) CFon(B,C) CFon(C,A) Dial(D,A)

| | | |
D2 2 N
not CFoff(A) not CFoff(A) and not CFoff(A) and
not CFoff(B) not CFoff(B) and
not CFoff(C)
Upper conditions describe the sequence of actions to be produced.
Lower conditions are interval conditions.

Figure 3. Example of a behavioral pattern

5.1 Formal definition of an environment simulator

The abstraction of an environment simulator is derived from an I/O machine. This environment simulator
is non deterministic, i.e. it uses an non-deterministic method to generate values respecting the environment
constraints.

Definition 1 An environment simulator (or a generating machine) is defined as My, = (Q, ¢init, O, 1,1,
env, outen,) where
e O (resp. 1) is the set of the UUT output (resp. input) variables.
e () is a finite set of states,
Ginit € Q is the initial state (also denoted qy),
env C) x Vi represents the environment specification.
t:Q x Vo x Vi — @ is the (total) transition function.
oUteny is a method which, given ¢ € Q\{q | Yi(q, %) € env}, chooses one element from Seny (¢) =
{7 | (q,%) € env}, the set of all valid UUT inputs.

In every state, a new UUT input is issued. Next, the UUT computes an output which enables a transition.
This behavior can be expressed in terms of UUT inputs (¢x) and outputs (o).

Fork=0,...
i — OUtenv(Qk)
read(ox)
qk:-l—l Ft(qkaOkaik‘)

(B)

Remark 1: Consider a testnode handling two software inputs (¢, j), whose environment constraint is env
= pre i and j. When the associated I/O machine is in a state where pre i = false, there is no input value for
which the constraint holds. However, if 7 is always set to true, the machine would never be blocked. Thus,
an environment simulator has no guarantee to be reactive. For a given ¢, the set Se,, (¢) may be empty. The
theoretical means to determine whether the generator is reactive is to compute the set of reachable states,
or its complement (i.e., the set of states leading inevitably to the violation of env). These computations
are based on a least fixed point calculation which can be impracticable [13, 22]. This is why, in terms of
implementation, we don’t try to compute Sep, (¢) a priori. We rather try to detect blocking situations during
the generation.

Remark 2: By default, out.,, is implemented as a method that consists in selecting inputs from Sy, (¢)
according to an equally probable distribution.

5.2 Formal definition of a property-guided machine

A property-guided machine is a generating machine which generates test sequences (cf. section 6.2)
which are more liable to invalidate a predicate (cf. section 4.3).

Definition 2 Let Mcyy = (Q, qinit, O, I, t, env, out.n,) be a generating machine and fp C Q x Vo x Vp
be a predicate representing a property P.
A UUT input value i € Vi (adequately) tests P on state ¢ € Q (adequatep(q, i) iff 3o € Vo, —fp(q,0,1).

131

Definition 3 A property-guided machine is a generating machine Mp = (Q, ¢init, O, 1,1, env, outp)
where

e P is a conjunction of properties,
o Let Senvnadequater = 13 € Vi | (¢,1) € envNadequatep }. The method outp chooses a value from
Senvnadequatep if this set is not empty; otherwise it selects a value from Sep..

Whenever it is possible to produce an input value which adequately tests the properties, all input values
which do not test adequately the properties are ignored.
Remark 3: Note that the adequate test data is searched for in the current state. Thus the technique is limited
to an instantaneous guiding. When considering a safety property like pre ¢ = o, the generator does not
discover that setting ¢ to true will test the property at the following step. Moreover, a property such as
(not i or o) and (pre i or o) would be adequately tested only with values capable of falsifying (not i or o),
that is ¢ being set to true. This prevents it from selecting an adequate data for the rest of the property
(pre or o), since pre t will always be true.

5.3 Formal definition of an operational profile-guided machine

An operational profile-guided machine is a generating machine that generates test sequences (cf. sec-
tion 6.3) that conform to a given operational profile (cf. section 4.2).

Definition 4 An operational profile-guided machine is a generating machine Gpror = (Q, ginit, O, 1, t,
env, outcpr) where

e CPL = (cpo,epr,- .., cpr) is a list of conditional probabilities. Each cp is a 3-tuple (i,v, fep)
where i is an input variable (i € I), v is a probability value (v € [0..1]), and f., is a condition
(fep € Q x Vo x Vi). v denotes the probability that the variable i takes on the value true when the
condition fcp holds.

o outcpyr is such that the selection method is no longer equally probable and depends on the condi-
tional probability list.

When the conditional probability list is empty, the machine is equivalent to the basic one. The conditional
probability list (partially) overrides the by-default equally probable distribution of the basic generating
machine.

5.4 Formal definition of a pattern-guided machine

A pattern-guided machine is a generating machine that generates test sequences (cf. section 6.4) that
follow a given behavioral pattern (cf. section 4.4).

A behavioral pattern (BP) is made out of alternating and ordered instant conditions and interval condi-
tions. The instant conditions must be satisfied one after the other as time progresses. Each interval condition
shall be continually satisfied between the two successive instant conditions which border it. A behavioral
pattern characterizes the class of input sequences that match the sequence of conditions.

A behavioral pattern (BP) is built with the following syntax rule, where a simple predicate (SP) is a
Lustre boolean expression which does not include the current outputs:

BP:=[SP]SP | [SP] SP BP

The non-bracketed predicates represent the instant conditions, while the bracketed predicates correspond
to interval conditions. [true] CFon(A, B) [not CFoff (A)] CFon(B,C') is an example of a BP. BPs
provide a means to partially describe a sequence: the inputs between two instant conditions may take any
value provided that the interval condition holds.

With a behavioral pattern is associated a progress variable which indicates what prefix of the BP has been
satisfied so far. To any value this variable can take corresponds a pair of predicates {infer, cond} which
describes the next-to-appear predicate and the predicate that should continually hold in the meantime.

132

Definition 5 A pattern-guided machine is defined as Gpar = (Q, qinit, O, 1,1, env, outgp, progress)
where

(Q, qinit, O, I, t,env, out pp) is a generating machine

BP =[true]condg[interi]cond . .. condn,_1[intery]cond,

progress is an integer variable taking its value over Virogress = [1,0..n+ 1]. It is the progress
index on BP.

Let Sy, Sz, Sn 1 Q X Vprogress — V7 be sets of input variables defined as, ¥q € Q,¥j € Virogress:

- Sulq,j) ={1 € Vi | (¢,1) € cond; Nenv}
- Sc(g,7) ={i € Vi | (q,%) € ninter; N —cond; Nenv}
- Snx(g,§) ={i € Vi |(q,i) € inter; N —cond; Nenv}

Given q and j, the current state and progress values, the method outpp first selects a non-empty set
among the above, then performs the standard value selection within this set. As a side effect, outpp
also computes the next value for progress:

— if Sy (q, progress) is chosen, progress is incremented,

— if S (q, progress) is chosen, progress is set to —1,

— if progress = —1 or n + 1, progress = 0.

Intuitively, the partition is motivated by the status of the transitions regarding the progression of the

guiding process: Sy includes all input that make the process go forward, S groups those that lead to the
process stopping, while S gathers all transitions that do not affect the process.
Remark 4: Definition 5 does not ensure that the guiding process will lead to the completion of the pattern,
i.e. to generate sequences that match it. Indeed, there may exist a reachable state for which a progress
value makes both S, and S empty. If the guiding process makes the machine reach this state, the process
can’t progress nor regress anymore and becomes quiescent for the remaining of the test. Many other similar
situations may occur, that prevent from completing the pattern. However, all of them are due to an incorrect
description of the pattern. This description should be cautiously performed.

6 Test data selection

The automaton obtained by compiling the environment constraints is coded using a symbolic notation in
which the states are represented by a set of boolean variables, and the transitions by boolean functions.

The environment constraints (i.e. the out.,, method) are implemented as a Binary Decision Diagram
(BDD) [1] (for sake of presentation, in the figure, the BDDs is represented by a Shannon tree (ST)).

For example, figure 4 shows the ST associated with a BDD built by Lutess for the following constraint :
“at most one entry among B1, B2 and B3 is available at each time”. In the ST, 0 and 1 stand for respectively
false and true. Each node of the diagram carries a variable and each of its outgoing branches is labelled
with the value taken by that variable. The left(resp. right) sub-ST corresponds to the assignment of a false
(resp. true) value to the root variable. A path from the ST root to a leaf represents an input state. If the input
state is valid with respect to the environment constraints, the terminating leaf carries a true value. The input
space contains 8 input states, among which only 4 are valid.

All the generation techniques rely on the same principle. The test data generator uses the environment
BDD to randomly select one input state which satisfy the constraints, so that the associated boolean function
takes a true value.

6.1 Random testing by environment simulation

The basic random generation algorithm produces equally probable input values. To guarantee to all the
valid input vectors an equal probability, the value of e is set in function of the following probabilities:
U1

ple = true) = p—— and p(e = false) =

Vo

vo + v1

133

Bl
(3.1

B2 B2
2,1 (1,0
true
fWe fals%\
B3 B3 B3 B3
1D (1,0) (1,0) 0,0)

false /\true false true false /\true false /\true
1 1 1 0 0 0

1 0

Figure 4. Labelled BDD for equally probable generation.

where vg (resp. v1) is the number of distinct paths leading to a leaf carrying a true (resp. a false) value
in the sub-ST the root of which is the node associated with e. vy and v, are computed at the begining of the
simulation process for all the input nodes of the BDD.

At each cycle, the generator performs four operations:

e locate, in the diagram describing the environment constraints, the sub-diagram corresponding to the
current values of the state,

e generate a random value for the software inputs satisfying the boolean function associated with that
diagram,

In other words, the generator searches in the diagram associated with the constraints a path leading to a true
leaf.

6.2 Property-oriented testing

This technique is implemented by building a new BDD from the output method and the properties to be
tested. The resulting BDD allows to check whether a given state and a given value of the inputs both satisfy
the environment constraints and are liable to exhibit an error with respect with the properties. The basic
algorithm is modified as follows:

e locate, in this late diagram, the sub-diagram corresponding to the current value of the state,

e check whether there exists at least one value for the inputs which can lead to a true leaf in this
diagram,

o if positive, randomly select one of these values; otherwise, perform the basic algorithm.

6.3 Operational profile-based testing

The generation algorithm uses both the previous labelled BDD and the conditional probability list.

Let CP(e) = ((p1, ce1), (p2, cea), . .., (pr, cep)) be a list of conditional probabilities associated with the
input variable e. In C'P(e), p; denotes the probability that the variable e takes on the value true when the
condition ce; is true. The selection function assigns a value to e according to the following probabilities:

ple = true) = 1if ce; thenp;
else if cep then ps

elseif ...
vl
vo+v1

else if ce, then p, else
ple = false) = (1 — p(e = true))
with vo and vy referring to the basic labelling

6.4 Behavioral pattern-based testing

Given the pattern to be matched, the method drives the generator to consider at every cycle the pair of
predicates {inter, cond} corresponding to the current value of the progress variable. At each step, first,

134

the input space is computed to get all the possible inputs meeting the environment specification. It is then
divided into three categories: Sy, S, and Sy as stated in definition 5.

A probability is assigned to each category so that an input in the first one would be favored over an
input in the third category, which, itself, would be preferred to an input from the second category. These
probabilities are determined with respect to the cardinality of each partition and to given weights associated
with them: wy, wz and war. A partition is said to be of higher priority than an other if its weight is greater.

The input selection is a two-step process. First, a category is selected according to the determined
probabilities. Each category ¢ in C={Sy, S, Sa} has a probability p. of being selected:

we * card(c)
Pe = .
Zjec wj * card(y)

Then, an input is chosen in an equally probable manner from the selected category. As a result, the
probability for any input i in ¢ to be chosen is p; .:

1 We
i — —— 5 ¥Pe =
bi, card(c) p >

jec Wik card(j)

The implementation of the algorithm s also based on the environment BDD. Each predicate in the pattern
is represented by a BDD. The predicate BDDs and the environment BDD are combined to identify the input
sets Sy, S¢ and Syr. These BDD are labelled in the very same manner than for the basic generation.

Every generation step involves therefore the traversal of the three diagrams corresponding to the current
value of progress. The traversal leads to the subdiagrams corresponding to the current environment state,
where the cardinality for Sy, S; and Sy can be retrieved, thanks to the labelling. The selection is then
performed with respect to the given weights and the calculated cardinalities.

7 Tool implementation and validation

The tool code represents 26000 lines of C++. Lutess has been used intensively during several case
studies, among which the “Feature Interaction Detection Contest” held in association with the 5th Feature
Interaction Workshop [9, 11]. The goal was to detect possible and undesired interactions between twelve
telecommunication services. For this case study, the test process for each of the 78 configurations involved
10 to 20 sequences of 1000 to 10000 steps each. On the whole, each configuration has been tested for
around I million test cases. The Lutess tool was run over 1500 times.

For this case study, we also considered applying a model-checker Lesar [12] to evaluate the ability
of verification method to detect feature interactions [5]. Preliminary results show that the model-checker
cannot deliver a result in most of the 78 configurations, because of lack of time or memory amount. On the
contrary, Lutess always returns a verdict.

Building the BDD structure corresponding to a given environment is the most expensive part of the
testing process. In our experiments, environments included between 32 and 45 constraints, plus up to 8-
step patterns or 40 conditional probabilities. It has always been possible to perform this computation and
to run the test on a Sparc Ultra-1 station with 128 MB of memory. Maximum of required virtual memory
amounts to 100 MB. Though, as the number of constraints describing the environment increases, the BDD
complexity rises and its generation lasts longer. For the less-constrained environments that we produced, 6
seconds on CPU were necessary, while the most-constrained environments required about 30 minutes for
the corresponding BDD to be generated. As a comparison, a 1000 test run lasts about 2 minutes once the
BDD has been generated4. So, the more the environment is constrained, the more relevant is the test (since
the whole test case is more realistic), but the longer is the BDD generation.

Several y? tests were performed in order to check that the statistical methods produce data according to
the different assumptions (i.e. that the basic statistical method produces data in an equally-probable way and
that the method guided by conditional probabilities produces data with respect to the defined probabilities).
Those tests have shown that these assumptions are valid.

“This second phase of the testing process is proportional to the length of the test sequence.

135

8 Advantages and limitations
8.1 Advantages in using Lutess

Lutess offers a unified framework for synchronous program testing. Basically, a generator produces
test data which satisfy an environment description. Lutess proposes different types of guidelines the user
can use to describe a more realistic environment or make the test more relevant. Unlike the environment
description, these additional guidelines are not to be strictly enforced. As a result, all valid behaviors are
still possible, while the more reasonable ones are more frequent. The model of the environment is thus
more “realistic”. The environment description and the guidelines have to be described in the same language
(Lustre) and in the same framework (the testnode).

The use of conditional probabilities or patterns proved to be highly profitable when prototyping the ap-
plication: these techniques allow to have a quick feedback on the correction of the implementation. Then,
when it comes to validate the implementation (test its conformance to the specification), these techniques
drive the environment to follow a realistic evolution. Meanwhile, thanks to the probabilistic aspect in-
troduced in both methods, the behaviors of the environment may vary and involve rare and unforeseen
scenarios. Such cases, close to the expected behavior —yet unexpected— are realistic and thus worth to be
tested.

Lutess has a user-friendly interface (figure 5). It offers the user an integrated environment:

o to define the environment description, the oracle and the unit to be tested (in the fields Program under
test, Oracle and Environment),

e to command the construction of the test harness, and to build constrained random generators (with
Begin, Kill and Continue buttons,

e to set the random seed, the number and the length of the data sequences,

e to compile Lustre programs, to format the sequences of inputs, outputs and verdicts and to replay a
given sequence with a different oracle (with Tools menu and Redo button),

e to visualize the progression of the testing process. Usually, Lutess does not stop the test generation
process at the first oracle violation. This is especially useful for checking when some specific event
occurs.

The three components required by Lutess (the unit under test, the environment description and the oracle)
are just connected together and not compiled into a single executable code. This allows the tester to easily
change a component, for example to replay a test sequence with a new oracle, or to fix the environment
specifications.

8.2 Limitations

Lutess can only generate data for boolean input and output synchronous programs. We have always been
able to by-pass this potential drawback yet, by using boolean vectors for enumerated data types.

For the moment, it is possible to use property-oriented testing in combination with conditional probabili-
ties. But it isn’t possible to use behavioral patterns with conditional probabilities. We are currently working
on this point.

Specifying the software environment by means of invariant properties is a rather delicate task. Indeed,
one should adequately choose a set of properties which do not “overspecify” the environment. Overspeci-
fying may prevent some realistic environment behaviors from being generated.

The theory underlying Lutess does not provide a means to evaluate when the test should be stopped.
In fact, it is quite hard to define a meaningful coverage criterion. For instance, classical coverage criteria
(coverage of code instructions or branches of control flow graph) are very loosely related to the set of the
possible program behaviors. Different experiments have been conducted to examine how code coverage
could be realated with fault detecting. While basic criteria such as instruction coverage or branch coverage
have been easily met, long sequences of test cases have been generated without resulting in any increase in
the multiple conditions coverage criterion, beyond some level.

136

Fis Fosmeen Tools

Frosgradni vl HEAT FE L Fikfue P
Grede Sl Ernerss [T 3, IFTET ST Seguence T
Lrreirasmm vl

Pongreis : |
T g e o wriai s TR R BLE AT RE

s w od ol o 14%
T T 1
Spguemre i % 108 i
Freband ity wesd TIFE
Tt hpr * o e

LT

e P T R

Tstl ruchisd

Cebrebid bad M L0 e T Pkt G T A B O S 1T R A
A eganis 1T

Figure 5. Lutess interface

9 Related work

Jagadeesan et al. have presented a technique and a toolset that represent the most similar work to Lutess
[17]. Compared to Lutess, this approach appears to be limited in several respects. There is no guiding using
operational profiles or scenario-like methods. Environment constraints are only taken into account to restrict
the size of the input space. Inputs are selected with uniform weights. The whole process is based on the
compilation of the oracle, the application and the test harness into one single executable code; recompiling
is necessary after each modification, which caused the biggest dissatisfaction, according to what the authors
said.

As we said before, Lutess can only generate data for synchronous programs with boolean inputs and
outputs. In [23], Halbwachs et al. describe another synchronous testing tool, Lurette, which was built to
take into account numerical data. Lurette requires also three elements, and like Lutess, needs a Lustre
environment description. Lurette has no elaborated strategies for boolean data generation, but has a strategy
for integer and real data generation.

10 Conclusion and future work

In this article, we presented Lutess, a highly automated testing environment for synchronous software
and illustrated its use on an example. This automation allows to transfer the human efforts from the classical
tester’s chores (selecting the data, determining the result validity) to more defect prevention tasks (e.g.,
developing specifications).

Lutess offers several specification-based testing methods in order to fit the tester needs as well as possi-
ble. These methods aim at simulating more realistic environment behaviors, producing relevant data with
respect to some properties or interesting situations. These methods produce test data using different type of
guides, which are conditional probabilities, properties, and behavioral patterns.

We mainly conducted two experiments: a first case study of feature specification validation based on
the ETSI recommendations [7], and a second one in the framework of the FIW contest [9]. Experience has
confirmed that this approach is highly cost-effective. Both case studies showed that the guiding techniques
were excellent at finding problems involving rare scenarios. This positive experience was reinforced by
the valuable application of Lutess in the software specification stage, which helped get confidence in these
specifications. All this has certainly contributed to make Lutess the “best tool” of the FIW contest [11].

137

Trace analysis is an important task, even if the verdict is automatic, since it can reveal unsuspected
problems. Besides, writing relevant specifications in the appropriate format for test data generation should
be facilitated. An environment to support these tasks is under consideration. It should integrate proving
techniques to decide on formulae equivalence. Future directions also include criteria to determine when to
stop testing and a notion of error coverage associated with the existing testing techniques.

References

[1] S.B. Akers. Binary Decision Diagrams. IEEE Transactions on Computers, C-27:509-516, 1978.

[2] A. Benveniste and al. Synchronous Technology for Real-Time systems. In The 1994 Real-Time
Conferences, pages 104—122, Teknea, 1994.

[3] G. Bernot, M-C. Gaudel, and B. Marre. Software testing based on formal specifications : a theory and
atool. Software Engineering Journal, 6:387-405, 1991.

[4] P. Caspi, N. Halbwachs, D. Pilaud, and J. Plaice. LUSTRE, a declarative language for programming
synchronous systems. In 14th Symposium on Principles of Programming Languages (POPL 87),
Munich, pages 178-188. ACM Press, 1987.

[5] L. du Bousquet. Feature Interaction Detection using Testing and Model-checking, Experience report.
In World Congress on Formal Methods, Toulouse, France, September 1999.

[6] L.duBousquet, F. Ouabdesselam, and J.-L. Richier. Expressing and implementing operational profiles
for reactive software validation. In 9th International Symposium on Software Reliability Engineering,
Paderborn, Germany, 1998.

[7] L. du Bousquet, F. Ouabdesselam, J.-L. Richier, and N. Zuanon. Incremental Feature Validation : a
Synchronous Point of View. In Feature Interactions in Telecommunications Systems V, pages 262—
275.10S Press, 1998.

[8] L. duBousquet, F. Ouabdesselam, J.-L. Richier, and N. Zuanon. Lutess: a Specification-driven Testing
Environment for Synchronous Software. In 21st International Conference on Software Engineering,
pages 267-276. ACM Press, May 1999.

[9] L. du Bousquet, F. Ouabdesselam, J.-L. Richier, and N. Zuanon. Feature Interaction Detection using
Synchronous approach and Testing. Computer Networks and ISDN Systems, to be published, 2000.

[10] L. du Bousquet and N. Zuanon. An Overview of Lutess, A Specification-based Tool for Testing
Synchronous Software. In 14th IEEE International Conference on Automated Software Engineering.
IEEE, October 1999.

[11] N.D. Griffeth, R. Blumenthal, J.-C. Gregoire, and T. Otha. Feature interaction detection contest. In
K. Kimbler and L.G. Bouma, editors, Feature Interactions in Telecommunications Systems V, pages
327-359.10S Press, 1998.

[12] N. Halbwachs, F. Lagnier, and C. Ratel. Programming and Verifying Real-Time Systems by Means
of the Synchronous Data-Flow Programming Language LUSTRE. IEEE Transactions on Software
Engineering, pages 785-793, september 1992.

[13] N. Halbwachs, F. Lagnier, and P. Raymond. Synchronous Observers and the Verification of Reactive
Systems. In Third Int. Conf. on Algebraic Methodology and Software Technology, AMAST’ 93, Twente.
Workshops in Computing, Springer Verlag, 1993.

[14] D. Hamlet. Software Quality, Software Process and Software Testing. Advances in Computers, 1995.

[15] D. Hamlet and R. Taylor. Partition Analysis Does Not Inspire Confidence. IEEE Transactions on
Software Engineering, pages 1402—-1411, december 1990.

138

[16] ITU-T. Principles of intelligent network architecture. Recommandation Q.1201, 1993.

[17] L.J. Jagadeesan, A. Porter, C. Puchol, J.C. Ramming, and L. Votta. Specification-based Testing of Re-
active Software: Tools and Experiments. In 19¢th International Conference on Software Engineering,
1997.

[18] J. Musa. Operational Profiles in Software-Reliability Engineering. IEEE Software, pages 14-32,
march 1993.

[19] F. Ouabdesselam and I. Parissis. Testing Synchronous Critical Software. In 5th International Sympo-
sium on Software Reliability Engineering, Monterey, USA, 1994.

[20] 1. Parissis. Test de logiciels synchrones spécifiés en Lustre. PhD thesis, Université Joseph Fourier,
Grenoble, France, september 1996.

[21] I. Parissis and F. Ouabdesselam. Specification-based Testing of Synchronous Software. In 4th ACM
SIGSOFT Symposium on the Foundation of Software Engineering, San Francisco, USA, 1996.

[22] P. Ramadge and W. Wonham. Supervisory Control of a Class of Discrete Event Processes. SIAM J.
Control and Optimization, 25(1):206-230, january 1987.

[23] P. Raymond, D. Weber, X. Nicollin, and N. Halbwachs. Automatic testing of reactive systems. In
19th IEEE Real-Time Systems Symposium (RTSS’98). IEEE, 1998.

[24] J. Whittaker. Markov chain techniques for software testing and reliability analysis. PhD thesis,
University of Tenessee, 1992.

139

140

Formalization and Testing of Reference Point Facets

Ina Schieferdecker, Mang Li, Axel Rennoch

GMD FOKUS
Kaiserin-Augusta-Allee 31, D-10589 Berlin, Germany
phone: +49 30 3463-7000, fax: +49 30 3463-8000
{schieferdecker, m.li, rennoch } @fokus.gmd.de

www.fokus.gmd.de/tip

Abstract

The paper introduces a new concept to express the architecture and behavior of distributed systems in
a formal, detailed and extensible manner in terms of reference point facets (RP-facets). RP-facets are
based on the well-established concept of reference points as used in ODP and TINA. Facets describe
statical and dynamic aspects of reference points as well as pre- and post-conditions for their use. The
paper gives a mathematical characterization of RP-facets, defines a specification template for the
definition of RP-facets and derives a conformance test method for their validation. An example taken
from the TINA retailer reference point shows the application and practical use of RP-facets.

1 Introduction

TINA (Telecommunications Information Networking Architecture [12]) is an open system
architecture for telecommunication systems in a multi-vendor environment. TINA combines
modern methodologies and techniques, such RM-ODP [6] and CORBA [9] to support the
development of large-scale systems. Core concepts and specifications of TINA have been
established. TINA is in its maturity phase, where conformance evaluation plays an important role.
In TINA, telecommunication stakeholders are characterized by their business roles, e.g. consumer,
retailer or third-party service provider. Since every stakeholder represents an autonomous
administrative domain, the implemented sub-systems used by stakeholders operate in a
heterogeneous, unpredictable, and uncontrollable environment. Inter-domain reference points are

introduced to ensure the interoperability of the various sub-systems [13].

The TINA architecture addresses a wide range of issues and provides a complex set of concepts
and principles. It has been partitioned into several models, subsystems, components, etc. in order
to handle the complexity. An essential partitioning concept is that of reference points (RPs).
Reference points consist of a set of interfaces together with potential interactions at these interfaces.
Reference point specifications define conformance requirements for a relationship between or
within administrative domains of distributed systems. The TINA reference point concept follows
the RM-ODP conformance assessment principles [6]. An example for an inter-domain reference
point is the Retailer Reference Point [14].

Key issues for multi-vendor systems are interoperability and interworking. Reference points as
a collection of conformance requirements are the basis to increase the likelihood for interworking

and interoperability. Conformance testing is an effective and efficient means to validate the overall

141

functionality of a multi-vendor system. It is a well-established alternative to the otherwise needed
many-to-many test setups for individual components and/or sub-systems to ensure their

interoperability and interworking.

The Conformance Testing Methodology and Framework (CTMF) [5] is a well accepted
technology in the area of protocol testing. CTMF defines test architectures and the test notation
TTCN (Tree and Tabular Combined Notation) for the evaluation of capability and behavioral
conformance of protocol implementations. CTMF allows the modelling and specification of both
centralized and distributed test systems. It has been used for ISDN, ATM, Internet protocols and

many others. A recent work shows also the usability of CTMF for object-oriented systems [3].

Reference points provide a simple straight-forward means to express the TINA architecture in
terms of objective requirements for conformance. However, current defined TINA reference points
tend to be too large. They are inadequately structured and do not allow incremental specification,

implementation, and testing.

Therefore, the design for testability of reference points is a requirement to enable and further
facilitate the testing process for distributed systems. In order to support conformance testing more
effectively and efficiently, we propose a new partitioning concept for reference points: the concept
of reference point facets (RP-facet)! 2 [16].

Reference points can be composed from RP-facets and/or segmented into RP-facets. Each of
these RP-facets (or subtopics) has it's own concepts, partitioning, information model, and other
details. Conformance can be tested separately for each of these RP-facets. Thus, a system may be
tested at multiple levels with respect to various RP-facets representing different aspects of a
reference point. This kind of testing is consistent with the current usage of TINA specifications, and

allows a vendor to implement limited roles in the business of service provisioning.

In this paper, we present the concept of and specification techniques for RP-facets in Section 2
and 3, resp. Section 4 discusses RP-facet based test specification and a conformance test method
based on RP-facets. An example showing the overall approach is presented in Section 5.

Conclusions finish the paper.

2 TINA Reference Points

TINA inter-domain reference points3 are located at the border of administrative domains in a
telecommunication system and are used to define conformance and interoperability requirements
for the business relationships between the telecommunication stakeholders, which are in certain
business roles. The TINA business model (see Figure 1) defines five business roles: consumer,
retailer, third-party service provider, broker and connectivity provider. It defines the following

inter-domain reference points:

1. The term facet is used in the OMG CORBA Component Model (CCM). In order to avoid misunderstandings, RP-facet is used
instead.

2. Please note that although we consider reference point facets under the realm of TINA the results of this work is in general
applicable to distributed system, which use a notion of reference points as interface/set of conformance requirements to the
outside.

3. Intra-domain reference points are not considered in this paper.

142

* Retailer inter-domain reference point (Ret)

* Broker inter-domain reference point (Bkr)

e Third-party inter-domain reference point (3Pty)

* Retailer-to-retailer inter-domain reference point (RtR)

» Connectivity service inter-domain reference point (ConS)

* Terminal connection inter-domain reference point (TCon)

Bkr Bkr
Broker
Bkr
Bkr 3Pty
L]]
Ret ; 3Pty | 3pty Service
Consumer Retailer Provider
TCon ConS ConS
TCon Ii TCon
Connectivity

Provider
CSLN LNFed

Figure 1 TINA business model

* Layer network federation inter-domain reference point (LNFed)

* Client-server layer network inter-domain reference point (CSLN)

The current TINA RP interfaces are operational. That is, the interactions over interfaces occur in
form of operation invocations. Via an operation, a client requests the execution of some
functionality by the server object that provides the operational interface. Typically, an operation
invocation returns the results (after successful termination or exceptions) to the client. “Oneway”

operations are special case of operations that do not require a response to the client.

In general, the computational viewpoint of RPs are characterized by object interfaces using
computational languages. TINA RPs are specified using the ODL (Object Definition Language)
[15]. An ODL specification defines objects with their interfaces and object groups, which constitute
e.g. an RP. ODL provides syntax for the structural description of systems only. A formalization of
behavioral specification is not prescribed.

We consider in this paper the Ret-RP between consumer and retailer as an example. In terms of
telecommunication services, the retailer serves as the service provider and the consumer as the
service user. The Ret-RP offers generic access to telecommunication services, operations for the
discovery and start of operational, management, and administrative service offerings, operations for
the control and management of service sessions such as announcement, termination, suspension,

invitation, notification for the service users participating in a service session.

Ret-RP is separated into an access part and a usage part. The access part contains interfaces that
are required to establish a contractual relationship between consumer and retailer, which is referred

143

to as an access session. A service session can be built only upon an access session. The usage part
of Ret-RP captures service session related interfaces. Ret-RP features are indicated either as

mandatory or optional. This differentiation is significant for conformance testing.

3 The RP-Facet Concept

RP-facets define refinements of TINA reference points. An RP-facet is to enable interaction
among components with separable concerns. It is a meaningful and self-standing portion of
functionality. An RP-facet is a minimal set of conformance criteria, a TINA testing can be
associated with. RP-facets are the basis for determining test purposes and generating test cases for

TINA reference points.

Each reference point should be composed of one or more RP-facets. Typically, there will be a
"core" facet that provides some minimum set of functionality. Additional interfaces and interactions
can be specified to provide additional functionality. An RP-facet depends on the presence of the

“core” facet and may depend on the presence of other RP-facets.

The RP-facet concept facilitates conformance testing, which is in particular based on the
observation of system behavior. Thus, a purpose-oriented functional description in terms of use
scenarios is proposed. The functionality of an RP-facet is specified by the signature and behavior
of operationsl. Operations provide services to object’s environment, whereas interfaces represent

access points for services.

Typically, an inter-domain TINA reference point separates two business roles with distinguished
functionality. An RP-facet is associated with one of the architectural parts separated by the
reference point, referred to as RP-facet role.

The RP-facet role is to denote the functionality of interest in relation to the corresponding
reference point. The dynamic aspect of operations is described by use scenarios. The purpose-
oriented use scenarios describe potential interactions between the RP-facet role and it’s

environment.

Before we define the notion of RP-facet, we need to define miscellaneous notions such as
dependent operations and self-containment. A reference point is defined by a set of interfaces, each

of which offers functionality to the outside via operations.

Definition 1: An im‘erface2 I has a set of operations SO;. SO, is divided into the set of mandatory
and optional operations SO;"¢ and SOPP', resp., referring to the set of
operations, which need or resp. can be offered by this interface. It holds that

S0/ ~ SO,P' =B and SO/ U SOP'=S0,

Definition 2: A reference point R has a set of interfaces Slg. Sl is divided into the set of
mandatory and optional interfaces SIz""¢ and SIz°P", resp., referring to the set of
interfaces, which need or resp. can be offered by this reference point:

1. Operational interfaces are considered currently. The results are directly applicable to event interfaces. Stream interfaces will be
considered in a further work.

2. An interface denotes here an interface instance of an interface type, i.e. potentially there are a number of interfaces of the same
interface type at a reference point.

144

Assumption 1:

Definition 3:

e Ie Sy mand iff SOImand =0
o Ie SIR°P iff SO/ "=
It holds that SIg"™ ~ SI°P' =@ and SIR" U SIg%P'=SI.

Subsequently we assume that the set of all operations SOy, of reference point R,

ieSOg = U SO s not empty.
Ie S,

Let o be an operation at an interface I of reference point R, i.e. o € SO,. Let 0;..0,,
be further operations at R, i.e. 0; € SOp, i=1..n.

o0 is dependent on o0;..0,, if the invocation of o requires previous invocations of
0]"071'1

o is independent if for all n there is no sequence of operations 0;..0,, on which o
is dependent.

The dependent operations are either specified explicitly or derived from the use scenarios of the

reference point.

Definition 4:

Lemma 1:

The dependence relation dep; r € SO x §(SOR) of operations at interface I, where
§(SOg) denotes the powerset of all operations of reference point R is defined such
that

Vo e SO;Vso= {o;..0,] € ©(SOg): (0, so)edep;g iff

* o s dependent on 0;..0, and
* VYo, SOg: if o is dependent on oy then oy € so.
e Yoe SO;: 3o, {o}..0,})edep;p, i.e. (0, {0}..0,}) in dep; g is unique.

* o is anindependent operation iff (0, D)e dep; g .

An RP-facet is self-contained in terms of functionality. Self-containment is defined with respect

to the dependence relation. It is the core property of an RP-facet. Please note that the set of

operations of an interface may be used only partially in an RP-facet:

Definition 5:

Assumption 2:

An RP-facet Fp is a set of operations of a reference point with the following
properties:

* itis a non-empty set and

s VIeSIgrNVoeSO;V (o, {0)..0,))edep; g : if o€ Fg then o€ F, i=1..n.
(the self-containment property)

The set of all RP-facets is denoted by SFp,.

Subsequently, we assume that SOy, is self-contained.

Within the same reference point, dependent operations are captured by the same RP-facet:

Lemma 2:

* VIJeSIz YoleSO; Yo2eS0;: if ole Fg and ol is dependent on 02, than
02e FR'

1. The dependence
executable when

relation can be further refined to cover further aspects of dependencies. For example, if operation o2 is only
operation ol returns x, then o2 can be defined to be result-dependent on ol. Or, if interface iB is only

reachable through an operation o1 of interface 1A, then o2 can be defined to be reachable-dependent on o1.

145

* For each RP, there exist a partitioning into RP-facets F,ce SFy, i=1..n, such
that
SOg =) ,Fiand F; N Fj=®f0r i#].
* SOg is an RP-facet.
RP-facets can be ordered. This order will be used to identify necessary steps in conformance
testing:

Definition 6: The order relation < on RP-facets uses the subset relation:
VFI1, F2 € SFp: FISF2 iff FICF2.

Lemma 3: * SO is the maximal element of <, i.e.NFe SFp: F < SO

The core is used to denote the mandatory, self-contained subset of a reference point. It is the set
of all operations that need to be offered at an reference point in order to have it self-contained with
respect to the dependence relations and complete with respect to the mandatory operations. If the

core is empty then the complete reference point is an optional one.

Definition 7: The core Cg of a reference point R is the set of all mandatory operations of all
mandatory interfaces of R with all their dependent operations, i.e.

o VIeSI"" Y oe SO/ oe Cg and

* VoeCg, Vso € SOR": (0, 50) edep; g : so C Cp.
Assumption 3: Subsequently, we assume that Cg is non-empty.
Lemma 4: * Cpis unique.

* Cpisan RP-facet.

To support incremental specification, RP-facets are built cohesively, with the core as the origin.
This leads to the definition of core-based RP-facets.

Definition 8: A core-based RP-facet Fg, ¢ is an RP-facet that contains all operations of the core,
ie. Cp C Fp .The set of all core-based RP-facets is denoted by SFp, .

A core-based RP-facet covers at least the core and possibly additional optional operations.
Lemma 5: * Cpisacore-based RP-facet.
* SOgis a core-based RP-facet.

A reference point has a core and may have zero or more additional cohesive core-based RP-
facets.

Lemma 6: * Cgis the minimal element of the order relation < on SFp ¢,
i.e. VFe SFR,C" CR <F.

* SOg is the maximal element of the order relation < on SFg, ¢,
i.e. VFe SFR,C: F< SOR
* If Cr=SOg then is SFy ¢ a singleton.

146

The relation of RP-facets and core-based RP-facets are depicted in Figure 2.

CF2
Partitioning of R into Hierarchies of core-based RP-facets
RP-Facets F_1 .. F_4 with CFO .. CF3 of R with
SOr=F_1UF 2UF 3UF 4and CF0 < CF1 < CF3 < SOg and
F_1NF_2 =0, etc. CF0 < CF2 < SOg.

Figure 2 Reference Points and its RP-Factes

The conformance test method (see Section 5) will be based on the concept of core-based RP-
facets and their hierarchies!, as they naturally reflect the mandatory and optional requirements for
a reference point and their relation.

4 RP-Facet Specification

Making the RP-facet concept practical is essential for real, industrial relevant systems. This is
possible by providing a development method for RP-facets in combination with appropriate
specification techniques. Even more, the unambiguous specification of an RP-facet including its
static and dynamic models is crucial for testability. As any formalization reduces misinterpretation
of the system under test, a formal specification supports in particular automated test generation and

the possibility to validate tests for their soundness against the specification.

The reuse of specification parts of the reference point under test and therefore the reuse of
specification techniques for distributed system is desired as it makes test development more

efficient and allows a better integration of system development with test development.

Our approach for specifying RP-facets is based on the Object Definition Language (ODL) [7]
for signatures of RP-facets in combination with Message Sequence Charts (MSC) [8]%. Additions
are needed to cover specific aspects of RP-facets according to the concepts introduced in the

previous section. The specification template for RP-facets compresses:

* indication to the related reference point and the RP-facet role,

 statical specification of the RP-facet in ODL, and

1. Please note that for every core-based facet F there is at least the following hierarchy Cg < F < SOp.
2. We concentrate currently on the on the functional aspect in the behavioral specification of reference points. Extensions to support
description of operational aspects, e.g. QoS, usage, will be elaborated in future work.

147

* behavioral specification of the RP-facet in terms of use scenarios, including representations of
dependence relations in MSC.
Further, we use the standard test notation TTCN (Tree and Tabular Combined Notation) to

formulate test cases for RP-facets.

The RP-facet specification and test case generation cycle is presented in Figure 3. ASN.1 is the
commonly used data representation form by MSC and TTCN. Thus, mappings for data types and
constants from ODL to ASN.1 need to be defined.

Type & Const
ODL | Mapping o | SSN-l Inelusion Executable
Definition ata \ Tests
. TTCN /
Structure & Signature Inclusion Test Case
Transformation
MSC ehavior Description \\nclusion
Formalization . Transformation

Informal Diagram Test
Scenario Data
Description

Figure 3 RP-facet specification and test generation

4.1 Structural Specification Template

The template for the RP-facet structural specification is an extension of the TINA reference point
specification template [13], which uses TINA-ODL [15]. ITU-T ODL [7] adopts most of the
concepts and definitions of TINA-ODL. Thus, the following discussion on ODL refers to ITU-T
ODL.

ODL is a superset of the OMG IDL (abbr. as IDL). In fact, most of the current TINA reference
points are specified using IDL only. An example of the TINA Retailer Reference Point (Ret-RP)

[14] specification is shown below.

#include "TINACommonTypes.idl"

module TINAProviderInitial {
interface i ProviderInitial ({
void requestNamedAccess (
in TINACommonTypes::t_UserId userId,
in TINACommonTypes::t UserProperties userProperties,
out Object namedAccessIR,
out TINAAccessCommonTypes::t AccessSessionSecretId asSecretId,
out TINAAccessCommonTypes::t AccessSessionId asId
) raises ();
}i
}i

module TINARetRetailerInitial {
interface i RetailerInitial: TINAProviderInitial::i ProviderInitial ({

}i
}i

148

It specifies the interface i_Retailerlnitial of the retailer domain, that inherits definitions of the
interface i_Providerlnitial. Domains where interfaces reside, are indicated in the naming of
modules and interfaces, e.g. TINAProvider, TINARetRetailer. TINAProvider is a generalized
business role and can be specialized to a consumer, retailer, third-party service provider, broker and
connectivity provider. In our example, TINAProvider is specialized to TINARetRetailer. The
counter part of a provider is a user, which is at the Ret-RP a consumer.

Interactions at the Ret-RP between a retailer and a consumer involve not only interfaces provided
by the retailer, but possibly also those interfaces supported by the consumer. This reflects the object
model, in which an object supports interfaces, where services can be used by clients, and may
require interfaces that are provided by other objects in its environment. Thus, there is a need for the
identification of supported and required interfaces. The ODL’s object template provides a notion
for this purpose. Further, the template is also used to indicate the reference point and the role related
to an RP-facet.

As shown in the following example, the module TINARet corresponds to the considered
reference point. The facet role is represented by the object template identifier Retailer prefixed by
the keyword CO (originated from Computational Object). Related interfaces are declared
respectively behind the keywords requires and supports.

module TINARet ({

CO Retailer {

requires
Consumer: :i_ConsumerInitial;

supports
i_RetailerInitial;
i RetailerAccess;

}i
}i

Dependence relations of operations and interfaces (see Section) allow reuse of ODL definitions

by inclusion. A systematic document structuring eases system evolution.

4.2 ODL to ASN.1 Data Mapping
The ODL to ASN.1 mappings for data types and constants are in-line with the rules defined in

[3]!. Rules for basic type translation are shown in Table 1. Structure types are mapped according to
Table 2.

ODL Types ASN.1 Type
long, unsigned long, long long, unsigned long long, short, unsigned short INTEGER
char, wchar, string, wstring GraphicString
octet OCTET STRING(SIZE(1))
boolean BOOLEAN
void NULL
float, double, long double Real

Table 1 Mapping rules for basic types

1. This work is based on CORBA 2.2 specification. Mappings for IDL types included in the most recent and up-coming CORBA
specifications, e.g. the value type, will be considered in future work.

149

ODL Type

ASN.1 Type

struct

SEQUENCE

sequence

SEQUENCE OF

enum

ENUMERATED

array

SEQUENCE SIZE(n) OF

any

CHOICE

union

SEQUENCE

Table 2 Mapping rules for structured types

ODL exception declarations are struct-like. Hence, they are mapped to ASN.1 SEQUENCE
types.

The mapping for the Object type is aligned to the OMG interoperable object reference (I0R)
concept. An IOR is the global representation of the corresponding object and is composed of ASCII
characters. For systems that are compliant with this concept, ASN.1 IA5String type is used.

4.3 Behavioral Specification Template

Message Sequence Charts (MSC) is a graphical and formal trace language defined by ITU-T [8].
MSC describes interactions between message-passing instances. MSC-2000 [8] is a new version of
the standard that has been approved only recently. It has improved structural, data and time
concepts. Method calls are introduced to support the description of control flows.

To use MSC for use scenarios of RP-facets, some structure and signature transformations are

required.

Rule 1~ MSC diagrams for an RP-facet are organized by an MSC document. The identifier of the
MSC document is equivalent to the name of the RP-facet.

An MSC document defines an instance kind for an RP-facet. It contains instances, messages,

timer and MSC diagram declarations. In addition, a data language to be used in the MSCs can be

declared.

Rule 2 The RP-facet role, the environment of the RP-facet role, every supported/required
interfaces are mapped to separate instances.

Instances for the RP-facet role and supported interfaces form the scope of the RP-facet, while

other instances represent the scope of the environment. Interface instances play the role of service

supplier. Instances of the RP-facet role and its environment are of the service consuming role.

Rule 3 The order relation between RP-facets, e.g. F1 < F2, is represented by inheriting the MSC
document for F1 into the MSC document for F2.

Inheriting a MSC document into another results in inheriting all declarations and MSCs from the

inherited into the inheriting MSC document. This reflects the idea that for F/ < F2, F2 covers F1

completely as it is.

Rule 4 The dependence relation is represented by MSC expressions or high-level MSC (HMSC),
where the MSC sequential operator is used to order the individual operation invocations
as a sequence of simple MSCs reflecting separate operation invocations and the MSC

150

alternative operator for the subsequent behaviour in accordance to the potential
outcomes of operation invocations.

Rule 5 MSC specifications for RP-facets consists of two diagram types:

* High-level MSCs (HMSC) give an overview on the main structure and dependencies
at the RP-facet. Here, references to further MSCs (usually simple MSC, see below),
which are typically executed sequentially and combined with guards, are used.
Enhanced use scenarios of RP-facets contain also parallel interactions at different
interfaces. The operands of parallel expressions are represented by separate MSC
instances.

o Simple MSCs contain a detailed definition of allowed message exchange and timer
events between involved MSC instances. Further, they allow the usage of constructors
for behavior control (e.g. alternatives, loops etc.) and guarded executions.

MSC expressions, which can be graphically represented by HMSC, are the basic concept to
represent the dependence relation between operations. If o/ needs to be invoked before 02, it will
be represented by M1 seq M2 with M1 reflecting the invocation of o/ and M2 the invocation of 02.
In the case that several outcomes of o/ and/or 02 are possible within M/ and/or M2, the alternative
operator alt in combination with conditions will be used in addition. Please note that more complex
behavior definitions for RP-facets will use also parallel, loop and optional expressions.

Rule 6 An ODL operation declaration is transformed to MSC message declarations. Mandatory
is a message corresponding to a request on the operation. If the operation is not a
“oneway” operation, a message in accordance with reply on the operation is also
defined. If appropriate, each potential exceptional outcome of the operation is translated
into a separate message.

MSC asynchronous messages are used instead of method calls to make the representation of
alternative operation invocation outcomes, in particular under exceptional conditions, more

readable. In addition, the mapping to TTCN in the case of asynchronous messages is
straightforward (see also Section 5).

The rule for attribute transformation is defined analogously:

Rule 7 An ODL attribute declaration is transformed to MSC message declarations. Mandatory
is a message corresponding to the “get” operation on the attribute. If the attribute is not
“readonly”, a message in accordance with the “set” operation on the attribute is also
defined.

The data concepts of MSC-2000 allows the flexible use of a data language of the user’s choice.
No MSC specific data language is defined. MSC-2000 provides syntactical and semantical
functions as interfaces to the use of external data languages within MSC. The definition of these
functions for using ASN.1 in MSC at these interfaces is currently under work.

5 RP-Facet Based Testing

The RP-facet concept, in particular the self-containment property of an RP-facet, supports
system evolution by incremental specification and implementation. In addition, RP-facets provide

also testable specifications:

151

* The identification of the RP-facet role and its communication parties leads to the definition of
the scope of the System Under Test (SUT) as well as the environment of the SUT, which will
be emulated by components of the Test System (TS).

e The structural specification of the RP-facet to be tested, in form of ODL and ASN.1
definitions, can be shared by the TS.

e The formalization of behavioral description of RP-facet use scenarios in MSC supports an
automated generation of tests.

* The self-containment property of RP-facets supports the identification of well-defined states of
the SUT to achieve reproducible test results.

* The operation dependencies of an RP-facet define requirements on the sequence of test
execution.
In order to support an efficient test development, we propose to use abstract test specifications.
Our approach is based on the standard test notation TTCN [5].

5.1 Test Specification

TTCN (Tree and Tabular Combined Notation) was designed for conformance testing of OSI
protocol implementations [5]. The test architecture is based on an asynchronous communication
between SUT and TS. PCO (Point of Control and Observation) is an abstract location, where
stimuli are sent to the SUT and reactions of the SUT are observed, either in form of Protocol Data
Units (PDUs) or Abstract Service Primitives (ASPs). In decentralized test architectures, where
typically several Parallel Test Components (PTCs) in addition to the Main Test Component (MTC)
communicate with the SUT, more than one PCOs can be assigned to a PTC.

The analogy to the asynchronous message passing mechanism of MSC facilitates the
transformation of MSC constructs to TTCN constructs. At first, it leads to the representation of

MSC messages as TTCN abstract service primitives (ASPs)!:

Rule A MSC messages representing ODL operations or attributes are translated into TTCN
ASPs.

According to Rule 6 and Rule 7, the ASPs are denoted by request-ASP, reply-ASP and exception-
ASP.

Further, PCOs, test components and test configurations need to be identified for the test system.
Due to the distinction of supported and required interfaces, two classes of PCOs can be derived
from an MSC instance:

Rule B A MSC instance representing a provided interface of the RP-facet role is interpreted by
a client-PCO over which request-ASPs are sent to the SUT and reply-ASPs or exception-
ASPs from the SUT are observed.

Rule C A MSC instance representing a required interface of the RP-facet role is interpreted by a
server-PCO over which request-ASPs from the SUT are received and reply-ASPs or
exception-ASPs to the SUT are sent.

The assignment of one PCO to one PTC is not stringent, but recommended. The semantics of a

1. The selection of ASPs instead of protocol data units (PDUs) is based on the analogies between the object model and the OSI
reference model. Please refer to [3] for details.

152

PTC is constrained by the class of PCOs it has. A PTC is in a client role when it communicates via
a client-PCO with the SUT, and vice versa. Hence:

Rule D Only PCOs of the same class, i.e. either client-PCOs or server-PCOs, can be assigned to
a PTC. The assignment of more than one PCOs to a PTC is allowed, as long as the
processing of test events, e.g. parallel sending of ASPs, is not restricted.

The MSC inline expressions allow behavioral composition of event structures within a MSC.
The operators refer to alternative (alf), parallel composition (par), iteration (loop), exception (exc)
and optional (opr) parts. The alt operator, used in the example presented in the paper (Figure 5),
defines alternative executions of MSC sections. In TTCN, the distinction between sequentialized
and alternative behavior is identified by the indentation level of TTCN statements (subsequent

TTCN events have a higher indentation as preceding events). Therefore:

Rule E MSC inline expressions are expressed in TICN by a combination of appropriate
indentation levels, TTCN conditions and GOTO-statements.

The TTCN timer concept addressing start, time-out and cancellation of timers is sufficient to
cover MSC timer events.

The derivation of TTCN test descriptions from HMSCs is as follows:

Rule F MSC references are mapped in TTCN to test step calls. MSC conditions are directly
interpreted by TTCN qualifiers.

TTCN test steps are a macro-like kind of subroutines. They are also used in case of RP-facet
specifications representing extensions of previously specified smaller RP-facets. For example, it is
typical that the test specification derived from a small RP-facet specification (e.g. from the minimal
core-based RP-facet) will become the preamble (i.e. the very first test behavior at the beginning of

a test description) of another “bigger” RP-facet test specification.

5.2 Test Campaign Derivation

In general, software testing is time and cost intensive, i.e. critical for large systems. Therefore,
CTMF [4] gives advise for practical test purpose identification and for the grouping of test cases.
We define a test suite structure according to core-based RP-facet hierarchies of the reference points
under test. The sequence of test execution for the reference points under test is derived from the

dependence relation between its operations.

The basic idea is to start with testing the core of a reference point and then to test incrementally
by a repeating selection and testing of small extensions of the set of already tested operations. Each

extension should comprise a complete core-based RP-facet.
At first, we define the ordered sequence of RP-facets to be tested:

¢ the minimal core-based RP-facets is tested first

» subsequently, other core-based RP-facets are tested according to their hierarchy.

Secondly, we define the sequence of testing operations within an RP-facet:

153

* Independent operations are those that can be tested without any preconditions (i.e. without
preambles in the test case body).

* Dependent operations can be tested only of the operations they are depending on have been
tested already successfully.

An algorithm for the test method is as follows. For simplicity, we assume that the system under
test S realizes reference point R by means of core-based RP-facets CF,..CF, with Cg=CF; < ... <
CF,=SOg.

Let T be the set of already tested operations at R. T'is divided into Tp and Tf. Tp refers to the set
of operations that passed all tests. T comprises those operations for which at least one test failed.

Further, let I be the set of operations that are not testable as they depend on operations, which failed
their tests or belong also to 1. Let N be the core-based RP-facet under test in the current testing

iteration.

Start: T=J, =, i=1, N=CF,.
Iteration i:

Step I:Select o € N with (0, @)edep;p :
/* independent operations */
Execute the tests for o .

If 0 passes all tests, then Tp= Tp U {0} else Tp= Tpo {0}.
In any case, N=N\{o}

Repeat until no further operations o with (o,)€ depy p exist .
Proceed with Step I1.

Step 1l:Select o € N with (o, {0]..0,,})edepr g and Vj,j=1..m: o T
/¥ dependent operations whose preconditional operations have been tested successfully*/
If dj=1..m: oje Tp, then I= 10 {o}.
Else, execute the tests for o .
If o passes all tests, then Tp= Tp U {0} else Tp= Tpu {0}.
In any case, N=N\{o} .

Repeat until no further operations o with ((o, {0;..0,,})e dep; g and Vj,j=1..m: oje T) exist .
Proceed with Step I11.

Step Ill:Select 0 € N with (o, {0..0,,})€ depy g and Jj=1..m: o I

/*dependent operations for which not all preconditional operations are tested successfully*/

Then I= 1L {0} and N=N\{o} .

Repeat until no further operations o with ((o, {0;..0,,}) dep; g and dj=1..m: o€ 1) exist .
Proceed with Step V.

Step 1V:Select o € Nwith (o, {0;..0,,})edepr g and Jj=1..m: o€ N

/*dependent operations with cyclic dependencies*/

Execute the tests for o;.

If o; passes all tests, then Tp= Tp L {0;} else Tp= Tpo {0}}.
In any case, N=N\{0j} .

Proceed with Step I1I.

154

Repeat until no further operations o with (o, {0}..0,,}) dep; p and dj=1..m: oj€ N exist.
Proceed with Step V.

Step V:If N empty and not yet termination, take i=i+1, N=CF\ (T U I) and proceed with Step II.

Termination: If T U I = SOg terminate.

Interface operation tests will comprise static operation header tests as well as dynamic testing of
operations semantics. First, the static header tests result from combinations of valid/invalid
parameters and test values according to the interface signature and constraints [10]. The other test
groups, which focus on testing of valid/invalid sequences of operations at RP-facets, can be derived
using traditional test derivation algorithms well known from e.g. LTS or EFSM based test

generation methods implemented in several academic and commercial test derivation tools.

6 An Example

This section presents an example on how the proposed concepts and specification techniques are
applied to the TINA Retailer reference point (Ret-RP). The retailer is the focus of the consideration.

The following ODL definition is a simplified representation of [14] (see also Section 4.1). It
indicates the reference point Ret and the RP-facet role Retailer. It defines further: Retailer provides
a i_Initial interface and a i_Access interface; Retailer uses the i_Initial interface of the Consumer;
the operation namedAccess of the Retailer’s i_Initial interface requires an input parameter for
passing some user information, and provides an output parameter for returning a reference of
requested object, and in case that the passed user information is invalid an PropertyError exception

is raised. The consumer domain services are defined in a separate document Ret_Consumer.odl.

#include "Ret_Consumer.odl"
module Ret {
CO Retailer {
requires
Consumer::i_Initial;
supports
Retailer::i Initial;
Retailer::i Access;

interface i Initial ({
void namedAccess (
in UserProperty userInfo,
out Object i_na;
) raises (PropertyError);
Y
interface i Access {...};

Yiti

From the textual description of Ret-RP business scenarios, two RP-facets can be derived:

* The core facet Ret_Retailer_core involves login and logout of a consumer at the retailer
domain. The retailer’s interface i_Initial and the operation namedAccess are used by login.

e An additional facet Ret_Retailer_addl is based on the core facet. It is to start a service after a
successful login, and to terminate the service before the logout.

155

Ret_Retailer_core is organized by the MSC document and High-level MSC (HMSC) presented
in Figure 4. According to Rule 2, five instances (prefixed by inst) are defined: Retailer,
Retailer_i_Initial, Retailer_i_Access, Consumer and Consumer_i_Initial. The operation
namedAccess is mapped to three messages (indicated by msg), respectively for the request, reply
and exception related to the operation (see Rule 6). The inclusion of data types and constants
translated to ASN.1 is enabled by the language and data constructs. The HMSC
Ret_Retailer_core_msc uses two utility MSCs Login and Logout, and conditions idle, LoginFailed

and LoginSuccessful. It describes the dependency of the logout activity on a successful login.

mscdocument Ret_Retailer_core msc Ret_Retailer_core_msc
inst Retailer

inst Retailer_i_Initial
variables i_na: Object, exp: PropertyError,
int Retailer_i_Access
int Consumer
varabiles naRef: Object, userInfo: UserProperty;
int Consumer_i_Initial
msg namedAccess_req(UserProperty);

msg namedAccess_rpl(Object); . .
msg namedAccess_exp(PropertyError); LoginFailed
language ASN1;

data #include Ret_Retailer.asnl;
#include Ret_Consumer.asnl

(Ret_Retailer_core_msc)

Figure 4 MSC example of Ret_Retailer_core

Details of purpose-oriented use scenarios of RP-facets are described by MSC event traces.
Figure 5 shows the message exchanges between a Consumer instance and a Retailer_i_Initial
instance in relation to the login activity. The two alternative outcomes of a request on the operation
namedAccess are represented by use of the MSC inline expression alt. Data used in message
parameters and/or conditions are defined in the data part of the MSC document.

The cohesive relation of Ret_Retailer_addl to Ret_Retailer_core is in particular reflected by the
reuse of declarations and utility MSCs, as presented in Figure 6. To support start service related
operation, declarations of the messages startService_req, startService_rpl and startService_exp are
added to the core facet MSC document. Furthermore, two new utility MSCs are introduced:
StartService and EndService. Ret_Retailer_addl_msc extends the core facet’'s HMSC by a
description of the logical relation between StartService and EndService MSCs.

Table 3 shows the dynamic part of the TTCN specification of a test case in accordance with the
Login MSC (Figure 5). The tabular form is simplified to ease the understanding.

In this example, the SUT is an implementation of the retailer domain core RP-facet. This test
case is to evaluate the login activity at the retailer’s i_Initial interface. The TS emulates the behavior
of a client of i_Initial. It uses a client-PCO named PCO1_Retailer_i_Initial defined using Rule B.
The purpose of this test case is to verify: after a request on the operation namedAccess with valid

156

msc Login

Consumer

[userInfo:=USER_INFO

namedAccess_req(userInfo)

| Retailer_i_Initial |

alt

when valid(userInfo) /|>

’ namedAccess_rpl(naref:=i_na)

[i na:=resolve(NA_REF) |

Ml

LoginSuccessful

--------- :

otherwise

&

exp:=PROP_ERR |

namedAccess_exp(exp)

Ml

T— LoginFailed

—

=
—

Figure 5 Login MSC diagram

user information is sent to the SUT, a reply of namedAccess is received by TS (see line 2 and 4). To
indicate the ASP kind, the request-ASP is prefixed by pCALL, and the reply-ASP is prefixed by

PREPLY.

mscdocument Ret_Retailer_addl
inst Retailer
inst Retailer_i_Initial

variables i_na: Object, exp: PropertyError;
int Retailer_i_Access
int Consumer

varabiles naRef: Object, userInfo: UserProperty;
int Consumer_i_Initial
msg namedAccess_req(UserProperty);
msg namedAccess_rpl(Object);
msg namedAccess_exp(PropertyError);
msg startService_req;
msg startService_rpl;
msg startService_exp;
language ASN1;

data #include Ret_Retailer.asnl;

#include Ret_Consumer.asnl

(Ret_Retailer_add1_msc)

(Login) (Logout)
(StartService) (EndService)

msc Ret_Retailer_addl_msc

<LoginSuccessful>

j LoginFailed>

<StartServiceSuccessful> StartServiceFailed

A

Figure 6 MSC example of Ret_Retailer_addl

157

The test step GetlnitialRef (line 1) used as preamble is mainly intended to allow the resolution
of object references that will be used in the test case. It is not derived directly from the MSC. It is
a general purpose test step. In addition, a timer Timer! is used to ensure that a test event (including

time-out events) will occur after a given time even in case that the SUT does not answer.

The postamble Logout (line 5) after the receive event recalls the MSC reference Logout in the
HMSC of the core RP-facet.

Test Case Dynamic Behavior

No | Label Behavior Description Constraints Ref Verdict

1 +GetlnitialRef

2 PCO1_Retailer_i_Initial ! pCALL_namedAccess_s1
PCALL_Retailer_i_Initial__namedA ccess

3 START Timerl

4 PCO1_Retailer_i_Initial ? pCALL_namedAccess_rl P)

pREPLY_Retailer_i_Initial__namedAccess

CANCEL Timerl
5 +Logout
6 ?TIMEOUT Timerl 1

Table 3 TTCN test case example

The implementation and execution of TTCN-based test case in the CORBA environment is

discussed in [3].

7 Conclusions

The goal of the work presented in this paper is to provide concepts and means for testable
specifications that facilitate conformance and interoperability testing for distributed systems. The
approach is based on the RM-ODP and TINA reference point concept. It refines reference points
into self-contained and extensible facets, referred to as RP-facets, in order to allow incremental

specification, implementation and testing of distributed systems at their reference points.

Formalization is key to the concept. Besides a mathematical characterization of RP-facets, a
template for structural and behavioral specifications of RP-facets as well as a conformance test
method are elaborated. The specification template consists of ODL, ASN.1, and MSC to provide
adequate information detail for the derivation of abstract test cases in TTCN. The combination of

all these specification techniques is shown by an example.

In addition to a thorough usability study of the approach, future work will be on the support of
further testing aspects, e.g. operational conformance under load situation, what requires extensions
of the RP-facet specification template. Additional issues of test campaigns, which are partly

discussed in the paper, such as efficient test strategy, will be also considered.

158

8 References

[1] R. V. Binder: Testing Object-Oriented Systems, Models, Patterns and Tools, Addison-Wesley, 1999.

[2] S. Ghosh, A.P. Mathur: Issues in Testing Distributed Component-Based Systems.- In Proc. of the First Intern. ICSE
Workshop on Testing Distributed Component-Based Systems, Los Angeles, U.S.A, May 1999.

[3] M. Li, L. Schieferdecker, A. Rennoch: Testing the TINA Retailer Reference Point, Proceedings of ISADS’99, Tokyo,
Japan, March 1999.

[4] ISO/IEC 9646-2: Information Technology - Open Systems Interconnection - Conformance Testing Methodology and
Framework - Part 2: Abstract test suite specification, 1991.

[5] ISO/IEC 9646-3: Information Technology - Open Systems Interconnection - Conformance Testing Methodology and
Framework - Part 3: The Tree and Tabular Combined Notation (TTCN), edition 2, Dec. 1997.

[6] ITU-T Rec. X.901 | ISO/IEC 10746-1: 1995, Open Distributed Processing - Reference Model Part 1, Geneva, Swiss.
[7] ITU-T Z.130: Object Definition Language (ITU-ODL), March 1999.

[8] ITU-T Z.120: Message Sequence Charts (MSC’2000), Nov. 1999.

[9] OMG: Common Object Request Broker Architecture (CORBA), version 2.3, 1999.

[10JA. Rennoch, J. de Meer, I. Schieferdecker: Test Data Filtering, 9. GI/ITG-Fachgesprich "Formale
Beschreibungstechniken fiir verteilte Systeme", Miinchen (D), June 1999.

[11]Steedman, D.: Abstract Syntax Notation One (ASN.1), Technology Appraisals Ltd., 1990.
[12]TINA-C: Overall Concepts and Principles of TINA, version: 1.0, Feb. 1995.

[13]TINA-C: TINA Reference Points, version 3.1, Jun. 1996.

[14]TINA-C: Ret Retailer Reference Point Specification, version 1.1, 1999.

[15]TINA-C: Object Definition Language (TINA-ODL), version 2.3, Jul. 1997.

[16]TINA-C: TINA-CAT WorkGroup Request for Proposals, TINA Conformance Testing Framework, version 1.0, Jul.
1999.

159

160

Towards a Mechanised Software
Development Method

Bing Wu!, Luming Lai?, and D.R.W. Holton?

! B.Wu@scm.brad.ac. uk,
Home page: http://www.personal.comp.brad.ac.uk/~bwu/
2 L.M.Lai@scm.brad.ac. uk,
Home page: http://www.personal.comp.brad.ac.uk/~1mlai
% D.R.W.Holton@scm.brad.ac .uk,
Home page: http://wuw.personal.comp.brad.ac.uk/~drwholton
University of Bradford, Bradford, BD7 1DP, West Yorkshire, UK

Abstract. Formal methods (FM) consist of a set of techniques and tools
that are based on mathematical modeling and formal logic and which are
employed to specify and verify requirements and designs for computer
systems - both hardware and software. Moreover, the growing criticality
and complexity of software has led to increased interest in applying FM
to software specification and design as well.

The paper will develop a more practical software development method by
integrating the Refinement Calculus with Z, both developed at Oxford
University, and develop a software development environment in which
software can be formally specified and refined into program code with
all the refinement steps proved correct by the tool. We present a case
study of using a refinement tool prototype, ZRefiner to refine a Z speifi-
cation to code. The three-tier structure of ZRfiner deals with different
applications in different tiers and makes ZRefiner more flexible and effi-
cient. Finally, potential theoretical and practical problems of implement-
ing such a mechanised tool are discussed.

Keywords: Formal methods, Z, Refinement Calculus, Mechanised soft-
ware development

1 Introduction

Many of the most serious problems in software design and implementation re-
sult from imprecise, ambiguous, incomplete, misunderstood, or just plain incor-
rect statements in requirements specifications. Describing large, complex systems
with thousands or even millions of properties is extremely difficult using natural
language.

Formal methods (FM) consist of a set of techniques and tools that are based
on mathematical modeling and formal logic and which are employed to specify
and verify requirements and designs for computer systems - both hardware and
software. Early successes in the use of FM were more frequently obtained in the

161

design of computer hardware, and this domain remains an important application
area for FM. However, the growing criticality and complexity of software has led
to increased interest in applying FM to software specification and design as well.

Z [8,16] is a well established specification language that has a distinguishing
mechanism of modularization: the schema calculus. It allows us to formalise in-
dividual requirements separately and join them together by schema operators.
Its success is evident: many case studies [8] have already been developed, some
of which involve industrial applications [6]. A wide range of tools [24] that sup-
port several aspects of its use in specification have been implemented. However,
none of them support refinement using Z. The main objective of our research
is to develop a fully integrated tool for Z which supports refinement and good
graphical user interfaces.

Although Z is a well established specification language and the refinement
calculus was developed many years ago by Back, Morgan and Morris, [1, 11, 10],
the integration of both is not as simple as originally thought. There are some
fundamental problems to be solved for a smooth integration. For example, the
refinement calculus is based on the weakest precondition semantics but Z on
set theory; the specification statements in the refinement calculus use pre- and
postconditions but Z uses the schema calculus which puts abstraction above
everything else.

Several proposals for solving these problems can be found in the literature.
The first proposal for integrating Z with the Refinement Calculus is presented in
[9], where the differences between Z and the notation of the Refinement Calculus
are analyzed and, in the light of these considerations, rules that translate schemas
and some schema expressions to programs are suggested. [19] has proposed a
different form of integration, where schemas themselves have been regarded as
commands of the language of the refinement calculus. Refinement of schemas is
accomplished either by laws that are similar to the translation rules in [9] that
apply to schema expressions, or by verification instead of calculation, when none
of these laws apply. There is no equivalent to the rule of [9] that translates any
schema.

Another approach is suggested in [18], where generalizations of the Z con-
junction and disjunction schema operators are introduced into the language of
the refinement calculus so that specification statements can be combined and
the Z incremental style of building specifications can be used. The aim is to
achieve a refinement calculus that can cope with large specifications. However,
the other schema operators, which also contribute to the success of the Z style,
are not considered and it is not clear how they can be added to the refinement
calculus. Our approach is similar to Ward’s. But we propose to use Z throughout
the whole development process, which are more readable than the specificaiton
statements.

[15] defined a notation for documenting the development of ADA programs
from 7 specifications. Despite the fact that a language similar to that of the
refinement calculus was used, the proposal consisted of designing the programs
directly in ADA and then giving an account of their correctness by using the no-

162

tation and literate programming was suggested as part of Cleanroom, a method
of software development that recommended the use of formal specifications and
refinement, but that did not indicate any particular technique.

In [3-5], ZRC - a refinement calculus for Z based on Morgan’s calculus [10]
was developed. The method allows specification using Z schemas and provides
some conversion laws to convert Z schemas into the specification statements in
the refinement calculus. Then the refinement is done in the refinement calculus.
A weakest precondition semantics for Z was developed so that the soundness
and completeness of the conversion laws are proved. The drawback of such an
approach is that the abstraction of Z is lost as soon as the refinement starts.

The motivations of producing efficient programs that has a mathematically
sound basis and allows the use of calculational techniques are certainly best
served by the approaches advocated in [9,20,19,22]. Also motivated by Caval-
canti’s work, we develop a prototype refinement tool: ZRefiner, with the support
for spcification and refinement of Z. We introduce the weakest precondition se-
mantics for the modified Z, which is used to replace the specification statements
during refinement.

This paper is organised as follows. Section 2 investigates Z and the refinement
calculus. Section 3 introduces the modified Z specification. Section 4 presents a
weakest precondition semantics for the modified Z. Section 5 introduces a in-
tegrated refinement calculus for the modified Z, and presents some refinement
laws we use in the paper. Section 6 presents the prototype structure of ZRefiner,
which is based on the three-tier architecture. Section 7 introduces the birthday
book case study using ZRefiner. Section 8 discusses the advantages and distanta-
ges of ZRefiner and the refinement calculus for the modified Z, and also presents
our future work.

2 Z and The Refinement Calculus Overview

2.1 Z Overview

7 is a specification language which uses schemas and schema operators to con-
struct complex specifications from component specifications. Z specifications
have good hierarchical structures. There are two basic kinds of schemas: one
specifies the states of a system and the other specifies the operations which
can be performed on these states. In the following example, we describe this by
specifying a class manager. The same example can be found in [9].

Example 2.1 We can use the following state schema,

— Class
yes, no : P Student

yesNno ={}
#(yes U no) < maz

163

to describe the state of a system to record which students in a class have (yes)
or have not (no) completed a set of exercises.

If we want to enlarge the state of this system, for example adding students
information such as their registration numbers into the system, we can add
another state schema by the schema calculus.

— RegistrationNumbers
regnumber : Student — Registration

Vz,y: Student | z # y e regnumber(x) # regnumber(y)

Then the overall state of the enlarged system is
Class N RegistrationNumbers.
An operation to enrol a new student into the class could be described by

__EnrolOk
AClass
$? : Student

s? & yesUno
#(yes Uno) < maz
yes' = yes

no’ = no U {s?}

The new student will not have done the excises, so he will be put into set no. Now
the declaration introduces the state before and after the operation(in AClass)
and the input variable s?. The predicate shows the relation between the variables
of the state before(yes and no) and the state after(yes’ and no') and s?.
O

The Z schemas also have an “open-world” view about variables which do
not occur in its signatures [18]. It places no restrictions on those variables.
For example, in the above schema Class does not mention variable regnumber
but schema RegistrationNumber has regnumber in its signature. So Class A
RegistrationNumber can change regnumber according to Registration Number.

2.2 The Refinement Calculus

Refinement calculus, developed independently by Back, Morgan and Morris, [1,
11,10], provides a uniform method for deriving programs from specifications.
The calculus extends a programming language with an abstract specification
construct. The calculus defines formally an ordering between specifications that
allows one specification to be substituted for another. The semantics of both the
programming language and the specification construct are defined by Dijkstra’s
weakest precondition semantics [7].

164

The Refinement Calculus introduces a specification statement into the guard-
ed command language. Its novelty is the banishment of the differences between
specifications and program code. Therefore, software development can start with
an abstract specification statement and then refine it gradually into program
code through mixed terms which may contain both specification statements and
program code.

For example, the notation w := F is an assignment command, and is also
the program code. It changes the state so that the variable w is mapped to the
value E, and all other variables are unchanged. Assignments form the basis of
imperative programming language since they are easy to execute. Below we give
a law of refinement for assignment.

Law 22 (assignment) If pre = post|w\E], then
w,z : [pre | post] C w:= E.

To demonstrate a refinement example, we also give the following laws of refine-
ment:

Law 23 (strengthen postcondition) If post’ = post, then
w : [pre, post] C w : [pre, post'].
Law 24 (weaken precondition) If pre = pre’, then
w : [pre, post] C w : [pre’, post].
The following example shows a refinement using the refinement calculus.

Example 2.5 The following specification sets z to either 1 or 2 when it is
non-negative:

z:lz>0,z=1Vz=2]

C {Law 24 weaken precondition}
z:[true,z =1V 1z =2]

C {Law 23 strengthen postcondition}
x: [true,z = 1]

C {Law 22 assignment}
z:=1

O
The informal meaning of a specification statement w : [pre | post] is as
follows:

If the initial state satisfies the precondition pre, then change only the
variables listed in the frame w so that the resulting final state satisfies
the postcondition post.

165

According to this explanation, the specification statement has a “closed
world” view about the variables which do not occur in the frame w. That is,
those variables cannot be changed by the specification statement. This does not
cause any problem for the Refinement Calculus because it does not allow the
construction of specifications from individual ones using the schema operators.
The specification statement always specifies operations on the overall state. This
simply wipes out all the advantages of the schema calculus, thus Z.

2.3 Conclusion

There are two ways to integrate Z with the Refinement Calculus. One is sug-
gested in [18] where two of the schema operators, conjunction and disjunction,
are introduced into the Refinement Calculus such that the composition of spec-
ification statements are possible. However, these two operators turn out to be
non-monotonic with respect to the refinement relation.

Another ways for the integration is to introduce the Refinement Calculus into
Z. Once again, we face the problem of non-monotonicity of some of the schema
operators, including the conjunction and disjunction operators.

The goal of a development in a refinement calculus is to start with a specifi-
cation at a high level of abstraction that captures only the essential properties
of the system and transform this to program code. A key factor in a refinement
calculus’s ability to achieve this goal is the use of a single wide-spectrum lan-
guage that covers both specification and program code [2,13]. A well designed
wide-spectrum language allows specifications which are concise and which give
maximum freedom to the developer when choosing an implementation. Develop-
ment in a refinement calculus proceeds via transformations which replace (pos-
sibly non-executable) specification constructs with (executable) programming
language constructs. Thus, at any stage of the development the object being
reasoned about is usually a mix of specification and programming constructs
written in the wide-spectrum language.

Based on this reason, we propose a modified Z, which separates pre- from
postcondition, as the language of the refinement calculus. Then we define the
schema calculus for the modified Z which makes the conjunction operator mono-
tonic with respect to the refinement relation.

3 The Modified Z Specification Language

Z, as a “pure” specification language, tries to distance itself as far away from
implementation as possible. It uses abstract data types, allows the introduction
of new signatures at anywhere, and it does not care about the pre- and post-
conditions of operations. If we compare Z with VDM, we can see one important
difference between them. That is, VDM is a refinement development method,
whereas Z is just a specification language. The result of this is that the spec-
ification formulae in VDM uses keywords like a programming language and is

166

syntactically more complicated than z schemas. Ut course, with refinement de-
velopment in mind, VDM also separates precondition from postcondition. If we
want to use Z during the development of software, Z needs to be modified.

The closed-world view means that any variable in the signature of a spec-
ification which is not also in its frame can not be changed. As a result, the
combination of two specification can not in general produce a new specification
which can change all of the variables in both frames.

To solve this problem, we remove the frame of the specification statement,
and introduce the Z declaration part into the specification statement. The final
specification is similar to Z schema except that the predicates of the Z schema
are divided into two parts: the precondition part and the postcondition part. We
call this schema as modified Z schema. The declaration part introduces the state
variables of a schema. Thus, the variables in the signature of a specification are
also in its declaration part. As the same as the specification statement in [17],
the postcondition of an operation in a modified Z specification can be used to
specify those variables that do not change.

_ Schema
Declaration Part

w : [pre, post]
Precondition Part

Postcondition Part

We can also use an abbreviation:
Schema = [decl | pre | post].

We refer to the pre- and postconditions as pre Schema and post Schema, and the
declaration as decl Schema.

Example 3.1 The operation schema EnrolOk can then be specified by

_ EnrolOk
AClass
s? : Student

s?7 & yes U no
#(yes Uno) < maz

yes' = yes

no' = no U {s?}

d

The reasons for doing this are as follows. First, the Z schema operators are
not monotonic with respect to the refinement relation. This means that we can-
not retain the schema operators during the refinement development and will lose

167

the hierarchical structures of Z schema expressions at the very beginning of the
refinement process. Another reason for separating precondition from postcondi-
tion is that it is not easy to see the refinement steps in schema which rely on
separate pre- and postconditions. For example, it is hard to see the refinement
of a schema description of an operation directly into an iteration because we can
hardly see the loop invariant and the bound function in the schema description.

The advantages of doing this is that it makes the modified Z more expressive.
For example, we can have miraculous specifications, which can be useful during
refinement.

Example 3.2 We define the miraculous specifications:

_ SM
decl

pre

false

The schema is called miracle because it implements anything. Miracles arise
“accidentally” in program development when we make an incorrect design step.
It is discussed in more detail in [12].
O

While composing a modified specification with the other modified specifi-
cation, we introduce two operations into the modified Z notations: the schema
conjunction and the schema disjunction, in order to keep the feature of the open-
world view. We also extend schema operations to be monotonic with respect to
the refinement relation except schema disjunction. Since the cases joined by
schema disjunctions are mutually exclusive, we prove that schema disjunctions
can also be defined by alternations. By keeping the mutual conditions of the
schema disjunction, we can refine the disjoined schemas individually. Thus, we
can leave the refinement of schema conjunctions and disjunctions to the later
stage and keep the Z incremental style of developing specifications. The above
details are presented in [21].

4 The Weakest Precondition Semantics

4.1 The Weakest Preconditions

Weakest preconditions were first introduced in [7], where they are used to define
the semantics of Dijkstra’s language of guarded commands:

The condition that characterizes the set of all initial states such that ac-
tivation will certainly result in a properly terminating happening leaving
the system in a final state satisfying a given postcondition is called “the
weakest precondition corresponding to that postcondition.”

168

If the system is denoted by S and the desired postcondition by 1, then we
denote the corresponding weakest precondition by

wp.S.Y .

If the initial state satisfies wp.S.¢, it is guaranteed to establish eventually the
truth of ¢. Because wp.S.vy is the weakest precondition, we also know that if the
initial state does not satisfy wp.S.1, this guarantee cannot be given, since the
system may end in a final state not satisfying v or it may even fail to reach a
final state at all.

The meaning of wp.S.¢, the weakest precondition for the initial state such
that activation will certainly result in a properly terminating happening, leaving
the system S in a final state satisfying the postcondition v, allows us to give
the wp semantics for specification statements [10] and Z specifications [4]. This
paper also extends the wp semantics to the modified Z specifications.

Definition 41 (Weakest precondition) The weakest precondition of a mod-
ified Z schema [d | pre | post] can be defined by

wp.[d | pre | post].p = pre A (Y ds', do! e post = 1)

where d declares the set of all the schema variables: d = ds U ds' U di? U do!. ds
declares the set of state variables, ds’', the corresponding dashed variables, di?,
the input variables, do!, the output variables.

O

In the definition above, termination is captured by pre, and correctness is
captured by (V ds’, do! e post =).

4.2 The Guarded Commands

A Guarded Command, is a statement ‘pre-fixed’ by a boolean expression termed
a guard. A guard is a formula which selects those states to which its associated
command applies. A command is the associated program to be executed. The
guarded command itself is written

G — P,

where G is a guard and P a program.

To execute a guarded command we first evaluate the guard, then execute
the statement if the guard is true, otherwise do nothing. The following example
shows the execution of a guarded command.

Example 4.2
r>0—>2:=0—-1

The command z := z — 1 can be executed only if its guard = > 0 is true.
O

169

Semantics for ordinary guarded commands are introduced in [7,10]. Here we
give the weakest predicate transformers for all the basic guarded commands. The
semantics includes assignment, sequential composition, alternation and iteration.
The semantics is defined in terms of the weakest precondition with respect to a
postcondition).

wp. skip) = 1
wp. abort .1) = false
wp.(s i= B).p 2 glz\]
wp.(P; Q)¢ = wp.P.(wp.Q.¢))
wp.{pre}.p = pre A1
wp.[post].yp = post['\] = ¢
wp. | [var dvl @ P]| 4 =V dz' e wp.P[ol,vl'\z,z'].1
wp. | [con dcl o P] | .4p = 3dz @ wp.Plcl\z]9
wp.(if Oi e G; — P; fi).yp = (Vi e G;) A (Ai @ Gi = wp.P;.))
wp.(do Oj e G; — P;od).y = 3k > 0 e Hy(2))

Fig.1. Predicate transformers for guarded commands

In the semantics for the iteration, the conditions Hy (1)) is given by

L (YA (VieGy) PO
Hi(y) = {wp‘(if Oie G; — P; i).H,_1(¢) V Hy(¢) k > 0.

5 A Integrated Refinement Calculus

In this section, we briefly describe a refinement calculus for the modified Z, which
is based on Morgan’s refinement calculus but uses Z schemas(modified) instead
of the specification statement (for more details, see [26]).

The refinement calculus of Back, Morgan and Morris [1,11, 10], are all based
on the work of Dijkstra [7]. Each of the calculus creates a wide-spectrum language
by extending a simple imperative programming language with specification con-
structs. The semantics of both the programming constructs and the specification
constructs of this language are given in terms of Dijkstra’s weakest preconditions.

The correctness of program transformations is also characterised in terms of
weakest preconditions. A large number of refinement rules which capture both
traditional design intuitions and guarantee correctness have been proven using
this characterisation. These rules range from simple laws which introduce local
variables to complex laws which show that recursive procedures are correct.

In this section, we present the refinement calculus for the modified Z: its
conversion and refinement laws. Most of the conversion laws are based on those

170

ot |Y,3]. Lhe reinement laws are, on the whole, based on those O lVlorgan's
calculus [10].

Our main objective is to formalise the refinement calculus for the modified
Z. Fortunately, a lot of work have been done based on specification statements
[9, 3].

During the refinement steps, refinement results produced by the modified Z
is more readable and concise than that using the specification statements [4].
Our refinement calculus uses the modified Z as the development language. It has
a schemas calculus like Z and also splits the precondition and the postcondition
for the refinement. So it obtains the advantages of Z and refinement calculus as
well.

Additionally, in [21] we introduce the monotonic schema operations into the
modified Z schema and make it possible for the incremental style of program
development. This is a distinctive attribute of our work.

In [9], the method for refining Z specifications is divided into two steps. First
change notation to the refinement calculus notation, then apply algorithm refine-
ment using the refinement calculus. The first step is also called notation change.
The first change is to convert from the undashed/dashed convention to the use
of a subscript 0, and to shorten the names of th names of variables, if necessary,
also removing 7 and ! suffices from the names of input and output variables.
Then use a basic law, which is based on Implicit Precondition abbreviation, to
translate from Z schemas to specification statements:

w:[Fw:T]|inv e pred)[w/wp], pred].

The precondition of the specification statement is calculated by existentially
quantifying the output variables and dashed variables in the schema’s predicate,
as described in [25].

Asin [3], we use the dashed variables in the modified Z rather than 0-subscript
variables in the specification statements, for the sake of simplicity, and keeping
the dashing convention of Z to maintain the compliance with this notation.
Similarly, we can get the basic conversion law for the translation from the Z
schemas to the modified Z schemas.

Law 51 (Basic Conversion)

[AS; di?; do!| p]
=[d | inv A 3ds'; do! e inv' A p | inv' A p]

where S = [ds | inv]and d = ds U ds" U di? U do!.

By way of illustration, we consider the specification of the class manager
presented in Example 2.1.

Example 5.2 We convert the Z operation EnrolOK to the modified Z schema
by applying Basic Conversion Law.

EnrolOk =

171

__EnrolOk
AClass
$? : Student

s? & yesUno
#(yes Uno) < maz

yes' = yes
no’' = no U {s?}

O

7 Schemas which specify operations that do not change the state, have the
form

[£S; di?; do!| p].
They can be written as:
[AS; di?; do! | p A sl =s1A---Asn' = sn]

where ads = s1U---U sn and sl,---, sn are state components of schema S.
Since schemas of this form occur very frequently in Z specifications, we present
an additional conversion law as below.

Law 53 (Basic Conversion)

[£S; di?; do!| p]
= [d | inv A T do! e plads'\ads] | p]

where S = [ds | inv]and d = ds U ds" U di? U do!.

Based on the refinement laws in [10,9, 3], we present the refinement laws for
the modified Z. As with Morgan’s refinement calculus, the refinement calculus
for the modified Z supports procedures, recursion and data refinement. It is com-
pletely formalised in terms of the weakest preconditions. The target language of
the refinement calculus is an extension of Dijkstra’s guarded command language
[7]. The laws are listed by the alphabetic order in the appendix. The soundness
of all the laws are proved in [25].

In our refinement calculus, the refinement of a Z specification typically begins
with the application of a conversion law that transforms its operation schemas
into the modified Z schemas, in which the precondition and the postcondition are
separated, and then proceeds with the application of proper refinement laws. The
case study presented in the paper uses some refinement laws of the refinement
calculus of the modified Z, which are also included in the appendix.

172

6 The ZRefiner Structure

We intend to develop a prototype refinement tool, ZRefiner, which supports
the development of specification and the refinement of Z. This section presents
the structure of the prototype ZRefiner. In general, the structure of ZRefiner is
divided into three tiers as in Fig.2.

B IEEEEEEEE A

ZRefiner Architecture

Fig.2. ZRefiner Architecture

The first tier is the User Interface which supports all the major features ex-
pected of a standard editor including Cut, Copy, Paste, etc. In the User Interface,
a user can input a Z specification in the editor, or use the File menu to load a
Z specification from a disk file. Fig.3 is a sample of ZRefiner user interface.

The second tier is the ZRefiner Environment, which provides a system en-
vironment to handle the messages between the User Interface and the ZRefiner
engine. The ZRefiner environment has four components: the syntax checker, the
type checker, the typesetter and the message handler. A user may ask the system
to analyse the current Z specification. The message handler is in charge of the
message handling. First, it will pass the control to the syntax checker to check
the syntax of the current Z specification and get the feedback of the check result
which is sent back to the user interface. Secondly, it will ask the type checker
to do the Z type checking for the current Z specification. The message handler
can also connect to an external checker to do some other checks, e.g. domain

173

ZRetiner - birthdaybook.tex

Fig.3. ZRefiner User Interface

checking. All message communication between the ZRefiner environment and
the external checkers are controlled by the message handler.

The typesetter is used to display the output. The user of ZRefiner can choose
between two display modes: text mode and graphical mode. For instance, a Z
specification can be displayed in NTEX format. By using a typesetter, a graphical
display with the standard Z schema can be obtained in the user interface so that
it is more straightforward and friendly than using the text mode. In ZRefiner,
the display of the modified Z schema is also supported by the typesetter.

The third tier of ZRefiner is the ZRefiner engine. The ZRefiner engine is the
main part of the refinement tool. It interacts with the message handler and the
external theorem prover. When the user chooses to refine a Z specification, the
message handler will pass the user’s command and this Z specification to the
ZRefiner engine. The user’s input includes the information about the refinement
law selected so that the ZRefiner engine can locate the law and the tactics from
the databases. Then it will process the refinement according to the refinement
law. During the calculation, the external theorem prover is automatically called
by the ZRefiner engine for the proof of certain obligations and the calculation
of the precondition. After that, the user can get the refinement results from the
user interface.

The advantage of the three-tier structure of ZRfiner is that it is more flexible.
As we can see from Fig.1, the tier-1 is in charge of user interaction. The tier-2
is mainly in charge of the specification processing while the tier-3 is managing

174

the refinement process. Additionally, it provides greater application scalability,
lower maintenance and increases reuse of components of all tiers.

7 A Case Study on Z Specification Development

7.1 Overview and Motivation

To demonstrate our refinement tool, we use the classic case study of the birthday
book specified by Spivey [16]. This case study was also used in [3,4].

7.2 Z Specification

The birthday book is a simple system which records people’s birthdays and is
able to query people’s birthdays in its database. For the sake of simplicity, we
start the development from a concrete version of the birthday book specification
and use only two operations.

The Z specification of a birthday includes basic types: NAME and DATE,
which NAME is the given set of people’s names and DATE is the given set of
dates.

[INAME, DATE)

We describe the state space of the system as a schema named Birthdaybook1.
The birthday book is represented by two arrays which modeled by functions
from the set N; of strictly positive integers to NAME or DATE. The birthday
for nameli] is the corresponding element dates[i] of the array dates. The variable
hwm (for ‘high water mark’) shows how much of the array is in use.

___BirthdayBook1
names : Ny - NAME
dates : Ny — DATE
hwm : N

Vi,j:1..hwum e
i # j = names[i] # names|[j]

This state schema introduces three state variables. The state invariant states
that all the names are different. The first operation AddBirthdayl adds a new
person into the database. (We ignore the exception cases.) We increase hwm by
one and add the record of the new name and date into the arrays.

175

___AddBirthdayl
ABirthdayBook1
name? : NAME
date? : DATE

Vi:1l..hwm e name? # names[i]
hwm' = hwm + 1

names' = names ® {hwm' — name?}
dates’ = dates ® {hwm' — date?}

The operation FindBirthdayl queries the person’s birthday at the database.
We output the birthday of the person name? who is recorded in the array: names.

___FindBirthdayl
Z BirthdayBook1
name? : NAME
date! : DATE

Ji:1..hwme
name? = names[i] A date! = dates]i]

7.3 Refinement

In the following part of the section, we develop the final code for the birthday
book by using ZRefiner.

ZRefiner uses the modified Z schemas rather than the specification state-
ments to develop the final program. For the sake of conciseness, ZRefiner takes
predSchema as the predicates of Schema. The first step of the refinement in
ZRefiner is transforming the schema calculus into a modified Z schema of the
form: [d | pre | post]. In the Refinement menu of ZRefiner, we select and apply
Basic Conversion Law to AddBirthdayl and obtain the specification statement
shown below:

AddBirthdayl = {Basic Conversion}

176

___AddBirthdayl
names, names' : Ny — NAME
dates, dates’ : N; — DATE
hwm, hwm' : N

name? : NAME

date! : DATE

pred BirthdayBook1
Vi:1..hwm e name? # names[i]

pred BirthdayBook1'

Vi:1..hwm e name? # names[i]
hwm' = hwm + 1

names' = names ® {hwm' — name?}
dates’ = dates ® {hwm' — date?}

We apply Sequential Composition Introduction Law in ZRefiner to obtain a
sequential composition of two schemas:

AddBirthdayl T {Sequential Composition Introduction}

[[con X :N; e
_AddBirthdayl_1_____ _ AddBirthdayl_2
names, names' : Ny — NAME names, names’ : Ny - NAME
dates, dates’ : Ny — DATE dates, dates’ : N — DATE
hwm, hwm' : N hwm, hwm' : N
name? : NAME name? : NAME
date! : DATE date! : DATE
pred BirthdayBook1 pred BirthdayBook1
Vi:1..hwm e name? # names[i] ; | Vi:1.. hwm e name? # names|i]
pred BirthdayBook1’' from = X +1
Vi:1..hwm e name? # names[i] | pred BirthdayBook1’
hwm' = hwm + 1 Vi:1..hwm e name? # names[i
hum' = X +1
names' = names & {hwm' — name?}
dates’ = dates & {hwm' — date?}

I

It is easy to see that an assignment can refine the above specification by
applying Assignment Introduction Law in ZRefiner and get the following code
for AddBirthdayl_1 and AddBirthdayl_2:

177

AddBirthdayl_1 C { Assignment Introduction}
hwm := hwm + 1

AddBirthdayl_2 C { Assignment Introduction}
names[hwm), dates[hwm] := name?, date?

Now we pick up the other operation: FindBirthdayl. Again, we use Basic
Conversion Law to make the precondition and the postcondition displayed in
the different of the specification in ZRefiner.

FindBirthdayl = {Basic Conversion}

__ FindBirthdayl
names : Ny — NAME
dates : Ny — DATE
hwm : N

name? : NAME

date! : DATE

pred BirthdayBook1
di:1.. hwm e name? = names|i]

Ji:1.. hwm e name? = names[i] A date! = dates][i]

We may refine this specification using the refinement law for iteration, which
should find a proper birthday for a certain person in the database. To proceed,
we first introduce an auxiliary variable as the loop index, by applying Variable
Introduction Law in ZRefiner.

C { Variable Introduction}
|[[var k :N; o

___FindBirthdayl
names : Ny - NAME
dates : Ny — DATE
hwm : N

name? : NAME

date! : DATE

k, k' Nl

pred BirthdayBook1
di:1.. hwm e name? = names|i]

Ji:1.. hwm e name? = names[i] A date! = dates][i]

178

Next, variable k is put into the specification which then is refined to a sequen-
tial composition with a sub-specification FindBirthdayl_1 and an assignment of
the assigning dates[k] to date!.

C {Following Assignment Introduction}

_ FindBirthdayl_1
names : Ny — NAME
dates : Ny — DATE
hwm : N . .
name? : NAME ; date! = dates[k]
date! : DATE
kK N

pred BirthdayBook1
Ji:1.. hwm e name? = names|i]

Ji:1.. hwm e name? = names[i] A
dates[k'] = dates|i]

We still need to refine the above schema. By choosing the invariant
Ji:1.. hwm e name? = names[i] AVi:1..k—1 e name? # names|i

we apply Sequential Composition Introduction Law in ZRefiner to obtain a seq-
uential composition of two schemas: FindBirthdayl_1_1 and FindBirthdayl_1_2,
which is split by the loop invariant.

FindBirthdayl_1 C {Sequential Composition Introduction}

_ FindBirthdayl1_1_1
names : Ny - NAME
dates : Ny — DATE
hwm : N

name? : NAME

date! : DATE

k, k' Nl

pred BirthdayBook1
Ji:1.. hwm e name? = names|i]

Ji:1.. hwm e name? = names|i]
Vi:1..k'—1 e name? # names|[i]

179

__FindBirthday1_1_2
names : Ny - NAME
dates : Ny — DATE
hwm : N

name? : NAME

date! : DATE

k, k' : Nl

Ji:1.. hwm e name? = names|i]
Vi:1..k—1ename? # names[i

3i:1.. hwm e name? = names[i] A dates[k'] = dates]i]

It is clear to see that FindBirthdayl_1_1 is to establish the initial invariant
by the following assignment:

FindBirthdayl_-1_1 C { Assignment Introduction}
k=1

FindBirthday1-1_2 should be refined to an iteration. By strengthening post-
condition, we obtain the standard iteration specification, which includes the loop

invariant and the boolean guard.

FindBirthdayl_1_2 C {Strengthen Postcondition}

__FindBirthday1_1_2

names : Ny - NAME

dates : Ny — DATE

hwm : N

name? : NAME

date! : DATE

k, kl : Nl

3i:1.. hwm e name? = names|i]
Vi:1..k—1ename? # names[i

3i:1.. hwm e name? = names|i]

Vi:1..k" —1 e name? # names[i] A name? = names[k']

By selecting Iteration Introduction Law in ZRefiner, we obtain the following
iteration easily:

FindBirthdayl_1_2 C {Iteration Introduction}
do name? # names[k] —

180

|[var k : N; o

k:=1;

do name? # names[k] —
k:=k+1

od;

date! := dates[k]

I

Fig.3. The final code of FindBirthdayl

__ FindBirthday1_1_2_1

names : Ny - NAME

dates : Ny — DATE

hwm : N

name? : NAME

date! : DATE

k, k' Nl

3i:1.. hwm e name? = names|i]
Vi:1..k—1ename? # names[i] A name? # names[k]
di:1.. hwm e name? = names|i]

Vi:1..k' —1e name? # names[i] A0 < hwm — k' < hwm — k
od

As we can see, the part of the modified Z schema is embedded in the do-loop.
It is so clear to see that the loop body must increase the variant hwm — k. So
we obtain the following refinement result of the loop body:

FindBirthdayl-1_2_1 C { Assignment Introduction}
k=k+1

So comes the final code in ZRefiner, also shown in Fig.3.

In the next section, we compare the differences between the refinement meth-
od which ZRefiner used and other methods, and distinguish their advantages and
disadvantages.

8 Conclusion
The case study illustrates that a Z specification can be developed to code under

ZRefiner. In ZRefiner, the first step of development begins with selecting and
applying a conversion law that transforms a Z operational schema into a modified

181

7 schema, in which the precondition and the postcondition are separated, then
proceeds with the application of proper refinement laws supported by ZRefiner.

All the proof obligations required by every refinement step are automatically
handled by ZRefiner. The reliability of the refinement is assured. The ZRefiner
users need not consider any proof procedure but concentrates on the refinement
development. The efficiency of the development method is also greatly improved.

Another advantage of using ZRefiner is that the refinement steps produced
by ZRefiner is more readable and concise than that using the specification state-
ments [4]. ZRefiner uses the modified Z schema as the development language.
It has a schemas calculus like Z and also splits the precondition and the post-
condition for the refinement. So it obtains the advantages of Z and refinement
calculus as well.

Case studies using the specification statements and pure Z schemas can be
found in [27].

8.1 Future Work

Since the system we produced here is only a prototype system, a lot of work has
to be done to make it practical. Our future work of ZRefiner includes more case
studies and practical work on the tool development.

We can see from the previous section, that Z schemas are much more readable
than the specification statements in the refinement calculus which do not support
any abstraction, since some additional information is hidden by Z notations: A
and =. We can also see that two notations are used in ZRefiner: the Z notation
and the modified Z notation. Is it possible to use only one notation because it is
more difficult for a developer to use one notation for specification and the other
for development? Since Z notation is widely accepted, it is a good idea to use
them in the refinement calculus. The formalisation of the refinement calculus
using 7 is an interesting motivation for the future investigation.

In the refinement calculus, the final code is guarded commands, which is
difficult to execute by the machine. To make the final code be a programming
language, such as C, is also an interesting topic. In [23], we investigate a case
study of refining Z to C code.

Much work is to be done on strategies for refining Z specifications. Simplicity
and efficiency should be considered during refine steps. Based on this, the new
refinement laws may be introduced to some steps.

A wide range of tools [24] that support several aspects of its use in specifica-
tion have been implemented. However, none of them support refinement using
Z. The main objective of our research is to develop a fully integrated tool for Z
which supports refinement and good graphical user interfaces.

With the three-tier structure of ZRefiner, it is easier to develop and refine
its components separately. We can develop the components of each module first,
and then integrate them into the three-tier architecture. For the user interface,
we wish to develop a perfect window-based system. Some tools can be used to
develop the user interface, such as Java Workshop, Motif, Sun Workshop Visual
and Tcl/Tk, etc.

182

Since the technologies for syntax checking, type checking and typesetting are
widely available, the development of these components should not be a problem.
The major work should be the message handler in tier-2. There will also be a
lot of work to be carried out to build a good refinement engine for ZRefiner.
Again, we can make use of existing theorem prover. Z/EVES, for example, [14]
is a general tool which supports the analysis of Z specifications in several ways:
syntax and type checking, schema expansion, precondition calculation, domain
checking, and general theorem proving. Since the latest version of Z/EVES sup-
ports using the API, it would be interesting to integrate Z/EVES with ZRefiner.
Of course, there are other good theorem provers we can investigate [24].

Acknowledgments

Special thanks to Dr. Ana Cavalcanti for her generosity in sending her thesis
and papers to us and also valuable discussions. Thanks also to Mark Saaltink
for his help with Z/EVES.

References

1. R. J. R. Back. On the Correctness of Refinement Steps in Program Development.
PhD thesis, University of Helsinki, 1978.
2. F. L. Bauer, H. Ehler, A. Horsch, B. Moller, H. Partsch, O. Puakner and P. Pepper.
The Munich Project CIP: Volume II: The Program Transformation System CIP-S,
Lecture Notes in Computer Science p.292, Springer-Verlag, 1987.
3. A. L. C. Cavalcanti. A Refinement Calculus for Z. PhD thesis, Oxford Univer-
sity, Computing Laboratory, Programming Research Group, Technical Monograph
PRG-123,1997.
4. A. L. C. Cavalcanti and J. C. P. Woodcock. ZRC - A Refinement Calculus for Z.
Formal Aspects of Computing, 10(3): 267-289, 1998
5. A. L. C. Cavalcanti and J. C. P. Woodcock. A Weakest Precondition Semantics
for Z. The Computer Journal, 41(1):1-15,1998.
6. B. P. Collins, J.E. Nicholls and I. H. Sorensen. Introducing Formal Methods: the
CICS Experience with Z. IBM Hursley and PRG Oxford University, 1987.
7. E. W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.
Tan Hayes. Specification Case Studies. Prentice Hall, second edition, 1993.
9. S. King. Z and the Refinement Calculus. VDM’90 VDM and Z - Formal Methods
in Software Development, volume 428 of Lecture Notes in Computer Science, pages
164-188, Kiel-FRG, Spriner-Verlag, April 1990.
10. C. C. Morgan. Programming from Specifications. Prentice Hall, 2nd edition, 1994.
11. J.M. Morris. A theoretical basis for stepwise refinement and the programming
calculus. Science of Computer Programming 9, pp. 287-306, 1987.

12. C. C. Morgan, P. H. B. Gardiner, and K. A. Robinson. On the Refinement Calculus.
Springer-Verlag, 1993.

13. H. A. Partsch. Specification and Transformation of Programs : a Formal Approach
to Software Development. Springer-Verlag, 1990.

14. Mark Saaltink. The Z/EVES System. ORA Canada, In ZUM’97: The Z Formal
Specification Notation (10th International Conference of Z Users, Reading, UK,
April 1997, Proceedings)

*®

183

15. C.T. Sennet. Demonstrating the compliance of Ada programs with Z specifica-
tions. In C.B. Jones, R.C. Shaw, and T. Denvir (eds), 5th Refinement Workshop,
Workshops in Computing, London, pp. 70-87, Springer Verlag, 1992.

16. J. M. Spivey. The Z Notation - A Reference Manual, 2nd edition. Prentice Hall,
1992.

17. Mark Utting. An Object-Oriented Refinement Calculus with Modular Reasoning.
PhD thesis, University of New South Wales, Australia, 1994.

18. N. Ward. Adding Specification Constructors to the Refinement Calculus. In J. C.
P. Woodcock and P. G. Larsen, editors, FME’93: Industrial-Strength Formal Meth-
ods, volume 670 of Lecture Notes in Computing Science, pages 652-670. Springer-
Verlag, 1993.

19. J. B. Wordsworth. Software Development with Z. Addison-Wesley Publishers, 1992.

20. J. C. P. Woodcock. Implementing Prompted Operations in Z. 5th Refinement
Workshop, Workshops in Computing, London, 1992. Prentice Hall.

21. B. Wu. Towards a Mechanised Software Development Method. MPhil to PhD
Transfer Report. Dept of Computing, University of Bradford, Dec 1999.

22. Jim Woodcock and Jim Davis. Using Z : specification, refinement, and proof. Pren-
tice Hall, 1996.

23. B. Wu, D.R.W. Holton and L. Lai. Case Study: A Sales Database. Technical Re-
port. Dept of Computing, University of Bradford, Jan 2000.

24. B. Wu and L. Lai. A Tool Survey on Z Specification and Refinement. Technical
Report. Dept of Computing, University of Bradford, July 1999.

25. B. Wu and L. Lai. Calculating the Pre- and Postcondition. Technical Report. Dept
of Computing, University of Bradford, Aug 1999.

26. B. Wu and L. Lai. A Weakest Precondition Semantics for the Modified Z. Technical
Report. Dept of Computing, University of Bradford, Aug 1999.

27. B. Wu and L. Lai. Combining the Refinement Calculus with Z — Case Studies.
Technical Report. Dept of Computing, University of Bradford, Aug 1999.

A Refinement Laws Used in the Paper

Law A1l (Assignment Introduction) If pre = post[vl’\el][ads'\ads], where
dvl declares the wvariables of vl, vl contains no duplicate variables, vl and el
have the same length and have no free dashed variables, and the corresponding
variables of vl and expression of el have the same type, then

[d; dul; dvl' | pre | post] E vl := el
where d = ds U ds’' U di? U do!.

Law A2 (Basic Conversion)

[AS; di?; do!| p]
=[d | inv A 3ds'; do! e inv' A p|inv' A p]

where S = [ds | inv]and d = ds U ds" U di? U do!.

184

Law A3 (Basic Conversion)
[E£S; di?; do!| p]
=[d | inv A T do! e plads'\ads] | p]
where S = [ds | inv]and d = ds U ds" U di? U do!.

Law A4 (Following Assignment Introduction) If d = ds U ds' U di? U do!
and dvl declares the variables of vl, vl contains no duplicate variables, vl and el
have the same length and have no free dashed variables, and the corresponding
variables of vl and expression of el have the same type, then

[d; dul; dvl' | pre | post]
C [d; dul; dvl' | pre | post[vl'\el[ads,vI\ds', vl']]; vl := el

Law A5 (Iteration Introduction) If urt is an integer, each gi and vrt have
no free dashed variables, then

[d | inv | inv[ads\ads'] A = (Vi e gilads\ads'])]
C doOi e gi — [d]inv A gi | [ads\ads'] A0 < vrtfads\ads'] < vrt] od

where d = ds U ds’ U di? U do!.

Law A6 (Sequential Composition Introduction) If mid is a predicate and
it has no free dahsed variables and the variables of post are not free in ds, then

[d; dz; dz' | pre | post]
C [d | pre | mid[ads\ads']]; [d; dz; dz' | mid | post]

where d = ds U ds' U di? U do! and dx declares the variables of z, dx', the
corresponding dashed variables.

Law A7 (Sequential Composition Introduction) If mid is a predicate and
cl is the constants, x is the variables, cl and x have the same length and the con-
stants of cl have the same type as the corresponding variables of x, the variables
of ¢l and cl' are not free in mid and [d; dz; dz' | pre | post], then

[d; dz; dzx' | pre | post]
C|[con dcl o
[dz; da'; dol!| pre | mid]; [d; dx; da' | mid[z\cl]['\] | post[z\cl]]
I

where dcl declares the constants of cl, dx declares the variables of z, dx', the
corresponding dashed variables, d = ds U ds' U di? U do! and dol! C do!.

Law A8 (Strengthen Postcondition) If pre A npost = post, then
[d | pre | post] C [d | pre | npost]

Law A9 (Variable Introduction) If the variables of vl and vl' are not free
in [d | pre | post] and are not dashed, then

[d | pre | post] =| [var dvl e [d; dvl; dvl' | pre | post]] |

where dvl declares the variables of vl.

185

186

Integrating formal methods
into the development cycle of a
safety-critical embedded software system

P.G. Bertoli, A. Cimatti, P. Traverso
Istituto per la Ricerca Scientifica e Tecnologica, Povo, Italy
E-mail: {bertoli,cimatti,leaf}@irst.itc.it

Abstract

This paper describes a technology transfer project where formal
specification and verification techniques have been applied in the de-
velopment of a safety-critical embedded software system. IRST was
directly involved in the development of the system, jointly working
with the design engineers of a leading company in the design of em-
bedded systems. The project was subject to two major requirements.
First, a tight integration of the formal methodologies into the existing
development cycle was to be achieved in order to enhance the qual-
ity of the design. Second, it was necessary to limit the impact of a
new, potentially costly methodology. During the project, a structured
specification methodology was defined, tailored to the structure of the
system under analysis. This methodology combines the use of the
commercial tool OBJECTGEODE with a custom support tool, devel-
oped during the project, for the automatic generation of executable
models, starting from the formal specification of subcomponents.

Keywords: Safety-critical systems, formal verification, formal
specification methodologies, early debugging, model check-
ing.

1 Introduction

Formal methods have a great potential of application in the development of
complex industrial systems [1]. They can be expressive and unambiguous
specification methods, and formal verification tools provide for powerful
debugging in early stages of design. For these reasons, in certain application

187

fields, e.g. railways, formal methods are even becoming part of standards [2,
5]. However, the application of formal methods does not come for free.
Formal methods require a training effort; they can increase costs, slow down
the process of development, and involve changes on the development cycle.

This paper describes a project developed by a major company in col-
laboration with IRST, where formal methods have been integrated into the
development process of a safety-critical industrial system. The system un-
der design is a complex, safety-critical, embedded control system, realized by
several distributed, communicating software subsystems. The system fea-
tures several modes of operation, and performs complex interactions with
the environment. The details of the system (simply called SYSTEM in the
following) and the name of the company cannot be disclosed at this stage
of the project. However, this paper is rather independent of the specific
features of the SYSTEM. We will focus on the methodological aspects of
the project, and particularly on the solutions adopted during the develop-
ment to limit the costs of formal methods, though retaining their benefits.
Given the complexity and the safety-critical nature of the SYSTEM, a major
project requirement was to take advantage of formal methods to develop
a high-quality design. This was to be achieved within strict project dead-
lines, and involved the training on-the-job of design engineers on the formal
methodology.

In order to meet such requirements without introducing a major bot-
tleneck, the introduction of formal methods was carefully evaluated. The
development process, based on a spiral model, was structured and selectively
integrated with the application of formal systems to the design of the most
important components and functions. This was achieved by structuring the
informal specifications in a modular way, and integrating them with formal
descriptions of the subcomponents and of the system requirements. Model
checking was used to validate the actual formal descriptions used as part of
the specification. In order to make the validation task feasible, a tool was
developed to produce formal models of the SYSTEM and its environment
starting from the independent formal specifications of the subcomponents.
This allowed to easily adopt a variety of abstractions depending on the prop-
erty under analysis. The formal description and extensive simulation have
been useful to validate a core of the system specifications, pinpointing some
flaws in the starting informal specifications and feeding the implementors
with detailed and non-ambiguous descriptions of the functions.

The paper is structured as follows. Section 2 provides an overview of
the SYSTEM. Section 3 describes in detail the requirements and constraints

188

System

/ \

Operators Actuators Sensors

Figure 1: The SYSTEM and its environment

of the project. Section 4 discusses the specific difficulties in the project and
the adopted solutions, focusing on the design of a custom specification and
validation methodology, and of a tailored support tool. Section 5 discusses
some results. Section 6 draws some conclusions and sketches possible future
work.

2 Informal description of the SYSTEM

2.1 Environment

The SYSTEM operates within of a complex environment, interacting with a
number of different actors, using several communication protocols (as shown
in Fig. 1):

e a number of sensors are connected to SYSTEM. They convey hetero-
geneous data concerning the physical status of the environment and
time-varying constraints which must be obeyed by the SYSTEM. For in-
stance, informations indicating the faulty status of a controlled device
can suggest that the SYSTEM must enter a different (e.g. degraded)
mode of operation.

e several actuators of different kind allow the SYSTEM to control the op-

189

SYSTEM

PLATFORM#1 PLATFORM#2 PLATFORM#n

CpPU1| | CPU2 CPU1| |CPU2 CPU1| | CPU2

Figure 2: The SYSTEM architecture

erations according to the specified rules and the status of the external
environment.

e human operators may interact with the SYSTEM, sending commands,
selecting operation modes, and providing additional information to
respond to data requests.

2.2 Functionalities

The main functionality of the SYSTEM is to determine a safe behaviour
which meets the constraints specified from the environment. In order to do
so, the SYSTEM is required to analyze the information acquired from different
sources, integrate it, and respond suitably to the resulting conditions. This
functionalities can be performed according to different operation modes,
which can be selected by a human operator or entered depending on the
informations conveyed by sensors. The SYSTEM must guarantee - as much
as possible - the safety of the operations in spite of possible misbehaviours of
some of the actors interacting with it. For instance, in case of communication

190

failure with the external environment, the SYSTEM might aim at a safe,
“inactive” state. Under certain particular conditions, however, it must be
possible for the human operator to override the behaviour rules determined
by the SYsTEM. Finally, the system must be fail-safe, i.e. it must be able to
tolerate faults without producing unsafe behaviours, possibly maintaining
some of its most important functionalities.

2.3 Architecture

In order to provide a better guarantee against hardware failures, the Sys-
TEM adopts an architecture based on redundancy, shown in figure 2. At the
hardware level, the SYSTEM is built on several independent hardware plat-
forms. Each platform runs a pair of CPUs, with a 2-out-of-2 exclusion logic,
a run-time checking mechanism ensuring that the application program is ex-
ecuted counsistently. The platforms communicate using a field bus systems
based on redundancy.

At the software level, the SYSTEM is composed of several distributed
programs, running on the different platforms. Each program performs one
or more blocks of functionalities, called “functional units”. Functional units
communicate according to a point-to-point paradigm, implemented by a
complex communication protocol. In normal functioning mode, one of the
platforms is in charge of performing the SYSTEM’s high level functions and
commanding the other platforms. The other platforms take care of inter-
acting with the external environment, performing logging activities, com-
manding the actuators, and so on. The SYSTEM also implements a form
of functional redundancy, by doubling the platforms able to perform the
functions of the master platform. Two such units are run in parallel, one
actually performing the task while the other is in a “hot standby” status. A
master /slave switch protocol is used to guarantee that a correctly function-
ing platform is in charge. Finally, the SYSTEM is a multi-master system: in
case both master units fail, one of the slave units is designed to guarantee
that a core of functionalities are provided.

3 The project

The aim of the project was to integrate formal modeling and verification
techniques within the development cycle of the SYSTEM in order to enhance
the confidence on the correctness of the SYSTEM itself.

191

In order to pursue this objective, it was agreed to proceed to the formal-
ization of a core of critical functionalities, and validate them against some
of the designed tests. The selection of such paradigmatic functionalities and
tests was carried out based on the analysis of the informal functional system
specifications, provided as an input by the project’s committant.

The project featured some relevant additional requirements and con-
straints. In particular:

1. the design team was required to use the OBJECTGEODE set of tools as
the means for formal modeling and validation. OBJECTGEODE adopts
SDL [4] as its basic modeling language (although the STATECHART
formalism [7] is also supported). Various formats are allowed for de-
scribing properties that should be obeyed by the system: propositional
stop conditions, message sequence charts ([6]), GOAL observers [9].
The key tool of the OBJECTGEODE set is a SDL simulator which al-
lows various forms of explicit state model checking, e.g. exhaustive,
interactive.

2. The software architecture was to be taken into account in the analysis
of the integration of the formal methods into the development process.
The details of the software architecture are explained in section 4.

Finally, the project was subject to rather tight time constraints. The
activity was carried out by a design team involving 6 people over eight
months of elapsed time. This included a cross-fertilization phase where the
IRST team and the design engineers exchanged know-how the use of formal
methods and on the application.

4 The approach

4.1 Structured formal specification methodology

Integrating formal methods into the development of the SYSTEM presented
a variety of issues, related to its nature and size. It is widely known that
applying formal methods to formally validate large software systems can be
very hard, and often unfeasible, mostly because of the heavy computational
costs of validation processes. A typical problem when using model checking
techniques such as those implemented by the OBJECTGEODE tools consists
in the state explosion of the model. This is due to the enormous number of
combinations of the state variables which might occur during the simulation

192

Figure 3: The software architecture of a functional unit

of the model. Several techniques can be used to reduce - often by orders of
magnitude - the size of the search space, e.g. driving the search, splitting the
search space, abstraction [3, 8]. The task of selecting and fruitfully applying
a combination of these techniques is very hard by itself. For instance, the
correct degree of abstraction of a concrete system depends on the properties
which we intend to prove on it, and on finding a suitable representation for
those parts of the system which are most critical in terms of computational
effort during the simulation.

A different issue stems from the requirement of integrating formal meth-
ods into a dynamic development process, where specifications may evolve
over time. This implies that a tight connection must be established between
the system specifications, the test specifications and their respective for-
mal modeling, and that it must be possible to maintain conveniently such a
connection over time. This can only be achieved by structuring the specifica-
tions and the models in a tightly coupled and modular way. Thus we had to
design a modeling methodology featuring (a) modularity and (b) amenabil-
ity to (efficient) formal validation. We took advantage of the structure of
the SYSTEM software architecture, preliminarily analyzed by the software
team of the industrial partner, to design a tailored specification and vali-
dation methodology for the SYSTEM. Each platform realizes one or more
functional units by executing them in a reactive loop. Each functional unit
must terminate before the next is run; a time-out alarm mechanism is imple-

193

System
Regq.
Test

\ % Spec.

l I

Formal Validation

A\\N

Formal Formal
Model Requirements

Testing

System Test
Code Cases

Figure 4: The development cycle of the SYSTEM

mented. In the reactive loop, each functional unit first performs the input,
then executes, and finally delivers the outputs to the other units. Figure 3
depicts the software architecture of one of functional units: a functional unit
is described as a tree hierarchy of finite state machines (“machines” from
now on). Machines transfer control synchronously by activation/return sig-
nals which may deliver a variable number of values.

Based on this architecture, we chose to model each machine indepen-
dently, and to describe formally the interfaces presented to the other ma-
chines. Such a model would be integrated as a part of the machine’s specifi-
cation. Thus we impacted the previously existing specification methodology
by providing a clear rational for modular partitioning of the specifications,

194

and by itegrating tormal and intormal aspects ot the specihications mnto a
unique repository. In this way, modifications to machines are easily reflected
into the specifications and the formal modeling alike. Figure 4 clarifies our
integration model of formal methods into the standard development cycle
of the SYSTEM. The shaded box represents the formal phase of the develop-
ment. In the standard development cycle, informal system requirements are
the starting point to obtain informal system and test specifications. These
are translated by the software team into system code and test suites respec-
tively; these, in turn, are used in the testing phase. By formally defining the
system and test specifications, a formal validation phase becomes possible
independently from the existence of the system code. Indeed, it is possible
to intertwine formal modeling/validation and coding phases in order to start
from a selected kernel of the system, and to enrich it by adding details at
subsequent phases. This allows the V&V teams and the coding teams to
work in a pipeline chain, reducing the time impact of the integration. The
discovery of inconsistencies in the formal validation phase has an impact
over both the formal and informal descriptions of the system and/or of the
test specifications. Moreover, by modeling subcomponents independently, it
becomes easy to design a variety of abstractions of a machine, keeping its
external interface, thus allowing for test-driven modelings of the system.

4.2 Support tools

The OBJECTGEODE tools do not provide any specific means to model and
validate nets of hierarchies of synchronous finite state machines defined in-
dependently. This is due, in particular, to the nature of the SDL lan-
guage they adopt. Basically, SDL allows the specification of finite state
machines (SDL processes, and sub-processes called services) which commu-
nicate asynchronously via signals sent over point-to-point channels; a signal
may convey a fixed number of values. Each process features an independent
variable namespace, shared by its sub-processes. Standard function and pro-
cedure constructs are also provided. Within this frame, we identified two
main choices to describe the combination of functional units starting from
independent descriptions of machines:

e Describe each functional unit as an SDL process, and each machine
of the unit as an SDL service, representing procedural invocations by
input/output handshaking protocols. However, this solution adds to
the complexity of the modeling, since single synchronous invocations
expand into sequences of SDL constructs. Furthermore, this solution

195

Figure 5: An example of synchronous communication

involves modeling intermediate states to represent the points of control
transfer. We experimentally observed that such additional states cause
a combinatorial state explosion, making it often unfeasible to proceed
to the validation task. On the other this modeling style allows for the
observation of intermediate control states, which might be useful for
debugging purposes when analyzing simulation traces.

Describe each functional unit as an SDL process, and each machine
of the unit as an SDL procedure. This solution avoids the intermedi-
ate states problem caused by the services, and procedural invocations
would be represented via the SDL procedure call mechanism. How-
ever, several representational issues arise. First, the SDL only admits
fixed-arity interfaces for procedures, whereas machines may be invoked
in several different modes by their parents using different sets of pa-
rameters. This would force the formal modeler to take care of defining

196

and using complex “union” ntertaces. Moreover, persistent states
would be represented by global variables; this raises the issue of name
clashing between variables referring to different machines - a big issue
when dealing with units containing dozens of machines. On the other
hand, removing the intermediate states enhances the model’s simula-
tion efficiency but decreases its traceability: when a misbehaviour of
a functional unit is found, it becomes hard to detect which machine
caused it, since no intermediate control state is recorded within the
trace.

Our solution to these problems involved the following steps:

1. design a tailored extension to SDL in order to express in a compact and
meaningful way synchronous control transfer between machines (as
well as asynchronous communication between functional units). We
called this extension SDLT. The extension is minimal: the standard
SDL send/receive constructs are adopted for modeling asynchronous
communication; a pair of constructs (“GO” and “RET”) are added to
model synchronous control transfer. Figure 5 shows a simple example
of usage of the synchronous control transfer constructs. The machines
C1 and CO0 realize a simple two-digit decimal counter. C1 keeps track
of the decades values and plays the master to C0O, which keeps track
of units. The counter is activated by sending a “Tick” signal to C1.
C1 activates CO in turn. CO updates the units value and informs C1
whether a carry occurred. If needed, C1 updates the decades value,
and returns a carry result. Some details, e.g. global type declarations,
are omitted for simplicity.

2. design a simple language to describe the topology of the system, and
of each functional unit composing it. In particular, the language de-
scribes non-ambiguously the hierarchical structures, and allows tag-
ging each machine with an identifier that indicates whether its ex-
ecutable realization should follow the service or procedure modeling
paradigm. Moreover, it is possible to specify that certain machines
are “fake”, i.e. empty placeholders in the hierarchy. This allows to
conveniently select relevant parts of a model, e.g. depending on the
test that we intend to execute on it.

3. build a custom software to compose hierarchies of independent ma-
chines (specified in SDL™) into a unique finite state machine (rep-
resented in standard SDL). Such a tool models and combines the

197

macnines 101l0WINg the Service Or procedure paradigm, according to
annotations provided together with the topology of the system. This
is useful when debugging complex models: the traces produced by ver-
ifying procedure-based models can provide a detailed explanation of
the model’s behaviour, by using them to drive the execution of the
corresponding service-based models (which in most cases would not
be amenable to exhaustive verification). We called the tool SDLSDL.

We stress here that the tool is tailored to the architecture of the SYSTEM,
in order to obey the tight time constraints of the project. For instance, no
attempt has been made to consider hierarchies other than trees (e.g. DAGs).
Also, we developed the tool to feature a very simple error handling, and no
attempt is made for error recovery. Figure 6 describes the behaviour of the
SDLSDL tool. The tool receives the following input:

e A declaration of the functional units composing the SYSTEM;

e For each functional unit, the description of the hierarchy of machines
it contains, using the simple language described previously;

e For each machine, its description in the SDL™ format. The tool cross-
checks informations concerning the topology of the hierarchies in the
functional units using the SDL™ descriptions. Moreover, it is in many
cases capable of completing an incomplete topological specification.

As an output, the executable SDL model of the system is produced,
where procedures or services are used to model machines according to the
user’s specification. This makes it very easy to produce both the service-
based and procedure-based executable models of the system, and use both
of them, taking advantage of their different features. For instance, we used
procedure-based models to produce bug traces, and service-based models
to track bugs down by driving the search with such traces. Moreover, the
SDLSDL tool produces a report file which describes the complete topology
of the system, and the set of the signatures of the machines. This can be
useful to complete/cross-check the functional specifications.

5 Results

We applied the specification and validation methodology to the selected
functionalities of the SYSTEM. In particular, we focused on some critical

198

GO | O

Y| (GO

;A0

Figure 6: The SDLSDL conversion

199

functionalities of the master functional unit. We described the startup pro-
tocol for the SYSTEM, and some functionalities related to the handling of
vital commands coming from the environment.

The resulting models have been suitable to exhaustive validation under
selected environmental hypothesis; a typical test would involve visiting in
the order of 20000 states, each state occupying approximately 1600 bytes of
memory. An exhaustive simulation run would take 30 to 70 seconds on a Sun
Sparc 10 workstation running Solaris 2.5 and equipped with 128 Megabytes
of RAM. As a result of our exhaustive simulations, we pinpointed some mi-
nor underspecifications and misalignements between the specifications of the
various machines. More importantly, when testing against the formal mod-
eling of two of the system requirements derived from the test specifications,
we discovered two problems which might had potentially led the SYSTEM
to unsafe behaviours. The specifications were revised accordingly. At a
methodological level, a major result consisted in designing the structured
specification methodology, which is currently in use for the ongoing project.

6 Conclusions

Our experience in integrating formal methods into the development cycle of
a safety-critical software systems has highlighted the advantages and risks
of the formal approach. In particular, in order to reduce the cost of the
introduction of an additional formal specification/validation, we found it
vital to design a custom, application-dependent specification methodology,
which takes advantage of the specific system structure. Also relevant to the
success of the project has been the design of a specific custom tool to allow
the exploitation of existing, powerful general commercial verification tools on
our custom methodology. We think that these conclusions have a character
of generality, i.e. that the success of applying formal methodologies is strictly
related to the possibility of tayloring them to the specific object under exam.
This may allow scaling up in the dimension of the tractable problems, which
is the real issue in handling the formal modeling and validation of real-life
systems.

References

[1] J. Bowen. Formal Methods in Safety-Critical Standards. Oxford Uni-
versity Computing Laboratory Technical Report, 1995.

200

2]

3]

J. Bowen. The Industrial Take-Up of Formal Methods. Oxford University
Computing Laboratory Technical Report, 1995.

E. Clarke, O. Grumberg, and D. Long. Model Checking. In Proceed-
ings of the International Summer School on Deductive Program Design,
Marktoberdorf, Germany, 1994.

J. Ellsberger, D. Hogrefe, and A. Sarma. SDL - Formal Object-oriented
Language for Communicating Systems. Prentice Hall Europe, 1997.

European Commitee for Electrotechnical Standardization. FEuropean
Standard - Railway Applications: Software for Railways Control and
Protection Systems. EN 50128, 1995.

J. Grabowski, P. Graubmann, and E. Rudolph. The standardization of
Message Sequence Charts. In Proceedings of the IEEE Software Engi-
neering Standards Symposium, pages 48—63, Brighton, September 1993.
IEEE Computer Society Press.

D. Harel and E. Gery. Executable Object Modeling with Statecharts. In
Proceedings of the 18th international conference on Software engineering,
pages 246-257. ACM, March 1996.

J.R. Burch, E.M. Clarke, D.E. Long, K.L. McMillan, and D.L. Dill. Sym-
bolic Model Checking for Sequential Circuit Verification. IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems,
13(4):401-424, April 1994.

Verilog. ObjectGeode SDL Simulator User Manual - The GOAL lan-
guage. Verilog, 1999.

201

202

Conditions for synthesis of communicating
automata from HMSCs

Loic Hélouét, Claude Jard

IRISA/CNRS
Campus de Beaulieu
35042 Rennes cedex FRANCE
helouet@irisa.fr,jard@irisa.fr
http://www.irisa.fr/pampa

Abstract

Formal methods can now be used at early stages of the development process. This
increases the need for consistency between two levels of formalism: a declarative level
of scenario type, and an operational level of automata type. It is particularly true in
the telecommunications world with the joint use of standardized languages like High-
level Message Sequence Charts (HMSCs) and SDL. So it is natural to consider the
transition from one level to another by automated synthesis mechanisms. Algorithms
for synthesis of SDL communicating systems from HMSCs have been proposed these
last years. However, the theoretical power of HMSCs is such that only a subset of
HMSCs can be reasonably treated. Identification of the limits of synthesis is still in
its early stages. In this article we show for the first time a necessary condition so that
synthesis preserves behaviours. This condition relies on a property of generalized
local choice and reconstructibility of the local sequencing. It is decidable and we
present algorithms that could be implemented in practical synthesis tools.

Key words: Message Sequence Charts, synthesis, distributed systems.

1 Introduction

Specification of distributed systems starts at a high level of abstraction. An
intuitive formalism must be used to capture the behaviours of communicating
entities, leaving implementation details for later refinement steps. Two main
approaches can be distinguished. The sequential approach (mostly based on
communicating automata) emphasizes sequences of events within processes of
the system. The specification is given as behaviours of single processes, that
contain communication events. Languages like SDL or Estelle (5) can be used
for this purpose. They are equipped with tools that allow many formal ma-
nipulations, ranging from simulation to code generation. The second approach

Preprint submitted to Elsevier Preprint 6 March 2000

203

is communication-based. It emphasizes on communications between process-
es. The specification is given through patterns of actions and communications
performed on different processes. Use cases and scenarios are examples of such
kind of specification formalisms.

The main drawback of the sequential approach is the difficulty to reason about
global properties (even the simple fact that a given sending event matches a re-
ceiving event). On the other hand, sequential communicating processes can be
directly implemented, as they just represent local sequences of communication
primitives and internal actions.

Scenarios have the advantage to give a global view of the system activity.
Causalities and concurrency are explicitly represented. Nevertheless, compos-
ing scenarios is not an easy task, and the overall meaning of a specification
can be less intuitive than expected. For example, new concurrency may be
introduced during sequential composition. Furthermore, scenarios are not di-
rectly implementable (in a distributed way). This may explain why they are
often restrained to documentation purposes in methodologies like UML (8),
and in the SDL-based tools.

Transforming a scenario model into a set of communicating finite state ma-
chines is a first step towards their implementation. This goal needs to provide
answers to questions such as:

e Is a scenario implementable?
e If the answer is no, what should be changed to make it implementable?
e [s there a class of scenarios which is known to be easily implementable?

Algorithms for synthesis of SDL communicating systems from HMSCs have
been proposed these last years. But the theoretical power of HMSCs is such
that only a subset of HMSCs can be reasonably treated. Identification of the
limits of synthesis is still in its early stages. In this article we show for the
first time a necessary and sufficient condition such that synthesis preserves
behaviours. This condition relies on a property of generalized local choice
and reconstructibility of the local sequencing. It is decidable and we present
algorithms, which could be implemented in practical tools for synthesis.

This article is organized as follows: first section describes HMSCs and defines
the notion of language behaviours and of reconstructibility. Section 3 provides
a state of the art of synthesis methods from HMSCs. Section 4 presents our
target model of communicating finite state machines (CFSM) and formalizes
the synthesis approach used by (1; 7) to synthesize SDL from HMSCs. Section
5 outlines the problems met by this approach, and proposes a condition on
HMSCs that would make it valid with respect to languages equivalence.

204

2 Message Sequence Charts

This section introduces Message Sequence Charts, a scenario formalism stan-
dardized by the ITU (11). MSCs are defined by two levels of specification:
basic Message Sequence Charts, which define simple communication scenar-
ios, and High-level Message Sequence Charts, a kind of scenario automaton,
that composes basic charts.

2.1 Basic Message Sequence Charts

Basic Message Sequence Charts (bMSCs for short) model a communication
pattern between processes (called instances). Each instance defines a sequence
of events, and is represented by a vertical axis. An event can be a message
emission or reception, a timer operation, or an atomic action. As no precise
meaning is associated to timer events within this article, they will be consid-
ered as atomic actions. Notice the very important fact that communications
are closed: sending and receiving of a message are localized in the pattern.
This explains the decidability results presented in the paper. A bMSC de-
fines precedence relations on events: a message emission must precede the
corresponding reception, and events are totally ordered along instance axis.
Therefore, a bMSC can be formalized as a finite, non-autoconcurrent labeled
partial order.

A bMSC is a tuple M = (F, <, I, $) where:

E' is a finite set of events,

< is a partial order relation (antisymmetric, reflexive and transitive) called

causal order on events,

e [is a set of names of instances that perform at least one action in M, and
is called the set of active instances of M.

e ¢ : FF — I is a labeling of events. It is required that this labeling is not

auto-concurrent, which means that events belonging to the same instance

are totally ordered (form chains):

V(el, 62) € E2, qb(el) = ¢(€2> — (61 < 62) V (62 < 61)

Slightly abusing the notation, we will note ¢(E) = {i|3e € E A ¢(e) = i}
the set of instances appearing in any set of events E. For any MSC M, we
will note min(M) = {e € E|fle’ # e Ae' < e} the set of minimal events
of M, and min;(M) = e € El|p(e) = i ANVe',p(e') = i,e < € the mini-
mal event on instance ¢ € I. For any event e € E, pred(e) = {e'|e’ < e}
will denote the set of predecessors of e. We will also denote by em(e) the
sending event corresponding to the receiving event e. For any labeled order

205

M = (Ex, <aro I, ¢ur), for any set E' C Eyy, we will denote by Mg the
restriction of M to events of E'.

The events of E)y; can be of three types: send(m) to j for the emission of the
message m, rec(m) from j for the reception of the message m, and action
for an internal event (atomic action, or operation on a timer). We will often
note !m the sending event, and 7m the receiving event for a message m.

Consider, for example bMSC M in Figure 1. M represents a communication
pattern between two processes A and B, and can be formalized by a labeled
partial order M = (Ey, <, Ins, oar) where :

Ey ={ e =send(ml) to B,ey = send(m2) to B,

e3 = rec(ml) from A, ey = rec(m2) from A}

L4 SM: {(617 62)7 (617 63)7 (627 64)7 (637 64)}

[] IM - {A, B}

® ¢M - {(617 A)a (62, A)7 (637 B)a (64, B)}

bMSC M
[A B
el ml
o e3
e4

-

Fig. 1. An example bMSC.

Standard notation of bMSCs also allows for the definition of a zone on an
instance axis called co-region, in which events are not ordered. According to
the assumed semantics of co-regions, it can mean that events are concurrent, or
that the order is not yet defined, and should be specified in further refinements
of the specification. As we do not consider co-regions as a central point for our
approach, we leave them for further extensions of our work. Therefore, events
will be considered as totally ordered on an instance axis.

2.2 bMSC automata (HMSC)

bMSCs only allow for the specification of simple scenarios. A higher level no-
tation called High-level Message Sequence Charts (HMSCs for short) is used
to define more elaborated behaviours. Longer patterns can be constructed by
sequentially composing bMSCs. HMSC H; in Figure 2 is a sequential com-
position of bMSCs M; and M,. The semantics of the sequence of bMSCs

206

defined in the standard is a weak sequential composition'. The result is an
instance-by-instance concatenation, where, for each instance, the maximum
event of the first bMSC is linked to the minimum event of the second bMSC.
This gives to MSCs an interesting expressive power since communication mes-
sages can be accumulated between instances by concatenating basic patterns.
For algorithmic reasons, some authors restrict the composition to a strong
sequencing, forcing a synchronization barrier between each pattern. We think
this dramatically decreases the modeling power of MSCs. Let us consider a-
gain the example of Figure 2. Imposing a strong sequencing between M; and
M, forces instance A to wait for a synchronization with instance B before
sending message mso. Therefore, an implementation of H, assuming strong se-
quencing between M; and My would have to introduce new communications,
and the only trace defined by HMSC H; would be !mq.7mq.!'msy.7my. However,
we think there is no reason to delay a process in a distributed system when
no message reception is expected. Moreover, the bMSC decomposition of a
specification is arbitrary, and is more the result of a need to reduce the size
of charts than the expression of a synchronization. So, HMSC H; in Figure 2
should be considered equivalent to HMSC H, in Figure 3, and defines two
possible traces: !mq.7mq.!mg.7mo, and 'mq.!my.7my.7ms.

HMSC H1
Y bMSC M1 bMSC M2
A B A B
Ml \) \) \) \)
ml m2
/\

Fig. 2. HMSC H;: sequence of bMSCs M; and M,.

HMSC H2

\/

A B
\ | \ |
ml
ﬁ
/\

Fig. 3. HMSC Hj equivalent to HMSC H; in Figure 2.

bMSC M3

Let us define the sequencing operator o on two MSCs M; = (Ey, <y, 11, ¢1)
and My = (B, <o, 13, ¢3): My o My =< E, <ppomy, Iy U Iy, ¢ >, where:

1 Weak sequential composition is close to the Pratt’s local sequencing (9), where ¢
defines locality.

207

A B C D

- m2 m3
wolm || © - P
m4

Fig. 4. Chain by chain concatenation of basic message sequence charts.

e F is the disjoint union of £y and Ey : E = ¢1(FEy) U py(Ey) with ¢ (Fp) N
2(Ey) = 0 and @1, g are two isomorphisms.

o Veel € B, e <pom, € iff o1i(e) <1 prt(¢) or pyl(e) <o gpt(e!) or
A(er, e2) € p1(Er) X 0a(Ea) + ¢rpr (1)) = oy (e2)) A t(e) <1 ex A
€2 <o 05 ()

o Ve E, ¢(e) = pr(pr'(e) if e € p1(Er) or ¢(e) = da(py '(€)) if € € pa(Ey)

More intuitively, sequential composition consists in ordering events e; in bMSC
M; and e, in bMSC M, if they are situated of the same instance, and then
calculating the transitive closure of the partial order obtained. An example of
sequential composition is provided Figure 4.

The standard HMSC notation also contains a parallel composition operator,
that will not be considered in this article. In most of the cases, HMSCs com-
prising parallel composition can be translated into HMSCs comprising only
sequence and choice operators. Now, consider HMSC Hj in Figure 5: HMSC-
s H, and Hj are composed within a parallel frame (parallel composition is
denoted by [|).

HMSC H3 HMSC H4 HMSC H5

&) ol B
= |5

bMSC M1 bMSC M2 bMSC M3 bMSC M4 bMSC M5

M E\EEHE

Fig. 5. HMSC Hj comprising two parallel loops.

This example comprises two potentially infinite loops that behave in parallel.
When one of the operands stops looping, the other specification also have to
stop. Therefore, this specification contains an implicit synchronization, that
can be compared to the non-local choice described in section 5.2. As we want to
avoid that kind of specification, we limit our approach to HMSCs comprising

208

choices, sequences, and loops. Lhose HMSUs can be defined using a fhnite
automaton on bMSCs.

Definition 1 A HMSC is a graph H = (N, —, M, [, ng), where:

e N is a finite set of nodes,

— s the transition relation (C N?),

M is a set of bMSCs, on disjoint sets of events. Each bMSC M € M is a
tuple M =< Enr, <ary Ing, Oar >,

[is a labeling function on transitions (1 : N> — M),

n, 18 the starting node of the graph.

Definition 2 A finite path of a HMSC H is a word p = nyi..ny € N* such
that Vi € 1.k — 1,(n;,ni11) €—. Each path p = ny...ny defines a unique
order Op = My o..o Mg_y whereVi € 1.k —1, M; = I(n;,n;41). An initial path
1S a path starting from nyg.

Definition 3 A HMSC H defines a partial order family O(H), which is the
set of orders {O,,,0,,,..} associated to the set of initial paths {py,p2,...} of
the automaton. By considering the total orderings that are compatible with at
least one order of O(H), we can define the language accepted by a HMSC.

Let M = (E,<,I,¢) be a bMSC, and let w = ey..e, be a word of E*. w is a
linearization of M if and only if: Vi € 1.n — 1,Yj > i, (ej,e;) €<. Let us call
L(H) the language described by a HMSC H. L(H) is the prefiz closed set of

linearizations defined by the elements of O(H). Let us note Exy = U Ey
MeM

the set of events of H. A word w € E%, is a word of L(H) if and only if:
Fv = w.u A Ip = ng..ny, initial path of H A\ v s a linearization of O,

Definition 4 A choice in a HMSC H is a node with more than one successor.
A choice ¢ defines an alternative between scenarios. Any loop-free path starting
from ¢ will be called a branch of the choice c.

2.8 Reconstructibility

A difficult question raised by synthesis is how to impose locally on the events
of each instance, the order globally defined by the HMSC. Knowing that the
message receptions are undergone and not controlled, a key point will be
the possibility of rebuilding the desired order from the order of the received
messages. It is what we call reconstructibility.

Definition 5 Let R be a partial order relation on a set of events E, and ¢
be a labeling of E. A non-local transitive reduction of R is the set of pairs

209

(e,e') € R such that ¢(e) # d(e') and Pe"|(e,e”) € RA (e",¢') € R. It is

denoted by e — €.

In a bMSC, the non-local transitive reductions of the causal order are the pair
of events associated to communications (when e »— €', then e is a message
emission and €’ is the corresponding reception).

Definition 6 The message-transitive closure (or mt-closure, for short) of a
partial order relation R is written R*™, and is a relation R' such that (e, €') €

R’ if and only if:

e i)(e,e')ER, or

e ii) e € E such that eR'e” N e"R'e', or

e iii) dey,en € E? such that ¢p(el) = dex) AetRes ANep — e Aey — ¢
Nole) = o(e) A(e' e) & R.

Obviously, as *™ is a closure operation, any element of R must be in R*™ (con-
dition 7)). i) expresses transitivity on the causality relation between events.
iii) e; and e, are message emissions, and e and €’ are the corresponding re-
ceptions. As no ordering between e and ¢’ exist, and as any pair of event of
the same instance must be ordered, the order between message receptions is
the same as the order between the corresponding emissions.

Definition 7 A pair (e, €') is said to be reconstructible by message-transitive
closure in a relation R if and only if (e,e') € R*™

The pair (e, €') in the first situation of Figure 6 is reconstructible. Dotted
arrows symbolize the reconstructed edges. On the other hand, the pair (e, ¢’)
in the second situation is not reconstructible, as e; = e. The pair (¢,) of the
third situation is not reconstructible either, as the pair (e, ¢') already exists.

el el

Fig. 6. Order reconstruction allowed by FIFO communications.

A synthesis method from HMSCs to communicating automata will be consid-
ered as correct if any ordering information is preserved by the transformation,
or can be reconstructed using the mt-closure.

210

3 State of the art

Synthesizing protocols from HMSCs is not a new problem. Several approaches
have been proposed. In (10), MSCs are seen as descriptions of finite state ma-
chines communicating synchronously, composed by means of regular expres-
sions. The proposed synthesis algorithm is to project the regular expressions
on each instance, to produce a protocol (i.e. a set of synchronously commu-
nicating finite state machines). Then the traces of the synthesized system are
compared with the traces allowed by the HMSC. If the set of traces are equiv-
alent, then the protocol is considered correct. This method suffers two draw-
backs. First, an erroneous protocol can be constructed from a specification
containing a non-local choice (defined in section 5.2), and potentially leading
to deadlock. Second, concurrency between MSCs is interpreted as interleaving.
When concurrency appears within an iteration, some correct protocols may
be considered as incorrect during the trace comparison.

(4) addresses the question whether a given bMSC can be the behaviour of
an implementation model. This approach distinguishes five different buffering
methods (ranging from one FIFO channel per message to synchronous com-
munications). Some implementation models are equivalent (they allow for the
implementation of the same bMSCs). Then, a definition of implementabili-
ty for a class of architecture is provided. A bMSC M is said to be weakly
implementable for a class architecture if at least one trace of M can be imple-
mented. A bMSC M is said to be strongly implementable if all traces of M
can be implemented. This article only addresses bMSCs, and implementabili-
ty of two bMSCs M; and M, on a given architecture does not ensures that a
composition of M; and M is implementable using the same communication
model.

(6) proposes to synthesize ROOM models from MSCs. ROOM charts are a
kind of asynchronous state-charts. MSC sequential composition is considered
as strong sequencing of orders, which reduces expressiveness (the language of
a HMSC is the concatenation of linearizations of the scenarios, without any
possibility of shuffling these words). The synthesis algorithm can be used on
a subset of MSCs that do not contain non-local choices, message overtaking,
or internal actions. Furthermore, MSCs are supposed to be normalized (i.e.
bMSCs do not have common prefix at choice nodes), and each instance is
supposed to execute at least one emission or one reception. Consequently,
the non-local choice decision required by this article can be computed by
considering only the immediate successors of choice nodes. We will see in
section 5.2 that the standard case of weak sequential composition demands to
search all reachable bMSCs to detect non-locality.

In (7), weak sequencing of HMSCs is considered. The HMSC is projected

211

on 1ts 1mstances, which gives a set ot skeletons ot nnite state machines, that
are translated into SDL processes. The synthesis method assumes an SDL-
like communication channel between each pair of communicating processes.
However, the SDL system allows more traces than those defined by the HMSC
specification. This is due to the impossibility of preserving an order between
message receptions from different senders. This approach is implemented in
MOST (Moscow Synthesizer Tool).

In (1) SDL processes are synthesized according to a given communication
architecture. The most permissive architecture associates a SDL channel to
each pair of communicating instances (the approach is then very similar to
(7)). Some more restrictive architectures may prevent even simple HMSCs
from being implemented. Again, the synthesized protocol may produce traces
that are not specified by the HMSC. This approach is implemented in the
MSC2SDL tool.

4 Automatic derivation of communicating finite state machines

Communicating finite state machines (CFSMs for short) are a commonly used
representation of distributed systems (each process is described by a finite
state machine that can send or receive messages). Communication channels
are FIFO: reception of a message m can be performed if and only if m is the
first message that can be consumed from the channel (see (3) for example).
This does not allow message overtaking, which can be nevertheless specified in
HMSC. Instead of considering a complex buffering mechanism for each process
in that case, we prefer to slightly modify the communication semantics. We
consider a message reception as possible if the message is present in the queue.
This communication semantics is very similar to SDL communication without
implicit message consumption.

4.1 Synthesis method

This section formalizes the approach defined in (1; 7). The target model for
synthesis is finite automata communicating through queues, one queue being
associated to each pair of automata.

Let H = (N,—, M,l,ny) be a HMSC describing the behaviour of a set of
communicating instances I, then:

e 'y = U F)sis the union of events of bMSCs in M.
MeM

212

o F); = {e|p(e) = i} is the restriction of Ej to the set of events performed
by instance 7.

A set of CFSM Ap = {A,}icr can be computed from H. Each CFSM 4; is a
tuple A; = (S;, E;, 6;, so,) such that:

e S; CP(E;) is a set of states,

e F; = E); is a set of events,

e 5, C S; X FE; xS; is a set of transitions. (s, e, s’) € §; if and only if:
- e € s, and

s'={e € E;| 3dp path of H such that O, = M, 0..0 M,
e c M1 and el — mini(op/Eop\ pred(e))}’
e so, = {e € E;|Tp initial path of H, and e = min;(O,)} is the initial sate.

More intuitively, a state is a subset of fireable events. An event can be fired
if it is contained in a state. The resulting state is composed of events located
on the same path as e that are allowed after the execution of e.

4.2 Language of CFSMs

A set of CFSMs defines a possibly infinite transition system.

A state of a CFSM system composed of A communicating machines is a pair
S = ({81}161..1(7 {wij}i,jel,,K), where:

e {s;}ic1.i is a set of local states,
e {w;;}ijci. .k is a word representing the messages transiting from i to j,

The initial state for a CFSM system is Sy = ({so, }ic1.x, {€, --., €}). Considering
any subword w of a buffer w;;, we will note |w|,, the number of occurrences
of the message m in the word w.

A transition from a state of the CFSM system to another state is possible if
one of the components of the system can perform it.

- 3jel.K : e€sjNe=rec(m) from i A w;; =v.m.v' A(s),e, s;) € 6;

AVe' =rec(m’) from i: (s;,€,s}) € dj,[vlm =0

S <5 S’ where §' = L P ——

A message of type m sent by a process ¢ can be received by an automaton A4,
in a state s; if the reception of m is an event that can be fired from state s,

213

and 1 m 1s the 1rst message 11 the bulier frrom ¢ to 7 that can be read 1n sate
Sj.
J

- JE€L.K :e€sjAe=send(m) to i A wj =vA(sj,e5;) €J;

S <5 8’ where §' = S (s1=sl =0}

- JjE€L.K : e€sjAe=action A (sj,e,5}) € J;

S — ', where §' = (5.3

A message emission or an atomic action can be performed by an automaton
A; in a state s; if and only if this event is allowed in s;.

This definition of communications allows us to generate automata for spec-
ification containing message crossing, which would not be possible with a
strict FTFO ordering. Consider the simple bMSC of Figure 7. This specifica-
tion contains a message crossing, which can however be implemented by the
communicating finite state machines of Figure 8.

bMSC M
p
A B
el ml
e2 m?2 e3
ed

-

Fig. 7. A simple bMSC.

mt | [[T]| om

®)

'm2 ml

Fig. 8. A simple CFSM implementing bMSC M of Figure 7.

Let us note L£(Ay) the language described by a set of communicating automata
Ap. A word w = ej.eq..¢, € E, is a word of L(Ay) if and only if S; —

214

S; =5 ... =2 S We will write S =2 S” when a state S’ can be reached from
state S using w. We will denote by s(w); the state reached by the automaton
A; after execution of w.

5 Conditions for language equality

A protocol Ay synthesized from a HMSC H is considered as correct if Ay
and H define the same language.

5.1 Soundness

The first step is to show that the synthesized CFSM is able to produce all the
behaviours defined by the original HMSC.

Theorem 8 For any HMSC H, L(H) C L(Ag)

proof:

Proving L(H) C L(Ay) is equivalent to showing:
Vw e Eyy,w e L(H) = w € L(Ap)
This is also equivalent to proving the property:

P:¥ne IN,Ywe EY,we L(H) = w e L(Apy)

Obviously, P is true for n = 0. Let us show that P true for n implies P true for
n+1. Let us suppose P(n) true, and P(n+1) false. Then, it means that there is
a word w € ER,, and an event e € Eq such that: w.e € L(H)ANw.e ¢ L(Ag).
Therefore dp = Mjo...oMy, path of H such that w.e is a prefix of a linearization
of p, and ¢(e) =i A (e & s(w); V (e =rec(m) from j A w;; # v.m.v')

o ¢ & s(w); if and only if there is a predecessor €’ of event e on instance i and
¢’ has not been executed in w. Therefore, w.e ¢ L(H), contradiction.

e ¢ =rec(m) from jAw;; # v.m.v" also leads to a contradiction, as w.e € L(H)
implies that any predecessor (and consequently an emission of m) appears
in w.

Therefore, we have proved L(H) C L(Ay). O

215

Unfortunately, the synthesis method defined previously does not ensures that
L(H) = L(Apg). Let us consider HMSC Hg of Figure 9: the traces defined
by Hg are !mi.7mq and !ms.?ms. The communicating finite state machines
synthesized from Hg (see Figure 10) also describe the traces !mq.!msy and
'mso!my. HMSC Hg defines an implicit synchronization between instances A
and B, that must agree on the scenario to perform. Clearly, this specification
can not be implemented without an additionnal synchronisation mechanism.
Such a situation is called non-local choice.
HMSC H6

bMSC M1 bMSC M2

=500 |)| 2

Fig. 9. A non-local HMSC.

A

Fig. 10. CFSM synthesized from HMSC Hg in Figure 9.

5.2 Non-local choice

The generally admitted meaning of non-local choice (2) is when more than one
instance can decide to perform a scenario or another at a choice node. The
intended behaviour is that the first instance able to perform the choice choos-
es a behaviour. The next instances reaching the same iteration of this choice
have to conform to the chosen scenario. This results in a behaviour in which
an instance “knows” what to do at a choice node without any communication.
However, non-local choices can not be implemented without adding commu-
nications to the system. In some particular cases, however, non-local choices
may express concurrency between scenarios, as in example of Figure 14.

A definition of non-local choice was previously given in (2). This definition
assumes that any instance should communicate with other instances on each
branch of a choice. This assumption limits the search for non-local choice to the
set of outgoing edges. However, when considering weak sequential composition
of bMSCs with disjoint set of instances, non-local choice is not a local property.
Therefore, a global definition of non-local choice must be provided. Consider
HMSC H; in Figure 11: choices seem to be local, but the decision to perform
a scenario can be taken by A or C'. The definition has thus to be extended.

216

HMSC H7 bMSC M1 bMSC M2

A B A B
ié [] [] [] []
ml m2
1 [M2 }
\%
bMSC M3 bMSC M4

N
ENIERIEE R
2T -1

Fig. 11. Non-local choice located on more than one choice node.

Definition 9 Let ¢ be a choice node. ¢ is local if and only if:

Vpr = cny..ng, mazimal loop-free path of H (¢ & mny..ng) from c,
Vpe = cnl..nj, mazimal loop-free path of H from ¢, Ye; € min(O,,),
Vey € min(Op,), ¢(e1) = ¢(e2).

For a local choice ¢, the instance deciding the behaviour at this point of the
specification will be called the deciding instance of choice c¢. From the definition
of non-local choice, the algorithm is straightforward. Note that locality can be
checked on loop-free paths (adding a pattern that already appears in a path
does not add minimal events).

Algorithm:
for all ¢,choice node in H do
P={(cn,I,J)c L nAT=d(min(M))AJ=d(M)}
MAP =) /* Maximal acyclic paths */
while P # () do

MAP = MAP U {(w.n,I')|lw=ny..nx Anp — nAn €w
ANw, I,J) € PAT =T U ($(min(M)) — J)}
P= {(wn,I'J)|(w,I,J) € P,w=ni.ngAny— nA
ngw ANJ =JUSM) I' =IU (¢p(min(M)) — J)}

end while
DI= |\UI /* deciding instances */
(w,1)EMAP

if |DI| > 1 then
H contains a non-local choice
end if
end for

As we only consider loop-free paths of HMSC H this algorithm terminates.

From now on, we will write Loc(H) when a HMSC H does not contain non-
local choices.

217

Theorem 10 Loc(H) #= L(Ag) C L(H)

Ensuring that « HMSC H s local does not ensures that the synthesis produces
a CFSM that is language equivalent to H

The automata produced for HMSC Hg of Figure 12 are described in Figure 13.
One can easily check that

w =!m1.7m1.!m2.!m3.7m3.!m4.7m4.... in a trace of Ay, but not of H (in H,
m2 must be received before m4 in that trace).

HMSC HS bMSC M1 bMSC M2
A B C A B D
O 1 |3 3 3
’_% -~ m
oM M
| |

Fig. 12. HMSC Hy

r71111 'm2

ST

m2
'm4 m4
Fig. 13. CFSM synthesized from HMSC Hg Figure 12

When synthesizing a CFSM system from a HMSC, the local ordering between
events may be lost at choice nodes. Consequently, a specification may reach a
state in which two messages m and m' can be received from different senders
by the same automaton A;. In the HMSC specification, m and m’ are mes-
sages from different bMSCs, and therefore their receptions are ordered (either
rec(m) < rec(m’) orrec(m’) < rec(m)). If A; do not have enough informa-
tion to reconstruct the ordering between rec(m) and rec(m’), a wrong trace
is allowed. This is what happens in the specification Figure 12: if bMSC M, is
choosen before bMSC My, then m; is sent before ms, and my must be received
before my4. Unfortunately, Ag do not have enough information to prevent the
reception of my.

Theorem 11 —Loc(H) #= L(Ay) € L(H)

FEven if H is a non-local Message Sequence Charts, the CFSM implementation

218

synthesized from H can be correct (consider HMSC Hy in Figure 14).
HMSC H9 bMSCMI
\/ A B 'm1
S ml @Q jjj
'm
| v C O ’o

m2

Fig. 14. Non-local HMSC with language equality.

5.8 Local sequencing reconstructibility

The locality condition is not strong enough to ensure that the CFSM gener-
ation of Section 4 produces a set of automata that is trace equivalent to the
HMSC specification.

Definition 12 A choice ¢ of a HMSC H is said to be reconstructible if and
only if:

e c s a local choice, and

e Vp path of H from c such that O, = By o Byo ..o B, with B;,i € 1.n
branch of ¢ , V& non-deciding instance, ¥(e,€') € p : e = ming(B;) Ne' =
ming(B;j) N1 < i < j < n, (e,€) is a reconstructible pair of <o, from
<o, \(Ei, x Ej,) by mt-closure.

More intuitively, a choice is reconstructible if removing the local ordering due
to bMSC sequencing on any non-deciding instance does not affect the mt-
closed ordering.

Definition 13 A HMSC H is said to be reconstructible if and only if any
choice in H is reconstructible. This property will be written Rec(H).

Imposing HMSC reconstructibility is weaker than requiring any message to
be acknowledged. The example of Figure 15 shows a HMSC in which two
messages are emitted by different instances and received on a single instance.
However, the order between the receptions is preserved by the translation in
Figure 16.

219

HMSC H10 bMSC M1 bMSC M2
D

v []

A B cC D A B
[]]] J [] J
O ml | m2] m5 m
‘ m7

Fig. 15. Reconstructible HMSC H;0.

@. 'ml

Fig. 16. CFSM synthesized from HMSC H;0 in Figure 15.

Theorem 14 Loc(H) A L(Ag) C L(H) = Rec(H)

proof:
Let us prove that L(Ay) C L(H) A —Rec(H) leads to a contradiction.

If Rec(H) does not hold, then there is a choice node ¢ in H such that:

By =< E1, <4, A, [1,ar > and By =< Ey, <g, Ag, I5, a5 > are two branches
of ¢, dp path of H from ¢ with O, = B; o By. There exists an instance z,
dry € By, ro € Ey, receiving events such that: ry = ming,), r2 = ming.,),
ry =rec(my) from i, 1y = rec(my) from j, i # j.

Let us call O the order O = (<o, —(FE1, X E,,))". From the definition
of Rec(H), we have (r1,73) ¢ O. As (r1,79) can not be reconstructed, for
any predecessor €' of ry in By, and for any successor e of r; in By, we have

(e,e') & O.

According to the locality of H there are two deciding events d; € F, dy € Ey
such that dy < 71, dy < 79 and ¢(dy) = ¢(ds). From the structure of the HMSC
H and from the derivation method, we know that there is an automaton
A, € Ay containing a state s, such that r; and o can be fired from s,. So,
from any global state S containing s,, 71 and 75 can be fired if m; and ms
have been sent.

220

We know that there is an initial path p, = ng....c in H leading to c. So, any
linearization v of O, is a word of L(H). As L(H) C L(Ap), we also have
v € L(Ag). Consequently, 35 such that S; — S. As we know that 7 and 7,
are minimal events, we have s, € S.

So, we can find a word w = v.dy.u.em(ry).dy.u’.em(ry) where u contains any
predecessor of dy in O, in L(H). We also know that w € L(H), therefore
Sy —= S" and as r; have not been fired, s, € S’. As m; and my have been
sent, and as ¢(em(ry)) # ¢(em(ry)), w.ry is a word of L(Ag). w.ry is not a
word of L(H), as dy < dy implies r; < r9 in any word of L(H). This contradicts
L(Ag) C L(H).O

Theorem 15 Rec(H) = L(Ay) C L(H)

proof:
Let us suppose that Rec(H) A L(An) € L(H), and let us show that it leads
to a contradiction.

If L(Ag) € L(H), then there exists a word w such that w € L(Ag) A w &
L(H). From the construction method, we know that w # €, so w is of the
form w = v.e, and such that v € L(Agx)Av € L(H). As v € L(H), then there
exists a path p € H such that v is a prefix of a linearization of O,.

v.e ¢ L(H) may hold for two reasons:

o i)V =pngir...Npyn, €& Eo,. Therefore, v.e ¢ L(Ag). Contradiction.
e ii) Vp' = p.ngiq...nk1n, there exists a sequence of events e;.e5...¢; such that
Vi€ 1l.k,e; <o, e and v.ej...ep.e € L(H).

As v.e € L(Ag), there exists a local state s, such that Sy — S A s, €
S A (8z,€,8,) € 6. As L(H) C L(Ag), v.ej...ex.e is also a word of L(Ap).
Three cases may appear: e is a sending event, an internal action, or a receiving
event.

e Suppose e is a sending event, or an internal action. Then there exists an
event e;, j € 1.k such that ¢(e;) = ¢(e) AVi < j, ¢(e;) # ¢(e). Therefore,
I(sy,€j,54) € O, e and e; are minimal event on instance x = ¢(e) for
branches of a choice c. According to the locality property, e; and e are
deciding events for their respective branch. So, O, is of the form O, =
M o...oM;oB;oB,, where By contains e; and By contains e. Therefore, Jp”
path of H, such that Oy = M;o...0M;0 By. So v.e € L(H). Contradiction.
e Suppose e is a receiving event. As v.e € L(Apy), any emission needed
for executing e is performed in v. Again, v.e ¢ L(H) implies that there
is an event ej,j € 1.k such that ¢(e;) = ¢(e) AVi < j,d(e;) # ¢(e),
and 3(sy,ej,s) € O, Still considering the locality of H, e; is also a re-
ceiving event, and there is a choice between two branches B; and B,

221

ej = mang (B), and e = man(By). 1t plem(e)) = pem(e;)), then according
to the semantics of reception, e cannot be executed before e; by Ag. So,
p(em(e)) = ¢(em(ej)). Of course, ¢(e) is not a deciding instance. So there
is a choice ¢ between B; and By, and a path By o By, such that (e;, e) can
not be reconstructed. Contradiction with Rec(H).

O

From theorem 14 and theorem 15, the following property holds true:
Loc(H) == (Rec(H) <= L(Ay) C L(H))

Using theorem 8, this property becomes:
Loc(H) == (Rec(H) <= L(Ap) = L(H))

Note that the proposition Rec(H) <= L(Ay) = L(H) is false (due to
theorem 11). Example of Figure 14 exhibits a non-local specification where
L(Ag) = L(H). Such a kind of specification contains hidden parallelism with-
in choices (instances A, B and C, D never synchronize).

5.4 Decision of reconstructibility

This section provides an algorithm for deciding the reconstructibility of a
HMSC H. The reconstructibility property can be decided on prefix of paths
originating from a choice.

Proposition 16 Ve, choice of H, ¢ is reconstructible if for any pair of branch
B;, Bj such that 3p, path from c¢ and O, = B; o B;, for any non-deciding
instance x, (ming(B;), ming(By)) is reconstructible from <p,op; —(Ej, X Ej,)
by mt-closure.

222

Algorithm:

for all ¢, choice node of H do
P ={(c.n,M)l|c LR n}
C=10/* Cycles *x/
MAP =) /* Maximal loop-free paths */
while P # () do
C=CU{MoM|(w=ecni.ngM)€EPAng M c}
MAP = MAP U{M o M'|(w = c.nqy..ng, M) € P Any, M Ane w}
P ={(wn,M o M")|(w=cny.ng, M) € P Any M An ¢ w}
end while
for all (B;,B;) € C x (MAPUC) do
if dz € I|(man(BZ),mznm(Bj)) Q (Bz o Bj — (BZ|I X Bj|m))*mt then
Order can not be reconstructed
end if
end for
end for

6 Conclusion

This paper proposed a formal definition of non-local choice for HMSCs with
weak sequential composition. Non-local choices can be detected on loop-free
(and therefore finite) paths of the HMSC. Then a procedure for synthesizing
CFSMs was proposed. The absence of non-local choices in a HMSC is not
a sufficient condition for ensuring the synthesis produces a correct protocol:
order reconstructibility is also required. Reconstructibility of an HMSC is also
decidable on loop-free paths, and could be implemented as a front-end for
protocol synthesis tools.

When a specification is non-reconstructible, some acknowledgment messages
can be added to transform it into a reconstructible one. A possible extension
of this work would be to consider an automation of these transformations.
Adding stamps to messages when necessary could also avoid executing non-
specified traces. Considering stamps as well as introducing co-regions (a weaker
ordering on instances than total ordering) would probably need to modify the
CFSM target model.

7 Acknowledgments

The authors are very grateful to professor Ferhat Khendek at Concordia Uni-
versity, for helpful discussions on formal aspects of synthesis from MSCs, and

223

on his tool MSC2SDL. We are also very grateful to Benoit Caillaud for his
comments on this work and suggestions for future extensions.

References

[1]

[10]

[11]

M.Abdalla, F.Khendek,G.Butler, New Results on Deriving SDL Spec-
ifications from MSCs, in Proceedings of 9th SDL forum, R.Dssouli,
G.Bochman & Y.Lahav editors, pp 51-66.

H. Ben-Abdallah and S. Leue, Syntactic Detection of Process Divergence
and non-Local Choice in Message Sequence Charts, in: E. Brinksma (ed.),
Proceedings of the Third International Workshop on Tools and Algo-
rithms for the Construction and Analysis of Systems TACAS'97, En-
schede, The Netherlands, April 1997, Lecture Notes in Computer Science,
Volume 1217, p. 259 - 274 Springer-Verlag, 1997

D.Brand, P.Zafiropulo, On communicating Finite-State Machines. Jour-
nal of the ACM, vol 30, No 2, April 1983, pp 323-342.

A. Engels, S. Mauw, M.A. Reniers: A Hierarchy of Communication Mod-
els for Message Sequence Charts. In: T. Mizuno, N. Shiratori, T. Hi-
gashino and A. Togashi (ed.): Formal Description Tecniques and Pro-
tocol Specification, Testing and Verification, Proceedings of FORTE X
and PSTV XVII '97, pages 75-90, Osaka, Japan, 18-21 November 1997.
Chapman & Hall.

International Standard ISO 9074, Information Processing Systems - Open
Systems Interconnection - Estelle: A Formal Description Technique Based
on an Extended State Transition Model, Geneve, 1989.

S.Leue, L.Mehrmann, M.Rezai, Synthesizing ROOM Models from Mes-
sage Sequence Chart Specifications, 13th IEEE Conference on Automated
Software Engineering, Honolulu, Hawaii, October 1998.

N.Mansurov, D.Zhukov, Automatic Synthesis of SDL models in use case
Methodology, in Proceedings of 9th SDL forum, R.Dssouli, G.Bochman
& Y.Lahav editors, pp 225-240.

OMG, Unified Modelling Language 1.1, September 1997.

V.Pratt, Modeling Concurrency with Partial Orders, International Jour-
nal of Parallel Programming, Vol 15, No 1, 1986, pp 33-71

K.Yamanaka, S.Komura, J.Kato, H.Ichikawa, Deriving Protocols from
Message Sequence Charts in a Communicating Processes Model.

TU-TS Recomendation 7Z.120: Message Sequence Chart 1996 (MSC96)
Technical Report, ITU-TS, Geneva, 1996.

224

A Practical Method to Integrate Abstractions
into SDL and MSC based Tools

Maria-del-Mar Gallardo and Pedro Merino

Dpto. de Lenguajes y Ciencias de la Computacion, University of Malaga,
29071 Malaga, Spain

Abstract

Many industrial oriented tools that employ SDL as the basis to develop complex
systems support very detailed specifications in order to perform tasks such as sim-
ulation, code generation or testing. But the size of the SDL model constructed for
these purposes makes the verification of M SC's more resource consuming, due to
the well-known problem of the state space explosion. This paper presents a pro-
posal in the direction of optimising the verification of M SC's without limiting the
use of SDL in the other tasks. The main contribution of the paper is the definition
of a practical automatable method to obtain intermediate SDL specifications suit-
able for the efficient verification of MSCs. The correctness of the transformation is
supported by the definition of a semantics framework that allows us to compare
different SDL models of the same system, each one with a particular abstraction
level.

Key words: automatic verification; abstract interpretation; SDL

1 Introduction

Automatic verification based on formal methods is becoming the most widespread
technique to increase confidence in the correctness of critical systems [18] [16]
[4]. However, in many projects, formal specifications are employed as very
detailed descriptions for simulation, automatic code generation or simple doc-
umentation, and these uses are not compatible with high quality verification.
The reason is that automatic verification is only fruitful when the model is an
abstract representation of the real system, with exactly the details necessary
to ensure that satisfaction of interesting properties in the model implies sat-
isfaction in the real system [19]. Nevertheless, many companies consider that

I Supported by CICYT TIC99-1083-C02-01, Spain

225

the cost of creating verification-oriented models may not be compensated by
potential improvement in the quality of their products and the verification is
usually poorer than desired. This problem is also a challenge in current indus-
trial oriented CASE tools like SDT[26] or Object Geode [27], which employ
the international standard formal methods SDL [20] and MSC [21] for specifi-
cation and analysis of correctness in the earlier phases of system development.

The problem that we address in this paper is how to improve the qual-
ity of the verification of SDL models against properties described with MSC
without interfering with the use of these languages for the other development
phases. We describe an automatable approach for transforming SDL code in
order to obtain more abstract models to be verified using less time and mem-
ory. This transformation method can be integrated into the tools that support
verification and the other phases of development.

Related Work

Our method is based on the Abstract Interpretation technique (AI) [2], which
has been mainly employed to improve the verification of systems against prop-
erties described with temporal logic ([3] [6] [23]). AI is based on the idea of
approximation: every program data is approximated by a higher level descrip-
tion by means of an abstraction function. When combined with verification, a
given abstraction function is employed to transform a model into a new (ab-
stract) one over which properties are analyzed. This approach was employed
in [3] and [6] for the verification of temporal properties expressed with CTL
and p-calculus, respectively. Recently, Graf and Saidi used the theorem prover
PVS for the automatic construction of the abstract model [10]. This work has
been extended to obtain a textual specification, which can be again abstracted
[1], [25] [24].

Dwyer and his colleagues use an Abstraction Library with already de-
signed abstraction functions in order to allow the translation of high level
programming languages (such as ADA or JAVA) to the input language to
model checker [7] [8]. This idea is also presented in [13].

Contributions

Compared with these related works, our proposal has the following main char-
acteristics:

(1) The method is applied to verify properties represented as Messages
Sequence Charts (M SC's), instead of temporal logic properties. The use
of this formalism makes easier the integration of abstraction in some
kinds of industrial applications, such as telecommunications, because the
requirements are usually represented in this manner.

226

(2) The abstraction produces a new textual (and graphical) SDL model, so it
can be analysed with the same tools than the original one. Furthermore,
new transformations can be applied to the abstract version.

(3) We consider two kinds of users with different knowledge about the ab-
straction techniques. The non-expert user takes the abstraction functions
from the Abstraction Library to automatically transform the model. The
expert designer defines these abstraction functions for different applica-
tion domains.

The paper is devoted to presenting the overall methodology to use abstraction
into SDT and the theoretical background to ensure property preservation 2.
The correctness is analyzed by defining the so-called generalized semantics of
SDL, which puts stress on the operational aspects of the language which are
not affected when abstracting data or operations (this idea was used in [22],
[15] and [5]). The rest of SDL characteristics are parameters of the semantics in
such a way that if we change them (by means of an appropriate abstraction)
the high level behaviour of the system remains unchanged. This approach
allows us to relate different SDL models of a given system, each one with
a particular level of detail, and its has been proved useful to reason about
correctness conditions for transformation [13]. Other existing semantics of SDL
are more well sutiable for describing the language and for implementing tools,
but they are too details to be used for reasoning in our context.

The organisation of the paper is as follows. In Section 2 we describe the
verification capabilities of SD'T and the subsets of SDL and MSC employed in
the paper are described. Sections 3 to 5 describe the practical aspects of the
paper. Section 3 presents the methodology to extend SD'T with abstraction
capabilities. Section 4 contains the kinds of abstractions that we consider, and
Section 5 shows an example of how to employ the Abstraction Library to re-
duce the state space of a system. Sections 6 to 8 describe the formal framework
to ensure the correctness of the transformations. Section 6 describes a gener-
alized semantics of SDL to reason about property preserving transformations
of SDL. Section 7 and Section 8 give the conditions to preserve correction and
the correctness results, respectively. In Section 9, we present conclusions and
future work.

2 Preliminaries

Although some knowledge of SDL and MSC is assumed, we now describe the
subsets of SDL and MSC considered in the paper and give an example that is
employed in the following sections. This section also explains the verification

2 Note that the same method can be integrated in similar tools like Object Geode

227

Process player 1(1) Process Game 1(1)

fffffffff N
j f N [oer \
oo R 'gl‘g;ge’v 3 ' |CountInteger;

,,,,,,,,,,,,

play play

Fig. 1. Processes Player and Game

capabilities of SDT.

2.1 Subsets of SDL and MSC

The formal languages SDL and MSC are in continuous evolution with new
standards from the International Telecommunication Union (ITU) periodi-
cally. The last versions incorporate structural language constructs, essentially
composition and object oriented concepts. Although the results in the pa-
per can be extended to cover full SDL-92 as well as High Level MSC, we
will concentrate in what is called Basic SDL in [20] and Plain MSC in SDT
documentation. Both languages have textual and graphical forms. As these
representations are equivalent, it is usual to present the specifications in the
graphical form and reserve the textual form for automatic processing.

The subset of SDL includes SDL processes, states, start and stop sym-
bols, input and output of signals with data, tasks, decisions, save symbols,
and timer mechanisms. Nondeterministic behaviour modeled by spontaneous
inputs and nondeterministic decisions is also considered.

Example 1 This subset of SDL is enough to model examples such as the usual
DeamonGame system, which is a de facto standard for SDL tutorials and papers
(partially given in Fig. 1). The process Game has an internal status, which can
have either state Winning or Losing. The status is changed every now and then
by a process Deamon. A Player has to guess when the status of the system is
Winning. The system status is probed issuing the signal Probe. If the status
during probing s Winning, you gain one point, otherwise one point is lost.

228

MSC Property1(concrete) MSC Property1(abstract)
AN Y
| process Player process Main process Player_absprocess Main_abs
Player ‘ ‘ Main ‘ Player ‘ ‘ Main

Newgame Newgame

process Game process Game_abs
Probe Request

Wijn Reply

Result Request

Score Reply

| <
Endgame Endgame
Gameover Gameover
Fig. 2. a) MSC for DeamonGame b) M SC for abstract DeamonGame

The current score can be asked for using the Result signal. OQur version of the
system contains a non-deterministic process Player that makes any number of
guesses before sending the Endgame signal.

MSC is usually employed to represent requirements as the message
interchange between communicating entities and their environment. When
employed with SDL, those messages would coincide with the signals, which
are sent (consumed) from (by) any part of the specification (an SDL system,
a block or a process). An M SC'is a particular diagram (or text specification)
which represents a particular scenario related to an SDL system. Fig. 2 a)
shows an M SC' with a message interchange in the system described above.

2.2 Verification in SDT

The role of SDL in SDT is to be the kernel language to design the software,
while the MSC language is employed to represent sequences of Observable
events, which are only a small subset of the actions in SDL (for example send
signal and consume signal). Thus the sequence M SC = ev; — ... — ey rep-
resents a user requirement. The verification of MSC against SDL is the most
important kind of analysis in this tool. Fig. 3 represents the role of both lan-
guages in the analysis of the systems. As in other similar tools, the simulation
can produce M SC's that can be employed as requirements for verification. The
user can also construct/modify the M SC's by using the graphical editor. The

229

veriication can be pertormed with two ditfferent objectives:

(1) Check that no execution path in the SDL system produces a sequence of
events matching the MSC (the SDL model does not verify the M SC).
Otherwise, the validator produces a trace with the erroneous behaviour.

(2) Check that the SDL model can exhibit at least one execution sequence
producing the scenario represented by the M SC' (the SDL model verifies
the MSC). Again, the validator shows the traces that match the M SC.

The matching between a path in SDL and the scenario in the M SC
holds iff all observable events produced by the entities in the M.SC" occur in
the SDL path in the same order. The events related to other entities (blocks,
processes) are ignored. The starting point of the execution sequence in the SDL
system can be an arbitrary state, but it must be the same than in the MSC
diagram. The meaning of each kind of verification depends on the user pur-
poses. The first one is especially powerful for locating and removing undesired
scenarios in the behaviour of the system, while the second one is employed in
order to know if the system can respond in a particular way.

Apart from the verification of M SC's, the validator can be also em-
ployed to check other important properties such as absence of deadlock, in-
variants, and errors due to undesirable behaviours of the SDL constructors
(invalid receiver for a signal, range errors, operators errors, etc.) In order to
deal with huge state spaces, the validator can use bit state and random walk
(see [18]).

3 Extending SDT with Abstractions

Our approach to extend SDT with abstractions consists in transforming the
SDL specification into intermediate versions, which are only employed for ver-
ification purposes, as it is shown in Fig. 4 with dark ground. Given a detailed
SDL model M, we try to construct and verify abstract models M until M is
shown to be correct or until specific errors are found. The verification consists
in checking non-satisfaction of M SC, but also absence of deadlock can be
checked in the abstract model.

The construction of an abstract model M/ is automatic, and the user
only has to choose the abstraction function « suitable for the kind of system
and for the specific M SC.

Given the initial model M and the M SC representing the undesirable

scenario, the first step is to obtain the abstract model M by using a. The
abstract version of the M SC (M SCY) is obtained by a similar mapping pro-

230

System
Requirements

Fig. 3. The role of SDL and MSC in SDT

cess, but many times can be easily obtained manually. Then, we employ the
standard SDT validator and simulator in the following way:

(1) If M} does not verify MSC} then, by using the property preserving re-
sults discussed in Sect. 5, M does not verify MSC. Therefore M can
be employed to follow on with the development cycle in SDT (e.g., code
generation).

(2) If errors are found in an abstract model, we employ the abstract trace
produced by the validator to construct a concrete counterexample for M,
and use the simulator to check if this counterexample is possible in M.
If M shows the error, then we must modify M and start again with the
verification. Otherwise, we refine the abstraction function and produce a
new abstract model (and if necessary, a new abstract MSC') preserving
more information.

The essential point is to choose a function « that preserves enough
relevant information to decide whether the verification results for M can be
extended to M. As in other related works, it is necessary that the user posses
a sufficient knowledge of the system model in order to choose the proper
abstraction function. The provision of an Abstraction Library to automatically
construct correct abstract models can solve most of the difficulties, thus giving
an important added value to the whole development tool. This library contains
transformation rules to implement different abstractions, and it is constructed

231

System
Requirements

Implementation

Fig. 4. Overview of extended SDT

depending on the application domain. The kind of information and it use is
discussed in the following sections.

Example 2 As an exzample to justify this approach, let us consider the fol-
lowing property over the DeamonGame system: "In all paths, it is impossible
for the Player to leave the system without consuming all the response signals
from the process Game.” This property must be encoded with several MSC's in
order to consider all the possible kinds of requests from the Player and the
responses from the Game. Fven if we only consider one successful request-reply
followed by one non-completed request-reply, as in Fig. 2 a), the number of
MSCs to be considered is large. The verification of each one of these MSC's
makes the validator run out of memory due to the presence of the counters
Count and R in the model. So we need some kind of abstraction to solve the
problem.

4 Abstracting data and signals

In this section we explain the approach to obtain abstract SDL models. The
process starts by abstracting some data and signals. Then, as an effect of this
abstraction, all SDL instructions that work with this signals and variables

232

have to be modified. The modification consists in replacing every instruction
with its abstract version. More formally, the method is described as follows.

Let M = Py||...||P, be an SDL system involving the concurrent exe-
cution of n processes.

e Let us suppose that P; contains s; local variables vy,...,v,,, each one
ranging over a (non-empty) set of values D;,. Let us define D; and D as
Dj=Dj, x...x Dy, and D = Dy x ... X D,

e Let SG be the set of signals defined in M.

e Let (); be the domain of all possible values that ¢; may store. Let) be
Q1 X ... X Qu. If SG' = SG x ... x SG then Q; C U;»o(SG).

~

v

i
e Let Inst be Inst; X ... x Inst,, Inst; being the set of instructions of P;.

Using these definitions, the set of system states is SState = D x @) X
Inst. Let o = ag X oy : D x () — D* x Q* be an abstraction function
which transforms each concrete state (in which temporally instructions are not
being taken into account) into an abstracted one. We assume that (D*, <})
and (Q*, SZ) are posets where, as is classic in Al, partial orders represent the
relative precision of the approximation of every abstract data. Sometimes, for
clarity in the exposition, we will use oy and a4 over simple variables, signals
and queues instead of tuples.

Given a4 and a4, we define an approximation of the instructions v,
as the function which transforms every concrete instruction into an abstract
one. (s renames the original instruction and changes data and signals for
the corresponding abstract ones using . ay,s is the key to construct the
abstract model. At this point a;,s is only a renaming function with new data.
But, we are interested in obtaining M* as an SDL model, so we need an
SDL implementation of every «;,s. In the following, «y,s will denote this
implementation, and it is aasumend to be executed as an atomic instruction
in order to preserve the necesarry correction conditions.

Let Inst* be Inst] X ... X Insty, each Inst] being the set of abstract
instructions of P; and let SState* be D* x Q* x Inst*, the set of system states.

Finally, let us define M* as the abstract system obtained by substitut-
ing each instruction i of P; by (7).

Example 3 We can attack the problem of the state-space explosion in ez-
ample 2 by abstracting some signals between Player and Game and the local
variables in these processes as follows:

o, (Probe) = Request «g (Result) = Request
ay (Win) = Reply a4 (Lose) = Reply ag (Score) = Reply

233

aq (Player.R) =0 aq (Game.Count) = 0

This abstraction of data must be followed by the transformation of the
instructions that manipulate these data. The next section shows how to use
the Abstraction Library to obtain M*.

5 Using the Abstraction Library

To be rigorous, abstraction is carried out from an abstraction function oo which
transforms values and instructions over actual data and signals into abstract
ones, as defined in the previous section. However in practice, the function «
is not directly chosen by the user but it is the result of selecting a set of ab-
straction functions from the Library. Each single abstraction function defines
the SDL code to implement specific abstractions of variables or signals. For
example, the abstraction of signal (S1) with (S2) is defined in the Library with
the function AbstractSignal as follows:

AbstractSignal_Output ((S1(x),S2)) = output S2
AbstractSignal_Input(S1(x),S2)) = input S2
AbstractSignal_Save(S1,S52)) = save S2

where the string appended to the name of the function is the original SDL
instruction (employed for automatic processing) and the returned value is the
abstract version of the instruction. The * symbol represents the parameters in
S1, which are ignored by this abstraction. Following the same notation, some
of the operations for the abstraction VariableToConstant that abstracts an
integer variable (V) by a constant (C) can be defined as

VariableToConstant_Add(V,C,E)) = TaskV := C
VariableToConstant_Sub((V,C,E)) = TaskV := C

The definition of both abstract instructions ignore the expression to be added
or subtracted (E). Note that all possible kinds of sentences/operations over the
variable should be define in the Library in order to be usable for transforming
any SDL model. It is particularly interesting to define abstract versions of the
boolean expressions that preserves all the branches of the initial SDL model
(for example to use decision or provided). See [7] for samples of other abstract
functions with this features.

To use the Library, the user must select the abstractions (the global «)

234

to be applied to the SDL model by using

apply(
AbstractSignal (probe,request)
AbstractSignal (result,request)
AbstractSignal (win,reply)
AbstractSignal(lose,reply)
AbstractSignal (score,reply)
VariableToConstant (Player.R,0)
VariableToConstant (Game.Count,0))

Then the MSC and the SDL code are automatically obtained. The
transformation of a Plain MSC can be easily performed by renaming the Sig-
nals in the Input and Output events, as shown in Fig. 2b. The variable abstrac-
tion in the SDL model produces DeamonGame*, and the abstraction of signals
in DeamonGame* produces DeamonGame**. The code for DeamonGame**
(see Fig. 5) is obtained replacing the current instructions with the abstract
versions as shown in Table 1.

Both abstract models are already suitable to perform a more effi-
cient verification.Absence of deadlock is proved by inspecting 706 states in
DeamonGame* and 479 states in DeamonGame**, respectively. The state-
space of the initial model (with Symbol-Sequence as the transition mode) has
more than 900,000 states (see Table 1), and the verification of DeamonGame
leaves the tool out of memory after the 900,000 states.

The non-verification of the M .SC' described in Fig. 2a is proved by in-
specting 1139 states in DeamonGame*. But, if we have problems with memory
then we can use the abstract version MSC* (Fig. 2b) to prove M (= MSC
by inspecting only 583 states in DeamonGame**. It is important to note that
there are several M SC's that produce the same abstract diagram M SC*. For
this particular property, the verification over the original model must consider
a set of concrete diagrams, and not only the one in Fig. 2. So, we have also
saved the user from having to construct such diagrams. Table 2 summarises
the verification results obtained with the three SDL models when using a max-
imum depths of 100 and 1000 to truncate the execution paths. The number of
M SCwviolations represent SDL paths where observable events occurs in steps
not matching with the M SC. As it was expected this number decreases when
the model is more abstract.

These results confirm the advantages of the abstraction method, but

we still need to study whether the verification of the abstract SDL model
produces useful information about the initial model. This topic is discussed in

235

Table 1

Replacement of instructions

Current SDL instruction

Abstract instruction

output probe

output request

output result

output request

input probe

input request

input result

output request

output win

output result

output lose

output result

input win

input result

input lose

output result

Task Count := Count + 1

Task Count := 0

Task Count := Count - 1

Task Count := 0

Task R:=R + 1

Task R := 0

Task R: =R -1

Process player_tmp

[

1(1)

N
DCL R Integer;
DCL G PID;

the following sections.

Task R := 0

Process Game_tmp 1(1)

H ‘DCL Count \nleger;H

Request

Reply

Reply

) (=)

)

Fig. 5. Abstract version of processes Player and Game

6 A Generalized Semantics of SDL

As explained in the Introduction, the generalized semantics describes the op-
erational behavior of a program, making explicit the domain-dependent model

236

Table 2
Verification results

Model States to discard deadlock | States to discard M SC | MSC Violations
DeamonGame (depth 100) 52998 (truncated) 53135 (truncated) 48
DeamonGame* (depth 100) 709 1139 19
DeamonGame** (depth 100) 479 583 14
DeamonGame (depth 1000) > 900.000 (truncated) > 900.000 (truncated) —
DeamonGame* (depth 1000) 479 583 14

DeamonGame** (depth 1000) 709 1139 19

characteristics influenced by the abstraction, such as data and instructions. In
this section, we define such a generalized semantics for the subset of the SDL
language considered, which will be used to reason about property preserving
abstractions.

Every system M € SDL is a sequence of process instances M =
Pi||...||P, which run in parallel. Let Inst be the set of basic instructions
from which the processes are constructed. Inst includes states labels, the as-
signment instruction, the Boolean and arithmetic operators, the decision and
nextstate instructions, the instructions for sending and for receiving signals
(denoted by Input and Output, respectively), and the constructors save and
provided for declaring saving signals and guards. Let us define State the set of
process states and Decl as the declarative part of the system (types and vari-
ables). State includes the special states start and stop. Then, every process
is described as:

P = Decl;{State : Tran} Tran = {(Input|null); Inst}

null representing the continuous signals.

In short, the behaviour of the process is as follows. Every state rep-
resents an internal process state defined by the programmer. In each one of
these states, the process will carry out a transition, which will usually begin
reading a signal from the input queue, and it will follow on with a sequence
of arbitrary instructions. The transition will end with a nextstate instruc-
tion which will provoke the process into jumping to another state or with the
stop state which will end the process®. As is usual, we make no assumptions
about the speed of the processes or about the time spent in a transition or
in a state. In addition, the delay due to the transportation of signals through
channels is not considered in our framework, but we assume that signals are
instantaneously transmitted.

We now present the generalized semantics of SDL, introducing the

3 We are not considering the structural concepts in SDL as blocks, procedures or
services since we are interested in the internal behaviour of the processes

237

definition gradually in order to be clear.

(1)
(2)

(8)

(9)

Let State; and Inst; be the sets of the internal states (labels) and in-
structions of the process P;, respectively. We assume that State; C Inst;.
Let SState be the set of tuples (I1,...,ln, @1, -, Qs i1, - - -, iy) TEPLESent-
ing the internal state of the system. For each process P;, [;, which is also
a tuple, holds the actual value of every local variable at a point during
the execution, g; is the content of the input queue, and ¢; the instruction
just executed by P;. ¢; = () and ¢;, will denote that the queue ¢; is empty
and the k' signal of q;, respectively.
Let Sequence be the set of finite or infinite sequences of system states.
Let Initial : SDL — SState be the function which returns the initial
state of every system, i.e. variables have been initialized, ¢; = () and each
i; is an special instruction which precedes the first one in every process
(start).
Let just_exe; : SState — Inst; be the just-executed function which,
given a process and a system state, returns the last instruction of the
process executed, i.e., just_exe; (L, ..., by, @1y oy Quy i1y ooy lgy oo e yin)) =
j.
The function eval : BoolExp x SState — {false,true}, eval(exp, s)
returns the evaluation of the Boolean expression exp in the state s.
input;,, . ..,input; denote the k instructions of P; in the state i € State;
that can enable a transition. V1 < n < k input;, may be a standard
input instruction as input signal, a continuous signal or a spontaneous
transition.
Let next_inst; : Inst; — p(Inst;) U {end} be the function which returns
the set of instructions that textually can follow i € Inst;.
o If i € State; then next_inst;(i) = {input;,, ..., input;, }.
e newt_inst;(nextstate ns) = { state ns }.
e newt_inst;(stop) = end, and otherwise
o next_inst;(i) = {ni}, ni being the instruction which follows ¢ in P;.
Let exec; : Inst; x SState — { false,true} be the executable function:
o creci(i,s) = false if i € State; and
- ¢; = 0 and no transition input;, is continuous or spontaneous.
- q; # 0,qj, = signal, and some input; = input signal provided
exp, and eval(exp, s) = false.

o creci(i, s) = true, otherwise.

In short, exec; (i, s) returns true if the instruction ¢ of process P; does
not suspend in the state s. Note that we are not considering that a signal
can be discarded.

(10) Let newt; : Inst; x SState — p(Inst;) U {delay,end} be the function

which given a process instruction returns the next instruction to be exe-
cuted, i. e.,

o newt;(i,s) = end, if next_inst;(i) = end

o newt;(i,s) = delay, if V ni € next_inst;(i), exec;(ni,s) = false

238

o nexti(i,s) = {iy,..., i}, if nextiinst;(i) = {ni}, ni being a non-
deterministic decision such as
decision any ():

il;...; nextstate nsl;
ik;...; nextstate nsk;
enddecision.

o next;(i,s) = next_inst;(i), otherwise.
(11) Let S : (InstyU...UlInst,) x SState — SState be a semantics function
which gives meaning to each SDL instruction.
/

Sy (ool b @y e Gy ey Ty ey By ey lp)) = 8 =

(ll..., 9,...,ln,ql,...,q‘;,...,qn,il,...,i ,’Ln))

means that executing the instruction 7 € Inst;, when the system is in
the state s, produces the evolution of the system towards the state s’. S
is an unspecified generic function ; we only substitute ¢; by ¢ in the state
to indicate that 7 is the last instruction executed in P;. The high level
behavior of the model is not dependent on this function and this is why
we do not define it. In [20], the actual meaning of every SDL instruction
can be found.

(12) Let Trans : SState — (S State)U{end, deadlock} be the function which
returns the states to which the system can evolve from a given state s:
i Trans(s) = Uj:l...n(Uie(ne:ctj(just_exec]-(s),s)ﬂlnstj){S(ia S)});

it j € {1,...,n} exists such that next;(just_exec;(s), s) ¢ {delay, end}
o T'rans(s) = end, if Vj = 1,...,n, next;(just_exec;(s), s) = end, and
e Trans(s) = deadlock, otherwise.

The generalized semantics Gen : SDL — p(Sequence) is defined as:

Gen(M) = {sg = s1 = ... = s, — ... € Sequence/Initial (M) = s,

Vj > 0.(Trans(s;_1) € {deadlock,end}, s; € Trans(s;_1))}U

{s0 = 51 = ... = s /€ Sequences/Initial (M) = s,

Trans(sy) € {deadlock,end},V0 < j < k.(Trans(s;_1) ¢ {deadlock, end},
s; € Trans(sj_1))}

Gen associates each SDL model M with the set of all possible state
sequences that M can generate in different system executions. This semantics
is useful for our purposes since:

a)each path corresponds to a possible system execution which must be ana-
lyzed when verifying the M SC's;

b) as the meaning of the operations S and eval is not defined, it is possible
to change it to construct the abstract models;

¢) Gen allows us to easily reason about the relation concrete/abstract model.
If we denote Gen(M) with Gen(M,eval,S) to emphasize the functions on
which it depends, then Gen(M*, eval*, S*) is the generalized semantics of M*

239

It is interesting to note that when verifying with SDT no interleav-
ing between processes is carried out while a process is executing a transition
except when an output or a create instruction is executed (this execution
method is called Symbol-sequence in SDT). The semantics Gen could have
been defined considering a coarser size of atomic instructions, but this would
have complicated the exposition unnecessarily, and would have reduced its
applicability to other tools.

7 Property Preserving Abstractions

In this section, we first explain the conditions conditions to guarantee correct-
ness. Then we discuss the preservation results.

7.1 Correctness Conditions

As we explained before, Gen(M, eval,S) and Gen(M*,eval*, S*) denote the
generalised semantics of the models M and M*, respectively. The following
conditions on the meaning of the abstract instructions (which is defined with
eval® and S*) will assure the correctness of the transformation M — M*:

(1) Let us assume that eval* : BoolExp* x SState* — { false,true} verifies
the following correctness relation: Vs* € SState*.(Vs € SState.a,(s) <k
s* = eval(exp,s) <; eval*(nst(exp), s*))). The partial order used in
the set {false,true} is false <j true which, in our context, means that
eval® returns false only if the evaluation of «;,s (exp) in each concretiza-
tion of the abstract state s* is false. Thus, eval(exp,s) = false %
eval*(inst(exp), as(s)) = false, however eval*(exp*,s*) = false =
eval(exp, s) = false, for all exp € BoolExp and s € SState such that
Qinst(exp) = exp® and a,(s) <k s*.

(2) Let S* : (Instj U...U Inst) x SState* — SState* be an abstract
function verifying the relation: Vs* € SState*.(Vs € SState.(a,(s) <k
s* = as(S(i,5)) <E S*(nst(i),s*))). S* gives abstract meaning to the
instructions of the abstract system M*. As before, S* is not specified, we
have only declared its correctness relation with S.

The first condition says that the abstract instructions cannot produce
new suspensions with respect to the initial model M. The second one imposes
that the effect of an abstract instruction must be an approximation of the
effect of the respective concrete one (as is classic in abstract interpretation).

240

7.2 Preservation results

We can now give the preservation results of the abstraction that justify the
practical use of the abstraction method. The main results are related to dead-
lock detection (Proposition 8), non-verification of M SC's (Proposition 11) and
abstraction of abstract models (Corollary 12), but other properties can be ana-
lyzed in the semantics framework. The proofs of the results have been omitted,
but they can be found in [12].

In the following, we assume that the abstraction a preserves the number
of signals in the queues.

Given seq = sg — S1 — ... = Sp — ... € Sequence and MSC =
evy — ... — evg, we define aye,(seq) as as(sp) = as(si) = ... = as(sp) —
... € Sequence* and a,,(MSC) = ajps(ev)) = ... = Qg (evy).

Definition 4 Given seq*, seq® € Sequence*, then seq* <teq seq* iff for all
i >0, st <*st.

Theorem 5 Let Gen(M,eval,S) and Gen(M*, eval*, S*) be the semantics of
the models M and M* verifying the conditions presented in Sect. 7.1, then for
each deadlock-free sequence seq € Gen(M,eval,S), an abstract deadlock-free
sequence seq” € Gen*(M*, eval*, S*) erists, such that aeq(seq) <i, seq”.

We impose the condition that every state in each concrete execution
path corresponds to an abstract state in an abstract execution path. This is a
strong result as we need the whole concrete computation to be simulated step-
by-step by the abstraction. However this constraint is necessary for analyzing
MSC's since, otherwise, abstract model could lose observable events of the
MSC.

We say that M* « -approximates M, and we denote it with M T, M*,
when M and M* verify Theorem 5.

Proposition 6 Let M = Py||...||P, be an SDL system and o = agX oy : DX
Q — D*x Q" an abstraction function verifying the conditions of Sect. 7.1 and
preserving the number of signals in the queues. Let Inst* be the set of abstract
instructions derived from «. Let M* be the system obtained by abstracting all
the constants and instructions of M. Let us assume that for each instruction
1* € Inst* an SDL implementation exists verifying the correctness conditions
imposed in Sect. 7.1. Under these conditions, the model MI*, obtained by
atomically substituting each model instruction of M* by its implementation,
verifies Th. 5.

In the previous discussion, we have assumed that the concrete system

241

M is deadlock-free. The next Proposition studies how to analyze deadlock
in M. For this purpose, we impose the conditions presented in the following
definition.

Definition 7 Given an abstraction function o, we say that « verifies the ex-
ecutability conditions iff for each pair of states s* € State*, s € State, such
that as(s) <5 s*, and for each i € Inst;, evec;(i, s) = exec)(nst(i), s*).

In short, executability conditions assure that the abstraction does not
introduce additional suspension behaviors in the abstract model. Proving that
an abstraction function « verifies such conditions consists in proving that the
suspension behaviour of the original model instructions which can deadlock is
not modified by «.

In the following we will assume that M T, M*, « being an abstraction
function verifying the executability conditions presented above.

Proposition 8 If Gen(M*, eval*, S*) has no execution sequence which dead-
locks then Gen(M, eval, S) has no deadlock either.

Next proposition explains the relationship between the concrete and
abstract systems when proving properties expressed using M .SC's.

Definition 9 Given an SDL system M, an MSC = ev; — ... — evy and
seq = sg = ... = ... € Gen(M,eval,S), the subsequence subseq = s; —
. € Sequence (j > 0) verifies MSC (subseq = MSC) iff a) k = 0, or
b) if s; (1 > j) is the first observable event in subseq then s; = evy and the
subsequence subseq = s; 1 — ... verifies MSCI = evy — ... — evg.

Definition 10 Given an SDL system M and an MSC = evy — ... — evg,
M wverifies MSC (M = MSC') iff a sequence seq € Gen(M, S, eval) exists
such as seq = MSC. Otherwise, M does not verify MSC (M = MSC).

Proposition 11 Given an SDL system M, an MSC' and its abstract version
MSC* = alevy) — ... = alevy), if M* = MSC* then M W= MSC.

Corollary 12 Let us assume that M T, M*, M* C,, M*, MSC* =
ay, (MSC) and MSC* = ay, (MSC*), then if M** = MSC** then M £
MSC.

Example 13 Note that the abstractions employed in Section 5 verify the hy-
pothesis of Proposition 6, because they satisfy the correctness conditions of
Sect. 7.1, the original system has no provided instruction and they also pre-
serve the number of signals in queues. So we can employ the abstract systems
to prove absence of deadlock and no verification of MSC in the original one.

242

8 Conclusions and further work

We have presented an approach for optimising the verification of SDL systems,
which is compatible with other tasks in current commercial tools such as SDT.
Our method consists in the automatic transformation of the SDL model in
order to obtain a simpler description, which can be analyzed for requirements
such as absence of deadlock and non-satisfaction of MSCs. The method is
based on the definition of a generalized semantics of SDL which is suitable to
justify the correct transformation of SDL models into more abstract versions.
In this work, like in other previous ones ([11] [13] [14]), we employ abstract
interpretation as a technique to improve the automatic verification of systems.

Our method can be improved in different ways. The first important
task is to complete the definition of a set of abstraction functions which can
be easily selected by the user in order to perform the desired transformation,
thus freeing the standard user from the need to think about correct simplifi-
cations of the SDL model. The second task is to obtain even more abstract
transformed models by using information about the structure of the SDL spec-
ification, for example, the potential consumers or senders for given signals to
be abstracted. We are currently working on the implementation of tools to
employ the abstract interpretation technique within the SDT environment.