
GMD –
Forschungszentrum
Informationstechnik
GmbH
European Research Consortium
for Informatics and Mathematics

E RCIM

GMD Report

Stefania Gnesi, Ina Schieferdecker,

Axel Rennoch (Eds.)

April 2000

91

5th International
ERCIM Workshop on
Formal Methods for
Industrial Critical Systems

Proceedings of FMICS‘2000

April 3-4, 2000 in Berlin

© GMD 2000

GMD –

Forschungszentrum Informationstechnik GmbH

Schloß Birlinghoven

D-53754 Sankt Augustin

Germany

Telefon +49 -2241 -14 -0

Telefax +49 -2241 -14 -2618

http://www.gmd.de

In der Reihe GMD Report werden Forschungs- und Entwicklungser-

gebnisse aus der GMD zum wissenschaftlichen, nichtkommerziellen

Gebrauch veröffentlicht. Jegliche Inhaltsänderung des Dokuments

sowie die entgeltliche Weitergabe sind verboten.

The purpose of the GMD Report is the dissemination of research

work for scientific non-commercial use. The commercial distribution

of this document is prohibited, as is any modification

of its content.

Anschriften der Herausgeber/Addresses of the editors:
Dr. Stefania Gnesi

Istituto di Elaborazione della Informazione

CNR - Consiglio Nazionale delle Ricerche

Area della Ricerca di Pisa

Via Alfieri, 1

I-56010 Ghezzano - Pisa

E-mail: gnesi@iei.pi.cnr.it

Dr. Ina Schieferdecker

Axel Rennoch

Institut für Offene Kommunikationssysteme

GMD – Forschungszentrum Informationstechnik GmbH

Kaiserin-Augusta-Allee 31

D-10589 Berlin

E-mail: {schieferdecker, rennoch}@fokus.gmd.de

ISSN 1435-2702

3

Preface

The European Research Consortium for Informatics and Mathematics (ERCIM) has
recently celebrated its 10th anniversary. The ERCIM Working Group on Formal Methods
for Industrial Critical Systems (FMICS) is organizing its 5th International Workshop.
FMICS workshops are dedicated to interested researchers at ERCIM sites, universities
and industry active in the industrial application of formal methods. Among a variety of
formal methods conferences and workshops FMICS is increasing its popularity. The idea
of FMICS workshops is to attract people with industrial relevant topics, with
internationally well-known invited speakers and with high-quality technical papers in
combination with a discussion podium for the exchange of ideas. The workshop character
of FMICS is realized on a minimal cost base.This time, FMICS is organized right after
ETAPS'2000 - the European Joint Conferences on Theory and Practice of Software in
Berlin.

After starting the FMICS workshop series 1996 in Oxford (UK) further workshops
followed 1997 in Cesena (I), 1998 in Amsterdam (NL) and 1999 in Trento (I). In 2000,
the workshop is hosted and organized at the GMD Research Institute for Open
Communication Systems (FOKUS) in Berlin, Germany.

This year' workshop includes sessions on modelling, verification, testing and software
development, MSC/SDL, and various applications and case studies. We are pleased to
present two interesting invited talks: Günter Karjoth, IBM Zurich (CH), addresses the
value of formal methods for security properties such as confidentiality and authenticity.
Holger Hermanns, University of Twente (NL), investigates in the performance and
reliability model checking and construction.

We wish to thank the members of the programme committee, especially the FMICS
working group chairman Hubert Garavel, for the excellent assistance during the planing
of the workshop, the invited speakers, the authors and the reviewers for their scientific
contributions, the people from the GMD Fokus Competence Center TIP for preparing the
workshop event, and ERCIM and GMD for their financial and organizational support of
FMICS.

Berlin, April 2000

Stefania Gnesi, Ina Schieferdecker, Axel Rennoch

Keywords: Formal Methods, Formal Description Techniques (FDT), Modelling,
Specification, Verification, Prototyping, Testing, Software development, Industrial
applications.

Further information: FMICS homepage http://www.inrialpes.fr/vasy/fmics/

4

Vorwort

Das Europäische Forschungskonsortium für Informatik und Mathematik (ERCIM) hat
gerade sein 10jähriges Jubiläum gefeiert und die ERCIM Arbeitsgruppe zu Formalen
Methoden für Industrie-kritische Systeme (FMICS) organisiert bereits ihren fünften
internationalen Workshop. FMICS Workshops wenden sich an interessierte Forscher aus
ERCIM Instituten, Universitäten und der Industrie, die sich aktiv an der Anwendung
formaler Methoden für industrielle Anwendungen beteiligen. Trotz der Vielzahl von
Konferenzen und Workshops über formale Methoden erfreut sich FMICS wachsender
Beliebtheit. Es ist der Gedanke von FMICS Workshops die Fachleute mit industrie-
relevanten Themen anzusprechen, mit international anerkannten eingeladenen
Vortragenden und mit hochqualifizierten technischen Beiträgen in Kombination mit
einem Forum für den Austausch von Ideen. Der Workshop Charakter von FMICS wird
auf der Basis niedriger Kosten durchgeführt. Diesmal wird FMICS direkt im Anschluß an
ETAPS'2000 - den Europäischen Konferenzen für Softwaretheorie und -praxis in Berlin
organisiert.

Nach dem Start der FMICS Workshops 1996 in Oxford (UK) folgten Workshops 1997 in
Cesena (I), 1998 in Amsterdam (NL) und 1999 in Trento (I). Im Jahr 2000 findet der
Workshop beim GMD Forschungsinstitut für Offene Kommunikationssysteme (FOKUS)
in Berlin statt.

Der diesjährige Workshop umfaßt die Themengebiete Modelling, Verification, Testing
und Software Entwicklung, MSC/SDL, sowie vielfältige Anwendungen und Fallstudien.
Wir freuen uns sehr zwei interessante eingeladene Vorträge zu präsentieren: Günter
Karjoth, IBM Zürich (CH), erörtert den Wert formaler Methoden für Sicherheitsaspekte
wie Vertraulichkeit und Authentizität. Holger Hermanns, Universität Twente (NL), geht
ein auf die Konstruktion und Überprüfung von Leistungs- und Zuverlässigkeitsmodellen.

Abschießend möchten wir den Mitgliedern des Programmkommitees danken,
insbesondere dem Vorsitzenden der FMICS Arbeitsgruppe Hubert Garavel, für die
hervorragende Unterstützung bei der Vorbereitung des Workshops, außerdem den
eingeladenen Vortragenden, den Autoren der Beiträge und den Gutachtern für ihre
wissenschaftlichen Beiträge, den Mitarbeitern des GMD Fokus Competence Center TIP
bei der Ausrichtung des Workshops, sowie ERCIM und der GMD für ihre finanzielle und
organisatorische Unterstützung von FMICS.

Berlin, April 2000

Stefania Gnesi, Ina Schieferdecker, Axel Rennoch

Schlagworte: Formal Methods, Formal Description Techniques (FDT), Modelling,
Specification, Verification, Prototyping, Testing, Software development, Industrial
applications.

Weitere Informationen: FMICS homepage http://www.inrialpes.fr/vasy/fmics/

5

Programme Committee

Juan Bicarregui (CLRC Abington, UK)
Lars-åke Fredlund (SICS Stockholm, S)

Hubert Garavel (INRIA Rhone-Alpes, F), FMICS chair
Stefania Gnesi (CNR/IEI Pisa, I), PC co-chair

Jan Frisco Groote (CWI Amsterdam, NL)
Diego Latella (CNR/CNUCE Pisa, I)

Axel Poigné (GMD/AiS Birlinghofen, D)
Ina Schieferdecker (GMD/Fokus Berlin, D), PC co-chair

Jan Tretmans (University of Twente, NL)
Ulrich Ultes-Nitsche (University of Southampton, UK)

Adam Wolisz (TU Berlin, D)

List of Reviewers

Axel Belinfante, Pierfrancesco Bellini, Juan Bicarregui, Michael J. Butler, Gennady Chugunov,
Alessandro Fantechi, Lars-åke Fredlund, Hubert Garavel, Pablo Giambiagi, Stefania Gnesi, Jan Friso
Groote, Dilian Gurov, Izak van Langevelde, Diego Latella, Gabriele Lenzini, Mang Li, Giuseppe
Manco, Andrew Martin, Mieke Massink, Radu Mateescu, Brian M. Matthews, Franco Mazzanti,
Thomas Noll, Axel Poigné, Jaco van de Pol, Michel Reniers, Axel Rennoch, Brian Ritchie, Eric
Rutten, Ina Schieferdecker, Jan Tretmans, Ulrich Ultes-Nitsche, Adam Wolisz.

Organizing Committee
(GMD/Fokus Berlin, D)

Birgit Benner
Axel Rennoch

Ina Schieferdecker
Theofanis Vassiliou-Gioles

6

Contents

Invited Talks

• G. Karjoth:
From Dining Philosphers to Dining Cryptographers . 9

• H. Hermanns:
Performance and reliability model checking and model construction 11

Session 1: Applications

• A. Requet:
A B Model for Ensuring Soundness of a Large Subset of the Java Card
Virtual Machine. 29

• F. Maraninchi, Y. Rémond:
Applying Formal Methods to Industrial Cases:
The Language Approach (The Production-Cell and Mode-Automata) 47

Session 2: Verification

• R. Mateescu, M. Sighireanu:
Efficient On-the-Fly Model-Checking for Regular Alternation-Free
Mu-Calculus . 65

• F. Baray, P. Wodey:
Verification in the Codesign process by means of LOTOS based
model-checking . 87

• D. Gurov, G. Chugunov:
Verification of Erlang Programs: Factoring out the Side-effect-free Fragment . . . 109

Session 3: Testing & Software development

• L. du Bousquet, F. Ouabdesselam, I. Parissis, J.-L. Richier, N. Zuanon:
Specificaton-based Testing of Synchronous Software . 123

• I. Schieferdecker, M. Li, A. Rennoch:
Formalization and Testing of Reference Point Facets . 141

• B. Wu, L.M. Lai, D.R.W. Holton:
Towards a Mechanised Software Development Method . 161

• P. Bertoli, A. Cimatti, P. Traverso:
Integrating formal methods into the development cycle of a safety-critical
embedded software system . 187

Session 4: MSC / SDL

• L. Hélouët, C. Jard:
Conditions for synthesis of communicating automata from HMSCs 203

• M.M. Gallardo, P. Merino:
A Practical Method to Integrate Abstractions into SDL and MSC based Tools. . . 225

• R. Schröder, M. v. Löwis of Menar:
Experiences with Tool development of SDL in Combination with ASN.1
for Communication Protocol Applications . 247

7

Session 5: Modelling

• R.J. Back, C. Cerschi: Modeling and Verifying a Temperature Control
System using Hybrid Action System . 265

• D. Beyer, C. Lewerentz, H. Rust:
Modelling and Analysing the Railroad Crossing in a Modular Way 287

• S. Gnesi, D. Latella, G. Lenzini, C. Abbaneo, A. Amendola, P. Marmo:
A Formal Specification and Verification of a Safety Critical Control System . . . 305

Session 6: Cases Studies

• T. Willemse, J. Tretmans, A. Klomp: A Case Study in Formal Methods:
Specification and Validation of the OM/RR Protocol . 331

• P. Carreira, M. Costa: Automatically Verifying an Object-Oriented
Specification of the Steam-Boiler System . 345

• N. Aoumeur, G. Saake:
Cooperative Information Systems Modelling and Validation Using
the Co-nets Approach: The Chessmen Making Shop Case Study 361

8

9

From Dining Philosophers to Dining Cryptographers

Günter Karjoth
IBM Research

Zurich Research Laboratory

Abstract

In theory, formal methods give us the ability to determine whether properties we ascribe to spec-
ifications or software systems hold for certain. However, the assurance that can be obtained from
formal methods comes at a price. In the eighties, the computer networks community invested a lot
in tools, theories, and case studies. They used formal methods to provide a rigorous and unambigu-
ous way of designing and documenting protocols, to allow formal analysis (verification/performance
analysis) before protocols are implemented, and to allow automatic code generation from the for-
mal specification. The seminal work on Communicating Finite State Machines was followed by
approaches based on process algebra and temporal logic, to give an example. In the last decade,
however, attention shifted to computer security as an application area where the expense of faulty
software would make the application of formal methods cost-effective. But security properties such
as confidentiality and authenticity are often difficult to characterize formally (or even informally). In
our presentation, we review ways in which above communities describe their domain-specific prop-
erties, how mechanisms are captured, and how protocols are analyzed. We conclude that despite the
different objectives, even “traditional” methods can be sucessfully applied in the field of computer
security. As an example, we describe our work on giving an operational semantics of the JavaCard
Virtual Machine and using a well-known model checker for analysis.

10

11

Performance and reliability model checking

and model construction

H. Hermanns

University of Twente, Faculty of Computer Science, Formal Methods and Tools Group,
P.O. Box 217, 7500 AE Enschede, the Netherlands

hermanns@cs.utwente.nl

Abstract

Over the last decade formal methods have been extended towards performance
and reliability evaluation. This paper tries to provide a rather intuitive explanation
of the basic concepts and features in this area. The intention is to give an illustrative
introduction to the basics of stochastic models, to stochastic modelling using process
algebra, and to model checking as a technique to analyse stochastic models.

1 Introduction

Modern industrial systems, such as communication networks, transport systems, or man-
ufacturing systems, are more and more operating in a stochastic context: communication
lines can break, buffers can overflow, a lorry with material for a just-in-time production
line might get stuck in a traffic jam. Each of these phenomena is stochastic by nature,
its absence or presence can only be predicted up to some probability. Since these stochas-
tic phenomena have impact on the system under consideration, it is nowadays commonly
agreed that the systems themselves exhibit stochastic behaviour. As a consequence, per-
formance and reliability studies of industrial systems have to take into account that rigid
assessments (”It is impossible that the system fails”) only hold under unrealistic assump-
tions.

The construction and analysis of models suited for performance and reliability studies
of real-world phenomena is a difficult task. To a large extent this problem is attacked using
human intelligence and experience. Due to increasing size and complexity of systems, this
tendency seems even growing: performance as well as reliability modelling becomes a task
dedicated to specialists, in particular for systems exhibiting a high degree of irregularity.
Traditional performance models such as queueing networks lack hierarchical composition
an abstraction means, significantly hampering the modelling of systems that are developed
nowadays.

On the other hand, for describing the plain functional behaviour of systems various
specification formalisms have been developed that are strongly focussed on the facility to
model systems in a compositional, hierarchical manner. A prominent example of such
specification formalisms is the class of process algebra [14]. Developed on a strong math-
ematical basis, process algebra has emerged as an important framework to achieve com-
positionality. Process algebra provides a formal apparatus for reasoning about structure
and behaviour of systems in a compositional way.

During the last decade, stochastic process algebra (SPA) has emerged as a promising
way to carry out compositional performance and reliability modelling, mostly on the basis

12

of continuous time Markov chains (CTMCs). Following the same philosophy as ordinary
process algebra, the stochastic behaviour of a system is described as the composition of
the stochastic behaviours of its components.

To analyse properties of formally specified models model checking is a very successful
technique to establish the correctness of the model, relative to a given set of temporal logic
properties the model is supposed to satisfy [9, 10]. Using efficient encoding techniques,
model checking has been applied to industrial size designs involving more than 10100 states.

It appears valuable to apply efficient model checking techniques also to performance
and reliability properties of industrial systems. Since performance and reliability models
are stochastic in nature, the properties of interest are stochastic as well, and have to be
described in an appropriate extension of a temporal logic. The model checking algorithm
then involves the calculation (or approximation) of probabilities of certain properties to
hold.

This paper tries to provide a rather intuitive explanation of the basic concepts and
features of stochastic models, of stochastic modelling using process algebra, and of model
checking as a technique to analyse stochastic models. For the sake of being illustrative the
paper tends to treat various fine points much more simplistic than the advanced reader
probably desires.

The paper is organised as follows. Section 2 introduces the basic concepts of stochastic
models. Section 3 exemplifies the use of process algebra for modelling stochastic phenom-
ena by means of a real-world example, and Section 4 describes the model checking approach
to analyse stochastic models. Section 5 concludes the paper.

2 Stochastic models

A stochastic model is basically a means to describe the evolution of a real-world phe-
nomenon as time1 passes, with a particular emphasis on phenomena with stochastic timing
characteristics. In other words, repeated observations of the same phenomenon can have
varying timing characteristics, but their variation exhibits a specific kind of randomness.

Figure 1: At the door of a gambler

As an example, consider a gambler that throws a die every minute. Observing the
gambler, one might wish to study a phenomenon, such as the time that it takes to throw
a six. Starting the observation at some arbitrary minute, one counts the minutes till the

1It is a bit narrow minded to consider the time domain as the only possible domain of variability. Spatial
Markov processes, for instance, are used to describe the evolution of some phenomenon as its position in
some appropriate space changes, as opposed to the time.

13

die shows a six. Obviously, repeated observations will usually lead to different results,
at least if gambling with a fair die. Nevertheless, the variation among these observations
exhibits a specific kind of randomness: The time needed to throw a six is known to follow
the so-called geometric probability distribution.

Probability distribution A probability distribution is a function that assigns a prob-
ability (a real value between 0 and 1) to each element of some given set. For instance,
the geometric probability distribution P assigns probabilities to natural numbers. For the
gambler, these numbers enumerate the minutes he is already gambling (remind that he
throws the die once per minute). For some t, P (t) is the probability to see the first six
after t minutes, and is given by:

P (see the first six after t minutes) = 1−
(
5
6

)t

,

or complementary,

P (still no six after t minutes) =
(
5
6

)t

.

For instance, the probability of not having seen a six after t = 2 minutes (i.e. after
throwing the die twice) is 25/36.

To make the example a bit more interesting, assume that the gambler is throwing the
die somewhere outside his office. Before leaving his office he has put a note on the door,
as depicted in Figure 1. In fact, his intention is to return to his office as soon as the die
shows a six. Now let us assume that someone arrives at his door, finding the door closed.
How long will he have to wait for the gambler? Probably just a minute, but probably
(more likely) more than a minute, probably (unlikely) more than ten minutes. Since this
experiment is governed by the above geometric distribution, the probability of having
to wait more than a minute is 5/6, the probability of waiting more than ten minutes is
(5/6)10. Figure 2 depicts these probabilities for the first 15 minutes.

Figure 2: A geometric probability distribution: Will the gambler still be absent at time t?

Markov chain Having explained the gambler’s behaviour, we are now in the position
to specify a stochastic model of his behaviour. It is depicted in Figure 3. As many other
(formal or semi-formal) models, the model is a graph, consisting of states and transitions.
There are two states in this model. One state represents the absence of the gambler, one
represents his presence in the office. The model contains three transitions representing
possible events that might induce a change of state. One transition indicates that every

14

minute the absent gambler has a 1-out-of-6 chance to return to his office. Another tran-
sition indicates that with probability 5/6 the absent gambler will miss the six, and hence
has to stay absent for at least another minute. In case he is back in his office, the third
transition indicates that he stays there (ad infinitum). The small arrow on top of the left
state indicates the initial state. i.e. the state occupied at time zero.

Figure 3: A discrete-time Markov chain describing the gambler’s behaviour

The stochastic model of the gambler’s behaviour is a very simple one. It is a Markov
chain, named after A.A. Markov who studied models of this kind in the beginning of
the last century. More specific, it is a discrete-time Markov chain (DTMC), since state
changes are only possible at discrete points in time: The gambler can return to his office
precisely every minute only. DTMCs restrict the possible time points for state changes to
a discrete subset of dense real time. As in our example, these time points are often (but
not necessarily) equidistant.

Markov chain analysis For a given stochastic model, such as a Markov chain, there is
usually a variety of interesting properties that one might want to study. Two substantially
different classes of properties can be distinguished. Transient analysis investigates the
evolution of the model up to a given point in time. On the contrary, steady-state analysis
focusses on the long-run average behaviour. It requires that on the long-run initial start-up
effects (the transient phase) do not have a measurable impact.

A trivial steady-state property for the gambler is that with probability 0 he will be
absent on the long-run. As an example for a transient property, we have already indicated
that the probability of still being absent after 10 minutes is (5/6)10. A variant of transient
analysis gives us that on the average it takes the gambler six minutes to throw a six. So,
the sign on the office door is essentially right, the gambler will be back in six minutes, on
the average.

Analysis techniques In practice, three fundamentally different techniques are used to
analyse stochastic models. They differ with respect to accuracy, applicability and com-
putational requirements. Here, we only give a concise subjective summary on differences
and similarities, and refer to Jain’s textbook [25] for a more elaborate discussion.

Simulation The stochastic model is mimicked by a simulator throwing dice and producing
statistics of simulation time spent in states. The fraction of simulation time spent
in a particular state is used as an estimate for the state probability. This technique
is generally applicable, in particular it is suitable also for non-Markov stochastic
models. However, it should be noticed that good accuracy tends to require long
simulation runs, and hence limits applicability in practice.

Numerical solution The transient or steady-state behaviour of a stochastic model is ob-
tained by an exact or approximate algorithm where model parameters are instan-
tiated with numerical values. This approach gives accurate results in general, up

15

to numerical precision. On the other hand, its applicability is restricted to finite
Markov chains (with a few exceptions, see e.g. [17, 24]). Furthermore the number of
states of the model is a limiting factor, because of computational requirements. A
very readable textbook on numerical solution methods is [26].

Analytical solution The transient or steady state property of interest is expressed as a
closed formula over the parameters of the model. This is the most simple, accurate
and elegant technique. However, analytical solutions are available only for highly
restricted classes of stochastic models.

Absence of memory Markov chains are widely used as stochastic models of real-world
phenomena. This is mainly because they possess a distinguishing feature that simplifies
both modelling and analysis. They obey the so called memoryless property : The future
evolution of a Markov chain model is independent of the past, it only depends on the
state currently occupied. This property is best explained in terms of the absent gambler.
The probability that the gambler returns to his office after one minute from now is 1/6,
independent of the fact that someone might be waiting for him in front of his door for
ten minutes (or years) already. This is a direct consequence of the fact that a fair die has
no memory; the die does not change if it has not shown a six for ages. This should not
be mixed with the fact that the probability of actually having to wait for ten minutes is
low, (5/6)10. Under the assumption that this unlikely case becomes reality, it still needs
another six minutes waiting time on the average, as the sign on the door indicates.

Discrete vs. continuous time Discrete-time Markov chains are convenient to describe
the stochastic evolution of sequential systems. In each state, the outgoing transitions define
how the probability mass will be spread at the next time instant. Since DTMCs evolve
in a discrete time domain, the flow of probability is not continuous, instead it possesses
jumps, and remains unchanged in the time interval between two relevant time points,
such as between t = 2 and t = 3. This is relatively convenient for sequential systems. But
it is not convenient in a concurrent probabilistic setting, for both theoretical as well as
pragmatic reasons.

As an example, imagine that the gambler’s office door is checked by some customer.
In case he finds the door closed he probabilistically decides to check again after either 24
or 48 seconds. Note that the basic time unit of this DTMC is 24 seconds. For instance,
one might want to study the probability that the customer finds an open door after 72
seconds.

Figure 4: A discrete-time Markov chain describing the gambler’s behaviour if observed
every 12 seconds

Without specifying the model in all detail, we are already in the position to understand
the problem: In order to develop a concurrent probabilistic model of both gambler and

16

customer, we have to relate events that may happen at every 24 seconds to events that
happen may every 60 seconds. One solution is to change the basic time unit of both models
to 12 seconds, the greatest common divisor of their basic time units. In other words, the
gambler’s model is blown up to record in 4 additional states that while being absent, four
times 12 seconds pass till he may throw the die in the last twelve seconds of the minute
(cf. Figure 4).2 After a similar change in the customer’s sub-model, one can combine both
models (by essentially taking the crossproduct of states and the products of transition
probabilities). To determine the concurrent stochastic behaviour at the next point in
time (i.e. after 12 seconds) one synchronously updates the respective states in the two
sub-models, because state changes now occur exactly at the same time. The probability
for such a joined transition is given by the product of the transition probabilities in the
sub-models.

This strategy has two practical limitations, at least. First, it tends to induce a tremen-
dous blow-up of the size of the model, caused by the number of auxiliary states needed
in general. Second, it fails if there is no greatest common divisor, for instance if the cus-
tomer shows up every π seconds, or if time points are not equidistant. As a consequence,
virtually all stochastic models of concurrent systems are developed in a continuous time
domain, including models of modern computer systems (even though each component of
such a system can be considered as working in discrete time, changing state according to
fixed frequency clock ticks).

Continuous-time Markov chains Continuous-time Markov chains (CTMCs) are
Markov chains interpreted over continuous time, in contrast to DTMCs. They are widely
used to model the stochastic behaviour of concurrent real-world phenomena, due to their
mathematical simplicity, paired with modelling convenience.

How does the continuous-time variant of the gambler look like? In a continuous time
setting, the absent gambler is able to return to his office at arbitrary time points. Still we
may assume that he has a 1-out-of-6 chance to return within the first minute, and so on.
Under these assumptions, we get the following probability distribution:

P (still no six after t minutes) = (5/6)t.

What is this? It perfectly resembles the geometric distribution appearing in the discrete
time case, but it is different. The difference is that the domain of this function is the
real line, instead of the natural numbers. In other words, the above function assigns a
probability to all time points one may think of, instead of only to each minute. Hence,
there is now a non-zero probability of returning within the first second already, namely
1− (5/6)1/60 . Instead of being a geometric distribution, this function belongs to the class
of so-called (negative) exponential probability distributions, because (5/6)t can be rewrit-
ten to e−λt, with λ = ln 6− ln 5 ≈ 0.18232. The value λ is a parameter of the distribution,
usually called ’rate’. For t < 15, the probabilities determined by this exponential proba-
bility distribution are depicted (by the dark plot) in Figure 5. The expected value of an
exponential distribution (i.e. the average duration) is 1/λ, the reciprocal value of the rate.
So, the (continuously gambling) gambler returns after 5.48 minutes on the average, not
after six minutes.3

2Note that this change encodes some kind of memory in an otherwise memoryless model: A sequence
of states is used to keep track of the time already spent in the original state.

3Remark that since the probability mass is flowing continuously, a sixth of the mass leaks prior to
the first minute tick. Hence, to some extent the probability mass flows earlier than in the discrete-time
case, where a sixth of the probability mass jumps a bit later, at each minute tick. As a consequence, the
average time needed for the continuously gambling gambler is slightly smaller than 6 minutes. To obtain
an average duration of 6 minutes, one has to adjust λ to 1/6.

17

Figure 5: A negative exponential probability distribution with λ = ln 6 − ln 5: Will the
gambler still be absent at time t?

A continuous-time Markov chain model of this absent gambler is depicted in Figure 6.
It consists of two states, and one transition. The transition represents that the gambler
can return to his office with rate λ. The gambler stays absent as long as needed to throw
a six. According to the value of λ the probability mass flows from state to state as time
passes, that is, a fraction of 1− eλ = 1/6 of the probability mass flows from the left state
to the right state per minute.4

Figure 6: A continuous-time Markov chain describing the gambler’s behaviour

Though the above example shows one of the simplest CTMCs one can think of, it
exhibits all relevant ingredients: states and transitions, the latter labelled with rates
of exponential distributions. It is worth to note that – in correspondence to geometric
distributions – exponential distributions are memoryless: The future evolution of a CTMC
model is independent of the past, it only depends on the state currently occupied. In terms
of the gambler, the probability that the absent gambler returns to his office within the
next minute is 1/6, independent of the fact he might have been absent for ages already.

Figure 5 allows us to illustrate the memoryless property in a graphical way [1]. Consider
the case that the gambler is still gambling after minute 10. We obtain the probability that
he will still be gambling at time 10 + t by stretching the tail of the distribution (from
time 10 to ∞) upwards in such a way that it reaches probability 1 for minute 10, i.e.
t = 0. As a matter of fact, this stretching returns precisely the original distribution, as
indicated by the light-grey plot in Figure 5, except that it is shifted by 10 minutes. (The
same graphical illustration holds for the geometric distribution, but for no other discrete
or continuous distribution.)

From a pragmatic point of view, the memoryless property is rather convenient. It
simplifies analysis, but it also simplifies modelling. In particular, it fits well to concurrent
stochastic phenomena: If two sub-models, both described in terms of CTMCs, are to

4Since the gambler continuously tries to return to his office, there is no need to record by an explicit
(looping) transition that he might fail for some (continuous) time. For CTMCs, this fact is implicit, while
in the DTMC scenario it is not.

18

be considered concurrently, one can simply interleave their evolution: If one sub-model
changes from one state to another, the other sub-model is not affected. The fact that the
latter has been staying in some state for some time (the time it took the former sub-model
to change state) does not need to be recorded somehow, because it does not alter the
future behaviour of the latter sub-model, due to the memoryless property.

Anyway, it should be clearly stated that absence of memory is an assumption that is
by far not always justified when modelling real-world phenomena.5

3 Formal specification of continuous-time Markov chains

In this section we illustrate the use of formal methods to model a specific aspect of a real-
world example as a CTMC. Several formal notations exist that map on CTMCs, among
them stochastic Petri nets and stochastic process algebra. Here we restrict ourselves to
illustrate the use of process algebra; an introduction to the Petri net based approach can
be found for instance in [1]. As opposed to Petri nets, process algebra allows one to
compose models out of smaller sub-models, by means of general composition operators
such as parallel composition and choice [14], and also more specific constructs, such as
exception handling [16]. We will make use of these operators to model a simplified view
on the performance and reliability of the Hubble space telescope.

The Hubble Space Telescope The Hubble space telescope (HST) is an orbiting as-
tronomical observatory operating from the near-infrared into the ultraviolet (cf. Figure 7).
Launched in 1990 and scheduled to operate through 2010, the HST carries a variety of
instruments producing imaging, spectrographic, astrometric, and photometric data.

The HST was first conceived in the 1940. It was designed and built in the 1970s
and 1980s, aiming at a life span of 15 years with on-orbit servicing taking place on 3
year intervals. The HST is a cooperative program of the National Aeronautics and Space
Administration(NASA) and the European Space Agency (ESA). Originally, the HST was
designed to be returned to earth via the space shuttle every 5 years with on-orbit servicing
every 2.5 years as well. This concept was later scrapped as it was felt there was a too
great risk of contamination and structural load to make the concept sound. By the time
it was launched the HST cost $1.5 billion U.S. dollars.

Since the telescope has been launched in April 1990, three servicing missions were
carried out: in December 1993, in February 1997, and in December 1999. During the last
mission the stabilising unit of the HST was repaired. This was necessary, since severe
problems with the reliability of the gyroscopes contained therein had forced the HST to
turn into a sleep mode.

The gyroscopes are part of HST pointing system. They provide a frame of reference
to determine where it is pointing and how that pointing changes as the telescope moves
across the sky. They report any small movements of the spacecraft to the HST pointing
and control system. The computers then command the spinning reaction wheels to keep
the spacecraft stable or moving at the desired rate in order to avoid that the telescope
pointing device staggers. This is of particular importance to avoid that pictures taken by
the telescope are blurred. The gyroscopes work by comparing the HST motion relative to
the axes of the spinning masses inside the gyroscopes.

5It is possible to incorporate a notion of memory into the model, similar to what we have used to realise
synchronisation of DTMCs (cf. footnote 2). In this way, general non-exponential probability distributions
(so-called phase-type distributions) can be represented. The price to pay for this is usually a blow up of
the model.

19

Figure 7: The Hubble space telescope [23].

The HST has a total of six gyroscopes, grouped into three fine guidance sensors. They
are arranged in such a way that any three gyroscopes can keep the HST operating with full
accuracy. Two fine guidance sensors had been replaced already during the first servicing
mission in 1993. Till the end of the second servicing mission in 1997, all six gyroscopes
were working normally, but then one after the other failed. Starting from January 1999
the HST had been operating with only 3 functional gyroscopes. As a consequence of a
fourth gyro failure on November 13, 1999, HST turned itself into a sleep mode and the
science program was suspended. Without operational gyro the telescope would have run
the risk to crash. In December 1999, a space shuttle mission was sent to the HST to
replace (among others) the complete stabilising unit. This mission was successful.

In order to judge whether the problems of the HST could have been expected be-
forehand, one might want to study the reliability of the stabilising unit by means of an
abstract stochastic model. Here we construct a simple Markov chain model of the gyros,
and of their controller. The model is a toy example, developed to give a flavour of Markov
chain modelling with process algebra. The model is developed in the algebra of interactive
Markov chains (IMC) [18, 20], an extension of basic Lotos [6].

Basic processes Each gyro might fail after an exponentially distributed amount of
time (it is known that exponential distributions fit relatively well to failures of technical
equipment). The failure rate λ is the same for all gyros. A GYRO specification is as
follows:

GYRO = (λ). fail. STOP

This specification corresponds to a graphical representation depicted in Figure 8. Apart
from a transition labelled λ representing the delay prior to failure, there is a second kind

20

of transition, indicated by a dotted arrow labelled fail. In abstract terms, this transition
represents the potential of interaction, i.e. of synchronising with a partner transition (la-
belled with the same name) in a different sub-model. The potential of interaction between
sub-models is one of the well known features offered by a process algebraic approach [6].

Figure 8: A simple interactive Markov chain describing the gyroscope’s behaviour

Parallel composition Six of these gyros coexist independently in the stabilising unit,
together with a controller that keeps track of the status of each gyro, by means of syn-
chronisation on fail. This is realized using the operator |[fail]| for synchronisation, and
||| to denote independent parallelism (among the gyros):

STABILISER = CONTROLLER

|[fail]|
(GYRO|||GYRO|||GYRO|||GYRO|||GYRO|||GYRO)

The controller counts the number of failures, and mechanically turns the telescope
into sleep mode in case four gyros have failed. To turn into sleep mode requires some
time. For the moment we just assume an exponential distribution with rate µ. We will
explain shortly how to deal with other distributions. After turning on the sleep mode, the
controller notifies the base station by means of a sleep signal. In the meantime, further
gyro failures might occur. If the last gyro fails, a crash is assumed to be inevitable. The
graphical representation of the controller is depicted in Figure 9.

Figure 9: An interactive Markov chain describing the controller

CONTROLLER = fail. fail. fail. fail.

((µ). sleep. STOP ||| fail. fail. crash. STOP))

To complete the picture, we consider the stabilising unit of the HST in the context of the
base station. The base station listens to the sleep notification and reacts accordingly:

21

launch a space shuttle mission to repair – and then restart – the telescope.

BASE = sleep. prepare. launch. repair. restart. BASE

Exception handling The complete specification consists of the STABILISER and the
BASE station synchronising on sleep. Two events may alter the functioning of the
system. If a crash occurs, the whole system is extinguished, but if the shuttle mission
manages to repair the stabilising unit in time, the whole system will be restarted anew.6

HST = trap
crash −> STOP
restart −> HST

in STABILISER |[sleep]| BASE

Time constraints Of course, preparing the shuttle mission takes time, and one might
wish to incorporate the expected (random) delay in the model. To do so, we can use a
constraint-oriented style, as advocated in [20]. This style allows one to add constraints on
the timing of certain sequences of interactions, such as between prepare and launch by
means of a dedicated operator. For instance,

on prepare
delay launch
by (ν). STOP
in HST

adds an exponentially distributed delay with rate ν between prepare and
launch. Semantically speaking, this will have the same effect as specifying
BASE = sleep. prepare. (ν). launch. repair. restart. BASE, but it is much more
modular and flexible, in particular because it can be used to impose very general time
constraints, instead of only exponentially distributed ones, see [20]. In short, one can
insert an arbitrary (phase-type distributed) delay between prepare and launch, by re-
placing (ν). STOP in the above expression by some appropriate term (in fact, an encoding
of the distribution as a CTMC).

For the sake of the presentation we do not add further time constraints, even though a
realistic model would at least impose some nontrivial delay between launch and repair,
(as well as a non-exponential delay to set up the sleep mode.)

Extracting the Markov chain The complete HST specification gives rise to a stochas-
tic model, a CTMC depicted in Figure 10. It is obtained from the specification by applying
the formal semantics of the process algebra, and compressing the model by means of an
appropriate weak bisimulation afterwards.7 The states are labelled from left to right with
the number of gyros that are currently operational, except if the system is sleeping, or
crashed.

Remark that in this CTMC the failure rate λ appears weighted with different multi-
plying factors. The intuitive reason is that if six gyros are operational, the time to the
first failure is six times smaller than if only one gyro is left. This increased failure rate for
multiple identical components is correctly derived by the formal approach outlined above.

6The semantics of this exception handling is similar to [16].
7As explained in [20], constructing theMarkov chain requires to hide all possible interactions beforehand.

This is necessary but not always sufficient to extract a CTMC, since interactive Markov chains are strictly
more expressive than CTMCs (because of the absence on nondeterminism in CTMCs).

22

Figure 10: A continuous-time Markov chain corresponding to the stochastic behaviour of
the telescope

4 Performance and reliability via model checking

In this section we illustrate the use of model checking to analyse performance and reliability
properties of CTMC models. We discuss the main ingredients of this approach, and apply
model checking to the simple Hubble space telescope example of Section 3.

Temporal logic The model checking approach relies on the use of temporal logic for
specifying properties one is interested in. For this purpose temporal logic provides means
to specify undesired (or – dually – desired) evolutions. Typical specifications of proper-
ties are ’something undesired never happens’ or ’eventually a desired state is
reached’. A temporal logic specification is usually considered in the context of a given
model (provided by some process algebraic specification, for instance). The mechanic ver-
ification whether a model satisfies a temporal logic specification is called model checking.
It is worth to mention that basic temporal logic does not allow one to reason about delays
and time points (although the name might suggest the converse). It is ’temporal’ in the
sense that it allows one to refer to the ordering of events as the model evolves in time.

Temporal logics for Markov chains In the context of Markov chain models, the
temporal logic approach turns into a probabilistic temporal one. It is not sufficient to
decide whether ’eventually a desired state is reached’. Instead the probability of
eventually reaching a desired state is much more interesting. For the gambler example
in Figure 3 the standard interpretation of ’eventually the gambler will be present’
would return false, because it is in principle possible to stay absent ad infinitum. However,
this evolution is extremely unlikely, it has probability zero. So, a quantitative interpreta-
tion of temporal logic is needed, quantifying the likelihood of satisfying a given property.
This allows one to specify properties such as ’a desired state is eventually reached
with at least probability 0.95’.

Moreover, since the evolution of a Markov chain model in time is measurable (in the
true sense of the word), it is possible to reason about time instances within the temporal
logic. Timed properties such as ’with at most probability 0.2 the gambler will
still be absent after 10 minutes’ are possible.

Continuous stochastic logic The continuous stochastic logic (CSL), first proposed in
[2] and further refined in [4, 3] provides means to reason about continuous-time Markov
chain models. It is a branching time logic based on CTL [8] with dedicated means to
specify time intervals, and to quantify probability. As explained in Section 2, there are

23

two substantially different classes of properties of a CTMC: transient and steady-state
properties. Therefore, CSL provides two complementary means to quantify the probability
mass: a steady-state operator S, to quantify the long-run likelihood, and a transient
probability operator P.

For instance, a steady-state property S≤p(Φ) is true if the long-run likelihood of prop-
erty Φ is at most p.8 Φ can be a basic property (usually called atomic proposition) valid
(or invalid) in some state. It can also be an arbitrary nested property of the logic. The
transient probability operator is used to quantify the likelihood of evolving in a specified
way, from a given state and a given time point on. For example P≤p(X Φ) is true in
a particular state if the probability of moving (in one step) to a state where Φ holds is
bounded by p. Apart from X Φ, there can be various other arguments for the operator P,
such as

• ♦Φ quantifies the probability mass evolving in such a way that eventually a state
is reached where Φ holds (called a Φ-state in the sequel).

• ♦[0,t] Φ characterises the amount of probability reaching a Φ-state within t time
units.

• Φ1 U Φ2 characterises the amount of probability evolving only along Φ1-states until
a Φ2-state is reached.

• Φ1 U [t1,t2] Φ2 quantifies the probability mass evolving only along Φ1-states until a
Φ2-state is reached, under the additional constraint that Φ1 holds at least up to time
t1, and Φ2 holds at time t2 the latest.

Model checking CSL Model checking a CTMC with respect to a given CSL property
involves different algorithms. Since the details are not of vital importance for a proper
understanding of the approach – at least relative to the logical means to specify properties
– we only give a concise overview of the ingredients.

As in other model checking strategies, a couple of graph algorithms are used. In
addition, algorithms to quantify the probability mass of satisfying the above criteria are
needed. In principle, these probabilities could be derived using simulation, numerical
solution, or sometimes via analytical solutions. Since numerical solution of CTMCs is
well studied and generally applicable, it seems wise to use numerical solution methods
to model check CSL properties [4]. In this way, model checking involves matrix-vector
multiplications (for X), solutions of linear systems of equations (for ♦, U and for S), and
solutions of systems of Volterra integral equations (for U [...]). Linear systems of equations
can be iteratively solved by standard numerical methods [26]. Systems of integral equations
can be solved either by piecewise integration after discretisation, or they can be reduced
to standard transient analysis [3]. A prototypical model checker for CSL, E T MC2, is
available [21], We shall make use of E T MC2 to investigate properties of the Hubble space
telescope.

Properties of the telescope model CSL provides a rich framework to study perfor-
mance and reliability properties of the HST. Here we consider a few illustrative cases. In
order to allow the calculation of numerical values, we first need to fix the model parame-
ters λ, µ, and ν of the CTMC in Figure 10. Assuming a basic time unit of one year, we
set λ = 0.1, i.e. we assume that each gyro has an average lifetime of 10 years. (Remind
that 1/λ gives the average duration of an exponential distribution with rate λ.) To turn

8Instead of ’≤’ one may use arbitrary comparison operators, or specify intervals of probabilities instead.

24

on the sleep mode may require a hundredth of a year (a bit more than three days and a
half) on the average, whence we set µ = 100. Further assuming that preparing the repair
mission will take about two months, we set ν = 6. Unless otherwise stated we consider
the validity of CSL properties in the initial state, i.e. the state labelled 6 in Figure 10.
The state labels appearing in this figure serve as atomic state propositions for the logic.

First, let us look into long-run averages. An interesting property, often called availabil-
ity, is the probability that the system will be available – i.e. neither crashed nor sleeping –
on the long-run average. In CSL we assure an availability higher than p by specifying

S>p(¬ (sleep ∨ crash)).

None of the states of the HST satisfies this property (whatever the value of p may be). This
should not be surprising, because the telescope is not constructed for the long run. In fact,
the availability of the telescope is zero, because on the long run, the modelled telescope
will crash, all the probability mass will eventually be cumulated in the crash-state (cf.
Figure 10).9

While checking standard availability does not make much sense for the HST, the in-
stantaneous availability is of interest. Instantaneous availability is a typical transient
property, it is the probability that the system is operational at a given time point t. This
time point could for instance be given by the need to observe a rare astronomic event.
Assuming that an interesting comet passes the telescope in five years, we specify

P≥0.95(♦[5,5]¬ (sleep ∨ crash))

in order to assure that with at least probability 0.95 the telescope is neither sleeping nor
crashed then. (Note that the time interval [t, t] denotes just a single time point.) This
property is satisfied, we compute a probability of more than 0.98.

In the same direction, we may wonder about the probability to obtain blurred data
at that time from the telescope, because less than three gyros are operational, but sleep
mode is not yet turned on. This is a very unlikely situation, and one might accept at most
a probability of 10−6. One way of characterising the relevant states is to isolate those
(non-sleep) state that (with positive probability) can turn on the sleep mode in the next
step. This gives us

P≤10−6(♦[5,5] (¬ sleep ∧ P>0(X sleep)),

a property that is not satisfied, because the probability of being in the specified states
after 5 years is in the dimension of 10−5.

Another quantity of interest is the time until first sleep, i.e. the time span before the
(fully operational) telescope has to be put into sleep mode for the first time. In reality, this
happened within 2.7 years: All gyros were operational at the end of the second servicing
mission in early 1997, and the sleep mode was turned on in November 1999. We specify
a less than 10 % chance of such a first sleep within 2.7 years by

P<0.1(¬sleep U [0,2.7] sleep)

It turns out that this property is valid, E T MC2 computes that the probability of a first
sleep within 2.7 years amounts to about 0.03. A related question is whether it was likely
not to witness any gyro failure within the four years between the first (1993) and the second

9Generally speaking, steady-state properties provide very useful insight in the model, in particular for
the widespread class of models where the probability mass can flow forever without gradually leaking into
some sink (so to speak), or where more than one sink exists. Each of these sink may in general consist of
a set of mutually reachable states.

25

servicing mission (1997). We answer this question by checking whether the probability to
leave the state 6 within 4 years is between, say, 0.3 and 0.7. (Notice that leaving state 6
corresponds to a gyro failure).

P[0.3,0,7](♦[0,4]¬ 6)
In fact, this property is invalid, because the probability of a gyro failure within 4 years is
approximately 0.9, thus exceeding the upper bound 0.7.

As a last example property, be reminded that the HST is planned to stay on orbit
through 2010. Hence, it seems worth to study whether a crash before reaching the year
2010 can hardly be expected. To do so, we model check a property saying that there is
at most a 1% chance that the system will crash within the next 10 years (given that the
system was reset to state 6 in late 1999):

P<0.01(♦[0,10] crash).

This property is satisfied, the probability of crashing within 10 years is calculated by
E T MC2 to be 0.00036. Be reminded that the model is a toy example, and that its timing
parameters are not claimed to reflect reality.

5 Concluding remarks

In this paper, we have tried to give an illustrative introduction to the basics of stochastic
models, to stochastic modelling using process algebra, and to model checking as a technique
to analyse stochastic models.

A few questions have not been addressed to a satisfactory extent. In particular we
have negligently skipped the discussion how to label states of a CTMC generated from a
process algebra in such a way that these labels can be used in temporal logic property
specifications. One solution to this problem is to move from a state based logic towards a
transition-based formalism [22].

Another important issue for industrial strength formal analysis is the availability of
tool support. At the current state, prototypical tool support is available for both the
stochastic modelling and the analysis phase: A couple of prototypes exist that allow
a process algebraic modelling of CTMCs [19, 7, 5]. So far, performance models with
up to 107 states have been modelled and analysed compositionally [20]. A prototypical
model checker for Markov chains, E T MC2, is also available [21], it was used to check the
above CSL properties of the Hublle space telescope. More effort is nevertheless needed
to enhance modelling and analysis convenience. In addition, it seems favourable to link
stochastic features to existing modelling and analysis tools with open architecture. We
are currently making efforts to incorporate stochastic modelling and analysis features into
the CADP toolset [13, 15].

Markov chain models have been the clear focus of this paper. Their memoryless prop-
erty considerably simplifies both modelling and analysis, but the property also implies
that many real-world phenomena can only roughly be approximated with Markov chains.
Hence there is a need to extend the framework sketched in this paper beyond Markov
models. The work of D’Argenio et al. [11, 12] develops a process algebra, called spades,
to specify non-Markov performance and reliability models in an elegant way. So, the
benefits of a process algebraic formalism extend to performance and reliability modelling
in general. Anyhow, the analysis of such models needs further investigations. Since nu-
merical solution methods are impractical in general, we are currently developing an open
simulation environment to analyse spades specifications.

26

Acknowledgements Pedro R. D’Argenio and Joost-Pieter Katoen have provided valu-
able comments on an earlier version of this paper.

References

[1] M. Ajmone Marsan, G. Balbo, G. Conte, S. Donatelli, and G. Franceschinis. Modelling
with Generalized Stochastic Petri Nets. Wiley, 1995.

[2] A. Aziz, K. Sanwal, V. Singhal and R. Brayton. Verifying continuous time Markov
chains. In Computer Aided Verification (CAV 96), LNCS 1102, pp. 269–276, Springer,
1996.

[3] C. Baier, B.R. Haverkort, H. Hermanns and J.-P. Katoen. Model checking continuous-
time Markov chains by transient analysis. In Computer Aided Verification (CAV 2000),
LNCS, Springer, 2000 (to appear).

[4] C. Baier, J.-P. Katoen and H. Hermanns. Approximate symbolic model checking of
continuous-time Markov chains. In Concurrency Theory (CONCUR 99), LNCS 1664,
pp. 146–162, Springer, 1999.

[5] M. Bernardo, W.R. Cleaveland, S.T. Sims, and W.J. Stewart. TwoTowers: A tool
integrating function and performance analysis of concurrent systems. In Proc. of IFIP
Joint Int. Conf. on Formal Description Techniques and Protocol Specification, Testing
and Verification. North Holland (IFIP), 1998.

[6] T. Bolognesi and E. Brinksma. Introduction to the ISO Specification Language LO-
TOS. Computer Networks and ISDN Systems 14:25-59, 1987.

[7] G. Clark, S. Gilmore, J. Hillston, and N. Thomas. Experiences with the PEPA per-
formance modelling tools. IEE Proceedings–Software 146(1):11-19, February 1999.

[8] E.M. Clarke, E.A. Emerson and A.P. Sistla. Automatic verification of finite-state
concurrent systems using temporal logic specifications. ACM Tr. on Progr. Lang. and
Sys. 8(2):244-263, 1986.

[9] E.M. Clarke and R.P. Kurshan. Computer-aided verification. IEEE Spectrum 33(6):61–
67, 1996.

[10] E.M. Clarke, O. Grumberg and D. Peled. Model Checking. MIT Press, 1999.

[11] P.R D’Argenio. Algebras and Automata for Timed and Stochastic Systems. PhD-
Thesis, University of Twente, November 1999.

[12] P.R. D’Argenio, J.-P. Katoen E. Brinksma. Specification and Analysis of Soft Real-
Time Systems: Quantity and Quality. In Proc. of the 20th IEEE Real-Time Systems
Symposium, pp. 104-114, Phoenix, Arizona, December 1999. IEEE Computer Society
Press.

[13] J.-C. Fernandez, H. Garavel, A. Kerbrat, R. Mateescu, L. Mounier and M. Sighireanu.
CADP (Caesar/Aldébaran Development Package): A protocol validation and verifica-
tion toolbox. In Computer Aided Verification (CAV 96), LNCS 1102, pp. 437-440,
Springer, 1996.

[14] W.J. Fokkink. Introduction to Process Algebra. Texts in Theoretical Computer Sci-
ence, Springer, 2000.

27

[15] H. Garavel. Open/Cæsar: An open software architecture for verification, simulation,
and testing. In B. Steffen, ed, Tools and Algorithms for the Construction and Analysis
of Systems (TACAS 98), LNCS 1384, pp. 68–84, Springer, 1998.

[16] H. Garavel and M. Sighireanu. On the Introduction of Exceptions in E-LOTOS. In
R. Gotzhein and J. Bredereke, editors, Formal Description Techniques IX, pp. 469-484,
Chapman and Hall, 1996.

[17] B. Haverkort. SPN2MGM: Tool support for matrix-geometric stochastic Petri nets.
In Proc. of IEEE International Computer Performance and Dependability Symposium,
pp. 219–228, Urbana-Champaign, Illinois, September 1996. IEEE Computer Society
Press.

[18] H. Hermanns. Interactive Markov Chains. PhD thesis, Universität Erlangen-Nürn-
berg, 1998.

[19] H. Hermanns, U. Herzog, U. Klehmet, V. Mertsiotakis and M. Siegle. Compositional
performance modelling with the TIPPtool. Performance Evaluation 39(1-4):5–35,
2000.

[20] H. Hermanns and J.P. Katoen. Automated compositional Markov chain generation
for a plain-old telephony system. Science of Computer Programming 36(1):97–127,
2000.

[21] H. Hermanns, J.-P. Katoen, J. Meyer-Kayser and M. Siegle. A Markov chain model
checker. In Tools and Algorithms for the Construction and Analysis of Systems
(TACAS 2000), LNCS 1786, Springer, 2000.

[22] H. Hermanns, J.-P. Katoen, and J. Meyer-Kayser. Towards model checking stochastic
process algebra, 2000 (submitted).

[23] The Hubble space telescope. http://astro.sau.edu/∼astro/html/MARAC/HST.html
[24] C. Lindemann and R. German. Modeling discrete event systems with state-dependent

deterministic service times. Discrete Event Dynamic Systems: Theory and Applications
3:249–270, July 1993.

[25] Raj Jain. The Art of Computer Systems Performance Analysis. J. Wiley, New York,
1991.

[26] W.J. Stewart. Introduction to the Numerical Solution of Markov Chains. Princeton
Univ. Press, 1994.

28

29

A B Model for Ensuring Soundness of a Large Subset
of the Java Card Virtual Machine

Antoine Requet

Gemplus Research Laboratory, Av du Pic de Bertagne,
13881 Gémenos cedex BP 100.
antoine.requet@gemplus.com

Abstract: Java Cards are a new generation of smart cards that use the Java
programming language. As smart cards are usually used to supply security to a
system, security requirements are very strong and certification can become a
competitive advantage. Such a certification to a high Common Criteria or
ITSEC level requires the proof of all the security mechanisms. Those security
mechanisms include the byte code interpreter and verifier of the virtual
machine. Previous works have been done on methodology for proving the
soundness of the byte code interpreter and verifier using the B method. It
refines an abstract defensive interpreter into a byte code verifier and a byte code
interpreter. However, this work had only been tested on a very small subset of
the Java Card instruction set. This paper presents a work aiming at verifying the
scalability of this previous work. The original instruction subset of about ten
instructions has been extended to more than one hundred instructions, and the
additional cost of the proof has been managed by modifying the specification in
order to group opcodes by properties.

Keywords: B method, Java Card, formal specification

1. Introduction

A smart card is a small embedded system generally used to supply security to an
information system. Traditionally, the application and the operating system were
developed in a secure environment by the card issuer. For few years, platforms (e.g.,
Java Card, MultOS and Smart Card for Windows) have provided new facilities for
application developers. They allow dynamic storage and execution of downloaded
executable content. Those platforms are based on a virtual machine both for
portability across multiple smart card micro-controllers and for security reasons. Such
architecture introduces new risks: the most important one is the possibility to attack
the card from an applet by exploiting some implementation faults. In order to avoid
such a risk, card manufacturers have a fairly extensive qualification process. Quality
insurance requirements for smart cards are very strong. To convince the customer that
the system is secure enough, card manufacturers propose to evaluate their system
through a certification process.
This certification is a means for the card issuer to promote its products against its
competitors. Sometimes the customer or the targeted market requires the certification.

30

For example, the German market requires each product that uses an electronic
signature to be certified at the E4 level of the ITSEC scheme. According to the
certification rule and the requested level, the card issuer must provide all the elements
needed by the authority to guarantee the quality of the development process. At some
high levels, it is required to use formal methods and to provide the proof that security
mechanisms satisfy the security policy. One of the trickiest problems is to prove the
coherence of the different security mechanisms of the system. Since there are strong
size constraints on the chip, the amount of memory is small. This leads Java Card to
modify the security scheme. It becomes more crucial to be able to prove the
correctness of the whole system security.
After a brief presentation of the Java Card security mechanisms, we sum up the state-
of-the art on the formal verification of the Java byte code semantics. We emphasise
the proof of the static and dynamic semantics coherence using our approach. Then, we
conclude with the extension of our work and its integration in the whole Java Card
model.

2. Security of the Java Card

The Java Card 2.1 standard [Sun-99] defines the CAP file (Converted APplet) i.e., the
structure of the input files. For each byte code, the standard defines the conditions
required for a correct execution, but not the way to ensure that those conditions are
met. The Java Card virtual machine is specially designed for smart card; several
features have been removed, compared to the Java virtual machine, while others
features have been added (e.g., the applet firewall). The Java Card API is a set of
tools or services aimed to help programmers designing Java Card applets. Due to the
limited resources of the smart card (CPU, memories…), most of the tests (the verifier
and part of the loader) must be done statically, outside the card. A secure link
mechanism allows the card to check the integrity of the cap file; i.e., after having
verified the signature, the card can safely assume that the downloaded program has
the required properties, and that a valid verifier has checked it. Of course the
certificate can only be provided by a trusted third-party authority.
In fact, the security provisions are scattered across different components: a verifier, a
converter, an on-card loader, a firewall and an interpreter (see figure 1). Moreover a
specific applet is used to manage the applet: the Java Card Runtime Environment
(JCRE). It is used to select and deselect applets, and also contain the registers of the
selected applets and of the currently active applet.
While the virtual machine insures Java language-level security, the firewall performs
additional runtime checks. This mechanism is in charge of the applet isolation and of
the control of object accesses. For example, it prevents unauthorized accesses to the
fields and the methods of class instances. An applet may share objects with other
applets, so the applet firewall must control the access to the shareable interface of
these objects. This component is of prime importance for the system security.

31

Fig.1: Java Card environment

The security policy has to express the correct confinement of the applets and the
correct access to shared objects. The respect of the typing rules associated to the
access rules of the firewall guarantee this security policy. Thus, we have to verify that
the elements performing those checks are correctly implemented and that they are
consistent. A formal specification of these mechanisms must be done even if the
formal proof is costly. Several elements have already been modelled: the verifier
[Cas-99] and partially the JCRE with an emphasis on the firewall [Mot-00]. We
present here a method guaranteeing that the security policy is correctly implemented
by the different mechanisms.

3. Related Work

There has been much work on a formal treatment of Java but no work has been done
in order to formally verify whether a given security policy is correctly implemented
by a virtual machine. All the works on Java and the Java byte code focus on a formal
definition of the semantics. At the Java language level, [Nip-98] and [Sym-97] define
a formal semantics for a subset of Java in order to prove the soundness of its type
system. [Qia-98] considers a subset of the byte code and aims at proving the runtime
correctness from its static typing. Then, he proposes the proof of a verifier that can be
deducted from the virtual machine specification.
An interesting work has been done by [Coh-96]. He proposes a formal
implementation of a defensive virtual machine. It is possible to prove that his model is
equivalent to an offensive interpreter plus a sound byte code verifier. Posegga and
Vogt [Pos-98] propose a verification mechanism based on a model checker. They
shown the easiness of the proof process using the SMV tool. Goldberg [Gol-97]
proposes a formal specification of the byte code verifier for the data flows analysis.
His approach is close to the implementation but he simplifies the problem when

Java
compiler

*.java *.class

*.cap

Java Card Virtual Machine
On-card parts

Byte code verifier and
converter

off-card loader

Off-card parts

On-card
LoaderInterpreter

Firewall Linker

32

neglecting to check subroutines. In the Bali project [Pus-99], Push proves a part of the
Java Virtual Machine using the prover Isabelle/HOL. Qian works [Qia-98] gives a
specification of the byte code verifier and then proves its correctness.

4. The approach used

The main purpose of our approach is to ensure the soundness of the type system.
Principles described in [Cas-99] are used to formally specify the Java byte code
interpreter. The main idea is to start with a formal description of an abstract defensive
byte code interpreter that defines the checks needed to ensure a safe byte code
execution. This defensive byte code interpreter defines the expected security policy.

Fig 2: Overview of the approach

The runtime checks performed by the defensive interpreter are removed and
converted to static constraints on the byte code during the refinement process. During
this process, the proof obligations of the refinement ensure the validity of the static
constraints specified.
At the last refinement step, the machine is separated in a byte code verifier, which
enforces the static constraints, and an aggressive interpreter, corresponding to the
implementation of the Java Card virtual machine. The refinement mechanism ensures
that the security policy defined in the abstract interpreter is preserved by the
aggressive one.
This approach ensures the soundness of the byte code verifier and the interpreter. That
is, the byte code interpreter relies only on tests that are performed. Moreover, from
the verifier point of view, this proves that the properties verified are enough to
guarantee a safe byte code execution: a property that would not have been verified
would generate unprovable proof obligations in the verifier part. Lastly, generating

includes

Defensive abstract interpreter

Aggressive abstract interpreter
and static constraints

Merging of verifier and
interpreter

refines

refines

Verifier specification Interpreter specification

Verifier implementation

refinements

Interpreter implementation

refinements

33

the code for the interpreter and the verifier ensures the correctness of the
implementation.
Initially, a small instruction set composed of about ten instructions and a simplified
lattice has been used. This approach was adapted to this small instruction set, but
extending it to the whole Java Card instruction set did not scale well. More exactly,
each instruction needed several manual proofs and both the response time and
memory requirement of the prover was too large to completely demonstrate the
proofs. The next part focuses on describing how the approach has been extended for a
large subset of the Java Card virtual machine.

5. Machine considered

5.1. Instruction set

The Java Card subset considered consists of all the stack manipulation instructions,
most of the control flow instructions and instructions manipulating local variables.
As the aim of this work was to verify the scalability of the approach, instructions that
would drastically increase the complexity of the model have been left out. Especially,
those instructions include the instructions used for subroutines, for method calls and
for objects handling. The difficulties implied by those instructions have already been
widely studied, and there are known solutions for handling them. Moreover, those
difficulties usually involve few instructions, and are not subject to scalability
problems. The handling of exceptions and subroutines will be added later, when the
scalability of the model will be resolved. We will use a model developed as an
extension of [Lan-98] based on [Aba-98] and very close to [Fre-99].
So, the chosen instruction set is neither representative of the full Java Card instruction
set nor representative of the tricky parts of the full instruction set. However, it appears
as a valid choice to study the problems that can be encountered when extending a ten
instructions subset to the full instruction set.
A subset of instructions manipulating the stack is created. Each of those instructions
is considered as first removing elements from the stack, and adding new elements to
the resulting stack. For example, the instruction iadd, which adds the two topmost
elements of the stack together, and replaces them by the result, is considered as being
an instruction that pops two integers from the stack and pushes an integer.
To model this, two constants have been added: tpushed and tpopped. Those constants
are defined as partial maps from opcodes to sequence of types. tpopped defines the
types that are expected to be removed from the top of the stack, and tpushed defines
the types to be pushed onto the stack when the instruction is executed. In the previous
example, tpushed(iadd) is equal to the one element sequence [integer], and
tpopped(iadd) is equal to the sequence [integer, integer].
In order to simplify the specification and the proof process, the opcodes are grouped
by properties. Sets are defined to contain opcodes with similar properties. For
example, the following sets are used:

34

• OP_NEXT. This set contains opcodes that can go to the next instruction after
execution. This include nearly all the instruction, excepted the unconditional
jumps.

• OP_BRANCH and OP_BRANCH_W: the set of opcodes that may perform a
relative branch, where the target is defined by the first parameter. There are two
sets, since the branch can be defined by a signed byte parameter (OP_BRANCH)
or a signed short parameter (OP_BRANCH_W)

• OP_NEXT_FRAME_READ: the set of opcodes reading a value from the local
variables.

A given opcode can be part of several sets. For example, instructions that perform
conditional branch are both elements of OP_NEXT and OP_BRANCH. Although
every Java Card opcodes can not fit in a group, such a grouping scheme highly
simplifies the specification.
One drawback is that grouping opcodes by properties generates more complicated
proof obligations that require increased manual interaction. However, those proof
obligations are more generic and can usually be used to discharge nearly all the proof
obligations corresponding to the opcodes within the group.

5.2. State of the machine

We consider the execution of one method. This is enough to verify the consistency
between the interpreter and the verifier. Thus the verification can be performed a
method at a time, provided that some information about the global context is
accessible.
A set BYTE is defined, the method being considered as a sequence of BYTE. Since its
content does not change during the interpretation, it is defined as a constant. Some
additional information on the method is added: max_stack corresponds to the
maximum size of the local stack during the execution of the method, and max_local to
the maximum number of local variables used. Lastly, the set opcode_locations
corresponds to the set of valid adresses within the method. As this last information is
not directly available within the classfile, it has to be computed before the method is
executed.

max_locals ∈ NAT ∧
max_stack ∈ NAT ∧
method ∈ seq1(BYTE) ∧
opcode_locations ⊆ dom(method)

Fig 3: Constants used to represent a method

For the most abstract specification, we are only interested in the types contained in the
stack and the frame. So, the state consists of:
• the program counter, which points to the instruction currently being executed,
• the typing of the runtime stack,
• the typing of the frame.
This state is defined by the variables shown on figure 4. For now, the variable
frame_type contains the content of the frame, and is defined as a partial map from

35

integer to type (more exactly, from the interval 0 to the maximum variable number to
type). The variable stack_type represents the content of the stack, and is defined as a
sequence of types. apc is defined as beeing a value in opcode_locations, always
ensuring the applet confinement. An additional invariant ensures that the stack never
overflows.

frame_type ∈ 0..max_locals-1 TYPE ∧
stack_type ∈ seq(TYPE) ∧
size(stack_type) ≤ max_stack ∧
apc ∈ opcode_locations

Fig 4: Variables representing the state of the machine

Since we manipulate byte, and not more abstract data types, we need some functions
converting bytes to opcodes or values. Figure 5 lists some of the B functions defined.
The functions BYTE_to_signed and BYTE2_to_signed allow converting a byte or a
short into a signed value useable within the specification. Those functions are defined
as constants, and are used to get the opcodes and the parameters from the method.

BYTE_to_OPCODE ∈ BYTE → OPCODE ∧
BYTE_to_signed ∈ BYTE → INT ∧
BYTE2_to_signed : (BYTE×BYTE) → INT

Fig 5: Functions handling byte conversions

6. The defensive interpreter

The defensive interpreter performs an abstract execution of the method, and ensures
that every instruction can be executed in a safe way by runtime tests. Each Java
opcode has an associated B operation describing the expected semantics.
To simplify the specification, a few more definitions have to be introduced (Fig 6).

opcode(pc) == BYTE_to_OPCODE(method(pc));
parameter(pc, xx) == method(pc+xx);
succ_pc(pc) == pc + parameters_size(opcode(pc)) + 1;
can_update_stack(pc) == size(stack_type) ≥ size(tpopped(opcode(pc))) ∧

size(stack_type)-size(tpopped(opcode(pc)))+size(tpushed(opcode(pc)))
≤ max_stack ∧

stack_type↑size(tpopped(opcode (pc)))=tpopped(opcode (pc))
Fig 6: Definitions

The first definition corresponds to a function returning the opcode for the specified
location in the method. The second one is used to access parameters associated to
opcodes. The next one computes the address of the next instruction based on the

36

number of additional parameters of the opcode. The last definition is a predicate
ensuring that the stack can be updated according to the definition of the current
opcode. That is, it ensures that the execution of the instruction will not introduce stack
underflow or overflow, and that the types expected are present on top of the stack.
To specify the operations, we use event driven B, and associate a guard corresponding
to the expected opcode of the operation. The operation will be triggered when the
guard is true, that is, when the corresponding opcode is encountered.
Each operation performs tests ensuring that it can safely be executed and then updates
the state of the machine. For example, the specification of the iload instruction, which
loads an integer local variable onto the stack is given figure 7.

op_iload=
SELECT

opcode(apc) = ILOAD
THEN

IF
BYTE_to_unsigned(parameter(apc, 1)) ∈ 0..max_locals-1 ∧
frame_type(BYTE_to_unsigned(parameter(apc, 1))) =

frame_type_used(opcode(apc)) ∧
succ_pc(apc) ∈ opcode_locations ∧
can_update_stack(apc)

THEN
apc := succ_pc(apc) ||
stack_type := tpushed(opcode(apc))

^(stack_type↓size(tpopped(opcode(apc))))
END

END;
Fig 7: Specification of the operation corresponding to the iload opcode

In this example, the content of the SELECT clause means that this operation will be
triggered when an iload opcode is encountered within the method. Then, the tests
within the IF clause correspond to the runtime tests performed when executing the
instruction: the two first checks ensure that the local variable exists and is defined,
and that the types it uses match with the expected types, ensuring correct typing. The
next checks ensure the confinement of the applet execution, by testing if the program
counter is still within the method body after the operation is performed. The last
check tests for the stack underflow and overflow, and ensures that the types expected
within the stack match with the types found.
As this defensive interpreter only operates on types, its specification cannot be
deterministic: some instruction behaviour may depend on the values stored in the
stack or within the variables. An example of this is the instructions performing
conditional branch depending on stack values. As only the type of those values is
known, it isn’t possible to decide if the branch is taken. Instead, it is specified that,
either the jump is performed, either the execution continues to the next instruction.
The specification of the ifle instruction is given on figure 8.

37

op_ifle=
SELECT

opcode(apc) = IFLE
THEN

CHOICE
IF

succ_pc(apc) ∈ opcode_locations ∧
can_update_stack(apc)

THEN
apc := succ_pc(apc) ||
stack_type := tpushed(opcode(apc))

^(stack_type↓size(tpopped(opcode(apc))))
END

OR
IF

apc + parameter(apc, 1) ∈ opcode_locations ∧
can_update_stack(apc)

THEN
apc := apc + parameter(apc, 1) ||
stack_type := tpushed(opcode(apc))

^(stack_type↓size(tpopped(opcode(apc))))
END

END
END;

Fig 8:Specification of the operation corresponding to the ifle opcode

The B substitution CHOICE represents a non-deterministic choice. The first part of
the clause represents the case where the execution continue to the next instruction,
and the second to the case where the execution continue to the branch target.
Determinism will be added within the interpreter specification, since the values stored
within the stack are not available before.

7. Replacement of runtime tests by static properties

7.1. Introduction of new variables

Replacing the runtime checks by static properties implies adding additional
information about the method. Especially, we need to know the typing content of the
stack, and the type of the potentially used local variables for each instruction. This
information is provided by a type inference performed by the verifier. It is possible to
infer this information, because a valid Java program has to be verifiable in a finite
time [Lin-96]. The verifier would reject any program where this information could not
be computed.

38

Two new variables are introduced (figure 9): stack_type_s and frame_type_s,
representing the result of the type inference. For each instruction of the method, they
define the expected content of the stack and the frame. These variables are linked to
the state of the interpreter, by stating that the current state of the interpreter must
match the expected state.

frame_type_s ∈ seq(0..max_locals-1 TYPE) ∧
stack_type_s ∈ seq(seq(TYPE)) ∧
stack_type_s(apc)=stack_type ∧
frame_type_s(apc)=frame_type

Fig 9: Definition of the static variables

7.2. Definition of the static properties

We currently consider three different static properties. These properties correspond to
properties on the control flow (applet confinement), on the stack (correct typing and
no underflow/overflow), and on the validity of local variables access (correct typing).
These static properties are expressed as invariants of the machine, by predicates
linking the state of the interpreter before execution of an instruction to its state after
execution.
The confinement property is expressed by defining properties that must be enforced
for opcodes of different groups.

static_flow_checked ==
∀pc.((pc∈dom(method) ∧ opcode(pc) ∈ OP_NEXT)
 �

succ_pc(pc) ∈ opcode_locations) ∧
∀pc.((pc∈dom(method) ∧ opcode(pc) ∈ OP_BRANCH)
 �

pc+BYTE_to_signed(method(pc+1)) ∈ opcode_locations) ∧
∀pc.((pc∈dom(method) ∧ opcode(pc) ∈ OP_BRANCH_W)
 �

pc+BYTE2_to_signed(method(pc+1),method(pc+2)) ∈ opcode_locations)
Fig 10: Static properties for confinement

The stack properties are expressed in a similar way. They relate the content of the
static typing stacks before the instruction to the content of those stacks after the
instruction is executed. For example, in the case of branching opcode, it is stated that:
• the size of the stack after the execution of the instruction is less than max_stack,
• the stack does not underflow during the execution of the instruction,
• the resulting stack does not underflow,
• the static stack for the branch target matches with the resulting stack.
The property associated to the stack for branching opcodes are given on figure 11.

39

static_stack_checked ==
…
∀pc.((pc∈dom(method)∧ opcode(pc)∈OP_BRANCH)
�

-max_stack ≤ size(stack_type_s(pc)) + size(tpopped(opcode (pc)))
- size(tpushed(opcode(pc))) ∧

size(tpopped(opcode(pc))) ≤ size(stack_type_s(pc)) ∧
0 ≤ max_stack - size(stack_types_s(pc)) + size(tpopped(opcode(pc)))

- size(tpushed(opcode(pc))) ∧
stack_type_s(pc)↑size(tpopped(opcode(pc))) = tpopped(opcode(pc)) ∧
stack_type_s(pc+1+BYTE_to_signed(method(pc+1))) =

tpushed(opcode(pc)) ^ (stack_type_s(pc)↓size(tpopped(opcode(pc))))) ∧
…

Fig 11: Stack property for branching opcodes

Note that the inequalities describing the size of the stack are written in such a way
that they are suitable to the normalisation used by the prover. Although the
specification is less straightforward to read, proving its correctness is far easier. For
example, in some cases, the number of commands needed to achieve the proof can be
divided by more than two.
The last set of properties ensures the consistency of the frame accesses. It uses
functions similar to tpopped and tpushed: frame_type_used to get the expected type of
the local variable used.

static_frame_checked ==
∀pc.((pc∈dom(method) ∧ opcode(pc) ∈ OP_NEXT_FRAME_READ)
�

BYTE_to_unsigned(method(pc+1)) ∈ 0..max_locals-1 ∧
frame_type_s(pc)(BYTE_to_unsigned(method(pc+1)))=frame_type_used(opcode(
pc))∧
frame_type_s(pc+1+parameters_size(opcode(pc))) ⊆ frame_type_s(pc))

Fig 12: Frame property for opcodes reading the frame

Three boolean variables are defined: flow_checked, stack_checked and
frame_checked. Those variables correspond to the result of the verifier, and are set to
true only if the program has the corresponding property. Invariants are added to link
those values to the static properties defined as shown on figure 13.

40

flow_checked ∈ BOOL ∧
(flow_checked = TRUE� static_flow_checked) ∧

stack_checked ∈ BOOL ∧
(stack_checked = TRUE � static_stack_checked) ∧

frame_checked ∈ BOOL ∧
(frame_checked = TRUE � static_frame_checked)

Fig 13: Invariant defining static properties

The specification of the operations is nearly the same as previously. The difference is
that tests against the values of the checks variable are placed within the guard, and
that the dynamic tests are removed. For example, the specification of the iload
operation is given on figure 14.

op_iload=
SELECT

opcode(apc) = ILOAD ∧ flow_checked ∧ stack_checked ∧ frame_checked
THEN

apc := succ_pc(apc) ||
stack_type :=

tpushed(opcode(apc))^(stack_type↓size(tpopped(opcode(apc))))
END;

Fig 14: Specification of the iload opcode

The refinement mechanism ensures that every refined operation can occur only in a
state corresponding to one in which the abstract operation could occur, and that the
refined operation behaves as the abstract operation. So, proving that the new
specification is a valid refinement of the defensive interpreter ensures the soundness
of the byte code verifier and the interpreter.
The main difference between the defensive interpreter and the refined interpreter,
apart the fact that no runtime tests are performed is that there is not a strict
correspondence between the operations triggered by the defensive interpreter and the
refined one. If the method can be checked, then the operations triggered will be the
same as the abstract ones. However, if the method contain an error, the abstract
operations will be called until the program counter reach the error, but no refined
operation will be called at all.

41

8. Inclusion of the verifier and the interpreter

This refinement is mainly used to include both the verifier and a “real” interpreter. By
real, we mean an interpreter that does not perform an abstract interpretation of the
method based on the types of the values, but only uses values.

8.1. Verifier specification

The verifier specification contains only one operation, which performs the byte code
verification, and returns a boolean value corresponding to the result of the
verification. The specification of the verify_method corresponding to the previously
described properties is given on figure 15.

flow_ok, stack_ok, frame_ok ← verify_method =
ANY fl_ok, st_ok, fr_ok WHERE

fl_ok ∈ BOOL ∧ st_ok ∈ BOOL ∧ fr_ok ∈ BOOL ∧
(fl_ok = TRUE � static_flow_checked) ∧
(st_ok = TRUE� static_stack_checked) ∧
(fr_ok = TRUE� static_frame_checked)

THEN
flow_ok, stack_ok, frame_ok := fl_ok, st_ok, fr_ok

END
Fig 15: Specification of the verify_method operation

The verifier machine is included in the refinement, and called during the initialisation
to define the values of the variables flow_checked, stack_checked and frame_checked
as shown on the following figure.

INITIALISATION
flow_checked, stack_checked, frame_checked ← verify_method ||
…

Fig 16: Call of the verify_method operation

The implementation of the verifier performs the type inference using a fixpoint
computation as described in [Cas-99]. The presence of embedded loops increases the
difficulty of the proof process. Splitting the implementation in several small
operations allows the automatic prover to discharge up to 95% of the proof
obligations. However, proving the remaining 5% proof obligations is still costly.

8.2. Interpreter specification

The interpreter is defined as a machine similar to the abstract interpreter, excepted
that it is an aggressive interpreter, and that it operates on values instead of types. Its
state consists of a pointer to the current instruction executed (dpc, for dynamic

42

program counter), the values stored in the stack (stack_value) and the values stored in
the frame (frame_value).
To ensure the consistency between the abstract interpreter and the concrete
interpreter, we have to glue the state of the abstract interpreter to the state of the
concrete interpreter using additional invariants. For the stack, it is ensured that both
the stack containing the values and the stack containing the types have the same size.
That is, every defined value has a type, and every type has a value. The invariant
relating the types frame to the values frame is not as simple: it is stated that the
domain of the typing frame has to be included within the domain of the value frame.
That is, every variable that may be used is defined. The domain value_frame can be
larger than the domain of type_frame, since every local variable has a value even if its
type is not defined. Last, the current instruction executed must be the same for both
interpreters. Those three invariants, shown on figure 17 ensure that we have not
specified two different and unrelated interpreters.

apc = dpc ∧
size(stack_type) = size(stack_value) ∧
dom(frame_type) ⊆ dom(frame_value)

Fig 17: Gluing of the interpreter

The guards corresponding to the operations are unchanged. However the body of the
operation now only calls the associated operation of the interpreter. For example,
figure 18 shows the operation op_iload, that calls the corresponding operation
int_iload of the interpreter.

op_iload=
SELECT

opcode(apc) = ILOAD ∧ flow_checked ∧ stack_checked ∧ frame_checked
THEN

int_iload
END;

Fig 18: iload operation for the second refinement

int_iload is the operation corresponding to the opcode iload within the interpreter
machine (figure 19). It pushes the value contained in the specified local variable onto
the stack. As this interpreter is implemented in a separate machine that has no
knowledge of the constraints enforced on the byte code, the preconditions ensuring
that the execution can be performed have to be provided. Preconditions are
specification substitutions that specify the conditions that have to be true when the
operation is called. They are used to generate proof obligations, and to achieve the
proof.
The consistency between those preconditions and the byte code verification is ensured
by the proof obligations generated when the operation int_iload is called from the
operation op_iload: it will be needed to prove that the content of the op_iload guard
implies the int_iload precondition.

43

int_iload=
PRE

succ_pc(dpc) ∈ opcode_locations ∧
size(stack_value) < max_stack ∧
BYTE_to_unsigned(parameter(1)) ∈ dom(frame_value)

THEN
dpc := succ_pc(dpc) ||
LET var_value BE

var_value = frame_value(BYTE_to_unsigned(parameter(1)))
IN

stack_value := var_value → stack_value
END

END;
Fig 19: iload operation for the interpreter

Another point is that, instead of using a different machine, the interpreter could have
been treated as a refinement of the abstract defensive machine, in a way similar to
what has been done in [Lan-98]. However, separating the interpreter from the abstract
specification seems to be a better solution, since less proof obligations will be
generated: proofs are needed when the interpreter is included within the refinement,
but not in later refinements of the interpreter, allowing to focus on the interpreter
implementation. Moreover, implementing the interpreter as distinct machines allows
to clearly separate the proof of consistency and the implementation.

9. Proof of the specification

The specification of the defensive virtual machine and its refinement is about 10000
lines of B specification. The Atelier B tool, that we used for this specification
generates nearly 3000 proof obligations. It should be noted, however that the proofs
are not complicated by themselves. The main difficulty lies in their number: proving
the correctness of the specification corresponds to discharge a lot of simple proof
obligations.
For this specification, the main goal is to limit the cost of the proof process. We focus
on obtaining similar proof obligations, so that a single demonstration could be used to
demonstrate several similar proof obligations. This is achieved by specifying opcodes
properties and constraints in a generic way. This involves grouping opcodes by
properties, but also using generic description. For example, using the functions
tpushed and tpopped allows specifying nearly all operations that manipulate the stack
the same way.
To illustrate the advantages of using generic specification, figure 20 presents two
simplified proof obligations, the first corresponding to a specification that does not
groups opcodes, and the second to the specification previously described.
Discharging the proof obligation without groups is quite straightforward: it involves
using hypothesis (1.2) and (1.3) with hypothesis (1.1). However, in the Java Card

44

case, there will be one hypothesis similar to (1.1) by opcode, and the automatic prover
will not be able to choose the right one, requiring user interaction. Moreover, as the
opcode considered is explicitly used, this interaction will be required for every
opcodes. For the complete Java Card interpreter, this means that proving this property
for each opcode will need approximately two hundred different, but very similar
proofs with user interaction.

PO without groups PO with groups

(1.1) ∀pc.((pc∈dom(method) ∧
opcode(pc) = ILOAD)

 �
pc + 1∈opcode_locations)∧

(1.2) opcode(apc) = ILOAD ∧
(1.3) apc∈dom(method)
�

apc + 1 ∈ opcode_locations

(2.1) OP_NEXT = {{{{ ..., ILOAD, … } ∧
(2.2) ∀pc.((pc∈dom(method) ∧

opcode(pc) ∈ OP_NEXT)
 �

succ_pc(pc)∈ opcode_locations)∧
(2.3) opcode(apc) = ILOAD ∧
(2.4) apc∈dom(method)
�

succ_pc(apc) ∈ opcode_locations
Fig 20: Comparison between proof obligations with and without using groups

In the case where groups are used, the hypothesis opcode(apc)∈OP_NEXT (2.5) can
be added. This hypothesis is automatically accepted by the prover thanks to (2.1) and
(2.3), and user interaction will not be needed. The new hypothesis (2.5) can then be
used with hypothesis (2.2) to discharge the goal. The important point is that the
commands used to demonstrate this goal does not consider the opcode names, and can
be directly reused to prove similar proof obligations for opcodes that are elements of
the set OP_NEXT. This means that there will be one user interaction for nearly two
hundred proof obligations. This is all the more important, since the response times of
the interactive prover can be very large for such a specification. However, those gains
have to be balanced by the fact that the proof obligations are often more complicated
to prove, and the initial proof can take some time to be carried out. Moreover, all the
Java Card opcodes can not fit in a group, and some opcodes will still need to be
treated as special cases.
Another important point with opcode groups is that it also reduces the number of
predicates within the invariant. This reduction drastically increases the performance
of the tool.

10. Conclusion

Proving the correctness and the soundness of the type system is a first step to a
certification of Java Card. Other parts of the security policy are implemented by
different functions such as the firewall, that controls access policies. As one of the
common criteria requirements is to guarantee the coherence of all the security
mechanisms, it is needed to integrate this model into a more generic model
encompassing the whole security policies.

45

Future works will focus on integrating the firewall specification defined in [Mot-00]
with the interpreter. Then, the model will be extended in order to model the complete
Java Card interpreter. This will allow, not only to prove the soundness of the byte
code verifier and of the interpreter, but also will ensure the correctness of their
implementation.

Acknowledgement: Thanks to G. Mornet and L.Casset for their work on the model,
discussions and feedback.

References:

[Aba-98] M. Abadi, R. Stata, A Type System for Byte Code Subroutines,
Proc. 25th ACM Symposium on Principle of Programming Languages,
January 1998

[Cas-99] L. Casset, J.-L. Lanet, A Formal Specification of the Java Byte Code
Semantics using the B method, Proceedings of the ECOOP’99 workshop on
Formal Techniques for Java Programs, June 1999.

[Coh-96] Cohen, Defensive Java Virtual Machine Specification,
http://www.cli.com/software/djvm

[Fre-99] S.N. Freund, J.C. Mitchell, Specification and Verification of Java Bytecode
Subroutines and Exceptions,
Stanford Computer Science Technical Note, August 1999

[Gol-97] A. Goldberg, A Specification of Java Loading and Byte Code Verification,
Kestrel Institute, December 1997,
http://www.kestrel.edu/HTML/people/goldberg

[Lan-98] J.L. Lanet, A. Requet, Formal Proof of Smart Card Applets Correctness,
Proceedings of the Third Smart Card Research and Advanced Application
Conference (CARDIS’98), Louvain-la-Neuve, Belgium, September 1998

[Lin-96] T. Lindholm, F. Yellin, The Java Virtual Machine Specification, Addison
Wesley, 1996

[Mot-00] S. Motré, Formal Proof of the Applet Firewall, AFADL 2000, Grenoble,
France, February 2000.

[Nip-98] T. Nipkow, D. Oheimb, Javalight is Type-Safe - Definitely, 25th ACM
Symposium on Principle of Programming Languages, January 1998.

[Pus-99] C. Pusch, Proving the Soundness of a Java Bytecode Verifier Specification
in Isabelle / HOL, TACAS 1999, http://www.in.tum.de/~pusch/

46

[Pos-98] J. Posegga, H. Vogt, Byte Code Verification for Java Smart Cards Based on
Model Checking, 5th European Symposium on Research in Computer Security
(ESORICS 98), Springer LNCS 1998.

[Qia-98] Z. Qian, Least Types for Memory Locations in Java Byte Code, Kestrel
Institute, Technical Report, 1998.

[Sun-99] Sun Microsystems, Java Card 2.1 Virtual Machine Specification, March
1999.

[Sym-97] D. Syme, Proving Java Type Soundness, Technical Report, University of
Cambridge, Computer Laboratory, 1997.

47

Applying Formal Methods to Industrial Cases:

The Language Approach

(The Production-Cell and Mode-Automata)
�

Florence Maraninchi Yann R�emond

VERIMAGy{ Centre Equation, 2 Av. de Vignate { F38610 GIERES

http://www-verimag.imag.fr/PEOPLE/Florence.Maraninchi

(Florence.MaraninchijYann.Remond)@imag.fr

Fax : (33) 4.76.63.48.50

keywords

Real-time systems, safety-critical, regulation systems, running-modes, language design

and implementation, case-study, production cell

Abstract

In this paper we comment on the \language approach" to applying formal methods

to real industrial problems. Our opinion is that it is always a good idea to let the

user tell as much as he knows about the structure of a complex system. When he

has a given structure in mind but needs to encode it into the available constructs of a

language, the interesting information is likely to be lost somewhere on the way from

the original design to the actual implementation. This may have consequences on the

e�ciency of the code produced, or even on the correctness of the design.

Following this idea, the family of synchronous languages [BB91] has been very

successful in o�ering domain-speci�c, formally de�ned languages and programming

environments for safety-critical systems. We are particularly interested in the data-

ow language Lustre, well-suited for the description of regulation systems. These

systems are often speci�ed using the notion of running modes, which appears in infor-

mal designs. However, there seemed to exist no language in which the mode-structure

of a complex system could be expressed directly. We proposed to extend Lustre with a

new construct devoted to the description of these running modes of regulation systems.

The language extension is based upon the model of mode-automata [MR98]. We

now have a running implementation of this extension [MRR00], which has been applied

successfully to the industrial case-studies of the SYRF project [SYR99], proposed by

SAAB M.A. (a temperature regulation system) and Schneider Electric (the control of

the starting and shut-down phases in a nuclear plant).

We are now working on a case-study proposed by Aerospatiale (a piece of soft-

ware of the Airbus A340-600, for the development of which Aerospatiale has chosen

SCADE, the commercial version of Lustre), under a non-disclosure agreement. How-

ever, some of the ideas that this example already suggested to us can also be illustrated

with a simpler example. In this paper we show how to program the production-cell

case-study [LL95] using mode-automata (a pure Lustre version, written by Leszek

Holenderski at GMD Birlinghoven, appeared in [LL95]). We used the environment

simulator in TCL-TK provided by FZI Karlsruhe.

�This work has been partially supported by Esprit LTR Project SYRF 22703
yVerimag is a joint laboratory of Universit�e Joseph Fourier, CNRS and INPG

48

1 Introduction

Real-time Systems, in particular regulation systems, are often speci�ed using the notion of

running modes. For instance, the commands of an aircraft may be speci�ed by identifying

take-o� mode and landing mode; the commands for a robot arm are likely to be completely

di�erent when it moves right, and when it starts moving left because it has reached an

obstacle, etc. This notion of a running mode appears frequently in informal designs, and

we met it several times in the informal documentation of operational industrial critical

systems from Schneider Electric, Aerospatiale, etc.

However, at least to our knowledge, there exist no language (be it a formal speci�cation

language, or a programming one), in which the mode-structure of a complex system can

be expressed directly. Hence the mode-structure of the system is usually encoded in a

variety of ways, depending on the language used, and on the kind of criteria one wants

to improve (e�ciency, size of the code for embedded systems, etc.). See [MR98, MRR00]

for comments on the notion of mode and related work (Modecharts [JM88], the \state"

Design pattern [GHJV95], real-time mode-machines [Pay96], SignalGTI [RM95], etc.)

The family of synchronous languages [BB91] has been very successful, over the ten past

years, in o�ering formally de�ned languages and programming environments for safety-

critical systems. We are particularly interested in the language Lustre [CHPP87], and in

the industrial version of it, called SCADE and sold by Verilog S.A. Lustre is a data-
ow

language, well-suited for the description of regulation systems. We proposed to extend

Lustre with a new construct devoted to modes in regulation systems. This language ex-

tension is based upon the mathematical model of mode-automata [MR98]. We now have a

running implementation of this extension, by compilation into an intermediate format of

the compilation chain from Lustre to imperative sequential code (C, Ada, Java) [MRR00].

The language extension allows
at mode-automata and composed ones. We use the compo-

sition operators from Argos [Mar92], which gives the language a hierarchic state-structure

like in Statecharts [Har87].

The de�nition of mode-automata is a result of the task entitled \combination of for-

malisms" of the SYRF [SYR99] Esprit Project, in which various approaches have been

studied. One of them was to describe complex systems partly in Lustre (data-
ow declar-

ative style) and partly in Esterel (parallel imperative style), and to perform link-editing

at the level of an intermediate format of the compilation chains. To our opinion, this

approach is too complex, and that is the reason why we chose to extend Lustre with

a bit of imperative style, yet keeping the essential style and structure of the language,

for the programming habits not to be modi�ed deeply. An approach similar to ours |

tight integration of styles, as opposed to full multi-language programming | is that of

synchronousEifel (formerly \The Synchronie Workbench") [sE] developed at the GMD

(Sankt Augustin).

In the family of synchronous languages, formal veri�cation [HLR92] and automatic

generation of test cases [RWNH98] are based upon the use of so-called synchronous ob-

servers [HLR93]. An observer O is itself a synchronous program, which can be composed

in parallel with a program P to observe, without modifying the behavior of P . This is

a consequence of the synchronous broadcast communication mechanism (which is asym-

metrical), provided the outputs of O are not connected back to the inputs of P . For

49

veri�cation purposes, observers are used to describe the safety properties of a program to

verify. For generating test sequences, observers are used for both the oracle and the envi-

ronment. The environment-observer is used as a generator, for producing only sequences

of inputs to P , that are relevant w.r.t. a model of the physical environment.

Numerous case studies have shown that, when the program is written in Lustre, it is

often convenient to write the observers in a more imperative style. For instance, expressing

the safety property: \the outputs a and b alternate" is easy with a two-states automaton,

and a bit more di�cult with a Lustre program. A language based on regular expressions

has been used (via an e�cient translation into Lustre [Ray96]). In this paper, we use

mode-automata for both the controller and the model of the environment. We could use

them for describing safety properties as well.

The rest of the paper is organized as follows: Section 2 is a brief introduction to

data-
ow synchronous languages and the mode-automaton model; Section 3 brie
y recalls

the production-cell case-study ; Section 4 describes the program written using composed

mode-automata. Section 5 concludes and gives some directions for further work.

2 Data-
ow Synchronous Languages

and Mode-Automata

2.1 Data-
ow Synchronous Languages

In a data-
ow language for reactive systems, both the inputs and outputs of the system

are described by their
ows of values along time. Time is discrete and instants may be

numbered by integers. If x is a
ow, we will note xn its value at the nth reaction (or nth

instant) of the program.

A program consumes input
ows and computes output
ows, possibly using local
ows

which are not visible from the environment. Local and output
ows are de�ned by equa-

tions. An equation \x = y + z" de�nes the
ow x from the
ows y and z in such a way

that, at each instant n, xn = yn + zn.

A set of such equations, using arithmetic, Boolean, etc. operators, describes a network

of operators, and is essentially equivalent to the description of a combinational circuit.

The same constraints apply: one should not write sets of equations with instantaneous

loops, like : fx = y + z; z = x + 1; :::g. This is a set of �x point equations that perhaps

has solutions, but it is not accepted as a data-
ow program. For referencing the past, the

operator pre is introduced : 8n > 0; (preX)n = Xn�1.

One typically writes T = pre(T) + i ; , where T is an output, and i is an input. It

means that, at each instant, the value of the
ow T is obtained by adding the value of the

current input i to the previous value of T. Initialization of
ows is provided by the ->

operator. The equation X = 0 -> pre(X) + 1 de�nes the
ow of integers; as a reactive

program, it produces values on the basic clock.

The language is structured by the de�nition of reusable nodes that can be called

anywhere in expressions de�ning variables, and programs usually input a library of small

well-identi�ed reactive behaviors, like a \two-states" with reset, a \bounded counter", etc.

50

2.2 Motivations for Mode-Automata

In a data-
ow language, the notion of running mode corresponds to the fact that there may

exist several de�nitions (equations) for the same output, that should be used in distinct

periods of time. Faced with this kind of system, users usually write Lustre programs in

which modes are encoded by Boolean
ows, and the outputs that depend on modes are

described by equations of the following form: X = if (mode1) then ... else if (mode2)

then ... There was an obvious need for something more readable and modi�able than

this encoding of modes by conditional structures.

Another important motivation has to do with code e�ciency. In reactive systems, the

base clock is imposed by the environment: it should be quick enough in order not to miss

some relevant changes in the environment signals sensed by the system. For this base

clock to be respected by the actual implementation of the system, the code of the reactive

kernel should execute in less than a clock period. Hence there are strong constraints on

the sequential code produced from a synchronous language.

The natural translation of a simple data-
ow synchronous program into sequential code

yields a program in which all nodes of the data-
ow network do perform computations at

each step of the base clock. In particular the IF is strict: in the program X = if (mode1)

then expr1 else if (mode2) then expr2 else ... both expr1 and expr2 are computed at

each step, before choosing one of them according to the mode. If X has di�erent equations

depending on the current mode, it is not a good idea to compute all equations at each

step.

It appears that, in critical cases, users would like to put some of their knowledge about

the running modes of the system, into the corresponding data-
ow programs. Doing so,

they hope that a compiler be able to generate more e�cient code, namely some code in

which not all of the data-
ow network nodes work at each step. If they simply encode

modes into conditionals, there is no hope to obtain better code. The only way of specifying

that parts of the data-
ow network should not perform computations, for some given steps,

is to use the clock language feature, but it is not so easy to describe modes using clocks.

That is the reason why we propose a new language feature for talking about exclusive

modes in a data-
ow language. It can be viewed as a high-level construct that o�ers part

of the clock feature, but is easier to use when the system clearly has running modes.

2.3 Mode-Automata: A Proposal

2.3.1 Flat mode-automata

Suppose we need to program in Lustre the behavior of an output variableX (the command

to an actuator, for instance), as speci�ed by the timing diagram of �gure 1; in this simple

case the behavior only depends on time (no explicit inputs are speci�ed).

We identify three running modes: in the �rst one, X increases by 1 at each step; in

the second one, it increases by 2; in the third one, it decreases by 3, and then back to the

�rst mode. We would like to give separately :

| The behavior of X in the �rst mode : X = pre (X) + 1 ;

| The behavior of X in the second mode : X = pre (X) + 2 ;

51

| The behavior of X in the third mode : X = pre (X) - 3 ;

| The global initial value of X (0 in the example)

| The way these three modes are organized into the global behavior of the system, in

particular the conditions for changing modes.

This is exactly what you can do with a mode-automaton (see Figure 2). Notice that,

in real cases, the behavior of the system in a given mode is likely to be a large system of

equations, while the mode-structure remains relatively simple.

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

11

12

12

13

13

14

14

15

15

16

16

17

17

18

18

19

19

X

0
1

2
3

5

7

9

6

3

0
1

2
3

5

7

9

6

3

0

Figure 1: An example with modes: the timing behavior of an integer variable X

X=pre(X)+2X=pre(X)+1

X=3 X=9

X=0

X=pre(X)�3

Figure 2: An example with modes: a mode-automaton for computing X

Mode-automata can be considered as a discrete version of hybrid automata [MMP91],

in which the states are labeled by systems of di�erential equations that describe how the

continuous environment evolves. In our model, states represent the running modes of a

system, and the equations associated with the states could be obtained by discretizing

the control laws. Mode-automata are designed as the basis of a programming (not only

speci�cation) language.

Note that, if we use no pre operator and do not mention the input variables in the

equations attached to states, then the mode-automaton is merely a Moore machine. Test-

ing inputs is limited to the conditions of the transitions, and equations of the form: X =

true or X = false are attached to states, for de�ning an output X. It may be a bit more

complex, because the set of outputs may be de�ned by a set of equations, like: X = Y+1

; Y = 0 ; Z = X � Y ;, provided there is no dependency cycle. However, the behavior

is essentially that of a Moore machine, with the usual one-instant delay between inputs

and the actual in
uence on outputs. For sampled systems, the delay is not important.

52

2.3.2 Composing mode-automata

Mode-automata can be composed in parallel, with shared variables (in the graphical syntax

we use the Statecharts notation, with a dashed line separating the components). When

n components are in parallel, sharing the variable X, at most one component may de�ne

X; all the other components may only read it. We also forbid instantaneous loops. The

parallel composition with shared variables corresponds to the classical data-
ow connection

of Lustre nodes, where wires are identi�ed according to their names: if the input of

a component and the output of another one have the same name, they are connected

together.

The semantics of parallel composition is easy to understand, by explaining how to

atten a composed mode-automaton into a
at one. Let us consider two mode-automata

M1 andM2. The set of modes of their parallel composition is the Cartesian product of the

sets of modes of M1 and M2. The set of equations attached to a composed mode A1A2

(where A1 is a mode inM1 and A2 is a mode inM2) is the union of the equations attached

to A1 in M1 and those attached to A2 in M2. The guard of a composed transition is

the conjunction of the guards of the component transitions. The parallel composition of

two mode-automata is correct if all the Lustre programs attached to the
at modes are

correct, i.e., there is no instantaneous dependency loop, and each variable has exactly one

equation.

Mode-automata can also be re�ned: a composition of mode-automata may be put

inside the state of a mode-automaton (see examples in the case-study). The
attening is

as follows: the equations attached to the re�ned state are distributed to all the sub-states;

the transitions sourced in a re�ned state also apply to all the states inside; a transition

that enters a re�ned state should go to the initial state (among all the states inside); a

transition between two states inside may happen only if no transition from the re�ned

state can �re (the outermost transitions have priority). The correctness of a re�ned mode-

automaton is also related to the correctness of all the Lustre programs attached to the

at states; for this reason, a variable may not be de�ned at two distinct levels, because

the
attening will yield a
at state with which two equations de�ning the same variable

are associated.

2.3.3 Implementation

Mode-automata are described using a textual syntax, and compiled into DC code by the

tool MATOU [R�em99]. DC is then translated into C using the DRAC tool-set developed

in the SYRF project [SYR99]. DC is a data-
ow language with activation conditions, that

allow to specify that some sub-networks are not always alive. This notion is exactly what

we need for implementing modes.

The current implementation of mode-automata guarantees the following property: The

C code corresponding to the equations attached to a
at state S, and to the conditions of

the transitions sourced in S, are computed exactly when this state S is active [MRR00].

In the code produced for the small 3-modes example, we �nd the following piece of

code for computing the new value of X at each step, depending on the previous value pX: if

(mode==1) f X = pX+1 ; g else if (mode==2) f X=pX+2 ; g else f X=pX-3;g.

53

When large pieces of code are attached to modes, this yields a signi�cant improve-

ment on the code obtained from a pure Lustre version of the system, which would have

the following form: f X1 = pX+1 ; X2 = pX+2 ; X3 = pX-3; if (mode==1) f X = X1

; g else if (mode==2) f X=X2 ; g else f X=X3 ; g

When we have the mode-structure of the system in mind, the code produced by MA-

TOU is clearly the best sequential code we can hope for.

3 The Production-Cell case-study

In this section, we quote the technical report on the production cell, for a brief presentation

of the case-study.

In order to demonstrate the bene�ts of formal methods for industrial applications,

and to evaluate and compare existing approaches for constructing and verifying control

software for reactive systems, FZI launched the Case Study Production Cell in 1993 as

an activity inside the German Korso Project. The architecture of the system is shown on

Figure 3.

On the bottom left the feed belt is shown which conveys the blanks to an elevating

rotary table. This table has to be between the feed belt and the robot to bring the blanks

into the right position so that the robot can pick them up. To increase the utilization

of the press, the robot is �tted with two arms | one always used for loading, the other

one for unloading the press. The two belts are not at the same vertical position; both the

press and the rotary table can move vertically.

In order to perform demonstrations of the graphic visualization of the toy model, the

production sequence should be able to run without an operator. The "forged" metal plates

| which the press in the model does not actually modify | are therefore taken from the

deposit belt back to the feed belt by a traveling crane, thus making the entire sequence

cyclical.

The production cell is composed of 14 sensors and 13 actuators. Actuators can switch

motors on or o� or change their directions. Sensors return Boolean or continuous values,

though the latter can be made discrete to return a few interesting values. The table of

Figure 5 gives the list of sensors and actuators, together with the variable names in the

mode-automata programs.

In the simulation environment provided by FZI, the belt moves are managed by the

TCL-TK part, as a reaction to the controller commands that switch the motors on and

o�. This simulated environment is intended to be physically relevant. (An example of

irrelevant situation would occur with the sensors SBDB and SBFB being true at the same

instant, while there is only one object in the plant).

4 The Production-Cell and Mode-Automata

The �rst interesting aspect is the need for a simulated environment. This is usually

the case for reactive systems that are used as controllers of some physical activity. If

54

F
ee

d
 b

el
t

E
le

va
ti

n
g

ro
ta

ry
 t

ab
le

R
o

b
o

t
P

re
ss

T
ra

ve
lli

n
g

cr
an

e

D
ep

o
si

t
b

el
t

ar
m

 1
ar

m
 2

F
ig
u
re
3
:
T
h
e
P
ro
d
u
c
ti
o
n
C
e
ll
A
rc
h
it
e
c
tu
re

O
b
s
e
rv
a
ti
o
n

A
c
tu
a
to
rs

A
d
d
B

E
n
v
ir
o
n
m
e
n
t

C
o
n
tr
o
ll
e
r

S
e
n
s
o
rs

F
ig
u
re
4
:
T
h
e
c
o
n
tr
o
ll
e
r
a
n
d
th
e
si
m
u
la
te
d
e
n
v
ir
o
n
m
e
n
t

a
c
t
H
1

e
x
t
e
n
d

a
n
d

r
e
t
r
a
c
t
1
s
t
r
o
b
o
t
a
r
m

a
c
t
H
2

e
x
t
e
n
d

a
n
d

r
e
t
r
a
c
t
2
n
d

r
o
b
o
t
a
r
m

a
c
t
P
R

m
o
v
e
t
h
e
lo
w
e
r
p
a
r
t
o
f
t
h
e
p
r
e
s
s

a
c
t
A
1

p
ic
k
u
p
a
n
d
d
r
o
p
a
p
la
t
e
w
it
h
1
s
t
a
r
m

a
c
t
A
2

p
ic
k

u
p

a
n
d

d
r
o
p

a

p
la
t
e

w
it
h

2
n
d

a
r
m

a
c
t
A

r
o
t
a
t
e
r
o
b
o
t

a
c
t
R
R
T

r
o
t
a
t
e
e
le
v
a
t
in
g

r
o
t
a
r
y
t
a
b
le

a
c
t
V
R
T

m
o
v
e
e
le
v
a
t
in
g

r
o
t
a
r
y
t
a
b
le
v
e
r
t
ic
a
ll
y

H
a
c
t
C

m
o
v
e

g
r
ip
p
e
r

o
f

t
r
a
v
e
li
n
g

c
r
a
n
e

h
o
r
iz
o
n
t
a
ll
y

V
a
c
t
C

m
o
v
e

g
r
ip
p
e
r

o
f

t
r
a
v
e
li
n
g

c
r
a
n
e

v
e
r
t
ic
a
ll
y

a
c
t
F
B

a
c
t
iv
a
t
e
a
n
d

d
e
a
c
t
iv
a
t
e
fe
e
d

b
e
lt

a
c
t
D
B

a
c
t
iv
a
t
e
a
n
d

d
e
a
c
t
iv
a
t
e
d
e
p
o
s
it
b
e
lt

a
c
t
C

p
ic
k
u
p
a
n
d
d
r
o
p
a
p
la
t
e
w
it
h
g
r
ip
p
e
r

o
f
t
r
a
v
e
li
n
g

c
r
a
n
e

P
B

Is
t
h
e
p
r
e
s
s
in

t
h
e
lo
w
e
r
p
o
s
it
io
n
?

P
M

Is
t
h
e
p
r
e
s
s
in

t
h
e
m
id
d
le
p
o
s
it
io
n
?

P
H

Is
t
h
e
p
r
e
s
s
in

t
h
e
u
p
p
e
r
p
o
s
it
io
n
?

p
o
s
H
1

H
o
w

fa
r
h
a
s
1
s
t
a
r
m

b
e
e
n

e
x
t
e
n
d
e
d
?

p
o
s
H
2

H
o
w

fa
r
h
a
s
2
n
d
a
r
m

b
e
e
n

e
x
t
e
n
d
e
d
?

p
o
s
A

H
o
w

fa
r
h
a
s
t
h
e
r
o
b
o
t
r
o
t
a
t
e
d
?

T
B

Is

t
h
e

e
le
v
a
t
in
g

r
o
t
a
r
y

t
a
b
le

in

it
s

lo
w
e
r
p
o
s
it
io
n
?

T
H

Is
t
h
e
e
le
v
a
t
in
g
r
o
t
a
r
y
t
a
b
le
in

it
s
u
p
-

p
e
r
p
o
s
it
io
n
?

p
o
s
R

H
o
w

fa
r
h
a
s
t
h
e
t
a
b
le
r
o
t
a
t
e
d
?

C
D
B

Is
t
h
e
t
r
a
v
e
li
n
g

c
r
a
n
e
p
o
s
it
io
n
e
d

o
v
e
r

t
h
e
d
e
p
o
s
it
b
e
lt
?

C
F
B

Is
t
h
e
t
r
a
v
e
li
n
g

c
r
a
n
e
p
o
s
it
io
n
e
d

o
v
e
r

t
h
e
fe
e
d

b
e
lt
?

p
o
s
V
C

W

h
a
t
is
t
h
e

c
u
r
r
e
n
t
v
e
r
t
ic
a
l
p
o
s
it
io
n

o
f
t
h
e
g
r
ip
p
e
r
?

S
B
D
B

Is
t
h
e
r
e
a
p
la
t
e
a
t
t
h
e
e
x
t
r
e
m
e
e
n
d
o
f

t
h
e
d
e
p
o
s
it
b
e
lt
?

S
B
F
B

Is
t
h
e
r
e
a
p
la
t
e
a
t
t
h
e
e
x
t
r
e
m
e
e
n
d
o
f

t
h
e
fe
e
d

b
e
lt
?

b
o
o
l

T
M

T
h
e
r
o
t
a
r
y
t
a
b
le
s
r
e
a
c
h
e
s
t
h
e
m
a
x
r
o
-

t
a
t
io
n

a
n
g
le

b
o
o
l

T
0

T
h
e
r
o
t
a
r
y
t
a
b
le
s
r
e
a
c
h
e
s
t
h
e
m
in
r
o
-

t
a
t
io
n

a
n
g
le

in
t

N
D
B

N
u
m
b
e
r
o
f
o
b
je
c
t
s
o
n
t
h
e
d
e
p
o
s
it
b
e
lt

in
t

N
F
B

N
u
m
b
e
r
o
f
o
b
je
c
t
s
o
n

t
h
e
fe
e
d

b
e
lt

b
o
o
l

p
e
P
R

A
n
o
b
je
c
t
is
r
e
m
o
v
e
d
fr
o
m

t
h
e
P
R
e
s
s

b
o
o
l

p
p
P
R

A
n

o
b
je
c
t
is
p
u
t
o
n

t
h
e
P
R
e
s
s

b
o
o
l

p
e
R
T

A
n
o
b
je
c
t
is
r
e
m
o
v
e
d
fr
o
m

t
h
e
R
o
t
a
r
y

T
a
b
le

b
o
o
l

p
p
R
T

A
n

o
b
je
c
t
is
p
u
t
o
n

t
h
e
R
o
t
a
r
y
T
a
b
le

b
o
o
l

p
e
F
B

A
n

o
b
je
c
t
is
r
e
m
o
v
e
d

fr
o
m

t
h
e

F
e
e
d

B
e
lt

b
o
o
l

p
p
F
B

A
n

o
b
je
c
t
is
p
u
t
o
n

t
h
e
F
e
e
d

B
e
lt

b
o
o
l

p
e
D
B

A
n

o
b
je
c
t

is

r
e
m
o
v
e
d

fr
o
m

t
h
e

D
e
-

p
o
s
it
B
e
lt

b
o
o
l

p
p
D
B

A
n

o
b
je
c
t
is
p
u
t
o
n

t
h
e
D
e
p
o
s
it
B
e
lt

b
o
o
l

C
B
a
s

T
h
e
C
r
a
n
e
is
a
t
it
s
lo
w
e
r
p
o
s
it
io
n

F
ig
u
re
5
:
In
te
rf
a
c
e
a
n
d
In
te
rn
a
l
si
g
n
a
ls

55

we want to perform formal proofs, or to generate test sequences, we need to model the

environment. The global picture is that of Figure 4. We built two distinct programs using

mode-automata:

� A complete simulation program, comprising the simulation of the physical environ-

ment and the controller; in this case, the program we obtain has a single Boolean

input AddB, telling it when an object is put on the deposit belt (it is always put

at the same place; we should not put more than 5 objects). In this simulated en-

vironment, the speed of the belts is supposed to be constant. This program has a

cyclic behavior. It can be run with an arbitrary sequence of inputs, and we can

save the simulation results for observation or formal analysis purposes. On the other

hand, the component that simulates the environment may be used by a tool like

Lurette [RWNH98] that generates tests sequences relevant to a given speci�cation

of the environment.

� A controller that can be put in the TCL-TK simulated environment (the language

of mode-automata is compiled into DC, which is then compiled into C, and the

necessary interfacing is done at the C level). The controller written with mode-

automata, and the environment simulated in TCL-TK, form a system that has a

cyclical behavior. The controller is simply a part of the �rst speci�cation, in which

we removed the components representing the environment. Hence the interface is

exactly the set of sensors and actuators of Figure 5, plus the AddB input. The piece

of C code that interfaces our controller with the TCL-TK environment generates

this input: it is true (meaning that an object is put in the plant) �ve times at the

beginning, and then false forever. We could test other situations, of course. This

little reactive behavior could also be described with a mode-automaton.

We cannot explain all the details of the programs in this paper. Our intension is only

to show small pieces of programs, in order to illustrate the use of mode-automata. The

program that simulates the environment makes use of full-featured mode-automata; the

controller itself is almost a Moore machine (see comments on Moore machines being a

special form of Mode-automata, in section 2.3.1 above). The automaton structures (and

the parallel and hierarchic constructs) are well-suited for the description of the cyclical

behavior of the plant.

4.1 The controller

The main structure of the data-
ow program for the controller is given in Figure 6. The six

modules are mode-automata composed in parallel with shared variables; this operation is

exactly the data-
ow connection as shown on the picture. The meaning of internal signals

is shown Figure 5.

Figure 8 shows the rotary table component. Figure 9 shows the traveling crane com-

ponent. Figure 10 shows the press component. The Robot component is the most complex

one. It is given in Figure 7. It illustrates the cyclical behavior of the robot, which has two

arms, sometimes moving together. The robot task is a cycle, as follows:

| State B : the robot extends �rst arm, then takes an object on the rotary table, then

retracts �rst arm (necessary before rotating). In this state, the robot must wait for the

56

Feed Belt

ppFB
ppRT

T0
SBFB

AddB
TB

ppRT
NFB
actFB

PosVC
CFB
SBFB
NFB
CDB
SBDB

Crane

actC
VactC
HactC
peDB
CBas
ppFB

Deposit Belt NDB
actDB

ppDB
peDB
CDB
CBas
SBDB

Press

PB
PH
PM
pePR
ppPR
PosH1
PosH2

actPr

Robot

actA
actA1
actA2
actH1
actH2

pePr
ppPr

peRT
ppDB

actH1

PosA
PosH1
PosH2
TM
TH
SBDB
NDB
PM

Rotary Table

ppRT
peRT
TB
TH

PosR
T0
TM

actVRT
actRRT
TM
T0

TH

AddB
TB

SBFB

CDB

CFB
PosVC

PosR

PM
PH
PB

PosA
PosH1
PosH2

SBDB

actC
VactC
HactC

actFB

actDB

actRRT
actVRT

actPr

actA
actA1
actA2
actH1
actH2

Figure 6: Architecture of the controller program

57

rotary table to be in the correct position, and for an object to be present on it.

| State C : the robot is rotating towards the press (actA=1) until the position is OK

(PosA=A2P). It must wait for the press to be in the appropriate vertical position (PB)

and not moving (actPR=0). If PB, actPR=0 and PosA=A2P happen exactly at the same

time when in state C>A, the transition is to state D>A directly; otherwise the system

may wait in state C>B for a while.

| State D : the robot extends its second arm towards the press (actH2=1), puts an object

on it (actA2=1 while actH2=0), and then retracts (actH2=�1).

| State E : the robot is rotating until second arm is over the deposit belt

| State F : the robot extends its second arm towards the deposit belt, puts the object on

the belt, and then retracts. It may wait for the belt to be free.

| State G : the robot rotates for the �rst arm to reach the press. It may wait for the

press to be at the appropriate vertical position.

| State H : the robot extends its �rst arm towards the press, puts the object on it, and

then retracts.

| State A : the robot rotates for the �rst arm to reach the rotary table.

4.2 The environment

When modeling the environment, all the signals that are sensors for the controller (PB,

PM, PH, posH1, posH2, posA, TB, TH, posR, CDB, CFB, posVC, SBDB, and SBFB) are

computed. Modeling the environment consists in de�ning how the inputs of the controller

are in
uenced by its outputs. We model a very simple environment (all moving parts have

constant speeds).

The �rst component is written in pure Lustre: there is no state. Actually, it is a

particular case of a mode-automaton in which there is only one mode, and a set of Lustre

equations attached to it.

We model an environment in which the motor that rotates the robot is supposed to

work; hence, when actA=1 (rotate in one direction) or actA =-1 (rotate in the other

direction), the position is given by the equation: posA = pre(posA) + (actA * DeltaA),

where posA is an angle and DeltaA is a constant related to the rotation speed (via the

base clock of the system, which de�nes the duration of one instant). When the motor is

o� (actA=0), the same equation holds, meaning posA=pre(posA), i.e. the robot does not

rotate. The same holds for computing PosH1, PosH2, PosPr, PosV, PosR, PosC and PosVC,

which gives:

PosA = pre(PosA) + (actA *DeltaA) ; PosVC = pre(PosVC) + (VactC *DeltaVC) ;

PosH1 = pre(PosH1) + (actH1 *DeltaH1) ; PosH2 = pre(PosH2) + (actH2 *DeltaH2) ;

PosPr = pre(PosPr) + (actPr *DeltaPr) ; PosV = pre(PosV) + (actVRT*DeltaV) ;

PosR = pre(PosR) + (actRRT*DeltaR) ; PosC = pre(PosC) + (HactC *DeltaC) ;

Once the positions are available, computing the values of the sensors is simple: we just

have to compare the positions to some constant values: PH=(PosPr=prH), etc. This is

done for PH, PB, PM, TH, TB, CFB and CDB, which gives:

PH = (PosPr=PrH) ; PB = (PosPr=PrB) ; PM = (PosPr=PrM)

TH = (PosV=Vmax) ; TB = (PosV=Vmin)

CFB = (PosC=Cmin) ; CDB = (PosC=Cmax)

58

BA

a
ct
A
=
1

a
ct
A
=
0

P
o
sA
=
A
2
PC

a
ct
A
=
1

a
ct
A
1
=
tr
u
e

a
ct
A
2
=
tr
u
e

a
ct
H
1
=
0

a
ct
H
2
=
0

p
eR
T
=
fa
ls
e

p
p
D
B
=
fa
ls
e

p
p
P
r=
fa
ls
e

p
eP
r=
fa
ls
e

E

a
ct
A
=
1

a
ct
A
1
=
tr
u
e

a
ct
H
1
=
0

p
eR
T
=
fa
ls
e

p
p
P
r=
fa
ls
e

p
eP
r=
fa
ls
e

A

a
ct
A
2
=
tr
u
e

a
ct
H
2
=
1

p
p
D
B
=
fa
ls
e

a
ct
A
2
=
tr
u
e

a
ct
H
2
=
0

p
p
D
B
=
fa
ls
e

B

D

a
ct
A
2
=
fa
ls
e

a
ct
H
2
=
-1

p
p
D
B
=
fa
ls
e

C

a
ct
A
2
=
fa
ls
e

a
ct
H
2
=
0

p
p
D
B
=
tr
u
e

((
N
D
B
=
0
)
o
r
(N
D
B
=
1
a
n
d
D
B
D
B
))

(P
o
sH
2
=
H
m
a
x
2
D
B
)
a
n
d

(P
o
sH
2
=
H
m
a
x
2
D
B
)
a
n
d
n
o
t

((
N
D
B
=
0
)
o
r
(N
D
B
=
1
a
n
d
S
B
D
B
))

((
N
D
B
=
0
)
o
r
(N
D
B
=
1
a
n
d
S
B
D
B
))

tr
u
e

F

A

B

a
ct
H
1
=
0

a
ct
A
1
=
fa
ls
e

p
eR
T
=
fa
ls
ea

ct
H
1
=
1

a
ct
A
1
=
fa
ls
e

p
eR
T
=
fa
ls
e

a
ct
H
1
=
-1

a
ct
A
1
=
tr
u
e

p
eR
T
=
fa
ls
e

D

C

a
ct
H
1
=
0

a
ct
A
1
=
tr
u
e

p
eR
T
=
tr
u
e

(P
o
sH
1
=
H
m
a
x
1
R
T
)

a
n
d
(T
M

a
n
d
T
H
)

T
M

a
n
d
T
H

tr
u
e

a
n
d
n
o
t
(T
M

a
n
d
T
H
)

(P
o
sH
1
=
H
m
a
x
1
R
T
)

B

a
ct
A
=
0

a
ct
A
2
=
fa
ls
e

a
ct
H
2
=
0

p
p
D
B
=
fa
ls
e

p
p
P
r=
fa
ls
e

p
eP
r=
fa
ls
e

A

B

a
ct
A
=
0

a
ct
A
=
1 P

o
sA
=
A
1
P

G

a
ct
A
=
-1

a
ct
A
2
=
fa
ls
e

a
ct
H
2
=
0

p
eR
T
=
fa
ls
e

p
p
D
B
=
fa
ls
e

p
eP
r=
fa
ls
e

a
ct
A
1
=
tr
u
e

a
ct
A
2
=
fa
ls
e

a
ct
H
1
=
0

a
ct
H
2
=
0

p
eR
T
=
fa
ls
e

p
p
D
B
=
fa
ls
e

p
p
P
r=
fa
ls
e

p
eP
r=
fa
ls
e

A

a
ct
A
1
=
tr
u
e

a
ct
H
1
=
1

p
p
P
r=
fa
ls
e

C

a
ct
A
1
=
fa
ls
e

a
ct
H
1
=
-1

p
p
P
r=
fa
ls
e

B

a
ct
A
1
=
fa
ls
e

a
ct
H
1
=
0

p
p
P
r=
tr
u
e

P
o
sH
1
=
H
m
a
x
1
P
r

tr
u
e

H

p
eR
T
=
fa
ls
e

p
p
D
B
=
fa
ls
e

p
p
P
r=
fa
ls
e

a
ct
H
1
=
0

a
ct
A
1
=
tr
u
e

a
ct
A
=
0

A

a
ct
A
2
=
fa
ls
e

a
ct
H
2
=
1

p
eP
r=
fa
ls
e

C

a
ct
A
2
=
tr
u
e

a
ct
H
2
=
-1

p
eP
r=
fa
ls
e

a
ct
A
1
=
tr
u
e

a
ct
A
2
=
fa
ls
e

a
ct
H
1
=
0

a
ct
H
2
=
0

p
eR
T
=
fa
ls
e

p
p
D
B
=
fa
ls
e

p
p
P
r=
fa
ls
e

p
eP
r=
fa
ls
e

A

a
ct
A
=
-1

a
ct
A
1
=
fa
ls
e

a
ct
A
2
=
fa
ls
e

a
ct
H
1
=
0

a
ct
H
2
=
0

p
eR
T
=
fa
ls
e

p
p
D
B
=
fa
ls
e

p
p
P
r=
fa
ls
e

p
eP
r=
fa
ls
e

B

a
ct
A
2
=
tr
u
e

a
ct
H
2
=
0

p
eP
r=
tr
u
e

(P
o
sH
1
=
H
m
in
1
)

a
n
d
(a
ct
H
1
=
-1
)

(P
o
sA
=
A
2
P
)

a
n
d
P
B
a
n
d
a
ct
P
R
=
0

(P
o
sH
2
=
H
m
in
2
)

a
n
d
(a
ct
H
2
=
-1
)

P
o
sA
=
A
1
T

(P
o
sH
1
=
H
m
in
1
)

a
n
d
(a
ct
H
1
=
-1
)

(P
o
sA
=
A
1
P
)
a
n
d
P
M

a
n
d
(a
ct
P
r=
0
)

(P
o
sH
2
=
H
m
in
2
)
a
n
d
(a
ct
H
2
=
-1
)

P
o
sA
=
A
2
D

tr
u
e

D

P
o
sH
2
=
H
m
a
x
2
P
r

Figure 7: The Robot component

59

B

D C

A actVRT=1

actVRT=0

ppRT

TH

peRT

TB

actVRT=0

actVRT=-1

B

CD

A

actRRT=-1

TM=false

T0=(PosR=Rmin)

actRRT=0

TM=false

T0=true

actRRT=0

TM=true

T0=false

actRRT=1

TM=(PosR=Rmax)

T0=false

ppRT

TM

peRT

T0

Figure 8: The Rotary Table component

A

B

F G

C

actC=false
VactC=0
HactC=0
peDB=false
ppFB=false
CBas=true

actC=false
VactC=0
HactC=0
peDB=false
ppFB=false
CBas=true

actC=true
VactC=0
HactC=0
peDB=true
ppFB=false
CBas=true

actC=true
VactC=-1
HactC=0
peDB=false
ppFB=false
CBas=false

actC=false
VactC=0
HactC=1
peDB=false
ppFB=false
CBas=false

actC=false
VactC=1
HactC=0
peDB=false
ppFB=false
CBas=falseE

B

A

actC=false
VactC=0
HactC=0

peDB=false
ppFB=true
CBas=false

actC=true
VactC=0

peDB=false
ppFB=false
CBas=false

SBDB

not SBDB

true

CDB

PosVC=CVmax

PosVC=CVmin

CFB and ((NFB=0) or
(SBFB and (NFB=1)))

HactC=-1

HactC=0

CFB

true

Z

D

Figure 9: The Crane component

G A B C

DEF

actPr=-1 actPr=0PB actPr=0pePR PosH2=Hmin2 actPr=1

actPr=0

PM

ppPr

actPr=0actPr=1

PosH1=Hmin1

PH

Figure 10: The Press component

60

This simple component is in parallel with two mode-automata, one for each belt.

Modeling the behavior of the belts is a bit more complex: in fact, we also have to

model the behavior of the objects that travel on the belts. At least we need to specify

that they do not vanish, and remain on the belt, moving with it, until they are taken by

the crane or pushed to the rotary table.

The belt component in the controller and the belt component in the environment have

the same automaton structure, with 6 states, as follows:

| State B : There is one object on the belt, and it is moving

| State D : Reached from B when the object reaches the sensor (SBFB) while the rotary

table is at the appropriate rotation angle and vertical position (TB and T0); the object is

being pushed to the rotary table; ppRT becomes true as soon as the value of the sensor is

false.

| State C : Reached from B when the object reaches the sensor (SBFB) while the rotary

table is not in the appropriate position; if it reaches it and no object has been put on the

belt (ppFB or AddB), go to D; if an object is put on the belt, go to C or E, depending on

the position of the rotary table;

| State E : Waiting state, like C, but with 2 objects

| State F : Waiting state, like D, but with 2 objects

| State A : Reached from D, when the object has left the belt and is on the rotary table,

provided no other object is put on the belt.

In the global behavior of the system (controller+environment), the two mode-automata

always evolve synchronously (they are always in corresponding states). We could have

merged the two, but the separate version allows to deal with the controller alone, or with

the complete system, just by adding one component (see the conclusion for a comment on

reusing the same automaton structure in several places).

In the controller, we simply compute NFB (the number of objects on the belt); actFB

(the command for the motor); ppRT (an object is put on the rotary table, which is detected

by the belt when an object reaches its rightmost extremity). The complexity of the

automaton is mainly due to the potential interleavings of events like addB (an object is

put on the belt, by the external user) or ppFB (an object is put on the belt, by the rest of

the system, namely the crane) or SBFB (an object reaches the end of the belt), etc.

In the component that models the environment, we also need to compute:

| the timer tF. It is an integer variable that counts instants, and is compared to a constant

DeltaTF, representing the amount of time needed by an object to pass in front of the sensor.

It depends on the speed of the belt and on the size of the object. It determines how long

the value of the sensor is true.

| a memory MaPFB, used to store the current position of the belt when an object is put

on it.

| the actual position of the belt PFB

| the actual value of the sensor SBFB: it starts being true when (PFB � MaPFB) =

GammaPFB (where GammaPFB is yet another constant), and remains true until tF �

DeltaTF. In fact, this is not so simple, because the way SBFB is computed depends on the

mode, but the idea is essentially that one.

61

NFB=1
actFB=true
ppRT=false

A

B

D E

NFB=0
actFB=false
ppRT=false

F
NFB=2
actFB=true
ppRT=not SBFB

NFB=2
actFB=false
ppRT=false

NFB=1
actFB=true
ppRT=not SBFB

NFB=1
actFB=false
ppRT=false

and not ppRT

(ppFB or AddB)

(TB and T0) and

(TB and T0) and not

(TB and T0) and SBFB

(ppFB or AddB)
ppRT and

C

(ppFB or AddB)

TB and T0
ppRT

ppRT and not

(ppFB or AddB)

ppFB or AddB

SBFB and not (TB and T0)

(ppFB or AddB) and
not (TB and T0)

(ppFB or AddB)

Figure 11: The Feed-Belt component of the controller.

MaPFB=PFB
SBFB=false
PFB=pre(PFB)
tF=0

MAPFB=pre(MaPFB)
SBFB=((PFB-MaPFB)=GammaFB)
PFB=pre(PFB)+deltaFB
tF=0

MaPFB=PFB
SBFB=true
PFB=pre(PFB)
tF=0

MaPFB=pre(MaPFB)
SBFB=true
PFB=pre(PFB)
tF=0

SBFB=(tf<DeltaTF)
PFB=pre(PFB)+deltaFB
tF=pre(tF)+1

MaPFB=pre(MaPFB)

PFB=pre(PFB)+deltaFB

MaPFB=PFB
tF=pre(tF)+1

SBFB=(tF<DeltaTF)

A

B

D E

F

and not ppRT

(ppFB or AddB)

(TB and T0) and

(TB and T0) and not

(TB and T0) and SBFB

(ppFB or AddB)
ppRT and

C

(ppFB or AddB)

TB and T0
ppRT

ppRT and not

(ppFB or AddB)

ppFB or AddB

SBFB and not (TB and T0)

(ppFB or AddB) and
not (TB and T0)

(ppFB or AddB)

Figure 12: The Feed-Belt component in the environment.

62

5 Conclusion and further work

The aim of the case-study was to demonstrate the use of an imperative construct in a

data-
ow language for regulation systems, and the in
uence of this new construct in all

stages of development (modeling the environment, programming the controller, simulating

the behavior, etc.).

We think that the result is promising: when the mode-structure is part of the informal

speci�cation, the new construct is appropriate. Here is a list of bene�ts.

Readability: The controller is more readable than the Lustre version. When we

observe the mode-structure of the mode-automaton, we clearly see where the modes di�er,

and the conditions for changing modes. The hierarchy of modes allows a set of states to

share some equations, thus avoiding duplication of code. Explicit parallelism is used for

almost independent behaviors, i.e., with a little interface. (see the mode-automaton on

Figure 8).

Size of the code: The C code produced from the mode-automaton version (let us

denote it by Cm) is a little smaller than the one produced from the pure Lustre version

(C`), because the conditionals are better structured; but this is not the more signi�cant

improvement. Intrinsically, the code for each mode has to be written somewhere.

Execution time: The real gain concerns execution time. The classical compilation

techniques for Lustre are single-loop sequential programs of two kinds: 1) no control

structure: each equation, as it is written in the source, is computed; 2) explicit control

structure: an automaton is de�ned whose states correspond to all the valuations of the

Boolean variables in the program; at each step, only a specialized version of the equations

is computed (for a given value of all the Boolean variables, just rewrite the whole program,

by propagating constants); this gives a better code, as far as the speed is concerned but,

in practical cases, the control structure explodes. The size of the code is exponential in

the size of the source. We would need a way to specify, for instance, which of the Boolean

variables should be expanded into control states, and which of them should be considered

as data, and therefore not expanded. Now, what is the picture for mode-automata? In

the single-loop sequential program produced from a mode-automaton program, only the

code corresponding to the current mode is computed at each step (and the transition

from this mode). Hence the worst-case-execution-time (WCET) is the maximal execution

time of the modes. Of course, if the system is described using a lot of trivial modes, and

one complex one, the gain is low. But the key point is that, by de�ning explicit running

modes, the user in
uences the control structure of the code produced, which is somewhere

between the one-state program and the full-automaton program.

Now that the bene�ts for readability and code e�ciency have been established, we are

working on the de�nition of a kind of assume/guarantee scheme for modes, mimicking the

assume-guarantee schemes that already exist for proving properties of parallel systems in

a compositional way. This would show that o�ering the appropriate language construct

to the users can also allow them to give hints that simplify proofs.

As far as language design is concerned, we are also working on a less restrictive de�ni-

tion of the hierarchic composition of mode-automata. With the present de�nition of the

63

language, a variable is de�ned at one level only. We would like to allow several de�nitions

of the same variable at di�erent levels of the hierarchy. This makes sense if re�nement

is thought of as a kind of inheritance mechanism (which is the case in UML behavioral

models, where the innermost transitions have priority over the outermost ones).

Finally, the example of the two feed belt components (Figures 11 and 12) having the

same automaton structure suggests an extension of the language in which (
at or even

composed) automaton structures can be de�ned once and reused in di�erent contexts,

with di�erent sets of equations attached to states.

References

[BB91] A. Benveniste and G. Berry. Another look at real-time programming. Special Section
of the Proceedings of the IEEE, 79(9), September 1991.

[CHPP87] P. Caspi, N. Halbwachs, D. Pilaud, and J. Plaice. lustre, a declarative language for
programming synchronous systems. In 14th Symposium on Principles of Programming

Languages, Munich, January 1987.

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns.
Addison Wesley, Reading, MA, 1995.

[Har87] D. Harel. Statecharts : A visual approach to complex systems. Science of Computer

Programming, 8:231{275, 1987.

[HLR92] N. Halbwachs, F. Lagnier, and C. Ratel. Programming and verifying critical systems
by means of the synchronous data-
ow programming language lustre. IEEE Trans-

actions on Software Ingeneering, Special Issue on the Speci�cation and Analysis of

Real-Time Systems, September 1992.

[HLR93] N. Halbwachs, F. Lagnier, and P. Raymond. Synchronous observers and the veri�cation
of reactive systems. In M. Nivat, C. Rattray, T. Rus, and G. Scollo, editors, Third Int.

Conf. on Algebraic Methodology and Software Technology, AMAST'93, Twente, June
1993. Workshops in Computing, Springer Verlag.

[JM88] Farnam Jahanian and Aloysius Mok. Modechart: A speci�cation language for real-time
systems. IEEE Transactions on Software Engineering, 14, 1988.

[LL95] Claus Lewerentz and Thomas Lindner. Formal Development of Reactive Systems: Case

Study Production Cell. Number 891 in Lecture Notes in Computer Science. Springer
Verlag, January 1995.

[Mar92] F. Maraninchi. Operational and compositional semantics of synchronous automaton
compositions. In CONCUR. LNCS 630, Springer Verlag, August 1992.

[MMP91] O. Maler, Z. Manna, and A. Pnueli. From timed to hybrid systems. In Rex Workshop

on Real-Time: Theory in Practice, DePlasmolen (Netherlands), June 1991. LNCS 600,
Springer Verlag.

[MR98] F. Maraninchi and Y. R�emond. Mode-automata: About modes and states for reactive
systems. In European Symposium On Programming, Lisbon (Portugal), March 1998.
Springer Verlag, LNCS 1381.

[MRR00] F. Maraninchi, Y. R�emond, and Y. Raoul. Matou: An implementation of mode-
automata. In International Conference on Compiler Construction, Berlin (Germany),
March 2000. Springer Verlag.

[Pay96] S. Paynter. Real-time mode-machines. In Formal Techniques for Real-Time and Fault

Tolerance (FTRTFT), pages 90{109. LNCS 1135, Springer Verlag, 1996.

64

[Ray96] P. Raymond. Recognizing regular expressions by means of data
ows networks. In 23rd

International Colloquium on Automata, Languages, and Programming, (ICALP'96)

Paderborn, Germany. Springer Verlag, July 1996.

[R�em99] Yann R�emond. Matou home page. Technical report, VERIMAG, June 1999.
http://www-verimag.imag.fr/PEOPLE/Florence.Maraninchi/MATOU.

[RM95] E. Rutten and F. Martinez. SignalGTI, implementing task preemption and time
interval in the synchronous data-
ow language signal. In 7th Euromicro Workshop

on Real Time Systems, Odense (Denmark), June 1995.

[RWNH98] P. Raymond, D. Weber, X. Nicollin, and N. Halbwachs. Automatic testing of reactive
systems. In 19th IEEE Real-Time Systems Symposium, Madrid, Spain, December 1998.

[sE] synchronousEifel. http://ais.gmd.de/~budde/ { GMD SET-EES, Schloss Bir-
linghoven, 53754 Sankt Augustin, Germany.

[SYR99] SYRF. Esprit LTR 22703, "synchronous reactive formalisms". Technical report, 1996-
1999. http://www-verimag.imag.fr/SYNCHRONE/SYRF/syrf.html.

65

E�cient On-the-Fly Model-Checking for

Regular Alternation-Free Mu-Calculus

Radu Mateescu1 and Mihaela Sighireanu2

1 Inria Rhône-Alpes / Vasy, 655, avenue de l'Europe

F-38330 Montbonnot Saint Martin, France

Radu.Mateescu@inria.fr
2 Universit�e Paris 7 / Liafa, 2, place Jussieu

F-75251 Paris, France

Mihaela.Sighireanu@liafa.jussieu.fr

Abstract. Model-checking is a successful technique for automatically

verifying concurrent �nite-state systems. When building a model-checker,

a good compromise must be made between the expressive power of the

property description formalism, the complexity of the model-checking

problem, and the user-friendliness of the interface. We present a tempo-

ral logic and an associated model-checking method that attempt to ful�ll

these criteria. The logic is an extension of the alternation-free �-calculus

with Actl-like action formulas and Pdl-like regular expressions, allow-

ing a concise and intuitive description of safety, liveness, and fairness

properties over labeled transition systems. The model-checking method

is based upon a succinct translation of the veri�cation problem into a

boolean equation system, which is solved by means of an e�cient local

algorithm having a good average complexity. The algorithm also allows

to generate full diagnostic information (examples and counterexamples)

for temporal formulas. This method is at the heart of the Evaluator 3.0

model-checker that we implemented within the Cadp toolset using the

generic Open/C�sar environment for on-the-
y veri�cation.

Key-words: boolean equation system, diagnostic, model-checking,

�-calculus, speci�cation, temporal logic, veri�cation

1 Introduction

Formal veri�cation is essential in order to improve the reliability of complex,

critical applications such as communication protocols and distributed systems.

A state-of-the-art technique for automatic veri�cation of concurrent �nite-state

systems is called model-checking. In this approach, the application under design

is �rst translated into a �nite labeled transition system (Lts) model, on which

the desired correctness properties (expressed e.g., as temporal logic formulas)

are veri�ed using appropriate model-checking algorithms.

When designing and building a model-checker, several important criteria

must be considered. Firstly, the speci�cation formalism should be su�ciently

powerful to describe the main temporal property classes usually encountered

66

(safety, liveness, fairness). Among the wide range of temporal logics proposed
in the literature, the modal �-calculus [18] is particularly powerful, subsuming
linear-time logics as Ltl [22], branching-time logics as Ctl [4] or Actl [25], and
regular logics as Pdl [12] or Pdl-� [27].

Secondly, the underlying model-checking problem should have a su�ciently
low complexity, in order to o�er reasonable response times on practical appli-
cations. Optimizing this is often contradictory with the �rst criterion above,
because the model-checking complexity of temporal logics usually increases with
their expressive power. Since the model-checking problem of the full �-calculus
is exponential-time, various sublogics of lower complexity have been de�ned.
Among these, the alternation-free fragment [7] makes a good compromise be-
tween expressiveness (allowing direct encodings of Ctl and Actl) and e�ciency
of model-checking (several linear-time algorithms being available [5, 1, 29, 20]).

Thirdly, the model-checker interface should allow an intuitive, concise, and

exible description of properties, in order to avoid speci�cation errors and to
facilitate the veri�cation task for non-expert users. Moreover, the model-checker
must provide enough feedback information to make the debugging of the applica-
tions feasible; in practice, this means to provide a precise diagnostic in addition
to a simple yes/no answer for a temporal property.

In this paper, we present a temporal logic and an associated model-checking
method attempting to ful�ll the aforementioned criteria. The temporal logic
adopted is an extension of the alternation-free �-calculus with Actl-like action
formulas and Pdl-like regular expressions, allowing a concise and intuitive de-
scription of safety, liveness, and (some) fairness properties without sacri�cing
the e�ciency of veri�cation. The method proposed for verifying a temporal for-
mula over an Lts has a linear-time worst-case complexity (both in Lts size and
formula size) and is based upon a succinct translation of the veri�cation problem
into a boolean equation system (Bes). The method works on-the-
y, by explor-
ing the Lts in a demand-driven way during the veri�cation of the formula. The
resulting Bes is solved using a new linear-time local algorithm based on a depth-
�rst search of the corresponding boolean graph. Compared to other linear-time
local algorithms [1, 29], our algorithm is simpler to understand and has a good
average complexity, achieved by a careful bookkeeping of the information in the
portion of boolean graph visited during the search. Moreover, our algorithm is
easily connected to the diagnostic generation algorithms given in [24], allowing
to produce examples and counterexamples (subgraphs of the Lts) fully explain-
ing the truth values of the formulas. This veri�cation method has been used as a
basis for the Evaluator 3.0 model-checker that we developed within the Cadp
(C�sar/Ald�ebaran) toolset [9] using the generic Open/C�sar environment
for on-the-
y veri�cation [13].

The paper is organized as follows. Section 2 de�nes the syntax and seman-
tics of the temporal logic proposed and illustrates its use by means of various
examples of properties. Section 3 presents in detail the model-checking method
and Section 4 discusses its implementation within the Cadp toolset. Finally,
Section 5 gives some concluding remarks and directions for future work.

67

2 Regular alternation-free �-calculus

The logic that we propose, called regular alternation-free �-calculus, is an exten-

sion of the alternation-free fragment of the modal �-calculus [18, 7] with action

formulas as in Actl [25] and with regular expressions over action sequences as

in Pdl [12]. It allows direct encodings of \pure" branching-time logics like Actl

or Ctl [4], as well as of regular logics like Pdl or Pdl-� [27]. We �rst de�ne

its syntax and semantics, and then we show its usefulness by means of several

examples of commonly encountered temporal properties.

2.1 Syntax and semantics

We consider as interpretation models �nite labeled transition systems (Ltss),

which are particularly suitable for action-based description formalisms such as

process algebras. An Lts is a tuple L = (S;A; T; s0), where: S is a �nite set of

states, A is a �nite set of actions, T � S�A�S is the transition relation, and

s0 2 S is the initial state. A transition (s; a; s0) 2 T , also noted s
a

! s
0, indicates

that the system can move from state s to state s0 by performing action a.

The regular alternation-free �-calculus is built from three types of formulas,

according to the syntax given on Figure 1.

Action formulas � ::= a

�
� :�

�
� �1 ^ �2

Regular formulas � ::= �

�
� �1:�2

�
� �1j�2

�
� �

�

State formulas ' ::= F

�
� T

�
� '1 _ '2

�
� '1 ^ '2

�
� h�i'

�
� [�]'

�
� Y

�
� �Y:'

�
� �Y:'

Fig. 1. Syntax of regular alternation-free �-calculus

Action formulas � are built from action names a 2 A by using the standard

boolean operators. Derived boolean connectives are de�ned as usual: F = a^:a

for some a, T = :F, �1 _ �2 = :(:�1 ^ :�2), etc. Regular formulas � are

built from action formulas � by using the standard regular expression operators:

concatenation (:), choice (j), and transitive-re
exive closure (�). The empty se-

quence operator " and the transitive closure operator + are de�ned as " = F
�

and �
+ = �:�

�. State formulas ' are built from propositional variables Y 2 Y

by using the standard boolean operators, the possibility and necessity operators

h�i' and [�]', and the minimal and maximal �xed point operators �Y:' and

�Y:'. The � and � operators act as binders for Y variables in a way similar

to quanti�ers in �rst-order logic. A formula ' without free occurrences of Y

variables is closed. Formulas ' are assumed to be alternation-free, i.e., without

mutually recursive minimal and maximal �xed point subformulas (h�i'0 and

[�]'0 modalities, where � contains � operators, must be considered as \hidden"

minimal and maximal �xed point subformulas, respectively).

68

The semantics of the logic is shown on Figure 2. The interpretation [[�]] � A

of action formulas gives the set of Lts actions satisfying �. The interpretation

jj�jj � S � S of regular formulas gives a binary relation between the source and

target states of transition sequences satisfying � (�, [, and � denote composition,

union, and transitive-re
exive closure of binary relations). The � regular formula

characterizes one-step sequences s
a

! s
0 such that a satis�es �. The �1:�2 formula

states that a sequence is the concatenation of two sequences satisfying �1 and �2;

�1j�2 states that a sequence can satisfy �1 or �2; and �
� states that a sequence

is the concatenation of (zero or more) sequences satisfying �. The interpretation

[[']] � � S of state formulas, where the propositional context � : Y ! 2S assigns

state sets to propositional variables, gives the set of Lts states satisfying '

in the context of � (� denotes context overriding). The modalities h�i' and

[�]' characterize the states for which some (all) outgoing transition sequences

satisfying � lead to states satisfying '. The formulas �Y:' and �Y:' denote the

minimal and maximal solutions (over 2S) of the �xed point equation Y = '.

[[a]] = fag

Action formulas [[:�]] = A n [[�]]

[[�1 ^ �2]] = [[�1]] \ [[�2]]

jj�jj = f(s; s0) 2 S � S j 9a 2 A:s
a

! s
0 ^ a 2 [[�]]g

Regular formulas
jj�1:�2jj = jj�1jj � jj�2jj

jj�1j�2jj = jj�1jj [jj�2jj
jj��jj = jj�jj�

[[F]] � = ;
[[T]] � = S

[['1 _ '2]] � = [['1]] � [[['2]] �
[['1 ^ '2]] � = [['1]] � \ [['2]] �

State formulas [[h�i']] � = fs 2 S j 9s0 2 S:(s; s0) 2 jj�jj ^ s
0 2 [[']] �g

[[[�]']] � = fs 2 S j 8s0 2 S:(s; s0) 2 jj�jj) s
0 2 [[']] �g

[[Y]] � = �(Y)
[[�Y:']] � =

T
fS0 � S j ��(S

0) � S
0g

[[�Y:']] � =
S
fS0 � S j S0 � ��(S

0)g
where �� : 2S ! 2S , ��(S

0) = [[']] (�� [S0
=Y])

Fig. 2. Semantics of regular alternation-free �-calculus

Let L = (S;A; T; s0) be an Lts. An action a 2 A satis�es a formula �

(written as a j= �) i� a 2 [[�]]. A state s 2 S satis�es a closed formula ' (written

s j= ') i� s 2 [[']]. L is a '-model (written L j= ') i� [[']] = S. Since an on-the-

y model-checker only decides whether s0 j= ', the user should be aware that

verifying L j= ' amounts to check on-the-
y the formula [T�]' (equivalent to

the Actl formula AGT'), stating that ' holds on every state reachable from s0.

69

2.2 Examples

The regular alternation-free �-calculus allows to express intuitively and concisely

various useful properties of Ltss. Table 1 shows several examples of typical

formulas representing safety, liveness, and fairness properties.

Table 1. Examples of properties in regular alternation-free �-calculus

Class Property Formula

Absence of Error actions [T�

:Error] F

Safety
Unreachability of a Recv action

before a Send
[(:Send)�:Recv]F

Mutual exclusion of sections de-

limited by Open and Close
[T�

:Open1:(:Close1)�:Open2]F

Deadlock freedom: absence of

states without successors
[T�] hTiT

Liveness
Potential reachability (via some

Errors) of a Recv after a Send
hT

�

:Send:(T�:Error)�:RecviT

Inevitable reachability of a

Grant action after a Request
[T�

:Request]�Y: hTiT ^ [:Grant]Y

Livelock freedom: absence of

tau-circuits
[T�]�Y: [tau]Y

Fairness
Fair reachability (by skipping

circuits) of a Recv after a Send
[T�

:Send:(:Recv)�] h(:Recv)�:RecviT

Note that boolean connectives (negation in particular) over actions improve

the conciseness of formulas: without these operators, it would be impossible to

express the inevitable reachability of an action without referring to other ac-

tions in the Lts. Also, regular operators (although theoretically they do not

increase the expressive power of the alternation-free modal �-calculus) improve

the readability of formulas: without these operators, the second liveness prop-

erty given in Table 1 would be described by the equivalent �xed point formula

�Y1:(hSendi �Y2:(hRecviT _ �Y3:(hErroriY2 _ hTiY3)) _ hTiY1).

Other, more elaborate examples of generic temporal properties encoded in

regular alternation-free �-calculus can be found in Section 4.

3 On-the-
y model-checking

We present in this section a method for on-the-
y model-checking of regular

alternation-free �-calculus formulas over �nite Ltss. The method works by trans-

lating the veri�cation problem into a boolean equation system, which is simul-

taneously solved using an e�cient local algorithm.

70

3.1 Translation into boolean equation systems

Consider an Lts L = (S;A; T; s0) and a closed formula ' in normal form (i.e.,
in which all propositional variables are unique). The veri�cation problem we are
interested in consists of deciding whether s0 j= '. An e�cient method used for
the Actl logic [8] and for the alternation-free �-calculus [5, 1] is to translate the
problem into a boolean equation system (Bes) [1, 21], which is solved using spe-
ci�c local algorithms [1, 29, 28]. For the regular alternation-free �-calculus, one
way to proceed could be �rst to translate a state formula ' in plain alternation-
free �-calculus and then to apply the above procedure. This means to encode
the regular modalities of ' using �xed point operators, e.g., by applying the
Emerson-Lei translation from Pdl to alternation-free �-calculus [7]. This trans-
lation is succinct (it produces at most a linear blow-up in the size of '), but
requires the identi�cation and sharing of common subformulas.

However, we can also devise a succinct translation of the veri�cation problem
s0 j= ' into a Bes resolution without computing common subformulas, but
using instead an equational intermediate representation. The translation that
we propose involves three steps, described below.

Translation into PDL with recursion. The �rst step is to translate a regular

alternation-free �-calculus formula ' into Pdl with recursion (PdlR), which is a
generalization of the Hennessy-Milner logic with recursion HmlR [19]. A PdlR

speci�cation (see Figure 3) consists of a propositional variable Y and a �xed
point equation system with propositional variables in left-hand sides and Pdl
formulas in right-hand sides. The equation system is given as a listM1. : : : .Mp of
�-blocks (. denotes concatenation), i.e., subsystems of equations with the same
sign � 2 f�; �g. We consider here only alternation-free PdlR speci�cations, in
which every �-block Mj (for 1 � j < p) depends only upon (has free variables
that may be bound in) Mj+1; : : : ;Mp. The Y variable must be de�ned in one of
the �-blocks M1; : : : ;Mp (usually in M1). A PdlR speci�cation is closed if all

variables occurring in it are bound in the equation system.

Syntax of a PdlR speci�cation:

P = (Y;M1. : : : .Mp)

where Mj = fYj i
�j
= 'jig1�i�nj

for all 1 � j � p

Semantics w.r.t. an Lts (S;A; T; s0) and a context � : Y ! 2S :

[[(Y;M1. : : : .Mp)]] � = (�� [[M1. : : : .Mp]] �)(Y)

[[Mj . : : : .Mp]] � = ([[Mj]] (�� [[Mj+1. : : : .Mp]] �)). [[Mj+1. : : : .Mp]] �

[[fYj i
�j
= 'j ig1�i�nj

]] � = [�j�j�
=(Yj1; : : : ; Yjnj

)]

where �j�
:(2S)nj!(2S)nj , �j�

(U1; :::; Unj) = ([['i]] (�� [U1=Y1; :::; Unj=Ynj]))1�i�nj

Fig. 3. Syntax and semantics of PdlR

71

A PdlR speci�cation (Y;M1. : : : .Mp) interpreted over an Lts yields the
set of states associated to Y in the solution of M1. : : : .Mp. The solution of
M1. : : : .Mp is a propositional context in Y ! 2S obtained by concatenating the
solutions of all �-blocksMj (1 � j < p), each one being calculated in the context
of the subsystem Mj+1. : : : .Mp. The solution of a �-block Mj with nj variables
is a context mapping Mj 's variables to the �j �xed point of a functional de�ned
over (2S)nj . The semantics of an empty system f g is the empty context [].

Before translating a closed regular alternation-free �-calculus formula ' in
PdlR, we must convert ' into expanded form, by performing two actions: (a) add
a new �Y (�Y) operator, where Y is a \fresh" variable, in front of every h�i'1
([�]'1) subformula of ' in which � contains a � operator (recall from Section 2.1
that these modalities are considered as \hidden" �xed point operators); (b) if the
resulting formula '0 is not a �xed point one, add in front of '0 a �Y0 operator,
where � 2 f�; �g and Y0 is another \fresh" variable.

The translation of an expanded formula �Y0:'0 into a PdlR speci�cation
(T1(�Y0:'0; �);T2(�Y0:'0; �)) is obtained using two syntactic functions T1 and
T2, de�ned inductively in Figure 4. T1('; �) yields a formula obtained from ' by
substituting each �xed point subformula by its corresponding variable. T2('; �)
yields a system containing, for each �xed point subformula of ', an equation with
the corresponding variable in the left-hand side and a Pdl formula in the right-
hand side. The �rst �-block, denoted by hd(T2('; �)), contains the equations of
sign � associated to the topmost �xed point subformulas of '. The remainder of
the system, denoted by tl(T2('; �)), contains the �-blocks already constructed
from subformulas of '. A new �-block is created every time that a �xed point
subformula with a sign ~� dual to � is encountered (~� = � and ~� = �).

' T1('; �) T2('; �)

F F
f g

T T

h�i'1 h�iT1('1; �)
T2('1; �)

[�]'1 [�]T1('1; �)

'1 _ '2 T1('1; �) _T1('2; �) (hd(T2('1; �)) [hd(T2('2; �))).
'1 ^ '2 T1('1; �) ^T1('2; �) tl(T2('1; �)).tl(T2('2; �))

Y f g

�Y:'1 Y (fY
�

= T1('1; �)g [hd(T2('1; �))).tl(T2('1; �))

~�Y:'1 f g.(fY
~�

= T1('1; ~�)g [hd(T2('1; ~�))).tl(T2('1; ~�))

Fig. 4. Translation of state formulas in PdlR

We illustrate this translation by an example. Consider the following formula
(already written in expanded form), stating that every Send action in the Lts
will be eventually followed by a Recv:

' = �Y0: [T
�:Send]�Y1: hTiT ^ [:Recv]Y1

72

The translation (T1('; �);T2('; �)) yields the PdlR speci�cation below:

�
Y0; fY0

�
= [T�

:Send]Y1g.fY1
�

= hTiT ^ [:Recv]Y1g
�

Using Beki�c's theorem [3], we can show that the translation from regu-

lar alternation-free �-calculus to PdlR preserves the semantics of formulas:

[[�Y:']] � = [[(T1(�Y:'; �);T2(�Y:'; �))]] � for any context � : Y ! 2S and

� 2 f�; �g. Note also that the size of the PdlR speci�cation obtained is linear

in the size of ': there are as many equations in the system as variables in (the

expanded form of) ' and as many operators in the right-hand sides as opera-

tors in '. However, in order to obtain a succinct translation into Bess, we need

simple PdlR speci�cations, i.e., in which all Pdl formulas in right-hand sides

contain at most one boolean or modal operator. This is easily done by splitting

the Pdl formulas and introducing new variables, and may cause at most a linear

blow-up in the size of the equation system. For the example above, we obtain

the following equivalent simple PdlR speci�cation:

�
Y0; fY0

�
= [T�

:Send]Y1g.fY1
�

= Y2 ^ Y3; Y2
�

= hTiT; Y3
�

= [:Recv]Y1g
�

Translation into HML with recursion. The second step is to translate a

simple PdlR speci�cation into HmlR, which amounts to eliminate all regular

operators inside the modal formulas present in the right-hand sides of the equa-

tion system. This translation is performed by the syntactic function R de�ned

in Figure 5. Every equation containing a modality with a regular expression is

translated into (one or more) equations of the same sign that contain modalities

with simpler regular formulas (having less regular operators). This process con-

tinues recursively until all resulting modalities in the right-hand sides belong to

Hml, i.e., they contain only pure action formulas.

R(Y;M1. : : : .Mp) = (Y;R(M1). : : : .R(Mp))

R(fYi
�

= 'ig1�i�n) =
S

n

i=1
R(Yi

�

= 'i)

R(Y
�

= h�i') = fY
�

= h�i'g

R(Y
�

= [�]') = fY
�

= [�]'g

R(Y
�

= h�1:�2i') = R(Y
�

= h�1iY1) [R(Y1
�

= h�2i')

R(Y
�

= [�1:�2]') = R(Y
�

= [�1]Y1) [R(Y1
�

= [�2]')

R(Y
�

= h�1j�2i') = fY
�

= Y1 _ Y2g [R(Y1
�

= h�1i') [R(Y2
�

= h�2i')

R(Y
�

= [�1j�2]') = fY
�

= Y1 ^ Y2g [R(Y1
�

= [�1]') [R(Y2
�

= [�2]')

R(Y
�

= h��i') = fY
�

= ' _ Y1g [R(Y1
�

= h�iY)

R(Y
�

= [��]') = fY
�

= ' ^ Y1g [R(Y1
�

= [�]Y)

Fig. 5. Translation of simple PdlR speci�cations in HmlR

73

For the simple PdlR speci�cation obtained in the previous example, the

translation R yields the following (simple) HmlR speci�cation:

�
Y0; fY0

�
= Y4 ^ Y5; Y4

�
= [Send]Y1; Y5

�
= [T]Y0g.

fY1
�

= Y2 ^ Y3; Y2
�

= hTiT; Y3
�

= [:Recv]Y1g
�

The translation from PdlR to HmlR preserves the semantics of speci�ca-

tions: [[(Y;M1. : : : .Mp)]] � = [[R(Y;M1. : : : .Mp)]] � for any context � : Y ! 2S .

Moreover, it is easy to see that R may cause at most a linear blow-up in the size

of the equation system.

Translation into BESs. The third step is to translate a simple HmlR speci�-

cation into an (alternation-free) boolean equation system. A Bes (see Figure 6)

consists of a boolean variable x and a �xed point equation system B1. : : : .Bp

with boolean variables in left-hand sides and boolean formulas in right-hand

sides. For simplicity, we consider only pure disjunctive or conjunctive boolean

formulas. An empty disjunction is equivalent to F and an empty conjunction is

equivalent to T. The semantics of a Bes is de�ned in a way similar to a PdlR

speci�cation, except that it produces the boolean value associated to x in the

solution of B1. : : : .Bp.

Syntax of a Bes:

E = (x;B1. : : : .Bp)

where Bj = fxji
�j
= op

j i
Xj i

g1�i�nj
, xji 2 X , op

ji
2 f_;^g, and Xj i

� X
for all 1 � j � p; 1 � i � nj

Semantics w.r.t. Bool = fF;Tg and a context � : X ! Bool:

[[(x;B1. : : : .Bp)]] � = (� � [[B1. : : : .Bp]] �)(x)

[[Bj . : : : .Bp]] � = ([[Bj]] (� � [[Bj+1. : : : .Bp]] �)). [[Bj+1. : : : .Bp]] �

[[fxj i
�j
= op

ji
Xj i

g1�i�nj
]] � = [�j	 j�

=(xj1; : : : ; xjnj
)]

where [[opfx1; :::; xkg]] � = �(x1) op : : : op �(xk) and 	 j�
:Bool

nj!Bool
nj ,

	 j �
(b1; :::; bnj) = ([[op

j i
Xj i

]](� � [b1=x1; :::; bnj=xnj]))1�i�nj

Fig. 6. Syntax and semantics of boolean equation systems

The local model-checking of a (simple) HmlR speci�cation (Y;M1. : : : .Mp)

on the initial state s0 of an Lts L = (S;A; T; s0) means to decide whether the set

of states denoted by Y contains s0. This is translated into a Bes by the semantic

function B de�ned inductively in Figure 7. To every propositional variable Y in

the left-hand side of an equation and to every state s 2 S is associated a boolean

variable Ys encoding the fact that s belongs to the set of states denoted by Y .

To every Hml formula ' in a right-hand side and to every state s is associated

a boolean formula B('; s) encoding the fact that s satis�es '.

74

B(Y;M1. : : : .Mp) = (Ys0 ;B(M1). : : : .B(Mp))

B(fYi
�

= 'ig1�i�n) = fYi;s
�

= B('i; s)g1�i�n;s2S

B(F; s) = F

B(T; s) = T

B('1 _ '2; s) = B('1; s) _B('2; s)
B('1 ^ '2; s) = B('1; s) ^B('2; s)
B(h�i'; s) =

W
fs

a

!s0 j aj=�g
B('; s0)

B([�]'; s) =
V

fs
a

!s0 j aj=�g
B('; s0)

B(Yi; s) = Yi;s

Fig. 7. Translation of simple HmlR speci�cations into Bess

The B function is similar to other translations from modal equation systems

to Bess [2, 5, 1, 29, 21]. B produces a Bes whose size is linear in the size of the

HmlR speci�cation (which in turn is linear in the size of the initial state formula)

and the size of the Lts (number of states and transitions). It is important to note

that during the translation of modal formulas (see Figure 7), the transitions in

the Lts are traversed forwards, which enables to construct the Lts in a demand-

driven way during the veri�cation.

3.2 Local resolution of BESs

The �nal step of the model-checking procedure is the local resolution of the

alternation-free Bes obtained by translating the local veri�cation of a formula

' on an Lts (S;A; T; s0). As we saw in Section 3.1, the veri�cation of a �xed

point formula �Y:' on the initial state s0 amounts to compute the value of the

boolean variable Ys0
contained in the �rst �-block of the Bes.

For simplicity, we consider here the resolution of Bess containing a single

�-block (the solving routine for �-blocks is completely dual). Multiple-block

alternation-free Bess can be handled by associating to each �-block in the Bes

its corresponding solving routine. Every time a variable xj bound in a �-block

Bj is required in another block Bi that depends on Bj , the solving routine of

Bj is called to compute xj . The computation of xj may require in turn the

values of other variables that are free in Bj and de�ned in other blocks, leading

to calls of the routines corresponding to those blocks, and so on. This process

will eventually stop, because the Bes being alternation-free, there are no cyclic

dependencies between blocks. During the resolution, the same variable of a block

may be required several times in other blocks; therefore, the computation results

must be persistent between subsequent calls of the same solving routine1.

1 This resolution scheme could be naturally implemented using coroutines.

75

Extended Boolean Graphs. Our resolution algorithm is easier to develop

using a representation of Bess as extended boolean graphs [24], which are a slight
generalization of the boolean graphs proposed in [1]. An extended boolean graph
(Ebg) is a tuple G = (V;E; L; F), where: V is the set of vertices; E � V � V

is the set of edges; L : V ! f_;^g is the vertex labeling; and F � V is the
frontier of G. Intuitively, the frontier of an Ebg G contains the only vertices of
G starting at which new edges can be added when G is embedded in another
Ebg. The set of successors of a vertex x 2 V is noted E(x).

A closedBes can be represented by anEbgG = (V;E; L; ;), where V denotes
the set of boolean variables, E denotes the dependencies between variables, and
L labels the vertices as disjunctive or conjunctive according to the operator in
the corresponding equation of the Bes (the frontier set is empty since G is not
meant to be embedded in another graph). Figure 8 shows a closed Bes and
its associated Ebg, where black (white) vertices denote variables that are true
(false) in the Bes solution. The grey area delimits a subgraph containing the
vertices fx0; x3; x4; x5; x8g and having the frontier fx0; x5; x8g.

0 81 7

2 3 54

^

^

_ 9 _

_^

_

6^

^

^

x0

�

= x1 _ x4 _ x9

x1

�

= x2 ^ x3

x2

�

= x1 ^ x3

x3

�

= T

x4

�

= x3 ^ x5

x5

�

= x3 _ x6

x7

�

= F

x9

�

= x7 ^ x8

x6

�

= x4 ^ x6

x8

�

= x0 _ x7

Fig. 8. A Bes, its associated Ebg, and a subgraph

Every Ebg G = (V;E; L; F) induces a Kripke structure G = (V;E; L). Such
a Kripke structure is represented in an implicit manner when the \successor"
function E(x) can be computed for every vertex x 2 V without knowing the
whole set V (this is the case for the successor function implemented by the

translation B given in Figure 7).
Let P_ and P^ be two atomic propositions denoting the _- and ^-vertices of

a Kripke structure G induced by a Bes. The Bes solution can be characterized
by the following �-calculus formula interpreted over G [24]:

Ex = �Y:(P_ ^ hTiY) _ (P^ ^ [T]Y)

A variable x of the Bes is true i� the vertex x satis�es Ex inG, noted x j=G Ex.
Intuitively, Ex expresses that some (all) successors of a _-vertex (^-vertex) lead,
in a �nite number of steps, to vertices corresponding to T variables of the Bes
(these are ^-vertices without successors, characterized by the formula P^^[T]F).
For the Ebg in Figure 8, it is easy to check that the set fx0; x3; x4; x5; x8g of

76

black vertices is equal to the interpretation of Ex on G, noted [[Ex]]
G
. Thus, the

local resolution of a Bes amounts to the local model-checking of the Ex formula

on the corresponding Kripke structure.

Consider an Ebg G = (V;E; L; ;), its associated Kripke structure G =

(V;E; L), and x 2 V . The local model-checking of Ex on x does not always

require to entirely explore G (e.g., on Figure 8, one could explore only the out-

lined subgraph in order to check Ex on x0), but rather to explore a part G0 of

G such that the value of x can be computed based only on the information in

G0. Formally, this means to compute a subgraph G0 = (V 0; E0; L0; F 0) of G that

contains x and is solution-closed [24], i.e., the satisfaction of Ex by x is the same

in G0 and G: [[Ex]]
G0 = [[Ex]]

G
\ V 0. A subgraph G0 is solution-closed i� the

satisfaction of Ex on its frontier F 0 can be decided using only the information in

G0: F 0 � [[(P_ ^ Ex) _ (P^ ^ :Ex)]]
G0 . For the Ebg on Figure 8, it is easy to see

that the subgraph outlined is solution-closed: its frontier fx0; x5; x8g contains

only _-vertices satisfying Ex.

Local resolution algorithm. The Solve algorithm that we propose (see Fig-

ure 9) takes as input an implicit Kripke structure G = (V;E; L) induced by an

Ebg G and a vertex x 2 V on which the Ex formula must be checked. Start-

ing from x, Solve performs a depth-�rst search (Dfs) of G and simultaneously

checks Ex on all visited vertices, which are stored in a set A � V . Upon termina-

tion, the subgraph GA of G containing all vertices in A and all edges traversed

during the Dfs is solution-closed ([[Ex]]
GA

= [[Ex]]
G
\ A), meaning that the

truth value of Ex on x computed in GA is the same as that in G.

Solve is similar in spirit with other graph-based local resolution algorithms

like those of Andersen [1] and Vergauwen-Lewi [29]. However, since it implements

theDfs iteratively, using an explicit stack and two nested while-loops, we believe

that Solve is easier to understand than e.g., Andersen's algorithm, which uses

a while-loop and two mutually recursive functions.

The successors E(y) of every vertex y 2 V are assumed to be ordered from

(E(y))0 to (E(y))
jE(y)j�1. For every vertex y 2 A, a counter p(y) denotes the

current successor of y that must be explored. Every time a vertex y such that

y j=G Ex is encountered on top of the stack (this can be either a \new" ^-sink
vertex, or an already visited vertex), the Ex formula is reevaluated in GA.

This reevaluation is carried out by the inner while-loop by keeping a work set

B � A containing the vertices u such that u j=GA Ex and Ex has not yet been

reevaluated on the nodes that depend upon u. To keep track of these backward

dependencies, to each vertex y 2 A we associate the set d(y) � A containing the

currently visited predecessor vertices of y (these vertices directly depend upon y

and Ex must be reevaluated on them when Ex becomes true on y). To e�ciently

perform the reevaluation of Ex, we use the counter-based technique introduced

in [2, 5]: to every vertex y 2 A, we associate a counter c(y) denoting the least

number of successors of y that currently have to satisfy Ex in order to ensure

y j=GA Ex (c(y) is initialized to 1 for _-vertices and to jE(y)j for ^-vertices).
Thus, for every y 2 A, y j=GA Ex i� c(y) = 0.

77

procedure Solve (x, (V;E; L)) is

var A, B : 2V ; d : V ! 2V ; c; p : V ! Nat;
y, z, u, w : V ; stack : V �;

c(x) := if L(x) = ^ then jE(x)j else 1;
p(x) := 0; d(x) := ;;
A := fxg; stack := push(x; nil);
while stack 6= nil do

y := top(stack);
if c(y) = 0 then

if d(y) 6= ; then

B := fyg;
while B 6= ; do

let u 2 B; B := B n fug;
forall w 2 d(u) do

if c(w) > 0 then

c(w) := c(w)� 1;
if c(w) = 0 then

B := B [fwg

endif

endif

end;
d(u) := ;

end

else

stack := pop(stack)
endif

elsif p(y) � jE(y)j � 1 then

z := (E(y))p(y); p(y) := p(y) + 1;
if z 2 A then

d(z) := d(z) [fyg
if c(z) = 0 then

stack := push(z; stack)
endif

else

c(z) := if L(z) = ^ then jE(z)j else 1
p(z) := 0; d(z) := fyg;
A := A [fzg; stack := push(z; stack)

endif

else

stack := pop(stack)
endif

end

end

Fig. 9. Graph-based local resolution of a Bes with sign �

78

Figure 10 shows the result of executing Solve for the variable x0 and the

Ebg in Figure 8 (during the Dfs, the successors of each vertex are visited

as if the right-hand side of the corresponding equation was evaluated from

left to right). The subgraph GA computed by Solve, containing the vertices

fx0; x1; x2; x3; x4; x5g, is solution-closed, because its frontier fx0; x5g contains

only _-vertices satisfying Ex in GA.

01 7

2 3 54

^

^

_ 9

_^

_

6^

^

^

8_

Fig. 10. A solution-closed subgraph computed by Solve

During the execution of Solve, the Dfs stack repeatedly takes one of the

three forms outlined on Figure 11.

a) b) c)

A A A

x x x

c > 0

c = 0

c > 0
c > 0

c = 0

Fig. 11. Structure of the Dfs stack during the execution of Solve

In form a), all vertices y pushed on the stack are \unstable" (c(y) > 0),

meaning that the truth of Ex on y depends on the portion V nA of G that has

not been explored yet: so, the Dfs must continue. In form b), a vertex y that

is \stable" (c(y) = 0) has been encountered and pushed on top of the stack,

meaning that some vertices depending on y may also become stable: therefore,

Ex must be reevaluated in GA. In form c), this reevaluation has been �nished,

possibly leading to stabilization of some vertices in A: then, all stable vertices

present on the stack will be popped, since no further information is needed for

79

them. TheDfs properties ensure that all stable vertices on the stack are adjacent

to the top2, and thus after they are popped the stack takes again the form a).

Solve has a linear-time worst-case complexity, since every edge in GA is

traversed at most twice: forwards (when its target vertex is visited by the Dfs)

and backwards (when Ex is reevaluated on its source vertex). Moreover, Solve

has also a good average-case complexity, improving on Andersen and Vergauwen-

Lewi's algorithms, since it stops as soon as x j=GA Ex and explores only vertices

that are likely to in
uence x. Also, backward dependencies d(u) of stable vertices

u are freed during the inner while-loop, thus reducing memory consumption.

Diagnostic generation. Practical applications of Bes resolution, such as tem-

poral logic model-checking, often require a more detailed feedback than a simple

yes/no answer. To allow an e�cient debugging of the temporal formulas, it is de-

sirable to have also diagnostic information explaining the truth value obtained

for the boolean variable of interest. Both positive diagnostics (examples) and

negative diagnostics (counterexamples) are needed in order to have a full expla-

nation of a temporal formula.

Let G = (V;E; L; F) be an Ebg and x 2 V the variable of interest. A

diagnostic for x is a solution-closed subgraph G0 of G that contains x and is

minimal w.r.t. to subgraph inclusion, i.e., it contains the minimal amount of

information needed in order to decide the satisfaction of Ex by x. A diagnostic

G0 is called example if x j=G0 Ex and counterexample if x 6j=G0 Ex.

The Solve algorithm does not directly produce diagnostics; however, it can

be easily coupled with the diagnostic generation algorithms proposed in [24].

These algorithms take as input a solution-closed subgraph (in which the seman-

tics of Ex has been already computed) and construct a diagnostic for a given

variable by performing e�cient traversals of the subgraph. Figure 12 shows an

example for the variable x0 obtained by traversing again the solution-closed

subgraph on Figure 10 previously computed by Solve.

01 7

2 3 54

^ _ 9

_^

_

6^

^

^

8_

^

Fig. 12. An example for x0

2 The reevaluation of Ex, which involves a backwards traversal of edges in GA, can

a�ect only those vertices in the Dfs tree that are descendants of stable vertices

present on the stack, outlined by the grey portion on Figure 11 c).

80

Since these diagnostic generation algorithms have a linear complexity in the
size of the solution-closed subgraph they are executed upon, they a�ect neither
the worst-case, nor the average-case complexity of Solve.

4 Implementation and use

We used the model-checking method presented in Section 3 as a basis for develop-
ing the Evaluator 3.0 model-checker within the Cadp (C�sar/Ald�ebaran)
toolset [9]. The tool has been built using the Open/C�sar environment [13],
which provides a generic Api for on-the-
y exploration of transition systems. As
a consequence, Evaluator 3.0 can be used in conjunction with every compiler
that is Open/C�sar{compliant (i.e., that implements a translation from its
input language to the Open/C�sar Api), and particularly with the C�sar
compiler [14] for Lotos.

4.1 Additional operators and property patterns

Practical experience in using model-checking has shown the need for abstraction
mechanisms enabling the speci�er to de�ne and use his own temporal opera-

tors in addition to those prede�ned in the model-checker. The input language of
Evaluator 3.0 o�ers a macro-expansion mechanism allowing to de�ne parame-
terized formulas and an inclusion mechanism allowing to group these de�nitions
into separate libraries that can be reused in temporal speci�cations.

An immediate application was to build libraries for particular logics like
Ctl or Actl by translating their temporal operators as �xed point formulas in

regular alternation-free �-calculus. For example, the E
�
'1�1

U�2
'2

�
operator of

Actl (stating the existence of a sequence s1
a1
! s2

a2
! � � � sk

ak
! sk+1 such that

si j= '1 for all 1 � i � k, aj j= �1 for all 1 � j < k, ak j= �2, and sk+1 j= '2) can
be encoded as a macro EU A A('1; �1; �2; '2) = �Y:('1 ^ (h�2i'2 _ h�1iY)).
Of course, these particular operators can be freely mixed with the built-in ones
in temporal formulas, thus providing added
exibility to advanced users.

Another source of
exibility is provided by the use of wildcards (regular

expressions on character strings) instead of action names in the formulas. If
transition labels are represented as character strings (as it is currently the case
with the Open/C�sar Api), this allows to specify a set of labels using a single
action predicate. For example, the wildcard 'SEND.*' represents all transition
labels denoting communication of 0 or more values on gate SEND.

In practice, it appears that in many cases, temporal properties tend to belong
to particular classes of high-level \property patterns", such as absence, existence,
universality, precedence, and response. These patterns have been identi�ed in [6]
after an important statistical study concerning over 500 applications of tem-
poral logic model-checking. The knowledge embedded in this pattern system is

important for both expert and non-expert users, since it reduces the risk of spec-
i�cation errors and facilitates the learning of temporal logic-based formalisms.

81

These property patterns have been expressed in [6] using several speci�ca-

tion formalisms (Ctl, Ltl, regular expressions, etc.) but none of them was

directly applicable to description languages with action-based semantics such as

process algebras. Therefore, we developed in Evaluator 3.0 a library of param-

eterized formulas implementing the property patterns in regular alternation-free

�-calculus. It turned out that many of them could be expressed in a much more

concise and readable form than with the other formalisms used in [6]. Table 2

shows the �rst three patterns contained in the library.

Table 2. Property patterns in regular alternation-free �-calculus

Pattern Scope Formula

Globally [T�

:�1]F

Before �2 [(:�2)
�

:�1:T
�

:�2] F

Absence

(�1 is false)
After �2 [(:�2)

�

:�2:T
�

:�1] F

Between �2 and �3 [T�

:�2:(:�3)
�

:�1:T
�

:�3]F

After �2 until �3 [T�

:�2:(:�3)
�

:�1] F

Globally �Y: hTiT ^ [:�1]Y

Before �2 [(:�1)
�

:�2]F

Existence

(�1 becomes true)
After �2 [(:�2)

�

:�2]�Y: hTiT ^ [:�1]Y

Between �2 and �3 [T�

:�2:(:�1)
�

:�3] F

After �2 until �3

[T�

:�2] ([(:�1)
�

:�3] F ^
�Y: hTiT ^ [:�1]Y)

Globally [T�

::�1] F

Before �2 [(:�2)
�

::(�1 _ �2):(:�2)
�

:�2]F

Universality

(�1 is true)
After �2 [(:�2)

�

:�2:T
�

::�1]F

Between �2 and �3 [T�

:�2:(:�3)
�

::(�1 _ �3):T
�

:�3] F

After �2 until �3 [T�

:�2:(:�3)
�

::(�1 _ �3)]F

Besides facilitating the user task at the speci�cation level, it is also important

to o�er enough feedback on the veri�cation results to allow an easy debugging

of the applications. This is achieved through the diagnostic generation facilities

provided by Evaluator 3.0, which allows to produce examples and counterex-

82

amples explaining the truth value of regular alternation-free �-calculus formu-

las. As a side e�ect, this enables the user to get full diagnostics for particular

temporal logics implemented as libraries, such as Ctl and Actl. Moreover,

Evaluator 3.0 can be used to search regular execution sequences in Ltss, by

checking Pdl basic modalities: a transition sequence starting at the initial state

and satisfying a regular formula � can be obtained either as an example for the

h�iT formula, or as a counterexample for the [�]F formula.

4.2 Experimental results

We illustrate below the behaviour of Evaluator 3.0 by means of a simple

benchmark example: the Alternating Bit Protocol (Abp for short) described in

Lotos. The protocol speci�cation (available in the Cadp release) contains four

parallel processes: a sender entity, a receiver entity, and two channels modelling

the communication of messages and acknowledgements, respectively. The sender

accepts messages from a local user through a gate Get and the receiver delivers

the messages to a remote user through a gate Put. Messages are represented by

natural numbers between 0 and n, where n is a parameter of the speci�cation.

We formulated and veri�ed several safety, liveness, and fairness properties of

the Abp (see Table 3). For each property, the table gives its informal meaning,

its corresponding regular alternation-free �-calculus formula, and its truth value

on the Lotos speci�cation. Action predicates Puti and Geti denote the commu-

nication of message i on gates Put and Get, respectively. Predicates Putany and

Getany (wildcards) denote the communication of arbitrary messages on gates

Put and Get. Every property containing an occurrence of Puti and/or Geti has

been checked for all values of i between 0 and n.

Table 3. Properties of the Alternating Bit Protocol

No. Property Formula Value

P1

Initially, a Put will be eventually

reached
�Y: hTiT ^ [:Putany] Y false

P2

Initially, a Put will be fairly

reached
[(:Putany)

�] hT�:PutanyiT true

P3

Initially, no Get can be reached

before the corresponding Put
[(:Puti)

�:Geti]F true

P4

Between two consecutive Put,

there is a corresponding Get
[T�:Puti:(:Geti)

�:Putany]F true

P5

Between two consecutive Get,

there is a corresponding Put
[T�:Getany :(:Puti)

�:Geti]F true

P6

After a Put, the corresponding

Get is eventually reachable
[T�:Puti]�Y: hTiT ^ [:Geti]Y false

P7

After a Put, the corresponding

Get is fairly reachable
[T�:Puti:(:Geti)

�] h(:Geti)
�:GetiiT true

83

Properties P1 and P6, which express the inevitable reachability of Put and

Get actions, are false because of the livelocks (� -loops) present in the Lotos

description. These two properties can be reformulated | as P2 and P7, respec-

tively | in order to state the inevitable reachability only over fair execution

sequences (i.e., by skipping loops).

We performed several experiments with Evaluator 3.0, by checking all

properties on the Abp speci�cation for di�erent values of n. For comparison,

we also used the Evaluator 2.0 model-checker developed at Verimag, which

accepts as input plain alternation-free �-calculus formulas and implements the

Fernandez-Mounier local boolean resolution algorithm [11]. All experiments have

been performed on a Sparc Ultra 1 machine with 256 Mbytes of memory.

The results are shown in Table 4. For each experiment, the table gives the

number of states of the Lts, the time (in minutes) required for the local model-

checking of each property, and the percentage of states explored by each tool.

The Solve algorithm performs uniformly better than the Fernandez-Mounier

algorithm, the time needed being at least 50% smaller and the percentage of

Lts states explored being always smaller or equal. For properties P1, P2, and

P6, which require to explore only a very small part of the Lts in order to decide

their truth value, Evaluator 3.0 stops almost instantaneously (less than a

second) in all cases, while Evaluator 2.0 takes up to one hour for n = 100.

Table 4. Local model-checking statistics

n = 20 n = 40 n = 60 n = 80 n = 100

No. jSj = 39 800 jSj = 153 200 jSj = 340 200 jSj = 600 800 jSj = 935 000

time expl.% time expl.% time expl.% time expl.% time expl.%

a 0
00

0:01 0
00

0:00 0
00

0:00 0
00

0:00 0
00

0:00
P1

b 20
00

93:1 1
0
42

00
96:4 4

0
49

00
97:6 10

0
04

00
98:2 18

0
23

00
98:5

a 0
00

0:01 0
00

0:00 0
00

0:00 0
00

0:00 0
00

0:00
P2

b 1
0
02

00
100 5

0
11

00
100 14

0
29

00
100 30

0
59

00
100 56

0
28

00
100

a 800 91:7 3500 95:7 102000 97:1 202800 97:8 400300 98:2
P3

b 1600 91:7 100900 95:7 205300 97:1 504900 97:8 905700 98:2

a 900 100 3700 100 102500 100 203500 100 401300 100
P4

b 1900 100 101400 100 300500 100 600500 100 1001700 100

a 1800 100 101500 100 205800 100 504800 100 1000700 100
P5

b 3800 100 300100 100 802000 100 1704000 100 3105300 100

a 0
00

0:02 0
00

0:00 0
00

0:00 0
00

0:00 0
00

0:00
P6

b 48
00

100 3
0
34

00
100 9

0
16

00
100 18

0
54

00
100 33

0
26

00
100

a 1000 100 3800 100 102600 100 203600 100 401500 100
P7

b 2000 100 101800 100 300600 100 600800 100 1002300 100

(a) Evaluator 3.0 (Solve algorithm)

(b) Evaluator 2.0 (Fernandez-Mounier algorithm)

84

5 Conclusion and future work

We presented an e�cient method for on-the-
y model-checking of regular

alternation-free �-calculus formulas over �nite labeled transition systems. The

method is based on a succinct reduction of the veri�cation problem to a boolean

equation system, which is solved using an e�cient local algorithm. Used in con-

junction with specialized diagnostic generation algorithms [24], the method also

allows to produce examples and counterexamples fully explaining the truth val-

ues of the formulas. The method has been implemented in the model-checker

Evaluator 3.0 that we developed as part of the Cadp (C�sar/Ald�ebaran)

protocol engineering toolset [9] using the Open/C�sar environment [13].

The input language of Evaluator 3.0 allows to de�ne reusable libraries

containing new temporal logic operators expressed in regular alternation-free

�-calculus. At the present time, we developed libraries encoding the operators of

Ctl [4], Actl [25], and a collection of generic property patterns proposed in [6]

intended to facilitate the temporal logic speci�cation activity.

Evaluator 3.0 has been successfully experimented on various speci�cations

of communication protocols and distributed applications (see for instance the

examples in the Cadp release). The diagnostic generation features and the pos-

sibility of de�ning separate libraries of temporal operators appeared to be ex-

tremely useful in practice. Moreover, a connection between Evaluator 3.0 and

the Orccad environment for robot controller design [26], including a graphical

interface for the property pattern system, is currently under development.

In the future, we plan to apply Evaluator 3.0 also for bisimulation/preorder

checking, by using the characteristic formula approach [16] that allows to com-

pare two labeled transition systems M1 and M2 by constructing a characteristic

formula of M1 and verifying it on M2. Also, the diagnostic generation features

could be useful in the framework of test generation based on veri�cation [10]. Us-

ing again the characteristic formula approach, test purposes could be described

as temporal formulas and the corresponding test cases would be obtained as

diagnostics for these formulas.

Finally, we plan to extend the logic of Evaluator 3.0 with data variables,

which allow to reason more naturally about systems described in value-passing

process algebras such as �Crl [15] and full Lotos [17]. This can be done by

translating data-based temporal logic formulas into parameterized boolean equa-

tion systems, which can be solved on-the-
y [23]. The implementation of these al-

gorithms within the Cadp toolset will require the extension of theOpen/C�sar

environment with data-handling facilities.

Acknowledgements

This work was partially supported by the Inria Cooperative Research Action

Tolere directed by Alain Girault. We are also grateful to Hubert Garavel for his

useful comments and for providing valuable assistance during the development

of the Evaluator 3.0 model-checker. Versions 1.0 and 2.0 of Evaluator [11]

were developed by Marius Bozga and Laurent Mounier from Verimag.

85

References

1. H. R. Andersen. Model checking and boolean graphs. Theoretical Computer Sci-

ence, 126(1):3{30, April 1994.
2. A. Arnold and P. Crubill�e. A linear algorithm to solve �xed-point equations on

transition systems. Information Processing Letters, 29:57{66, 1988.
3. H. Beki�c. De�nable operations in general algebras, and the theory of automata

and
owcharts. volume 177 of Lecture Notes in Computer Science, pages 30{55.

Springer Verlag, Berlin, 1984.
4. E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic Veri�cation of Finite-

State Concurrent Systems using Temporal Logic Speci�cations. ACM Transactions

on Programming Languages and Systems, 8(2):244{263, April 1986.
5. R. Cleaveland and B. Ste�en. A Linear-Time Model-Checking Algorithm for the

Alternation-Free Modal Mu-Calculus. In K. G. Larsen and A. Skou, editors, Pro-

ceedings of 3rd Workshop on Computer Aided Veri�cation CAV '91 (Aalborg, Den-

mark), volume 575 of Lecture Notes in Computer Science, pages 48{58, Berlin, July

1991. Springer Verlag.
6. Matthew B. Dwyer, George S. Avrunin, and James C. Corbett. Pat-

terns in Property Speci�cations for Finite-State Veri�cation. In Proceed-

ings of the 21st International Conference on Software Engineering ICSE'99

(Los Angeles, CA, USA), May 1999. Full information available at the URL

http://www.cis.ksu.edu/santos/spec-patterns.
7. E. A. Emerson and C-L. Lei. E�cient Model Checking in Fragments of the Propo-

sitional Mu-Calculus. In Proceedings of the 1st LICS, pages 267{278, 1986.
8. A. Fantechi, S. Gnesi, F. Mazzanti, R. Pugliese, and E. Tronci. A Symbolic Model

Checker for ACTL. In Proceedings of the International Workshop on Current

Trends in Applied Formal Methods FM-Trends'98 (Boppard, Germany), volume

1641 of Lecture Notes in Computer Science. Springer Verlag, October 1998.
9. Jean-Claude Fernandez, Hubert Garavel, Alain Kerbrat, Radu Mateescu, Laurent

Mounier, and Mihaela Sighireanu. CADP (C�SAR/ALDEBARAN Development

Package): A Protocol Validation and Veri�cation Toolbox. In Rajeev Alur and

Thomas A. Henzinger, editors, Proceedings of the 8th Conference on Computer-

Aided Veri�cation (New Brunswick, New Jersey, USA), volume 1102 of Lecture

Notes in Computer Science, pages 437{440. Springer Verlag, August 1996.
10. Jean-Claude Fernandez, Claude Jard, Thierry J�eron, Laurence Nedelka, and C�esar

Viho. Using On-the-Fly Veri�cation Techniques for the Generation of Test Suites.

In R. Alur and T. A. Henzinger, editors, Proceedings of the 8th International Con-

ference on Computer-Aided Veri�cation (Rutgers University, New Brunswick, NJ,

USA), volume 1102 of Lecture Notes in Computer Science, pages 348{359. Springer

Verlag, August 1996. Also available as INRIA Research Report RR-2987.
11. Jean-Claude Fernandez and Laurent Mounier. A Local Checking Algorithm for

Boolean Equation Systems. Rapport SPECTRE 95-07, VERIMAG, Grenoble,

March 1995.
12. M. J. Fischer and R. E. Ladner. Propositional Dynamic Logic of Regular Programs.

Journal of Computer and System Sciences, (18):194{211, 1979.
13. Hubert Garavel. OPEN/C�SAR: An Open Software Architecture for Veri�ca-

tion, Simulation, and Testing. In Bernhard Ste�en, editor, Proceedings of the First

International Conference on Tools and Algorithms for the Construction and Anal-

ysis of Systems TACAS'98 (Lisbon, Portugal), volume 1384 of Lecture Notes in

Computer Science, pages 68{84, Berlin, March 1998. Springer Verlag. Full version

available as INRIA Research Report RR-3352.

86

14. Hubert Garavel and Joseph Sifakis. Compilation and Veri�cation of LOTOS Spec-

i�cations. In L. Logrippo, R. L. Probert, and H. Ural, editors, Proceedings of the

10th International Symposium on Protocol Speci�cation, Testing and Veri�cation

(Ottawa, Canada), pages 379{394. IFIP, North-Holland, June 1990.
15. J-F. Groote and A. Ponse. The syntax and semantics of �CRL. Technical Report

CS-R9076, CWI, Amsterdam, December 1990.
16. A. Ingolfsdottir and B. Ste�en. Characteristic Formulae for Processes with Diver-

gence. Information and Computation, 110(1):149{163, June 1994.
17. ISO/IEC. LOTOS | A Formal Description Technique Based on the Temporal

Ordering of Observational Behaviour. International Standard 8807, International

Organization for Standardization | Information Processing Systems | Open Sys-

tems Interconnection, Gen�eve, September 1988.
18. D. Kozen. Results on the Propositional �-calculus. Theoretical Computer Science,

27:333{354, 1983.
19. K. G. Larsen. Proof Systems for Hennessy-Milner logic with Recursion. In Pro-

ceedings of the 13th Colloquium on Trees in Algebra and Programming CAAP '88

(Nancy, France), volume 299 of Lecture Notes in Computer Science, pages 215{230,

Berlin, March 1988. Springer Verlag.
20. X. Liu, C. R. Ramakrishnan, and S. A. Smolka. Fully Local and E�cient Eval-

uation of Alternating Fixed Points. In Bernhard Ste�en, editor, Proceedings of

1st International Conference on Tools and Algorithms for the Construction and

Analysis of Systems TACAS'98 (Lisbon, Portugal), volume 1384 of Lecture Notes

in Computer Science, pages 5{19, Berlin, March 1998. Springer Verlag.
21. Angelika Mader. Veri�cation of Modal Properties Using Boolean Equation Systems.

VERSAL 8, Bertz Verlag, Berlin, 1997.
22. Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems,

volume I (Speci�cation). Springer Verlag, 1992.
23. R. Mateescu. Local Model-Checking of an Alternation-Free Value-Based Modal

Mu-Calculus. In Annalisa Bossi, Agostino Cortesi, and Francesca Levi, editors,

Proceedings of the 2nd International Workshop on Veri�cation, Model Checking

and Abstract Interpretation VMCAI'98 (Pisa, Italy). University Ca' Foscari of

Venice, September 1998.
24. Radu Mateescu. E�cient Diagnostic Generation for Boolean Equation Systems.

In Proceedings of 6th International Conference on Tools and Algorithms for the

Construction and Analysis of Systems TACAS'2000 (Berlin, Germany), Lecture

Notes in Computer Science. Springer Verlag, March 2000.
25. R. De Nicola and F. W. Vaandrager. Action versus State based Logics for Transition

Systems. In Proceedings Ecole de Printemps on Semantics of Concurrency, volume

469 of Lecture Notes in Computer Science, pages 407{419. Springer Verlag, 1990.
26. D. Simon, B. Espiau, K. Kapellos, R. Pissard-Gibollet, and al. The Orccad Archi-

tecture. International Journal of Robotics Research, 17(4):338{359, April 1998.
27. R. Streett. Propositional Dynamic Logic of Looping and Converse. Information

and Control, (54):121{141, 1982.
28. E. Tronci. Hardware Veri�cation, Boolean Logic Programming, Boolean Functional

Programming. In Proceedings of the 10th Annual IEEE Symposium on Logic in

Computer Science LICS'95 (San Diego, California), pages 408{418. IEEE Com-

puter Society Press, June 1995.
29. B. Vergauwen and J. Lewi. E�cient Local Correctness Checking for Single and

Alternating Boolean Equation Systems. In S. Abiteboul and E. Shamir, editors,

Proceedings of the 21st ICALP (Vienna), volume 820 of Lecture Notes in Computer

Science, pages 304{315, Berlin, July 1994. Springer Verlag.

87

Veri�cation in the Codesign process by means of

Lotos based model-checking

Fabrice Baray and Pierre Wodey

ISIMA/LIMOS Laboratory,

Blaise Pascal University Clermont Ferrand II,

BP 10125 F63173 Aubi�ere, France,

fabrice.baray@isima.fr,pierre.wodey@isima.fr

Abstract. When considering the design of complex systems, the de-

signers use ever more synthesis tools transform formal speci�cations into

an implementation of the system. Such tools are based on a given de-

scription of the system. The description is based on a model of compu-

tation including behaviour and communication mechanisms. The model

of computation depends on the level of representation of the system and

varies from the speci�cation to the implementation. There exist generally

veri�cation tools associated with the speci�cation level but, for a more

implementation oriented model the veri�cation is often inexistent. But

according to the semantic transformations in the design process (mainly

at the communication level), this veri�cation is needed. As generally im-

plementation model of computation are composed of communicating �-

nite state machines with datapath (cfsmd) in which the communications

are performed by mean of \hardware" signals (physical connections), we

propose to allow model checking veri�cation on this model of compu-

tation. This paper presents the translation between the cfsmd and an

equivalent Lotos description in which the communication basic mech-

anism is the rendezvous. Based on process algebra a Lotos description

is easily translated into a labelled transition system by existing model

checkers such as the Cadp toolbox which we use in our experiment. We

apply this technique on the Cosmos Codesign environment in which the

deadlock free property has to be veri�ed at each step of transformation

in the design, the equivalence of communication semantics being not as-

sured by the transformations. The deadlock free property is described

by temporal logic formulas handled by the Xtl model checker included

in the Cadp toolbox.

Keywords. Veri�cation, Model-Checking, LOTOS, Communicating Fi-

nite State Machine, Codesign.

1 Introduction

For the design of complex systems the designers use ever more CAD tools working

at the system level [GM93,Wol94,GV95,ELLSV97]. Such tools o�er generally the

following capabilities :

{ formal or abstract speci�cation of the system,

88

{ veri�cation at the speci�cation level,

{ architecture exploration linked with performance analysis,

{ automatic synthesis of behaviour and communication,

{ automatic code generation,

{ simulation of the generated model.

Thus, such tools handle descriptions of the system based on model of com-

putation. A model is composed of a behavioural (control, action) model of indi-

vidual components and a communication model (communication mechanisms)

among components [LSVS98].

The abstraction level of the speci�cation formalism and its model of compu-

tation o�er the ability to perform easily formal veri�cation by a model checking

technique for instance.

During the design, starting from the speci�cation to the code generation,

the description evolves together with the model of computation. Actually, the

communication mechanisms at the speci�cation level are quiet di�erent from

those at the implementation level.

Furthermore, at the communication point of view, the generated system does

not implement a semantically equivalent mechanism as the one at the speci�-

cation level (which is too abstract for implementation). This induces that the

implemented system has not an equivalent global behaviour as the speci�ed one.

So, the properties veri�ed at the speci�cation level are no more guaranteed at

the implementation level.

Thus, there is a need to be able to verify properties by applying model check-

ing at the implementation level or at any level in the design process [WB99]. This

needs to be able to generate a veri�able model from the model of computation

at the implementation level. This is the purpose of our paper.

The considered model of computation is the communicating �nite state ma-

chines with datapath (cfsmd) where the only communication mechanism is the

\hardware" signal (connection net between components). This communication

mechanism is at a very low level of abstraction.

Translation
tool

Lotos
specification

XTL
formulas

Abstract
tree

Model M
with

Fig. 1. Tool architecture

From such a description our tool generates (Fig. 1) :

{ a semantically equivalent description in Lotos language [ISO88,GLO91] in

order to use model checking tools,

89

{ temporal logic formulas allowing to verify the deadlock free property which

is at this time the only one considered.

The choice of Lotos is motivated by :

{ Lotos is an ISO standard [ISO88],

{ Lotos is based on process algebra and induces clearly a Label Transition

System (Lts) needed for model checking,

{ several veri�cation tools accept Lotos as entry.

The proposed translation has been applied considering the Cadp toolbox

developed at INRIA [GS90,Gar89,FGM+91,Gar98], on one hand, and on the

Codesign environment Cosmos developed at TIMA Laboratory [IJ95,VCJ96],

on another hand.

The Cadp toolbox accepts Lotos as entry and performs model checking on

a generated Lts. It includes also logic formula checking described in the Xtl

language [SM98,Mat98].

The Cosmos tool is a good representative of a complete and realistic Code-

sign tool.

This paper is structured as follow :

{ introduction of an example used to illustrate the di�erent part of the paper

and also pointing out a deadlock introduction in the Cosmos tool,

{ formal presentation of the implementation oriented model of computation

including behaviour and communications (cfsmd),

{ the translation of the communications which are based on di�erent mecha-

nism in the implementation model and in the Lotos model (rendezvous),

{ the translation of the behaviour into Lotos,

{ Xtl formulas automatically generated for deadlock free checking,

{ the application on Cosmos Codesign tool.

2 Illustrating example

As example, we propose a system composed of three processes : two producers,

and one consumer. The consumer accepts data from the two producers, but in

some states, it limits to one speci�c producer. The structural representation of

this simple example is given in �gure 2.

PRODUCER PRODUCER

CONSUMER

Fig. 2. Structural representation

90

The behavioural representation of the consumer is given in �gure 3. The

system is described in SDL [SDL88] speci�cation language. Each component be-

haviour is described by a �nite state machine. At this high level of speci�cation,

the consumer has three possible states. In one state, it waits independently a

data from the two producers and in others states, it waits data only from one

producer. In the communication point of view, in SDL, the components have

gates and are communicating by asynchronous signal exchange through bu�er.

In the example, Prod1 Cons Value are Prod2 Cons Value two gates on which

consumer read data. When a component send a data, it is not blocked and the

data is placed in the bu�er. When a component received a data, it is blocked

until a data is in the bu�er.

process P_Cons

dcl t integer;
dcl f integer;
dcl temp integer;
dcl recu boolean;

Tests

t:=1,
f:=1

etat_vrai

etat_vrai

Prod1_Cons_Value
(recu)

f:=f+1

Tests

Prod2_Cons_Value
(recu)

t:=t+1

Tests

etat_faux_vrai

Prod1_Cons_Value
(recu)

f:=f+1

Tests

etat_faux_faux

Prod2_Cons_Value
(recu)

t:=t+1

Tests

Fig. 3. Consumer behavioural representation

After one step of synthesis, a new description in a di�erent model of compu-

tation is generated with a FIFO queue between the components (Fig. 4). There

are three di�erences between the two models :

{ The structural view grows with a new component and new connections be-

tween all components.
{ The producers and consumer behaviours change in terms of communication

protocol. The new communication principle implements hardware signals in

the computational model which becomes more concrete.
{ The initial and generated descriptions are semantically di�erent in term of

communication principle with the FIFO queue insertion.

3 Abstract model of communicating state machines

This section provides an abstract syntactic model de�nition of the considered

cfsmd. This model is presented by inference rules which are described with

91

PRODUCER PRODUCER

CONSUMER

FIFO

Fig. 4. Example after one step of communication synthesis

Backus-Naur syntax style. A system is a set of components communicating

through signals. The behaviours of these components are �nite state machines.

LetM = fM0;M1; : : : ;Mn�1g be a model composed of n = jMj components. A

signal e, used for the communication between components of the system, forms

a part of the global signal set E .

A signal communication is a non-blocking communication. Two components

connected with a hardware signal are communicating by using only two actions :

{ a new value can be written on the signal, which contains only one value at

a time ;

{ the current signal value can be read.

Hence to implement a more complicated communication protocol, many sig-

nals and many series of actions (read or write actions) are necessary. The blocking

communication is implemented with loop on a state until the expected value is

written by another component.

Each component Mi is a tuple (�; V; E; S; �; Æ) where :

{ � is the component name (identi�er) ;

{ V is a local variable de�nition list. A variable, denoted by v (identi�er), has

an initial value vi ;

{ E is a signal de�nition list. Each signal e 2 E is used for communication

between M and other components of the system. Furthermore, we have E �
E ;

{ S is the set of states (S = fs0; : : : ; sjSj�1g). Let s be a state, and s0 be the

initial state ;

{ � is the \state-action" function ;

{ Æ is the transition function.

With each variable v (respectively signal e) is associated its type t(v) (re-

spectively t(e)). The two functions (state-action and transition function) are

presented by an abstract syntax. The set of terminal symbols is composed of c

for a constant value, v for a variable identi�er and e for a signal identi�er. And

the set of nonterminal symbols is composed of ex for the expressions, ai for the

internal actions (associated to a state), a for the action associated to a transition

in the model, and Æa for the transition function de�nition.

92

{ Expressions (ex)

ex ::= c j v j e j uop ex0j ex0 bop ex1 (3.1)

The uop and bop are unary and binary operators.

{ Internal actions (ai)

ai ::= " j v := ex ; ai0 j if ex then ai0 else ai1 (3.2)

� " corresponds to no internal action ;

� ; is the sequential operator ;

� v := ex is the assignment of a variable v with the value ex ;

� if is a conditional statement.

We denote by Ai the set of all internal actions. The � function of the machine

M is de�ned by � : S ! Ai.
{ Actions associated to transitions (a)

a ::= " j a0 ; a1 j e := ex j if ex then a0 [else a1] (3.3)

� in action associated to transitions, assignment operation := is only ap-

plied to signals ;

� in the if statement, the expression ex is a boolean expression.

{ Transition expressions (Æa)

Æa ::= (s; a) j if ex then Æ
0

a
[else Æ

1

a
] (3.4)

We denote by �a the set of all transition expressions. The function Æ is

de�ned by Æ : S ! �a.

The �gure 5 shows a part of consumer behaviour presented in �gure 3 with

the �nite state machine model.

�(s0)

�(s2)

�(s1)

Æa(s2)
ai2

ai1

ai0

Æa(s0)

Æa(s1)

s2

s1

s0

(s1; a)

(s1; a)
if (cond)

then(s1; a1)

else(s2; a2)

Fig. 5. Statemachine example on behaviour example

93

As example, one producer component (producer1) is de�ned in our syntac-

tic model by M = (producer1; Vp1; Ep1; Sp1; �p1; Æp1) with Vp1 = fg, Ep1 =
fbus req; wr req; wr ack; datag and Sp1 = fs0; s1; s2; s3; s4; s5g. In order to il-
lustrate clearly the translation procedure, only two states s1 and s2 are detailed.
For these two states, the functions �p1 and Æp1 are de�ned in box example 1.

�p1(s1) = ai1 with ai1 = "

�p1(s2) = ai2 with ai2 = "

Æp1(s1) = Æa1 with

�
Æa1 = (s2; a1)
and a1 = bus req := true

Æp1(s2) = Æa2 with

8<
:

Æa2 = if (wr ack = true) then Æa0

2
else Æa0

2b

and Æa0

2
= (s2; ")

and Æa0

2b
= (s3; data := 0;wr req := true)

Example 1. cfsmd example

4 Translation rules

Lotos is a high level speci�cation language based on algebraic models CSP
(Communicating Sequential Processes) and CCS (Calculus of Communicating
Systems). A Lotos model of a system is composed of interconnected pro-
cesses via gates. Each process communicates through gates with rendezvous
communication protocol. For instance, if we consider a gate G, a general ren-
dezvous in Lotos is written by G O0 : : : On where O0 : : : On are o�ers de�ned
by O ::= !V j ?X0; : : :Xn : S. One o�er like !V is the V value emission on gate
G, and one o�er like ?X0; : : : Xn : S is n + 1 receptions of values of type S on
gate G.

The translated model of cfsmd is composed of interconnected processes.
With each state machine is associated one Lotos process. This section presents :

{ the structure of the Lotos generated model and the communication princi-
ples between these processes ;

{ the translation of the internal behaviour of cfsmd into the Lotos process

behaviour ;

4.1 Structure and communication principles

In order to reproduce the semantic of hardware signal in our communicating
�nite state machine, one Lotos process named signal is introduced between the
Lotos processes for each hardware signal. In �gure 6, the structural view of the
generated Lotos model of our example is presented.

94

Signal

Signal

PRODUCER

Signal

Signal

Signal

Signal

FIFO

PRODUCER

CONSUMER

Fig. 6. Structural view of Lotos generated model

The behaviour of the signal process, which is de�ned in a Lotos library,

is shown below in the example 2. It reproduces the semantic of the hardware

signal communication. A signal is a physical link which take only one value at a

time. A component can write a new value, or read the current value. The Lotos

process is based on a choice statement ([]). In the read signal action the current

value is one o�er of the synchronization. In the write signal action, the new

value is received and memorized. Hence this is a description of a non-blocking

communication with the rendezvous communication principle.

process signal[s](value : signaltype) : noexit :=

(s!cread!value ; signal[s](value))

[]

(s!cwrite?v : signaltype ; signal[s](v))

endproc (* signal *)

Example 2. Lotos description of a signal process

4.2 Translation of internal behaviour of Cfsmd

Each cfsmd is translated into one process. The state variable of the state ma-

chine is de�ned as a Lotos process parameter. The transition between two states

is reproduced with a �nal recursive call of the process, with the new state value

in the state parameter.

The translation of the state machine behaviour is described by a set of infer-

ence rules. Only a commented subset of rules is presented in this paper. However,

this section presents some signi�cant rules, in order to give a precise idea of our

translation method1. After three basic de�nitions, some notations and environ-

ments are de�ned. Then the global de�nition of the inference rules is described

for di�erent syntactic parts of the model.

4.2.1 Basic de�nitions

1 It is possible to contact the authors to obtain the global set of rules

95

De�nition 1 (Inference rule). Let conditions

a!b
be a rule where conditions =

c1; c2; : : : ; cn must be satis�ed to validate the transformation rule of a into b.

ut

De�nition 2 (Partially de�ned functions). Let D1 and D2 be two discrete

domains. We consider the function f de�ned on these domains :

f : D1 ! D2

We de�ne :

{ ? the unde�ned value. x 2 D1 ; f(x) =? means that f is unde�ned for the

value x ;

{ let x 2 D1 and y 2 D2, we denote by [y=x] the function f de�ned only for

the value x and such that [y=x](x) = y :

8xi 2 D1 [y=x](xi) =

�
y if xi = x

? otherwise
ut

De�nition 3 (function increase). Let f and g be two functions de�ned on

domains D1 and D2. We denote by f / g the function de�ned by :

f / g : D1 ! D2

8x 2 D1 (f / g)(x) =

�
g(x) if g(x) 6=?

f(x) otherwise

ut

4.2.2 Environment de�nitions

Let LC be a Lotos construction, and LC =? the empty Lotos construc-

tion. The set of all Lotos constructions which can be written is denoted by LC.

Let Id be the set of all identi�ers. Two environments are de�ned :

{ � = (�; ids; E; V) is a tuple constructed for each component of the system.

Let � be the component name, ids the state variable name of the component

behaviour, E and V the signal and variable sets. The Lotos description of

one component consists of one recursive process, with parameters like the

state variable name, component variables and gates for the signal communi-

cation. The environment � is used in order to translate the recursive call of

this Lotos process ;

{ � is a second environment used to translate the signals contained in the

expressions. The function � associates with each signal a local variable name

to contain the signal value :

� : Id! Id

e ! v

96

Let Env� be the set of all possible environments �. In order to translate

the signal communications, we de�ne the function L used to generate a Lotos

construct for all signals used in �.

L : Env� ! LC

� ! LC

with 8ei such that �(ei) = vi 6=? LCi = ei!cread?vi : ti
and LC = LC0;LC1; : : :

(4.1)

4.2.3 Global de�nition of transformation rules

Five rule types are necessary for the translation. They correspond to the

expressions translation, internal actions translation, the action translation, the

transition translation and �nally one component and the whole model transla-

tion.

{ let � ` ex �! h�0; LCi be the rule type for the expression ex translation.

In environment � the expression ex is translated into Lotos construction

LC and returns a micro environment �0 which contains the variable names

associated to signals used in the expression ;

{ let (�; Æa; �) ` ai �! h�0; LCi be the rule type for the internal action ai

translation. In the couple of environment �, �, and considering the Æa tran-

sition expression, the internal action ai is translated into Lotos construction

LC and returns the micro environment �0 ;

{ let � ` a �! h�0; LCi be the rule type for the action a translation. In envi-

ronment �, action a is translated into Lotos construction LC and returns

the micro environment �0 ;

{ let (�; �) ` Æa �! h�0; LCi be the rule type for the Æa transition translation.

In the couple of environment �, �, the transition expression Æa is translated

into the Lotos expression LC and returns a micro environment �0 ;

{ let M �! LC and M �! LC be the rules for component and model

translation.

4.2.4 Inference rules for the translation

Signal identi�er in expressions ex : according to the environment �, the

translation of a signal identi�er e is de�ned with the help of two rules. If the

signal has been used before, we just have to reuse its associated local variable.

Else we assume that the function \newid" gives a new variable identi�er for the

signal e, and a new environment is constructed.

�(e) = ve

� ` e �! h?; vei
(4:2a)

�(e) =? ; ve = newid()

� ` e �! h[ve=e]; vei
(4:2b)

97

Binary operator in expressions : assuming that bop operator is declared

for Lotos language, a constructed environment for the binary operator in ex-

pressions with the addition of environments is de�ned as follows :

� ` ex0 �! h�0; LC0i;

� / �0 ` ex1 �! h�00; LC1i

� ` ex0 bop ex1 �! h�0 / �00; LC0 bop LC1i
(4.3)

Variable assignment for internal actions ai must be translated with

the let Lotos operator such that :

� ` ex �! h�0; LC1i;

(�; Æa; � / �0
) ` ai0 �! h�00; LC2i

(�; Æa; �) ` v := ex ; ai0 �! h�0 / �00; (let v : t = LC1 in (LC2))i
(4.4)

Signal assignment for actions a are translated into a Lotos communi-

cation on gate denoted by e. This communication is pre�xed by the word cwrite

de�ned in the Lotos model. It means that this is an assignment on the signal.

The Lotos communication is a rendezvous communication. In order to repro-

duce the signal semantic communication, this rendezvous is not implemented

directly between the signal interconnected components in the model, but with a

\signal Lotos component" (see rule 4.9) :

� ` ex �! h�0; LCi

� ` e := ex �! h�0; e!cwrite!(LC)i
(4.5)

For instance, in example 1, the a1 signal assignment on bus req signal in Æa1
action is translated with this rules and gives the Lotos expression :

bus req !cwrite!true.

Conditional statement for transition function Æa : three rules are re-

quired to translate the conditional statement. The �rst one has a restrictive

condition such that it is applied when no else condition is present, and when

the condition is dependent only on one signal. Then a Lotos communication

is derived with a predicate corresponding to the condition. The second rule is

applied when the condition depends on more than one signal. In this case, it is

not possible to create a Lotos communication directly, thus a guarded Lotos

statement is used. The third rule is like the second one, with a else statement and

the use of the L function de�ned in 4.1 to generate the Lotos synchronization

operator :

� ` ex �! h�00; LC1i ; �
00
= [v=s];

(�; � / �00
) ` Æ0

a
�! h�0; LC0i

(�; �) ` if ex then Æ0
a
�! h�0; s!cread?v : � [LC1];LC0i

(4:6a)

� ` ex �! h�00; LC1i ; �
00 6= [v=s];

(�; � / �00
) ` Æ0

a
�! h�0; LC0i

(�; �) ` if ex then Æ0
a
�! h�0 / �00; ([LC1] ! (LC0))i

(4:6b)

98

� ` ex �! h�000; LC2i;

(�; � / �000) ` Æ0
a
�! h�0; LC0i ; LC

0

0
= L(�0);

(�; � / �000) ` Æ1
a
�! h�00; LC1i ; LC

0

1
= L(�00)

(�; �) ` if ex then Æ0
a
else Æ1

a
�!

�
�000;

[LC2] ! (LC 0

0
; LC0)

[] [not(LC2)] ! (LC 0

1
; LC1))

� (4:6c)

For instance, the rule 4:6c is used to translate the condition statement of Æa2
in the model example 1. In the Lotos generated expression presented below,
the value of wr ack is saved in a Lotos variable v de�ned with the 4:2b rule :

([v] ! producer1[: : :](s2)
[] [not(v)] ! (LC 0

1
; producer1[: : :](s3)))

Next state, action in transition function Æa : this rule generates a
recursive call for the process �, with the new values for all variables and the
next state of the component :

� ` a �! h�0; LCi ; � = (�; ids; E; V);
E = fe0; : : : ; ejEj�1g V = fv0; : : : ; vjV j�1g

(�; �) ` (s; a) �! h�0; LC;�[e0; : : : ; ejEj�1](ids; v0; : : : ; vjV j�1)i
(4.7)

For instance, this rule is used to generate the recursive call of Lotos process
in Æa1 , Æa0

2
and Æa0

2b
actions in the model example 1.

Component M : a Lotos process construction is de�ned for one compo-
nent. The process gates are derived from the signal set E such that one signal
corresponds to one gate. A variable in the component implies a parameter in the
Lotos process. For each state of component M , the following Lotos construct
is used in a choice statement based on the sate variable value of the process �. :

V �! LC1 ; E �! LC2;

8si 2 S aii = �(si) ; Æ
i

a
= Æ(si) ; ((�tr; ids; E; V); Æi

a
;?) ` aii �! h�i; LC

0
i
i

8�i LC
00
i
= L(�i)

(�; V; E; S; �; Æ) �!

process � [LC2](ids : state; LC1) : noexit :=
[ids eq s0] ! LC 00

0
; LC 0

0

: : :

[] [ids eq sjSj�1] ! LC 00
jSj�1

; LC 0
jSj�1

endproc

(4.8)

This rule can be used to generate the whole process statement, with the gate
parameters derived from Ep1, the parameters obtained from the state variable
and Vp1, and with all the Lotos constructions for all the states in Sp1. The
global Lotos statement for this component is :

99

process producer1 [bus req; wr req; wr ack; data]

(ids : state) : noexit :=

[ids eq s0]! : : :

[] [ids eq s1] ! (bus req!cwrite!true ;

producer1[bus req; : : : ; data](s2))

[] [ids eq s2] ! (wr ack!cread?v : bool ;

([v] ! producer1[: : :](s2)

[] [not(v)] ! (data!cwrite!0 of int ; wr req!cwrite!true ;

producer1[: : :](s3))))

: : :

[] [ids eq s5]! : : :

endproc

Example 3. Lotos description of producer process

System M : whole the system is described in a Lotos speci�cation and a

library (signallib) which contains signal process de�nition. The speci�cation is

made up of all the instantiations of the processes associated to the components

and a Lotos synchronization to the signal process instantiation. initvalue is a

function which associates an initial value at each variable.

M = fMij0 � i < n = jMjg;

8i 2 [0 : : : n� 1]

8>><
>>:

Mi = (�i; Vi; Ei; Si; �i; Æi);

Mi �! LCi;

Vi = fvi
j
g 8j 2 [0 : : : jVij � 1] initvalue(vi

j
) = vi

i

j
;

Ei = fei
0
; : : : ; e

i

jEij�1
g

E = [
i=jEj�1
i=0

Ei ; E = fe0; : : : ; ejEj�1g

M �!

speci�cation �s

�
e0; : : : ; ejEj�1

�
: noexit

library signallib endlib

behaviour

(�0

h
e
0

0
; : : : ; e

0

jE0j�1

i
(s0
0
; vi

0

0
; : : : ; vi

0

jV0j�1
) jjj

: : :

�n�1

h
e
n�1
0

; : : : ; e
n�1
jEn�1j�1

i
(sn�1
0

; vi
n�1
0

; : : : ; vi
n�1
jVn�1j�1

))

j[e0; : : : ; ejEj�1]j

(signal[e0](Z) jjj

: : :

signal[ejEj](Z))

where

LC0 LC1 : : : LCn�1

endspec

(4.9)

The simple system shown in �gure 4 has been translated in Lotos by apply-

ing this rule. The generated Lotos description has about 400 lines. It contains

100

some processes : two producers, one consumer, the FIFO queue and some signals

components. The structural view of the Lotos description is given in �gure 6.

A part of the global Lotos statement for this system is in example 4

speci�cation ProdCons[rd req; rd ack; bus req1; wr req1; wr ack1;
bus req2; wr req2; wr ack2; data] : noexit

: : :

behaviour

(
FIFO2[rd req; rd ack; bus req1; wr req1; wr ack1;

bus req2; wr req2; wr ack2; data](q0; nil; 2ofint) jjj
P1[bus req1; wr req1; wr ack1; data](q0) jjj
P2[bus req2; wr req2; wr ack2; data](q0) jjj
C[rd req; rd ack; data](q0; 0ofint; 0ofint; 0ofint)

)
j [rd req; rd ack; bus req1; wr req1; wr ack1;

bus req2; wr req2; wr ack2; data] j
(

signal[rd req](zvalue) jjj
signal[rd ack](zvalue) jjj
signal[bus req1](zvalue) jjj
signal[wr req1](zvalue) jjj
signal[wr ack1](zvalue) jjj
signal[bus req2](zvalue) jjj
signal[wr req2](zvalue) jjj
signal[wr ack2](zvalue) jjj
signal int[data](0ofint)

)
where

: : :

endspec

Example 4. Lotos description of producer process

5 Deadlock free property veri�cation

The Cadp toolbox is used for deadlock free property veri�cation. According to

the operational semantics of Lotos, the Lotos system speci�cation is trans-

lated into a (possibly in�nite) Labelled Transition System (Lts for short), which

encodes all its possible execution sequences [SM98]. Only �nite Lts can be gen-

erated with the Cadp tool. An Lts is formally de�ned by :

De�nition 4 (LTS). Let L = hQ; A; T; qiniti be a Lts such that :

101

{ Q is the set of states of the program ;

{ A is a set of actions performed by the program. An action a 2 A is a tuple

G V1; : : : Vn where G is a gate, and V1; : : : Vn are the values exchanged (i.e.,

sent or received) during the rendezvous at G ;
{ T � Q�A�Q is the transition relation. A transition hq1; a; q2i 2 T (written

also q1
a
�! q2) means that the program can move from state q1 to state q2 by

performing action a;

{ qinit 2 Q is the initial state of the program.

ut

For each state q 2 Q, we denote by Pathd(q) the set of all distinct paths

q(= q0)
a1�! q1

a1�! q2 : : : issued from q (such that 8i; j qi 6= qj).

Typically, when an expert designs a Lotos speci�cation, the graph is an-

alyzed by searching deadlocks which appear as states q in the Lts such that

@hq; a; q0i. No more communication can be done in the whole system if the be-

haviour reaches this sink state q. This technique is eÆcient when two conditions

are satis�ed :

{ the speci�cation is written assuming this search of deadlocks. In other words,

it contains \true" blocking communications with the rendezvous semantics ;
{ the deadlocks found are global in the system, meaning that no more com-

munication can be done in the whole system. With this technique, local

deadlocks in some processes are not detected. In a state, if one or more pro-

cesses never have communication, it is possible that they are waiting for

speci�c signal values. However other processes in the system continue their

communications. This is our local deadlock de�nition.

In our Lts, a transition corresponds to one signal utilization. A signal uti-

lization can be a reading (labelled cread) or writing (labelled cwrite) task. The

signal processes introduced in the translated speci�cation are designed in order

to respect the signal semantics. Hence, sink states do not appear in our Lts.

Furthermore, local deadlocks detection is an important issue in the context of

systems derived from Codesign design.

Considering these aspects, correctness properties can be expressed with for-

mulas inspired from Actl temporal logic, and veri�ed on the Lts model using

the Xtl model-checker [Mat98]. First, some notations (described in [SM98]) are

presented, and then our deadlock correctness property are discussed.

5.1 Preliminary notations

De�nition 5 extracted from [SM98] is presented for comprehension.

De�nition 5 (Action Formulas). Let � be an action formula as speci�ed by

the following context-free grammar :

� ::= true

j fG V1; : : : Vng
j :�
j � ^ �

0

102

where fGV1; : : : Vng denotes an \action pattern", G a gate and all the values

Vi match with the corresponding values exchanged when the action is performed.

An action formula � is interpreted over an action a 2 A. � satisfaction by

an action a of the model (Lts) L, written with a j=L � (or simply a j= � when

the model L is understood), is de�ned by :

a j= true always;

a j= fG V1; : : : Vng i� a = G V1; : : : Vn;

a j= :� i� a 6j= �;

a j= � ^ �0
i� a j= � and a j= �0:

ut

The satisfaction of a formula ' by a state q 2 Q of a Lts L is written with

q j=L ' (or simply q j= ' when the model L is understood).

5.2 The deadlock free property

In order to clearly present our veri�cation, we introduce some formulas and

their semantics. First, consider a process which is waiting for a speci�c value

of a signal. The signal is read until it takes the expected value. This classical

behaviour induces in the generated Lts some state like q in �gure 7.

q
signal!cread?v:t

Fig. 7. One loop on a state

The ' formula EB� is de�ned by the equation 5.1. It detects the loop on a

state, with a speci�c label �. The global deadlocks in our system do not appear

as sink states, the AB� formula (equation 5.2) can be used to characterize a

global deadlock on a state by evaluating q j= ABtrue. This formula is almost the

same as EB�, with a forall quanti�er.

q j= EB� i� 9q
a

�! q0
such that q0

= q and a j= � (5.1)

q j= AB� i� 8q
a

�! q0; q0
= q and a j= � (5.2)

The Xtl implementation of the EB� formula is given as follows :

103

def EB(LS:labelset) : stateset =

f S : state where

exists T : edge among out(S) in

((target(T)=S) and (label(T) among LS))

end exists

g
end def

In order to detect local deadlocks, we de�ne a ' formula F� by the equation

5.3. A state q satis�es F� if and only if all the reachable states from q satisfy EB�.

The second condition in 5.3 veri�es that the transitions between two distinct

reachable states have actions not satisfying �. This is not useful in our translated

model because this is a deterministic model, and this condition is always true

for a state q of a deterministic model which satisfy the �rst part of F�. Figure

8 illustrates the equation 5.3

q j= F� i� 8P = (q
a0�! q1

a1�! : : :
ak�1

���! qk) 2 Pathd(q);

8i 2 [0; k] qi j= EB� and 8i 2 [0; k � 1] ai 6j= �
(5.3)

Hence, if @q 2 Q such that 9� 2 A such that q j= F�, then the model does

not contain any local deadlock.

q’

q’

q

Transitions sequence

�

�

�

�

�

Fig. 8. Temporal formula illustration

Let function succset be a transitive closure of the successor relation, which

can be achieved with a least �xed point function. Assuming that we have imple-

mented the succset function in Xtl, the ' formula F� is de�ned with :

def F(LS:labelset) : stateset =

let Bs : stateset = EB(LS) in

f S : state among Bs where Bs includes succset(S) g
end let

end def

This formula must be evaluated with all labels contained in A. These labels

can be automatically obtained with the analysis of the communication in the �rst

model. In the translation, only the labels used in theXtl formulas are generated.

The veri�cation with this technique is thus a push button like function.

104

6 Application on COSMOS Codesign tool

6.1 COSMOS presentation

This work has been applied in the scope of the Codesign domain. In our study

we consider the Cosmos tool developed at TIMA laboratory [IJ95]. The main

characteristics of the Cosmos method and tool are the following :

{ the speci�cation of the system is independent of the implementation technol-

ogy of the di�erent parts of the system. This high level of abstraction descrip-

tion is written in SDL (Speci�cation and Description Language [SDL88]) ;

{ the use of an intermediate format Solar, describing the system and the

communication channels among processes (cfsmd like);

{ the implementation of processes in hardware or software and the choices

of communications implementation (for instance a choice of a communica-

tion protocol between two or more components) are performed by several

iterations of re�nement steps decided manually by the designer ;

{ automatic generation of the C-VHDL virtual prototype from the completely

re�ned Solar description of the system ;

{ cosimulation environment of the virtual prototype.

T0

T1

T

(LOTOS)

(LOTOS)

COSMOS TOOLS
CO-DESIGN DOMAIN VERIFICATION DOMAIN

TOOLS

AUTOMATIC STEP

USER-CONTROLLED STEP

USER-CONTROLLED STEP

AUTOMATIC STEP

SYSTEM SPECIFICATION
(SDL)

n-1

INTERMEDIATE MODEL n
(SOLAR)

(SOLAR)
INTERMEDIATE MODEL 1

VIRTUAL PROTOTYPE
VHDL/C

VERIFIABLE MODEL

VERIFIABLE MODEL

VERIFICATION

AUTOMATIC TRANSLATION

Fig. 9. Linking Codesign and Veri�cation Domains

The design
ow of the Cosmos tool is a sequence of re�nement steps. At each

step, a decision is taken by the designer, and the tool automatically integrates

this decision by transforming the Solar description of the system. Typically

this decision can be a communication synthesis among two components.

In such tools, the veri�cation process is performed either by formal veri�ca-

tion on the entry speci�cation level or by cosimulation at the virtual prototype

105

level [VCR+95,LNV+97]. But, as the re�nement is decided by the designer, and

as the choice concerns communication synthesis, deadlocks can be introduced

inadvertently in the system at each re�nement step. The detection of such dead-

locks is performed at the virtual prototype level. However this task is diÆcult

and uncertain because :

{ deadlocks generally induce active loops in the generated model,
{ the link between the generated code and the initial description is not easy

to establish,
{ there can be several errors in the design at the virtual prototype level, yield-

ing several decisions to modify, but these are diÆcult to identify,
{ the virtual prototype describes the system at a low level of abstraction, the

description is thus complex.

Our work on the veri�cation of cfsmd can be used to verify the Solar

description at each step of Codesign (Fig. 9). Our tool architecture is completed

with a front end analyzer of Solar description like shown in �gure 10.

Translation
tool

Lotos
specification

XTL
formulas

file
Solar

Abstract
tree

Model M
with

and
Abstract tree
Generation

Analysis
Syntactic

Fig. 10. Tool architecture

6.2 Example results

Considering the consumer behaviour and the protocol communication choiced,

a deadlock appears in the system. This occurs when a non expected data is in

front of the FIFO queue. Table 5 presents the results of the veri�cation tools on

the example. The graph generated by the Cadp tool is minimized modulo strong

bisimulation. The time to compute the graph is calculated on a SUN ULTRA 30.

The last column presents the number of states satisfying the Xtl formula F�,

with � = (wr ack2!cread!false). The signal wr ack2 is an acknowledgement for

the communication between the FIFO queue and the second producer. The F�
property veri�es the correctness of the protocol in all execution cases.

On the reduced graphs, the Xtl ABtrue property gives us one global dead-

lock. But, if the system is considered in an environment of other communications,

this type of sink state disappears. In fact, no more communication is done be-

tween the producers, consumer and FIFO queue, but communications are made

between the environment processes. This is a local deadlock. Hence the Xtl

F� formula is performed on the Lotos program to successfully �nd this local

deadlock.

106

Description Reduced

graph

Time to

compute

Number of

states

satisfying

Batrue

Number of

states

satisfying F�

states trans.

FIFO size 1 322 1288 07' 1 97

FIFO size 2 652 2608 13' 1 179

FIFO size 2 with

environment

1304 6520 27' 0 358

Example 5. CADP graph generation - Xtl veri�cation

7 Conclusion

In this paper, we have proposed an approach of veri�cation of communicating �-

nite state machines with datapath (cfsmd). This abstract model of computation

with a communication principle based on hardware signal has been translated

into an equivalent Lotos description in which the communication basic mech-

anism is the rendezvous. Model checking veri�cation techniques are applied on

the system in order to verify deadlock property.

Then, by using this translation, we propose an approach to link the Codesign

tool Cosmos with the Cadp validation/veri�cation toolbox and the Xtlmodel-

checker. Cosmos is based on re�nements of the system and veri�cation is needed

when the designer chooses the implementation of communications. We intend to

implement the veri�cation as a push button function of the system. The results

show the usefulness and eÆciency of our deadlock veri�cation with temporal

logical formulas.

In order to apply this work with other tools, the extension of the cfsmd

model to di�erent models of communication is to study. Future work will focus

on some abstractions of the communications. The goal is to study the in
u-

ences of abstractions on the size of the generated LTS, and on the deadlocks

search. Furthermore, we will work on larger case studies, in order to examine

the complexity limits of this approach.

The study of other kind of properties which could be veri�ed on such system

will lead to a more powerful tool. Perhaps it will interesting to generate Xtl

formula which depend on the step of communication synthesis.

A other aspect is the study of veri�cation based on IF language currently

developed at VERIMAG laboratory [BFG+99]. This language integrates prin-

ciples of communication which are di�erent from the Lotos rendezvous, and

it is introduced in a complete open validation environment. Then we will work

on the feasibility study of the system modeling with IF, and on the comparison

between the veri�cations on a Lotos generated model and the veri�cations on

a generated IF model.

107

References

[BFG+99] M. Bozga, J.C. Fernandez, L. Ghirvu, S. Graf, J.P. Krimm, L. Mounier, and
J. Sifakis. If: An Intermediate Representation for SDL and its Applications.
In Proceedings of SDL-FORUM'99, Montreal, Canada, June 1999.

[ELLSV97] S. Edwards, L. Lavagno, E.A. Lee, and A. Sangiovanni-Vincentelli. Design
of Embedded Systems: Formal Models, Validation, and Synthesis. In Gio-
vanni De Micheli, editor, Proceedings of the IEEE, Special issue on Hard-

ware/Software Co-design, volume 85, pages 366{390. The institute of elec-
trical and electronics engineers, inc., March 1997.

[FGM+91] Jean-Claude Fernandez, Hubert Garavel, Laurent Mounier, Anne Rasse,
Carlos Rodriguez, and Joseph Sifakis. Une bô�te �a outils pour la v�eri�cation
de programme LOTOS. In Actes du Colloque Francophone pour l'Ing�enierie

des Protocoles, pages 479{500, September 1991.
[Gar89] H. Garavel. Compilation et v�eri�cation de programmes LOTOS. PhD the-

sis, Universit�e Joseph Fourier, Grenoble, 1989.
[Gar98] Hubert Garavel. OPEN/CAESAR : An Open Software Architecture for

Veri�cation, Simulation and Testing. In TACAS'98, Tools and Algorithms

for the Construction and Analysis of Systems, Lecture Notes in Computer

Science, 1998.
[GLO91] S. Gallouzi, L. Logrippo, and A. Obaid. Le LOTOS, Th�eorie, Outils, Ap-

plications. In O. Ra�q, editor, CFIP'91 - Ing�enierie des Protocoles, pages
385{404. Hermes, 1991.

[GM93] R.K. Gupta and G. de Micheli. Hardware-Software Cosynthesis for Digital
Systems. IEEE Design & Test of Computers, 10(3):29{41, September 1993.

[GS90] Hubert Garavel and Joseph Sifakis. Compilation and Veri�cation of LO-
TOS Speci�cations. In R.L. Probert L. Logrippo and H. Ural, editors, 10th
International Symposium on Protocol Speci�cation, Testing and Veri�ca-

tion, pages 379{394. IFIP, North-Holland, June 1990.
[GV95] D.D. Gajski and F. Vahid. Speci�cation and Design of Embedded

Hardware-Software Systems. IEEE Design & Test of Computers, 1995.
[IJ95] T.B. Ismail and A.A. Jerraya. Synthesis Steps and Design Models for

Codesign. IEEE Computer, February 1995.
[ISO88] ISO-8807. Lotos, a formal description technic based on the temporal or-

dering of observational behaviour. 1988.
[LNV+97] C. Liem, F. Nacabal, C. Valderrama, P. Paulin, and A. Jerraya. Co-

simulation and Software Compilation Methodologies for the System-on-
a-Chip in Multimedia. IEEE Design & Test of Computers, 1997. special
issue on "Design, Test & ECAD in Europe".

[LSVS98] Luciano Lavagno, Alberto Sangiovanni-Vincentelli, and Ellen Sentovich.
Models of computation for embedded system design. In A.A. Jerraya and
J. Mermet, editors, System-Level Synthesis, chapter Models for system-level
synthesis, pages 45{102. Kluwer Academic Publishers, 1998.

[Mat98] Radu Mateescu. V�eri�cation des propri�et�es temporelles des programmes

parall�eles. PhD thesis, Institut National Politecnique de Grenoble, 1998.
[SDL88] CCITT. Recommendation Z.100: Speci�cation and Description Language,

volume X.1-X.5, 1988.
[SM98] M. Sighireanu and R. Mateescu. Veri�cation of the Link Layer Protocol

of the IEEE-1394 Serial Bus (\FireWire"): an Experiment with E-LOTOS.
Springer International Journal on Software Tools for Technology Transfer

(STTT), 2(1), 1998.

108

[VCJ96] C.A. Valderrama, A. Changuel, and A.A. Jerraya. Virtual Prototyping
For Modular And Flexible Hardware-Software Systems. Journal of Design
Automation for Embedded Systems, 1996.

[VCR+95] C.A. Valderrama, A. Changuel, P.V. Raghavan, M. Abid, T. Ben Ismail,
and A.A. Jerraya. A Uni�ed Model for Co-simulation and Co-synhesis
of Mixed Hardware/Software Systems. In The European Design and Test

Conference ED& TC'95, Paris (France), March 1995.
[WB99] Pierre Wodey and Fabrice Baray. Linking Codesign and veri�cation by

mean of E-LOTOS FDT. In Bob Werner, editor, Euromicro 99, Digital

Systems Design, volume 1. IEEE Computer Society, September 1999.
[Wol94] W.H. Wolf. Hardware-Software Co-Design of Embedded Systems. Proceed-

ings of the IEEE, 82(7), July 1994.

109

Veri�cation of Erlang Programs:

Factoring out the Side-e�ect-free Fragment�

Dilian Gurov Gennady Chugunov

Swedish Institute of Computer Science,

Box 1263, SE-164 29 Kista, Sweden,

dilianjgena@sics.se

Abstract

Erlang is a functional programming language developed at Ericsson

for writing economical and yet powerful and e�cient telecommunication

applications. Correctness is of major importance in such applications,

and since they usually exhibit a high degree of concurrency, testing is of-

ten not su�cient. Veri�cation, namely formally proving that a system is

correct, is becoming a more and more widespread practice. Due to the

complexity of Erlang, there is no general method for veri�cation of arbi-

trary Erlang programs which is e�ective and at the same time leads to

economic proofs. However, one can do much better in specialised cases

which are well-understood. A main direction of research is the identi�ca-

tion of fragments of Erlang for which e�cient veri�cation methods exist.

One such fragment is the side-e�ect-free one, in which an Erlang expres-

sion is evaluated purely for its value, and is not a�ecting the environment

in which it is evaluated in terms of sending messages, reading from the

message queue, or process spawning. This is furthermore a very common

situation, given the number of libraries of side-e�ect-free functions used

extensively in practice. The present paper presents work in progress and

outlines an idea for compositional reasoning about the behaviour of an

Erlang system modulo replacement of side-e�ect-free Erlang expressions

with the result of their evaluation.

Keywords: software veri�cation, Erlang, side-e�ect-free evaluation, com-

positional reasoning.

�Work partially supported by the Computer Science Laboratory of Ericsson Utveck-

lings AB, Stockholm, the Swedish National Board for Technical and Industrial Development

(NUTEK) through the ASTEC competence centre, and a Swedish Foundation for Strategic

Research Junior Individual Grant.

110

1 Introduction

Software written for telecommunication applications has to meet high quality
demands. Correctness is one major concern; the activity of proving formally
that a system is correct is called veri�cation. Telecommunications software is
highly concurrent, and testing is often not capable of guaranteeing correctness
to a satisfactory degree. The software we are faced with consists of many,
relatively small modules, written in the functional language Erlang [1]. These
modules de�ne the behaviour of a number of processes operating in parallel and
communicating through asynchronous message-passing. New processes can be
generated during execution. Because of the complexity of such software, our
approach to veri�cation is to prove that the software satis�es a set of properties
formalized in a suitable logic language. The speci�cation language we use is
based on Park's �-calculus [12, 11], extended with Erlang-speci�c features. This
is a very powerful logic, due to the presence of least and greatest �xed point
recursion, allowing the formalization of a wide range of behavioural properties.
Veri�cation in this context is not decidable, but can be automated to a large
extent, requiring human intervention in a few, but critical points.

For a few years now, the Formal Design Techniques group at the Swedish In-
stitute of Computer Science has pursued a programme aimed at enabling formal
veri�cation of complex open distributed systems (ODSs) through program code
veri�cation. Previous work by the group has been directed towards establishing
the mathematical machinery [5, 6], providing basic tool support [3], performing
case studies [2], and motivating the chosen veri�cation framework [8].

Due to the complexity of Erlang, there is obviously no general method for
veri�cation of arbitrary Erlang programs which is e�ective and at the same time
leads to economic proofs. However, one can do much better in specialised cases
which are well-understood. A main direction of research is the identi�cation
of fragments of Erlang for which e�cient veri�cation methods exist. One such
fragment is the side-e�ect-free one, in which an Erlang expression is evaluated
purely for its value, and is not a�ecting the environment in which it is evalu-
ated in terms of sending messages, reading from the message queue, or process

spawning. A very common situation are function calls to functions, the body
of the de�nition of which are side-e�ect-free expressions. A large number of
libraries of such functions are used extensively in practice. In all the case stud-
ies we have performed so far we had repeatedly to deal with library functions
for manipulation of lists, numbers etc. Following the compositional reasoning

paradigm used for reasoning about large component-based software, one would
like in such cases is to be able to reason modulo replacement of side-e�ect-free
function calls with the result of their evaluation. The present paper is dedicated
to technically achieving this goal in a systematic fashion within our veri�cation

framework by factoring out the reasoning about the behaviour of side-e�ect-free
Erlang expressions from the reasoning about general Erlang systems.

The paper is organised as follows. The next section summarises our ver-

111

i�cation framework. Section 3 describes the general problem of factoring out

the reasoning about side-e�ect-free Erlang expressions from the reasoning about

general Erlang systems, and presents a systematic way of performing this within

our veri�cation framework. The following section focuses on the subtask of

verifying side-e�ect-free Erlang expressions, which is illustrated on a concrete

example in section 5. The last section gives a summary and concluding remarks.

2 Veri�cation of Erlang Programs

In this section we summarise our veri�cation framework as presented in [3, 8].

The Erlang Programming Language. We consider a core fragment of the

Erlang programming language with dynamic networks of processes operating on

data types such as natural numbers, lists, tuples, or process identi�ers (pid's),

using asynchronous, �rst-order call-by-value communication via unbounded or-

dered message queues called mailboxes. Real Erlang has several additional fea-

tures such as communication guards, exception handling, modules, distribution

extensions, and a host of built-in functions.

Besides Erlang expressions e we operate with the syntactical categories of

matches m, patterns p, and values v. The abstract syntax of Core Erlang ex-

pressions is summarised as follows:

e ::= V j self j op(e1; : : : ; en) j

e1 e2 j e1; e2 j case e of m j spawn(e1; e2) j

receive m end j e1!e2

m ::= p1 ! e1; � � � ; pn ! en

p ::= op(p1; :::; pn) j V

v ::= op(v1; :::; vn)

Here op ranges over a set of primitive constants and operations including zero

0, successor e + 1, tupling fe1; e2g, the empty list [], list pre�x [e1je2], pid

constants ranged over by pid , and atom constants ranged over by a, f , and

g. The constructs involving side e�ects are: self, evaluating to the pid of

the process evaluating this expression; spawn, resulting in a new process being

generated; receive for reading from the mailbox which is assotiated with the

process evaluating the expression; and \!" for sending a value to a process

identi�ed by its pid. These constructs will not be discussed in further detail

here, since we focus on the side-e�ect-free part of the language.

To reason in a formal fashion about the behaviour of an Erlang program, a

suitable formal semantics of the Erlang language is needed. This can be done

in di�erent styles, depending on the intended style of reasoning. Our approach

is tailored to small-step operational semantics, although other formal notions

112

of behaviour are derivable in our framework, supporting reasoning in di�erent

avours. Operational semantics are usually presented by transition rules in-

volving labelled transitions between structured states [13]. A natural approach

to handling the di�erent conceptual layers of entities in the Erlang language,

namely expressions, processes, and systems, is to organise the semantics hier-

archically, in layers, using di�erent sets of transition labels at each layer, and

extending at each layer the structure of the state with new components as

needed. A suitable formal semantics for Erlang has been recently developed,

and can be found in a (yet unpublished) manuscript by Fredlund [7].

The Property Speci�cation Language. Reasoning about complex systems

requires compositional reasoning, i.e. the capability to reduce arguments about

the behaviour of compound entities to arguments about the behaviours of its

parts. To support compositional reasoning, a speci�cation language should cap-

ture the labelled transitions at each layer of the transitional semantics. Poly-

modal logic is particularly suitable for the task, employing box and diamond

modalities labelled by the transition labels: a structured state s satis�es for-

mula h�i� if there is an �-derivative of s (i.e. a state s
0
such that s

�

�! s
0
is a

valid labelled transition) satisfying �, while s satis�es [�] � if all �-derivatives

of s (if any) satisfy �. Additionally, state predicates are needed to capture the

\local", unobservable characteristics of structured states, such as e.g. the value

of a local variable. The presence of recursion on di�erent layers requires also

the speci�cation language to be recursive. Adding recursion in the form of least

and greatest �xed-points to the modalities described above results in a power-

ful speci�cation language, broadly known as the �-calculus [12, 11]. Roughly

speaking, least �xed-point formulas �X:� express eventuality properties, while

greatest �xed-point formulas �X:� express invariant properties. Nesting of �xed

points allows complicated reactivity and fairness properties to be expressed.

This powerful logic is capable of expressing a wide range of important system

properties, ranging from type-like assertions to complex reactivity properties of

the interaction behaviour of a telecommunication system. For instance, the type

of natural numbers is the least set containing zero and closed under successor.

The property of being a natural number can hence be de�ned recursively as a

least �xed-point:

N : nat(
N = 0

_ 9V: (V : nat ^ N = V + 1)

where(is used for least-�xed-point de�nitions (i.e., for denoting the least solu-

tion of a recursive de�nition), while) is used for greatest-�xed-point de�nitions

(overloaded with implication).

113

The Proof System. Reasoning about open distributed systems written in Er-

lang requires reasoning about their interface behaviour relativised by assump-

tions about certain system parameters. Technically, this can be achieved by

using Gentzen-style proof systems, allowing free parameters to occur within the

proof judgments of the proof system. The judgments are of the form , ` �,

where , and � are sets of assertions. A judgment is deemed valid if, for any

interpretation of the free variables, some assertion in � is valid whenever all

assertions in , are v alid. Parameters are simply variables ranging over speci�c

types of entities, such as messages, functions, or processes. For example, the

proof judgment x : 	 ` P (x) : � states that object P has property � provided

the parameter x of P satis�es property 	.

This idea of open correctness assertions gave rise to the development of a

Gentzen-style proof system [6] that serves as the basis for the implementation

of a veri�cation tool. On top of a fairly standard proof system we added two

rules: the �rst a \term-cut" rule for decomposing proofs about a compound

system to proofs about the components, the second a discharge rule based on

detecting loops in the proof. Roughly, the goal is to identify situations where a

latter proof node is an instance of an earlier one on the same proof branch, and

where appropriate �xed points have been safely unfolded. The discharge rule

thus takes into account the history of assertions in the proof tree. In terms of

the implementation this requires the preservation of the proof tree during proof

construction. Combined, the term-cut rule and the discharge rule allow general

and powerful induction and co-induction principles to be applied, ranging from

induction on the dynamically evolving architecture of a system, to induction on

�nitary and co-induction on in�nitary datatypes.

The Erlang Veri�cation Tool. From a user's point of view, proving a prop-

erty of an Erlang program using the veri�cation tool involves \backward" (i.e.,

goal-directed) construction of a proof tree (tableau). The user is provided with

commands for de�ning the initial node of the proof tree, for expanding a proof

tree node (`the current proof node can be considered proved if the following

nodes are proved instead'), for navigating through the proof tree, for checking

whether the discharge rule is applicable, and for visualizing the current state of

the proof tree using the daVinci graph visualization tool. Since the whole proof

tree is maintained, proof reuse and sharing is greatly facilitated. Automation is

achieved through a set of proof tactics and tacticals.

At the present point in time a prototype tool has been completed with the

functionality described above. The largest case study performed so far is the

veri�cation of a distributed database lookup manager written in Erlang [2].

A high degree of mechanization of the low-level reasoning steps is crucial

for making our veri�cation method industrially applicable. This is the primary

motivation for the ideas presented below, since the side-e�ect-free fragment of

Erlang is well understood and classic methods exist to allow the treatment of

114

this fragment to be mechanized to a satisfactory degree.

3 Factoring out the Side-e�ect-free Fragment

Due to the complexity of Erlang, there is obviously no general method for ver-

i�cation of arbitrary Erlang programs, which is e�ective and at the same time

leads to economic proofs. However, one can do much better in specialised cases

which are well-understood. One such fragment is the side-e�ect-free one, in

which a (possibly recursively de�ned) Erlang expression is evaluated purely for

its value, and does not a�ect the environment in which it is evaluated in terms

of sending messages, reading from the message queue, or process spawning.

Compositional Veri�cation. The essence of compositional veri�cation is

the reduction of an argument about the behaviour of a compound system to

arguments about the behaviour of its components. A system P containing

component Q can be represented through term substitution as P [Q=X], where

X is a variable ranging over entities of the type of Q. We can relativize an

assertion P [Q=X] : � about the compound object P [Q=X] to a certain property

	 of its component Q by considering Q as a parameter for which property 	

is assumed, provided we can show that Q indeed satis�es the assumed property

	. Technically, we achieve this through a term-cut proof rule of the shape:

(TermCut)
, ` Q : 	;� , ; X : 	 ` P : �;�

, ` P [Q=X] : �;�

We consider the case when component Q is a function call to a function the

evaluation of which involves no side-e�ects. In this case we can o�er a more

powerful (de)composition principle than the one explained above.

Side-e�ect-free Function Calls. Let us consider a common situation when

verifying Erlang programs. Let proc<e, pid, q> be an Erlang process with

process identi�er pid and message queue q evaluating expression e. Assume

now that the redex (i.e., the current control point) of e is a function call of the

shape f(Y), where Y is a value variable. Then e is equal to e'[f(Y)=X] for

some Erlang expression e'(X) having a single occurrence of expression variable

X (at redex point). A proof goal involving this (open) process would generally

have the form:

, ` proc<e, pid, q> : �;� (1)

where � is a desired property of the process, and where , might put some

constraints on the free variables in the process, such as Y . If function f(Y)

is side-e�ect-free, it is evaluated only for its value. The speci�cation of the

process, and hence �, should not depend on the actual number of internal steps

115

which the evaluation of the function call requires. Therefore, we should be able

to replace the above proof goal with:

, ; V : �(Y) ` proc<e'(V), pid, q> : �;� (2)

where V is a value variable and � states the relation of V to the input param-

eter(s) Y of function f. This reduction of goal (1) to goal (2) is what we call

factoring out the side-e�ect-free fragment, since it enables us to reason mod-

ulo replacement of (open) side-e�ect-free function calls with the result of their

evaluation.

The Reduction Steps. There is a systematic way of performing this reduc-

tion within our proof system. It is based on the following assumptions:

� the redex of expression e is a function call of the shape f(Y1; :::; Yn);

� the body of the de�nition of f is side-e�ect-free;

� property � is insensitive to the number of side-e�ect-free actions (usually

denoted by �), such as "eventually the process sends out a reply ...", e.g.

of the shape �Z:(�
0
_ h�iZ).

We explain the method on the example given above, i.e. starting with proof goal

(1). First, we relativize the goal w.r.t. the speci�cation of f(Y), which is given

as a formula of the shape prepost(; �) relating input values to output values of

f. Intuitively, prepost(; �) states that given pre-condition holds of the input

value Y , evaluation of f(Y) terminates with a value satisfying post-condition �.

Formalising prepost in our logic and verifying side-e�ect-free expressions is the

topic of the next section. This relativization can be achieved through applying

the term-cut rule, resulting in two new proof goals replacing goal (1):

, ` f(Y) : prepost(; �);� (3)

, ; X : prepost(; �) ` proc<e'(X), pid, q> : �;� (4)

where e' is as explained above. Ideally, f(Y) is a library function which has

been already speci�ed and veri�ed; in this case goal (3) is (an instance of)

a lemma and can be eliminated. If not, we use the method described in the

next section to achieve this. It is also possible, that we have no access to the

implementation of the function; in this case we have to leave the goal open and

the �nal proof will be relative to the correctness of the speci�cation. We focus

our attention on goal (4). Since we intend to show that the function call results

in a value, we obviously hope to be able to prove that the pre-condition is a

consequence of the assumptions ,. So, dealing with prepost should result in

the two proof goals replacing goal (4):

, ` ;� (5)

116

, ; X : eval(�) ` proc<e'(X), pid, q> : �;� (6)

where eval is like prepost but is not relativised on a precondition. eval states,

that either (i) X is a value variable V satisfying �, or otherwise (ii)X reduces via

a silent (i.e. side-e�ect-free) step to another expression X
0
satisfying eval(�).

In other words, dealing with eval should result in two proof goals replacing goal

(6):

, ; V : � ` proc<e'(V), pid, q> : �;� (7)

, ; X
�

�! X

0
; X

0
: eval(�) ` proc<e'(X), pid, q> : �;� (8)

where goal (7) is the desired goal (2). It remains to eliminate goal (8). We

assumed that variableX stands for a side-e�ect-free Erlang expression occurring

at redex point in e'. As a consequence, the only actions of e'(X) are the silent

actions of X . We also assumed that property � is insensitive to the number of

internal actions, e.g. of the shape �Z:(�
0
_ h�iZ). These considerations imply,

that dealing with � should result in a goal replacing goal (8):

, ; X
0
: eval(�) ` proc<e'(X

0
), pid, q> : �;� (9)

This goal is an instance of goal (6). It was obtained through unfolding a least-

�xed-point formula (namely eval) on the left-hand side of the turnstyle symbol,

and can hence be eliminated by using the discharge mechanism mentioned in

the previous section.

For given shapes of formula � the reduction outlined above can even be per-

formed algorithmically. An important such case is when � is itself a prepost

formula; in this case the transition from goal (8) to goal (9) becomes straight-

forward and easy to mechanize.

4 Speci�cation and Veri�cation of Side-e�ect-

free Expressions

In general, speci�cation of the interaction behaviour of Erlang programs is a

di�cult task for which no systematic method has been developed so far. In the

previous section we showed how to factor out the reasoning about side-e�ect-free

Erlang expressions from the general reasoning about Erlang systems. Once we

are in the realm of side-e�ect-free Erlang expressions we can apply well-known

veri�cation techniques.

Natural Semantics. Our veri�cation method is based on a small-step op-

erational semantics for Erlang. The proof rules contain, among other types of

essertions, labelled-transition assertions of the shape P
�

�! Q. When reasoning

about side-efect-free expressions, however, one usually prefers to work directly

with the re
exive and transitive closure e �!
�

v relating the expression e with

117

the value v resulting from the (terminating) evaluation (i.e. sequence of side-

e�ect-free computations) of e. This kind of assertion is usually denoted e + v,

and the semantics based on a set of rules for reasoning in this style is usually

called natural (operational) semantics [9]. It is the style of reasoning that we

would like to employ, and this is easy to achieve, since the + predicate is de-

�nable as a least �xed-point formula through the transition relation. However,

there is one signi�cant complication: such a semantics is su�cient only if we are

dealing with closed expressions e. But our speci�cation and veri�cation method

is parametric in its nature, and in this case we have to somehow relate in a single

construct the resulting values to the (free) parameters in e. This idea brings us

to another well-known concept, namely the one of (weakest) pre-conditions and

(strongest) post-conditions.

Pre-conditions and Post-conditions. A classical method for veri�cation

of sequential programs is the axiomatic method of Hoare [10]. It is based on

assertions of the shape f gef�g, the intuitive semantics of which, in our context,

is: given the parameters of e satisfy the pre-condition , then execution of e,

provided it terminates, results in a value satisfying the post-condition �. We

follow the same idea, but require termination; a correctness notion known as

total correctness.

The typical sequent we have to consider is of the following shape:

, ` f(Y1; :::; Yn) : prepost(; �);�

where f(Y1; :::; Yn) is a function call, the body of the de�nition of which is side-

e�ect free, and where prepost relates the values resulting from evaluating the

function call to the values of the input parameters Y1; :::; Yn of f. Intuitively,

prepost(; �) states that given holds, evaluation of f(Y1; :::; Yn) terminates

with a value satisfying �. In our property speci�cation language prepost can

be de�ned as follows:

prepost(; �) = () eval �)

eval � (

�E : ErlangExpression.

9V : ErlangValue. (V = E ^ � V)

_ E : h�i true ^ [�] eval �

where � refers to side-e�ect-free (also called silent) computation steps.

The crucial question is how to handle function calls within the body of

f(Y1; :::; Yn). A natural approach is to use the same technique as outlined in

the previous section. When � is a prepost formula, the transition from goal

(8) to goal (9) becomes straightforward. We obtain the following admissable

proof rule, given that e2 occurs at redex point of e1 (and given � is a prepost

118

formula):

(ValCut)
, ` e2 : prepost(; �);� , ; V : � ` e1(V) : �;� , ` ;�

, ` e1(e2) : �;�

which plays an important rôle in our proofs.

5 Example: The Quicksort Algorithm

In this section we illustrate our approach on the well-known quicksort algorithm.

Figure 1 gives an implementation of the algorithm as an Erlang module.

Speci�cation. The algorithm is to be speci�ed as a satisfaction pair of the

shape sort(L) : �sortLwhere �sortL is a formula of type prepost(sortL; �sortL).

The pre-condition sort L can be given as a satisfaction pair L : list where

list is a list speci�cation playing the rôle of a list type. For the purposes of

the present paper it is su�cient to consider a list as either being the emptylist

or being decomposable into a head element and a tail list:

list(

�L : ErlangValue:

L = []

_ 9P;R : ErlangValue:

L = [P jR]

^ R : list

The post-condition �sort L should relate the resulting list L0 to the argument

list L. The usual way to relate the two lists is to require L0 to be a sorted

permutation of L:

�sort L
�

�

�L
0 : ErlangValue:

isSortedL
0

^ isPermutation L L
0

where the predicates isSorted and isPermutation are as expected (de�nitions

omitted).

We have also to specify the split function, which is called within the body

of sort (we omit the speci�cation of append). As with sort, the speci�cation

�split (P;R) of split is given as a formula prepost(split (P;R); �split (P;R)).

The pre-condition split (P;R) can be taken to be R : list. The post-condition

�split (P;R) speci�es the resulting value as a pair fS;Bg of Erlang values (lists),

such that the concatenation S �B is a permutation of R, P is smaller than any

119

-module(sort).

-export([sort/1]).

sort ([]) -> [];

sort ([Pivot|Rest]) ->

case split(Pivot, Rest) of

{Smaller, Bigger} ->

append(sort(Smaller), [Pivot|sort(Bigger)])

end.

split(Pivot, L) ->

split(Pivot, L, [], [])

split(Pivot, [], Smaller, Bigger) ->

{Smaller, Bigger};

split(Pivot, [H|T], Smaller, Bigger) when H < Pivot ->

split(Pivot, T, [H|Smaller], Bigger);

split(Pivot, [H|T], Smaller, Bigger) when H >= Pivot ->

split(Pivot, T, Smaller, [H|Bigger]).

Figure 1: The Quicksort Algorithm as an Erlang Module.

120

element of B, and P is bigger than any element of S:

�split (P;R)
�

�

�V : ErlangValue:

9S;B : ErlangValue:

V = fS;Bg

^ isPermutation (S �B) R

^ isSmaller P B

^ isBigger P S

Veri�cation. We now proceed with sketching a correctness proof. The initial

proof goal is as follows:

` sort(L) : �sort L (10)

Unfolding �sort leads to the new goal:

L : list ` sort(L) : eval(�sort L) (11)

Unfolding the de�nition of list yields the two new goals:

` sort([]) : eval(�sort []) (12)

R : list ` sort([P jR]) : eval(�sort [P jR]) (13)

Goal (12) is easily eliminated by chosing the empty list for the existentially

quanti�ed Erlang value in the body of the eval property, since the empty list is

(trivially) both sorted and a permutation of itself. Proceeding with goal (13),

we unfold the de�nition of sort, obtaining the following goal:

R : list ` case split(P;R) of ... : eval(�sort [P jR]) (14)

We have reached a point where the redex of the expression is a function call.

This is where we can apply rule (ValCut) introduced in the previous section,

yielding three new goals:

R : list ` R : list (15)

R : list ` split(P;R) : �split (P;R) (16)

R : list; V : �split (P;R) ` case V of ... : eval(�sort [P jR]) (17)

Goal (15) is trivial. Goal (16) is just another instance of the typical sequent

adressed in the previous section. By unfolding �split and the case statement,

goal (17) is reduced to:

R : list; , ` append(sort(S); [P jsort(B)]) : eval(�sort [P jR]) (18)

121

where , is the form ula list:

isPermutation (S � B) R; isSmaller P B; isBigger P S

Here again we can apply rule (ValCut), as well as some properties of list, to
obtain:

S : list; , ` sort(S) : eval(�sort S) (19)

B : list; , ` sort(B) : eval(�sort B) (20)

, ` append(LS; [P jLB]) : �append (LS ; [P jLB]) (21)

, ; LS : �sort S;LB : �sort B;L : �append (LS ; [P jLB]) ` L : �sort [P jR] (22)

Goals (19) and (20) are instances of goal (11), and can therefore be eliminated
(note that the least �xed-point formula list was unfolded along the way, al-
lowing application of the rule of discharge). Goal (21) is once again an instance
of the typical sequent adressed in the previous section. What is left is goal (22),
in which no Erlang expressions occur anymore, just variables. The treatment
of such sequents is entirely standard and outside the scope of this paper.

The details of the veri�cation of the quicksort algorithm can be found in a
separate paper [4]. The approach to veri�cation of side-e�ect free code is highly
compositional which greatly facilitated the reuse of proof results. Around 30
lemmata were proved and used to produce a well-structured and economic proof.

6 Conclusion

We outlined an idea for an approach for factoring out the reasoning about the
behaviour of side-e�ect-free Erlang expressions from the reasoning about general
Erlang systems, and the subtask of verifying side-e�ect-free Erlang expressions,
which was illustrated on the concrete example of the well-known quicksort algo-
rithm. Future e�ort is needed to support the proposed approach by theoretical
results, such as a proof of admissability of the ValCut rule.

Because of its simplicity, it is appealing to attempt to adapt the same rea-
soning scheme to Erlang expressions which do exhibit side-e�ects. This will in
general be connected with signi�cant complications, especially when the side-
e�ects include process spawning, and remains a topic of future research.

Acknowledgement. The authors would like to thank Mads Dam and Lars-�ake
Fredlund at the Swedish Institute of Computer Science for carefully reading and
commenting on the manuscript. Special thanks are also due to the anonymous
referree who rejected the paper but provided a series of excellent suggestions for
improving the scienti�c value of the paper.

122

References

[1] J. Armstrong, R. Virding, C. Wikstr�om, and M. Williams. Concurrent

Programming in Erlang (Second Edition). Prentice-Hall International (UK)
Ltd., 1996.

[2] T. Arts and M. Dam. Verifying a distributed database lookup manager
written in Erlang. In Proc. Formal Methods Europe'99, Lecture Notes in
Computer Science, 1708:682{700, 1999.

[3] T. Arts, M. Dam, L.-�a. Fredlund, and D. Gurov. System description: Veri-
�cation of distributed Erlang programs. In Proc. CADE'98, Lecture Notes
in Arti�cial Intelligence, 1421:38{41, 1998.

[4] G. Chugunov and L.-�a. Fredlund. Verifying sequential Erlang programs.
Technical Report T2000:02, Swedish Institute of Computer Science, 2000.

[5] M. Dam. Proving properties of dynamic process networks. Information

and Computation, 140:95{114, 1998.

[6] M. Dam, L.-�a. Fredlund, and D. Gurov. Toward parametric veri�cation of
open distributed systems. In Compositionality: the Signi�cant Di�erence,

H. Langmaack, A. Pnueli and W.-P. de Roever (eds.), Springer, 1536:150{
185, 1998.

[7] L.-�a. Fredlund. Towards a semantics for Erlang. Unpublished manuscript,
Swedish Institute of Computer Science, 1999.

[8] L.-�a. Fredlund and D. Gurov. A framework for formal reasoning about
open distributed systems. In Proc. ASIAN'99, Lecture Notes in Computer
Science, 1742:87{100, 1999.

[9] C. A. Gunter. Semantics of Programming Languages. The MIT Press,
1992. (See chapter 4.1).

[10] C. A. R. Hoare. An axiomatic basis for computer programming. Commu-

nications of the ACM, 12:576{580, 1969.

[11] D. Kozen. Results on the propositional �-calculus. Theoretical Computer

Science, 27:333{354, 1983.

[12] D. Park. Finiteness is mu-Ine�able. Theoretical Computer Science, 3:173{
181, 1976.

[13] G. D. Plotkin. A structural approach to operational semantics. Aarhus
University report DAIMI FN-19, 1981.

123

Specification-based Testing of Synchronous Software�

L. du Bousquet F. Ouabdesselam I. Parissis J.-L. Richier N. Zuanon

LSR-IMAG, BP 72, 38402 Saint Martin d’Hères, France
E-mail: fldubousq, ouabdess, parissis, richier, zuanong@imag.fr

Abstract

Test data generation and test execution are both time-consuming activities when done manually. Au-
tomated testing methods promise to save a great deal of human effort. This especially applies to reactive
programs which have complex behaviors over time and which require long test sequences.

In this article, we present Lutess, a testing environment for synchronous reactive software. Lutess pro-
duces automatically and dynamically test data with respect to some environment constraints of the program
under test. Moreover, it allows to trace the test execution and spot the situations where the program violates
its properties.

Lutess offers several specification-based testing methods. They aim at simulating more realistic environ-
ment behaviors, producing relevant data to test thoroughly a given property or driving the program under
test into interesting situations. To produce the test data, the methods use different types of guides: statistical
distribution of the input generation, properties, or behavioral patterns.

Lutess proved to be powerful and easy to use in industrial case studies. Lutess won the Best Tool Award
of the First Feature Interaction Detection Contest. The tool is described hereafter from both practical and
formal points of view.

Keywords Automated testing, synchronous reactive software, telecommunications systems, Lustre.

1 Introduction

A reactive software must continually respond to signals from its environment, and must satisfy temporal
constraints so that it can capture all the external events of concern.

Synchronous programs are a sub-class of reactive software. They are deterministic, they are never
blocked, and they satisfy the synchrony hypothesis [2] which states that every reaction of the software
application to external events is theoretically instantaneous (actually, fast enough to ensure that the envi-
ronment remains invariant during the computation of the reaction).

Reactive or synchronous systems are often safety-critical and must be thoroughly validated to ensure
that they meet their requirements mostly by means of formal verification, or intensive simulation or testing.

In this paper, we are concerned with functional (black box) testing of synchronous pieces of software.
The purpose of functional testing is to reveal errors in order to help the tester get confidence in the software
correctness [14]. No testing hypotheses [3] is made on the software behavior (no regularity for example),
nor on the software input space (no uniformity for example). Therefore, the validation of reactive software
requires that it does maintain its relation with its environment over long sequences of exchanges and the
number of input-output relations (test cases) to be managed is really large. These relations can’t be easily
computed by hand, since the reactive system input and output usually depend on the system history (and not

�This work has been partially supported by a contract between CNET-France Telecom and University Joseph Fourier, #957B043.

This paper is a combination of three other articles [8, 10, 21].

124

only on its current input). Thus, testing should be automated in order to make it easier, improve its quality
and lower its cost.

Lutess is a testing environment that supports highly automated testing of synchronous reactive systems
[19]. Lutess is mainly suited to the test of the control part of reactive software since it deals with programs
involving only boolean input and output signals. High level specifications of telecommunication services
and control-command software are typical examples of Lutess application fields. Lutess offers different
testing methods in order to fit the tester needs as well as possible. For instance, test data can be produced so
that the most used operations would receive the most testing (as in [18]), others can be randomly generated
or based upon an input partition (as in [15]).

The aim of this paper is to provide an overview of the tool and its foundations. The usefulness of each
testing method is illustrated with an example concerning the validation of a telecommunication feature
specification, namely the Call Forwarding No Reply.

The paper is organized as follows. Section 2 gives a brief description of the principles of Lutess. Section
3 provides an example of the application of the synchronous approach to the modeling of a telephony sys-
tem. Section 4 presents the test data generation methods provided by Lutess from a practical point of view,
section 5 details their formal foundations and section 6 outlines the test data selection algorithms. Section
7 is devoted to the implementation of the tool. Section 8 explores the advantages and the shortcomings of
the tool. Section 9 introduces related work.

2 Lutess

Our approach to functional testing of synchronous software consists in examining whether a program
satisfies some stated properties. These properties are requirements imposed on the program behaviors, such
as “a user’s phone goes back to its idle state every time the user goes on the hook”. An important point of
this kind of validation is that it is done under assumptions about the possible behaviors of the environment
interacting with the software. When one is not concerned with the software robustness, it makes no sense to
take into account impossible environment behaviors. For example, it is physically impossible for the user of
a telephone to go on the hook twice without going off the hook in between. When considering a telephony
system, only sequences among which “go off” and “go on” actions alternate are meaningful with respect to
testing.

2.1 Architectural overview

�����
�����
�����
�����

�����
�����
�����
�����

Executable unit provided by the user

oracle collector
trace

generator

unit under
test

Communication link

input data
dynamically produced input data

program output

verdict
LUTESS

����Formulas provided by the user

description
Environment

Figure 1. Lutess

Lutess requires three elements: the unit under test (that is, the software or software component under
test), its environment description and an oracle (as shown in figure 1). The oracle is an implementation
of the software requirements. Lutess constructs automatically the test harness which builds a test data
generator, links the generator, the unit under test and the oracle, coordinates their executions and records
the sequences of input-output values and the associated oracle verdicts (test sequences).

125

The test is operated on a single action-reaction cycle, driven by the generator. The generator randomly
selects an input vector for the unit under test and sends it to the latter. The unit under test reacts with an
output vector and feeds back the generator with it. The generator proceeds by producing a new input vector
and the cycle is repeated. The oracle observes the program inputs and outputs, and determines whether the
software requirements are violated.

The test data generator is automatically built by Lutess from an environment description written in
Lustre1[4]. This description is provided as a single syntactical unit, called a testnode [20]. Examples of
environment description and oracle properties are given in section 3.

The unit under test and the oracle are both executable programs with boolean inputs and outputs. They
must have a synchronous behavior but they have not to be necessarily supplied as Lustre programs.

To begin the test data generation, one has to feed Lutess with a probability seed, which is used to initialize
a classical random number generator. Keeping in mind that the behavior of a synchronous program is
deterministic, i.e. in a given state, its response to a given input value is always the same, one can note
that the use of such a generator allows to reproduce any experiment, by using the same seed. For a given
program and a given environment description, Lutess requires different seeds in order to produce different
test sequences.

Moreover, the user has to specify the number (n) and the length (l) of the test sequences that Lutess has
to produce. The process which produces the n test sequences of l values is called a test run. During a test
run, the program is reset in its initial state at the beginning of each new test sequence.

Finally, Lutess includes a “trace collector” which provides 3 functions:

� Storing the input, output and oracle data (boolean values) into specific files.
� Displaying the traces in a textual mode, defined by the user (an example is given in table 1). This

makes the manual trace analysis more comfortable.
� Replaying a test sequence (for example using different oracles).

2.2 Lutess testing methods

During a test run, at each cycle (or step), the Lutess generator randomly selects an input vector for the
system under test. Basically, the input is selected using the environment description (black-box testing),
and assuming that the data distribution is uniform. But the user can also define:

� an input statistical (partial) distribution; the generator will produce inputs according to the given
distribution;

� some (safety) properties; the generator will select preferably inputs which potentially drive the system
under test toward those properties violation;

� some scenarios (behavioral patterns); the generator will select preferably inputs which follow the
scenario.

These methods are described in sections 4 and 5.

3 Example

As an illustration of Lutess application, we consider a telephony system offering the Call Forwarding
No Reply feature (CFNR)2. This feature allows a subscriber to have his incoming calls redirected when he
does not answer within a given delay. The feature is dynamically activated and deactivated. The number to
which calls are redirected is also dynamically set.

The telephony system is modeled from the users’ viewpoint. Its environment includes the physical
telephones which are linked to the system (figure 2). The system we consider is composed of 4 users
(called A, B, C, D).

System inputs (issued by the environment) are events describing the actions performed on the phones:
Oni, Offi, Diali(j), CFoni(j), CFoffi, with i and j 2 fA, B, C, Dg). The event CFoni(j) indicates that the

1Lustre is both a synchronous programming language and a temporal logic.
2This example is taken from a case study aiming at modeling feature specifications from their ETSI descriptions [7].

126

...

Telephony system executable specification

environment

Figure 2. Telephony System Model

user i requires the activation of his CFNR feature to forward his calls towards j; the event CFoffi means
that user i demands his CFNR feature to be deactivated.

Outputs are signals which produce specific tones at the terminal (such as Busy-Tone, Ringing-Tone,
: : :). Each output signal identifies the state of the phone. In this example, we use the traditionnal Basic

Call Model [16] which depicts the call processing as state machines. A phone has 7 states, which are idle
(I), dialing (D) waiting (W), alerting (A), talking (T), ringing (R), and exception (E)3.

We suppose that the telephony system has a synchronous behaviour: at a given instant, it reads its inputs
and computes instantaneously its outputs, and so on forever. Moreover, for sake of modelling simplicity, it
is assumed that at most one of the system inputs can be true at the same time.

To perform the validation of this system, the human tester has to exhibit the environment description
and the system requirements (oracle properties). In this example, the two sets of formulas are provided in
Lustre.

Lustre [4] is a programming language for synchronous programs, which is declarative and data-flow
oriented. It corresponds to a linear past temporal logic which offers usual arithmetic, boolean and condi-
tional operators and two specific temporal operators: pre, the “previous” operator, and �> the “followed-
by” operator. In Lustre any variable or expression is intended to be a function of a discrete time (time
is assimilated to the set of natural numbers, 0 denoting the initial instant). In other words, a Lustre
expression denotes the sequence of values it takes over the different instants of time. Let E and F be
two expressions denoting the sequences (e0; e1; : : : ; en : : :) and (f0; f1; : : : ; fn : : :); pre(E) denotes the
sequence (nil; e0; e1; : : : ; en�1 : : :) where nil is an undefined value. E � > F denotes the sequence
(e0; f1; : : : ; fn : : :).

Lustre allows the specifier to define its own logical or temporal operators to express invariants. For
example, in this paper, we use the temporal operator once from to(A, B, C) to specify that property A must
hold at least once between the instants where B and C occur. The exact Lustre definition is:

node once from to(A, B, C: bool) returns(X: bool);
let -- Note: implies(A, B) computes the value of A) B

X = implies (after(B) and C, once since(A, B));
tel;
node once since(C, A: bool) returns(X: bool);
let

X = if A then C
else if after(A) then C or pre(X)
else true;

tel;
node after(A: bool) returns(X: bool);
let

X = false �> pre(X or A);
tel;

3A phone is waiting when a number has been dialed and the connection has not been established yet. It is alerting when the
connection is established but the party has not gone off the hook yet. When an error occurs, the phone enters the exception state until
its user goes on hook.

127

3.1 Environment description

1. As stated before, at most one event can occur at each instant of time. Considering the events to be
Oni, Offi, Diali(j), CFoni(j), CFoffi, with i and j 2 fA, B, C, Dg, this constraint is written in Lustre
as below:
(E1) #(OnA, OffA, DialA, : : : , CFoffD)
where # is a Lustre operator stating that “at most one element of the parameter list is true”.

2. A user can’t go off (resp. on) the hook twice without going on (resp. off) the hook in between:
(E2) once from to(Oni;preO� i;O� i) and

once from to(O�
i
;preOni;Oni).

3. A user should dial only if his telephone emits the DialingTone:
(E3) Dial i) DialingTone

i

4. A user can (try to) activate and deactivate the CFNR service only when his telephone emits the
DialingTone:
(E4) 8j; (CFoni(j) or CFo� i)) DialingTonei

The environment constraints E1, E2, E3, E4 have to be inserted in a testnode (see below). As it can be
noted, the testnode inputs (resp. outputs) are the system’s outputs (resp. inputs). This should be understood
as “the generator receives the program outputs as inputs, and generates (i.e. returns) input data for the
program. The selected input data satisfies the properties contained in the environment argument list”.

testnode Environment (o1, o2, : : : , om : program outputs)
returns (i1, i2, : : : , in : program inputs);

var l1, l2, : : : , lk : local variables;
let

environment(E1, E2, E3, E4);
tel;

Obviously, achieving a complete specification of the environment is not realistic. Thus, any detected
violation of the software requirements has to be analyzed by the tester, since it can result from many
causes: an error in the tested unit, an environment behavior which should have been discarded, or an
incorrect requirement statement.

3.2 Oracle properties (system requirements)

As a preliminary definition, we say that the CFNR feature is invoked for a user, if the latter is a CFNR
subscriber which has activated this service, and if he/she does not answer a call within the time delay.

1. A call will be forwarded if (1) the callee feature is invoked and (2) the maximum number of forwards
is not reached. This bound is a service provider option which was set to 3 for our example.

2. A call can be forwarded only if the service has been previously activated by the callee, and if the
latter did not deactivate the service in the meantime.

3. A forwarded call will be redirected to the last user which has been designated by the subscriber.

It is easy to write in Lustre an oracle program from these properties. One has to express each property
in Lustre by defining intermediary variables and by using Lustre classical operators. Consider, for instance,
the predicate LastUser(x) that takes into account the last activation of the feature by user x:

LastUser(x) = if CFon(x;y) then y else pre LastUser(x)

With this predicate, we can express the last of the above properties as follows:

p3 = (CallForward(x; y) => LastUser(x) = y)

128

CallForward(x, y) is true whenever a call for x is forwarded to y (x; y 2 fA;B;C;Dg).
Then, from the Lustre expression of these properties, say p1; p2 and p3, we build a Lustre program the

inputs of which are the inputs and outputs of the program under test. Its unique output is the conjunction of
the oracle properties expressed in Lustre:

node Oracle (program inputs; program outputs)
returns (res : boolean);

var l1, l2, : : : , lk : local variables;
let

res = p1 and p2 and p3 ;
tel;

4 Principles and usages of the testing methods

4.1 Basic random testing

According to this basic technique test data are generated only with respect to the environment speci-
fication without any additionnal consideration (black-box testing). This is the weakest test data selection
criterion one can define for synchronous software. The test data generation is performed in such a manner
that the data distribution is uniform. Table 1 gives an example of a trace that Lutess has produced with this
method, according to an output format defined by the tester.

1: - - - - - - - - I I I I True
2: OffA - - - - - - - D I I I True
3: CFonA (D) - - - - - - E I I I True
4: - - - - - - - - E I I I True
5: - - - - - - OffD - E I I D True
6: - - - - - - DialD (D) E I I W True
7: - - - - OffC - - - E I D W True
8: - - - - CFonC (B) - - E I E E True
9: - - OffB - - - - - E D E E True

10: - - DialB (A) - - - - E W E E True
11: - - - - OnC - - - E W I E True
12: - - - - - - OnD - E E I I True
13: OnA - - - - - - - I E I I True
14: - - - - - - - - I E I I True
15: OffA - - - - - - - D E I I True
16: CFonA (C) - - - - - - E E I I True
17: - - OnB - - - - - E I I I True
18: - - OffB - - - - - E D I I True
19: - - CFonB (D) - - - - E E I I True
20: - - - - OffC - - - E E D I True
21: - - - - OnC - - - E E I I True
<a><------------------- b ----------------><-- c --><d >

< User A >< User B >< User C >< User D >

(a) Step number;
(b) Userx action and its parameter (Offx, Onx, Dialx(y), CFonx(y), CFoffx; x; y 2 fA;B; C;Dg);
(c) Phonex state (Idle, Dialing, Waiting, Alerting, Talking, Ringing, Exception);
(d) Oracle verdict (issued by the oracle defined in section 3.2).

Table 1. A trace generated by Lutess

Empirical observations

Very often, a uniform distribution is far from the expected real software use. Indeed, test data in table 1
show that some users’ phones stay off the hook for long periods of time in Exception state (i.e. after
receiving a Busy Line indication), e.g. user A between states 4 and 13. In reality, a user would have quickly
gone on the hook in such a situation. Similarly, many generated behaviors consist in alternating going off
and on the hook, performing no action in between (user C, step 20 and 21), which is not a common behavior.
We also noticed that, on the whole, every user tries to call himself/herself as often as any other user (user

129

D, step 6) or to activate the CFNR feature several times in a row (user A, steps 3 and 16). In the real world,
such behaviors rarely occur, and are most of the time the result of wrong actions.

In order to test or analyze more realistic simulations, one may want to specify its own statistical environ-
ment distribution. With Lutess, this is possible thanks to probabilities that one can associate with program
inputs.

4.2 More realistic random testing

Lutess offers facilities to define in the testnode a multiple probability distribution [24] in terms of con-
ditional probabilities associated with the unit under test input variables [6]. The variables which have no
associated probabilities are assumed to be uniformly distributed. A conditional probability assignment de-
fines, for an input variable, its probability to be set to true when a given condition is met (when no condition
is provided the probability is unconditional). The conditions are Lustre expressions. An algorithm is im-
plemented in Lutess to automatically translate a set of conditional probabilities into an operational profile
(and vice versa).

An operational profile describes how users employ a system (a system usage). Using an operational
profile to guide testing insures that the operations involved in the system usage of concern will receive the
most testing [18].

Let us try this method on our example. The conditional probabilities are chosen in order to overcome
the problems exhibited by the previous empirical observations. For instance, to decrease the time spent by
one user’s phone in the Exception state, we specify that the probability to go on the hook is high while the
phone is in the Exception state.

hOnA; 0:9;preExceptionAi

Let c1; c2; : : : ; cs be a list of conditional probabilities. Similarly to the environment constraints, the
conditional probabilities are declared in the testnode, in the following way:

testnode Environment (o1, o2, : : : , om : program outputs)
returns (i1, i2, : : : , in : program inputs);

var l1, l2, : : : , lk : local variables;
let

environment(E1, E2, E3, E4);
proba(c1; c2; : : : ; cs);

tel;

Empirical observations

Regarding the last unrealistic aspect mentioned in the previous subsection, we defined about 15 condi-
tional probabilities for each user. There are 5 possible actions for each user, and approximately 3 conditional
probabilities per action which may have different values depending on the phone states. For instance, the
probability to go on the hook is usually different in the states Exception, Dialing and Talking.

A realistic environment simulation may not produce data which test rare but important and interesting
features of the program. To overcome this problem, Lutess has two different methods which consist in
testing in a more relevant manner some given properties or to drive the program into interesting situations.
These methods produce data according to two types of guides: (invariant) properties and behavioral patterns.

4.3 Property-oriented testing

Property-oriented testing is aimed at selecting test data which facilitate the detection of property viola-
tions. At each cycle, this method automatically generates values which are relevant to test the considered
properties.

We say that an input data is relevant to test a property, when the program reaction is liable to cause an in-
stantaneous failure with respect to this property. For instance, let’s consider the simple propertyP : i) o,
where i (resp. o) is an input (resp. output) of the unit under test. When i is false, the unit under test cannot

130

falsify P. When i is true, the unit under test will falsify P if it returns the value false for o. Hence, i =true
is relevant to test P.

Input values which are relevant to the considered properties are favored over the other input values. But
the random selection process is fair enough to let those latter values be exercised. In Lutess, the properties
chosen to guide the generator (s1; s2; : : : ; sz) have to be defined with the environment description, in the
testnode, by means of the safety operator. Conditional probabilities can also be used in combination with
this method.

testnode Environment (o1, o2, : : : , om : program outputs)
returns (i1, i2, : : : , in : program inputs);

var l1, l2, : : : , lk : local variables;
let

environment(E1, E2, E3, E4);
proba(c1; c2; : : : ; cs);
safety(s1; s2; : : : ; sz);

tel;

Empirical observations

One property of the telephony system is that the user’s phone goes back to its idle state every time its
user goes on the hook. Driving the generation with such a property led to favor the considered action, thus
improving the tester’s confidence in the system’s reaction to this input. However, this resulted in every user
tending to go on the hook as soon as possible; thus, many more realistic behaviors are never tested.

4.4 Behavioral pattern-based testing

As complexity grows, reasonable behaviors for the environment may reduce to a small part of all possible
ones with respect to the constraints. Some interesting features of a system may not be tested efficiently since
their observation may require sequences of actions which are too long and complex to be randomly frequent.

The behavioral pattern-based method aims at guiding further the input generation so that the most in-
teresting sequences are produced. A behavioral pattern characterizes those sequences by listing the actions
to be produced, as well as the conditions that should hold on the intervals between two successive actions
(figure 3). Regarding input data generation, all sequences matching the pattern are favored and get higher
chance to occur. To that, desirable actions appearing in the pattern are preferred, while inputs that do
not satisfy interval conditions get lower chance to be chosen. The generation method is usually invoked
with environment constrained test data. Behavioral patterns are stated using a trace-like notation which is
automatically translated in Lustre expressions.

Empirical observations

To avoid loops in the forwarding, specifying the CFNR feature requires that no more than 3 redirections
are ever performed on a single call in a row. When checking what could happen in the case of more then 3
redirections, we noticed that this situation had little chance to occur. The use of a pattern has resulted in an
increase of the number of 3 redirections occurrences in shorter test sequences. Figure 3 shows the graphical
representation of such a pattern.

5 Formal framework

This section provides a formal framework for the testing methods, in order to show explicitly their
applicability and some of their limits.

In the following, for any set X of boolean variables, VX denotes the set of values of the variables in X.
x 2 VX is an assignment of values to all variables in X.

131

not CFoff(A) andnot CFoff(A) not CFoff(A) and
not CFoff(B) and
not CFoff(C)

CFon(B,C)CFon(A,B) CFon(C,A) Dial(D,A)

Upper conditions describe the sequence of actions to be produced.
Lower conditions are interval conditions.

not CFoff(B)

Figure 3. Example of a behavioral pattern

5.1 Formal definition of an environment simulator

The abstraction of an environment simulator is derived from an I/O machine. This environment simulator
is non deterministic, i.e. it uses an non-deterministic method to generate values respecting the environment
constraints.

Definition 1 An environment simulator (or a generating machine) is defined as Menv = (Q; qinit; O; I; t;
env; outenv) where
� O (resp. I) is the set of the UUT output (resp. input) variables.
� Q is a finite set of states,
� qinit 2 Q is the initial state (also denoted q0),
� env � Q� VI represents the environment specification.
� t : Q� VO � VI ! Q is the (total) transition function.
� outenv is a method which, given q 2 Qnfq j n9i(q; i) 2 envg, chooses one element from Senv(q) =
fi j (q; i) 2 envg, the set of all valid UUT inputs.

In every state, a new UUT input is issued. Next, the UUT computes an output which enables a transition.
This behavior can be expressed in terms of UUT inputs (ik) and outputs (ok).

For k = 0; : : :
ik outenv(qk)
read(ok)
qk+1 t(qk; ok; ik)

(B)

Remark 1: Consider a testnode handling two software inputs (i; j), whose environment constraint is env
= pre i and j. When the associated I/O machine is in a state where pre i = false, there is no input value for
which the constraint holds. However, if i is always set to true, the machine would never be blocked. Thus,
an environment simulator has no guarantee to be reactive. For a given q, the set Senv(q) may be empty. The
theoretical means to determine whether the generator is reactive is to compute the set of reachable states,
or its complement (i.e., the set of states leading inevitably to the violation of env). These computations
are based on a least fixed point calculation which can be impracticable [13, 22]. This is why, in terms of
implementation, we don’t try to compute Senv(q) a priori. We rather try to detect blocking situations during
the generation.
Remark 2: By default, outenv is implemented as a method that consists in selecting inputs from Senv(q)
according to an equally probable distribution.

5.2 Formal definition of a property-guided machine

A property-guided machine is a generating machine which generates test sequences (cf. section 6.2)
which are more liable to invalidate a predicate (cf. section 4.3).

Definition 2 Let Menv = (Q; qinit; O; I; t; env; outenv) be a generating machine and fP � Q� VO � VI
be a predicate representing a property P .
A UUT input value i 2 VI (adequately) tests P on state q 2 Q (adequateP (q, i)) iff 9o 2 VO; :fP (q; o; i).

132

Definition 3 A property-guided machine is a generating machine MP = (Q; qinit; O; I; t; env; outP)
where

� P is a conjunction of properties,
� Let Senv\adequateP = fi 2 VI j (q; i) 2 env\ adequateP g. The method outP chooses a value from
Senv\adequateP if this set is not empty; otherwise it selects a value from Senv.

Whenever it is possible to produce an input value which adequately tests the properties, all input values
which do not test adequately the properties are ignored.
Remark 3: Note that the adequate test data is searched for in the current state. Thus the technique is limited
to an instantaneous guiding. When considering a safety property like pre i) o, the generator does not
discover that setting i to true will test the property at the following step. Moreover, a property such as
(not i or o) and (pre i or o) would be adequately tested only with values capable of falsifying (not i or o),
that is i being set to true. This prevents it from selecting an adequate data for the rest of the property
(pre i or o), since pre i will always be true.

5.3 Formal definition of an operational profile-guided machine

An operational profile-guided machine is a generating machine that generates test sequences (cf. sec-
tion 6.3) that conform to a given operational profile (cf. section 4.2).

Definition 4 An operational profile-guided machine is a generating machine Gprof = (Q; qinit; O; I; t;
env; outCPL) where

� CPL = (cp0; cp1; : : : ; cpk) is a list of conditional probabilities. Each cp is a 3-tuple (i; v; fcp)
where i is an input variable (i 2 I), v is a probability value (v 2 [0::1]), and fcp is a condition
(fcp � Q � VO � VI). v denotes the probability that the variable i takes on the value true when the
condition fcp holds.

� outCPL is such that the selection method is no longer equally probable and depends on the condi-
tional probability list.

When the conditional probability list is empty, the machine is equivalent to the basic one. The conditional
probability list (partially) overrides the by-default equally probable distribution of the basic generating
machine.

5.4 Formal definition of a pattern-guided machine

A pattern-guided machine is a generating machine that generates test sequences (cf. section 6.4) that
follow a given behavioral pattern (cf. section 4.4).

A behavioral pattern (BP) is made out of alternating and ordered instant conditions and interval condi-
tions. The instant conditions must be satisfied one after the other as time progresses. Each interval condition
shall be continually satisfied between the two successive instant conditions which border it. A behavioral
pattern characterizes the class of input sequences that match the sequence of conditions.

A behavioral pattern (BP) is built with the following syntax rule, where a simple predicate (SP) is a
Lustre boolean expression which does not include the current outputs:

BP ::= [SP] SP j [SP] SP BP

The non-bracketed predicates represent the instant conditions, while the bracketed predicates correspond
to interval conditions. [true] CFon(A;B) [not CFo� (A)] CFon(B;C) is an example of a BP. BPs
provide a means to partially describe a sequence: the inputs between two instant conditions may take any
value provided that the interval condition holds.

With a behavioral pattern is associated a progress variable which indicates what prefix of the BP has been
satisfied so far. To any value this variable can take corresponds a pair of predicates finter, condg which
describes the next-to-appear predicate and the predicate that should continually hold in the meantime.

133

Definition 5 A pattern-guided machine is defined as Gpat = (Q; qinit; O; I; t; env; outBP ; progress)
where

� (Q; qinit; O; I; t; env; outBP) is a generating machine
� BP=[true]cond0[inter1]cond1 : : : condn�1[intern]condn

� progress is an integer variable taking its value over Vprogress = [�1; 0::n+ 1]. It is the progress
index on BP .

� Let SH; SL; SN : Q� Vprogress ! V �
I

be sets of input variables defined as, 8q 2 Q; 8j 2 Vprogress:

– SH(q; j) = fi 2 VI j (q; i) 2 condj \ envg

– SL(q; j) = fi 2 VI j (q; i) 2 :interj \ :condj \ envg

– SN (q; j) = fi 2 VI j (q; i) 2 interj \:condj \ envg

� Given q and j, the current state and progress values, the method outBP first selects a non-empty set
among the above, then performs the standard value selection within this set. As a side effect, outBP

also computes the next value for progress:
– if SH(q; progress) is chosen, progress is incremented,
– if SL(q; progress) is chosen, progress is set to �1,
– if progress = �1 or n+ 1, progress = 0.

Intuitively, the partition is motivated by the status of the transitions regarding the progression of the
guiding process: SH includes all input that make the process go forward, SL groups those that lead to the
process stopping, while SN gathers all transitions that do not affect the process.
Remark 4: Definition 5 does not ensure that the guiding process will lead to the completion of the pattern,
i.e. to generate sequences that match it. Indeed, there may exist a reachable state for which a progress

value makes both SL and SH empty. If the guiding process makes the machine reach this state, the process
can’t progress nor regress anymore and becomes quiescent for the remaining of the test. Many other similar
situations may occur, that prevent from completing the pattern. However, all of them are due to an incorrect
description of the pattern. This description should be cautiously performed.

6 Test data selection

The automaton obtained by compiling the environment constraints is coded using a symbolic notation in
which the states are represented by a set of boolean variables, and the transitions by boolean functions.

The environment constraints (i.e. the outenv method) are implemented as a Binary Decision Diagram
(BDD) [1] (for sake of presentation, in the figure, the BDDs is represented by a Shannon tree (ST)).

For example, figure 4 shows the ST associated with a BDD built by Lutess for the following constraint :
“at most one entry among B1, B2 and B3 is available at each time”. In the ST, 0 and 1 stand for respectively
false and true. Each node of the diagram carries a variable and each of its outgoing branches is labelled
with the value taken by that variable. The left(resp. right) sub-ST corresponds to the assignment of a false
(resp. true) value to the root variable. A path from the ST root to a leaf represents an input state. If the input
state is valid with respect to the environment constraints, the terminating leaf carries a true value. The input
space contains 8 input states, among which only 4 are valid.

All the generation techniques rely on the same principle. The test data generator uses the environment
BDD to randomly select one input state which satisfy the constraints, so that the associated boolean function
takes a true value.

6.1 Random testing by environment simulation

The basic random generation algorithm produces equally probable input values. To guarantee to all the
valid input vectors an equal probability, the value of e is set in function of the following probabilities:

p(e = true) =
v1

v0 + v1
and p(e = false) =

v0

v0 + v1

134

false true false true false true

B3

(1,1)

false

1

truefalse

0

(1,0)
B3

truefalse

(1,0) (0,0)

B3 B3

false true

B2
(1,0)

true

(2,1)
B2

(3,1)
B1

0 0 0111

Figure 4. Labelled BDD for equally probable generation.

where v0 (resp. v1) is the number of distinct paths leading to a leaf carrying a true (resp. a false) value
in the sub-ST the root of which is the node associated with e. v0 and v1 are computed at the begining of the
simulation process for all the input nodes of the BDD.

At each cycle, the generator performs four operations:

� locate, in the diagram describing the environment constraints, the sub-diagram corresponding to the
current values of the state,

� generate a random value for the software inputs satisfying the boolean function associated with that
diagram,

In other words, the generator searches in the diagram associated with the constraints a path leading to a true
leaf.

6.2 Property-oriented testing

This technique is implemented by building a new BDD from the output method and the properties to be
tested. The resulting BDD allows to check whether a given state and a given value of the inputs both satisfy
the environment constraints and are liable to exhibit an error with respect with the properties. The basic
algorithm is modified as follows:

� locate, in this late diagram, the sub-diagram corresponding to the current value of the state,
� check whether there exists at least one value for the inputs which can lead to a true leaf in this

diagram,
� if positive, randomly select one of these values; otherwise, perform the basic algorithm.

6.3 Operational profile-based testing

The generation algorithm uses both the previous labelled BDD and the conditional probability list.
Let CP (e) = ((p1; ce1), (p2; ce2), : : : , (pr ; cer)) be a list of conditional probabilities associated with the

input variable e. In CP (e), pj denotes the probability that the variable e takes on the value true when the
condition cej is true. The selection function assigns a value to e according to the following probabilities:

8
>>>>>><
>>>>>>:

p(e = true) = if ce1 then p1

else if ce2 then p2

else if : : :

else if cer then pr else
v1

v0+v1

p(e = false) = (1 � p(e = true))
with v0 and v1 referring to the basic labelling

6.4 Behavioral pattern-based testing

Given the pattern to be matched, the method drives the generator to consider at every cycle the pair of
predicates finter, condg corresponding to the current value of the progress variable. At each step, first,

135

the input space is computed to get all the possible inputs meeting the environment specification. It is then
divided into three categories: SH, SL and SN as stated in definition 5.

A probability is assigned to each category so that an input in the first one would be favored over an
input in the third category, which, itself, would be preferred to an input from the second category. These
probabilities are determined with respect to the cardinality of each partition and to given weights associated
with them: wH, wL and wN . A partition is said to be of higher priority than an other if its weight is greater.

The input selection is a two-step process. First, a category is selected according to the determined
probabilities. Each category c in C=fSH, SL, SN g has a probability pc of being selected:

pc =
wc � card(c)P
j2C

wj � card(j)

Then, an input is chosen in an equally probable manner from the selected category. As a result, the
probability for any input i in c to be chosen is pi;c:

pi;c =
1

card(c)
� pc =

wcP
j2C

wj � card(j)

The implementation of the algorithm is also based on the environment BDD. Each predicate in the pattern
is represented by a BDD. The predicate BDDs and the environment BDD are combined to identify the input
sets SH, SL and SN . These BDD are labelled in the very same manner than for the basic generation.

Every generation step involves therefore the traversal of the three diagrams corresponding to the current
value of progress. The traversal leads to the subdiagrams corresponding to the current environment state,
where the cardinality for SH, SL and SN can be retrieved, thanks to the labelling. The selection is then
performed with respect to the given weights and the calculated cardinalities.

7 Tool implementation and validation

The tool code represents 26000 lines of C++. Lutess has been used intensively during several case
studies, among which the “Feature Interaction Detection Contest” held in association with the 5th Feature
Interaction Workshop [9, 11]. The goal was to detect possible and undesired interactions between twelve
telecommunication services. For this case study, the test process for each of the 78 configurations involved
10 to 20 sequences of 1000 to 10000 steps each. On the whole, each configuration has been tested for
around 1 million test cases. The Lutess tool was run over 1500 times.

For this case study, we also considered applying a model-checker Lesar [12] to evaluate the ability
of verification method to detect feature interactions [5]. Preliminary results show that the model-checker
cannot deliver a result in most of the 78 configurations, because of lack of time or memory amount. On the
contrary, Lutess always returns a verdict.

Building the BDD structure corresponding to a given environment is the most expensive part of the
testing process. In our experiments, environments included between 32 and 45 constraints, plus up to 8-
step patterns or 40 conditional probabilities. It has always been possible to perform this computation and
to run the test on a Sparc Ultra-1 station with 128 MB of memory. Maximum of required virtual memory
amounts to 100 MB. Though, as the number of constraints describing the environment increases, the BDD
complexity rises and its generation lasts longer. For the less-constrained environments that we produced, 6
seconds on CPU were necessary, while the most-constrained environments required about 30 minutes for
the corresponding BDD to be generated. As a comparison, a 1000 test run lasts about 2 minutes once the
BDD has been generated4. So, the more the environment is constrained, the more relevant is the test (since
the whole test case is more realistic), but the longer is the BDD generation.

Several �2 tests were performed in order to check that the statistical methods produce data according to
the different assumptions (i.e. that the basic statistical method produces data in an equally-probable way and
that the method guided by conditional probabilities produces data with respect to the defined probabilities).
Those tests have shown that these assumptions are valid.

4This second phase of the testing process is proportional to the length of the test sequence.

136

8 Advantages and limitations

8.1 Advantages in using Lutess

Lutess offers a unified framework for synchronous program testing. Basically, a generator produces
test data which satisfy an environment description. Lutess proposes different types of guidelines the user
can use to describe a more realistic environment or make the test more relevant. Unlike the environment
description, these additional guidelines are not to be strictly enforced. As a result, all valid behaviors are
still possible, while the more reasonable ones are more frequent. The model of the environment is thus
more “realistic”. The environment description and the guidelines have to be described in the same language
(Lustre) and in the same framework (the testnode).

The use of conditional probabilities or patterns proved to be highly profitable when prototyping the ap-
plication: these techniques allow to have a quick feedback on the correction of the implementation. Then,
when it comes to validate the implementation (test its conformance to the specification), these techniques
drive the environment to follow a realistic evolution. Meanwhile, thanks to the probabilistic aspect in-
troduced in both methods, the behaviors of the environment may vary and involve rare and unforeseen
scenarios. Such cases, close to the expected behavior –yet unexpected– are realistic and thus worth to be
tested.

Lutess has a user-friendly interface (figure 5). It offers the user an integrated environment:

� to define the environment description, the oracle and the unit to be tested (in the fields Program under
test, Oracle and Environment),

� to command the construction of the test harness, and to build constrained random generators (with
Begin, Kill and Continue buttons,

� to set the random seed, the number and the length of the data sequences,
� to compile Lustre programs, to format the sequences of inputs, outputs and verdicts and to replay a

given sequence with a different oracle (with Tools menu and Redo button),
� to visualize the progression of the testing process. Usually, Lutess does not stop the test generation

process at the first oracle violation. This is especially useful for checking when some specific event
occurs.

The three components required by Lutess (the unit under test, the environment description and the oracle)
are just connected together and not compiled into a single executable code. This allows the tester to easily
change a component, for example to replay a test sequence with a new oracle, or to fix the environment
specifications.

8.2 Limitations

Lutess can only generate data for boolean input and output synchronous programs. We have always been
able to by-pass this potential drawback yet, by using boolean vectors for enumerated data types.

For the moment, it is possible to use property-oriented testing in combination with conditional probabili-
ties. But it isn’t possible to use behavioral patterns with conditional probabilities. We are currently working
on this point.

Specifying the software environment by means of invariant properties is a rather delicate task. Indeed,
one should adequately choose a set of properties which do not “overspecify” the environment. Overspeci-
fying may prevent some realistic environment behaviors from being generated.

The theory underlying Lutess does not provide a means to evaluate when the test should be stopped.
In fact, it is quite hard to define a meaningful coverage criterion. For instance, classical coverage criteria
(coverage of code instructions or branches of control flow graph) are very loosely related to the set of the
possible program behaviors. Different experiments have been conducted to examine how code coverage
could be realated with fault detecting. While basic criteria such as instruction coverage or branch coverage
have been easily met, long sequences of test cases have been generated without resulting in any increase in
the multiple conditions coverage criterion, beyond some level.

137

Figure 5. Lutess interface

9 Related work

Jagadeesan et al. have presented a technique and a toolset that represent the most similar work to Lutess
[17]. Compared to Lutess, this approach appears to be limited in several respects. There is no guiding using
operational profiles or scenario-like methods. Environment constraints are only taken into account to restrict
the size of the input space. Inputs are selected with uniform weights. The whole process is based on the
compilation of the oracle, the application and the test harness into one single executable code; recompiling
is necessary after each modification, which caused the biggest dissatisfaction, according to what the authors
said.

As we said before, Lutess can only generate data for synchronous programs with boolean inputs and
outputs. In [23], Halbwachs et al. describe another synchronous testing tool, Lurette, which was built to
take into account numerical data. Lurette requires also three elements, and like Lutess, needs a Lustre
environment description. Lurette has no elaborated strategies for boolean data generation, but has a strategy
for integer and real data generation.

10 Conclusion and future work

In this article, we presented Lutess, a highly automated testing environment for synchronous software
and illustrated its use on an example. This automation allows to transfer the human efforts from the classical
tester’s chores (selecting the data, determining the result validity) to more defect prevention tasks (e.g.,
developing specifications).

Lutess offers several specification-based testing methods in order to fit the tester needs as well as possi-
ble. These methods aim at simulating more realistic environment behaviors, producing relevant data with
respect to some properties or interesting situations. These methods produce test data using different type of
guides, which are conditional probabilities, properties, and behavioral patterns.

We mainly conducted two experiments: a first case study of feature specification validation based on
the ETSI recommendations [7], and a second one in the framework of the FIW contest [9]. Experience has
confirmed that this approach is highly cost-effective. Both case studies showed that the guiding techniques
were excellent at finding problems involving rare scenarios. This positive experience was reinforced by
the valuable application of Lutess in the software specification stage, which helped get confidence in these
specifications. All this has certainly contributed to make Lutess the “best tool” of the FIW contest [11].

138

Trace analysis is an important task, even if the verdict is automatic, since it can reveal unsuspected
problems. Besides, writing relevant specifications in the appropriate format for test data generation should
be facilitated. An environment to support these tasks is under consideration. It should integrate proving
techniques to decide on formulae equivalence. Future directions also include criteria to determine when to
stop testing and a notion of error coverage associated with the existing testing techniques.

References

[1] S.B. Akers. Binary Decision Diagrams. IEEE Transactions on Computers, C-27:509–516, 1978.

[2] A. Benveniste and al. Synchronous Technology for Real-Time systems. In The 1994 Real-Time
Conferences, pages 104–122, Teknea, 1994.

[3] G. Bernot, M-C. Gaudel, and B. Marre. Software testing based on formal specifications : a theory and
a tool. Software Engineering Journal, 6:387–405, 1991.

[4] P. Caspi, N. Halbwachs, D. Pilaud, and J. Plaice. LUSTRE, a declarative language for programming
synchronous systems. In 14th Symposium on Principles of Programming Languages (POPL 87),
Munich, pages 178–188. ACM Press, 1987.

[5] L. du Bousquet. Feature Interaction Detection using Testing and Model-checking, Experience report.
In World Congress on Formal Methods, Toulouse, France, September 1999.

[6] L. du Bousquet, F. Ouabdesselam, and J.-L. Richier. Expressing and implementing operational profiles
for reactive software validation. In 9th International Symposium on Software Reliability Engineering,
Paderborn, Germany, 1998.

[7] L. du Bousquet, F. Ouabdesselam, J.-L. Richier, and N. Zuanon. Incremental Feature Validation : a
Synchronous Point of View. In Feature Interactions in Telecommunications Systems V, pages 262–
275. IOS Press, 1998.

[8] L. du Bousquet, F. Ouabdesselam, J.-L. Richier, and N. Zuanon. Lutess: a Specification-driven Testing
Environment for Synchronous Software. In 21st International Conference on Software Engineering,
pages 267–276. ACM Press, May 1999.

[9] L. du Bousquet, F. Ouabdesselam, J.-L. Richier, and N. Zuanon. Feature Interaction Detection using
Synchronous approach and Testing. Computer Networks and ISDN Systems, to be published, 2000.

[10] L. du Bousquet and N. Zuanon. An Overview of Lutess, A Specification-based Tool for Testing
Synchronous Software. In 14th IEEE International Conference on Automated Software Engineering.
IEEE, October 1999.

[11] N.D. Griffeth, R. Blumenthal, J.-C. Gregoire, and T. Otha. Feature interaction detection contest. In
K. Kimbler and L.G. Bouma, editors, Feature Interactions in Telecommunications Systems V, pages
327–359. IOS Press, 1998.

[12] N. Halbwachs, F. Lagnier, and C. Ratel. Programming and Verifying Real-Time Systems by Means
of the Synchronous Data-Flow Programming Language LUSTRE. IEEE Transactions on Software
Engineering, pages 785–793, september 1992.

[13] N. Halbwachs, F. Lagnier, and P. Raymond. Synchronous Observers and the Verification of Reactive
Systems. In Third Int. Conf. on Algebraic Methodology and Software Technology, AMAST’93, Twente.
Workshops in Computing, Springer Verlag, 1993.

[14] D. Hamlet. Software Quality, Software Process and Software Testing. Advances in Computers, 1995.

[15] D. Hamlet and R. Taylor. Partition Analysis Does Not Inspire Confidence. IEEE Transactions on
Software Engineering, pages 1402–1411, december 1990.

139

[16] ITU-T. Principles of intelligent network architecture. Recommandation Q.1201, 1993.

[17] L.J. Jagadeesan, A. Porter, C. Puchol, J.C. Ramming, and L. Votta. Specification-based Testing of Re-
active Software: Tools and Experiments. In 19th International Conference on Software Engineering,
1997.

[18] J. Musa. Operational Profiles in Software-Reliability Engineering. IEEE Software, pages 14–32,
march 1993.

[19] F. Ouabdesselam and I. Parissis. Testing Synchronous Critical Software. In 5th International Sympo-
sium on Software Reliability Engineering, Monterey, USA, 1994.

[20] I. Parissis. Test de logiciels synchrones spécifiés en Lustre. PhD thesis, Université Joseph Fourier,
Grenoble, France, september 1996.

[21] I. Parissis and F. Ouabdesselam. Specification-based Testing of Synchronous Software. In 4th ACM
SIGSOFT Symposium on the Foundation of Software Engineering, San Francisco, USA, 1996.

[22] P. Ramadge and W. Wonham. Supervisory Control of a Class of Discrete Event Processes. SIAM J.
Control and Optimization, 25(1):206–230, january 1987.

[23] P. Raymond, D. Weber, X. Nicollin, and N. Halbwachs. Automatic testing of reactive systems. In
19th IEEE Real-Time Systems Symposium (RTSS’98). IEEE, 1998.

[24] J. Whittaker. Markov chain techniques for software testing and reliability analysis. PhD thesis,
University of Tenessee, 1992.

140

141

Formalization and Testing of Reference Point Facets

Ina Schieferdecker, Mang Li, Axel Rennoch

GMD FOKUS
Kaiserin-Augusta-Allee 31, D-10589 Berlin, Germany

phone: +49 30 3463-7000, fax: +49 30 3463-8000

{schieferdecker, m.li, rennoch}@fokus.gmd.de

www.fokus.gmd.de/tip

Abstract

The paper introduces a new concept to express the architecture and behavior of distributed systems in
a formal, detailed and extensible manner in terms of reference point facets (RP-facets). RP-facets are
based on the well-established concept of reference points as used in ODP and TINA. Facets describe
statical and dynamic aspects of reference points as well as pre- and post-conditions for their use. The
paper gives a mathematical characterization of RP-facets, defines a specification template for the
definition of RP-facets and derives a conformance test method for their validation. An example taken
from the TINA retailer reference point shows the application and practical use of RP-facets.

1 Introduction

TINA (Telecommunications Information Networking Architecture [12]) is an open system

architecture for telecommunication systems in a multi-vendor environment. TINA combines

modern methodologies and techniques, such RM-ODP [6] and CORBA [9] to support the

development of large-scale systems. Core concepts and specifications of TINA have been

established. TINA is in its maturity phase, where conformance evaluation plays an important role.

In TINA, telecommunication stakeholders are characterized by their business roles, e.g. consumer,

retailer or third-party service provider. Since every stakeholder represents an autonomous

administrative domain, the implemented sub-systems used by stakeholders operate in a

heterogeneous, unpredictable, and uncontrollable environment. Inter-domain reference points are

introduced to ensure the interoperability of the various sub-systems [13].

The TINA architecture addresses a wide range of issues and provides a complex set of concepts

and principles. It has been partitioned into several models, subsystems, components, etc. in order

to handle the complexity. An essential partitioning concept is that of reference points (RPs).

Reference points consist of a set of interfaces together with potential interactions at these interfaces.

Reference point specifications define conformance requirements for a relationship between or

within administrative domains of distributed systems. The TINA reference point concept follows

the RM-ODP conformance assessment principles [6]. An example for an inter-domain reference

point is the Retailer Reference Point [14].

Key issues for multi-vendor systems are interoperability and interworking. Reference points as

a collection of conformance requirements are the basis to increase the likelihood for interworking

and interoperability. Conformance testing is an effective and efficient means to validate the overall

142

functionality of a multi-vendor system. It is a well-established alternative to the otherwise needed

many-to-many test setups for individual components and/or sub-systems to ensure their

interoperability and interworking.

The Conformance Testing Methodology and Framework (CTMF) [5] is a well accepted

technology in the area of protocol testing. CTMF defines test architectures and the test notation

TTCN (Tree and Tabular Combined Notation) for the evaluation of capability and behavioral

conformance of protocol implementations. CTMF allows the modelling and specification of both

centralized and distributed test systems. It has been used for ISDN, ATM, Internet protocols and

many others. A recent work shows also the usability of CTMF for object-oriented systems [3].

Reference points provide a simple straight-forward means to express the TINA architecture in

terms of objective requirements for conformance. However, current defined TINA reference points

tend to be too large. They are inadequately structured and do not allow incremental specification,

implementation, and testing.

Therefore, the design for testability of reference points is a requirement to enable and further

facilitate the testing process for distributed systems. In order to support conformance testing more

effectively and efficiently, we propose a new partitioning concept for reference points: the concept

of reference point facets (RP-facet)1 2 [16].

Reference points can be composed from RP-facets and/or segmented into RP-facets. Each of

these RP-facets (or subtopics) has it's own concepts, partitioning, information model, and other

details. Conformance can be tested separately for each of these RP-facets. Thus, a system may be

tested at multiple levels with respect to various RP-facets representing different aspects of a

reference point. This kind of testing is consistent with the current usage of TINA specifications, and

allows a vendor to implement limited roles in the business of service provisioning.

In this paper, we present the concept of and specification techniques for RP-facets in Section 2

and 3, resp. Section 4 discusses RP-facet based test specification and a conformance test method

based on RP-facets. An example showing the overall approach is presented in Section 5.

Conclusions finish the paper.

2 TINA Reference Points

TINA inter-domain reference points3 are located at the border of administrative domains in a

telecommunication system and are used to define conformance and interoperability requirements

for the business relationships between the telecommunication stakeholders, which are in certain

business roles. The TINA business model (see Figure 1) defines five business roles: consumer,

retailer, third-party service provider, broker and connectivity provider. It defines the following

inter-domain reference points:

1. The term facet is used in the OMG CORBA Component Model (CCM). In order to avoid misunderstandings, RP-facet is used
instead.

2. Please note that although we consider reference point facets under the realm of TINA the results of this work is in general
applicable to distributed system, which use a notion of reference points as interface/set of conformance requirements to the
outside.

3. Intra-domain reference points are not considered in this paper.

143

• Retailer inter-domain reference point (Ret)

• Broker inter-domain reference point (Bkr)

• Third-party inter-domain reference point (3Pty)

• Retailer-to-retailer inter-domain reference point (RtR)

• Connectivity service inter-domain reference point (ConS)

• Terminal connection inter-domain reference point (TCon)

• Layer network federation inter-domain reference point (LNFed)

• Client-server layer network inter-domain reference point (CSLN)

The current TINA RP interfaces are operational. That is, the interactions over interfaces occur in

form of operation invocations. Via an operation, a client requests the execution of some

functionality by the server object that provides the operational interface. Typically, an operation

invocation returns the results (after successful termination or exceptions) to the client. “Oneway”

operations are special case of operations that do not require a response to the client.

In general, the computational viewpoint of RPs are characterized by object interfaces using

computational languages. TINA RPs are specified using the ODL (Object Definition Language)

[15]. An ODL specification defines objects with their interfaces and object groups, which constitute

e.g. an RP. ODL provides syntax for the structural description of systems only. A formalization of

behavioral specification is not prescribed.

We consider in this paper the Ret-RP between consumer and retailer as an example. In terms of

telecommunication services, the retailer serves as the service provider and the consumer as the

service user. The Ret-RP offers generic access to telecommunication services, operations for the

discovery and start of operational, management, and administrative service offerings, operations for

the control and management of service sessions such as announcement, termination, suspension,

invitation, notification for the service users participating in a service session.

Ret-RP is separated into an access part and a usage part. The access part contains interfaces that

are required to establish a contractual relationship between consumer and retailer, which is referred

Broker

Retailer

Connectivity

3pty ServiceConsumer Provider

Provider

Bkr

Bkr

Bkr

Bkr

Ret

CSLN

TCon
TCon ConS ConS

TCon

LNFed

RtR

3Pty

3Pty

 Figure 1 TINA business model

144

to as an access session. A service session can be built only upon an access session. The usage part

of Ret-RP captures service session related interfaces. Ret-RP features are indicated either as

mandatory or optional. This differentiation is significant for conformance testing.

3 The RP-Facet Concept

RP-facets define refinements of TINA reference points. An RP-facet is to enable interaction

among components with separable concerns. It is a meaningful and self-standing portion of

functionality. An RP-facet is a minimal set of conformance criteria, a TINA testing can be

associated with. RP-facets are the basis for determining test purposes and generating test cases for

TINA reference points.

Each reference point should be composed of one or more RP-facets. Typically, there will be a

"core" facet that provides some minimum set of functionality. Additional interfaces and interactions

can be specified to provide additional functionality. An RP-facet depends on the presence of the

“core” facet and may depend on the presence of other RP-facets.

The RP-facet concept facilitates conformance testing, which is in particular based on the

observation of system behavior. Thus, a purpose-oriented functional description in terms of use

scenarios is proposed. The functionality of an RP-facet is specified by the signature and behavior

of operations1. Operations provide services to object’s environment, whereas interfaces represent

access points for services.

Typically, an inter-domain TINA reference point separates two business roles with distinguished

functionality. An RP-facet is associated with one of the architectural parts separated by the

reference point, referred to as RP-facet role.

The RP-facet role is to denote the functionality of interest in relation to the corresponding

reference point. The dynamic aspect of operations is described by use scenarios. The purpose-

oriented use scenarios describe potential interactions between the RP-facet role and it’s

environment.

Before we define the notion of RP-facet, we need to define miscellaneous notions such as

dependent operations and self-containment. A reference point is defined by a set of interfaces, each

of which offers functionality to the outside via operations.

Definition 1: An interface2 I has a set of operations SOI. SOI is divided into the set of mandatory
and optional operations SOI

mand and SOI
opt, resp., referring to the set of

operations, which need or resp. can be offered by this interface. It holds that
SOI

mand ∩ SOI
opt =∅ and SOI

mand ∪ SOI
opt=SOI.

Definition 2: A reference point R has a set of interfaces SIR. SIR is divided into the set of
mandatory and optional interfaces SIR

mand and SIR
opt, resp., referring to the set of

interfaces, which need or resp. can be offered by this reference point:

1. Operational interfaces are considered currently. The results are directly applicable to event interfaces. Stream interfaces will be
considered in a further work.

2. An interface denotes here an interface instance of an interface type, i.e. potentially there are a number of interfaces of the same
interface type at a reference point.

145

• I ∈ SIR
mand iff SOI

mand≠∅
• I ∈ SIR

opt iff SOI
mand=∅

It holds that SIR
mand ∩ SIR

opt =∅ and SIR
mand ∪ SIR

opt=SIR.

Assumption 1: Subsequently we assume that the set of all operations SOR of reference point R,

i.e , is not empty.

Definition 3: Let o be an operation at an interface I of reference point R, i.e. o ∈ SOI. Let o1..on
be further operations at R, i.e. oi ∈ SOR, i=1..n.
o is dependent on o1..on if the invocation of o requires previous invocations of
o1..on.1

o is independent if for all n there is no sequence of operations o1..on, on which o
is dependent.

The dependent operations are either specified explicitly or derived from the use scenarios of the

reference point.

Definition 4: The dependence relation depI,R ⊆ SOI x ℘(SOR) of operations at interface I, where
℘(SOR) denotes the powerset of all operations of reference point R is defined such
that
∀o ∈ SOI ∀so= {o1..on} ∈ ℘(SOR): (o, so)∈depI,R iff

• o is dependent on o1..on and

• ∀ok ∈ SOR: if o is dependent on ok then ok ∈ so.

Lemma 1: • ∀o ∈ SOI : ∃!(o, {o1..on})∈depI,R , i.e. (o, {o1..on}) in depI,R is unique.

• o is an independent operation iff (o, ∅)∈depI,R .

An RP-facet is self-contained in terms of functionality. Self-containment is defined with respect

to the dependence relation. It is the core property of an RP-facet. Please note that the set of

operations of an interface may be used only partially in an RP-facet:

Definition 5: An RP-facet FR is a set of operations of a reference point with the following
properties:

• it is a non-empty set and

• ∀I∈SIR ∀o∈SOI ∀(o, {o1..on})∈depI,R : if o∈FR then oi∈FR, i=1..n.

(the self-containment property)

The set of all RP-facets is denoted by SFR.

Assumption 2: Subsequently, we assume that SOR is self-contained.

Within the same reference point, dependent operations are captured by the same RP-facet:

Lemma 2: • ∀I,J∈SIR ∀o1∈SOI ∀o2∈SOJ: if o1∈FR and o1 is dependent on o2, than

o2∈FR.

1. The dependence relation can be further refined to cover further aspects of dependencies. For example, if operation o2 is only
executable when operation o1 returns x, then o2 can be defined to be result-dependent on o1. Or, if interface iB is only
reachable through an operation o1 of interface iA, then o2 can be defined to be reachable-dependent on o1.

SOR SOI
I SIR∈
∪=

146

• For each RP, there exist a partitioning into RP-facets Fi∈SFR, i=1..n, such

that

SOR = ∪i=1..nFi and Fi ∩ Fj=∅ for i≠j.

• SOR is an RP-facet.

RP-facets can be ordered. This order will be used to identify necessary steps in conformance

testing:

Definition 6: The order relation ≤ on RP-facets uses the subset relation:
∀F1, F2 ∈SFR: F1≤F2 iff F1⊆F2.

Lemma 3: • SOR is the maximal element of ≤, i.e.∀F∈SFR: F ≤ SOR.

The core is used to denote the mandatory, self-contained subset of a reference point. It is the set

of all operations that need to be offered at an reference point in order to have it self-contained with

respect to the dependence relations and complete with respect to the mandatory operations. If the

core is empty then the complete reference point is an optional one.

Definition 7: The core CR of a reference point R is the set of all mandatory operations of all
mandatory interfaces of R with all their dependent operations, i.e.

• ∀I∈SIR
mand ∀o∈SOI

mand: o∈CR and

• ∀o∈CR, ∀so ∈ SOR
n: (o, so) ∈depI,R : so ⊆ CR.

Assumption 3: Subsequently, we assume that CR is non-empty.

Lemma 4: • CR is unique.

• CR is an RP-facet.

To support incremental specification, RP-facets are built cohesively, with the core as the origin.

This leads to the definition of core-based RP-facets.

Definition 8: A core-based RP-facet FR,C is an RP-facet that contains all operations of the core,
i.e. .The set of all core-based RP-facets is denoted by SFR,C.

A core-based RP-facet covers at least the core and possibly additional optional operations.

Lemma 5: • CR is a core-based RP-facet.

• SOR is a core-based RP-facet.

A reference point has a core and may have zero or more additional cohesive core-based RP-

facets.

Lemma 6: • CR is the minimal element of the order relation ≤ on SFR,C,

i.e. ∀F∈SFR,C: CR ≤ F.

• SOR is the maximal element of the order relation ≤ on SFR,C,

i.e. ∀F∈SFR,C: F ≤ SOR.

• If CR=SOR then is SFR,C a singleton.

CR FR C,⊆

147

The relation of RP-facets and core-based RP-facets are depicted in Figure 2.

The conformance test method (see Section 5) will be based on the concept of core-based RP-

facets and their hierarchies1, as they naturally reflect the mandatory and optional requirements for

a reference point and their relation.

4 RP-Facet Specification

Making the RP-facet concept practical is essential for real, industrial relevant systems. This is

possible by providing a development method for RP-facets in combination with appropriate

specification techniques. Even more, the unambiguous specification of an RP-facet including its

static and dynamic models is crucial for testability. As any formalization reduces misinterpretation

of the system under test, a formal specification supports in particular automated test generation and

the possibility to validate tests for their soundness against the specification.

The reuse of specification parts of the reference point under test and therefore the reuse of

specification techniques for distributed system is desired as it makes test development more

efficient and allows a better integration of system development with test development.

Our approach for specifying RP-facets is based on the Object Definition Language (ODL) [7]

for signatures of RP-facets in combination with Message Sequence Charts (MSC) [8]2. Additions

are needed to cover specific aspects of RP-facets according to the concepts introduced in the

previous section. The specification template for RP-facets compresses:

• indication to the related reference point and the RP-facet role,

• statical specification of the RP-facet in ODL, and

1. Please note that for every core-based facet F there is at least the following hierarchy CR ≤ F ≤ SOR.

2. We concentrate currently on the on the functional aspect in the behavioral specification of reference points. Extensions to support
description of operational aspects, e.g. QoS, usage, will be elaborated in future work.

 Figure 2 Reference Points and its RP-Factes

F3F_2

F_4F_3

F_1R

Partitioning of R into

RP-Facets F_1 .. F_4 with

SOR= F_1 ∪ F_2 ∪ F_3 ∪ F_4 and

F_1 ∩ F_2 =∅, etc.

Hierarchies of core-based RP-facets

CF0 .. CF3 of R with

CF0 ≤ CF1 ≤ CF3 ≤ SOR and

CF0 ≤ CF2 ≤ SOR.

CF3

CF1

CF2

Core

CF0

R

148

• behavioral specification of the RP-facet in terms of use scenarios, including representations of
dependence relations in MSC.

Further, we use the standard test notation TTCN (Tree and Tabular Combined Notation) to

formulate test cases for RP-facets.

The RP-facet specification and test case generation cycle is presented in Figure 3. ASN.1 is the

commonly used data representation form by MSC and TTCN. Thus, mappings for data types and

constants from ODL to ASN.1 need to be defined.

4.1 Structural Specification Template

The template for the RP-facet structural specification is an extension of the TINA reference point

specification template [13], which uses TINA-ODL [15]. ITU-T ODL [7] adopts most of the

concepts and definitions of TINA-ODL. Thus, the following discussion on ODL refers to ITU-T

ODL.

ODL is a superset of the OMG IDL (abbr. as IDL). In fact, most of the current TINA reference

points are specified using IDL only. An example of the TINA Retailer Reference Point (Ret-RP)

[14] specification is shown below.

#include "TINACommonTypes.idl"

module TINAProviderInitial {
interface i_ProviderInitial {
void requestNamedAccess (
in TINACommonTypes::t_UserId userId,
in TINACommonTypes::t_UserProperties userProperties,
out Object namedAccessIR,
out TINAAccessCommonTypes::t_AccessSessionSecretId asSecretId,
out TINAAccessCommonTypes::t_AccessSessionId asId
) raises ();

};
};

module TINARetRetailerInitial {
interface i_RetailerInitial: TINAProviderInitial::i_ProviderInitial {
};

};

ODL ASN.1
Data

Type & Const
Mapping

MSC

Structure & Signature
Transformation

Inclusion TTCN
Test Case

Behavior Description
TransformationInformal

Scenario
Description

Formalization

 Figure 3 RP-facet specification and test generation

Inclusion

Diagram

Definition

Test
Data

Inclusion

Executable
Tests

149

It specifies the interface i_RetailerInitial of the retailer domain, that inherits definitions of the

interface i_ProviderInitial. Domains where interfaces reside, are indicated in the naming of

modules and interfaces, e.g. TINAProvider, TINARetRetailer. TINAProvider is a generalized

business role and can be specialized to a consumer, retailer, third-party service provider, broker and

connectivity provider. In our example, TINAProvider is specialized to TINARetRetailer. The

counter part of a provider is a user, which is at the Ret-RP a consumer.

Interactions at the Ret-RP between a retailer and a consumer involve not only interfaces provided

by the retailer, but possibly also those interfaces supported by the consumer. This reflects the object

model, in which an object supports interfaces, where services can be used by clients, and may

require interfaces that are provided by other objects in its environment. Thus, there is a need for the

identification of supported and required interfaces. The ODL’s object template provides a notion

for this purpose. Further, the template is also used to indicate the reference point and the role related

to an RP-facet.

As shown in the following example, the module TINARet corresponds to the considered

reference point. The facet role is represented by the object template identifier Retailer prefixed by

the keyword CO (originated from Computational Object). Related interfaces are declared

respectively behind the keywords requires and supports.

module TINARet {
CO Retailer {
requires
Consumer::i_ConsumerInitial;

supports
i_RetailerInitial;
i_RetailerAccess;

};
};

Dependence relations of operations and interfaces (see Section) allow reuse of ODL definitions

by inclusion. A systematic document structuring eases system evolution.

4.2 ODL to ASN.1 Data Mapping

The ODL to ASN.1 mappings for data types and constants are in-line with the rules defined in

[3]1. Rules for basic type translation are shown in Table 1. Structure types are mapped according to

Table 2.

1. This work is based on CORBA 2.2 specification. Mappings for IDL types included in the most recent and up-coming CORBA
specifications, e.g. the value type, will be considered in future work.

ODL Types ASN.1 Type

long, unsigned long, long long, unsigned long long, short, unsigned short INTEGER

char, wchar, string, wstring GraphicString

octet OCTET STRING(SIZE(1))

boolean BOOLEAN

void NULL

float, double, long double Real

Table 1 Mapping rules for basic types

150

ODL exception declarations are struct-like. Hence, they are mapped to ASN.1 SEQUENCE

types.

The mapping for the Object type is aligned to the OMG interoperable object reference (IOR)

concept. An IOR is the global representation of the corresponding object and is composed of ASCII

characters. For systems that are compliant with this concept, ASN.1 IA5String type is used.

4.3 Behavioral Specification Template

Message Sequence Charts (MSC) is a graphical and formal trace language defined by ITU-T [8].

MSC describes interactions between message-passing instances. MSC-2000 [8] is a new version of

the standard that has been approved only recently. It has improved structural, data and time

concepts. Method calls are introduced to support the description of control flows.

To use MSC for use scenarios of RP-facets, some structure and signature transformations are

required.

Rule 1 MSC diagrams for an RP-facet are organized by an MSC document. The identifier of the
MSC document is equivalent to the name of the RP-facet.

An MSC document defines an instance kind for an RP-facet. It contains instances, messages,

timer and MSC diagram declarations. In addition, a data language to be used in the MSCs can be

declared.

Rule 2 The RP-facet role, the environment of the RP-facet role, every supported/required
interfaces are mapped to separate instances.

Instances for the RP-facet role and supported interfaces form the scope of the RP-facet, while

other instances represent the scope of the environment. Interface instances play the role of service

supplier. Instances of the RP-facet role and its environment are of the service consuming role.

Rule 3 The order relation between RP-facets, e.g. F1 ≤ F2, is represented by inheriting the MSC
document for F1 into the MSC document for F2.

Inheriting a MSC document into another results in inheriting all declarations and MSCs from the

inherited into the inheriting MSC document. This reflects the idea that for F1 ≤ F2, F2 covers F1

completely as it is.

Rule 4 The dependence relation is represented by MSC expressions or high-level MSC (HMSC),
where the MSC sequential operator is used to order the individual operation invocations
as a sequence of simple MSCs reflecting separate operation invocations and the MSC

ODL Type ASN.1 Type

struct SEQUENCE

sequence SEQUENCE OF

enum ENUMERATED

array SEQUENCE SIZE(n) OF

any CHOICE

union SEQUENCE

Table 2 Mapping rules for structured types

151

alternative operator for the subsequent behaviour in accordance to the potential
outcomes of operation invocations.

Rule 5 MSC specifications for RP-facets consists of two diagram types:

• High-level MSCs (HMSC) give an overview on the main structure and dependencies
at the RP-facet. Here, references to further MSCs (usually simple MSC, see below),
which are typically executed sequentially and combined with guards, are used.
Enhanced use scenarios of RP-facets contain also parallel interactions at different
interfaces. The operands of parallel expressions are represented by separate MSC
instances.

• Simple MSCs contain a detailed definition of allowed message exchange and timer
events between involved MSC instances. Further, they allow the usage of constructors
for behavior control (e.g. alternatives, loops etc.) and guarded executions.

MSC expressions, which can be graphically represented by HMSC, are the basic concept to

represent the dependence relation between operations. If o1 needs to be invoked before o2, it will

be represented by M1 seq M2 with M1 reflecting the invocation of o1 and M2 the invocation of o2.

In the case that several outcomes of o1 and/or o2 are possible within M1 and/or M2, the alternative

operator alt in combination with conditions will be used in addition. Please note that more complex

behavior definitions for RP-facets will use also parallel, loop and optional expressions.

Rule 6 An ODL operation declaration is transformed to MSC message declarations. Mandatory
is a message corresponding to a request on the operation. If the operation is not a
“oneway” operation, a message in accordance with reply on the operation is also
defined. If appropriate, each potential exceptional outcome of the operation is translated
into a separate message.

MSC asynchronous messages are used instead of method calls to make the representation of

alternative operation invocation outcomes, in particular under exceptional conditions, more

readable. In addition, the mapping to TTCN in the case of asynchronous messages is

straightforward (see also Section 5).

The rule for attribute transformation is defined analogously:

Rule 7 An ODL attribute declaration is transformed to MSC message declarations. Mandatory
is a message corresponding to the “get” operation on the attribute. If the attribute is not
“readonly”, a message in accordance with the “set” operation on the attribute is also
defined.

The data concepts of MSC-2000 allows the flexible use of a data language of the user’s choice.

No MSC specific data language is defined. MSC-2000 provides syntactical and semantical

functions as interfaces to the use of external data languages within MSC. The definition of these

functions for using ASN.1 in MSC at these interfaces is currently under work.

5 RP-Facet Based Testing

The RP-facet concept, in particular the self-containment property of an RP-facet, supports

system evolution by incremental specification and implementation. In addition, RP-facets provide

also testable specifications:

152

• The identification of the RP-facet role and its communication parties leads to the definition of
the scope of the System Under Test (SUT) as well as the environment of the SUT, which will
be emulated by components of the Test System (TS).

• The structural specification of the RP-facet to be tested, in form of ODL and ASN.1
definitions, can be shared by the TS.

• The formalization of behavioral description of RP-facet use scenarios in MSC supports an
automated generation of tests.

• The self-containment property of RP-facets supports the identification of well-defined states of
the SUT to achieve reproducible test results.

• The operation dependencies of an RP-facet define requirements on the sequence of test
execution.

In order to support an efficient test development, we propose to use abstract test specifications.

Our approach is based on the standard test notation TTCN [5].

5.1 Test Specification

TTCN (Tree and Tabular Combined Notation) was designed for conformance testing of OSI

protocol implementations [5]. The test architecture is based on an asynchronous communication

between SUT and TS. PCO (Point of Control and Observation) is an abstract location, where

stimuli are sent to the SUT and reactions of the SUT are observed, either in form of Protocol Data

Units (PDUs) or Abstract Service Primitives (ASPs). In decentralized test architectures, where

typically several Parallel Test Components (PTCs) in addition to the Main Test Component (MTC)

communicate with the SUT, more than one PCOs can be assigned to a PTC.

The analogy to the asynchronous message passing mechanism of MSC facilitates the

transformation of MSC constructs to TTCN constructs. At first, it leads to the representation of

MSC messages as TTCN abstract service primitives (ASPs)1:

Rule A MSC messages representing ODL operations or attributes are translated into TTCN
ASPs.

According to Rule 6 and Rule 7, the ASPs are denoted by request-ASP, reply-ASP and exception-

ASP.

Further, PCOs, test components and test configurations need to be identified for the test system.

Due to the distinction of supported and required interfaces, two classes of PCOs can be derived

from an MSC instance:

Rule B A MSC instance representing a provided interface of the RP-facet role is interpreted by
a client-PCO over which request-ASPs are sent to the SUT and reply-ASPs or exception-
ASPs from the SUT are observed.

Rule C A MSC instance representing a required interface of the RP-facet role is interpreted by a
server-PCO over which request-ASPs from the SUT are received and reply-ASPs or
exception-ASPs to the SUT are sent.

The assignment of one PCO to one PTC is not stringent, but recommended. The semantics of a

1. The selection of ASPs instead of protocol data units (PDUs) is based on the analogies between the object model and the OSI
reference model. Please refer to [3] for details.

153

PTC is constrained by the class of PCOs it has. A PTC is in a client role when it communicates via

a client-PCO with the SUT, and vice versa. Hence:

Rule D Only PCOs of the same class, i.e. either client-PCOs or server-PCOs, can be assigned to
a PTC. The assignment of more than one PCOs to a PTC is allowed, as long as the
processing of test events, e.g. parallel sending of ASPs, is not restricted.

The MSC inline expressions allow behavioral composition of event structures within a MSC.

The operators refer to alternative (alt), parallel composition (par), iteration (loop), exception (exc)

and optional (opt) parts. The alt operator, used in the example presented in the paper (Figure 5),

defines alternative executions of MSC sections. In TTCN, the distinction between sequentialized

and alternative behavior is identified by the indentation level of TTCN statements (subsequent

TTCN events have a higher indentation as preceding events). Therefore:

Rule E MSC inline expressions are expressed in TTCN by a combination of appropriate
indentation levels, TTCN conditions and GOTO-statements.

The TTCN timer concept addressing start, time-out and cancellation of timers is sufficient to

cover MSC timer events.

The derivation of TTCN test descriptions from HMSCs is as follows:

Rule F MSC references are mapped in TTCN to test step calls. MSC conditions are directly
interpreted by TTCN qualifiers.

TTCN test steps are a macro-like kind of subroutines. They are also used in case of RP-facet

specifications representing extensions of previously specified smaller RP-facets. For example, it is

typical that the test specification derived from a small RP-facet specification (e.g. from the minimal

core-based RP-facet) will become the preamble (i.e. the very first test behavior at the beginning of

a test description) of another “bigger” RP-facet test specification.

5.2 Test Campaign Derivation

In general, software testing is time and cost intensive, i.e. critical for large systems. Therefore,

CTMF [4] gives advise for practical test purpose identification and for the grouping of test cases.

We define a test suite structure according to core-based RP-facet hierarchies of the reference points

under test. The sequence of test execution for the reference points under test is derived from the

dependence relation between its operations.

The basic idea is to start with testing the core of a reference point and then to test incrementally

by a repeating selection and testing of small extensions of the set of already tested operations. Each

extension should comprise a complete core-based RP-facet.

At first, we define the ordered sequence of RP-facets to be tested:

• the minimal core-based RP-facets is tested first

• subsequently, other core-based RP-facets are tested according to their hierarchy.

Secondly, we define the sequence of testing operations within an RP-facet:

154

• Independent operations are those that can be tested without any preconditions (i.e. without
preambles in the test case body).

• Dependent operations can be tested only of the operations they are depending on have been
tested already successfully.

An algorithm for the test method is as follows. For simplicity, we assume that the system under

test S realizes reference point R by means of core-based RP-facets CF1..CFn with CR=CF1 ≤ ... ≤
CFn=SOR.

Let T be the set of already tested operations at R. T is divided into TP and TF. TP refers to the set

of operations that passed all tests. TF comprises those operations for which at least one test failed.

Further, let I be the set of operations that are not testable as they depend on operations, which failed

their tests or belong also to I. Let N be the core-based RP-facet under test in the current testing

iteration.

Start: T= ∅, I= ∅, i=1, N= CFi.

Iteration i:

 Step I:Select o ∈ N with (o, ∅)∈depI,R :
/* independent operations */

Execute the tests for o .
If o passes all tests, then TP= TP ∪ {o} else TF= TF∪ {o}.

In any case, N=N\{o}

Repeat until no further operations o with (o, ∅)∈depI,R exist .

Proceed with Step II.

 Step II:Select o ∈ N with (o, {o1..om})∈depI,R and ∀j,j=1..m: oj∈ T

/* dependent operations whose preconditional operations have been tested successfully*/

If ∃j=1..m: oj∈ TF , then I= I ∪ {o}.
Else, execute the tests for o .
If o passes all tests, then TP= TP ∪ {o} else TF= TF∪ {o}.

In any case, N=N\{o} .

Repeat until no further operations o with ((o, {o1..om})∈depI,R and ∀j,j=1..m: oj∈ T) exist .

Proceed with Step III.

 Step III:Select o ∈ N with (o, {o1..om})∈depI,R and ∃j=1..m: oj∈ I

/*dependent operations for which not all preconditional operations are tested successfully*/

Then I= I ∪ {o} and N=N\{o} .

Repeat until no further operations o with ((o, {o1..om})∈depI,R and ∃j=1..m: oj∈ I) exist .

Proceed with Step IV.

 Step IV:Select o ∈ N with (o, {o1..om})∈depI,R and ∃j=1..m: oj∈ N

/*dependent operations with cyclic dependencies*/

Execute the tests for oj.

If oj passes all tests, then TP= TP ∪ {oj} else TF= TF∪ {oj}.

In any case, N=N\{oj} .

Proceed with Step III.

155

Repeat until no further operations o with (o, {o1..om})∈depI,R and ∃j=1..m: oj∈ N exist .

Proceed with Step V.

 Step V:If N empty and not yet termination, take i=i+1, N=CFi\ (T ∪ I) and proceed with Step II.

Termination: If T ∪ I = SOR terminate.

Interface operation tests will comprise static operation header tests as well as dynamic testing of

operations semantics. First, the static header tests result from combinations of valid/invalid

parameters and test values according to the interface signature and constraints [10]. The other test

groups, which focus on testing of valid/invalid sequences of operations at RP-facets, can be derived

using traditional test derivation algorithms well known from e.g. LTS or EFSM based test

generation methods implemented in several academic and commercial test derivation tools.

6 An Example

This section presents an example on how the proposed concepts and specification techniques are

applied to the TINA Retailer reference point (Ret-RP). The retailer is the focus of the consideration.

The following ODL definition is a simplified representation of [14] (see also Section 4.1). It

indicates the reference point Ret and the RP-facet role Retailer. It defines further: Retailer provides

a i_Initial interface and a i_Access interface; Retailer uses the i_Initial interface of the Consumer;

the operation namedAccess of the Retailer’s i_Initial interface requires an input parameter for

passing some user information, and provides an output parameter for returning a reference of

requested object, and in case that the passed user information is invalid an PropertyError exception

is raised. The consumer domain services are defined in a separate document Ret_Consumer.odl.

#include "Ret_Consumer.odl"
module Ret {
CO Retailer {
requires
Consumer::i_Initial;

supports
Retailer::i_Initial;
Retailer::i_Access;

interface i_Initial {
void namedAccess (
in UserProperty userInfo,
out Object i_na;

) raises (PropertyError);
...};

interface i_Access {...};
};};

From the textual description of Ret-RP business scenarios, two RP-facets can be derived:

• The core facet Ret_Retailer_core involves login and logout of a consumer at the retailer
domain. The retailer’s interface i_Initial and the operation namedAccess are used by login.

• An additional facet Ret_Retailer_add1 is based on the core facet. It is to start a service after a
successful login, and to terminate the service before the logout.

156

Ret_Retailer_core is organized by the MSC document and High-level MSC (HMSC) presented

in Figure 4. According to Rule 2, five instances (prefixed by inst) are defined: Retailer,

Retailer_i_Initial, Retailer_i_Access, Consumer and Consumer_i_Initial. The operation

namedAccess is mapped to three messages (indicated by msg), respectively for the request, reply

and exception related to the operation (see Rule 6). The inclusion of data types and constants

translated to ASN.1 is enabled by the language and data constructs. The HMSC

Ret_Retailer_core_msc uses two utility MSCs Login and Logout, and conditions idle, LoginFailed

and LoginSuccessful. It describes the dependency of the logout activity on a successful login.

Details of purpose-oriented use scenarios of RP-facets are described by MSC event traces.

Figure 5 shows the message exchanges between a Consumer instance and a Retailer_i_Initial

instance in relation to the login activity. The two alternative outcomes of a request on the operation

namedAccess are represented by use of the MSC inline expression alt. Data used in message

parameters and/or conditions are defined in the data part of the MSC document.

The cohesive relation of Ret_Retailer_add1 to Ret_Retailer_core is in particular reflected by the

reuse of declarations and utility MSCs, as presented in Figure 6. To support start service related

operation, declarations of the messages startService_req, startService_rpl and startService_exp are

added to the core facet MSC document. Furthermore, two new utility MSCs are introduced:

StartService and EndService. Ret_Retailer_add1_msc extends the core facet’s HMSC by a

description of the logical relation between StartService and EndService MSCs.

Table 3 shows the dynamic part of the TTCN specification of a test case in accordance with the

Login MSC (Figure 5). The tabular form is simplified to ease the understanding.

In this example, the SUT is an implementation of the retailer domain core RP-facet. This test

case is to evaluate the login activity at the retailer’s i_Initial interface. The TS emulates the behavior

of a client of i_Initial. It uses a client-PCO named PCO1_Retailer_i_Initial defined using Rule B.

The purpose of this test case is to verify: after a request on the operation namedAccess with valid

mscdocument Ret_Retailer_core
inst Retailer
inst Retailer_i_Initial

variables i_na: Object, exp: PropertyError,
int Retailer_i_Access
int Consumer

varabiles naRef: Object, userInfo: UserProperty;
int Consumer_i_Initial
msg namedAccess_req(UserProperty);
msg namedAccess_rpl(Object);
msg namedAccess_exp(PropertyError);
language ASN1;

data #include Ret_Retailer.asn1;
#include Ret_Consumer.asn1

Ret_Retailer_core_msc

Login

msc Ret_Retailer_core_msc

idle

Login

Logout

LoginSuccessfulLoginFailed

 Figure 4 MSC example of Ret_Retailer_core

Logout

157

user information is sent to the SUT, a reply of namedAccess is received by TS (see line 2 and 4). To

indicate the ASP kind, the request-ASP is prefixed by pCALL, and the reply-ASP is prefixed by

pREPLY.

msc Login

alt

namedAccess_req(userInfo)

namedAccess_rpl(naref:= i_na)

namedAccess_exp(exp)

Consumer Retailer_i_Initial

when valid(userInfo)

otherwise

userInfo:=USER_INFO

i_na:=resolve(NA_REF)

exp:=PROP_ERR

LoginSuccessful

LoginFailed

 Figure 5 Login MSC diagram

mscdocument Ret_Retailer_add1
inst Retailer
inst Retailer_i_Initial

variables i_na: Object, exp: PropertyError;
int Retailer_i_Access
int Consumer

varabiles naRef: Object, userInfo: UserProperty;
int Consumer_i_Initial
msg namedAccess_req(UserProperty);
msg namedAccess_rpl(Object);
msg namedAccess_exp(PropertyError);
msg startService_req;
msg startService_rpl;
msg startService_exp;
language ASN1;

data #include Ret_Retailer.asn1;
#include Ret_Consumer.asn1

 Figure 6 MSC example of Ret_Retailer_add1

msc Ret_Retailer_add1_msc

idle

Login

Logout

LoginFailed LoginSuccessful

StartService

StartServiceSuccessful StartServiceFailed

EndServiceRet_Retailer_add1_msc

Login Logout

StartService EndService

158

The test step GetInitialRef (line 1) used as preamble is mainly intended to allow the resolution

of object references that will be used in the test case. It is not derived directly from the MSC. It is

a general purpose test step. In addition, a timer Timer1 is used to ensure that a test event (including

time-out events) will occur after a given time even in case that the SUT does not answer.

The postamble Logout (line 5) after the receive event recalls the MSC reference Logout in the

HMSC of the core RP-facet.

The implementation and execution of TTCN-based test case in the CORBA environment is

discussed in [3].

7 Conclusions

The goal of the work presented in this paper is to provide concepts and means for testable

specifications that facilitate conformance and interoperability testing for distributed systems. The

approach is based on the RM-ODP and TINA reference point concept. It refines reference points

into self-contained and extensible facets, referred to as RP-facets, in order to allow incremental

specification, implementation and testing of distributed systems at their reference points.

Formalization is key to the concept. Besides a mathematical characterization of RP-facets, a

template for structural and behavioral specifications of RP-facets as well as a conformance test

method are elaborated. The specification template consists of ODL, ASN.1, and MSC to provide

adequate information detail for the derivation of abstract test cases in TTCN. The combination of

all these specification techniques is shown by an example.

In addition to a thorough usability study of the approach, future work will be on the support of

further testing aspects, e.g. operational conformance under load situation, what requires extensions

of the RP-facet specification template. Additional issues of test campaigns, which are partly

discussed in the paper, such as efficient test strategy, will be also considered.

Test Case Dynamic Behavior

No Label Behavior Description Constraints Ref Verdict

1 +GetInitialRef

2 PCO1_Retailer_i_Initial !
pCALL_Retailer_i_Initial__namedAccess

pCALL_namedAccess_s1

3 START Timer1

4 PCO1_Retailer_i_Initial ?
pREPLY_Retailer_i_Initial__namedAccess

CANCEL Timer1

pCALL_namedAccess_r1 (P)

5 +Logout

6 ?TIMEOUT Timer1 I

Table 3 TTCN test case example

159

8 References

[1] R. V. Binder: Testing Object-Oriented Systems, Models, Patterns and Tools, Addison-Wesley, 1999.

[2] S. Ghosh, A.P. Mathur: Issues in Testing Distributed Component-Based Systems.- In Proc. of the First Intern. ICSE
Workshop on Testing Distributed Component-Based Systems, Los Angeles, U.S.A, May 1999.

[3] M. Li, I. Schieferdecker, A. Rennoch: Testing the TINA Retailer Reference Point, Proceedings of ISADS’99, Tokyo,
Japan, March 1999.

[4] ISO/IEC 9646-2: Information Technology - Open Systems Interconnection - Conformance Testing Methodology and
Framework - Part 2: Abstract test suite specification, 1991.

[5] ISO/IEC 9646-3: Information Technology - Open Systems Interconnection - Conformance Testing Methodology and
Framework - Part 3: The Tree and Tabular Combined Notation (TTCN), edition 2, Dec. 1997.

[6] ITU-T Rec. X.901 | ISO/IEC 10746-1: 1995, Open Distributed Processing - Reference Model Part 1, Geneva, Swiss.

[7] ITU-T Z.130: Object Definition Language (ITU-ODL), March 1999.

[8] ITU-T Z.120: Message Sequence Charts (MSC’2000), Nov. 1999.

[9] OMG: Common Object Request Broker Architecture (CORBA), version 2.3, 1999.

[10]A. Rennoch, J. de Meer, I. Schieferdecker: Test Data Filtering, 9. GI/ITG-Fachgespräch "Formale
Beschreibungstechniken für verteilte Systeme", München (D), June 1999.

[11]Steedman, D.: Abstract Syntax Notation One (ASN.1), Technology Appraisals Ltd., 1990.

[12]TINA-C: Overall Concepts and Principles of TINA, version: 1.0, Feb. 1995.

[13]TINA-C: TINA Reference Points, version 3.1, Jun. 1996.

[14]TINA-C: Ret Retailer Reference Point Specification, version 1.1, 1999.

[15]TINA-C: Object Definition Language (TINA-ODL), version 2.3, Jul. 1997.

[16]TINA-C: TINA-CAT WorkGroup Request for Proposals, TINA Conformance Testing Framework, version 1.0, Jul.
1999.

160

161

Towards a Mechanised Software

Development Method

Bing Wu1, Luming Lai2, and D.R.W. Holton3

1 B.Wu@scm.brad.ac.uk,

Home page: http://www.personal.comp.brad.ac.uk/�bwu/
2
L.M.Lai@scm.brad.ac.uk,

Home page: http://www.personal.comp.brad.ac.uk/�lmlai
3
D.R.W.Holton@scm.brad.ac.uk,

Home page: http://www.personal.comp.brad.ac.uk/�drwholton

University of Bradford, Bradford, BD7 1DP, West Yorkshire, UK

Abstract. Formal methods (FM) consist of a set of techniques and tools

that are based on mathematical modeling and formal logic and which are

employed to specify and verify requirements and designs for computer

systems - both hardware and software. Moreover, the growing criticality

and complexity of software has led to increased interest in applying FM

to software speci�cation and design as well.

The paper will develop a more practical software development method by

integrating the Re�nement Calculus with Z, both developed at Oxford

University, and develop a software development environment in which

software can be formally speci�ed and re�ned into program code with

all the re�nement steps proved correct by the tool. We present a case

study of using a re�nement tool prototype, ZRe�ner to re�ne a Z spei�-

cation to code. The three-tier structure of ZR�ner deals with di�erent

applications in di�erent tiers and makes ZRe�ner more
exible and e�-

cient. Finally, potential theoretical and practical problems of implement-

ing such a mechanised tool are discussed.

Keywords: Formal methods, Z, Re�nement Calculus, Mechanised soft-

ware development

1 Introduction

Many of the most serious problems in software design and implementation re-

sult from imprecise, ambiguous, incomplete, misunderstood, or just plain incor-

rect statements in requirements speci�cations. Describing large, complex systems

with thousands or even millions of properties is extremely di�cult using natural

language.

Formal methods (FM) consist of a set of techniques and tools that are based

on mathematical modeling and formal logic and which are employed to specify

and verify requirements and designs for computer systems - both hardware and

software. Early successes in the use of FM were more frequently obtained in the

162

design of computer hardware, and this domain remains an important application

area for FM. However, the growing criticality and complexity of software has led

to increased interest in applying FM to software speci�cation and design as well.

Z [8, 16] is a well established speci�cation language that has a distinguishing

mechanism of modularization: the schema calculus. It allows us to formalise in-

dividual requirements separately and join them together by schema operators.

Its success is evident: many case studies [8] have already been developed, some

of which involve industrial applications [6]. A wide range of tools [24] that sup-

port several aspects of its use in speci�cation have been implemented. However,

none of them support re�nement using Z. The main objective of our research

is to develop a fully integrated tool for Z which supports re�nement and good

graphical user interfaces.

Although Z is a well established speci�cation language and the re�nement

calculus was developed many years ago by Back, Morgan and Morris, [1, 11, 10],

the integration of both is not as simple as originally thought. There are some

fundamental problems to be solved for a smooth integration. For example, the

re�nement calculus is based on the weakest precondition semantics but Z on

set theory; the speci�cation statements in the re�nement calculus use pre- and

postconditions but Z uses the schema calculus which puts abstraction above

everything else.

Several proposals for solving these problems can be found in the literature.

The �rst proposal for integrating Z with the Re�nement Calculus is presented in

[9], where the di�erences between Z and the notation of the Re�nement Calculus

are analyzed and, in the light of these considerations, rules that translate schemas

and some schema expressions to programs are suggested. [19] has proposed a

di�erent form of integration, where schemas themselves have been regarded as

commands of the language of the re�nement calculus. Re�nement of schemas is

accomplished either by laws that are similar to the translation rules in [9] that

apply to schema expressions, or by veri�cation instead of calculation, when none

of these laws apply. There is no equivalent to the rule of [9] that translates any

schema.

Another approach is suggested in [18], where generalizations of the Z con-

junction and disjunction schema operators are introduced into the language of

the re�nement calculus so that speci�cation statements can be combined and

the Z incremental style of building speci�cations can be used. The aim is to

achieve a re�nement calculus that can cope with large speci�cations. However,

the other schema operators, which also contribute to the success of the Z style,

are not considered and it is not clear how they can be added to the re�nement

calculus. Our approach is similar to Ward's. But we propose to use Z throughout

the whole development process, which are more readable than the speci�caiton

statements.

[15] de�ned a notation for documenting the development of ADA programs

from Z speci�cations. Despite the fact that a language similar to that of the

re�nement calculus was used, the proposal consisted of designing the programs

directly in ADA and then giving an account of their correctness by using the no-

163

tation and literate programming was suggested as part of Cleanroom, a method

of software development that recommended the use of formal speci�cations and

re�nement, but that did not indicate any particular technique.

In [3{5], ZRC - a re�nement calculus for Z based on Morgan's calculus [10]

was developed. The method allows speci�cation using Z schemas and provides

some conversion laws to convert Z schemas into the speci�cation statements in

the re�nement calculus. Then the re�nement is done in the re�nement calculus.

A weakest precondition semantics for Z was developed so that the soundness

and completeness of the conversion laws are proved. The drawback of such an

approach is that the abstraction of Z is lost as soon as the re�nement starts.

The motivations of producing e�cient programs that has a mathematically

sound basis and allows the use of calculational techniques are certainly best

served by the approaches advocated in [9, 20, 19, 22]. Also motivated by Caval-

canti's work, we develop a prototype re�nement tool: ZRe�ner, with the support

for spci�cation and re�nement of Z. We introduce the weakest precondition se-

mantics for the modi�ed Z, which is used to replace the speci�cation statements

during re�nement.

This paper is organised as follows. Section 2 investigates Z and the re�nement

calculus. Section 3 introduces the modi�ed Z speci�cation. Section 4 presents a

weakest precondition semantics for the modi�ed Z. Section 5 introduces a in-

tegrated re�nement calculus for the modi�ed Z, and presents some re�nement

laws we use in the paper. Section 6 presents the prototype structure of ZRe�ner,

which is based on the three-tier architecture. Section 7 introduces the birthday

book case study using ZRe�ner. Section 8 discusses the advantages and distanta-

ges of ZRe�ner and the re�nement calculus for the modi�ed Z, and also presents

our future work.

2 Z and The Re�nement Calculus Overview

2.1 Z Overview

Z is a speci�cation language which uses schemas and schema operators to con-

struct complex speci�cations from component speci�cations. Z speci�cations

have good hierarchical structures. There are two basic kinds of schemas: one

speci�es the states of a system and the other speci�es the operations which

can be performed on these states. In the following example, we describe this by

specifying a class manager. The same example can be found in [9].

Example 2.1 We can use the following state schema,

Class

yes ;no : PStudent

yes \ no = fg

#(yes [no) � max

164

to describe the state of a system to record which students in a class have (yes)

or have not (no) completed a set of exercises.

If we want to enlarge the state of this system, for example adding students

information such as their registration numbers into the system, we can add

another state schema by the schema calculus.

RegistrationNumbers

regnumber : Student ! Registration

8 x ; y : Student j x 6= y � regnumber(x) 6= regnumber(y)

Then the overall state of the enlarged system is

Class ^ RegistrationNumbers :

An operation to enrol a new student into the class could be described by

EnrolOk

�Class

s? : Student

s? 62 yes [no

#(yes [no) < max

yes
0 = yes

no
0 = no [fs?g

The new student will not have done the excises, so he will be put into set no. Now

the declaration introduces the state before and after the operation(in �Class)

and the input variable s?. The predicate shows the relation between the variables

of the state before(yes and no) and the state after(yes 0 and no
0) and s?.

2

The Z schemas also have an \open-world" view about variables which do

not occur in its signatures [18]. It places no restrictions on those variables.

For example, in the above schema Class does not mention variable regnumber

but schema RegistrationNumber has regnumber in its signature. So Class ^

RegistrationNumber can change regnumber according to RegistrationNumber .

2.2 The Re�nement Calculus

Re�nement calculus , developed independently by Back, Morgan and Morris, [1,

11, 10], provides a uniform method for deriving programs from speci�cations.

The calculus extends a programming language with an abstract speci�cation

construct. The calculus de�nes formally an ordering between speci�cations that

allows one speci�cation to be substituted for another. The semantics of both the

programming language and the speci�cation construct are de�ned by Dijkstra's

weakest precondition semantics [7].

165

The Re�nement Calculus introduces a speci�cation statement into the guard-

ed command language. Its novelty is the banishment of the di�erences between

speci�cations and program code. Therefore, software development can start with

an abstract speci�cation statement and then re�ne it gradually into program

code through mixed terms which may contain both speci�cation statements and

program code.

For example, the notation w := E is an assignment command, and is also

the program code. It changes the state so that the variable w is mapped to the

value E , and all other variables are unchanged. Assignments form the basis of

imperative programming language since they are easy to execute. Below we give

a law of re�nement for assignment.

Law 22 (assignment) If pre) post [wnE], then

w ; x : [pre j post] v w := E :

To demonstrate a re�nement example, we also give the following laws of re�ne-

ment:

Law 23 (strengthen postcondition) If post
0 V post, then

w : [pre; post] v w : [pre; post
0]:

Law 24 (weaken precondition) If pre) pre
0
, then

w : [pre; post] v w : [pre 0
; post]:

The following example shows a re�nement using the re�nement calculus.

Example 2.5 The following speci�cation sets x to either 1 or 2 when it is

non-negative:

x : [x � 0; x = 1 _ x = 2]

v fLaw 24 weaken preconditiong

x : [true; x = 1 _ x = 2]

v fLaw 23 strengthen postconditiong

x : [true; x = 1]

v fLaw 22 assignmentg

x := 1

2

The informal meaning of a speci�cation statement w : [pre j post] is as

follows:

If the initial state satis�es the precondition pre, then change only the

variables listed in the frame w so that the resulting �nal state satis�es

the postcondition post .

166

According to this explanation, the speci�cation statement has a \closed
world" view about the variables which do not occur in the frame w . That is,
those variables cannot be changed by the speci�cation statement. This does not
cause any problem for the Re�nement Calculus because it does not allow the
construction of speci�cations from individual ones using the schema operators.
The speci�cation statement always speci�es operations on the overall state. This
simply wipes out all the advantages of the schema calculus, thus Z.

2.3 Conclusion

There are two ways to integrate Z with the Re�nement Calculus. One is sug-
gested in [18] where two of the schema operators, conjunction and disjunction,
are introduced into the Re�nement Calculus such that the composition of spec-
i�cation statements are possible. However, these two operators turn out to be
non-monotonic with respect to the re�nement relation.

Another ways for the integration is to introduce the Re�nement Calculus into
Z. Once again, we face the problem of non-monotonicity of some of the schema
operators, including the conjunction and disjunction operators.

The goal of a development in a re�nement calculus is to start with a speci�-
cation at a high level of abstraction that captures only the essential properties
of the system and transform this to program code. A key factor in a re�nement
calculus's ability to achieve this goal is the use of a single wide-spectrum lan-
guage that covers both speci�cation and program code [2, 13]. A well designed
wide-spectrum language allows speci�cations which are concise and which give
maximum freedom to the developer when choosing an implementation. Develop-
ment in a re�nement calculus proceeds via transformations which replace (pos-
sibly non-executable) speci�cation constructs with (executable) programming
language constructs. Thus, at any stage of the development the object being
reasoned about is usually a mix of speci�cation and programming constructs
written in the wide-spectrum language.

Based on this reason, we propose a modi�ed Z, which separates pre- from
postcondition, as the language of the re�nement calculus. Then we de�ne the
schema calculus for the modi�ed Z which makes the conjunction operator mono-
tonic with respect to the re�nement relation.

3 The Modi�ed Z Speci�cation Language

Z, as a \pure" speci�cation language, tries to distance itself as far away from
implementation as possible. It uses abstract data types, allows the introduction
of new signatures at anywhere, and it does not care about the pre- and post-
conditions of operations. If we compare Z with VDM, we can see one important
di�erence between them. That is, VDM is a re�nement development method,
whereas Z is just a speci�cation language. The result of this is that the spec-
i�cation formulae in VDM uses keywords like a programming language and is

167

syntactically more complicated than Z schemas. Of course, with re�nement de-

velopment in mind, VDM also separates precondition from postcondition. If we

want to use Z during the development of software, Z needs to be modi�ed.

The closed-world view means that any variable in the signature of a spec-

i�cation which is not also in its frame can not be changed. As a result, the

combination of two speci�cation can not in general produce a new speci�cation

which can change all of the variables in both frames.

To solve this problem, we remove the frame of the speci�cation statement,

and introduce the Z declaration part into the speci�cation statement. The �nal

speci�cation is similar to Z schema except that the predicates of the Z schema

are divided into two parts: the precondition part and the postcondition part. We

call this schema as modi�ed Z schema. The declaration part introduces the state

variables of a schema. Thus, the variables in the signature of a speci�cation are

also in its declaration part. As the same as the speci�cation statement in [17],

the postcondition of an operation in a modi�ed Z speci�cation can be used to

specify those variables that do not change.

Schema

Declaration Part

Precondition Part

Postcondition Part

w : [pre; post]

We can also use an abbreviation:

Schema b= [decl j pre j post]:

We refer to the pre- and postconditions as pre Schema and post Schema, and the

declaration as decl Schema.

Example 3.1 The operation schema EnrolOk can then be speci�ed by

EnrolOk

�Class

s? : Student

s? 62 yes [no

#(yes [no) < max

yes
0
= yes

no
0
= no [fs?g

2

The reasons for doing this are as follows. First, the Z schema operators are

not monotonic with respect to the re�nement relation. This means that we can-

not retain the schema operators during the re�nement development and will lose

168

the hierarchical structures of Z schema expressions at the very beginning of the

re�nement process. Another reason for separating precondition from postcondi-

tion is that it is not easy to see the re�nement steps in schema which rely on

separate pre- and postconditions. For example, it is hard to see the re�nement

of a schema description of an operation directly into an iteration because we can

hardly see the loop invariant and the bound function in the schema description.

The advantages of doing this is that it makes the modi�ed Z more expressive.

For example, we can have miraculous speci�cations, which can be useful during

re�nement.

Example 3.2 We de�ne the miraculous speci�cations:

SM

decl

pre

false

The schema is called miracle because it implements anything. Miracles arise

\accidentally" in program development when we make an incorrect design step.

It is discussed in more detail in [12].

2

While composing a modi�ed speci�cation with the other modi�ed speci�-

cation, we introduce two operations into the modi�ed Z notations: the schema

conjunction and the schema disjunction, in order to keep the feature of the open-

world view. We also extend schema operations to be monotonic with respect to

the re�nement relation except schema disjunction. Since the cases joined by

schema disjunctions are mutually exclusive, we prove that schema disjunctions

can also be de�ned by alternations. By keeping the mutual conditions of the

schema disjunction, we can re�ne the disjoined schemas individually. Thus, we

can leave the re�nement of schema conjunctions and disjunctions to the later

stage and keep the Z incremental style of developing speci�cations. The above

details are presented in [21].

4 The Weakest Precondition Semantics

4.1 The Weakest Preconditions

Weakest preconditions were �rst introduced in [7], where they are used to de�ne

the semantics of Dijkstra's language of guarded commands:

The condition that characterizes the set of all initial states such that ac-

tivation will certainly result in a properly terminating happening leaving

the system in a �nal state satisfying a given postcondition is called \the

weakest precondition corresponding to that postcondition."

169

If the system is denoted by S and the desired postcondition by , then we

denote the corresponding weakest precondition by

wp:S : :

If the initial state satis�es wp:S : , it is guaranteed to establish eventually the

truth of . Because wp:S : is the weakest precondition, we also know that if the

initial state does not satisfy wp:S : , this guarantee cannot be given, since the

system may end in a �nal state not satisfying or it may even fail to reach a

�nal state at all.

The meaning of wp:S : , the weakest precondition for the initial state such

that activation will certainly result in a properly terminating happening, leaving

the system S in a �nal state satisfying the postcondition , allows us to give

the wp semantics for speci�cation statements [10] and Z speci�cations [4]. This

paper also extends the wp semantics to the modi�ed Z speci�cations.

De�nition 41 (Weakest precondition) The weakest precondition of a mod-

i�ed Z schema [d j pre j post] can be de�ned by

wp:[d j pre j post]: b= pre ^ (8 ds 0; do! � post))

where d declares the set of all the schema variables: d b= ds [ds 0 [di? [do!. ds

declares the set of state variables, ds 0, the corresponding dashed variables, di?,

the input variables, do!, the output variables.

2

In the de�nition above, termination is captured by pre, and correctness is

captured by (8 ds 0; do! � post)).

4.2 The Guarded Commands

A Guarded Command, is a statement `pre-�xed' by a boolean expression termed

a guard. A guard is a formula which selects those states to which its associated

command applies. A command is the associated program to be executed. The

guarded command itself is written

G ! P ;

where G is a guard and P a program.

To execute a guarded command we �rst evaluate the guard, then execute

the statement if the guard is true, otherwise do nothing. The following example

shows the execution of a guarded command.

Example 4.2

x � 0! x := x � 1

The command x := x � 1 can be executed only if its guard x � 0 is true.

2

170

Semantics for ordinary guarded commands are introduced in [7, 10]. Here we

give the weakest predicate transformers for all the basic guarded commands. The
semantics includes assignment, sequential composition, alternation and iteration.
The semantics is de�ned in terms of the weakest precondition with respect to a
postcondition .

wp: skip : b=

wp: abort : b= false

wp:(x := E): b= [xnE]

wp:(P ; Q): b= wp:P :(wp:Q :)

wp:fpreg: b= pre ^

wp:[post]: b= post [
0n])

wp: j [var dvl � P] j : b= 8 dx 0 � wp:P [vl ; vl
0nx ; x 0

]:

wp: j [con dcl � P] j : b= 9 dx � wp:P [clnx]:

wp:(if 2i � Gi ! Pi �): b= (_i � Gi) ^ (^i � Gi) wp:Pi :)

wp:(do 2i � Gi ! Pi od): b= 9 k � 0 � Hk ()

Fig.1. Predicate transformers for guarded commands

In the semantics for the iteration, the conditions Hk () is given by

Hk () b=

�
 ^ : (_ i � Gi) k = 0;
wp:(if 2i � Gi ! Pi �):Hk�1() _ H0() k > 0:

5 A Integrated Re�nement Calculus

In this section, we brie
y describe a re�nement calculus for the modi�ed Z, which
is based on Morgan's re�nement calculus but uses Z schemas(modi�ed) instead
of the speci�cation statement (for more details, see [26]).

The re�nement calculus of Back, Morgan and Morris [1, 11, 10], are all based
on the work of Dijkstra [7]. Each of the calculus creates a wide-spectrum language
by extending a simple imperative programming language with speci�cation con-
structs. The semantics of both the programming constructs and the speci�cation
constructs of this language are given in terms of Dijkstra's weakest preconditions.

The correctness of program transformations is also characterised in terms of
weakest preconditions. A large number of re�nement rules which capture both
traditional design intuitions and guarantee correctness have been proven using
this characterisation. These rules range from simple laws which introduce local
variables to complex laws which show that recursive procedures are correct.

In this section, we present the re�nement calculus for the modi�ed Z: its
conversion and re�nement laws. Most of the conversion laws are based on those

171

of [9, 3]. The re�nement laws are, on the whole, based on those of Morgan's

calculus [10].

Our main objective is to formalise the re�nement calculus for the modi�ed

Z. Fortunately, a lot of work have been done based on speci�cation statements

[9, 3].

During the re�nement steps, re�nement results produced by the modi�ed Z

is more readable and concise than that using the speci�cation statements [4].

Our re�nement calculus uses the modi�ed Z as the development language. It has

a schemas calculus like Z and also splits the precondition and the postcondition

for the re�nement. So it obtains the advantages of Z and re�nement calculus as

well.

Additionally, in [21] we introduce the monotonic schema operations into the

modi�ed Z schema and make it possible for the incremental style of program

development. This is a distinctive attribute of our work.

In [9], the method for re�ning Z speci�cations is divided into two steps. First

change notation to the re�nement calculus notation, then apply algorithm re�ne-

ment using the re�nement calculus. The �rst step is also called notation change.

The �rst change is to convert from the undashed/dashed convention to the use

of a subscript 0, and to shorten the names of th names of variables, if necessary,

also removing ? and ! su�ces from the names of input and output variables.

Then use a basic law, which is based on Implicit Precondition abbreviation, to

translate from Z schemas to speci�cation statements:

w : [(9w : T j inv � pred)[w=w0]; pred]:

The precondition of the speci�cation statement is calculated by existentially

quantifying the output variables and dashed variables in the schema's predicate,

as described in [25].

As in [3], we use the dashed variables in the modi�ed Z rather than 0-subscript

variables in the speci�cation statements, for the sake of simplicity, and keeping

the dashing convention of Z to maintain the compliance with this notation.

Similarly, we can get the basic conversion law for the translation from the Z

schemas to the modi�ed Z schemas.

Law 51 (Basic Conversion)

[�S ; di?; do! j p]

= [d j inv ^ 9 ds 0
; do! � inv 0 ^ p j inv 0 ^ p]

where S b= [ds j inv]and d b= ds [ds 0 [di? [do!.

By way of illustration, we consider the speci�cation of the class manager

presented in Example 2.1.

Example 5.2 We convert the Z operation EnrolOK to the modi�ed Z schema

by applying Basic Conversion Law.

EnrolOk =

172

EnrolOk

�Class

s? : Student

s? 62 yes [no

#(yes [no) < max

yes 0 = yes

no0 = no [fs?g

2

Z Schemas which specify operations that do not change the state, have the
form

[�S ; di?; do! j p]:

They can be written as:

[�S ; di?; do! j p ^ s10 = s1 ^ � � � ^ sn 0 = sn]

where �ds = s1 [� � � [sn and s1; � � � ; sn are state components of schema S .
Since schemas of this form occur very frequently in Z speci�cations, we present
an additional conversion law as below.

Law 53 (Basic Conversion)

[�S ; di?; do! j p]
= [d j inv ^ 9 do! � p[�ds 0n�ds] j p]

where S b= [ds j inv]and d b= ds [ds 0 [di? [do!.

Based on the re�nement laws in [10, 9, 3], we present the re�nement laws for
the modi�ed Z. As with Morgan's re�nement calculus, the re�nement calculus
for the modi�ed Z supports procedures, recursion and data re�nement. It is com-

pletely formalised in terms of the weakest preconditions. The target language of
the re�nement calculus is an extension of Dijkstra's guarded command language
[7]. The laws are listed by the alphabetic order in the appendix. The soundness
of all the laws are proved in [25].

In our re�nement calculus, the re�nement of a Z speci�cation typically begins
with the application of a conversion law that transforms its operation schemas
into the modi�ed Z schemas, in which the precondition and the postcondition are
separated, and then proceeds with the application of proper re�nement laws. The

case study presented in the paper uses some re�nement laws of the re�nement
calculus of the modi�ed Z, which are also included in the appendix.

173

6 The ZRe�ner Structure

We intend to develop a prototype re�nement tool, ZRe�ner, which supports

the development of speci�cation and the re�nement of Z. This section presents

the structure of the prototype ZRe�ner. In general, the structure of ZRe�ner is

divided into three tiers as in Fig.2.

Fig.2. ZRe�ner Architecture

The �rst tier is the User Interface which supports all the major features ex-

pected of a standard editor including Cut, Copy, Paste, etc. In the User Interface,

a user can input a Z speci�cation in the editor, or use the File menu to load a

Z speci�cation from a disk �le. Fig.3 is a sample of ZRe�ner user interface.

The second tier is the ZRe�ner Environment, which provides a system en-

vironment to handle the messages between the User Interface and the ZRe�ner

engine. The ZRe�ner environment has four components: the syntax checker, the

type checker, the typesetter and the message handler. A user may ask the system

to analyse the current Z speci�cation. The message handler is in charge of the

message handling. First, it will pass the control to the syntax checker to check

the syntax of the current Z speci�cation and get the feedback of the check result

which is sent back to the user interface. Secondly, it will ask the type checker

to do the Z type checking for the current Z speci�cation. The message handler

can also connect to an external checker to do some other checks, e.g. domain

174

Fig.3. ZRe�ner User Interface

checking. All message communication between the ZRe�ner environment and

the external checkers are controlled by the message handler.

The typesetter is used to display the output. The user of ZRe�ner can choose

between two display modes: text mode and graphical mode. For instance, a Z

speci�cation can be displayed in LATEX format. By using a typesetter, a graphical

display with the standard Z schema can be obtained in the user interface so that

it is more straightforward and friendly than using the text mode. In ZRe�ner,

the display of the modi�ed Z schema is also supported by the typesetter.

The third tier of ZRe�ner is the ZRe�ner engine. The ZRe�ner engine is the

main part of the re�nement tool. It interacts with the message handler and the

external theorem prover. When the user chooses to re�ne a Z speci�cation, the

message handler will pass the user's command and this Z speci�cation to the

ZRe�ner engine. The user's input includes the information about the re�nement

law selected so that the ZRe�ner engine can locate the law and the tactics from

the databases. Then it will process the re�nement according to the re�nement

law. During the calculation, the external theorem prover is automatically called

by the ZRe�ner engine for the proof of certain obligations and the calculation

of the precondition. After that, the user can get the re�nement results from the

user interface.

The advantage of the three-tier structure of ZR�ner is that it is more
exible.

As we can see from Fig.1, the tier-1 is in charge of user interaction. The tier-2

is mainly in charge of the speci�cation processing while the tier-3 is managing

175

the re�nement process. Additionally, it provides greater application scalability,

lower maintenance and increases reuse of components of all tiers.

7 A Case Study on Z Speci�cation Development

7.1 Overview and Motivation

To demonstrate our re�nement tool, we use the classic case study of the birthday

book speci�ed by Spivey [16]. This case study was also used in [3, 4].

7.2 Z Speci�cation

The birthday book is a simple system which records people's birthdays and is

able to query people's birthdays in its database. For the sake of simplicity, we

start the development from a concrete version of the birthday book speci�cation

and use only two operations.

The Z speci�cation of a birthday includes basic types: NAME and DATE ,

which NAME is the given set of people's names and DATE is the given set of

dates.

[NAME ;DATE]

We describe the state space of the system as a schema named Birthdaybook1.

The birthday book is represented by two arrays which modeled by functions

from the set N1 of strictly positive integers to NAME or DATE . The birthday

for name[i] is the corresponding element dates [i] of the array dates . The variable

hwm (for `high water mark') shows how much of the array is in use.

BirthdayBook1

names : N1 ! NAME

dates : N1 ! DATE

hwm : N

8 i ; j : 1 : : hwm �

i 6= j) names [i] 6= names [j]

This state schema introduces three state variables. The state invariant states

that all the names are di�erent. The �rst operation AddBirthday1 adds a new

person into the database. (We ignore the exception cases.) We increase hwm by

one and add the record of the new name and date into the arrays.

176

AddBirthday1

�BirthdayBook1

name? : NAME

date? : DATE

8 i : 1 : : hwm � name? 6= names [i]

hwm 0 = hwm + 1

names 0 = names � fhwm 0 7! name?g

dates 0 = dates � fhwm 0 7! date?g

The operation FindBirthday1 queries the person's birthday at the database.

We output the birthday of the person name? who is recorded in the array: names .

FindBirthday1

�BirthdayBook1

name? : NAME

date! : DATE

9 i : 1 : : hwm �

name? = names [i] ^ date! = dates [i]

7.3 Re�nement

In the following part of the section, we develop the �nal code for the birthday

book by using ZRe�ner.

ZRe�ner uses the modi�ed Z schemas rather than the speci�cation state-

ments to develop the �nal program. For the sake of conciseness, ZRe�ner takes

predSchema as the predicates of Schema. The �rst step of the re�nement in

ZRe�ner is transforming the schema calculus into a modi�ed Z schema of the

form: [d j pre j post]. In the Re�nement menu of ZRe�ner, we select and apply

Basic Conversion Law to AddBirthday1 and obtain the speci�cation statement

shown below:

AddBirthday1 = fBasic Conversiong

177

AddBirthday1

names ;names 0 : N1 ! NAME

dates ; dates 0 : N1 ! DATE

hwm; hwm 0 : N

name? : NAME

date! : DATE

predBirthdayBook1

8 i : 1 : : hwm � name? 6= names [i]

predBirthdayBook10

8 i : 1 : : hwm � name? 6= names [i]

hwm 0 = hwm + 1

names 0 = names � fhwm 0 7! name?g

dates 0 = dates � fhwm 0 7! date?g

We apply Sequential Composition Introduction Law in ZRe�ner to obtain a

sequential composition of two schemas:

AddBirthday1 v fSequential Composition Introductiong

j [con X : N1 �

AddBirthday1 1

names ;names 0 : N1 ! NAME

dates ; dates 0 : N1 ! DATE

hwm; hwm 0 : N

name? : NAME

date! : DATE

predBirthdayBook1

8 i : 1 : : hwm � name? 6= names [i] ;

predBirthdayBook10

8 i : 1 : : hwm � name? 6= names [i]

hwm 0 = hwm + 1

AddBirthday1 2

names ;names 0 : N1 ! NAME

dates ; dates 0 : N1 ! DATE

hwm; hwm 0 : N

name? : NAME

date! : DATE

predBirthdayBook1

8 i : 1 : : hwm � name? 6= names [i]

hwm = X + 1

predBirthdayBook10

8 i : 1 : : hwm � name? 6= names [i]

hwm 0 = X + 1

names 0 = names � fhwm 0 7! name?g

dates 0 = dates � fhwm 0 7! date?g

] j

It is easy to see that an assignment can re�ne the above speci�cation by

applying Assignment Introduction Law in ZRe�ner and get the following code

for AddBirthday1 1 and AddBirthday1 2:

178

AddBirthday1 1 v fAssignment Introductiong

hwm := hwm + 1

AddBirthday1 2 v fAssignment Introductiong

names [hwm]; dates [hwm] := name?; date?

Now we pick up the other operation: FindBirthday1. Again, we use Basic

Conversion Law to make the precondition and the postcondition displayed in

the di�erent of the speci�cation in ZRe�ner.

FindBirthday1 = fBasic Conversiong

FindBirthday1

names : N1 ! NAME

dates : N1 ! DATE

hwm : N

name? : NAME

date! : DATE

predBirthdayBook1

9 i : 1 : : hwm � name? = names [i]

9 i : 1 : : hwm � name? = names [i] ^ date! = dates [i]

We may re�ne this speci�cation using the re�nement law for iteration, which

should �nd a proper birthday for a certain person in the database. To proceed,

we �rst introduce an auxiliary variable as the loop index, by applying Variable

Introduction Law in ZRe�ner.

v fVariable Introductiong

j [var k : N1 �

FindBirthday1

names : N1 ! NAME

dates : N1 ! DATE

hwm : N

name? : NAME

date! : DATE

k ; k 0 : N1

predBirthdayBook1

9 i : 1 : : hwm � name? = names [i]

9 i : 1 : : hwm � name? = names [i] ^ date! = dates [i]

] j

179

Next, variable k is put into the speci�cation which then is re�ned to a sequen-

tial composition with a sub-speci�cation FindBirthday1 1 and an assignment of

the assigning dates [k] to date!.

v fFollowing Assignment Introductiong

FindBirthday1 1

names : N1 ! NAME

dates : N1 ! DATE

hwm : N

name? : NAME

date! : DATE

k ; k 0 : N1

predBirthdayBook1

9 i : 1 : : hwm � name? = names [i]

9 i : 1 : : hwm � name? = names [i] ^

dates [k 0] = dates [i]

; date! = dates [k]

We still need to re�ne the above schema. By choosing the invariant

9 i : 1 : : hwm � name? = names [i] ^ 8 i : 1 : : k � 1 � name? 6= names [i]

we apply Sequential Composition Introduction Law in ZRe�ner to obtain a seq-

uential composition of two schemas: FindBirthday1 1 1 and FindBirthday1 1 2,

which is split by the loop invariant.

FindBirthday1 1 v fSequential Composition Introductiong

FindBirthday1 1 1

names : N1 ! NAME

dates : N1 ! DATE

hwm : N

name? : NAME

date! : DATE

k ; k 0 : N1

predBirthdayBook1

9 i : 1 : : hwm � name? = names [i]

9 i : 1 : : hwm � name? = names [i]

8 i : 1 : : k 0 � 1 � name? 6= names [i]

;

180

FindBirthday1 1 2

names : N1 ! NAME

dates : N1 ! DATE

hwm : N

name? : NAME

date! : DATE

k ; k 0 : N1

9 i : 1 : : hwm � name? = names [i]

8 i : 1 : : k � 1 � name? 6= names [i]

9 i : 1 : : hwm � name? = names [i] ^ dates [k 0] = dates [i]

It is clear to see that FindBirthday1 1 1 is to establish the initial invariant

by the following assignment:

FindBirthday1 1 1 v fAssignment Introductiong

k := 1

FindBirthday1 1 2 should be re�ned to an iteration. By strengthening post-

condition, we obtain the standard iteration speci�cation, which includes the loop

invariant and the boolean guard.

FindBirthday1 1 2 v fStrengthen Postconditiong

FindBirthday1 1 2

names : N1 ! NAME

dates : N1 ! DATE

hwm : N

name? : NAME

date! : DATE

k ; k 0 : N1

9 i : 1 : : hwm � name? = names [i]

8 i : 1 : : k � 1 � name? 6= names [i]

9 i : 1 : : hwm � name? = names [i]

8 i : 1 : : k 0 � 1 � name? 6= names [i] ^ name? = names [k 0]

By selecting Iteration Introduction Law in ZRe�ner, we obtain the following

iteration easily:

FindBirthday1 1 2 v fIteration Introductiong

do name? 6= names [k]!

181

j [var k : N1 �
k := 1;
do name? 6= names[k] !

k := k + 1
od;
date! := dates[k]

] j

Fig.3. The �nal code of FindBirthday1

FindBirthday1 1 2 1

names : N1 ! NAME

dates : N1 ! DATE

hwm : N

name? : NAME

date! : DATE

k ; k 0 : N1

9 i : 1 : : hwm � name? = names [i]

8 i : 1 : : k � 1 � name? 6= names [i] ^ name? 6= names [k]

9 i : 1 : : hwm � name? = names [i]

8 i : 1 : : k 0 � 1 � name? 6= names [i] ^ 0 � hwm � k 0
< hwm � k

od

As we can see, the part of the modi�ed Z schema is embedded in the do-loop.

It is so clear to see that the loop body must increase the variant hwm � k . So

we obtain the following re�nement result of the loop body:

FindBirthday1 1 2 1 v fAssignment Introductiong

k := k + 1

So comes the �nal code in ZRe�ner, also shown in Fig.3.

In the next section, we compare the di�erences between the re�nement meth-

od which ZRe�ner used and other methods, and distinguish their advantages and

disadvantages.

8 Conclusion

The case study illustrates that a Z speci�cation can be developed to code under

ZRe�ner. In ZRe�ner, the �rst step of development begins with selecting and

applying a conversion law that transforms a Z operational schema into a modi�ed

182

Z schema, in which the precondition and the postcondition are separated, then

proceeds with the application of proper re�nement laws supported by ZRe�ner.

All the proof obligations required by every re�nement step are automatically

handled by ZRe�ner. The reliability of the re�nement is assured. The ZRe�ner

users need not consider any proof procedure but concentrates on the re�nement

development. The e�ciency of the development method is also greatly improved.

Another advantage of using ZRe�ner is that the re�nement steps produced

by ZRe�ner is more readable and concise than that using the speci�cation state-

ments [4]. ZRe�ner uses the modi�ed Z schema as the development language.

It has a schemas calculus like Z and also splits the precondition and the post-

condition for the re�nement. So it obtains the advantages of Z and re�nement

calculus as well.

Case studies using the speci�cation statements and pure Z schemas can be

found in [27].

8.1 Future Work

Since the system we produced here is only a prototype system, a lot of work has

to be done to make it practical. Our future work of ZRe�ner includes more case

studies and practical work on the tool development.

We can see from the previous section, that Z schemas are much more readable

than the speci�cation statements in the re�nement calculus which do not support

any abstraction, since some additional information is hidden by Z notations: �

and �. We can also see that two notations are used in ZRe�ner: the Z notation

and the modi�ed Z notation. Is it possible to use only one notation because it is

more di�cult for a developer to use one notation for speci�cation and the other

for development? Since Z notation is widely accepted, it is a good idea to use

them in the re�nement calculus. The formalisation of the re�nement calculus

using Z is an interesting motivation for the future investigation.

In the re�nement calculus, the �nal code is guarded commands, which is

di�cult to execute by the machine. To make the �nal code be a programming

language, such as C, is also an interesting topic. In [23], we investigate a case

study of re�ning Z to C code.

Much work is to be done on strategies for re�ning Z speci�cations. Simplicity

and e�ciency should be considered during re�ne steps. Based on this, the new

re�nement laws may be introduced to some steps.

A wide range of tools [24] that support several aspects of its use in speci�ca-

tion have been implemented. However, none of them support re�nement using

Z. The main objective of our research is to develop a fully integrated tool for Z

which supports re�nement and good graphical user interfaces.

With the three-tier structure of ZRe�ner, it is easier to develop and re�ne

its components separately. We can develop the components of each module �rst,

and then integrate them into the three-tier architecture. For the user interface,

we wish to develop a perfect window-based system. Some tools can be used to

develop the user interface, such as Java Workshop, Motif, Sun Workshop Visual

and Tcl/Tk, etc.

183

Since the technologies for syntax checking, type checking and typesetting are

widely available, the development of these components should not be a problem.
The major work should be the message handler in tier-2. There will also be a
lot of work to be carried out to build a good re�nement engine for ZRe�ner.
Again, we can make use of existing theorem prover. Z/EVES, for example, [14]
is a general tool which supports the analysis of Z speci�cations in several ways:
syntax and type checking, schema expansion, precondition calculation, domain
checking, and general theorem proving. Since the latest version of Z/EVES sup-
ports using the API, it would be interesting to integrate Z/EVES with ZRe�ner.
Of course, there are other good theorem provers we can investigate [24].

Acknowledgments

Special thanks to Dr. Ana Cavalcanti for her generosity in sending her thesis
and papers to us and also valuable discussions. Thanks also to Mark Saaltink
for his help with Z/EVES.

References

1. R. J. R. Back. On the Correctness of Re�nement Steps in Program Development.

PhD thesis, University of Helsinki, 1978.

2. F. L. Bauer, H. Ehler, A. Horsch, B. Moller, H. Partsch, O. Puakner and P. Pepper.

The Munich Project CIP: Volume II: The Program Transformation System CIP-S,

Lecture Notes in Computer Science p.292, Springer-Verlag, 1987.

3. A. L. C. Cavalcanti. A Re�nement Calculus for Z. PhD thesis, Oxford Univer-

sity, Computing Laboratory, Programming Research Group, Technical Monograph

PRG-123,1997.

4. A. L. C. Cavalcanti and J. C. P. Woodcock. ZRC - A Re�nement Calculus for Z.

Formal Aspects of Computing, 10(3): 267-289, 1998

5. A. L. C. Cavalcanti and J. C. P. Woodcock. A Weakest Precondition Semantics

for Z. The Computer Journal, 41(1):1-15,1998.

6. B. P. Collins, J.E. Nicholls and I. H. Sorensen. Introducing Formal Methods: the

CICS Experience with Z. IBM Hursley and PRG Oxford University, 1987.

7. E. W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.

8. Ian Hayes. Speci�cation Case Studies. Prentice Hall, second edition, 1993.

9. S. King. Z and the Re�nement Calculus. VDM'90 VDM and Z - Formal Methods

in Software Development, volume 428 of Lecture Notes in Computer Science, pages

164-188, Kiel-FRG, Spriner-Verlag, April 1990.

10. C. C. Morgan. Programming from Speci�cations. Prentice Hall, 2nd edition, 1994.

11. J.M. Morris. A theoretical basis for stepwise re�nement and the programming

calculus. Science of Computer Programming 9, pp. 287-306, 1987.

12. C. C. Morgan, P. H. B. Gardiner, and K. A. Robinson. On the Re�nement Calculus.

Springer-Verlag, 1993.

13. H. A. Partsch. Speci�cation and Transformation of Programs : a Formal Approach

to Software Development. Springer-Verlag, 1990.

14. Mark Saaltink. The Z/EVES System. ORA Canada, In ZUM'97: The Z Formal

Speci�cation Notation (10th International Conference of Z Users, Reading, UK,

April 1997, Proceedings)

184

15. C.T. Sennet. Demonstrating the compliance of Ada programs with Z speci�ca-

tions. In C.B. Jones, R.C. Shaw, and T. Denvir (eds), 5th Re�nement Workshop,

Workshops in Computing, London, pp. 70-87, Springer Verlag, 1992.

16. J. M. Spivey. The Z Notation - A Reference Manual, 2nd edition. Prentice Hall,

1992.

17. Mark Utting. An Object-Oriented Re�nement Calculus with Modular Reasoning.

PhD thesis, University of New South Wales, Australia, 1994.

18. N. Ward. Adding Speci�cation Constructors to the Re�nement Calculus. In J. C.

P. Woodcock and P. G. Larsen, editors, FME'93: Industrial-Strength Formal Meth-

ods, volume 670 of Lecture Notes in Computing Science, pages 652-670. Springer-

Verlag, 1993.

19. J. B. Wordsworth. Software Development with Z. Addison-Wesley Publishers, 1992.

20. J. C. P. Woodcock. Implementing Prompted Operations in Z. 5th Re�nement

Workshop, Workshops in Computing, London, 1992. Prentice Hall.

21. B. Wu. Towards a Mechanised Software Development Method. MPhil to PhD

Transfer Report. Dept of Computing, University of Bradford, Dec 1999.

22. Jim Woodcock and Jim Davis. Using Z : speci�cation, re�nement, and proof. Pren-

tice Hall, 1996.

23. B. Wu, D.R.W. Holton and L. Lai. Case Study: A Sales Database. Technical Re-

port. Dept of Computing, University of Bradford, Jan 2000.

24. B. Wu and L. Lai. A Tool Survey on Z Speci�cation and Re�nement. Technical

Report. Dept of Computing, University of Bradford, July 1999.

25. B. Wu and L. Lai. Calculating the Pre- and Postcondition. Technical Report. Dept

of Computing, University of Bradford, Aug 1999.

26. B. Wu and L. Lai. A Weakest Precondition Semantics for the Modi�ed Z. Technical

Report. Dept of Computing, University of Bradford, Aug 1999.

27. B. Wu and L. Lai. Combining the Re�nement Calculus with Z { Case Studies.

Technical Report. Dept of Computing, University of Bradford, Aug 1999.

A Re�nement Laws Used in the Paper

Law A1 (Assignment Introduction) If pre) post [vl 0nel][�ds 0n�ds], where
dvl declares the variables of vl , vl contains no duplicate variables, vl and el

have the same length and have no free dashed variables, and the corresponding

variables of vl and expression of el have the same type, then

[d ; dvl ; dvl 0 j pre j post] v vl := el

where d b= ds [ds 0 [di? [do!.

Law A2 (Basic Conversion)

[�S ; di?; do! j p]
= [d j inv ^ 9 ds 0; do! � inv 0 ^ p j inv 0 ^ p]

where S b= [ds j inv]and d b= ds [ds 0 [di? [do!.

185

Law A3 (Basic Conversion)

[�S ; di?; do! j p]
= [d j inv ^ 9 do! � p[�ds 0n�ds] j p]

where S b= [ds j inv]and d b= ds [ds 0 [di? [do!.

Law A4 (Following Assignment Introduction) If d b= ds [ds 0 [di? [do!
and dvl declares the variables of vl , vl contains no duplicate variables, vl and el

have the same length and have no free dashed variables, and the corresponding

variables of vl and expression of el have the same type, then

[d ; dvl ; dvl 0 j pre j post]
v [d ; dvl ; dvl 0 j pre j post [vl 0nel [�ds ; vlnds 0; vl 0]]; vl := el

Law A5 (Iteration Introduction) If vrt is an integer, each gi and vrt have

no free dashed variables, then

[d j inv j inv [�dsn�ds 0] ^ : (_ i � gi [�dsn�ds 0])]
v do 2i � gi ! [d j inv ^ gi j [�dsn�ds 0] ^ 0 � vrt [�dsn�ds 0] < vrt] od

where d b= ds [ds 0 [di? [do!.

Law A6 (Sequential Composition Introduction) If mid is a predicate and

it has no free dahsed variables and the variables of post are not free in ds, then

[d ; dx ; dx 0 j pre j post]
v [d j pre j mid [�dsn�ds 0]]; [d ; dx ; dx 0 j mid j post]

where d b= ds [ds 0 [di? [do! and dx declares the variables of x , dx 0, the

corresponding dashed variables.

Law A7 (Sequential Composition Introduction) If mid is a predicate and

cl is the constants, x is the variables, cl and x have the same length and the con-

stants of cl have the same type as the corresponding variables of x , the variables

of cl and cl 0 are not free in mid and [d ; dx ; dx 0 j pre j post], then

[d ; dx ; dx 0 j pre j post]
vj [con dcl �

[dx ; dx 0; do1! j pre j mid]; [d ; dx ; dx 0 j mid [xncl][0n] j post [xncl]]
] j

where dcl declares the constants of cl , dx declares the variables of x , dx 0, the

corresponding dashed variables, d b= ds [ds 0 [di? [do! and do1! � do!.

Law A8 (Strengthen Postcondition) If pre ^ npost) post, then

[d j pre j post] v [d j pre j npost]

Law A9 (Variable Introduction) If the variables of vl and vl 0 are not free

in [d j pre j post] and are not dashed, then

[d j pre j post] =j [var dvl � [d ; dvl ; dvl 0 j pre j post]] j

where dvl declares the variables of vl .

186

187

Integrating formal methods

into the development cycle of a

safety-critical embedded software system

P.G. Bertoli, A. Cimatti, P. Traverso

Istituto per la Ricerca Scienti�ca e Tecnologica, Povo, Italy

E-mail: fbertoli,cimatti,leafg@irst.itc.it

Abstract

This paper describes a technology transfer project where formal

speci�cation and veri�cation techniques have been applied in the de-

velopment of a safety-critical embedded software system. Irst was

directly involved in the development of the system, jointly working

with the design engineers of a leading company in the design of em-

bedded systems. The project was subject to two major requirements.

First, a tight integration of the formal methodologies into the existing

development cycle was to be achieved in order to enhance the qual-

ity of the design. Second, it was necessary to limit the impact of a

new, potentially costly methodology. During the project, a structured

speci�cation methodology was de�ned, tailored to the structure of the

system under analysis. This methodology combines the use of the

commercial tool ObjectGeode with a custom support tool, devel-

oped during the project, for the automatic generation of executable

models, starting from the formal speci�cation of subcomponents.

Keywords: Safety-critical systems, formal veri�cation, formal

speci�cation methodologies, early debugging, model check-

ing.

1 Introduction

Formal methods have a great potential of application in the development of

complex industrial systems [1]. They can be expressive and unambiguous

speci�cation methods, and formal veri�cation tools provide for powerful

debugging in early stages of design. For these reasons, in certain application

188

�elds, e.g. railways, formal methods are even becoming part of standards [2,

5]. However, the application of formal methods does not come for free.

Formal methods require a training e�ort; they can increase costs, slow down

the process of development, and involve changes on the development cycle.

This paper describes a project developed by a major company in col-

laboration with Irst, where formal methods have been integrated into the

development process of a safety-critical industrial system. The system un-

der design is a complex, safety-critical, embedded control system, realized by

several distributed, communicating software subsystems. The system fea-

tures several modes of operation, and performs complex interactions with

the environment. The details of the system (simply called System in the

following) and the name of the company cannot be disclosed at this stage

of the project. However, this paper is rather independent of the speci�c

features of the System. We will focus on the methodological aspects of

the project, and particularly on the solutions adopted during the develop-

ment to limit the costs of formal methods, though retaining their bene�ts.

Given the complexity and the safety-critical nature of the System, a major

project requirement was to take advantage of formal methods to develop

a high-quality design. This was to be achieved within strict project dead-

lines, and involved the training on-the-job of design engineers on the formal

methodology.

In order to meet such requirements without introducing a major bot-

tleneck, the introduction of formal methods was carefully evaluated. The

development process, based on a spiral model, was structured and selectively

integrated with the application of formal systems to the design of the most

important components and functions. This was achieved by structuring the

informal speci�cations in a modular way, and integrating them with formal

descriptions of the subcomponents and of the system requirements. Model

checking was used to validate the actual formal descriptions used as part of

the speci�cation. In order to make the validation task feasible, a tool was

developed to produce formal models of the System and its environment

starting from the independent formal speci�cations of the subcomponents.

This allowed to easily adopt a variety of abstractions depending on the prop-

erty under analysis. The formal description and extensive simulation have

been useful to validate a core of the system speci�cations, pinpointing some

aws in the starting informal speci�cations and feeding the implementors

with detailed and non-ambiguous descriptions of the functions.

The paper is structured as follows. Section 2 provides an overview of

the System. Section 3 describes in detail the requirements and constraints

189

Actuators SensorsOperators

System

Figure 1: The System and its environment

of the project. Section 4 discusses the speci�c diÆculties in the project and

the adopted solutions, focusing on the design of a custom speci�cation and

validation methodology, and of a tailored support tool. Section 5 discusses

some results. Section 6 draws some conclusions and sketches possible future

work.

2 Informal description of the System

2.1 Environment

The System operates within of a complex environment, interacting with a

number of di�erent actors, using several communication protocols (as shown

in Fig. 1):

� a number of sensors are connected to System. They convey hetero-

geneous data concerning the physical status of the environment and

time-varying constraints which must be obeyed by the System. For in-

stance, informations indicating the faulty status of a controlled device

can suggest that the System must enter a di�erent (e.g. degraded)

mode of operation.

� several actuators of di�erent kind allow the System to control the op-

190

SYSTEM

FU11 FU12

FU13

FU21 FUn1

CPU2CPU1CPU2CPU1CPU2CPU1

PLATFORM#1 PLATFORM#2 PLATFORM#n

Figure 2: The System architecture

erations according to the speci�ed rules and the status of the external

environment.

� human operators may interact with the System, sending commands,

selecting operation modes, and providing additional information to

respond to data requests.

2.2 Functionalities

The main functionality of the System is to determine a safe behaviour

which meets the constraints speci�ed from the environment. In order to do

so, the System is required to analyze the information acquired from di�erent

sources, integrate it, and respond suitably to the resulting conditions. This

functionalities can be performed according to di�erent operation modes,

which can be selected by a human operator or entered depending on the

informations conveyed by sensors. The System must guarantee - as much

as possible - the safety of the operations in spite of possible misbehaviours of

some of the actors interacting with it. For instance, in case of communication

191

failure with the external environment, the System might aim at a safe,

\inactive" state. Under certain particular conditions, however, it must be

possible for the human operator to override the behaviour rules determined

by the System. Finally, the system must be fail-safe, i.e. it must be able to

tolerate faults without producing unsafe behaviours, possibly maintaining

some of its most important functionalities.

2.3 Architecture

In order to provide a better guarantee against hardware failures, the Sys-

tem adopts an architecture based on redundancy, shown in �gure 2. At the

hardware level, the System is built on several independent hardware plat-

forms. Each platform runs a pair of CPUs, with a 2-out-of-2 exclusion logic,

a run-time checking mechanism ensuring that the application program is ex-

ecuted consistently. The platforms communicate using a �eld bus systems

based on redundancy.

At the software level, the System is composed of several distributed

programs, running on the di�erent platforms. Each program performs one

or more blocks of functionalities, called \functional units". Functional units

communicate according to a point-to-point paradigm, implemented by a

complex communication protocol. In normal functioning mode, one of the

platforms is in charge of performing the System's high level functions and

commanding the other platforms. The other platforms take care of inter-

acting with the external environment, performing logging activities, com-

manding the actuators, and so on. The System also implements a form

of functional redundancy, by doubling the platforms able to perform the

functions of the master platform. Two such units are run in parallel, one

actually performing the task while the other is in a \hot standby" status. A

master/slave switch protocol is used to guarantee that a correctly function-

ing platform is in charge. Finally, the System is a multi-master system: in

case both master units fail, one of the slave units is designed to guarantee

that a core of functionalities are provided.

3 The project

The aim of the project was to integrate formal modeling and veri�cation

techniques within the development cycle of the System in order to enhance

the con�dence on the correctness of the System itself.

192

In order to pursue this objective, it was agreed to proceed to the formal-

ization of a core of critical functionalities, and validate them against some

of the designed tests. The selection of such paradigmatic functionalities and

tests was carried out based on the analysis of the informal functional system

speci�cations, provided as an input by the project's committant.

The project featured some relevant additional requirements and con-

straints. In particular:

1. the design team was required to use the ObjectGeode set of tools as

the means for formal modeling and validation. ObjectGeode adopts

SDL [4] as its basic modeling language (although the StateChart

formalism [7] is also supported). Various formats are allowed for de-

scribing properties that should be obeyed by the system: propositional

stop conditions, message sequence charts ([6]), GOAL observers [9].

The key tool of the ObjectGeode set is a SDL simulator which al-

lows various forms of explicit state model checking, e.g. exhaustive,

interactive.

2. The software architecture was to be taken into account in the analysis

of the integration of the formal methods into the development process.

The details of the software architecture are explained in section 4.

Finally, the project was subject to rather tight time constraints. The

activity was carried out by a design team involving 6 people over eight

months of elapsed time. This included a cross-fertilization phase where the

Irst team and the design engineers exchanged know-how the use of formal

methods and on the application.

4 The approach

4.1 Structured formal speci�cation methodology

Integrating formal methods into the development of the System presented

a variety of issues, related to its nature and size. It is widely known that

applying formal methods to formally validate large software systems can be

very hard, and often unfeasible, mostly because of the heavy computational

costs of validation processes. A typical problem when using model checking

techniques such as those implemented by the ObjectGeode tools consists

in the state explosion of the model. This is due to the enormous number of

combinations of the state variables which might occur during the simulation

193

m121 m122

m1222

m1

m11 m12

m1221m1211

Figure 3: The software architecture of a functional unit

of the model. Several techniques can be used to reduce - often by orders of

magnitude - the size of the search space, e.g. driving the search, splitting the

search space, abstraction [3, 8]. The task of selecting and fruitfully applying

a combination of these techniques is very hard by itself. For instance, the

correct degree of abstraction of a concrete system depends on the properties

which we intend to prove on it, and on �nding a suitable representation for

those parts of the system which are most critical in terms of computational

e�ort during the simulation.

A di�erent issue stems from the requirement of integrating formal meth-

ods into a dynamic development process, where speci�cations may evolve

over time. This implies that a tight connection must be established between

the system speci�cations, the test speci�cations and their respective for-

mal modeling, and that it must be possible to maintain conveniently such a

connection over time. This can only be achieved by structuring the speci�ca-

tions and the models in a tightly coupled and modular way. Thus we had to

design a modeling methodology featuring (a) modularity and (b) amenabil-

ity to (eÆcient) formal validation. We took advantage of the structure of

the System software architecture, preliminarily analyzed by the software

team of the industrial partner, to design a tailored speci�cation and vali-

dation methodology for the System. Each platform realizes one or more

functional units by executing them in a reactive loop. Each functional unit

must terminate before the next is run; a time-out alarm mechanism is imple-

194

Test
Cases

Test

Spec.
System

Spec.

Testing

Formal Validation

Formal
Model

Formal
Requirements

System
Code

System

Req.

Figure 4: The development cycle of the System

mented. In the reactive loop, each functional unit �rst performs the input,

then executes, and �nally delivers the outputs to the other units. Figure 3

depicts the software architecture of one of functional units: a functional unit

is described as a tree hierarchy of �nite state machines (\machines" from

now on). Machines transfer control synchronously by activation/return sig-

nals which may deliver a variable number of values.

Based on this architecture, we chose to model each machine indepen-

dently, and to describe formally the interfaces presented to the other ma-

chines. Such a model would be integrated as a part of the machine's speci�-

cation. Thus we impacted the previously existing speci�cation methodology

by providing a clear rational for modular partitioning of the speci�cations,

195

and by integrating formal and informal aspects of the speci�cations into a

unique repository. In this way, modi�cations to machines are easily re
ected

into the speci�cations and the formal modeling alike. Figure 4 clari�es our

integration model of formal methods into the standard development cycle

of the System. The shaded box represents the formal phase of the develop-

ment. In the standard development cycle, informal system requirements are

the starting point to obtain informal system and test speci�cations. These

are translated by the software team into system code and test suites respec-

tively; these, in turn, are used in the testing phase. By formally de�ning the

system and test speci�cations, a formal validation phase becomes possible

independently from the existence of the system code. Indeed, it is possible

to intertwine formal modeling/validation and coding phases in order to start

from a selected kernel of the system, and to enrich it by adding details at

subsequent phases. This allows the V&V teams and the coding teams to

work in a pipeline chain, reducing the time impact of the integration. The

discovery of inconsistencies in the formal validation phase has an impact

over both the formal and informal descriptions of the system and/or of the

test speci�cations. Moreover, by modeling subcomponents independently, it

becomes easy to design a variety of abstractions of a machine, keeping its

external interface, thus allowing for test-driven modelings of the system.

4.2 Support tools

The ObjectGeode tools do not provide any speci�c means to model and

validate nets of hierarchies of synchronous �nite state machines de�ned in-

dependently. This is due, in particular, to the nature of the SDL lan-

guage they adopt. Basically, SDL allows the speci�cation of �nite state

machines (SDL processes, and sub-processes called services) which commu-

nicate asynchronously via signals sent over point-to-point channels; a signal

may convey a �xed number of values. Each process features an independent

variable namespace, shared by its sub-processes. Standard function and pro-

cedure constructs are also provided. Within this frame, we identi�ed two

main choices to describe the combination of functional units starting from

independent descriptions of machines:

� Describe each functional unit as an SDL process, and each machine

of the unit as an SDL service, representing procedural invocations by

input/output handshaking protocols. However, this solution adds to

the complexity of the modeling, since single synchronous invocations

expand into sequences of SDL constructs. Furthermore, this solution

196

process C0

DCL
v: type0_9;

Carry

DCL
res: typeCarry;
v: type0_9;

ELSE10

Wait

v

ELSE10

Wait

Wait

v

‘GO C0: tick --> carry(res)’

tick

Wait

v := 0

res

NoCarry

v := v + 1 ‘RET carry(NoCarry)’

Wait

‘RET carry(NoCarry)’

‘RET carry(Carry)’

v := 0

Wait

‘RET carry(Carry)’

v := 0 ‘RET carry(NoCarry)’

v := v + 1

v := 0

Wait

tick

process C1

Figure 5: An example of synchronous communication

involves modeling intermediate states to represent the points of control

transfer. We experimentally observed that such additional states cause

a combinatorial state explosion, making it often unfeasible to proceed

to the validation task. On the other this modeling style allows for the

observation of intermediate control states, which might be useful for

debugging purposes when analyzing simulation traces.

� Describe each functional unit as an SDL process, and each machine

of the unit as an SDL procedure. This solution avoids the intermedi-

ate states problem caused by the services, and procedural invocations

would be represented via the SDL procedure call mechanism. How-

ever, several representational issues arise. First, the SDL only admits

�xed-arity interfaces for procedures, whereas machines may be invoked

in several di�erent modes by their parents using di�erent sets of pa-

rameters. This would force the formal modeler to take care of de�ning

197

and using complex \union" interfaces. Moreover, persistent states

would be represented by global variables; this raises the issue of name

clashing between variables referring to di�erent machines - a big issue

when dealing with units containing dozens of machines. On the other

hand, removing the intermediate states enhances the model's simula-

tion eÆciency but decreases its traceability: when a misbehaviour of

a functional unit is found, it becomes hard to detect which machine

caused it, since no intermediate control state is recorded within the

trace.

Our solution to these problems involved the following steps:

1. design a tailored extension to SDL in order to express in a compact and

meaningful way synchronous control transfer between machines (as

well as asynchronous communication between functional units). We

called this extension SDL+. The extension is minimal: the standard

SDL send/receive constructs are adopted for modeling asynchronous

communication; a pair of constructs (\GO" and \RET") are added to

model synchronous control transfer. Figure 5 shows a simple example

of usage of the synchronous control transfer constructs. The machines

C1 and C0 realize a simple two-digit decimal counter. C1 keeps track

of the decades values and plays the master to C0, which keeps track

of units. The counter is activated by sending a \Tick" signal to C1.

C1 activates C0 in turn. C0 updates the units value and informs C1

whether a carry occurred. If needed, C1 updates the decades value,

and returns a carry result. Some details, e.g. global type declarations,

are omitted for simplicity.

2. design a simple language to describe the topology of the system, and

of each functional unit composing it. In particular, the language de-

scribes non-ambiguously the hierarchical structures, and allows tag-

ging each machine with an identi�er that indicates whether its ex-

ecutable realization should follow the service or procedure modeling

paradigm. Moreover, it is possible to specify that certain machines

are \fake", i.e. empty placeholders in the hierarchy. This allows to

conveniently select relevant parts of a model, e.g. depending on the

test that we intend to execute on it.

3. build a custom software to compose hierarchies of independent ma-

chines (speci�ed in SDL+) into a unique �nite state machine (rep-

resented in standard SDL). Such a tool models and combines the

198

machines following the service or procedure paradigm, according to

annotations provided together with the topology of the system. This

is useful when debugging complex models: the traces produced by ver-

ifying procedure-based models can provide a detailed explanation of

the model's behaviour, by using them to drive the execution of the

corresponding service-based models (which in most cases would not

be amenable to exhaustive veri�cation). We called the tool SdlSdl.

We stress here that the tool is tailored to the architecture of the System,

in order to obey the tight time constraints of the project. For instance, no

attempt has been made to consider hierarchies other than trees (e.g. DAGs).

Also, we developed the tool to feature a very simple error handling, and no

attempt is made for error recovery. Figure 6 describes the behaviour of the

SdlSdl tool. The tool receives the following input:

� A declaration of the functional units composing the System;

� For each functional unit, the description of the hierarchy of machines

it contains, using the simple language described previously;

� For each machine, its description in the SDL+ format. The tool cross-

checks informations concerning the topology of the hierarchies in the

functional units using the SDL+ descriptions. Moreover, it is in many

cases capable of completing an incomplete topological speci�cation.

As an output, the executable SDL model of the system is produced,

where procedures or services are used to model machines according to the

user's speci�cation. This makes it very easy to produce both the service-

based and procedure-based executable models of the system, and use both

of them, taking advantage of their di�erent features. For instance, we used

procedure-based models to produce bug traces, and service-based models

to track bugs down by driving the search with such traces. Moreover, the

SdlSdl tool produces a report �le which describes the complete topology

of the system, and the set of the signatures of the machines. This can be

useful to complete/cross-check the functional speci�cations.

5 Results

We applied the speci�cation and validation methodology to the selected

functionalities of the System. In particular, we focused on some critical

199

SDL SDL

Figure 6: The SdlSdl conversion

200

functionalities of the master functional unit. We described the startup pro-

tocol for the System, and some functionalities related to the handling of

vital commands coming from the environment.

The resulting models have been suitable to exhaustive validation under

selected environmental hypothesis; a typical test would involve visiting in

the order of 20000 states, each state occupying approximately 1600 bytes of

memory. An exhaustive simulation run would take 30 to 70 seconds on a Sun

Sparc 10 workstation running Solaris 2.5 and equipped with 128 Megabytes

of RAM. As a result of our exhaustive simulations, we pinpointed some mi-

nor underspeci�cations and misalignements between the speci�cations of the

various machines. More importantly, when testing against the formal mod-

eling of two of the system requirements derived from the test speci�cations,

we discovered two problems which might had potentially led the System

to unsafe behaviours. The speci�cations were revised accordingly. At a

methodological level, a major result consisted in designing the structured

speci�cation methodology, which is currently in use for the ongoing project.

6 Conclusions

Our experience in integrating formal methods into the development cycle of

a safety-critical software systems has highlighted the advantages and risks

of the formal approach. In particular, in order to reduce the cost of the

introduction of an additional formal speci�cation/validation, we found it

vital to design a custom, application-dependent speci�cation methodology,

which takes advantage of the speci�c system structure. Also relevant to the

success of the project has been the design of a speci�c custom tool to allow

the exploitation of existing, powerful general commercial veri�cation tools on

our custom methodology. We think that these conclusions have a character

of generality, i.e. that the success of applying formal methodologies is strictly

related to the possibility of tayloring them to the speci�c object under exam.

This may allow scaling up in the dimension of the tractable problems, which

is the real issue in handling the formal modeling and validation of real-life

systems.

References

[1] J. Bowen. Formal Methods in Safety-Critical Standards. Oxford Uni-

versity Computing Laboratory Technical Report, 1995.

201

[2] J. Bowen. The Industrial Take-Up of Formal Methods. Oxford University
Computing Laboratory Technical Report, 1995.

[3] E. Clarke, O. Grumberg, and D. Long. Model Checking. In Proceed-

ings of the International Summer School on Deductive Program Design,
Marktoberdorf, Germany, 1994.

[4] J. Ellsberger, D. Hogrefe, and A. Sarma. SDL - Formal Object-oriented

Language for Communicating Systems. Prentice Hall Europe, 1997.

[5] European Commitee for Electrotechnical Standardization. European
Standard - Railway Applications: Software for Railways Control and
Protection Systems. EN 50128, 1995.

[6] J. Grabowski, P. Graubmann, and E. Rudolph. The standardization of
Message Sequence Charts. In Proceedings of the IEEE Software Engi-

neering Standards Symposium, pages 48{63, Brighton, September 1993.
IEEE Computer Society Press.

[7] D. Harel and E. Gery. Executable Object Modeling with Statecharts. In
Proceedings of the 18th international conference on Software engineering,
pages 246{257. ACM, March 1996.

[8] J.R. Burch, E.M. Clarke, D.E. Long, K.L. McMillan, and D.L. Dill. Sym-
bolic Model Checking for Sequential Circuit Veri�cation. IEEE Trans-

actions on Computer-Aided Design of Integrated Circuits and Systems,
13(4):401{424, April 1994.

[9] Verilog. ObjectGeode SDL Simulator User Manual - The GOAL lan-

guage. Verilog, 1999.

202

203

Conditions for synthesis of communicating

automata from HMSCs

Lo��c H�elou�et, Claude Jard

IRISA/CNRS

Campus de Beaulieu

35042 Rennes cedex FRANCE

helouet@irisa.fr,jard@irisa.fr

http://www.irisa.fr/pampa

Abstract

Formal methods can now be used at early stages of the development process. This

increases the need for consistency between two levels of formalism: a declarative level

of scenario type, and an operational level of automata type. It is particularly true in

the telecommunications world with the joint use of standardized languages like High-

level Message Sequence Charts (HMSCs) and SDL. So it is natural to consider the

transition from one level to another by automated synthesis mechanisms. Algorithms

for synthesis of SDL communicating systems from HMSCs have been proposed these

last years. However, the theoretical power of HMSCs is such that only a subset of

HMSCs can be reasonably treated. Identi�cation of the limits of synthesis is still in

its early stages. In this article we show for the �rst time a necessary condition so that

synthesis preserves behaviours. This condition relies on a property of generalized

local choice and reconstructibility of the local sequencing. It is decidable and we

present algorithms that could be implemented in practical synthesis tools.

Key words: Message Sequence Charts, synthesis, distributed systems.

1 Introduction

Speci�cation of distributed systems starts at a high level of abstraction. An

intuitive formalism must be used to capture the behaviours of communicating

entities, leaving implementation details for later re�nement steps. Two main

approaches can be distinguished. The sequential approach (mostly based on

communicating automata) emphasizes sequences of events within processes of

the system. The speci�cation is given as behaviours of single processes, that

contain communication events. Languages like SDL or Estelle (5) can be used

for this purpose. They are equipped with tools that allow many formal ma-

nipulations, ranging from simulation to code generation. The second approach

Preprint submitted to Elsevier Preprint 6 March 2000

204

is communication-based. It emphasizes on communications between process-

es. The speci�cation is given through patterns of actions and communications

performed on di�erent processes. Use cases and scenarios are examples of such

kind of speci�cation formalisms.

The main drawback of the sequential approach is the di�culty to reason about

global properties (even the simple fact that a given sending event matches a re-

ceiving event). On the other hand, sequential communicating processes can be

directly implemented, as they just represent local sequences of communication

primitives and internal actions.

Scenarios have the advantage to give a global view of the system activity.

Causalities and concurrency are explicitly represented. Nevertheless, compos-

ing scenarios is not an easy task, and the overall meaning of a speci�cation

can be less intuitive than expected. For example, new concurrency may be

introduced during sequential composition. Furthermore, scenarios are not di-

rectly implementable (in a distributed way). This may explain why they are

often restrained to documentation purposes in methodologies like UML (8),

and in the SDL-based tools.

Transforming a scenario model into a set of communicating �nite state ma-

chines is a �rst step towards their implementation. This goal needs to provide

answers to questions such as:

� Is a scenario implementable?

� If the answer is no, what should be changed to make it implementable?

� Is there a class of scenarios which is known to be easily implementable?

Algorithms for synthesis of SDL communicating systems from HMSCs have

been proposed these last years. But the theoretical power of HMSCs is such

that only a subset of HMSCs can be reasonably treated. Identi�cation of the

limits of synthesis is still in its early stages. In this article we show for the

�rst time a necessary and su�cient condition such that synthesis preserves

behaviours. This condition relies on a property of generalized local choice

and reconstructibility of the local sequencing. It is decidable and we present

algorithms, which could be implemented in practical tools for synthesis.

This article is organized as follows: �rst section describes HMSCs and de�nes

the notion of language behaviours and of reconstructibility. Section 3 provides

a state of the art of synthesis methods from HMSCs. Section 4 presents our

target model of communicating �nite state machines (CFSM) and formalizes

the synthesis approach used by (1; 7) to synthesize SDL from HMSCs. Section

5 outlines the problems met by this approach, and proposes a condition on

HMSCs that would make it valid with respect to languages equivalence.

205

2 Message Sequence Charts

This section introduces Message Sequence Charts, a scenario formalism stan-

dardized by the ITU (11). MSCs are de�ned by two levels of speci�cation:

basic Message Sequence Charts, which de�ne simple communication scenar-

ios, and High-level Message Sequence Charts, a kind of scenario automaton,

that composes basic charts.

2.1 Basic Message Sequence Charts

Basic Message Sequence Charts (bMSCs for short) model a communication

pattern between processes (called instances). Each instance de�nes a sequence

of events, and is represented by a vertical axis. An event can be a message

emission or reception, a timer operation, or an atomic action. As no precise

meaning is associated to timer events within this article, they will be consid-

ered as atomic actions. Notice the very important fact that communications

are closed: sending and receiving of a message are localized in the pattern.

This explains the decidability results presented in the paper. A bMSC de-

�nes precedence relations on events: a message emission must precede the

corresponding reception, and events are totally ordered along instance axis.

Therefore, a bMSC can be formalized as a �nite, non-autoconcurrent labeled

partial order.

A bMSC is a tuple M = (E;�; I; �) where:

� E is a �nite set of events,

� � is a partial order relation (antisymmetric, re
exive and transitive) called

causal order on events,

� I is a set of names of instances that perform at least one action in M , and

is called the set of active instances of M .

� � : E �! I is a labeling of events. It is required that this labeling is not

auto-concurrent, which means that events belonging to the same instance

are totally ordered (form chains):

8(e1; e2) 2 E2; �(e1) = �(e2) =) (e1 � e2) _ (e2 � e1)

Slightly abusing the notation, we will note �(E) = fij9e 2 E ^ �(e) = ig

the set of instances appearing in any set of events E. For any MSC M , we

will note min(M) = fe 2 Ej@e0 6= e ^ e0 � eg the set of minimal events

of M , and mini(M) = e 2 Ej�(e) = i ^ 8e0; �(e0) = i; e � e0 the mini-

mal event on instance i 2 I. For any event e 2 E, pred(e) = fe0je0 � eg

will denote the set of predecessors of e. We will also denote by em(e) the

sending event corresponding to the receiving event e. For any labeled order

206

M = (EM ;�M ; IM ; �M), for any set E 0 � EM , we will denote by M=E0 the

restriction of M to events of E 0
.

The events of EM can be of three types: send(m) to j for the emission of the

message m, rec(m) from j for the reception of the message m, and action

for an internal event (atomic action, or operation on a timer). We will often

note !m the sending event, and ?m the receiving event for a message m.

Consider, for example bMSC M in Figure 1. M represents a communication

pattern between two processes A and B, and can be formalized by a labeled

partial order M = (EM ;�M ; IM ; �M) where :

�
EM = f e1 = send(m1) to B; e2 = send(m2) to B,

e3 = rec(m1) from A; e4 = rec(m2) from Ag

� �M= f(e1; e2); (e1; e3); (e2; e4); (e3; e4)g

� IM = fA;Bg

� �M = f(e1; A); (e2; A); (e3; B); (e4; B)g

bMSC M
A B

m1

m2

e1

e2
e3

e4

Fig. 1. An example bMSC.

Standard notation of bMSCs also allows for the de�nition of a zone on an

instance axis called co-region, in which events are not ordered. According to

the assumed semantics of co-regions, it can mean that events are concurrent, or

that the order is not yet de�ned, and should be speci�ed in further re�nements

of the speci�cation. As we do not consider co-regions as a central point for our

approach, we leave them for further extensions of our work. Therefore, events

will be considered as totally ordered on an instance axis.

2.2 bMSC automata (HMSC)

bMSCs only allow for the speci�cation of simple scenarios. A higher level no-

tation called High-level Message Sequence Charts (HMSCs for short) is used

to de�ne more elaborated behaviours. Longer patterns can be constructed by

sequentially composing bMSCs. HMSC H1 in Figure 2 is a sequential com-

position of bMSCs M1 and M2. The semantics of the sequence of bMSCs

207

de�ned in the standard is a weak sequential composition 1 . The result is an

instance-by-instance concatenation, where, for each instance, the maximum

event of the �rst bMSC is linked to the minimum event of the second bMSC.

This gives to MSCs an interesting expressive power since communication mes-

sages can be accumulated between instances by concatenating basic patterns.

For algorithmic reasons, some authors restrict the composition to a strong

sequencing, forcing a synchronization barrier between each pattern. We think

this dramatically decreases the modeling power of MSCs. Let us consider a-

gain the example of Figure 2. Imposing a strong sequencing between M1 and

M2 forces instance A to wait for a synchronization with instance B before

sending message m2. Therefore, an implementation of H1 assuming strong se-

quencing between M1 and M2 would have to introduce new communications,

and the only trace de�ned by HMSC H1 would be !m1:?m1:!m2:?m2. However,

we think there is no reason to delay a process in a distributed system when

no message reception is expected. Moreover, the bMSC decomposition of a

speci�cation is arbitrary, and is more the result of a need to reduce the size

of charts than the expression of a synchronization. So, HMSC H1 in Figure 2

should be considered equivalent to HMSC H2 in Figure 3, and de�nes two

possible traces: !m1:?m1:!m2:?m2, and !m1:!m2:?m1:?m2.

M2

M1

HMSC H1

bMSC M1

m1

A B
bMSC M2

m2

BA

Fig. 2. HMSC H1: sequence of bMSCs M1 and M2.

M3

HMSC H2
bMSC M3

A B

m1

m2

Fig. 3. HMSC H2 equivalent to HMSC H1 in Figure 2.

Let us de�ne the sequencing operator � on two MSCs M1 = (E1;�1; I1; �1)

and M2 = (E2;�2; I2; �2): M1 �M2 =< E;�M1�M2
; I1 [I2; � >, where:

1 Weak sequential composition is close to the Pratt's local sequencing (9), where �

de�nes locality.

208

m1

DCBA

m3
m2

m4
m2m1

A B C B DA

m3

m4

Fig. 4. Chain by chain concatenation of basic message sequence charts.

� E is the disjoint union of E1 and E2 : E = '1(E1) ['2(E2) with '1(E1) \

'2(E2) = ; and '1; '2 are two isomorphisms.

� 8e; e0 2 E; e �M1�M2
e0 i� '�1

1 (e) �1 '�1

1 (e0) or '�1

2 (e) �2 '�1

2 (e0) or

9(e1; e2) 2 '1(E1) � '2(E2) : �1('
�1

1 (e1)) = �2('
�1

2 (e2)) ^ '
�1

1 (e) �1 e1 ^

e2 �2 '
�1

2 (e0)

� 8e 2 E; �(e) = �1('
�1

1 (e)) if e 2 '1(E1) or �(e) = �2('
�1

2 (e)) if e 2 '2(E2)

More intuitively, sequential composition consists in ordering events e1 in bMSC

M1 and e2 in bMSC M2 if they are situated of the same instance, and then

calculating the transitive closure of the partial order obtained. An example of

sequential composition is provided Figure 4.

The standard HMSC notation also contains a parallel composition operator,

that will not be considered in this article. In most of the cases, HMSCs com-

prising parallel composition can be translated into HMSCs comprising only

sequence and choice operators. Now, consider HMSC H3 in Figure 5: HMSC-

s H4 and H5 are composed within a parallel frame (parallel composition is

denoted by k).

m1

A B
bMSC M1

m2

A B
bMSC M2

m3

C D
bMSC M3

m4

C D
bMSC M4

m5

A D
bMSC M5

H4 H5

M5

M1 M2 M3 M4

HMSC H4 HMSC H5HMSC H3

Fig. 5. HMSC H3 comprising two parallel loops.

This example comprises two potentially in�nite loops that behave in parallel.

When one of the operands stops looping, the other speci�cation also have to

stop. Therefore, this speci�cation contains an implicit synchronization, that

can be compared to the non-local choice described in section 5.2. As we want to

avoid that kind of speci�cation, we limit our approach to HMSCs comprising

209

choices, sequences, and loops. Those HMSCs can be de�ned using a �nite

automaton on bMSCs.

De�nition 1 A HMSC is a graph H = (N;�!;M; l; n0), where:

� N is a �nite set of nodes,
� �! is the transition relation (� N2),

� M is a set of bMSCs, on disjoint sets of events. Each bMSC M 2 M is a

tuple M =< EM ;�M ; IM ; �M >,

� l is a labeling function on transitions (l : N2
�!M),

� no is the starting node of the graph.

De�nition 2 A �nite path of a HMSC H is a word p = n1::nk 2 N� such

that 8i 2 1::k � 1; (ni; ni+1) 2�!. Each path p = n1:::nk de�nes a unique

order Op = M1 � ::�Mk�1 where 8i 2 1::k�1;Mi = l(ni; ni+1). An initial path

is a path starting from n0.

De�nition 3 A HMSC H de�nes a partial order family O(H), which is the

set of orders fOp1
; Op2

; ::g associated to the set of initial paths fp1; p2; :::g of
the automaton. By considering the total orderings that are compatible with at
least one order of O(H), we can de�ne the language accepted by a HMSC.

Let M = (E;�; I; �) be a bMSC, and let w = e1::en be a word of E�. w is a
linearization of M if and only if: 8i 2 1::n� 1; 8j > i; (ej; ei) 62�. Let us call
L(H) the language described by a HMSC H. L(H) is the pre�x closed set of

linearizations de�ned by the elements of O(H). Let us note EM =
S

M2M

EM

the set of events of H. A word w 2 E�
M

is a word of L(H) if and only if:

9v = w:u ^ 9p = n0::nk initial path of H ^ v is a linearization of Op

De�nition 4 A choice in a HMSC H is a node with more than one successor.
A choice c de�nes an alternative between scenarios. Any loop-free path starting

from c will be called a branch of the choice c.

2.3 Reconstructibility

A di�cult question raised by synthesis is how to impose locally on the events

of each instance, the order globally de�ned by the HMSC. Knowing that the

message receptions are undergone and not controlled, a key point will be

the possibility of rebuilding the desired order from the order of the received

messages. It is what we call reconstructibility.

De�nition 5 Let R be a partial order relation on a set of events E, and �

be a labeling of E. A non-local transitive reduction of R is the set of pairs

210

(e; e0) 2 R such that �(e) 6= �(e0) and @e00j(e; e00) 2 R ^ (e00
; e

0) 2 R. It is

denoted by e� e
0
.

In a bMSC, the non-local transitive reductions of the causal order are the pair
of events associated to communications (when e � e

0, then e is a message
emission and e

0 is the corresponding reception).

De�nition 6 The message-transitive closure (or mt-closure, for short) of a

partial order relation R is written R
�mt

, and is a relation R
0
such that (e; e0) 2

R
0

if and only if:

� i) (e; e0) 2 R, or

� ii) 9e00 2 E such that eR
0
e
00 ^ e

00
R

0
e
0
, or

� iii) 9e1; e2 2 E
2
such that �(e1) = �(e2) ^ e1R

0

e2 ^ e1 � e ^ e2 � e
0

^ �(e) = �(e0) ^ (e0; e) 62 R.

Obviously, as �mt is a closure operation, any element ofRmust be in R�mt (con-
dition i)). ii) expresses transitivity on the causality relation between events.
iii) e1 and e2 are message emissions, and e and e

0 are the corresponding re-
ceptions. As no ordering between e and e

0 exist, and as any pair of event of
the same instance must be ordered, the order between message receptions is
the same as the order between the corresponding emissions.

De�nition 7 A pair (e; e0) is said to be reconstructible by message-transitive

closure in a relation R if and only if (e; e0) 2 R
�mt

The pair (e; e0) in the �rst situation of Figure 6 is reconstructible. Dotted
arrows symbolize the reconstructed edges. On the other hand, the pair (e; e0)
in the second situation is not reconstructible, as e1 6� e. The pair (e0; e) of the
third situation is not reconstructible either, as the pair (e; e0) already exists.

e1

e2

e

e’ e

e’

e1

e2

e3

e4

e1

e2

e

e’

Fig. 6. Order reconstruction allowed by FIFO communications.

A synthesis method from HMSCs to communicating automata will be consid-
ered as correct if any ordering information is preserved by the transformation,
or can be reconstructed using the mt-closure.

211

3 State of the art

Synthesizing protocols from HMSCs is not a new problem. Several approaches

have been proposed. In (10), MSCs are seen as descriptions of �nite state ma-

chines communicating synchronously, composed by means of regular expres-

sions. The proposed synthesis algorithm is to project the regular expressions

on each instance, to produce a protocol (i.e. a set of synchronously commu-

nicating �nite state machines). Then the traces of the synthesized system are

compared with the traces allowed by the HMSC. If the set of traces are equiv-

alent, then the protocol is considered correct. This method su�ers two draw-

backs. First, an erroneous protocol can be constructed from a speci�cation

containing a non-local choice (de�ned in section 5.2), and potentially leading

to deadlock. Second, concurrency between MSCs is interpreted as interleaving.

When concurrency appears within an iteration, some correct protocols may

be considered as incorrect during the trace comparison.

(4) addresses the question whether a given bMSC can be the behaviour of

an implementation model. This approach distinguishes �ve di�erent bu�ering

methods (ranging from one FIFO channel per message to synchronous com-

munications). Some implementation models are equivalent (they allow for the

implementation of the same bMSCs). Then, a de�nition of implementabili-

ty for a class of architecture is provided. A bMSC M is said to be weakly

implementable for a class architecture if at least one trace of M can be imple-

mented. A bMSC M is said to be strongly implementable if all traces of M

can be implemented. This article only addresses bMSCs, and implementabili-

ty of two bMSCs M1 and M2 on a given architecture does not ensures that a

composition of M1 and M2 is implementable using the same communication

model.

(6) proposes to synthesize ROOM models from MSCs. ROOM charts are a

kind of asynchronous state-charts. MSC sequential composition is considered

as strong sequencing of orders, which reduces expressiveness (the language of

a HMSC is the concatenation of linearizations of the scenarios, without any

possibility of shu�ing these words). The synthesis algorithm can be used on

a subset of MSCs that do not contain non-local choices, message overtaking,

or internal actions. Furthermore, MSCs are supposed to be normalized (i.e.

bMSCs do not have common pre�x at choice nodes), and each instance is

supposed to execute at least one emission or one reception. Consequently,

the non-local choice decision required by this article can be computed by

considering only the immediate successors of choice nodes. We will see in

section 5.2 that the standard case of weak sequential composition demands to

search all reachable bMSCs to detect non-locality.

In (7), weak sequencing of HMSCs is considered. The HMSC is projected

212

on its instances, which gives a set of skeletons of �nite state machines, that

are translated into SDL processes. The synthesis method assumes an SDL-

like communication channel between each pair of communicating processes.

However, the SDL system allows more traces than those de�ned by the HMSC

speci�cation. This is due to the impossibility of preserving an order between

message receptions from di�erent senders. This approach is implemented in

MOST (Moscow Synthesizer Tool).

In (1) SDL processes are synthesized according to a given communication

architecture. The most permissive architecture associates a SDL channel to

each pair of communicating instances (the approach is then very similar to

(7)). Some more restrictive architectures may prevent even simple HMSCs

from being implemented. Again, the synthesized protocol may produce traces

that are not speci�ed by the HMSC. This approach is implemented in the

MSC2SDL tool.

4 Automatic derivation of communicating �nite state machines

Communicating �nite state machines (CFSMs for short) are a commonly used

representation of distributed systems (each process is described by a �nite

state machine that can send or receive messages). Communication channels

are FIFO: reception of a message m can be performed if and only if m is the

�rst message that can be consumed from the channel (see (3) for example).

This does not allow message overtaking, which can be nevertheless speci�ed in

HMSC. Instead of considering a complex bu�ering mechanism for each process

in that case, we prefer to slightly modify the communication semantics. We

consider a message reception as possible if the message is present in the queue.

This communication semantics is very similar to SDL communication without

implicit message consumption.

4.1 Synthesis method

This section formalizes the approach de�ned in (1; 7). The target model for

synthesis is �nite automata communicating through queues, one queue being

associated to each pair of automata.

Let H = (N;�!;M; l; n0) be a HMSC describing the behaviour of a set of

communicating instances I, then:

� EM =
S

M2M

EM is the union of events of bMSCs inM.

213

� Eji = fej�(e) = ig is the restriction of EM to the set of events performed

by instance i.

A set of CFSM AH = fAigi2I can be computed from H. Each CFSM Ai is a

tuple Ai = (Si; Ei; �i; s0i) such that:

� Si � P(Ei) is a set of states,

� Ei = Eji is a set of events,

� �i � Si � Ei � Si is a set of transitions. (s; e; s0) 2 �i if and only if:

� e 2 s, and

�
s0 = fe0 2 Eij 9p path of H such that Op =M1 � :: �Mk ,

e 2M1 and e0 = mini(Op=EOpn pred(e)
)g,

� s0i = fe 2 Eij9p initial path of H, and e = mini(Op)g is the initial sate.

More intuitively, a state is a subset of �reable events. An event can be �red

if it is contained in a state. The resulting state is composed of events located

on the same path as e that are allowed after the execution of e.

4.2 Language of CFSMs

A set of CFSMs de�nes a possibly in�nite transition system.

A state of a CFSM system composed of K communicating machines is a pair

S = (fsigi21::K; fwijgi;j21::K), where:

� fsigi21::K is a set of local states,

� fwijgi;j21::K is a word representing the messages transiting from i to j,

The initial state for a CFSM system is S0 = (fs0igi21::K; f�; :::; �g). Considering
any subword w of a bu�er wij, we will note jwjm the number of occurrences

of the message m in the word w.

A transition from a state of the CFSM system to another state is possible if

one of the components of the system can perform it.

- 9j 2 1::K : e 2 sj ^ e =rec(m) from i ^ wij = v:m:v0 ^ (sj; e; s
0
j) 2 �j

^ 8e0 =rec(m') from i : (sj ; e
0; s00j) 2 �j ; jvjm0 = 0

S
e
�! S0, where S0 = Sfsj :=s0

j
;wij :=v:v0g

A message of type m sent by a process i can be received by an automaton Aj

in a state sj if the reception of m is an event that can be �red from state sj,

214

and if m is the �rst message in the bu�er from i to j that can be read in sate

sj.

- 9j 2 1::K : e 2 sj ^ e =send(m) to i ^ wji = v ^ (sj; e; s
0

j) 2 �j

S
e
�! S0

, where S0
= Sfsj :=s0

j
;wji:=v:mg

- 9j 2 1::K : e 2 sj ^ e =action ^ (sj; e; s
0
j) 2 �j

S
e
�! S0, where S0 = Sfsj :=s0

j
g

A message emission or an atomic action can be performed by an automaton

Aj in a state sj if and only if this event is allowed in sj.

This de�nition of communications allows us to generate automata for spec-

i�cation containing message crossing, which would not be possible with a

strict FIFO ordering. Consider the simple bMSC of Figure 7. This speci�ca-

tion contains a message crossing, which can however be implemented by the

communicating �nite state machines of Figure 8.

bMSC M
A B

e1

e2
e3

e4

m1

m2

Fig. 7. A simple bMSC.

a1

a2

a3

b1

b2

b3

!m1

!m2

?m2

?m1

Fig. 8. A simple CFSM implementing bMSC M of Figure 7.

Let us note L(AH) the language described by a set of communicating automata

AH . A word w = e1:e2::en 2 E
�
M is a word of L(AH) if and only if S0

e1
�!

215

S1

e2
�! :::

en
�! Sn. We will write S

w
�! S 0

when a state S 0
can be reached from

state S using w. We will denote by s(w)i the state reached by the automaton

Ai after execution of w.

5 Conditions for language equality

A protocol AH synthesized from a HMSC H is considered as correct if AH

and H de�ne the same language.

5.1 Soundness

The �rst step is to show that the synthesized CFSM is able to produce all the

behaviours de�ned by the original HMSC.

Theorem 8 For any HMSC H, L(H) � L(AH)

proof:

Proving L(H) � L(AH) is equivalent to showing:

8w 2 E�

M
; w 2 L(H) =) w 2 L(AH)

This is also equivalent to proving the property:

P : 8n 2 IN; 8w 2 En

M
; w 2 L(H) =) w 2 L(AH)

Obviously, P is true for n = 0. Let us show that P true for n implies P true for

n+1. Let us suppose P (n) true, and P (n+1) false. Then, it means that there is

a word w 2 En

M
, and an event e 2 EM such that: w:e 2 L(H)^w:e 62 L(AH).

Therefore 9p =M1�:::�Mk; path ofH such thatw:e is a pre�x of a linearization

of p, and �(e) = i ^ (e 62 s(w)i _ (e =rec(m) from j ^ wij 6= v:m:v0)

� e 62 s(w)i if and only if there is a predecessor e0 of event e on instance i and

e0 has not been executed in w. Therefore, w:e 62 L(H), contradiction.

� e =rec(m) from j^wij 6= v:m:v0 also leads to a contradiction, as w:e 2 L(H)

implies that any predecessor (and consequently an emission of m) appears

in w.

Therefore, we have proved L(H) � L(AH). �

216

Unfortunately, the synthesis method de�ned previously does not ensures that

L(H) = L(AH). Let us consider HMSC H6 of Figure 9: the traces de�ned

by H6 are !m1:?m1 and !m2:?m2. The communicating �nite state machines

synthesized from H6 (see Figure 10) also describe the traces !m1:!m2 and

!m2!m1. HMSC H6 de�nes an implicit synchronization between instances A

and B, that must agree on the scenario to perform. Clearly, this speci�cation

can not be implemented without an additionnal synchronisation mechanism.

Such a situation is called non-local choice.

M1 M2

HMSC H6 bMSC M1 bMSC M2

m1

A B

m2

BA

Fig. 9. A non-local HMSC.

a2a3

a1

!m1 ?m2

b2 b3

b1

!m2 ?m1

Fig. 10. CFSM synthesized from HMSC H6 in Figure 9.

5.2 Non-local choice

The generally admitted meaning of non-local choice (2) is when more than one

instance can decide to perform a scenario or another at a choice node. The

intended behaviour is that the �rst instance able to perform the choice choos-

es a behaviour. The next instances reaching the same iteration of this choice

have to conform to the chosen scenario. This results in a behaviour in which

an instance \knows" what to do at a choice node without any communication.

However, non-local choices can not be implemented without adding commu-

nications to the system. In some particular cases, however, non-local choices

may express concurrency between scenarios, as in example of Figure 14.

A de�nition of non-local choice was previously given in (2). This de�nition

assumes that any instance should communicate with other instances on each

branch of a choice. This assumption limits the search for non-local choice to the

set of outgoing edges. However, when considering weak sequential composition

of bMSCs with disjoint set of instances, non-local choice is not a local property.

Therefore, a global de�nition of non-local choice must be provided. Consider

HMSC H7 in Figure 11: choices seem to be local, but the decision to perform

a scenario can be taken by A or C. The de�nition has thus to be extended.

217

M1 M2

M3 M4

bMSC M1 bMSC M2

bMSC M3 bMSC M4

HMSC H7

m1

A B

m3

BC

m4

C B

m2

BA

Fig. 11. Non-local choice located on more than one choice node.

De�nition 9 Let c be a choice node. c is local if and only if:

8p1 = c:n1:::nk, maximal loop-free path of H (c 62 n1:::nk) from c,

8p2 = c:n
0

1:::n
0

k maximal loop-free path of H from c, 8e1 2 min(Op1),

8e2 2 min(Op2); �(e1) = �(e2).

For a local choice c, the instance deciding the behaviour at this point of the

speci�cation will be called the deciding instance of choice c. From the de�nition

of non-local choice, the algorithm is straightforward. Note that locality can be

checked on loop-free paths (adding a pattern that already appears in a path

does not add minimal events).

Algorithm:

for all c,choice node in H do

P = f(c:n; I; J)jc
M
�! n ^ I = �(min(M)) ^ J = �(M)g

MAP = ; /* Maximal acyclic paths */

while P 6= ; do

MAP = MAP [f(w:n; I 0)jw = n1:::nk ^ nk
M
�! n ^ n 2 w

^(w; I; J) 2 P ^ I 0 = I [(�(min(M)) � J)g

P = f(w:n; I 0
; J

0)j(w; I; J) 2 P;w = n1:::nk ^ nk
M
�! n^

n 62 w ^ J 0 = J [�(M) I 0 = I [(�(min(M)) � J)g

end while

DI =
S
I

(w;I)2MAP

/* deciding instances */

if jDIj > 1 then

H contains a non-local choice

end if

end for

As we only consider loop-free paths of HMSC H this algorithm terminates.

From now on, we will write Loc(H) when a HMSC H does not contain non-

local choices.

218

Theorem 10 Loc(H) 6=) L(AH) � L(H)

Ensuring that a HMSC H is local does not ensures that the synthesis produces

a CFSM that is language equivalent to H

The automata produced for HMSC H8 of Figure 12 are described in Figure 13.
One can easily check that
w =!m1:?m1:!m2:!m3:?m3:!m4:?m4:::: in a trace of AH, but not of H (in H,
m2 must be received before m4 in that trace).

bMSC M2

m3

A B D

m4

M1 M2

bMSC M1
BA C

m2

m1

HMSC H8

Fig. 12. HMSC H8

A

!m2

C2

C1

?m1

?m3

D1

D2
!m4

?m2

?m4

B

!m1

!m3

Fig. 13. CFSM synthesized from HMSC H8 Figure 12

When synthesizing a CFSM system from a HMSC, the local ordering between
events may be lost at choice nodes. Consequently, a speci�cation may reach a
state in which two messages m and m0 can be received from di�erent senders
by the same automaton Ai. In the HMSC speci�cation, m and m

0 are mes-
sages from di�erent bMSCs, and therefore their receptions are ordered (either
rec(m) � rec(m') or rec(m') � rec(m)). If Ai do not have enough informa-
tion to reconstruct the ordering between rec(m) and rec(m'), a wrong trace
is allowed. This is what happens in the speci�cation Figure 12: if bMSC M1 is
choosen before bMSCM2, then m1 is sent before m3, and m2 must be received
before m4. Unfortunately, AB do not have enough information to prevent the
reception of m4.

Theorem 11 :Loc(H) 6=) L(AH) 6� L(H)

Even if H is a non-local Message Sequence Charts, the CFSM implementation

219

synthesized from H can be correct (consider HMSC H9 in Figure 14).

A

m1

B

bMSC M1

C

m2

D

bMSC M2

M2M1

HMSC H9

?m1 B

?m2 D

A

C

!m1

!m2

Fig. 14. Non-local HMSC with language equality.

5.3 Local sequencing reconstructibility

The locality condition is not strong enough to ensure that the CFSM gener-

ation of Section 4 produces a set of automata that is trace equivalent to the

HMSC speci�cation.

De�nition 12 A choice c of a HMSC H is said to be reconstructible if and

only if:

� c is a local choice, and

� 8p path of H from c such that Op = B1 � B2 � ::: � Bn with Bi; i 2 1::n

branch of c , 8x non-deciding instance, 8(e; e0) 2 p : e = minx(Bi) ^ e0 =

minx(Bj) ^ 1 � i < j � n, (e; e0) is a reconstructible pair of �Op
from

�Op
n(Eijx

� Ejjx
) by mt-closure.

More intuitively, a choice is reconstructible if removing the local ordering due

to bMSC sequencing on any non-deciding instance does not a�ect the mt-

closed ordering.

De�nition 13 A HMSC H is said to be reconstructible if and only if any

choice in H is reconstructible. This property will be written Rec(H).

Imposing HMSC reconstructibility is weaker than requiring any message to

be acknowledged. The example of Figure 15 shows a HMSC in which two

messages are emitted by di�erent instances and received on a single instance.

However, the order between the receptions is preserved by the translation in

Figure 16.

220

M1 M2

A

m5
m6

m7

B D

bMSC M2
DCBA

m3
m1

bMSC M1

m4

m2

HMSC H10

Fig. 15. Reconstructible HMSC H10.

?m2!m3

C1

C2

!m5?m7

!m1A1

A2

?m5
!m6 ?m1

?m4

!m2

?m3 !m7

?m6!m4

B1

B2 B3

D1

D2
D3

D4

Fig. 16. CFSM synthesized from HMSC H10 in Figure 15.

Theorem 14 Loc(H) ^ L(AH) � L(H) =) Rec(H)

proof:

Let us prove that L(AH) � L(H) ^ :Rec(H) leads to a contradiction.

If Rec(H) does not hold, then there is a choice node c in H such that:
B1 =< E1;�1; A1; I1; �1 > and B2 =< E2;�2; A2; I2; �2 > are two branches
of c, 9p path of H from c with Op = B1 � B2. There exists an instance x,
9r1 2 E1, r2 2 E2, receiving events such that: r1 = min�(r1), r2 = min�(r2),
r1 =rec(m1) from i, r2 = rec(m2) from j, i 6= j.

Let us call O the order O = (�Op
�(E1x � E2x))

�mt. From the de�nition
of Rec(H), we have (r1; r2) 62 O. As (r1; r2) can not be reconstructed, for
any predecessor e0 of r2 in B2, and for any successor e of r1 in B1, we have
(e; e0) 62 O.

According to the locality of H there are two deciding events d1 2 E1, d2 2 E2

such that d1 < r1, d2 < r2 and �(d1) = �(d2). From the structure of the HMSC
H and from the derivation method, we know that there is an automaton
Ax 2 AH containing a state sx such that r1 and r2 can be �red from sx. So,
from any global state S containing sx, r1 and r2 can be �red if m1 and m2

have been sent.

221

We know that there is an initial path pv = n0::::c in H leading to c. So, any

linearization v of Opv
is a word of L(H). As L(H) � L(AH), we also have

v 2 L(AH). Consequently, 9S such that S0

v
�! S. As we know that r1 and r2

are minimal events, we have sx 2 S.

So, we can �nd a word w = v:d1:u:em(r1):d2:u
0
:em(r2) where u contains any

predecessor of d2 in Op in L(H). We also know that w 2 L(H), therefore

S0
w
�! S

0 and as r1 have not been �red, sx 2 S
0. As m1 and m2 have been

sent, and as �(em(r1)) 6= �(em(r2)), w:r2 is a word of L(AH). w:r2 is not a

word of L(H), as d1 < d2 implies r1 < r2 in any word of L(H). This contradicts

L(AH) � L(H). �

Theorem 15 Rec(H) =) L(AH) � L(H)

proof:

Let us suppose that Rec(H) ^ L(AH) 6� L(H), and let us show that it leads

to a contradiction.

If L(AH) 6� L(H), then there exists a word w such that w 2 L(AH) ^ w 62

L(H). From the construction method, we know that w 6= �, so w is of the

form w = v:e, and such that v 2 L(AH)^ v 2 L(H). As v 2 L(H), then there

exists a path p 2 H such that v is a pre�x of a linearization of Op.

v:e 62 L(H) may hold for two reasons:

� i) 8p0 = p:nk+1::::nk+n, e 62 EO
p0
. Therefore, v:e 62 L(AH). Contradiction.

� ii) 8p0 = p:nk+1::::nk+n, there exists a sequence of events e1:e2:::ek such that

8i 2 1::k; ei �O
p0
e, and v:e1:::ek:e 2 L(H).

As v:e 2 L(AH), there exists a local state sx such that S0
v
�! S ^ sx 2

S ^ (sx; e; s
0

x
) 2 �x. As L(H) � L(AH), v:e1:::ek:e is also a word of L(AH).

Three cases may appear: e is a sending event, an internal action, or a receiving

event.

� Suppose e is a sending event, or an internal action. Then there exists an

event ej; j 2 1::k such that �(ej) = �(e) ^ 8i < j; �(ei) 6= �(e). Therefore,

9(sx; ej; s
00

x
) 2 �x. e and ej are minimal event on instance x = �(e) for

branches of a choice c. According to the locality property, ej and e are

deciding events for their respective branch. So, Op0 is of the form Op0 =

M1� :::�Ml�B1�B2, where B1 contains ej and B2 contains e. Therefore, 9p
00

path of H, such that Op00 = M1 � :::�Ml �B2. So v:e 2 L(H). Contradiction.

� Suppose e is a receiving event. As v:e 2 L(AH), any emission needed

for executing e is performed in v. Again, v:e 62 L(H) implies that there

is an event ej; j 2 1::k such that �(ej) = �(e) ^ 8i < j; �(ei) 6= �(e),

and 9(sx; ej; s
00

x
) 2 �x. Still considering the locality of H, ej is also a re-

ceiving event, and there is a choice between two branches B1 and B2,

222

ej = minx(B1), and e = min(B2). If �(em(e)) = �(em(ej)), then according

to the semantics of reception, e cannot be executed before ej by AH. So,

�(em(e)) = �(em(ej)). Of course, �(e) is not a deciding instance. So there

is a choice c between B1 and B2, and a path B1 � B2, such that (ej; e) can

not be reconstructed. Contradiction with Rec(H).

�

From theorem 14 and theorem 15, the following property holds true:

Loc(H) =)
�
Rec(H)() L(AH) � L(H)

�

Using theorem 8, this property becomes:

Loc(H) =)
�
Rec(H)() L(AH) = L(H)

�

Note that the proposition Rec(H) () L(AH) = L(H) is false (due to

theorem 11). Example of Figure 14 exhibits a non-local speci�cation where

L(AH) = L(H). Such a kind of speci�cation contains hidden parallelism with-

in choices (instances A;B and C;D never synchronize).

5.4 Decision of reconstructibility

This section provides an algorithm for deciding the reconstructibility of a

HMSC H. The reconstructibility property can be decided on pre�x of paths

originating from a choice.

Proposition 16 8c, choice of H, c is reconstructible if for any pair of branch

Bi, Bj such that 9p, path from c and Op = Bi � Bj, for any non-deciding

instance x, (minx(Bi); minx(Bj)) is reconstructible from �Bi�Bj
�(Eijx�Ejjx)

by mt-closure.

223

Algorithm:

for all c, choice node of H do

P = f(c:n;M)jc
M
�! ng

C = ; /* Cycles */

MAP = ; /* Maximal loop-free paths */

while P 6= ; do

C = C [fM �M 0j(w = c:n1::nk;M) 2 P ^ nk
M 0

�! cg

MAP =MAP [fM �M 0j(w = c:n1::nk;M) 2 P ^ nk
M 0

�! n ^ n 2 wg

P = f(w:n;M �M 0
)j(w = c:n1::nk;M) 2 P ^ nk

M 0

�! n ^ n 62 wg
end while

for all (Bi; Bj) 2 C � (MAP [C) do

if 9x 2 Ij(minx(Bi);minx(Bj)) 62 (Bi � Bj � (Bijx �Bj jx))
�mt

then

Order can not be reconstructed

end if

end for

end for

6 Conclusion

This paper proposed a formal de�nition of non-local choice for HMSCs with

weak sequential composition. Non-local choices can be detected on loop-free

(and therefore �nite) paths of the HMSC. Then a procedure for synthesizing

CFSMs was proposed. The absence of non-local choices in a HMSC is not

a su�cient condition for ensuring the synthesis produces a correct protocol:

order reconstructibility is also required. Reconstructibility of an HMSC is also

decidable on loop-free paths, and could be implemented as a front-end for

protocol synthesis tools.

When a speci�cation is non-reconstructible, some acknowledgment messages

can be added to transform it into a reconstructible one. A possible extension

of this work would be to consider an automation of these transformations.

Adding stamps to messages when necessary could also avoid executing non-

speci�ed traces. Considering stamps as well as introducing co-regions (a weaker

ordering on instances than total ordering) would probably need to modify the

CFSM target model.

7 Acknowledgments

The authors are very grateful to professor Ferhat Khendek at Concordia Uni-

versity, for helpful discussions on formal aspects of synthesis from MSCs, and

224

on his tool MSC2SDL. We are also very grateful to Benô�t Caillaud for his

comments on this work and suggestions for future extensions.

References

[1] M.Abdalla, F.Khendek,G.Butler, New Results on Deriving SDL Spec-

i�cations from MSCs, in Proceedings of 9th SDL forum, R.Dssouli,

G.Bochman & Y.Lahav editors, pp 51-66.

[2] H. Ben-Abdallah and S. Leue, Syntactic Detection of Process Divergence

and non-Local Choice in Message Sequence Charts, in: E. Brinksma (ed.),

Proceedings of the Third International Workshop on Tools and Algo-

rithms for the Construction and Analysis of Systems TACAS'97, En-

schede, The Netherlands, April 1997, Lecture Notes in Computer Science,

Volume 1217, p. 259 - 274 Springer-Verlag, 1997

[3] D.Brand, P.Za�ropulo, On communicating Finite-State Machines. Jour-

nal of the ACM, vol 30, No 2, April 1983, pp 323-342.

[4] A. Engels, S. Mauw, M.A. Reniers: A Hierarchy of Communication Mod-

els for Message Sequence Charts. In: T. Mizuno, N. Shiratori, T. Hi-

gashino and A. Togashi (ed.): Formal Description Tecniques and Pro-

tocol Speci�cation, Testing and Veri�cation, Proceedings of FORTE X

and PSTV XVII '97, pages 75-90, Osaka, Japan, 18-21 November 1997.

Chapman & Hall.

[5] International Standard ISO 9074, Information Processing Systems - Open

Systems Interconnection - Estelle: A Formal Description Technique Based

on an Extended State Transition Model, Geneve, 1989.

[6] S.Leue, L.Mehrmann, M.Rezai, Synthesizing ROOM Models from Mes-

sage Sequence Chart Speci�cations, 13th IEEE Conference on Automated

Software Engineering, Honolulu, Hawaii, October 1998.

[7] N.Mansurov, D.Zhukov, Automatic Synthesis of SDL models in use case

Methodology, in Proceedings of 9th SDL forum, R.Dssouli, G.Bochman

& Y.Lahav editors, pp 225-240.

[8] OMG, Uni�ed Modelling Language 1.1, September 1997.

[9] V.Pratt, Modeling Concurrency with Partial Orders, International Jour-

nal of Parallel Programming, Vol 15, No 1, 1986, pp 33-71

[10] K.Yamanaka, S.Komura, J.Kato, H.Ichikawa, Deriving Protocols from

Message Sequence Charts in a Communicating Processes Model.

[11] TU-TS Recomendation Z.120: Message Sequence Chart 1996 (MSC96)

Technical Report, ITU-TS, Geneva, 1996.

225

A Practical Method to Integrate Abstractions

into SDL and MSC based Tools 1

Maria-del-Mar Gallardo and Pedro Merino

Dpto. de Lenguajes y Ciencias de la Computacion, University of Malaga,

29071 Malaga, Spain

Abstract

Many industrial oriented tools that employ SDL as the basis to develop complex

systems support very detailed speci�cations in order to perform tasks such as sim-

ulation, code generation or testing. But the size of the SDL model constructed for

these purposes makes the veri�cation of MSCs more resource consuming, due to

the well-known problem of the state space explosion. This paper presents a pro-

posal in the direction of optimising the veri�cation of MSCs without limiting the

use of SDL in the other tasks. The main contribution of the paper is the de�nition

of a practical automatable method to obtain intermediate SDL speci�cations suit-

able for the eÆcient veri�cation of MSCs. The correctness of the transformation is

supported by the de�nition of a semantics framework that allows us to compare

di�erent SDL models of the same system, each one with a particular abstraction

level.

Key words: automatic veri�cation; abstract interpretation; SDL

1 Introduction

Automatic veri�cation based on formal methods is becoming the most widespread

technique to increase con�dence in the correctness of critical systems [18] [16]

[4]. However, in many projects, formal speci�cations are employed as very

detailed descriptions for simulation, automatic code generation or simple doc-

umentation, and these uses are not compatible with high quality veri�cation.

The reason is that automatic veri�cation is only fruitful when the model is an

abstract representation of the real system, with exactly the details necessary

to ensure that satisfaction of interesting properties in the model implies sat-

isfaction in the real system [19]. Nevertheless, many companies consider that

1 Supported by CICYT TIC99-1083-C02-01, Spain

226

the cost of creating veri�cation-oriented models may not be compensated by

potential improvement in the quality of their products and the veri�cation is

usually poorer than desired. This problem is also a challenge in current indus-

trial oriented CASE tools like SDT[26] or Object Geode [27], which employ

the international standard formal methods SDL [20] and MSC [21] for speci�-

cation and analysis of correctness in the earlier phases of system development.

The problem that we address in this paper is how to improve the qual-

ity of the veri�cation of SDL models against properties described with MSC

without interfering with the use of these languages for the other development

phases. We describe an automatable approach for transforming SDL code in

order to obtain more abstract models to be veri�ed using less time and mem-

ory. This transformation method can be integrated into the tools that support

veri�cation and the other phases of development.

Related Work

Our method is based on the Abstract Interpretation technique (AI) [2], which

has been mainly employed to improve the veri�cation of systems against prop-

erties described with temporal logic ([3] [6] [23]). AI is based on the idea of

approximation: every program data is approximated by a higher level descrip-

tion by means of an abstraction function. When combined with veri�cation, a

given abstraction function is employed to transform a model into a new (ab-

stract) one over which properties are analyzed. This approach was employed

in [3] and [6] for the veri�cation of temporal properties expressed with CTL

and �-calculus, respectively. Recently, Graf and Sa�idi used the theorem prover

PVS for the automatic construction of the abstract model [10]. This work has

been extended to obtain a textual speci�cation, which can be again abstracted

[1], [25] [24].

Dwyer and his colleagues use an Abstraction Library with already de-

signed abstraction functions in order to allow the translation of high level

programming languages (such as ADA or JAVA) to the input language to

model checker [7] [8]. This idea is also presented in [13].

Contributions

Compared with these related works, our proposal has the following main char-

acteristics:

(1) The method is applied to verify properties represented as Messages

Sequence Charts (MSCs), instead of temporal logic properties. The use

of this formalism makes easier the integration of abstraction in some

kinds of industrial applications, such as telecommunications, because the

requirements are usually represented in this manner.

227

(2) The abstraction produces a new textual (and graphical) SDL model, so it
can be analysed with the same tools than the original one. Furthermore,
new transformations can be applied to the abstract version.

(3) We consider two kinds of users with di�erent knowledge about the ab-
straction techniques. The non-expert user takes the abstraction functions
from the Abstraction Library to automatically transform the model. The
expert designer de�nes these abstraction functions for di�erent applica-
tion domains.

The paper is devoted to presenting the overall methodology to use abstraction
into SDT and the theoretical background to ensure property preservation 2 .
The correctness is analyzed by de�ning the so-called generalized semantics of
SDL, which puts stress on the operational aspects of the language which are
not a�ected when abstracting data or operations (this idea was used in [22],
[15] and [5]). The rest of SDL characteristics are parameters of the semantics in
such a way that if we change them (by means of an appropriate abstraction)
the high level behaviour of the system remains unchanged. This approach
allows us to relate di�erent SDL models of a given system, each one with
a particular level of detail, and its has been proved useful to reason about
correctness conditions for transformation [13]. Other existing semantics of SDL
are more well sutiable for describing the language and for implementing tools,
but they are too details to be used for reasoning in our context.

The organisation of the paper is as follows. In Section 2 we describe the
veri�cation capabilities of SDT and the subsets of SDL and MSC employed in
the paper are described. Sections 3 to 5 describe the practical aspects of the
paper. Section 3 presents the methodology to extend SDT with abstraction
capabilities. Section 4 contains the kinds of abstractions that we consider, and
Section 5 shows an example of how to employ the Abstraction Library to re-
duce the state space of a system. Sections 6 to 8 describe the formal framework
to ensure the correctness of the transformations. Section 6 describes a gener-
alized semantics of SDL to reason about property preserving transformations
of SDL. Section 7 and Section 8 give the conditions to preserve correction and
the correctness results, respectively. In Section 9, we present conclusions and
future work.

2 Preliminaries

Although some knowledge of SDL and MSC is assumed, we now describe the
subsets of SDL and MSC considered in the paper and give an example that is
employed in the following sections. This section also explains the veri�cation

2 Note that the same method can be integrated in similar tools like Object Geode

228

Process player 1(1)

DCL R Integer;
DCL G PID;

Newgame

waid_id�

Gameid(G)

play

none

Probe

wait_value

win

play

lose

none

Endgame

none

Result

wait_score

score(R)

play

Process Game
�

1(1)

DCL
Count Integer;

Count:=0

Losing

Probe

Lose

Count:=
Count−1

−

Bump

Winning

Bump

Losing

Probe

Win

Count:=
Count+1

−

*

Result

Score
(Count)

−

GameOver

� � � � 	 � � � � � � � � � � � � � � � � � " # $ � ' �

) * + * . / 1 / 4 / 6 7 9 : ; = ? A

B C D F G H I K L I N P F R S T V W Y F [

\] _ ` b c e f h h f i j k f j _ l n o p f i r s n v f c _ x i y b i { x i k b k l _ } b h k { x b i ~ x {] i _ ~
l { f i r f c r l ` c b e {] _ � i { _ c i f { x b i f h \ _ h _ y b e e k i x y f { x b i � i x b i � � \ � � � _ c x b r x �
y f h h � � \] _ h f l { } _ c l x b i l x i y b c � b c f { _ l { c k y { k c f h h f i j k f j _ y b i l { c k y { l � _ l l _ i { x f h h �
y b e � b l x { x b i f i r b � � _ y { b c x _ i { _ r y b i y _ � { l � � h {] b k j] {] _ c _ l k h { l x i {] _ � f �
� _ c y f i � _ _ � { _ i r _ r { b y b } _ c ` k h h n o p � ¡ f l ~ _ h h f l £ x j] p _ } _ h s n v � ~ _
~ x h h y b i y _ i { c f { _ x i ~] f { x l y f h h _ r « f l x y n o p x i ­ ¡ ¯ ° f i r ² h f x i s n v x i n o \
r b y k e _ i { f { x b i � « b {] h f i j k f j _ l] f } _ { _ � { k f h f i r j c f �] x y f h ` b c e l � � l {] _ l _
c _ � c _ l _ i { f { x b i l f c _ _ ¶ k x } f h _ i { � x { x l k l k f h { b � c _ l _ i { {] _ l � _ y x · y f { x b i l x i {] _
j c f �] x y f h ` b c e f i r c _ l _ c } _ {] _ { _ � { k f h ` b c e ` b c f k { b e f { x y � c b y _ l l x i j �

\] _ l k � l _ { b ` n o p x i y h k r _ l n o p � c b y _ l l _ l � l { f { _ l � l { f c { f i r l { b � l � e �
� b h l � x i � k { f i r b k { � k { b ` l x j i f h l ~ x {] r f { f � { f l » l � r _ y x l x b i l � l f } _ l � e � b h l �

f i r { x e _ c e _ y] f i x l e l � ½ b i r _ { _ c e x i x l { x y � _] f } x b k c e b r _ h _ r � � l � b i { f i _ b k l
x i � k { l f i r i b i r _ { _ c e x i x l { x y r _ y x l x b i l x l f h l b y b i l x r _ c _ r �

¾ ¿ À Á Â Ã Ä Å Æ Ç È É É Ê Ë É Ì Í Î Ï Ð Ñ Ò È É Ì Ó Î Ê Ô Ç Í Î Õ Î Ö Ì × Ì Ø Ù Õ Ú × Ì É É Ê Û Ç Ù É Í Ç Ì Ê É Ê Ù ×
Ü Ý Þ ß à á â Þ ß Ý ã ä ã å æ ç è é ê ë ì ê ë ã î ï æ ð î ì å ñ ã å î ô ï î õ ï ð ñ õ ö ÷ ø å ú å ñ õ ë î ý ã î ô ï ÿ î ÿ æ õ ã

� ÿ î õ å ë î ý ý ä � ë � æ ô ë ô � ë � �
 � � � ê æ ÿ õ ñ ì æ ã ã � � � � � � � � � � " $ & � �) � " � " , � . 0 � 4 � 4 � �
� � 6 $ $ " � $ & � " � " $: < = = < = A B D E F H I J K L M N P Q S T S U Q W Q Z N T \] P ^ P ` P a b \ c e T \ ^ S N P \

h b T j a c Z P Q Q n o p q r s t v w y z { | } ~ z � � � � � | � � � ~ | � � ~ | � � z � � � � � � ~ | � { � � | � � �
� ¢ £ ¤ � ¥ � � � � � § ¨ � � � � � ¨ § � © ª ¬ ­ ® ° ± ² ´ µ ¶ · ¸ µ ¹ µ » ¸

¼ » ½ ¾ ¿ À Á ½ Ã Ä ¾ ¿ À ¾ ¸ Æ Ç È È Ç È É Ê Ë Ì Í Î Ï Ð Ñ Ì Ñ Ó Ô Ì Ð Ñ Õ Ê Ì Õ Ö Ó × Ø Ð Ù Ó Ì Ñ Ó Ô Ì Ð Ñ Õ Ð Ù Ú Ì Ù Õ Û

229

MSC Property1(concrete)

process Player

Player

process Main

Main

process Game

Game

Newgame

Probe

Win

Result

Score

Endgame

Gameover

MSC Property1(abstract)

process Player_abs

Player

 process Main_abs

Main

process Game_abs

Game

Newgame

Request

Reply

Request

Reply

Endgame

Gameover

Fig. 2. a)MSC for DeamonGame b)MSC for abstract DeamonGame

The current score can be asked for using the Result signal. Our version of the

system contains a non-deterministic process Player that makes any number of

guesses before sending the Endgame signal.

MSC is usually employed to represent requirements as the message

interchange between communicating entities and their environment. When

employed with SDL, those messages would coincide with the signals, which

are sent (consumed) from (by) any part of the speci�cation (an SDL system,

a block or a process). An MSC is a particular diagram (or text speci�cation)

which represents a particular scenario related to an SDL system. Fig. 2 a)

shows an MSC with a message interchange in the system described above.

2.2 Veri�cation in SDT

The role of SDL in SDT is to be the kernel language to design the software,

while the MSC language is employed to represent sequences of Observable

events, which are only a small subset of the actions in SDL (for example send

signal and consume signal). Thus the sequence MSC = ev1 ! : : :! evk rep-

resents a user requirement. The veri�cation of MSC against SDL is the most

important kind of analysis in this tool. Fig. 3 represents the role of both lan-

guages in the analysis of the systems. As in other similar tools, the simulation

can produceMSCs that can be employed as requirements for veri�cation. The

user can also construct/modify the MSCs by using the graphical editor. The

230

veri�cation can be performed with two di�erent objectives:

(1) Check that no execution path in the SDL system produces a sequence of

events matching the MSC (the SDL model does not verify the MSC).

Otherwise, the validator produces a trace with the erroneous behaviour.

(2) Check that the SDL model can exhibit at least one execution sequence

producing the scenario represented by the MSC (the SDL model veri�es

the MSC). Again, the validator shows the traces that match the MSC.

The matching between a path in SDL and the scenario in the MSC

holds i� all observable events produced by the entities in the MSC occur in

the SDL path in the same order. The events related to other entities (blocks,

processes) are ignored. The starting point of the execution sequence in the SDL

system can be an arbitrary state, but it must be the same than in the MSC

diagram. The meaning of each kind of veri�cation depends on the user pur-

poses. The �rst one is especially powerful for locating and removing undesired

scenarios in the behaviour of the system, while the second one is employed in

order to know if the system can respond in a particular way.

Apart from the veri�cation of MSCs, the validator can be also em-

ployed to check other important properties such as absence of deadlock, in-

variants, and errors due to undesirable behaviours of the SDL constructors

(invalid receiver for a signal, range errors, operators errors, etc.) In order to

deal with huge state spaces, the validator can use bit state and random walk

(see [18]).

3 Extending SDT with Abstractions

Our approach to extend SDT with abstractions consists in transforming the

SDL speci�cation into intermediate versions, which are only employed for ver-

i�cation purposes, as it is shown in Fig. 4 with dark ground. Given a detailed

SDL model M , we try to construct and verify abstract models M
�

i
until M is

shown to be correct or until speci�c errors are found. The veri�cation consists

in checking non-satisfaction of MSC, but also absence of deadlock can be

checked in the abstract model.

The construction of an abstract model M
�

i
is automatic, and the user

only has to choose the abstraction function � suitable for the kind of system

and for the speci�c MSC.

Given the initial model M and the MSC representing the undesirable

scenario, the �rst step is to obtain the abstract model M
�

i
by using �. The

abstract version of the MSC (MSC
�

i
) is obtained by a similar mapping pro-

231

Fig. 3. The role of SDL and MSC in SDT

cess, but many times can be easily obtained manually. Then, we employ the

standard SDT validator and simulator in the following way:

(1) If M
�

i
does not verify MSC

�

i
then, by using the property preserving re-

sults discussed in Sect. 5, M does not verify MSC. Therefore M can

be employed to follow on with the development cycle in SDT (e.g., code

generation).

(2) If errors are found in an abstract model, we employ the abstract trace

produced by the validator to construct a concrete counterexample forM ,

and use the simulator to check if this counterexample is possible in M .

If M shows the error, then we must modify M and start again with the

veri�cation. Otherwise, we re�ne the abstraction function and produce a

new abstract model (and if necessary, a new abstract MSC) preserving

more information.

The essential point is to choose a function � that preserves enough

relevant information to decide whether the veri�cation results for M
�

i
can be

extended to M . As in other related works, it is necessary that the user posses

a suÆcient knowledge of the system model in order to choose the proper

abstraction function. The provision of an Abstraction Library to automatically

construct correct abstract models can solve most of the diÆculties, thus giving

an important added value to the whole development tool. This library contains

transformation rules to implement di�erent abstractions, and it is constructed

232

Fig. 4. Overview of extended SDT

depending on the application domain. The kind of information and it use is

discussed in the following sections.

Example 2 As an example to justify this approach, let us consider the fol-
lowing property over the DeamonGame system: "In all paths, it is impossible

for the Player to leave the system without consuming all the response signals
from the process Game." This property must be encoded with several MSCs in
order to consider all the possible kinds of requests from the Player and the

responses from the Game. Even if we only consider one successful request-reply

followed by one non-completed request-reply, as in Fig. 2 a), the number of
MSCs to be considered is large. The veri�cation of each one of these MSCs

makes the validator run out of memory due to the presence of the counters

Count and R in the model. So we need some kind of abstraction to solve the

problem.

4 Abstracting data and signals

In this section we explain the approach to obtain abstract SDL models. The

process starts by abstracting some data and signals. Then, as an e�ect of this

abstraction, all SDL instructions that work with this signals and variables

233

have to be modi�ed. The modi�cation consists in replacing every instruction

with its abstract version. More formally, the method is described as follows.

Let M = P1jj : : : jjPn be an SDL system involving the concurrent exe-

cution of n processes.

� Let us suppose that Pj contains sj local variables v1; : : : ; vsj , each one

ranging over a (non-empty) set of values Dji
. Let us de�ne Dj and D as

Dj = Dj1
� : : :�Djsj

and D = D1 � : : :�Dn.

� Let SG be the set of signals de�ned in M.

� Let Qj be the domain of all possible values that qj may store. Let Q be

Q1 � : : :�Qn. If SG
i = SG� : : :� SG| {z }

i

then Qj �
S

i�0(SG
i).

� Let Inst be Inst1 � : : :� Instn, Instj being the set of instructions of Pj.

Using these de�nitions, the set of system states is SState = D � Q�
Inst. Let � = �d � �q : D � Q ! D� � Q� be an abstraction function

which transforms each concrete state (in which temporally instructions are not

being taken into account) into an abstracted one. We assume that (D�;��
d
)

and (Q�;��
q
) are posets where, as is classic in AI, partial orders represent the

relative precision of the approximation of every abstract data. Sometimes, for

clarity in the exposition, we will use �d and �q over simple variables, signals

and queues instead of tuples.

Given �d and �q, we de�ne an approximation of the instructions �inst

as the function which transforms every concrete instruction into an abstract

one. �inst renames the original instruction and changes data and signals for

the corresponding abstract ones using �. �inst is the key to construct the

abstract model. At this point �inst is only a renaming function with new data.

But, we are interested in obtaining M� as an SDL model, so we need an

SDL implementation of every �inst. In the following, �inst will denote this

implementation, and it is aasumend to be executed as an atomic instruction

in order to preserve the necesarry correction conditions.

Let Inst� be Inst�
1
� : : :� Inst�

n
, each Inst�

j
being the set of abstract

instructions of Pj and let SState� be D��Q��Inst�, the set of system states.

Finally, let us de�ne M� as the abstract system obtained by substitut-

ing each instruction i of Pj by �inst(i).

Example 3 We can attack the problem of the state-space explosion in ex-

ample 2 by abstracting some signals between Player and Game and the local

variables in these processes as follows:

�q (Probe) = Request �q(Result) = Request

�q (Win) = Reply �q (Lose) = Reply �q (Score) = Reply

234

�d (Player.R) = 0 �d (Game.Count) = 0

This abstraction of data must be followed by the transformation of the

instructions that manipulate these data. The next section shows how to use

the Abstraction Library to obtain M�.

5 Using the Abstraction Library

To be rigorous, abstraction is carried out from an abstraction function � which

transforms values and instructions over actual data and signals into abstract

ones, as de�ned in the previous section. However in practice, the function �

is not directly chosen by the user but it is the result of selecting a set of ab-

straction functions from the Library. Each single abstraction function de�nes

the SDL code to implement speci�c abstractions of variables or signals. For

example, the abstraction of signal (S1) with (S2) is de�ned in the Library with

the function AbstractSignal as follows:

AbstractSignal_Output((S1(*),S2)) = output S2

AbstractSignal_Input(S1(*),S2)) = input S2

AbstractSignal_Save(S1,S2)) = save S2

where the string appended to the name of the function is the original SDL

instruction (employed for automatic processing) and the returned value is the

abstract version of the instruction. The * symbol represents the parameters in

S1, which are ignored by this abstraction. Following the same notation, some

of the operations for the abstraction VariableToConstant that abstracts an

integer variable (V) by a constant (C) can be de�ned as

VariableToConstant_Add(V,C,E)) = TaskV := C

VariableToConstant_Sub((V,C,E)) = TaskV := C

The de�nition of both abstract instructions ignore the expression to be added

or subtracted (E). Note that all possible kinds of sentences/operations over the

variable should be de�ne in the Library in order to be usable for transforming

any SDL model. It is particularly interesting to de�ne abstract versions of the

boolean expressions that preserves all the branches of the initial SDL model

(for example to use decision or provided). See [7] for samples of other abstract

functions with this features.

To use the Library, the user must select the abstractions (the global �)

235

to be applied to the SDL model by using

apply(

AbstractSignal(probe,request)

AbstractSignal(result,request)

AbstractSignal(win,reply)

AbstractSignal(lose,reply)

AbstractSignal(score,reply)

VariableToConstant(Player.R,0)

VariableToConstant(Game.Count,0))

Then the MSC and the SDL code are automatically obtained. The

transformation of a Plain MSC can be easily performed by renaming the Sig-

nals in the Input and Output events, as shown in Fig. 2b. The variable abstrac-

tion in the SDL model producesDeamonGame�, and the abstraction of signals

in DeamonGame
� produces DeamonGame��. The code for DeamonGame��

(see Fig. 5) is obtained replacing the current instructions with the abstract

versions as shown in Table 1.

Both abstract models are already suitable to perform a more eÆ-

cient veri�cation.Absence of deadlock is proved by inspecting 706 states in

DeamonGame
� and 479 states in DeamonGame

��, respectively. The state-

space of the initial model (with Symbol-Sequence as the transition mode) has

more than 900,000 states (see Table 1), and the veri�cation of DeamonGame

leaves the tool out of memory after the 900,000 states.

The non-veri�cation of the MSC described in Fig. 2a is proved by in-

specting 1139 states inDeamonGame�. But, if we have problems with memory

then we can use the abstract version MSC
� (Fig. 2b) to prove M 6j= MSC

by inspecting only 583 states in DeamonGame��. It is important to note that

there are several MSCs that produce the same abstract diagram MSC
�. For

this particular property, the veri�cation over the original model must consider

a set of concrete diagrams, and not only the one in Fig. 2. So, we have also

saved the user from having to construct such diagrams. Table 2 summarises

the veri�cation results obtained with the three SDL models when using a max-

imum depths of 100 and 1000 to truncate the execution paths. The number of

MSCviolations represent SDL paths where observable events occurs in steps

not matching with the MSC. As it was expected this number decreases when

the model is more abstract.

These results con�rm the advantages of the abstraction method, but

we still need to study whether the veri�cation of the abstract SDL model

produces useful information about the initial model.This topic is discussed in

236

237

Table 2

Veri�cation results
Model States to discard deadlock States to discard MSC MSC Violations

DeamonGame (depth 100) 52998 (truncated) 53135 (truncated) 48

DeamonGame* (depth 100) 709 1139 19

DeamonGame** (depth 100) 479 583 14

DeamonGame (depth 1000) > 900.000 (truncated) > 900.000 (truncated) |

DeamonGame* (depth 1000) 479 583 14

DeamonGame** (depth 1000) 709 1139 19

characteristics in
uenced by the abstraction, such as data and instructions. In

this section, we de�ne such a generalized semantics for the subset of the SDL

language considered, which will be used to reason about property preserving

abstractions.

Every system M 2 SDL is a sequence of process instances M =

P1jj : : : jjPn which run in parallel. Let Inst be the set of basic instructions

from which the processes are constructed. Inst includes states labels, the as-

signment instruction, the Boolean and arithmetic operators, the decision and

nextstate instructions, the instructions for sending and for receiving signals

(denoted by Input and Output, respectively), and the constructors save and

provided for declaring saving signals and guards. Let us de�ne State the set of

process states and Decl as the declarative part of the system (types and vari-

ables). State includes the special states start and stop. Then, every process

is described as:

P = Decl; fState : Trang Tran = f(Inputjnull); Instg

null representing the continuous signals.

In short, the behaviour of the process is as follows. Every state rep-

resents an internal process state de�ned by the programmer. In each one of

these states, the process will carry out a transition, which will usually begin

reading a signal from the input queue, and it will follow on with a sequence

of arbitrary instructions. The transition will end with a nextstate instruc-

tion which will provoke the process into jumping to another state or with the

stop state which will end the process
3
. As is usual, we make no assumptions

about the speed of the processes or about the time spent in a transition or

in a state. In addition, the delay due to the transportation of signals through

channels is not considered in our framework, but we assume that signals are

instantaneously transmitted.

We now present the generalized semantics of SDL, introducing the

3 We are not considering the structural concepts in SDL as blocks, procedures or

services since we are interested in the internal behaviour of the processes

238

de�nition gradually in order to be clear.

(1) Let Statej and Instj be the sets of the internal states (labels) and in-

structions of the process Pj, respectively. We assume that Statej � Instj.

(2) Let SState be the set of tuples (l1; : : : ; ln; q1; : : : ; qn; i1; : : : ; in) represent-

ing the internal state of the system. For each process Pj, lj, which is also

a tuple, holds the actual value of every local variable at a point during

the execution, qj is the content of the input queue, and ij the instruction

just executed by Pj. qj = ; and qjk will denote that the queue qj is empty

and the kth signal of qj, respectively.

(3) Let Sequence be the set of �nite or in�nite sequences of system states.

(4) Let Initial : SDL ! SState be the function which returns the initial

state of every system, i.e. variables have been initialized, qj = ; and each

ij is an special instruction which precedes the �rst one in every process

(start).

(5) Let just exej : SState ! Instj be the just-executed function which,

given a process and a system state, returns the last instruction of the

process executed, i.e., just exej((l1; : : : ; ln; q1; : : : ; qn; i1; : : : ; ij; : : : ; in)) =

ij.

(6) The function eval : BoolExp � SState ! ffalse; trueg, eval(exp; s)

returns the evaluation of the Boolean expression exp in the state s.

(7) inputi1 ; : : : ; inputik denote the k instructions of Pj in the state i 2 Statej
that can enable a transition. 81 � n � k inputin may be a standard

input instruction as input signal, a continuous signal or a spontaneous

transition.

(8) Let next instj : Instj ! }(Instj)[fendg be the function which returns

the set of instructions that textually can follow i 2 Instj.

� If i 2 Statej then next instj(i) = finputi1; : : : ; inputikg.

� next instj(nextstate ns) = f state ns g.

� next instj(stop) = end, and otherwise

� next instj(i) = fnig, ni being the instruction which follows i in Pj.

(9) Let execj : Instj � SState ! ffalse; trueg be the executable function:

� execj(i; s) = false if i 2 Statej and

� qj = ; and no transition inputjs is continuous or spontaneous.

� qj 6= ;; qj1 = signal, and some inputik = input signal provided

exp, and eval(exp; s) = false.

� execj(i; s) = true, otherwise.

In short, execj(i; s) returns true if the instruction i of process Pj does

not suspend in the state s. Note that we are not considering that a signal

can be discarded.

(10) Let nextj : Instj � SState ! }(Instj) [fdelay; endg be the function

which given a process instruction returns the next instruction to be exe-

cuted, i. e.,

� nextj(i; s) = end, if next instj(i) = end

� nextj(i; s) = delay, if 8 ni 2 next instj(i); execj(ni; s) = false

239

� nextj(i; s) = fi1; : : : ; ikg, if next instj(i) = fnig, ni being a non-
deterministic decision such as

decision any ():

i1;. . . ; nextstate ns1;

ik;. . . ; nextstate nsk;

enddecision.

� nextj(i; s) = next instj(i), otherwise.
(11) Let S : (Inst1 [: : :[Instn)�SState! SState be a semantics function

which gives meaning to each SDL instruction.
S(i; (l1 : : : ; lj; : : : ; ln; q1; : : : ; qj; : : : ; qn; i1; : : : ; ij; : : : ; in)) = s

0 =
(l1 : : : ; l

0

j; : : : ; ln; q1; : : : ; q
0

j; : : : ; qn; i1; : : : ; i; : : : ; in))
means that executing the instruction i 2 Instj, when the system is in
the state s, produces the evolution of the system towards the state s0. S
is an unspeci�ed generic function ; we only substitute ij by i in the state
to indicate that i is the last instruction executed in Pj. The high level
behavior of the model is not dependent on this function and this is why
we do not de�ne it. In [20], the actual meaning of every SDL instruction
can be found.

(12) Let Trans : SState! }(SState)[fend; deadlockg be the function which
returns the states to which the system can evolve from a given state s:
� Trans(s) = [j=1:::n([i2(nextj(just execj(s);s)\Instj)fS(i; s)g),

if j 2 f1; : : : ; ng exists such that nextj(just execj(s); s) 62 fdelay; endg
� Trans(s) = end, if 8j = 1; : : : ; n, nextj(just execj(s); s) = end, and
� Trans(s) = deadlock, otherwise.

The generalized semantics Gen : SDL! }(Sequence) is de�ned as:

Gen(M) = fs0 ! s1 ! : : :! sk ! : : : 2 Sequence=Initial(M) = s0;

8j > 0:(Trans(sj�1) 62 fdeadlock; endg; sj 2 Trans(sj�1))g
S

fs0 ! s1 ! : : :! sk 6!2 Sequences=Initial(M) = s0;

T rans(sk) 2 fdeadlock; endg; 80 < j � k:(Trans(sj�1) 62 fdeadlock; endg;
sj 2 Trans(sj�1))g

Gen associates each SDL model M with the set of all possible state
sequences that M can generate in di�erent system executions. This semantics
is useful for our purposes since:

a)each path corresponds to a possible system execution which must be ana-
lyzed when verifying the MSCs;

b) as the meaning of the operations S and eval is not de�ned, it is possible
to change it to construct the abstract models;

c) Gen allows us to easily reason about the relation concrete/abstract model.
If we denote Gen(M) with Gen(M; eval; S) to emphasize the functions on
which it depends, then Gen(M�

; eval
�
; S

�) is the generalized semantics of M�

240

It is interesting to note that when verifying with SDT no interleav-

ing between processes is carried out while a process is executing a transition

except when an output or a create instruction is executed (this execution

method is called Symbol-sequence in SDT). The semantics Gen could have

been de�ned considering a coarser size of atomic instructions, but this would

have complicated the exposition unnecessarily, and would have reduced its

applicability to other tools.

7 Property Preserving Abstractions

In this section, we �rst explain the conditions conditions to guarantee correct-

ness. Then we discuss the preservation results.

7.1 Correctness Conditions

As we explained before, Gen(M; eval; S) and Gen(M�; eval�; S�) denote the

generalised semantics of the models M and M�, respectively. The following

conditions on the meaning of the abstract instructions (which is de�ned with

eval� and S�) will assure the correctness of the transformation M !M�:

(1) Let us assume that eval� : BoolExp� � SState� ! ffalse; trueg veri�es

the following correctness relation: 8s� 2 SState�:(8s 2 SState:�s(s) �
�

s

s�) eval(exp; s) ��

b
eval�(�inst(exp); s

�))). The partial order used in

the set ffalse; trueg is false ��

b
true which, in our context, means that

eval� returns false only if the evaluation of �inst(exp) in each concretiza-

tion of the abstract state s� is false. Thus, eval(exp; s) = false 6)

eval�(�inst(exp); �s(s)) = false, however eval�(exp�; s�) = false)

eval(exp; s) = false, for all exp 2 BoolExp and s 2 SState such that

�inst(exp) = exp� and �s(s) �
�

s
s�.

(2) Let S� : (Inst�
1
[: : : [Inst�

n
) � SState� ! SState� be an abstract

function verifying the relation: 8s� 2 SState�:(8s 2 SState:(�s(s) �
�

s

s�) �s(S(i; s)) �
�

s
S�(�inst(i); s

�))). S� gives abstract meaning to the

instructions of the abstract system M�. As before, S� is not speci�ed, we

have only declared its correctness relation with S.

The �rst condition says that the abstract instructions cannot produce

new suspensions with respect to the initial model M . The second one imposes

that the e�ect of an abstract instruction must be an approximation of the

e�ect of the respective concrete one (as is classic in abstract interpretation).

241

7.2 Preservation results

We can now give the preservation results of the abstraction that justify the

practical use of the abstraction method. The main results are related to dead-

lock detection (Proposition 8), non-veri�cation of MSCs (Proposition 11) and

abstraction of abstract models (Corollary 12), but other properties can be ana-

lyzed in the semantics framework. The proofs of the results have been omitted,

but they can be found in [12].

In the following, we assume that the abstraction � preserves the number

of signals in the queues.

Given seq = s0 ! s1 ! : : : ! sk ! : : : 2 Sequence and MSC =

ev1 ! : : : ! evk, we de�ne �seq(seq) as �s(s0) ! �s(s1) ! : : : ! �s(sk) !

: : : 2 Sequence� and �m(MSC) = �inst(ev1)! : : :! �inst(evk).

De�nition 4 Given seq�, seq�
0

2 Sequence�, then seq� ��

seq
seq�

0

i� for all

i � 0, s�
i
��

s
s�

0

i
.

Theorem 5 Let Gen(M; eval; S) and Gen(M�; eval�; S�) be the semantics of

the models M and M� verifying the conditions presented in Sect. 7.1, then for

each deadlock-free sequence seq 2 Gen(M; eval; S), an abstract deadlock-free

sequence seq� 2 Gen�(M�; eval�; S�) exists, such that �seq(seq) �
�

seq
seq�.

We impose the condition that every state in each concrete execution

path corresponds to an abstract state in an abstract execution path. This is a

strong result as we need the whole concrete computation to be simulated step-

by-step by the abstraction. However this constraint is necessary for analyzing

MSCs since, otherwise, abstract model could lose observable events of the

MSC.

We say that M� � -approximates M , and we denote it with M v� M�,

when M and M� verify Theorem 5.

Proposition 6 Let M = P1jj : : : jjPn be an SDL system and � = �d��q : D�

Q! D��Q� an abstraction function verifying the conditions of Sect. 7.1 and

preserving the number of signals in the queues. Let Inst� be the set of abstract

instructions derived from �. Let M� be the system obtained by abstracting all

the constants and instructions of M . Let us assume that for each instruction

i� 2 Inst� an SDL implementation exists verifying the correctness conditions

imposed in Sect. 7.1. Under these conditions, the model MI�, obtained by

atomically substituting each model instruction of M� by its implementation,

veri�es Th. 5.

In the previous discussion, we have assumed that the concrete system

242

M is deadlock-free. The next Proposition studies how to analyze deadlock

in M . For this purpose, we impose the conditions presented in the following

de�nition.

De�nition 7 Given an abstraction function �, we say that � veri�es the ex-

ecutability conditions i� for each pair of states s� 2 State�, s 2 State, such

that �s(s) �
�

s
s�, and for each i 2 Instj, execj(i; s) = exec�

j
(�inst(i); s

�).

In short, executability conditions assure that the abstraction does not

introduce additional suspension behaviors in the abstract model. Proving that

an abstraction function � veri�es such conditions consists in proving that the

suspension behaviour of the original model instructions which can deadlock is

not modi�ed by �.

In the following we will assume that M v� M�, � being an abstraction

function verifying the executability conditions presented above.

Proposition 8 If Gen(M�; eval�; S�) has no execution sequence which dead-

locks then Gen(M; eval; S) has no deadlock either.

Next proposition explains the relationship between the concrete and

abstract systems when proving properties expressed using MSCs.

De�nition 9 Given an SDL system M , an MSC = ev1 ! : : : ! evk and

seq = s0 ! : : : ! : : : 2 Gen(M; eval; S), the subsequence subseq = sj !

: : : 2 Sequence (j � 0) veri�es MSC (subseq j= MSC) i� a) k = 0, or

b) if si (i � j) is the �rst observable event in subseq then si = ev1 and the

subsequence subseq = si+1 ! : : : veri�es MSC0 = ev2 ! : : :! evk.

De�nition 10 Given an SDL system M and an MSC = ev1 ! : : : ! evk,

M veri�es MSC (M j= MSC) i� a sequence seq 2 Gen(M;S; eval) exists

such as seq j= MSC. Otherwise, M does not verify MSC (M 6j= MSC).

Proposition 11 Given an SDL system M , an MSC and its abstract version

MSC� = �(ev1)! : : :! �(evk), if M
� 6j= MSC� then M 6j= MSC.

Corollary 12 Let us assume that M v�1
M�, M� v�2

M��, MSC� =

�1m(MSC) and MSC�� = �2m(MSC�), then if M�� 6j= MSC�� then M 6j=

MSC.

Example 13 Note that the abstractions employed in Section 5 verify the hy-

pothesis of Proposition 6, because they satisfy the correctness conditions of

Sect. 7.1, the original system has no provided instruction and they also pre-

serve the number of signals in queues. So we can employ the abstract systems

to prove absence of deadlock and no veri�cation of MSC in the original one.

243

8 Conclusions and further work

We have presented an approach for optimising the veri�cation of SDL systems,

which is compatible with other tasks in current commercial tools such as SDT.

Our method consists in the automatic transformation of the SDL model in

order to obtain a simpler description, which can be analyzed for requirements

such as absence of deadlock and non-satisfaction of MSCs. The method is

based on the de�nition of a generalized semantics of SDL which is suitable to

justify the correct transformation of SDL models into more abstract versions.

In this work, like in other previous ones ([11] [13] [14]), we employ abstract

interpretation as a technique to improve the automatic veri�cation of systems.

Our method can be improved in di�erent ways. The �rst important

task is to complete the de�nition of a set of abstraction functions which can

be easily selected by the user in order to perform the desired transformation,

thus freeing the standard user from the need to think about correct simpli�-

cations of the SDL model. The second task is to obtain even more abstract

transformed models by using information about the structure of the SDL spec-

i�cation, for example, the potential consumers or senders for given signals to

be abstracted. We are currently working on the implementation of tools to

employ the abstract interpretation technique within the SDT environment.

Our aim is to obtain a user-friendly environment to improve the veri�cation

possibilities of this tool in order to stimulate users into performing more veri�-

cation in the development cycle for software or other kinds of complex systems.

As far as we know our approach to applying abstractions in the framework of

SDL and MSC is an original contribution.

References

[1] Bensalem S., Lakhnech Y., Owre S.: Computing Abstractions of In�nite State
Systems Compositionally and Automatically. In Hu, A.J., Vardi, M.Y., (Eds.)
Computer Aided Veri�cation, LNCS-1427, Springer, 1998.

[2] Cousot P., Cousot R.: Abstract Interpretation: A Uni�ed Lattice Model for
Static Analysis of Programs by Construction or Approximation of Fixpoints. In
Conf. Record of the 4th ACM Symp. on Principles of Programming Languages,
1977.

[3] Clarke E.M., Grumberg O., Long D.E.: Model Checking and Abstraction. ACM
Transaction on Languages and Systems, 16(5), 1994.

[4] Clarke E.M., Wing J.M.: Formal Methods: State of the Art and Future
Directions. ACM Computing Surveys, 28(4), 1996.

244

[5] Cleaveland R., Riely J.: Testing-Based Abstractions for Value-Passing Systems.
In Jonsson, B. and Parrow, J. (Eds) CONCUR 94, LNCS-836, Springer, 1994.

[6] Dams D., Gerth R., Grumberg O.: Abstract Interpretation of Reactive Systems.
ACM Transactions on Programming Languages and Systems, 19(2), 1997.

[7] Dwyer M.B., P�as�areanuams C.S.: Filter-based Model Checking of Partial
Systems, In Proc. ACM SIGSOFT Symp. on the Foundation of Software
Engineering, 1998.

[8] Dwyer M.B., Hatcli� J., Smitdt D., Huth M., Stoughton A.: Bandera,
http://www.cis.ksu.edu/santos/bandera/

[9] Ferdinand C., Martin F., Wilhelm R., Alt M.: Cache behavior prediction by
abstract interpretation Science of Computer Programming, 35 (2), 1999.

[10] Graf S., Sa�idi H.: Construction of Abstract State Graphs with PVS. In
Grumberg, O., (Ed.) Computer Aided Veri�cation, LNCS-1254, Springer, 1997.

[11] Gallardo M.M., Merino P., Troya J.M.: Relating Abstract Interpretation with
Logic Program Veri�cation. In Proc. of the 1st International Workshop on
Veri�cation, Model Checking and Abstract Interpretation, 1997.

[12] Gallardo M.M., Merino P.: A semantics and abstraction based Framework for
the veri�cation of SDL against MSC. Technical Report. Dpto. de Lenguajes y
Ciencias de la Computacion. University of Malaga.

[13] Gallardo M.M., Merino P.: A Framework for Automatic Construction of
Abstract Promela Models. In Dams D., Gert R., Leue S., Massink M. (Eds.)
Theoretical and Practical Aspects of SPIN Model Checking, LNCS-1680,
Springer, 1999.

[14] Gallardo M.M., Merino P.: Verifying Distributed Systems with Model Checking
and Static Analysis To appear in Proc. of the 20th International Conference
on Distributed Computing Systems - International Workshop on Distributed
System Validation and Veri�cation. April 2000.

[15] Giacobazzi R., Debray S.K., Levi G.: A Generalized Semantics for Constraint
Logic Programs. In Proc. of the International Conference on Fifth Generation
Computer Systems, 1992.

[16] Gunter C., Mitchell J.: Strategic Directions in Software Engineering and
Programming Languages. ACM Computing Surveys, 28(4), 1996.

[17] Halbwachsa N.: About synchronous programming and abstract interpretation
Science of Computer Programming, 31 (1), 1998).

[18] Holzmann G.J.: Design and Validation of Computer Protocols. Prentice-Hall,
1991.

[19] Holzmann G.J.: Designing Executable Abstractions. In Proc. of Formal
Methods in Software Practice, 1998.

245

[20] ITU-T Recommendation Z.100, Speci�cation and Description Language (SDL),
1993.

[21] ITU-T Recommendation Z.120, Message Sequence Chart (MSC), 1994.

[22] Jones, N.D., S�ndergaard, H.: In Abramsky S., Hankin C., (Eds.) A
Semantics-based framework for the abstract interpretation of Prolog. Abstract
Interpretation of Declarative Languages, Ellis Horwood, 1987.

[23] Loiseaux C., Graf S., Sifakis J., Boujjani A., Bensalem S.,: Property Preserving
Abstractions for the Veri�cation of Concurrent Systems. Formal Methods in
System Design, 6, 1995.

[24] Rusu V., Singerman E.: On proving Safety Properties by Integrating Static
Analysis, Theorem Proving and Abstraction. In Cleaveland, W.R., (Ed.), Tools
and Algorithms for the Construction and Analysis of Systems, LNCS-1579,
Springer, 1999.

[25] Sa�idi H., Shankar N.: Abstract and Model Check while you Probe. In Halbwachs,
Peled, D., (Eds.) Computer Aided Veri�cation, LNCS-1633, Springer, 1999.

[26] Telelogic: Telelogic TAU User Manuals, 1999. Available in
http://www.telelogic.com.

[27] Verilog: ObjectGEODE Method Guidelines, 1999. Available in
http://www.verilogusa.com.

246

247

EXPERIENCES WITH TOOL DEVELOPMENT OF

SDL IN COMBINATION WITH ASN.1
FOR COMMUNICATION PROTOCOL APPLICATIONS

Ralf Schröder
Martin v. Löwis of Menar

Humboldt Universität zu Berlin
Institut für Informatik

Lehrstuhl für Systemanalyse
Unter den Linden 6

10099 Berlin, Germany
tel: +49 30 2093 3120
fax: +49 30 2093 3111

e-mail: r.schroeder/loewis@informatik.hu-berlin.de

SDL in Combination with ASN.1, as a standardized variant of
SDL, is a formal description technique. The language is used for
the documentation, standardization, and verification of distrib-
uted communication systems. It is even possible to generate exe-
cutable programs from such specifications. This paper
introduces the tool environment SITE. The environment sup-
ports a compilation from SDL and ASN.1 to C++ or Java.
The ASN.1 support was extended for the application of SITE in
industrial projects. The communication aspect of ASN.1 (encod-
ing of values) is now available for use in specifications, and
more ASN.1 constructs than the standardized combination cov-
ers, can be used (e.g. macro applications). The paper shows the
application area of SITE, presents some details for the data
implementation, and explains the current state of the ASN.1
extensions in SITE.

Keywords: SDL, ASN.1, Basic Encoding Rules, C++/Java code
generation, SITE, code optimization, SDL environment
communication

248

Introduction

The widely-used language SDL [Z.100] is important for the specification of telecommu-
nication systems, especially standardized systems. The highlights of the language are the
intuitively understandable semantics of all base concepts and the graphical representa-
tion with excellent tools support. Also, SDL is alive. The ITU-T (International
Telecommunication Union - Telecommunication standardization sector) recommends
SDL as standardized specification technique and maintains the language actively.

A significant aspect for applications is the data concept of SDL. For today’s protocol
specifications, e.g. the small and broad band ISDN protocol family or the IN area, the
complexity of data descriptions grows dramatically. However, the abstract data concept
of SDL is neither accepted by the users nor completely implemented by tool vendors.
The combination of SDL with ASN.1 is a good compromise to satisfy user requests for
better data description techniques and tool vendors with their implementation problems.

ASN.1 [X.680] is a standardized data description technique defined in the OSI context
[X.200]. The language allows the specification of data structures and values. It does not
support the description of behavior, e.g. the manipulation of data values with operators.
In addition to the language definition, there are standardized encoding rules for ASN.1
values. The key idea is to give an abstract description of data (ASN.1 - Abstract Syntax
Notation One) together with basic encoding rules for values. An ASN.1 compiler can be
used to generate data structures and corresponding encoding functions for the concrete
target language (cf. figure 1). There are two standardized versions of ASN.1. The old
one [X.208] is deprecated. The new one, last revised in 1997, includes multiple encod-
ing schemes.

 Figure 1: Communication scenario

data implemented in PASCAL data implemented in C

byte oriented connection

abstract data description and encoding rules

compilation on target architecture into data structures
and encoding functions of the programming language

PC with Windows integrated realtime system (68000)

249

The motivation of the combination of both languages SDL and ASN.1 comes from
ASN.1 based protocol descriptions with informal behavior part. The replacement of the
informal behavior part by a formal SDL description would require a transformation of
the ASN.1 data to SDL data. If done manually, this is a rather redundant step, and it
implies problems with the tool support for the translated SDL data structures. The com-
bination of SDL with ASN.1 unifies the strong data description methods of ASN.1 with
the expressive behavior part of SDL. Additionally, the possibility to encode ASN.1 data
values can be used for an universal communication with an SDL system specification.

The SDL Integrated Tool Environment [SITE] of Humboldt University provides an SDL
to C++ or Java compilation process, which is used for simulation, development of proto-
types as well as real world applications. SITE supports the combination of SDL with
ASN.1 together with the Basic Encoding Rules of ASN.1 [X.209]. This paper discusses
two aspects:

1. ASN.1 for data descriptions in SDL, and

2. ASN.1 as base for universal communication with SDL systems.

The first aspect is standardized by ITU-T [Z.105], however based of the old ASN.1 ver-
sion. SITE supports a more open approach with respect to the ASN.1 combination, i.e. it
provides basic compatibility to the standard as well as extensions. Section 1 is con-
cerned with the general use of SITE, especially the ASN.1 combination. The differences
to the Z.105 approach are worked out. Details with respect to the ASN.1 code generation
support are outlined in section 2. The second aspect goes beyond the standardized com-
bination of both languages. This is discussed on different realizations with SITE in
section 3. Finally, additional ASN.1 language concepts, which are not part of Z.105 are
considered in section 4. These concepts were developed and implemented on user
requests.

1. Development of applications with SITE components

SDL has two language representations: the graphical syntax SDL/GR, and the textual
syntax SDL/PR. The the compilation process of SITE is based on SDL/PR. Normally,
SDL specifications are developed graphically, so that a third-party editor is necessary.
There are several SITE extensions to support different commercial editors directly, e.g.
when diagnosing specification errors, implementing file include features, and language
extensions. Currently, a direct connection is being considered between SITE and the
commercial SDL tool Cinderella [Cin99] based on the Cinderella Application Program
Interface.

This section explains how SITE can be used for building programs from SDL, where the
ASN.1 part is considered separately. Finally, the application areas of SITE technology
are presented.

250

1.1 SITE components in one view

SITE is an open collection of tools, which are able to handle SDL specifications. Tool
components can be compiled for any platform with a standard C compiler. An overview
of tools for the compilation process is given in figure 2.

• A syntax analysis (Parser component) transforms an SDL/PR specification into an
architecture-independent interchange format called Common Representation (CR).
This format is the base for independent development of SITE components. In princi-
pal, a graphical editor could produce a CR instance directly; this option is currently
being investigated as a strategy for integration with the Cinderella tool.

• The semantical analysis checks a specification (as CR instance) according to the static
semantics of SDL. Other SITE components assume a semantically correct specifica-
tion.

• The SDL code generator produces C++/Java code from the specification based on an
abstract library interface. There are different libraries for C++: a simulation library,
two libraries with underlying user-provided communication libraries and a CORBA

 Figure 2: SITE compilation process

Common

SDL/GR Specification

main()
 {

...}

ComLib

SDL/PR Specification

system upper_layer;
block service_entity;

signal connection_req,

ASN.1 Module

messages DEFINIONS ::=
BEGIIN

info-message::=IA5String

ImplementationDebugging/Monitoring

C++/Java Generator

Pretty Printer

Semantical Analysis

SDL/ASN.1 Parser

third-party SDL/GR tool

Representation

SDL-Lib
User HUB

SDL-PR-Viewer

251

[OMG] based library for prototype programs. The generated code includes methods
to produce a complete simulation interface, e.g. traces and state information. The
library implementation decides about the use of these information, e.g. with a debug
flag for the C++ compiler. The Java generation is under development. A development
branch, which is used by Siemens AG, is an ASN.1 to Java compiler which supports
Basic Encoding Rules.

• There are some components for back interpretation of test results. Most of them redi-
rect results to the SDL/PR source. So for the simulation a small simulator interface
with an SDL/PR viewer is available.

• Because from SDL/GR generated textual specifications are unreadable (in general the
SDL/PR source code is annotated with layout information), a pretty printer can be
used. Besides the reformatting process, the pretty printer is able to create PostScript,
LaTeX and HTML output with syntax highlighting and for HTML optional cross ref-
erence links.

From each SDL system an executable program is produced, which can communicate
with the operating system environment dependent on the used libraries. Packages can be
compiled separately to a (static or dynamic) C++ library. The SDL developer normally
uses an automatic production process provided by scripts, compilation technologies
(make) or, so planned with Cinderella, interactively from the the graphical editor. Prop-
erties of all SITE components (e.g. case sensitive name handling, language extensions)
can be controlled by command line options in a wide range.

1.2 Combining SDL and ASN.1

In 1995 ITU-T published the standardized combination of SDL with ASN.1 [Z.105].
This is a syntactic combination, which defines a new language version of SDL. ASN.1
type definitions and expressions can be used as SDL sort definitions and expressions.
Such a direct combination is a compromise for both languages, e.g.:

• ASN.1 parts are not case sensitive,

• SDL keywords are not allowed in ASN.1 parts and vice versa,

• complex ASN.1 construct are not supported (ASN.1 macros),

• encoding of ASN.1 (tagging) is ignored.

The semantic base of the combination is a mapping from the additional ASN.1 con-
structs to SDL (in general data definitions).

The SITE solution for the combination of SDL with ASN.1, which was developed about
1993, influenced the standardized development. The functionality for basic data struc-
tures, i.e. the set of operations for ASN.1 data types, was derived from the SITE realiza-
tion, so that on semantic level SITE is compatible to Z.105. However, the syntactic
approach is different: ASN.1 specifications can be included „as is“ instead of SDL data
definitions by using two keywords (cf. figure 4). Between these keywords, an analysis
takes place according to the ASN.1 language definition. It is even possible to compile

252

ASN.1 modules stand alone. It is a question of tool components and additional combina-
tion rules, of course, to support more ASN.1 features than the standard X.105. Today,
SITE tool components are implemented with the following features:

• application of Basic Encoding for ASN.1 values,

• selected ASN.1 macro applications and

• extensions of the current ASN.1 standard [X.680] with respect to the old [X.208]
ASN.1 version.

The methodology behind that constructs is discussed in the next sections. A specifica-
tion without these extensions can be transformed to a Z.105-like, semantically identical
specification by introducing a ';' between ASN.1 assignments and dropping the key-
words asntype/endasntype. In that sense, the SITE solution is a Z.105 restriction. Even
ITU-T recognized that such a restriction is useful. The new revision of SDL in Combi-
nation with ASN.1 orients to the use of ASN.1 in complete modules; mixed notations
are deprecated.

 Figure 3: Example SDL in Combination with ASN.1 according to Z.105

 Figure 4: ASN.1 integration with SITE

process proc; fpar int Integer;
dcl s set {

data [1] Integer,
id [2] PId optional
}; -- ASN.1 data type assignemnt

dcl pid PId;

some_state

sig(s)

 { data int }s :=

sig(s) to pid

access to optional ASN.1

initialisation of ASN.1

field components

structures with ASN.1 values

pid :=if idPresent(s)
thens!id
elsesender fi

<partial type definition> ::=

asntype endasntype
ASN.1 module

ASN.1 assignments

253

1.3 Application areas

SDL systems can be embedded in heterogeneous software systems. Possibly, the devel-
opers of such systems have their own application libraries for communication and
scheduling as an abstraction layer for different software products. In such cases, the
SDL code generation must follow the application design rules. The advantage of SITE is
the high flexibility of all tool components, especially the code generation. Except for
additional language features, only the interface between code generator and the user pro-
vided communication library has to be reimplemented (e.g. for the target language C++
adaptation of 10000 until 20000 lines of code). This abstraction between code generator
and the user application library is called the SDL library. Within this library you have
the choice between completeness of SDL semantics and performance of the program
code. Moreover, the user can easy read the generated code because of the abstract library
interface and the direct correspondence to the original SDL source. This is important for
hand implementation of functionality, for example data base access.

The feasibility of the adaptation mentioned above is proved by two major projects:

1. FTZ Darmstadt of Deutsche Telekom AG: Demonstration of prototype solutions
for a B-ISDN protocol stack[BGKS+];

2. Siemens AG Berlin: Generation of software for IN service control points.

Other research projects are the development a simulation library for SDL and the
replacement of the application library for communication and scheduling by a CORBA
implementation.

2. Code generation for data

SITE code generation is designed for full SDL-96 and ASN.1 support. Nevertheless, a
concrete code generator version can be restricted to a useful SDL subset, because

• of performance reasons,

• the lack of support from the application library.

With respect to data, the user is able configure many properties of the code generation
itself. The way, how this can be done with SITE is outlined first. Because of the rapidly
growing data part in protocol specifications, the generation of efficient code becomes
important. The SITE code generator is able to perform optimization on SDL level. The
optimization strategies are discussed, too. Finally, the support for data encoding is
considered.

2.1 Data design

The SITE compiler components know the ASN.1 type constructions and generate the
corresponding C++/Java classes. The generated code is based on the runtime library
library, which provides base classes for the main SDL constructs. Here the simple data
types like INTEGER or OCTET STRING are implemented as classes. The decision to
use classes for simple types is a direct consequence of the following requirements:

254

• Code generation should be supported for all SDL constructs, especially object ori-
ented features such as context parameters.

• Generated code should have a similar structure as the SDL specification. As a conse-
quence, inheritance and context parameters are implemented by object oriented con-
cepts of the target language and not by flattening the structure. Because simple types
cannot be inherited (in C++), a container class becomes necessary.

The set of predefined types and their supported operators as well as SDL generator
based constructions like SET OF BOOLEAN depends on the used library and can be
specified in a separate SDL specification which stands for the standardized package Pre-
defined. It can be modified by the user, e.g. to add own data structures. There are special
comments to control the style of code generation with respect to:

• the use of specific names in the generated code,

• the signature of operators,

• translation of name class literals for the target language.

For example, if the library supports an operator assert, the declaration in predefined.sdl
could be:

newtype Boolean
literals

 /*$codegen: SDLBool::SDLTrue() */ True,
 /*$codegen: SDLBool::SDLFalse() */ False;

operators
 /* other operators of Boolean */
 /*$codegen: ASSERT #S*/

assert: Boolean -> Boolean;
endnewtype Boolean;

The code generator will generate the text „SDLBool::SDLTrue()“ (in general the space
terminated string after $codegen:) for a literal True in an SDL expression or the call
of a static operator „dummy=ASSERT(condition)“ (other variants: #C - constructor
call of the actual inheritance level, #n - a member function of the n-th operator argu-
ment) for an SDL assignment „task dummy:=assert(condition)“. Moreover,
the semantic analysis recognizes that an assignment „task dummy:=assert(0)“
has a signature error (0 is not of sort Boolean). Even generic literal definitions can be
controlled by using regular expressions substitution, e.g to delete leading zeros of inte-
ger values for C++ code generation:

literals
/*$codegen: 0*([1-9][0-9]*) \1 */
nameclass ('0':'9')* ('0':'9');

As a consequence, the user is able to add the static semantics and code generation sup-
port by modifying the package Predefined or adding own (external) packages to the
SDL specification with corresponding non-SDL libraries.

255

2.2 Code optimization

Because the SITE tools was also used in industrial context, the optimization of the gen-
erated code was necessary. The main directive for optimization is not to corrupt the SDL
semantics. The analysis of most used structures as well as run time analysis of generated
programs were the base of improvements. A list of optimization features w.r.t. data is
given in the list below. The sequence is from highest to lower importance.

Assignments: Value assignments are expensive operations. In general, the class object
must be copied recursively according to the SDL semantics. In some situations the
copy operation can be replaced by reference assignments. The SITE code generation
is able to recognize some of these situations:

• assignment of a temporary created literal value, e.g. var := (. 42, True .);

• simple variable modifications, e.g. int_var := int_var + 1, string := string // 'appen-
dix';

Because assignment optimization also works for signal output, operator and proce-
dure calls, this kind of analysis is the most important one.

Procedure optimization: Normally, procedures can be specified with states. As a conse-
quence, the control flow of a procedure has to be integrated in the scheduling scheme
of the target library. However, most procedures are used „simply“ to manipulate
ASN.1 data values1. This kind of procedures can be excluded from the scheduling
scheme.

The ASN.1 combination implies a high number of simple procedures. Therefore this
kind of optimization is an important step, too. However, with the further development
of SDL, especially the data concept, the use of procedures will be replaced by normal
SDL operators or methods.

Decision optimization: SDL decisions allow rather complex evaluation rules for the
determination of the action branch. However, more than 90% of all decision con-
structs are simple: boolean decisions or branching by enumerations. These cases can
be mapped to corresponding target language constructs in efficient manner.

Loop optimization: SITE code generation starts an extra function at the begin of a label.
As a consequence each jump is a complex (virtual) function call. Simple loops, e.g.
for the initialization of fields are recognized by the code generation and the function
call is replaced by simple jumps of the target language.

Graphical editors also include artificial labels. If the code generation is connected
with a certain graphical editor, these labels could be eliminated, too. This feature is
not implemented with SITE.

1. Design problem of SDL in combination with ASN.1: ASN.1 data definitions cannot define oper-
ators; one work around is the use of procedures.

256

In-line fragments: References to constants (SDL synonyms) can be replaced by the
value. In combination with expression evaluation by the code generator the result is a
small performance improvement for initialization and loops. The disadvantage is the
enlargement of the generated code.

The result of such an optimization extremely depends on the specification style. For
example the (for optimization adapted) specification

/* a simple procedure, no scheduling stragegies */
procedure fib; fpar i Integer; returns ret Integer;

start;
decision i<=2; /* a simple if construction */

(True): return 1;
else:

enddecision;
/* no creation of Integer objects, direct variable

manipulation, e.g. i.increase(-1)
*/
task i := i-1, ret:=call fib(i),

i := i-1, ret:=ret + (call fib(i));
return;

endprocedure;

for the recursive calculation of fibonacci numbers called with 32 could be improved by
factor more than 1000. The performance for that example is as good as a „normal“ C++
code. A simple roundtrip communication of two distributed SDL processes (socket con-
nection, integer data parameters, Basic Encoding Rules) had a approximately doubled
the signal transfer rate after optimization.

2.3 Basic Encoding

If the SDL library supports the standardized Basic Encoding Rules [X.209] of ASN.1,
the complex type definitions need a direct support for encoding functions from the code
generator. The support of BER implies the correct use of ASN.1 tags, e.g. unique tags in
a CHOICE type. This support is out of scope of the language definition in Z.105, how-
ever. The SITE environment pays attention to ASN.1 tags but can ignore them on
request with command line options, e.g. if the generation of coding functions can be
suppressed. Analysis as well as code generation can be used for stand alone ASN.1 spec-
ifications, too. The basic design of the SITE encoding support is taken from the public
domain ASN.1 tool Snacc [SaNe].

The generated coding scheme can be used implicitly as described in the next section as
well as explicitly with additional operators. If the last feature is supported from the used
SDL library, each data definition (Sort) has two implicitly defined operators:

Decode : Sort -> Octet_String;
Encode : Octet_String -> Sort;

An useful application of encoding operators is demonstrated later with the ASN.1 type
ANY. The implementation of other encoding schemes than BER is imaginable.

257

3. Communication with SDL signals

The use of signals to the SDL system environment is a suitable way to communicate
with an SDL system. SDL signals carries optional data values, which can be encoded
using BER. This scenario assumes that signal parameters are ASN.1 data only or that
SDL data structures are mapped to ASN.1 definitions. The SITE tool set is able to gen-
erate suitable coding functions for ASN.1 data definitions as well as selected SDL
structures. The use of SDL data without direct ASN.1 representation is not recom-
mended, because of the tool specific mapping. Such data are Array and SDL structure
constructs (newtype struct), or even the simple sorts PId and Time.

The standardized coding is not enough, however. The byte stream must be transmitted
somehow and a suitable addressing scheme has to be provided, too. Normally, the gen-
erated software is embedded into a communication system, e.g. a proprietary TCP
implementation, which is able to transmit a byte stream to a certain communication part-
ner. Often such an interface is not developed for the communication with more than one
communication instance per endpoint, so that the SDL specific sender and receiver
information has to be coded into a PDU somehow. The ASN.1 description

SignalPDU ::= SEQUENCE {
signal_identification ID,
sender PId,
receiver PId OPTIONAL,
route PATH OPTIONAL,
encoded_parameter OCTET STRING

}

could encapsulate the basic SDL signal instance properties, where the definition of the
data types ID, PId, and PATH are environment-dependent. Of course, an application
library specific PDU could be used, too. The concrete realization contains the SDL
library as the link between code generation and application library. There is a wide
range of implementation details. Some details of the two major SITE applications as
well as of our research projects (cf. section 1.3) are discussed here.

One SDL library implementation was used for a demonstration platform for advanced
multimedia teleservices, based on a sophisticated broadband network and signalling sys-
tem [BGKS+]. Most of the B-ISDN protocol layers was specified using SDL systems,
ATM hardware driver and user applications was programmed in C++. Here the signal
identification is a static assignment to numbers, each SDL external channel is mapped to
a connection oriented communication peer of the communication library and PId values
are represented by locally unique numbers. The connection of two SDL systems is man-
aged without user configuration assuming equal channel and signal names. Such an
external channel supports signal buffering, if the communication partner is temporary
not available (not started). Normally, such a connection remains open until the program
dies. The consistent channel description of two SDL systems can be checked with the
semantic analysis. A non SDL program can use a name service to establish the connec-
tion even across operating system boundaries, e.g. between VxWorks, Solaris and

258

WinNT. The figure 5 demonstrates the connection scenario of two SDL systems, the
name service and a central time server. The registered system name can be used as bind-
ing to any SDL channel, where this interface is used for test purpose only.

The second SDL library implementation is part of a IN run-time-environment developed
by Siemens AG for call control units. Here the communication infrastructure can be
configured dynamically with a management information base (MIB)[CFSD]. The con-
figuration includes the mechanism of the transport because of different interfaces to
other programs, e.g. libraries for interacting with TCAP or SNMP. SDL packages with
hand implemented data structures allow the access to MIB objects from the specifica-
tion, e.g. to determine address information. There is s direct relation of a local SDL pro-
cess address (PId value) to a globally unique, MIB based address information. In that
scenario, connections can be established (and closed) on request dynamically. To avoid
buffer overflows, SDL channels have no buffer, the specification must be able to man-
age discards signals.

A third solution for an SDL library with environment communication is the use of a
CORBA implementation of ORBacus [OOC98] for the transport of PDU’s. Here an IDL
interface is provided for channel endpoints, PId’s, signals and the system. The initial
connection is established with an extra name service. Because of the two levels of
encoding data parameters - BER for parameters and CDR for signals with the encoded

 Figure 5: SDL channel based communication

Timer
(Server)

Nameserver
„NAME_SERVER“
„TIMER“
„.Ping“
„Pong“
„Racket“

system Ping;

block b;
Racket

system Pong;

block b;
Racket

name service module
„NAME_SERVER“
„TIMER“
„Ping“
„Pong“
„Racket“

C++ timer
moduleregistation

registation

registation

automatic channel connection via name service

central or decen-
tral SDL timer
management;
connection estab-
lished via name
service

259

data parameter - a direct encoding of data with CDR is desirable. This technology is
described in [Bie97]. This library was used for the prototype development of alternative
transport protocols (B-ISDN [Q.2931]) of CORBA implementations [AIGN+].

4. Constructs beyond Z.105

Real world ASN.1 specifications consists of more language elements than the Z.105
supports. The following 3 extensions was developed in close teamwork with Siemens
AG.

4.1 Communication with ASN.1 macros

At least the macro applications (or equivalent X.680-style information objects) OPERA-
TION and ERROR should be supported by the combination of SDL with ASN.1. These
constructs are used by protocols extensively. Useful is a mapping of macro values
(object instances) to SDL signals, e.g. the specification

op OPERATION
ARGUMENT INTEGER
RESULT BOOLEAN
ERRORS { timeout, unsupported }

::= localValue 42

timeout ERROR PARAMETER REAL ::= localValue 1001

unsupported ERROR ::= localValue 1002

introduces multiple SDL signals implicitly:

signal op(ROSE_ARG,Integer),
op_RESULT(ROSE_RES,Boolean),
timeout(ROSE_ERROR, Real),
unsupported(ROSE_ERROR);

Contrary to the first intuition of SDL users, the ASN.1 OPERATION macro is not
expressed as a remote procedure in SDL. The protocol stack used (TCAP, [Q.771])
defines different operation classes, e.g. an operation might “succeed” if there was no
error in a certain period of time. Also, a service might need to invoke multiple opera-
tions simultaneously, which are then transmitted in a single PDU. Fine-tuning control
flow based on remote procedures would not be possible.

The additional parameter is based on practical experience: a real world library for
remote operations, e.g. an SS7 stack implementation, expects additional protocol infor-
mation (e.g. invoke identifications). The exact contents of the parameter is specific to
the application area. This functionality is supported for a Siemens AG specific SDL
library to connect SDL specifications with an SS7 stack implementation of an other ven-
dor.

Like ERROR and OPERATION, other information object definitions of the new ASN.1
standard could be directly supported by SDL in combination with ASN.1.

260

4.2 Rules of extensibility

These rules are an encoding enhancement for better version control of PDU‘s supported
by the current ASN.1 version. The essence is that the encoder has to skip and store
unknown encoded fragments and the decoder has to include the stored unknown argu-
ments again. The unknown encoded strings have to be stored in placeholders of data
structures. Possibly this placeholder is hidden or can be accessed by suitable operations.
At least, it must be assignment-transparent:

UpperPDU ::= SEQUENCE{
i Integer,
...

}
AdressedPDU:= SEQUENCE{

my_addr PId,
pdu UpperPDU

}

signal from_upper_level(UpperPDU),
to_lower_level(AddressedPDU);

...

input from_upper_level(upperPDU);
task newPDU := (. self, upperPDU .);
output to_lower_level(newPDU);
...

This specification should be able to receive an encoded a value of type

UpperPDU-version2 ::= SEQUENCE{
i Integer,
...,
b Boolean

}

The additional field b is also part of the encoded value for signal to_lower_level.
Choices and enumerations are straight forward, e.g.:

Version ::= enumerated { one(1), two(2),...}
dcl v Version;
...
decision v;

(one) : ...
(two): ...
else : /* unknown versions */

enddecision;

4.3 ASN.1 ANY

The interpretation of the ASN.1 type ANY is given in Z.105:

newtype Any_type
endnewtype Any_type;

261

Obviously, this sort is not helpful, there are no values. A more convincing solution is
already discussed in [Schr94]: the definition of Any_type depends on all defined data of
the specification and provides operations to convert from and to a specific sort:

Seq ::= sequence {
kind Integer,
parameter any defined by kind

}

dcl seq Seq, b Boolean, i Integer;
...
decision seq!kind;

(0): task b := Boolean(seq!parameter);
(1): task i := Integer(seq!parameter);
else : call ErrorMsg(‘some error...‘);

enddecision;

In context of ASN.1 there is a natural technical solution for the conversion: it is the
application of the encoding rules. If conversion to the requested type fails, an SDL
exception is raised in the SDL library implementation. Such an exception concept,
which is already supported by SITE, will be part of the SDL language revision in 2000.

5. Conclusion

Even if the combination of SDL with ASN.1 is a remarkable progress for SDL applica-
tions, there are two major shortcomings:

1. the communication aspect is not standardized and

2. the generation of efficient target code remains rather tricky.

With the removing of ACT ONE from SDL and the introduction of object-oriented data,
especially of a reference concept, in the new language revision SDL-2000 at least the
second problem could disappear.

The embedding of SDL specifications in complex heterogeneous systems is opened with
a question for encoding of SDL data values in the new ITU-T study period. The inter-
face definition language IDL [OMG] could become more important than the ASN.1
integration. Currently, there is a standardized [Z.130], rather difficult mapping from
ODL (an IDL adaption to telecommunication issues) to SDL in Combination with
ASN.1. SDL-2000 allows much more direct mapping rules. SITE development already
started in that direction!

262

Literature

[AIGN+] AT&T, Iona, GMD Fokus, Nortel, Teltec DCU, Alcatel, Deutsche Tele-
kom, Ericsson Telecommunications, Humboldt University of Berlin,
Object Oriented Concepts, Open Environment Software, Telenor: Inter-
working Between CORBA And TC Systems, document telecom/98-10-
13, OMG, 1998.

[BGKS+] Ulf Behnke, Michael Geipl, Gerd Kurzbach, Ralf Schröder, Nils Fisch-
beck, Renee Mundstock: Development of broadband ISDN telecommuni-
cation services using SDL’92, ASN.1 and automatic code generation. In
Participation Proceedings of 8th international conference of Formal
Description Techniques for Distributed Systems and Communication
Protocols FORTE’92, Montreal,1995.

[Bie97] Frank Bielig: Implementierung einer SDL-Laufzeitbibliothek auf
CORBA-Basis, Diplomarbeit, Humboldt-Universität, Institut f. Informa-
tik, Berlin, 1997.

[CFSD] J. Case, M. Fedor, M. Schoffstall, J. Davin: A Simple Network Manage-
ment Protocol (SNMP), RFC 1157, 1990.

[Cin99] Cinderella: Cinderella SDL. Technical Description, Danmark, 1999.

[KLS99] Gerd Kurzbach, Martin v. Löwis, Ralf Schröder: External Communica-
tion with SDL systems. In SDL‘99 The Next Millennium, R.Dssouli,
G.v.Bochmann, Y.Lahav (editors), proceeding of the Ninth SDL Forum
Montreal, Canada, Elsevier, 1999.

[OMG] OMG: The Common Object Request Broker: Architecture and Specifica-
tion. Revision 2.0, July 1996.

[OOC98] OOC: ORBacus for C++ and Java, Object-Oriented Concepts, Inc, 1998.

[Q.771] ITU: Functional Description of Transaction Capabilities, Recommenda-
tion Q.771, Genf, 1997.

[Q.1228] ITU: Interface Recommendation for intelligent network Capability Set 2,
Geneva, 1997.

[Q.2931] ITU: Recommendation B-ISDN-DSS2-UNI-Layer 3 specification for
basic call / connection control, Genf.

[SaNe] Michael Sample, Gerald Neufeld: Snacc 1.0: A High Performance ASN.1
to C/C++ Compiler. University of British Columbia, Vancouver, Canada,
1993.

[Schr94] Ralf Schröder: SDL‘92 data handling in combination with ASN.1. master
thesis, Department of Computer Science, Humboldt University Berlin,
1994.

263

[SITE] SDL Integrated Tool Environment of Humboldt University Berlin:
http://www.informatik.hu-berlin.de/Themen/SITE.

[X.200] CCITT: Data Communication Networks Open System Interconnection
{(OSI)} model and notation, service definition. Blue Book Recommenda-
tion X.200, Melbourne, November 1988.

[X.208] CCITT: Specification of Abstract Syntax Notation One (ASN.1), In Open
Systems Interconnection [X.200] - Basis Reference Model. International
Standard Recommendation X.208, conform with ISO8824, Melbourne,
1988.

[X.209] CCITT: Specification of Basic Encoding Rules of Abstract Syntax Nota-
tion One (ASN.1). In Open Systems Interconnection [X.200] - Basis Ref-
erence Model. International Standard Recommendation X.209, conform
with ISO8825, Melbourne, 1988.

[X.219] CCITT: Data communication networks open system interconnection
(OSI) Remote operations: model, notation and service definition. In Blue
Book Recommendation X.200, Melbourne, November 1988.

[X.680] ITU-T: Data networks and open system communications, OSI network-
ing and system aspects - Abstract Syntax Notation One (ASN.1): Specifi-
cation of basic notation, ITU-T Recommendation X.680, 1997.

[Z.100] CCITT: SDL - Specification Description Language, International Stan-
dard Recommendation Z.100, Genevre,1992.

[Z.105] ITU: SDL in combination with ASN.1, Recommendation Z.105, Genf,
1997.

[Z.130] ITU: ITU Object Definition Language, Recommendation Z.130,
Geneva,1999.

264

265

Modeling and Verifying a Temperature Control System using
Continuous Action Systems

Ralph-Johan Back Cristina Cerschi

Turku Centre for Computer Science (TUCS),
Lemminkäisenkatu 14 A, FIN-20520, Turku, Finland

Abstract. We describe and verify a real-time temperature control system for a nuclear
reactor tank, using a generalization of action systems to hybrid systems as our formal
framework. The analyzed control system is a linear hybrid system, combining discrete
control with continuous dynamics. Our work can be seen as a case study on the
applicability of the hybrid action system formalism to study the reachability problem, i.e.,
to prove that an unsafe state can not be reached by executing the system.

Keywords Action systems, Continuous action systems, Forward analysis, Invariance property,
Reachability

1 Introduction

The safety-critical nature of most hybrid control systems has encouraged work on their formal
modeling and verification. The goal is to provide a mathematical proof, which shows that a
given model of a system satisfies its safety requirements. In this paper, we apply the generalized
model of action systems for hybrid systems, developed by Back, Petre and Porres [3], to
formally describe the real-time linear temperature control system inside a nuclear reactor tank.
The model allows us to analyze the reachability properties of the system, in particular to prove
that by executing the system we can not reach an unsafe state.

The action systems formalism, introduced by Back and Kurki-Suonio [4], is used to model
and analyze parallel and distributed systems. The behavior of an action system is essentially that
of Dijkstra’s guarded iteration statement [6] on the state variables: the initialization statement is
executed first, thereafter, as long as there are enabled actions, one action at a time is
nondeterministically chosen and executed. The extension of this approach to continuous action
systems [3] provides a unified framework for handling both discrete and continuous behavior.
The continuous action system can be seen as a collection of time functions, defined in a
piecewise manner. This approach lets us model both discrete and continuous functions in the
same way, without separating discrete events from continuous laws. The system’s formal
representation is therefore homogenous, making its behavior easy to understand and reason
about.

For general hybrid systems, the hybrid automata analysis methods [1, 2], can be applied with
certain limitations. The automated analysis of hybrid systems [1] needs efficient algorithms to
represent and approximate state sets. The verification methodology that is based on abstracted
automata [14], which has simpler dynamics, faces the inconvenience that the abstractions that

266

are created depend on the property to be proved. Different specifications may require different
abstractions, so proving different properties of the same hybrid system implies creating different
abstractions.

This case study demonstrates how our model [3] can be applied to specify and prove safety
properties for a temperature control system. This is a typical example of a hybrid control
system. We show that we can use the same verification techniques for hybrid systems as for
ordinary action systems.

The structure of this paper is as follows. In section 2 we briefly present the basic action
system notion. Section 3 introduces the continuous action system approach. In section 4, we
describe the temperature control system, using the continuous action system model. We also
give the semantics of the system, by translating it into an equivalent (discrete) action system
where time is explicitly advanced. Section 5 proves that the undesired state is not reachable, by
proving an invariance property for the hybrid system, using the traditional forward analysis
technique. Some aspects of the proofs in this section are presented in the Appendix. Section 6
presents an attempt to evaluate the formal model proposed in this paper and the verification
technique used, following the discussion in [10]. Conclusions and related work are presented in
section 7.

2 Action Systems

The action systems formalism [4] is a framework for specification and refinement of concurrent
programs. It is based on an extended version of the guarded command language of Dijkstra [6].

An action system is in general a collection of actions, or guarded commands, which are
executed one at a time. Parallel behavior is modeled by interleaved actions, i.e., by two or more
actions that can be executed in any order.

An action system A is a statement of the form:

A =def |[var x : TÂ S0; do A1 � … � Am od]| : y (1)

on state variables (attributes) x ∪ y. The local variables x only exist during the execution of the
action system. They are first initialized by S0, after which the actions A1…Am are executed
repeatedly, as long as one of them is enabled. The global variables y exist before and after the
execution of the action system. For specifying the state attributes, we define a finite set Attr of
attribute names and assume that each attribute name in Attr is associated with a non-empty set
of values. This set of values is the type of the attribute. If the attribute x takes values from Val,
we say that x has the type Val and we write it as x : Val. The name and the type completely
specify the attribute. We consider several predefined types, like “Real” for the set of real
numbers, “Real+” for the set of non-negative real numbers and “Bool” for the boolean values
{T, F}.

An action A is of the form

A :: = g � S,

where g is the guard of A and S is the statement (body) of A.
A statement S is defined by the grammar:

S :: = abort (abortion, nontermination)

267

 | skip (empty statement)
 | x : = e ((multiple) assignment)

 | if g1� S1 � … � gm� Sm fi��(nondeterministic choice)
 | S1; … ;Sm (sequential composition)

where S1,…, Sm are statements, g1… gm are predicates (boolean conditions), x a variable or a
list of variables, and e an expression or a list of expressions. The action “abort” always fails and
is used to model disallowed behaviors. Actions can be much more general, but this simple
syntax suffices for the purpose of this paper. An action g � S is enabled if its guard g holds.

The execution of an action system is as follows. The initialization S0 sets the variables to
some specific values, using a sequence of assignments. Then enabled actions are repeatedly
chosen and executed. The chosen actions will change the values of the variables in a way that is
determined by the action body. Two or more actions can be enabled at the same time, in which
case one of them is chosen for execution, in a demonically nondeterministic way. The
computation terminates when no action is enabled. Termination of an action system means the
termination of the control over the system, which means that the state will evolve no more,
fixing the final values of the variables forever.

An action system is not usually regarded in isolation, but as a part of a more complex system.
The rest of the system (the environment) communicates with the action system via shared
(imported and exported) variables, referred to as the global variables.

A predicate I is an invariant of the action system A, if it:

1. holds after the initialization, i.e., if

true {| S0 |} I

2. is preserved by each action gi � Si, i.e., if

I ∧ gi {| Si |} I , i = 1,…,m.

Here p {| S |} q denotes the standard partial correctness of statement S with respect to
precondition p and postcondition q [7].

3 Continuous Action Systems

A continuous action system [3] consists of a set of attributes that form the state of the system
and a set of actions that act upon the attributes:

�����C =def |(var x: T Â S0 ; do g1 � S1 � … ��gm � Sm od)| : y (2)

Here x = x1, … , xn are the controlled attributes or program variables of the system, S0 is a
statement that initializes these attributes, while gi � Si , i = 1, … , m, are the actions of the
system. The attributes y = y1, … , yk are defined in the environment of the continuous action
system. An attribute x is a function of time, where time is assumed to vary over the non-
negative real numbers. The value of an attribute can be read and its value can be changed.

268

Changing the value means assigning to the attribute a new time function that may change the
future behavior of the attribute but not its past.

An implicit variable now is used to denote the present time and can be referred to in
expressions. By using the now variable in an expression, we can correlate the behavior of the
model with the passage of time. Therefore, this formalism is well-suited for modeling real-time
systems.

The initialization statement will set the attributes to some specific functions of time, using a
sequence of assignments. The actions will change the values of the attributes in the prescribed
way, provided they are enabled. This model allows two or more actions to be enabled at the
same time, in which case one of the enabled actions is chosen for execution, in a (demonically)
nondeterministic way.

The next time instance when an action is enabled may well be the same as the previous time
instance when an action was enabled, i.e., time need not progress between two enabled actions.
This allows us to model both discrete computation and continuous behavior in the same
framework (a discrete computation does not take any time).

Functions are below described using λ - abstraction, and we write f.x for the application of
function f to argument x. We explain the meaning of C by translating it into an ordinary action
system. The continuous action system’s (C) semantical interpretation is given by the following
(discrete) action system C:

C = |[var now: Real+, x: Real+�T •
 now : = 0; S 0; N

 do
 g1� S1; N � … � gm� Sm ; N

 od
]| : y,

where

N = def now : = next.gg.now

and the operation “next” is defined by:

 next.gg.t =def min {t’ ≥ t | gg.t’} , if ∃�t’≥ t such that gg.t’
 ∞ , otherwise

In C, the attribute now is declared, initialized and updated explicitly. It models the moments
of time that are of interest for the system, i.e., the starting time and the succeeding moments
when some action is enabled. The value of now is updated by the statement “N”. In the
definition of “next”, gg = g1 ∨…∨ gm is the disjunction of all guards of the actions. Thus, the
function “next” models the moments of time when at least one action is enabled. Only at these
moments can the future behavior of attributes be modified. If no action will be ever enabled,
then the second branch of the definition will be followed. In this case the system terminates, i.e.,
the attributes will evolve forever according to the functions assigned to last. We assume in this
paper that the minimum in the definition of “next” always exists, i.e., a continuous action
system is well-defined when min {t’ ≥ t | gg.t’} is well-defined.

Let us introduce the notation:

269

f / t0 / g =def (λt • if t < t0 then f.t else g.t fi) (3)

Thus, f / t0 / g behaves as f before t0, and as g after t0.
In C, the condition gi stands for the application of gi to now. For instance, x = 0 denotes

(x = 0).now ≡ (x.now = 0.now) ≡ (x.now) = 0. An assignment xi : = e in Si is again understood as
denoting the following assignment in Si :

xi : = xi / now / e (4)

The statement Si is Si with these changes. The continuous action system is essentially just a way
of defining a collection of time functions x1, … , xn over the non-negative reals, in a stepwise
manner. The steps form a sequence of intervals I0, I1, I2, … , where each interval Ik is either a
left closed interval of the form [ti … ti+1) or a closed interval of the form [ti, ti], i.e., a point. The
action system determines a family of functions x1, … , xn, which are stepwise defined over this
sequence of intervals and points. The extremes of these intervals correspond to the control
points of the system where a digital discrete action is performed.

Another important observation regards the possibility of Zeno behavior. The definition of a
continuous action system proposed in [3] does not guarantee that the sequence of generated
intervals will cover all the non-negative reals. They might only cover an initial segment of
these. In this case, there is a limit point of time that the action system reaches when the number
of iterations reaches infinity. The simple explanation of the behavior of the hybrid system is
then not sufficient. However, in that case, we assume that the system is restarted at the limit
point, and repeat the process again. This is meaningful if all attribute values converge to a well
defined value in the limit. This restart can be carried out as many times as needed. Thus, a
continuous action system may have multiple limit points in its execution. The standard action
system semantics does not allow multiple limit points, so this is a point where the semantics
really has to be extended. For simplicity we will here assume that the system C does not exhibit
Zeno behavior, i.e., that the value of now grows without bounds if the action system C does not
terminate. Thus, a single limit point is sufficient. The absence of Zeno behavior means that the
action system will define the values of the attributes for the whole domain of Real+.

4 The Temperature Control System (TCS)

Our example system is taken from a study of hybrid systems using algorithmic techniques, by
Alur et al. [1]. The system controls the coolant temperature in a reactor tank by moving two
independent control rods. Controlling a nuclear reactor means controlling the multiplication of
neutrons in the reactor core. When the control rods (which are made of materials that absorb
neutrons) are pulled out of the core, more neutrons are available and the chain reaction speeds
up, producing more heat. If they are inserted into the core, more neutrons are absorbed, and the
chain reaction slows or stops, reducing the heat.

The goal is to maintain the coolant between the minimum temperature θm and the maximum
temperature θM. When the temperature reaches its maximum value θM the tank must be
refrigerated with one of the rods. The temperature rises at a rate vr and decreases at rates v1 and
v2, depending on which rod is being used. For safety reasons, a rod can be moved again only if

270

T time units have elapsed since the end of its previous movement. If the temperature of the
coolant can not decrease because there is no available rod, a complete shutdown is required.

4.1 The Continuous Action System Model

This system can be described as a continuous action system , as follows. The system’s variables
are :

• θ that measures the temperature inside the reactor tank
• x1 that measures the time elapsed since the last use of rod1
• x2 that measures the time elapsed since the last use of rod2
• state that stores the state of the system.

In order to correlate the execution of an action with the passage of time, we introduce a clock
variable, which measures the time elapsed since it was set to zero.

The operation

reset (c) =def c: = (λt ⋅ t - now) (5)

will reset the clock.
Note that the assignment c : = (λt ⋅ t - now) in the hybrid action system really stands for

c : = (λt • if t < now then c.t else t – now fi) (6)

in the translation of this system to an action system with explicit time.
The continuous action system for describing the temperature control system is as follows:

TCS = |(var state : Real+;
 x1, x2, c : Real+;

 θ : Real;
 state : = 0;

 reset(c);
 x1 : = (λt ⋅ T1 + c.t);
 x2 : = (λt ⋅ T2 + c.t);
 θ : = (λt ⋅ θ0 + vr ∗ t)

 do {cool with rod1}
 state = 0 ∧ θ = θM ∧ x1 ≥ T �

 reset (c);
 θ : = (λt ⋅ θM – v1 ∗ c.t);

 state : = 1
� {release rod1}

 ��state = 1 ∧ θ = θm �
reset (c); reset (x1);
θ : = (λt ⋅ θm + vr ∗ c.t);
state : = 0

� {cool with rod2}

271

�������������state = 0 ∧ θ = θM ∧ x2 ≥ T �
 reset (c);

θ : = (λt ⋅ θM – v2 ∗ c.t);
 state : = 2
 � {release rod2}

 ���state = 2 ∧ θ = θm �
 reset (c); reset (x2);
 θ : = (λt ⋅ θm + vr ∗ c.t);
 state : = 0

 � {shutdown}
 ���state = 0 ∧ θ = θM ∧ x1< T ∧ x2< T �

 abort
 od
)| : θ0, θm, θM, vr, v1, v2, T1, T2, T

Here, T1, T2, θ0 are constants, so that 0 ≤ T1 ≤ T, 0 ≤ T2 ≤ T, 0 ≤ θ0 ≤ θM.
The system is first initialized to state0, the clock is reset and at time point zero, inside state0,

we have x1 : = T1, x2 : = T2, θ : = θ0. After this, the system starts evolving by increasing the time
point now continuously. The first action is enabled when the system has reached the maximum
temperature θM and the first rod is available (x1 ≥ T). The first action body is then executed: the
clock is reset, and the tank is refrigerated with rod1 (the temperature θ starts decreasing linearly
at rate v1), and the system enters state1 by a discrete transition. The second action is enabled
when the temperature reaches its minimum value θm and state = 1. The second action body is
then executed: both clock variable c and clock x1 (that measures the passed time since the
previous movement of rod1) are reset and the system returns to state0, where θ increases
linearly at rate vr. Similarly to the first action, action 3 is enabled if the system has reached the
maximum temperature θM and the second rod is available (x2 ≥ T : at least T time units have
passed since it has been last used). The system then enters state2 where the temperature starts
decreasing at rate v2. Action 4, being symmetric to action 2, is enabled when the temperature
reaches its minimum value θm, and this time state = 2. The temperature then starts increasing at
rate vr. The last action has abort as its body, thus expressing that the shutdown state is not
desired. It becomes enabled when the system is in state0, reaches its maximum temperature
(θ = θM) and none of the rods is available: x1< T ∧ x2< T.

4.2 The Translated Action System Model

The translated action system TCS, where time is explicitly advanced is as follows:

TCS = |[var state : Real+� {0,1,2,3};
 x1, x2, c : Real+� Real+;

 θ : Real+� Real;
 start, now : Real+•

 now : = 0;
 state : = (λt ⋅ 0);

 c : = (λt ⋅ t);

272

 x1 : = (λt ⋅ T1 + c.t);
 x2 : = (λt ⋅ T2 + c.t);
 θ : = (λt ⋅ θ0 + vr ∗ t);
 start : = now;

 now : = min {t’ ≥ now | gg.t’};
 do {cool with rod1}
 state.now = 0 ∧ θ.now = θM ∧ x1.now ≥ T �
 c : = c / now / (λt ⋅ t - now);
 θ : = θ / now / (λt ⋅ θM – v1 ∗c.t);
 state : = state / now / (λt ⋅ 1);

start : = now;
now : = min {t’ ≥ now | gg.t’}

� {release rod1}
 state.now = 1 ∧ θ.now = θm �

 c : = c / now / (λt ⋅ t - now);
x1 : = x1 / now / (λt ⋅ t - now);

 θ : = θ / now / (λt ⋅ θm + vr ∗ c.t);
 state : = state / now / (λt ⋅ 0);

start : = now;
now : = min {t’ ≥ now | gg.t’}

� {cool with rod2}
 ��state.now = 0 ∧ θ.now = θM ∧ x2.now ≥ T �
 c : = c / now / (λt ⋅ t - now);
 θ : = θ / now / (λt ⋅ θM – v2 ∗ c.t);
 state : = state / now / (λt ⋅ 2);

start : = now;
now : = min {t’ ≥ now | gg.t’}

� {release rod2}
 state.now = 2 ∧ θ.now = θm �
 c : = c / now / (λt ⋅ t - now);

x2: = x2/ now / (λt ⋅ t - now);
θ : = θ / now / (λt ⋅ θm + vr ∗ c.t);
state : = state / now / (λt ⋅ 0);
start : = now;
now : = min {t’ ≥ now | gg.t’}

� {shutdown}
 state.now = 0 ∧ θ.now = θM ∧ x1.now < T ∧ x2.now < T �

abort
 od

]| : θ0, θm, θM, vr, v1, v2, T1, T2, T

Variable now has been explicitly introduced and the assignment now : = min{t’ ≥ now | gg.t’}
gives the next time instance when the disjunction of the guards of the actions, g1 ∨ g2 ∨ g3 ∨ g4

∨ g5, holds (i.e., the next time when at least one guard is true, so some action is enabled).

273

We have introduced here the variable start, which stores the time moment when the system
starts evolving in any state, after taking a discrete transition.

5 Reachability Verification

We know that if the temperature rises to its maximum and it cannot decrease because no rod is
available, a complete shutdown is required. The question is whether the system will ever reach
the shutdown state. A state σ’ is reachable from the state σ if there is a run of the hybrid system
H that starts in σ and ends in σ’ [1]. Usually, we want to prove that some bad condition g (like
the shutdown condition) is not reachable. This we can do by proving that some condition I is an
invariant of the system, and that I => ¬ g. As every reachable state satisfies I, this then shows
that every reachable state satisfies ¬ g, i.e. a state where g holds cannot be reached.

Let ∆θ = θM - θm. Clearly, the time the coolant needs to increase its temperature from θm to θM

is τr = ∆θ / vr, and the refrigeration times using rod1 and rod2 are τ1 = ∆θ / v1 and τ2 = ∆θ / v2 ,
respectively.

The sequence of heating and refrigeration is shown in Fig. 1:

 θ

 θM

 θm

 t
 τ1 τr τ2 τr τ1

 Fig. 1. Heating and refrigeration times

Clearly, if τr ≥ T (temperature rises at a rate slower than the time of recovery of the rods), then
the shutdown state is unreachable. However, this can be a far too strong condition for avoiding
the undesired state. Inspecting Fig. 1 we find a weaker condition :

2τr + τ1 ≥ T ∧ 2τr + τ2 ≥ T (7)

i.e., if the time between two insertions of the same rod is greater than the time of recovery of
the rod, the shutdown state is not reachable. We will prove that this is a sufficient condition for
avoiding the undesired state3. We therefore make the general assumption that relation (7) is
true.

In order to prove that formula I is an invariant of our system, it is sufficient to prove that

true {| S0; N |} I (8a)
and

274

I ∧ gi {| Si ; N |} I , i = 1,…,5 (8b)

where start : = now;
 N =def

 now : = min {t’ ≥ now | gg.t’},

assigns variable start to now first, and afterwards sets now to the next time instance when the
disjunction of the guards of the actions in TCS, (gg = g1 ∨ g2 ∨ g3 ∨ g4 ∨ g5) holds (i.e., the next
moment when at least one action is enabled).

5.1 Expressing the Invariant with the State chart

Finding the right invariant for proving a safety property is far from being trivial. Therefore, we
start by generating the state chart of the temperature control system to get a first approximation
of the invariant. Then, we keep adding information to the system’s states in order to figure out
an invariant strong enough to ensure safety.

The following state chart shows the states that the system can be in, and the properties that
hold in each state. It is essentially a hybrid automaton view of the temperature control system.

 Fig. 2. The Temperature Control System’s Hybrid Automaton

This figure describes a first invariant of the system. The invariant is the following (expressed
in terms of TCS):

275

I =def (∀ t ∈ [start, now) •
state.start = 0 => state.t = 0 ∧

 dθ / dt = vr in [start, now) ∧
 dx1 / dt = 1 in [start, now) ∧
 dx2 / dt = 1 in [start, now) ∧
 θ.start = θm ∧ (x1.start = 0 ∨ x1.start = 0)

 ∧ state.start = 1 => state.t = 1 ∧
 dθ / dt = -v1 in [start, now) ∧
 dx1 / dt = 1 in [start, now) ∧ (9)
 dx2 / dt = 1 in [start, now) ∧
 θ.start = θM ∧ x1.start ≥ T

 ∧ state.start = 2 => state.t = 2 ∧
 dθ / dt = -v2 in [start, now) ∧

 dx1 / dt = 1 in [start, now) ∧
 dx2 / dt = 1 in [start, now) ∧
 θ.start = θM ∧ x2.start ≥ T

 ∧ state.start = 3 => θ.start = θM ∧ x1.start < T ∧ x2.start < T)

The invariant thus shows the basic continuous behavior that holds in each state, as well as the
discrete transitions.

It is easy to check on the translated form of the temperature control system, that it really has
the properties described by the above state chart. By inspecting in TCS the expressions of each
action’s guard and each action’s body, proving that (9) holds becomes trivial.

5.2 Finding a Stronger Invariant

Although we have extracted a first form of the invariant, we need to find a stronger one, in order
to be able to prove that state3 is unreachable.

Adding information to the basic state features encapsulated in relation (9), leads us to a new
invariant. We can add property θ ≤ θM to each of the states 0,1 and 2.

We obtain the following stronger invariant, also expressed in terms of TCS:

 I ’def = (∀ t ∈ [start, now) • state.start = 0 => θ.t ≤ θM ∧
 state.t = 0 ∧ dθ / dt = vr in [start, now) ∧

 (dx1 / dt = 1, dx2 / dt = 1) in [start, now) ∧
 θ.start = θm ∧ (x1.start = 0 ∨ x1.start = 0)

 ∧ state.start = 1 => θ.t ≤ θM ∧
 state.t = 1 ∧ dθ / dt = -v1 in [start, now) ∧

 (dx1 / dt = 1, dx2 / dt = 1) in [start, now) ∧
 θ.start = θM ∧ x1.start ≥ T

 ∧ state.start = 2 => θ.t ≤ θM ∧
 state.t = 2 ∧ dθ / dt = -v2 in [start, now) ∧

 (dx1 / dt = 1, dx2 / dt = 1) in [start, now) ∧

276

 θ.start = θM ∧ x2.start ≥ T
 ∧ state.start = 3 => θ.start = θM ∧ x1.start < T ∧ x2.start < T)

The enriched state chart is shown in the following figure:

0

dθ / dt = vr
dx1 / dt = 1
dx2 / dt = 1

θ ≤ θM

θ = θM ∧ x1 ≥ T

θ = θm

x1 := 0

θ = θM ∧ x1 < T ∧ x2 < T
θ= θM

∧ x2 ≥ T

θ = θm

x2 := 0

1

dθ / dt = -v1
dx1 / dt = 1
dx2 / dt = 1

θ ≤ θM

2

dθ / dt = - v2
dx1 / dt = 1
dx2 / dt = 1

θ ≤ θM

3

shutdown

Fig. 3. The TCS state chart with the added property, θ ≤ θM

Let us show that:

Iθ’ def = (∀ t ∈ [start, now) •
 state.start = 0 => (θ.t ≤ θM ∧ state.t = 0)
 ∧ state.start = 1 => (θ.t ≤ θM ∧ state.t = 1) (10)
 ∧ state.start = 2 => (θ.t ≤ θM ∧ state.t = 2))

is a property of the temperature control system.
We apply standard forward analysis technique on the translated model of the temperature

control system. Thus, we have to prove that (10) is established by the initialization and then that
it is preserved by every action. We show here the proofs for the initialization statement and for
action 1 (cooling with rod1). The calculation of gg for the proofs is presented in the Appendix.
We assume v1, v2, vr ∈ R+\{0}, θm ,θM ≥ 0 and that the choice of the rod to use as coolant is
demonically nondeterministic, in case both rods are available.

Proof of (10)

(10a) Initialization

277

We have to prove that true {| S0; N |} Iθ’ holds. The initialization statement S0; N establishes
that

now = 0;
 state = (λt ⋅ 0);

 c = (λt ⋅ t);
 x1 = (λt ⋅ T1 + c.t);
 x2 = (λt ⋅ T2 + c.t);
 θ = (λt ⋅ θ0 + vr ∗ t);
 start = now;

 now’ = min {t’ ≥ now | gg.t’}

We have to prove that the partial invariant Iθ’ is satisfied by these assignments. Thus, we
have that

Iθ’ [now’/ now]
≡{definition of the invariant}
(∀ t ∈ [start, now’) • (λt ⋅ 0).start = 0 => (λt ⋅ θ0 + vr ∗ t).t ≤ θM ∧ (λt ⋅ 0).t = 0
 ∧ (λt ⋅ 0).start = 1 => (λt ⋅ θ0 + vr ∗ t).t ≤ θM ∧ (λt ⋅ 0).t = 1

 ∧ (λt ⋅ 0).start = 2 => (λt ⋅ θ0 + vr ∗ t).t ≤ θM ∧(λt ⋅ 0).t = 2)
≡{start = now = 0, now’ = min {t’ ≥ 0 | gg.t’}}
(∀ t ∈ [0, now’) • (λt ⋅ θ0 + vr ∗ t).t ≤ θM)
≡{now’ = min {t’ ≥ 0 | θ 0 + vr ∗ t’ = θM}
(∀t | 0 ≤ t < (θM - θ0) /vr • vr ∗ t ≤ (θM - θ0))
≡{logic}
true

Thus, we have showed that Iθ’ holds after the initialization, i.e., that it holds from the moment
0 until the first moment an action is enabled. Next, we shall compute the verification condition
for the first action (cooling with rod1) and show that the invariant also holds after this action.

(10b) Cooling with rod1

We assume that Iθ’ holds on [start, now), that g1 is true and that the local variables have been
updated by the assignments of the body of action 1. Thus, we assume that

 Iθ’
∧ state.now = 0 ∧ θ.now = θM ∧ x1.now ≥ T
∧ c’ = c / now / (λt ⋅ t - now)
∧ θ ’= θ / now / (λt ⋅ θM – v1 ∗c.t)
∧ state’ = state / now / (λt ⋅ 1)
∧ start’ = now
∧ now’ = min {t’ ≥ now | gg.t’}

278

We have to prove that the added information in the invariant holds after these assignments.
We have that

Iθ’ [c’/ c, θ ’/θ, state’/ state, start’/ start, now’/ now]
<= {definition of Iθ’}

(∀t | start’ ≤ t < now’ • state’.start’ = 0 => (θ'’.t ≤ θM ∧ state’.t = 0)
 ∧ state’.start’ = 1 => (θ'’.t ≤ θM ∧ state’.t = 1)

 ∧ state’.start’ = 2 => (θ ’.t ≤ θM ∧ state’.t = 2)
<= {replacing updated variables state’, θ ’, λ-reduction, computing that now’ = now + τ1}
 (∀t | now ≤ t < (now + τ1) • 1 = 0 => (θM – v1 ∗ (t – now) ≤ θM ∧ 1 = 0)

 ∧ 1 = 1 => (θM – v1 ∗ (t – now) ≤ θM ∧ 1 = 1)
 ∧ 1 = 2 => (θM – v1 ∗ (t – now) ≤ θM ∧ 1 = 2)

<= {logic}
(∀t | now ≤ t < (now + τ1) • θM – v1 ∗ (t – now) ≤ θM)
<= {θ ’= θM – v1 ∗(t - now) is decreasing starting from θM , v1 > 0, (t - now) ≥ 0}
true

Therefore, we have proved that I’(I ∧ Iθ’) holds after the discrete transition from state0 to
state1 is taken. The proofs for the rest of possible safe transitions are similar, and are omitted
here.

5.3. Expressing the Final Invariant and Proving the Safety Property of TCS

Our final goal is to provide sufficient assurance that the system evolves on the safe side. This is
equivalent to proving that state3 can never be reached. Informally, the safety property reduces
to proving that in any state, θ ≤ θM, and also that in state0 we always have (at least) one
available rod, i.e., that (x1 ≥ T ∨ x2 ≥ T).

It follows that even though the invariant we have found is added with some new condition, it
is still weak, i.e., it can not ensure safety. Thus, we need to keep on adding information until we
reach a strong enough invariant. Clearly, the information that is missing regards the clocks x1

and x2, which measure the elapsed time since the last use of rod1 and rod2, respectively.
Reasoning on Fig. 1, we see that we can add more properties to the state chart in Fig. 3.,

properties that can provide us with enough information for proving that state3 doesn’t belong to
the reachable states of the system.

These properties are:

(∀ t ∈ [start, now) • state.t = 0 => (((x1.t = t – start ∧ x2.t ≥ τr + τ1 + t – start)
 ∨ (x2.t = t – start ∧ x1.t ≥ τr + τ2 + t – start)) (11)

 ∧ (now – start = τr))
 ∧ state.t = 1 => (x2.t ≥ τr + t – start) ∧ (now – start = τ1)

 ∧ state.t = 2 => (x1.t ≥ τr + t – start) ∧ (now – start = τ2)
 ∧ state.t = 3 => false)

279

Beside the added properties regarding x1 and x2, we added some information regarding the
time interval in between the initial moment (denoted by start) when the system enters a state
and the final moment (denoted by now) of evolution of the system in the same state, moment
that enables a transition to another (reachable) state. These properties also need to be proved,
but we are skipping those proofs here.

We add all these new properties to the previous state chart, thus getting the new state chart in
Fig. 4.

0

dθ / dt = vr
dx1 / dt = 1
dx2 / dt = 1

now – start = τr

∀t ∈ [start, now) • θ.t ≤ θM ∧
((x1.t = t – start ∧ x2.t ≥ τr + τ1 + t – start)

∨ (x2.t = t – start ∧ x1.t ≥ τr + τ2 + t – start))

θ = θM ∧ x1 ≥ T

θ = θm

x1 := 0

θ = θM ∧ x1 < T ∧ x2 < T
θ = θM ∧ x2 ≥ T

θ = θm

x2 := 0

3

false

1

dθ / dt = - v1
dx1 / dt = 1
dx2 / dt = 1

now – start = τ1

∀t ∈ [start, now) •
θ.t ≤ θM ∧ x2.t ≥ τr + t – start

2

dθ / dt = - v2
dx1 / dt = 1
dx2 / dt = 1

now – start = τ2

∀t ∈ [start, now) •
θ.t ≤ θM ∧ x1.t ≥ τr + t – start

Fig. 4. The TCS State chart with added properties about x1, x2

It follows that the final invariant will be I’ together with condition (11). One needs to choose
the values of T1 and T2 so that this invariant will hold right from the start. This means that we
can have either (T1 = τr + τ2 and T2 = 0) or (T2 = τr + τ1 and T1 = 0). Even without this choice,
the invariant will hold after both rods have been used.

As an example, we are going to prove that condition (11) holds for releasing rod1, i.e., after
the system has taken a discrete transition from state1 to state0, thus resetting x1. The proofs for
the initialization statement and for cooling with rod1 or rod2 are simpler, thus we are not
presenting them in this paper.

We assume that the following properties hold:

I’
∧ (∀ t ∈ [start, now) • state.start = 0 => (((x1.t = t – start ∧ x2.t ≥ τr + τ1 + t – start)

 ∨ (x2.t = t – start ∧ x1.t ≥ τr + τ2 + t – start))
 ∧ (now – start = τr))

 ∧ state.start = 1 => (x2.t ≥ τr + t – start) ∧ (now – start = τ1)

280

 ∧ state.start = 2 => (x1.t ≥ τr + t – start) ∧ (now – start = τ2)
 ∧ state.start = 3 => false)

∧ state.now = 1 ∧ θ.now = θm

∧ c’ = c / now / (λt ⋅ t - now)
∧ x1’ = x1 / now / (λt ⋅ t - now)
∧θ ‘ = θ / now / (λt ⋅ θm + vr ∗ c.t)
∧ state’ = state / now / (λt ⋅ 0)
∧ start’ = now
∧ now’ = min {t’ ≥ now | gg.t’}

We need to prove that the new information holds after these assignments. We have that

(∀ t ∈ [start’, now’) • state’.start’ = 0 => ((x1’.t = t – start’ ∧ x2.t ≥ τr + τ1 + t – start’)
 ∨ (x2.t = t – start’ ∧ x1’.t ≥ τr + τ2 + t – start’))

 ∧ state’.start’ = 1 => (x2.t ≥ τr + t – start’)
 ∧ state’.start’ = 2 => (x1’.t ≥ τr + t – start’)
 ∧ state’.start’ = 3 => false)

≡ {start’ = now, state’.now = 0}
(∀ t ∈ [now, now’) • (x1’.t = t - now ∧ x2.t ≥ τr + τ1 + t –now)

 ∨ (x2.t = t - now ∧ x1’.t ≥ τr + τ2 + t – now))
≡{substituting for x1’.t = t – now}
(∀ t ∈ [now, now’) • x2.t ≥ τr + τ1 + t – now)
= {state.start = 1, so x2.t ≥ (τr + t – start) in [start, now), so x2.now ≥ (τr + now – start) =>
x2.now ≥ τr + τ1, dx2/dt = 1 in [now, now’)}
(∀ t ∈ [now, now’) • (x2.t ≥ τr + τ1 + (t – now))

 true

Therefore, the invariant holds after the system has entered state0 from state1.
Action 4 (release rod2) is symmetric to the second action, so the invariant holds after taking

the transition from state2 to state0, following the same proof rule.
What is left is to prove that these properties mean that the last action is never enabled, i.e.,

that

I ∧ g5 = false (12)

As state1 and state2 are safe states, condition (12) reduces to proving that:

(∀ t ∈ [start, now) • state.t = 0 => (((x1.t = t – start ∧ x2.t ≥ τr + τ1 + t – start)
 ∨ (x2.t = t – start ∧ x1.t ≥ τr + τ2 + t – start))

 ∧ (now – start = τr))
∧ (state.now = 0 ∧ θ.now = θM ∧ x1.now < T ∧ x2.now < T)
≡ {(now – start = τr in state0) ∧ ((x2.now ≥ τr + τ1 + (now – start) = 2τr + τ1) ∨ (x2.now ≥ τr + τ2

+ (now – start) = 2τr + τ2)) ∧ (assumption (7): 2τr + τ1 ≥ T ∧ 2τr + τ1 ≥ T) => (x1.now ≥ T ∨
x2.now ≥ T)}
false

281

Therefore, conditions (8a,b) are met, implying that, under the 2τr + τ1 ≥ T ∧ 2τr + τ2 ≥ T
assumption, the undesired shutdown state is not reachable.

6 Discussion

Following the discussion section in [10], we attempt to evaluate the formal framework we have
used for modeling and verifying the safety-critical system studied here.

Are the formal descriptions easy to understand? The continuous action system model [3]
offers an intuitive representation of a hybrid system, resembling an implementation of the
system in a programming language. The requirements specifications look natural enough, when
expressed as guarded statements, thus making the behavior of the system easily understandable.
When shifting to the representation of the system where time is explicitly advanced, one does
not have to rewrite the specifications, but just replace the variables with implicit time with the
same variables with explicit time. This translated representation gives the semantics of the
system. We used traditional forward analysis technique for verification purposes, rather than
backward (weakest precondition) analysis, as the former can be easier to follow. We are not
concerned here with termination properties but just with proving a safety property.

How hard is it to construct a proof using this method? Forward analysis as the verification
method used in this paper, though not difficult, required some work. The hardest part was
finding the right invariant for proving the safety property. Even though model-checking lets
practitioners check automatically whether a given model of the system satisfies certain
properties, it is not that powerful used alone, as it only verifies whether a subfamily of solutions
satisfy those properties of interest. Carrying out a hand proof requires the ability to do formal
proofs, but on the other hand the kind of proofs developed with the method used in this paper
are fit for mechanical proof checking. In practice, interactive theorem provers (like HOL) are
needed for automated support.

Does the proof yield information other than just the fact that the model of the system is
correct? Yes. The invariant and the forward analysis itself as the verification method, even
though require considerable effort, provide useful insight about the behavior of the system. Our
approach allows references to historical values of the attributes in guards and expressions. In
contrast, model-checking methods provide only an assertion that the implementation satisfies
the desired properties [10].

Does the formalism scale up to handle larger systems? This is the big question. Quite a lot of
automated support is needed for the method to be practical. Future work includes case studies
done on larger systems. The complexity of the system adds complexity to the invariants.
Parallel composition techniques can help in analyzing a larger system and further
decomposition of the problem can simplify finding the proper invariant.

How easy is it to modify the model of the system and the proofs? Changing the specifications
implies changing the proofs. Using an interactive theorem prover might help in uncovering the
parts that need to be changed by rerunning the proofs quickly.

282

7 Conclusions and Related Work

Modeling and verification of hybrid systems require a rigorous formal framework, with proof
techniques that are able to handle both discrete computing and continuous behavior. For more
information about other formalisms developed for real-time systems, the reader is referred to
[9].

In this paper we applied the generalized hybrid action system model to formalize and verify a
hybrid system for temperature control, giving a formal proof for a safety property by using the
same verification techniques as for ordinary action systems. Our approach, the hybrid action
systems model [3], offers a homogenous and intuitive representation of a hybrid system,
resembling an implementation of the system in a programming language. This makes the
system’s behavior easy to understand, in spite of its hybrid nature that might involve complex
dynamics.

The way of reasoning presented in this paper starts from the continuous action system model
and its translation into an ordinary action system. Then it continues with extracting a first
approximation of the invariant from the state chart representation of the system (or its hybrid
automaton) and afterwards it progressively adds properties for strengthening the invariant in
order to ensure the system’s safety. The verification method used is the classical forward
analysis technique. Thus, the approach used for this case study lets us reason about both linear
and nonlinear functions, without separating the discrete events from the continuous laws.

Reachability analysis for hybrid systems represents one of the most important and difficult
problems to handle. In [1, 2], Alur, Henzinger et al. apply algorithmic analysis techniques using
hybrid automata, techniques based on constructing the reachable region of linear hybrid
systems, providing decidability and undecidability results for classes of linear hybrid systems
(see also [13]). For general hybrid systems, the hybrid automata analysis methods can be
applied with certain limitations. In [1], they perform symbolic model-checking for timed
automata (introduced in [11]), illustrated on the temperature control system, using KRONOS to
compute the characteristic set of state predicates, therefore using different values for the
parameters. In this paper we give a general mathematical proof. As emphasized in section 6, the
proof technique used in this paper, i.e, traditional forward analysis, is amenable to mechanical
proof checking. In contrast to the model-checking technique used in [1], which provides only an
assertion that the model of the temperature control system satisfies a safety property, our
approach, i.e., proving an invariance property, offers useful key insights about the behavior of
the system. In practice, this feature can contribute to the design stage of a new system, as adding
information to the system’s states might suggest adding design details.

In cases when the reachability construction fails, the reachability verification method is
applied [12]. The user has first to guess (heuristically) the reachable region and then verify that
the guess is correct. The method is almost fully automated (there are no automated guess
heuristics), but in case that the guessed region is not directly inductive, new variables and
constraints have to be added, making the method more complicated.

Our approach, the generalized action system formalism [3] is suited for modeling and
verification of mission-critical systems, as it allows for the explicit failure of the system
(modeled by the “abort” statement) and also allows references to historical values of the
attributes in guards and expressions. These make our formalism more expressive than hybrid
automata [1].

The hybrid constraint (language) approach (Hybrid cc) [8] requires the user to be able to
express as constraints various aspects of the given hybrid automaton. This means that a

283

constraint system is needed that is expressive enough, a requirement sometimes difficult to
satisfy.

The verification methodology based on abstracted automata, developed by Puri and Varaiya
[14], which has simpler dynamics, faces the inconvenience that the abstractions that are created
depend on the property to be proved. Different specifications may require different abstractions,
so proving different properties of the same hybrid system implies creating different
abstractions.

The strong point of our approach is that it allows almost any type of function in the dynamic
laws characterizing the continuous behavior, compared to Rönkkö’s and Li’s linear hybrid
action systems [15], where only smooth functions (without discontinuities) can be handled. Due
to atomicity, the kind of action systems that were considered in [15] cannot model hybrid
systems where continuous steps have nondeterministic ending time. In the presented approach,
by defining the hybrid action system as a collection of piecewise time functions, we are allowed
to also reason about functions with nondeterministic ending time. The approach introduced in
[15] doesn’t have an implicit notion of time and it is not intended to model real-time systems,
whereas our model facilitates the description of real-time systems.

Future work involves looking at refinement of hybrid systems, based on the refinement
calculus techniques [5], and analyzing hybrid action systems with interactive control.

Acknowledgements

The authors would like to thank Luigia Petre, Ivan Porres Paltor and Mauno Rönkkö for their
valuable comments on this case study.

References

 1. Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T.A., Ho, P.-H., Nicollin, X.,
Olivero, A., Sifakis, J., Yovine, S.: The Algorithmic Analysis of Hybrid Systems.
Theoretical Computer Science, (1995) 138:3–34

 2. Alur, R., Henzinger, T.A., Ho, P.-H.: Automatic Symbolic Verification of Embedded
Systems. In IEEE Transactions on Software Engineering, (1996) 22:181-201

 3. Back, R.J., Petre, L., Porres Paltor, I.: Generalizing Action Systems to Hybrid Systems.
Turku Centre for Computer Science Technical Reports, No. 307, (1999)

 4. Back, R.J.R, Kurki-Suonio, R.: Decentralization of Process Nets with Centralized
Control. In the 2nd Symposium on Principles of Distributed Computing, Lecture Notes
in Computer Science, Vol. 873. ACM SIGACT-SIGOPS, (1983) 131-142

 5. Back, R.J.R., von Wright, J.: Refinement Calculus – A Systematic Introduction.
Springer - Verlag, Berlin Heidelberg New York (1998)

 6. Dijkstra, E. W.: A Discipline of Programming. Prentice-Hall International, (1976)

284

 7. Gries, D.: The Science of Programming. Springer-Verlag, New York (1981)

 8. Gupta, V., Jagadeesan, R., Saraswat, V., Bobrow, D.: Programming in Hybrid
Constraint Languages. In Hybrid Systems II, Lecture Notes in Computer Science,
Vol. 999. Springer - Verlag, Berlin Heidelberg New York (1995)

 9. Heitmeyer, C., Mandrioli, D.: Formal Methods for Real-Time Computing. Balachander
Krishnamurthy (ed.), John Wiley & Sons, Chichester New York Brisbane Toronto
Singapore (1996)

10. Heitmeyer, C., Lynch, N.: The Generalized Railroad Crossing: A Case Study in Formal
Verification of Real-Time Systems. In Proceedings of the IEEE Real-Time Systems
Symposium, San Juan, Puerto Rico (1994) 120-131

11. Henzinger, T., Nicollin, X., Sifakis, J., Yovine, S.: Symbolic Model-Checking for Real-
Time Systems. In proceedings of the 7th Annual IEEE Symposium on Logic in
Computer Science, (1992) 394-406

12. Henzinger, T., Rusu, V.: Reachability Verification for Hybrid Automata. In
Proceedings of the First International Workshop on Hybrid Systems: Computation
and Control (HSCC 98), Lecture Notes in Computer Science, Vol. 1386. Springer-
Verlag, Berlin Heidelberg New York (1998) 190-204

13. Kopke, P., Henzinger, T., Puri, A., Varaiya, P.: What’s Decidable About Hybrid
Automata? In Proceedings of the 27th Annual ACM Symposium on Theory of
Computing, STOC’95 (1995) 373-382

14. Puri, A., Varaiya, P.: Verification of Hybrid Systems using Abstractions. Hybrid
Systems II, Lecture Notes in Computer Science, Vol. 999. Springer-Verlag, Berlin
Heidelberg New York, (1995) 359-369

15. Rönkkö, M., Li, H.: Linear Hybrid Action Systems. Turku Centre for Computer Science
Technical Reports, No. 245, (1999)

285

Appendix Calculation of gg in Proving Relations (10a), (10b) and (11)

gg.t’
≡ (λt ⋅ state.t = 0 ∧ θ.t = θM ∧ x1.t ≥ T).t’ ∨
 (λt ⋅ state.t = 1 ∧ θ.t = θm).t’ ∨
 (λt ⋅ state.t = 0 ∧ θ.t = θM ∧ x2.t ≥ T).t’ ∨
 (λt ⋅ state.t = 2 ∧ θ.t = θm).t’ ∨
 (λt ⋅ state.t = 0 ∧ θ.t = θM ∧ x1.t < T ∧ x2.t < T).t’

In Proof of (10a)

gg.t’[θ : = (λt ⋅ θ 0 + vr ∗ t)]
≡
gg[θ : = (λt ⋅ θ 0 + vr ∗ t)].t’
≡ (state.t’ = 0 ∧ (λt ⋅ θ 0 + vr ∗ t).t’ = θM ∧ x1.t’ ≥ T) ∨
 (state.t’ = 1 ∧ (λt ⋅ θ 0 + vr ∗ t).t’ = θm) ∨
 (state.t’ = 0 ∧ (λt ⋅ θ 0 + vr ∗ t).t’ = θM ∧ x2.t’ ≥ T) ∨
 (state.t’ = 2 ∧ (λt ⋅ θ 0 + vr ∗ t).t’ = θm) ∨
 (state.t’ = 0 ∧ (λt ⋅ θ 0 + vr ∗ t).t’ = θM ∧ x1.t’< T ∧ x2.t’< T)
gg[θ : = (λt ⋅ θ 0 + vr ∗ t), state : = (λt ⋅ 0)].
≡ {λ-reduction}
 (0 = 0 ∧ θ 0 + vr ∗ t’ = θM ∧ x1 .t’ ≥ T) ∨
 (0 = 1 ∧ θ 0 + vr ∗ t’ = θm) ∨
 (0 = 0 ∧ θ 0 + vr ∗ t’ = θM ∧ x2 .t’ ≥ T) ∨
 (0 = 2 ∧ θ 0 + vr ∗ t’ = θm) ∨
 (0 = 0 ∧ θ 0 + vr ∗ t’ = θM ∧ x1.t’ < T ∧ x2.t’ < T)
≡ {logic}
 (0 = 0 ∧ θ 0 + vr ∗ t’ = θM)
≡ {logic}

θ 0 + vr ∗ t’ = θM

In Proof of (10b)

gg [state : = (λt ⋅ 1)].t’
≡ ((λt ⋅ 1).t’ = 0 ∧ θ.t’ = θM ∧ x1.t’ ≥ T) ∨
 ((λt ⋅ 1).t’ = 1 ∧ θ.t’ = θm) ∨
 ((λt ⋅ 1).t’ = 0 ∧ θ.t’ = θM ∧ x2.t’ ≥ T) ∨
 ((λt ⋅ 1).t’ = 2 ∧ θ.t’ = θm) ∨
 ((λt ⋅ 1).t’ = 0 ∧ θ.t’ = θM ∧ x1.t’ < T ∧ x2.t’ < T)
≡ {λ-reduction}
 (1 = 0 ∧ θ.t’ = θM ∧ x1.t’ ≥ T) ∨
 (1 = 1 ∧ θ.t’ = θm) ∨

286

 (1 = 0 ∧ θ.t’ = θM ∧ x2.t’ ≥ T) ∨
 (1 = 2 ∧ θ.t’ = θm) ∨
 (1 = 0 ∧ θ.t’ = θM ∧ x1.t’ < T ∧ x2.t’ < T)
≡ {logic}
 θ.t’ = θm

In Proof of (11)

gg [state : = (λt ⋅ 0)].t’
≡ {similarly to (10b)}
 (0 = 0 ∧ θ.t’ = θM ∧ x1.t’ ≥ T) ∨
 (0 = 1 ∧ θ.t’ = θm) ∨
 (0 = 0 ∧ θ.t’ = θM ∧ x2.t’ ≥ T) ∨
 (0 = 2 ∧ θ.t’ = θm) ∨
 (0 = 0 ∧ θ.t’ = θM ∧ x1.t’ < T ∧ x2.t’ < T)
≡ {logic}
 θ.t’ =θM

287

Modelling and Analysing a Railroad Crossing in a Modular Way

Dirk Beyer, Claus Lewerentz and Heinrich Rust

Software and Systems Engineering Team, Technical University Cottbus
Postfach 10 13 44

D-03013 Cottbus, Germany
Email:fdb|cl|rustg@informatik.tu-cottbus.de

Abstract. One problem of modelling hybrid systems with existing notations of hybrid automata is
that there is no modular structure in the model. We introduce an extended modelling notation which
allows the modelling of a system as a hierarchical structure of modules. The modules are capable of
communicating through the elements of an explicitly defined interface. The interface consists of signals
and variables declared with different access modes. This paper describes a model of the railroad crossing
example and how to verify it. The current version of a tool for reachability analysis using the double
description method to represent symbolically the sets of reachable configurations is presented.

Keywords. Automata, continuous systems, formal verification, real-time systems

1 Introduction

The programming of embedded systems which have to fulfil hard real-time requirements is becoming an
increasingly important task in different application areas, e.g. in medicine, in transport technology or in pro-
duction automation. The application of formal methods, i.e. of modelling formalisms and analysis methods
having a sound mathematical basis, is expected to lead to the development of systems with less defects via
a better understanding of critical system properties (c.f. [Lev95]).

Beyer and Rust presented the modelling notation CTA which allows to model hybrid systems in a mod-
ular way [BR98]. It builds on the theoretical basis used in tools like UppAal [BLL+96], Kronos [DOTY96]
and HyTech [HHWT95]. In these formalisms and tools, finite automata are used to model the discrete con-
trol component of an automaton. Analogous variables which may vary continuously with time are used to
model the non-discrete system components of a hybrid system. Component automata of a larger system
communicate via CSP-like synchronisation labels (cf. [Hoa85]) and via common variables. Algorithms for
the analysis of these kinds of models have been presented in [ACD93] and [HNSY94].

To provide features for modelling and verifying modular hybrid systems we need a new formalism and
tool which includes, in difference to the existing formalisms and tools, the following concepts:

– Compositional semantics: By using two predicates for the transition assignments in our formalism we
preserve the information we need to define the semantics of a CTA module on the basis of the semantics
of its parts.

– Hierarchy: Subsystem descriptions can be grouped. Interfaces and local components are separated.
– Explicit handling of different types of communication signals: It is possible to express explicitly that

an event is an input signal for an automaton, an output signal, or a multiply restricted signal.
– It is possible to express explicitly that an analogous variable is accessed by an automaton as output, as

input, or that it is multiply restricted, which means that each module has read and write access to that
variable.

– Automatic completion of automata for input signals. Input signals are events which an automaton must
always admit. If there are configurations of an automaton in which the reaction to an input signal is not
defined, it is understood that the automaton enters an error state.

– Replicated subsystem components do not have to be multiply defined. They are instantiated from a
common module type.

The differentiation between different roles of signals in an automaton has been used in the definition
of IO-automata [LT87] and extended to hybrid systems [LSVW96]. [AH97] use different access modes
in interfaces to describe modular hybrid systems, too. They build on reactive modules [AH96] and extend
them with continuously changing variables.

288

Fig. 1. Interfaces of components of the railroad crossing model

The CTA method provides a complete modelling notation and a tool for reachability analysis of those
models regarding the features mentioned above.

In section 2 the example of the railroad crossing is described. Section 3 gives an informal description
of the formalism. Section 4 gives an overview on the syntax of the modelling language and the analysis
commands. Section 5 gives an overview on the CTA tool. The last section explains open questions to be
dealt with.

2 Model for railroad crossing

2.1 The problem

The railroad crossing example deals with the following situation: The gate for a railroad crossing must
be closed when the train reaches the crossing. There are two sensors on the railroad: One switching on if
the train is at position 1000 m before the gate, and the other sensor is situated 100 m after the gate which
indicates that the train has passed the gate. The gate can be moved between the angle 0 degree (which means
the gate is closed) and the angle 90 degree (open) by a motor. The problem is to create a controller which
fulfils the safety condition that the gate is closed before the train is nearer than in a 250 m distance to the
crossing.

2.2 A modular, automaton-based approach

Our model consists of three subsystems: The train, the gate, and the controller. The controller coordinates
the actions of the other components. The environment of the controller consists of one part for the train
behaviour and one part for the gate behaviour.

Fig. 1 displays the structure of the modules: The main module ’RailRoadCrossing’ has four synchroni-
sation signals, which are locally defined because the system is modelled as a closed system. ’app’ models
the sensor at the 1000 m-position and ’exit’ models the sensor at the 100 m-position for communication
between the train and the controller. The signals ’lower’ and ’raise’ are used by the controller to control
the action of the gate. They all have to be declared in this module because they are used by more than one
contained module. The other modules contained in the ’RailRoadCrossing’ are described in the following
paragraphs.

Train. The train component (Fig. 2) models the position of the train (local variable x) and its speed
(the time derivation of x). Because the sensor on the railroad which switches on when the train reaches

289

Fig. 2. The train model

Fig. 3. The gate model

the position at 1000 meters distance to the gate is controlled by this module the signal ’app’ is declared as
’OUTPUT’. This means that all modules in the environment are only allowed to read the signal. The same
is true for the signal ’exit’.

The contained hybrid automaton has three discrete states: To model that the train comes from far away,
if the distance to the gate is greater than 1000 m we have the state ’Far’. The invariant of this state is that
the position of the train is greater than or equal to 1000. The derivation of ’x’ has to be between -50 and
-40 to model the possible speed of the train. When the train is passing the first sensor (x=1000) it switches
to the state ’Near’ by synchronising with the label ’app’. Following the CSP concept it means that all other
automata which know this label must also take a transition with this label. The speed is modelled by the
derivation of ’x’ again and the invariant with the corresponding guard at the transition models that the
train passes the gate, and the automaton switches to the state ’Past’. After another 100 m the invariant and
the guard of the next transition forces the automaton to leave the state by firing this transition by forcing
synchronising with the output signal ’exit’. It also sets the variable ’x’ to a value greater than 1000 to be
ready for the next cycle in the state ’Far’.

Gate. An illustration of the gate model is given in Fig. 3. This component models the angle of the gate
by the analogous variable ’g’. The module has to react on the two input signals ’lower’ and ’raise’. The

290

Fig. 4. The controller model

automaton starts in state ’Open’ (g=90). When it receives the signal ’lower’ it switches to the state ’Down’,
which models the situation that the gate is lowering but has not finished the task. The speed of the angle
change is modelled by the derivation of ’g’. If the angle of 0 degrees is reached the automaton has to switch
to state ’Closed’. In this state it waits for the signal ’raise’, which forces to take the transition to the state
’Up’ for starting the opening process. If the angle 90 is reached the automaton switches to the state ’Open’
and it can start from beginning.

Controller. The controller models the component (the electronic device or the controller software) for
the coordination of the other parts of the system (Fig. 4). It has two input signals to react on signals from
the ’Train’ module and two output signals to control the module ’Gate’. The local clock variable ’t’ is used
to measure the reaction time of the controller.

The automaton starts in the ’Idle’ state waiting for the train-is-coming signal from the train (1000 m-
position). This signal forces the controller automaton to switch to the state ’ToLower’ and the transition
resets the clock ’t’. That state models the situation that the controller consumes the signal, needs some time
to react, and then to perform an action. The upper bound of the reaction time ’�’ (in the example it is set to
5) is an important parameter for satisfying the safety condition of the system. At least after time � it must
send the ’lower’ signal to the gate and goes back to the ’Idle’ state. If the train has passed the 100 m position
after the gate then it sends the ’exit’ signal to the controller. After some reaction time the controller sends
the raise-signal to the gate and after this it is waiting again in state ’Idle’.

3 Theoretical background

The following section contains a short description of the CTA formalism. The complete formal definition
of the CTA semantics is given in [BR99].

3.1 Formalism for modelling

A CTA system description consists of a set of modules. One of them is designated as the top module. It
models the whole system. The other modules are used as templates. They can be instantiated several times
in other modules. This makes it possible to express a hierarchical structure of the system, and to define
replicated components of a system just once.

Each module consists of the following components:

– An identifier. A system description might contain several modules. Identifiers are used to name them.

291

– An interface. The interface consists of declarations of variables and signals used by the components of
the module. It defines the access modes for the variables and signals and the data types for variables.
� Signals. Signals are used for communication between modules running in parallel. Signals are

modelled as CSP-like events.
� Variables. Variables are used to model the (predominantly) continuously changing components of

a hybrid system. CTA variables are real valued, they may change continuously with time, and they
may change discretely.

– A hybrid automaton. This automaton consists of the following components:
� S: A finite set of discrete states.
� G: A finite set of signals.
� V: A finite set of analogous variables.

Variables are used in value assignments. A value assignment for a set of variables is a member of
the set of functions A(V) = V ! IR.
At every point in time the situation of an automaton is described by its current discrete state and the
current value assignment of all variables of the automaton. A configuration c of a CTA is defined
as the pair c = (s; a), where s is the current discrete state and a is the current value assignment
(c 2 C = S �A(V)). A region r 2 R = P(C) is a set of configurations.

� I � C: An initial condition, described as a region.
� T: A finite set of transitions.
� inv : S ! 2A(V): A function associating an invariant to each state. The invariant is a set of value

assignments. As long as the invariant of a state is true, the system may stay in the state. It may
leave the state earlier, but the latest moment is just after the invariant has become false.

� deriv : S ! 2A(V 0): A function associating a set of admissible derivatives to each state. In the
finite set of variables V 0 there is, for each variable v 2 V , a corresponding element v0 which is
used to define admissible time derivatives of the variable v. While the automaton remains in a state,
the continuous changes of a variable v are defined by their first time derivative v0.

� trans : T ! S � S: A function associating a starting state and a target state to each transition.
� guard : T ! 2A(V): A function associating a guard with each transition. The guard is a set of

value assignments. One condition for the transition to be taken is that the guard is true.
� sync : T ! G [f�g: A function associating a signal or no signal to each transition. � is not a

signal; it is the value of sync(t) for transitions without a signal.
� allowed : T ! (A(V) ! 2A(V)): A function associating with each transition a function which

transforms a value assignment into one of a set of value assignments. The aim of this function is to
restrict changes which may occur in any environment.

� initiated : T ! (A(V) ! 2A(V)) with 8t 2 T; a 2 A(V) : initiated(t)(a) � allowed(t)(a): A
function associating with each transition a function which transforms a value assignment into one
of a set of value assignments. In contrast to ’allowed’ the aim of this function is to restrict changes
which occur without an environment.
For each t 2 T and a 2 guard(t), the set initiated(t)(a) must be nonempty. This condition ensures
that the ’initiated’ or ’allowed’ component can not inhibit a discrete transition to be taken.
A further restrictions is: For each s 2 S, there is an element ts of T with the following properties:
� trans(ts) = (s; s)
� guard(ts) = true
� sync(ts) = �

� 8a 2 A(V) : initiated(ts)(a) = fag

� 8a 2 A(V) : allowed(ts)(a) = A(V)
These transitions are no-op transitions. The subset ofT consisting of all no-op transitions is referred
to by ’noop’. The ’allowed’ function of no-op transitions does not exclude any resulting value, and
’initiated’ defines that no variable value changes. ut

– Instances. A module may contain instances of previously defined modules. This is used to model
systems containing subsystems, and it is especially helpful if a subsystem occurs several times in a
system. An instance consists of the following components:
� An identifier is used to give a name to the instance.
� A reference to a module defines which module is instantiated.
� An unification of interface components of the instantiated module with declared components of

the containing module defines how the instance is connected to the containing module. This may
connect interface signals and interface variables of the instantiated module to signals and variables
of the containing module.

292

Notational convention: A typical case to use the ’initiated’ predicate is to restrict variables which are
not restricted by any parallel transition. If there is a variable which does not occur ticked in at least one
inequation, then this does not mean that the whole range of IR is possible. For a variable which does not
occur ticked in an inequation the meaning is that this transition does not change the value of the variable.
Transitions of environmental automata are allowed to restrict the variable. But if no automaton restricts the
variable x in its transition in the same point in time, then we use the information of the ’initiated’ set which
contains typically the additional restriction x0 = x. To express that the whole range of IR is possible for x
after a transition, one might use the clause x0

> 0 OR x0 � 0.
In our notation we only use the typical case described above. Perhaps there are other useful aspects for

a more general use of the ’initiated’ set, but we did not yet find them, and thus we restrict our notation to
have an easy to use syntax. Thus, in a syntactical INITIATE clause would be only restrictions of the form
x

0 = x for each variable x 2 X (set of variables known by the automaton), if x does not occur ticked in
any inequation of the syntactical clause for ’allow’. The consequence for us is to generate the ’initiated’ set
automatically, i. e. we have not a syntactical clause for ’initiate’ in our notation.

Beside the additional concepts, the main difference to existing formalisms are the two assignments
’allowed’ and ’initiated’ and the semantics of the invariant. The splitting of the assignments leads to a
compositional semantics. The fact that an invalid invariant not leads to a forbidden state but that a discrete
transition is forced has the following advantage: If the invariant of a state becomes invalid because another
automaton changes the values of the variables then the automaton can immediately fire a discrete transition
to another state.

In the CTA formalism each of the interface components has an restriction type to control the access on
the component. There are four different restriction types for variables and signals:

– INPUT The declaration of a variable as input variable for a module means that this module can only
read this variable:
� The derivation for an input variable may not be restricted in the deriv-set of any state of the au-

tomaton.
� The value of an input variable after a transition may not be restricted in the allowed-set of any value

assignment in a transition.
� In difference to ’allowed’, input variables can be restricted in ’initiated’ to reflect that the value of

the input variable is not changed by this automaton.
For a signal the declaration as input means the following: For each input signal and each state of the
automaton, some transition labelled with the signal can always be taken. In this way the automaton
does not restrict the input signal and thus it is not to blame for a time deadlock. Thus, it is a guarantee
for the environment that the module do not change that component .

– OUTPUT the declaration of a variable or signal as OUTPUT is an assumption, that the variable or
signal is used only as INPUT in all other modules in the environment.

– MULTREST The multiply restricted components are available for all access modes. A module as well
as the environment for which a signal or variable is declared as multiply restricted can restrict the
component in any way.

– LOCAL The declaration of a variable or signal as LOCAL means that it is not visible outside the
module and thus no other module can access such a variable or signal.

Variable restrictions in transitions. To express nondeterminism the value of a variable after a transition
has been performed is selected from a set of possible values. These possible values are described by linear
expressions over the variables, which can be denoted with the names for the value before the assignment
and with the ticked name for the value of the variable after the assignment (for example x0 � 3 � x+ 7).

The product automaton construction uses the standard technique for composition of automata, with
CSP synchronisation as described in [HHWT95]. We construct the product automaton of two hybrid au-
tomata in the following way:

– The new set of states is the cross product of the state sets from the two automata.
– The new set of variables and the set of signals are the union of the corresponding sets from the au-

tomata.
– The initial condition for the new automaton is the conjunction of initial conditions of the automata.
– The transition set is the subset of the cross product from the automata, which consists of the combi-

nation of two transitions with the same signals or one of the combined transition is a no-op transition,
which do not change the values of the variables and has no synchronisation label.

293

– Invariants and derivatives are intersected.
– Guards are intersected with the additional condition that the set of allowed assignments must not be

empty.
– The new signal of a transition is the signal used by one of the parallel transitions.
– The new set of allowed assignments is the intersection of the two sets of allowed assignments.

The semantics of CTA is understood as a labelled transition system.

Notation. For a real u and two value assignments a and a0 2 A(V), let u�a denote the function �(v : V) :
u � a(v), and let a+ a

0 denote the function �(v : V) : a(v) + a
0(v).

time : C � IR � A(V) ! C is a function describing how the passage of some time u changes a
configuration (s; a) when a time derivative d 2 A(V) for the variable values is fixed:

time((s; a); u; d) = (s; a+ u � d)

ut

A hybrid automaton can perform time transitions and discrete transitions.

Definition 1. (Time transitions and discrete transitions of a hybrid automaton) Let H be a hybrid
automaton.

time(H) is the set of time transitions of H. It is defined as the following set:

f ((s; a1); (s; a2)) 2 C � C

j 9d 2 deriv(s); u 2 IR; u > 0 :
((s; a2) = time((s; a1); u; d)
^ 8(u0 : 0 � u

0 � u) : time((s; a1); u0
; d) 2 inv(s)

)
g

discrete(H) is the set of discrete transitions of H. It is defined as the following set:

f ((s1; v1); (s2; v2))
j 9(t : T) :

(trans(t) = (s1; s2)
^ v1 2 guard(t)
^ v2 2 initiated(t)(v1)
)

g

ut

Note. For discrete transitions the invariant is irrelevant. An invariant which is identically false can be used
to construct urgent states, i. e. states in which time cannot pass.

The state component of the configuration may not change in a time transition.
In the definition of the set of discrete transitions, the signals and the ’allowed’ function are not used.

Their meaning is defined later, when we consider the parallel composition of automata. ut

We will define a transition system semantics for hybrid automata.

Definition 2. (Transition system) A transition system consists of the following components:

– A (possibly infinite) set S of states, with a subset S0 of initial states.
– A set T � S � S of transitions.

ut

Notation. We use the point notation A:x to address the component x of A. ut

The transition system corresponding to a hybrid automaton is defined in the following way:

Definition 3. Let H be a hybrid automaton. The transition system ts(H) corresponding to H is defined in
the following way:

294

Region reachable := r;
WHILE (post(reachable) n reachable 6= ;)

reachable := reachable [post(reachable);

Fig. 5. Algorithm for fixed point computation of reachable regions

– ts(H):S =def H:C.
– ts(H):S0 =def H:I .
– ts(H):T =def time(H) [discrete(H).

ut

Note. The state space of the transition system consists of the configurations of the hybrid automaton. The
set of starting states in the transition system is defined via the initial condition of the hybrid automaton.
The transitions of the transition system are all time transitions and all discrete transitions of the transition
system. ut

3.2 Reachability analysis

System properties which are to be proved in the verification are described as expressions containing reach-
ability operators.

The most important operators for reachability analysis are the operator post(c) for the region of all
the configurations reachable from configuration c by using a time transition or discrete transition, and the
operator pre(c) for the configurations from which c is reachable in one time transition or one discrete
transition. To handle regions as arguments, post(r) is defined for a region r as

S
c2r

post(c) and pre(r) is
defined as

S
c2r

pre(c).
Using the algorithm in Fig. 5 we can define another operator reachable(r) as notation for the fixed

point of collecting reachable configurations starting with the region r. For backward reachability one can
define an analogous reachability operator for pre(c).

For the railroad crossing in the example the safety condition which the modelled system has to fulfil is:
’error \ reachable(initial) = ;’, where error is the region where the gate is not closed and the train is
within the 250 m distance to the gate, and initial is the starting region of the system where the train is far
away (and x>=1000), the controller is in the idle-state, and the gate is open (and g=90).

In general, the algorithm for the fixed point computation does not necessarily terminate after a finite
number of steps, but in the example it does so.

3.3 Abstraction and implementation relation

The CTA modelling language is capable of modelling a modular system by using a composition hierarchy.
Several different levels of such a hierarchy can be used to express different abstraction levels of the system.

In each refinement step of a modelling process working in a top-down manner the more abstract modules
are successively replaced by more specific modules with a deeper hierarchy or a more specific behaviour.
In Fig. 6 an embedded system consists of an environment and a controller. There are two different versions
of each component: an abstract module and a detailed module.

The aim of the modularity concept is not only to have a nice modelling technique but to have a technique
for ’modular verification’, too. Many real software systems are very large, so that a reachability analysis
even with use of symbolic representation is not possible because of time and space complexity.

One solution for this problem is to use modular proving methods. For example, there is a system im-
plementation which consists of two system components named CONTROLLER IMPLEMENTATION and
ENVIRONMENT IMPLEMENTATION (denoted as CONTR IMPL jj ENV IMPL) and we have to prove
the safety property P. If the whole system is too complex for automatic analysis, it might be possible to
prove the properties with the system CONTR IMPL jj ENV ABST where ENV ABST is a more abstract
model of the environment than ENV IMPL. Now, we can use for proving that the safety property P of the
system CONTR IMPL jj ENV ABST is valid if the following two proofs are valid:

– System CONTR IMPL jj ENV ABST has safety property P and

295

Fig. 6. Modelling by Refinement

– ENV IMPL implements ENV ABST.

It is expected that these two steps are easier to compute than the complete proof in one step if the
abstractions are selected sensibly. For the first step we use reachability analysis and for the second step we
use the method described in the following paragraph.

The intuition behind our implementation concept is an assumption/guarantee principle. We describe it
with respect to our formalism: An implementation relation (m2 implements m1) for hybrid modules m1

and m2 has to fulfil the following properties (G set of signals, V set of variables, I input, O output, MR

multiply restricted):

– m1:GI � m2:GI . The occurrence of a signal g as input in a module m means that m guarantees that g
is not restricted in m. This clearly is a guarantee. Thus each input signal of the specification should be
an input signal of the implementation. The same is sensible for input variables m:V I .

– m2:GO � m1:GO. The occurrence of a signal g as output in a module m means that m assumes that
g is not restricted in the environment. The implementation should not make more assumptions than
the specification, thus each output signal of the implementation should also be an output signal in the
specification. The same is sensible for the output variables m:V O.

– m1:G�m1:GL = m2:G�m2:GL. The signals of a modulem can be partitioned into a set of interface
signals (m:GI [m:GO [m:GMR), and a set of local signals (m:GL). Interface signals are those via
which m can communicate with the environment. The same is sensible for the variables m:V .

– The external trace set S2 (defined below) of the transition system generated by m2 is a subset of the
external trace set S1 of the transition system generated by m1. We use the set theoretical conceptu-
alisation of implementation of Abadi and Lamport [AL91]. They use an implementation relation for
sets of traces. They consider a set of traces S2 to be an implementation of the set of traces S1 if and
only if S2 � S1. Their intuition is that the occurrence of a trace t in S1 means that S1 allows the
system behaviour t, and they consider that the implementation should not allow more behaviours than
the specification.

LetL = m:G[IR be the set of transition labels of the transition system of a modulem.m:G is the set of
synchronisation labels of the module m. IR is used for the time values. A trace of a given transition system
is an infinite alternating sequence < c0; l1; c1; : : : > of configurations and elements of L, starting with an
initial configuration c0. For each (ci; li+1; ci+1) the following must hold: If li+1 is a synchronisation label
then a discrete transition of the transition system leads from ci to ci+1; otherwise li+1 is an element of IR,
the time width between the two configurations, and a time transition of the transition system of that time
was taken.

To introduce the notion of an external trace for the behaviour visible outside the module we have to
define a function hide : C ! E which maps a configuration which contains also the information about
local variables and the discrete state to a non-local configuration which contains only the value assignments

296

1 MODULE RailRoadCrossing {
2 LOCAL
3 app : SYNC;
4 exit : SYNC;
5 lower: SYNC;
6 raise: SYNC;
7 INST Process_Train FROM Train WITH {
8 app AS app;
9 exit AS exit;

10 }
11 INST Process_Gate FROM Gate WITH {
12 lower AS lower;
13 raise AS raise;
14 }
15 INST Process_Controller FROM Controller WITH {
16 app AS app;
17 exit AS exit;
18 lower AS lower;
19 raise AS raise;
20 }
21 }

Fig. 7. The model of the rail road crossing system

of the interface variables (input, output, and multiply restricted) by hiding the local components (C =

S �A(V I [V O [VMR [V L);E = A(V I [V O [VMR)).
An external trace of a given transition system is an infinite alternating sequence < e0; l1; e1; : : : > of

non-local configurations and elements of L which is constructed by the hide function from a trace of the
transition system:
< : : : ; ei; li+1; ei+1; : : : >=< : : : ; hide(ci); li+1; hide(ci+1); : : : >.

4 System description

An introduction to the CTA languages is given in this section. The first subsection describes the language
to define the model and the second one describes the language for the analysis commands.

4.1 Modelling language

A module contains four components: declaration of variables and signals, an initial configuration of the
module, a set of instantiations and a set of hybrid automata.

One of the modules defined in a system description is the so called ’top module’ which contains all the
stuff needed to model the system. In the top module of the example model all the variables are declared as
LOCAL because it is a closed system. (Open system have at least one variable or signal of restriction type
INPUT or MULTREST.)

To provide an intuition for the notation, the textual CTA version of the example system is shown in some
figures. The top module is the module ’RailRoadCrossing’ (Fig. 7), which models the system consisting of
the train (Fig. 8), the gate (Fig. 9), and the controller (Fig. 10).

Declaration of the interface The modelling language of CTA has two orthogonal type classifications for
identifiers. There are four different restriction types to distinguish between different access modes:

– Local variables or signals are not visible outside the current module. They are used for communication
between submodules and the automaton of the current module.

– Input variables or signals may not be restricted in the current module. This means for signals that the
current module in every configuration must be able to react on such a signal.

– Output components may be restricted in the current module, but not outside the module. This means for
signals that the decision when this signal appears is only taken in the current module, not in any other
one.

– Multiply restricted variables may be restricted both in the current module and outside it (like normal
global components).

297

1 MODULE Train {
2 OUTPUT
3 app: SYNC;
4 exit: SYNC;
5 LOCAL
6 x: ANALOG; // Distance of the train.
7 INITIALIZATION {
8 STATE(Train) = Far AND x >= 1000; }
9 AUTOMATON Train {

10 STATE Far {
11 INV { x >= 1000; }
12 DERIV { DER(x) >= -50 AND DER(x) <= -40; }
13 TRANS { GUARD { x = 1000; } SYNC !app; GOTO Near}
14 }
15 STATE Near {
16 INV { x >= 0; }
17 DERIV { DER(x) >= -50 AND DER(x) <= -30; }
18 TRANS { GUARD { x = 0; } GOTO Past}
19 }
20 STATE Past {
21 INV { x <= 100; }
22 DERIV { DER(x) >= 30 AND DER(x) <= 50; }
23 TRANS { GUARD { x = 100; } SYNC !exit; DO { x’ > 1000; } GOTO Far}
24 }
25 }
26 }

Fig. 8. The train model

1 MODULE Gate {
2 LOCAL
3 g: ANALOG; // Degree of the gate.
4 INPUT
5 lower: SYNC; // Lower the gate.
6 raise: SYNC; // Raise the gate.
7 INITIALIZATION {
8 STATE(Gate) = Open AND g = 90; }
9 AUTOMATON Gate {

10 STATE Open {
11 INV { g = 90; }
12 DERIV { DER(g) = 0; }
13 TRANS { SYNC ?raise; GOTO Open }
14 TRANS { SYNC ?lower; GOTO Down }
15 }
16 STATE Up {
17 INV { g <= 90; }
18 DERIV { DER(g) = 9; }
19 TRANS { SYNC ?raise; GOTO Up }
20 TRANS { SYNC ?lower; GOTO Down }
21 TRANS { GUARD { g = 90;} GOTO Open }
22 }
23 STATE Down {
24 INV { g >= 0; }
25 DERIV { DER(g) = -9; }
26 TRANS { GUARD { g= 0;} GOTO Closed }
27 TRANS { SYNC ?raise; GOTO Up }
28 TRANS { SYNC ?lower; GOTO Down }
29 }
30 STATE Closed {
31 INV { g = 0; }
32 DERIV { DER(g) = 0; }
33 TRANS { SYNC ?raise; GOTO Up }
34 TRANS { SYNC ?lower; GOTO Closed}
35 }
36 }
37 }

Fig. 9. The gate model

For example, the controller in Fig. 10 has two input signals to communicate with the train. They should
be declared as input because the train forces the controller to react on the train actions. The controller
must be able to synchronise at each point in time with such input signals. For the communication with the
gate there are two output signals to control the gate. The declaration of a signal as output means that the
environment must be able to react on it. The clock ’t’ is used to measure the time to react on a signal in the
controller.

298

1 MODULE Controller {
2 LOCAL
3 t: CLOCK; // Timer for the controller.
4 INPUT
5 app: SYNC;
6 exit: SYNC;
7 OUTPUT
8 lower: SYNC; // Lower the gate.
9 raise: SYNC; // Raise the gate.

10 INITIALIZATION {
11 STATE(Controller) = Idle; }
12 AUTOMATON Controller {
13 STATE Idle { // Waiting for a signal from train.
14 TRANS { SYNC ?app; DO { t’ = 0; } GOTO ToLower}
15 TRANS { SYNC ?exit; DO { t’ = 0; } GOTO ToRaise}
16 }
17 STATE ToLower {
18 INV { t <= 5; }
19 TRANS {SYNC ?app; GOTO ToLower }
20 TRANS { SYNC !lower; GOTO Idle }
21 TRANS { SYNC ?exit; DO { t’ = 0; } GOTO ToRaise }
22 }
23 STATE ToRaise {
24 INV { t <= 5; }
25 TRANS { SYNC ?exit; GOTO ToRaise }
26 TRANS { SYNC !raise; GOTO Idle }
27 TRANS { SYNC ?app; DO { t’ = 0; } GOTO ToLower }
28 }
29 }
30 }

Fig. 10. The controller model

To provide an expressive syntax, there are five different data types, as in HyTech:

– CONST: A variable with a fixed value.
– DISCRETE: A variable which can be used to store a value. The derivation of a discrete variable is

always zero.
– CLOCK: A continuous variable with the fixed time derivation one.
– STOPWATCH: A clock which can be stopped. This means the time derivation can be zero or one.
– ANALOG: A continuous variable without restrictions for the time derivation.

The controller model of the railroad crossing has one clock as continuous variable and four signals.

Instantiations To get a model for the whole system, the module ’RailRoadCrossing’ contains three instan-
tiations of the other modules. Each of the interface variables and signals from the template module has to
be identified with one of the variables or signals from the containing module. Local variables or signals are
not identified with one of the containing module.

Automata, states and transitions A hybrid automaton consists of a set of states. For each state, there is a
restriction to set the first time derivations of all the variables and another restriction to define an invariant
which must be fulfilled while the automaton stays in the state.

The transitions are syntactically contained in the source state of the transition. A transition consists of a
guard, a synchronisation label, a restriction to determine the values of the variables after the transition, and
the follower state. Such a discrete transition can only fire if the guard (a restriction over the variables) is
fulfilled and all other automata which also use the synchronisation label perform a transition with this label,
too.

Initialisation The starting state of an automaton and the initial value assignment for the variables are set
by the INITIALISATION clause.

Linear restrictions Linear restrictions are sets (disjunctions) of inequality systems to restrict the value
assignments of the variables. They consist of conjunctions of constraints which use the operators <, <=,

299

1 REGION CHECK RailRoadCrossing {
2 VAR
3 initial, error, reached : REGION;
4 COMMANDS
5 // We use the initial regions from the modules.
6 initial := INITIALREGION;
7 error := COMPLEMENT(STATE(Process_Gate.Gate) = Process_Gate.Closed)
8 INTERSECT
9 Process_Train.x < 250;

10 reached := REACH FROM initial FORWARD;
11 IF(EMPTY(error INTERSECT reached)) {
12 PRINT "Safety requirement satisfied.";
13 }
14 ELSE {
15 PRINT "Safety requirement violated.";
16 PRINT "The resulting region:" reached " !";
17 };
18 }

Fig. 11. The analysis section for the railroad crossing model

>, >=, =, and <>. The expressions contained in the constraints must be linear, which means that the
expression must be an additive combination of numbers or variables which can be multiplied with a number.

A variable x can occur in three forms in linear restrictions:

– x addresses the value of x. In an assignment of a transition it means the value of x before the transition
is executed.

– x’ is used only in assignments of transitions to address the value of the variable after execution.
– DER(x) is used only in the DERIV-clause of a state to address the first time derivation of a variable.

Name spaces Each module has its own name space. All names of variables and signals are only known to
the module. To allow communication between different modules the interface components can be identified
with some components of the containing module, respecting consistency conditions. Local components
must not occur in an identification of interface components.

A module contains several different name spaces: Automata names, state names, variable and signal
names, instantiation names. For the module names only one global name space exists.

4.2 Verification language

The analysis language provided by the tool is described in the following section. It is similar to HyTech’s
analysis language [HHWT95], but extended to handle the different name spaces coming from the hierarchi-
cal name space structure.

As in the previous section the example is used for illustration. In Fig. 11 the analysis section for the
verification of the railroad crossing model is displayed.

The main idea is to compute with regions. There are variables for storing regions which are needed in
the further verification process, and statements to say how to compute the next step.

Declaration of region variables As illustrated in Fig. 11 three regions are declared: ’initial’ to have the
region for the starting point of reachability analysis, ’reached’ for the region representing the state space
which is reachable from ’initial’, and the region variable ’error’ for the region which should not appear in a
correct model.

Region expressions A region expression consists of operations to build regions either from existing regions
or from linear restrictions, state restrictions, or region variables.

Region restrictions To define a region one can use linear restrictions over the variables of the module
on the one hand, e.g. ’Process Gate.g >= 0’ to define a region of all configurations which fulfil the
condition that the variable ’g’ of the instantiation ’Process Gate’ is greater than zero. On the other hand
a region can be defined by a state restriction, e.g. ’STATE(Process Gate.Gate) = Process Gate.Open’ to
define the region where the state of the automaton ’Gate’ of the instantiation ’Process Gate’ is the state
’Open’.

300

Reachability operations For computation of regions which can be reached by using discrete and
time transitions from a given region there are four reachability operations: ’POST(<region>)’ and
’PRE(<region>)’ to compute the follower (or precursor) region using one time or discrete transition,
and ’REACH FROM <region> FORWARD’ and ’REACH FROM <region> BACKWARD’ to com-
pute the fixed point region using iterative ’POST’ (or ’PRE’) operations.

Set operations To build new regions by set operations the language provides three binary operators and
one unary operator: ’INTERSECT’ for the intersection of two regions, ’UNION’ for the union of two
regions, ’DIFFERENCE’ for the difference of two regions, and ’COMPLEMENT’ for the complement
of a region.

Region variable A region also can be defined by an existing region which is already computed and stored
in a region variable.

Initial region To access the initial region defined in the section ’INITIALISATION’ of the module de-
scription can be used in the analysis section by the keyword ’INITIALREGION’.

Convention for access to components. Because of the different name spaces, we use the dot notation
to address a special component in a ’Region restriction’ in a ’REGION CHECK’ section. In the analysis
section all variables and all states are available. The current name space is the name space of the top
model used for analysis, i.e. to access a component ’x’ of the module ’Process Train’ the absolute name
Process Train:x is used, and the discrete state ’Far’ of the automaton ’Train’ contained in the module
instance ’Process Train’ is accessible by Process Train:Far.

Boolean expressions A Boolean expression is used as a predicate over regions for statements which use a
condition to decide what they have to compute. Such a boolean expression consists of comparisons between
and checks of regions as well as boolean combinations of such expressions.

Comparisons To evaluate set relations between two regions there are the operators ’=’ which returns true
if both regions are the same sets, and the operator ’CONTAINS’ which returns true if the first region
contains the second one. To check whether a region is empty, one can use the keyword ’EMPTY’.

Combinations of boolean expressions Boolean expressions can be combined by the usual operators
’AND’, ’OR’, and ’NOT’.

Statements To formulate the verification tasks different statements can be used. Possible statements are
assignments, if-then-statements, loops, and printing states.

Assignment One can assign a computed region to a previously declared region variable for further use with
an assign statement ’<regvar> := <regexpr>’.

Conditional statement With the keywords ’IF’, ’THEN’ and ’ELSE’ one can evaluate boolean expressions
and depending on the result execute some statements.

Iteration To define iterative verification processes a statement ’WHILE’ is provided with the expected
meaning.

Output of results To put messages out on the screen, the statement ’PRINT’ is possible with different ar-
guments. The argument of the print statement can be a string, a region expression or a region expression
between two strings. A region is printed out as a set of inequalities over the variables and conditions
about the discrete states. The print statement of the code in Fig. 11 illustrates it.

The statements in the example define three regions: the initial configurations, the error region (which the
model has to avoid), and the region which can be reached starting from the initial region. The ’IF’ statement
evaluates whether the computed region is empty or not.

5 CTA tool environment

The first version of the CTA tool is implemented in C++ and consists of the following components:

– A compiler front-end for the system description to build the hierarchy of hybrid modules in memory.
– A library which provides the data structures and algorithms for the double description method (DDM)

symbolic representation of the regions [FP96].

301

Fig. 12. CTA Tool

– An interpreter for the analysis language which provides several analysis commands for reachability
analysis. It transforms parts of the model needed in the verification into a DDM representation and
invokes the analysis tasks on the data structures.

The tool works in the way depicted in Fig. 12: There are two inputs, a description of the model as CTA
modules and a specification of required properties as analysis commands. First, the tool analyses the model
regarding context conditions like consistency and compatibility of combined modules.

After that, the analysis command interpreter executes the analysis commands and writes out the results
of the verification process. To avoid problems with the name spaces, the module which will be used for
analysis has to be declared in each region section.

At least for reachability analysis we can only use one single hybrid automaton. From this it follows that
we have to transform our hierarchically structured system of communicating modules to a flattened normal
form. This normal form of CTA consists of a set of hybrid automata without scopes, special data types and
restriction types of variables/signals as well as without abstraction layers as a ’flat’ system. This is done
with the help of our tool after context check and some additional analysis. The second step is to produce a
product automaton from the set of hybrid automata.

If we have not modelled all necessary transitions for reacting on input signals in an automaton, the tool
adds these transitions automatically, but they lead to a special error state ’INPUT ERROR’. If such a state
exists, we can analyse if this state is reachable. If it is reachable then we have modelled a situation where
an input signal is restricted, and thus we have a modelling mistake.

5.1 Region representation

From the real-valuedness of the variables follows the infinity of the set of configurations of any automaton
with at least one analogous variable. Thus, for the analysis the tool has to use a symbolic representation
of configuration sets. In the CTA tool a region is represented by sets of pairs (s; a), where s is a discrete
state and a is a set of convex polyhedra in IRjV j, which are limited by hyper-planes. For operations over the
polyhedra the tool uses the double description method. A region (as a set of configurations) is represented
by a map which assigns to each state the corresponding set of polyhedra (if it is not empty).

302

Fig. 13. Structure of automaton representation

Fig. 13 shows a rough overview of the internal representation with focus on the main data structure: The
polyhedra. One automaton consists of a set of states and a set of transitions. Each state has two important
components, one set of polyhedra for the state invariant and another set of polyhedra for the derivation. We
have to use sets of polyhedra because the data structure with the efficient algorithms represents only convex
polyhedra. Each transition has two such sets, the guard and the allowed assignments.

The component for the polyhedron representation is the most important one because all the algorithms
of automaton components are based on the basic algorithms like intersection, unions and emptiness check
for such polyhedra.

5.2 Results of the verification of the example

For analysis of the railroad crossing example we used the code from Fig. 11. Starting with the initial config-
uration of all automata the tool computes the region of reachable configurations. The region which violates
the safety condition of the example is stored in another region. If the intersection of the reached region and
the error region is nonempty, the model violates the condition. Using the model given in former sections the
tool computes that the intersection is empty and thus the model fits the safety conditions. After execution
of an reachability statement the tool gives a message how many steps were used to reach the fixed point.

The verification task of the example which is displayed in Fig. 11 fails if we increase the reaction time
’�’ of the controller or if we increase the safety distance in which the train must not be before the gate is
closed.

6 Open Questions

The verification of modelled systems with a lot of combined automata (i.e. more than five automata) is an
open problem of the current version of the tool. As in other tools (i.e. HyTech), the technique used in the
CTA-tool does not use symbolic representation for the discrete part of a configuration.

In our tool the region representation is separated from the rest of the tool through a clear interface.
Thus, we are able to plug in other representation techniques. In the next step the research group is going to
investigate the possibilities of BDD data structures for representing continuous state spaces and the discrete
state space together.

303

Acknowledgements

We thank the anonymous referees for their comments.

References

[ACD93] Rajeev Alur, Costas Courcoubetis, and David Dill. Model-checking in dense real-time. Information and
Computation, 104:2–34, 1993.

[AH96] Rajeev Alur and Thomas A. Henzinger. Reactive modules. In Proceedings of the 11th Annual IEEE
Symposium on Logic in Computer Science (LICS 1996), pages 207–218, 1996.

[AH97] Rajeev Alur and Thomas A. Henzinger. Modularity for timed and hybrid systems. In Proceedings of the
8th International Conference on Concurrency Theory (CONCUR’97), LNCS 1243, pages 74–88, Berlin,
1997. Springer-Verlag.

[AL91] Martin Abadi and Leslie Lamport. The existence of refinement mappings. Theoretical Computer Science,
82(2):253–284, 1991.

[BLL+96] Johan Bengtsson, Kim Larsen, Fredrik Larsson, Paul Petersson, and Wang Yi. Uppaal – a tool suite for
automatic verification of real-time systems. In Rajeev Alur, Thomas A. Henzinger, and Eduardo D. Sontag,
editors, Hybrid Systems III, LNCS 1066, pages 232–243, Berlin, 1996. Springer-Verlag.

[BR98] Dirk Beyer and Heinrich Rust. Modeling a production cell as a distributed real-time system with cottbus
timed automata. In Hartmut König and Peter Langendörfer, editors, FBT’98: Formale Beschreibungstech-
niken für verteilte Systeme, pages 148–159, June 1998.

[BR99] Dirk Beyer and Heinrich Rust. A formalism for modular modelling of hybrid systems. Technical Report
10/1999, BTU Cottbus, 1999.

[DOTY96] C. Daws, A. Olivero, S. Tripakis, and S. Yovine. The tool KRONOS. In Rajeev Alur, Thomas A. Henzinger,
and Eduardo D. Sontag, editors, Hybrid Systems III, LNCS 1066, pages 208–219, Berlin, 1996. Springer-
Verlag.

[FP96] Komei Fukuda and Alain Prodon. Double description method revisited. In Combinatorics and Computer
Science, LNCS 1120, pages 91–111. Springer-Verlag, 1996.

[HHWT95] Thomas A. Henzinger, Pei-Hsin Ho, and Howard Wong-Toi. A user guide to HyTech. In Proceedings of
the First Workshop on Tools and Algorithms for the Construction and Analysis of Systems (TACAS), LNCS
1019, pages 41–71. Springer-Verlag, 1995.

[HNSY94] Thomas A. Henzinger, Xavier Nicollin, Joseph Sifakis, and Sergio Yovine. Symbolic model-checking for
real-time systems. Information and Computation, 111:193–244, 1994.

[Hoa85] C.A.R. Hoare. Communicating Sequential Processes. Prentice Hall, Hemel Hempstead, 1985.
[Lev95] Nancy G. Leveson. Safeware. Addison Wesley, Reading/Massachusetts, 1995.
[LSVW96] N. Lynch, R. Segala, F. Vaandrager, and H.B. Weinberg. Hybrid I/O automata. In Rajeev Alur, Thomas A.

Henzinger, and Eduardo D. Sontag, editors, Hybrid Systems III, LNCS 1066, pages 496–510, Berlin, 1996.
Springer-Verlag.

[LT87] Nancy A. Lynch and Mark R. Tuttle. Hierarchical correctness proofs for distributed algorithms. In Proceed-
ings of the 6th Annual ACM Symposium on Principles of Distributed Computing, pages 137–151. ACM,
August 1987.

304

305

A Formal Speci�cation and Veri�cation of a

Safety Critical Railway Control System

S. Gnesi

IEI { CNR
�

D. Latella

CNUCE { CNR
y

G. Lenzini

IEI { CNR
�

C. Abbaneo

ASF { GENOVA
z

A. Amendola

ASF { NAPOLI
x

P. Marmo

ASF { NAPOLI
x

March 7, 2000

Abstract

This paper describes an experiment in formal speci�cation and validation

performed in the context of an industrial joint project involving Ansaldo-

breda Segnalamento Ferroviario (ASF) and CNR Institutes - IEI and CNUCE

- of Pisa. Within this project two formal models have been developed, de-

scribing di�erent aspects of a wider safety-critical system for the management

of medium-large railway networks. Validation of safety and liveness proper-

ties has been performed on both models. More speci�cally safety properties

have been checked also in presence of byzantine behavior as well as other

kinds of faults embedded in the models themselves. Liveness properties have

been more focused on a communication protocol used within the system.

Properties have been speci�ed by means of assertions or temporal logical

formulae. We used Promela as speci�cation language, while the veri�ca-

tion was performed using Spin.

Keywords: safety-critical systems, dependable protocols, formal veri�ca-

tions, model checking.

�Istituto Elaborazione dell'Informazione CNR - Via S. Maria 46, 56123 PISA (Italy)

tel:+39 050 593 489/485 - fax:+39 050 554 342, (fgnesi, lenzinig@iei.pi.cnr.it)
yCNUCE Institute CNR - Via S. Maria 40, 56123 PISA (Italy) tel:+39 050 593 230 -

fax:+39 050 904 052, (d.latella@cnuce.cnr.it)
zAnsaldobreda Segnalamento Ferroviario - Via dei Pescatori 35, 16129 GENOVA (Italy)

tel:+39 010 655 2317 - fax:+39 101 655 2444, (cabbaneo@asf.atr.ansaldo.it)
xAnsaldobreda Segnalamento Ferroviario - Via Argine 425, 80147 NAPOLI (Italy)

tel:+39 081 243 2621/2982, (famendola, marmog)@atr.ansaldo.it

306

1 Introduction

The increasing request of safety and better performance in the �eld of modern

railways and metropolitan networks has forced the introduction of sophisti-

cated dependable control software and hardware in the automatic manage-

ment of railways systems. These systems have a high degree of complexity,

and require innovative validation techniques during both their design and

developing phases. Traditional techniques, such as testing and simulation,

could be insu�cient when applied to this kind of systems. Exhaustive testing

is usually ine�ective because of the high number of running sequences to be

analyzed, while the de�nition of of crucial tests is very hard due to the possi-

bility of subtle behaviors. Simulation can provide useful information only on

a limited (often already predicted) sequences and, due to the intrinsic lack

of continuity, it is actually impossible to infer any global conclusion on the

simulation paths not checked.

Despite of these technical di�culties industries are undoubtedly inter-

ested in discovering, in all their dependable applications, as many errors as

possible before entering the production phase: during this last stage, in fact,

the cost of correction per error increases enormously, while unpredictable

errors can nullify months of hard work. In addition, usually governments,

institutions and generally customers often require, as a guarantee of quality,

accurate documentation about reliability features of a dependable system

they are going to acquire. Finally, international standards have been studied

to de�ne precise safety and quality certi�cates (e.g. EN 50128 CENELEC

Railways Applications [19], or IEC 65108 [12]). It worth pointing out that

these standards strongly suggest Formal Methods (FM) for validation.

In fact, FM are widely recognized as fault avoidance techniques that

can increase dependability by removing errors during the speci�cation of

requirements and during the design stages of development [3]. FM can be

used to study the safety of a system by formally verifying that certain safety

properties holds on a model of a system. In addition most FM approaches

are well suitable to be mechanized and a great variety of tools for automatic

validation are nowadays available.

On the other hand the use of FM introduces additional costs that cannot

be ignored in industry management. In theory, the use of FM drastically low-

ers the developing cost of a system [15]; in practice, industries would carefully

evaluate the cost/bene�ts ratio which can derive from changing a well estab-

lished developing schedule. The integration of a new formal analysis step,

in fact, requires either the intervention of specialized professionals, expert in

the theory and tools of FM, or training of internal engineering teams. At

the end additional series of validation steps are required to validate the real

307

system implementation respect to its formal speci�cation, or more in general,

the consistency of the implementation of design with its formal model.

In the last decade many industries, like Ansaldobreda Segnalamento Fer-

roviario (ASF), started pilot projects [8, 14, 17, 2] directed to evaluate the im-

pact of FM on their production costs. As a result, positive experiences [1, 4]

have shown how, for railway control systems, it could be possible to for-

malize signi�cant models and to perform veri�cation using the model check-

ing [6, 20, 5] approaches.

In this paper we describe the results of a real project jointly carried out

by ASF and CNR Institutes - IEI and CNUCE - in the context of the Pisa

Department Computer Center of Consorzio Pisa Ricerche. The whole project

consisted of two distinct parts: (a) designing a formal model of the behav-

ior of a critical control system used in medium-large scale railway stations

(b) verifying speci�c safety properties under the hypothesis of byzantine be-

havior [13] of one of the system component, and verifying general liveness

properties on a dependable communication protocol developed by ASF. In

this paper we focus more on the major results of the validation e�ort, only

recalling the main modeling issues. Further details on the latter can be found

in [7].

Industrial choices internal to ASF induced us to use Promela [10] to

specify distributed asynchronous systems and express general correctness re-

quirements. As a veri�cation tool we used the Spin [11] model checker.

The paper is organized as follows: in Section 2 we brie
y and informally

describe the system and all its component units; in Section 3 we recall the

most important features of Promela and Spin; in Section 5 and Section 7

we explain the Promela processes we de�ned and used as formal models,

and the properties veri�ed with some signi�cant results; �nally in Section 8

we critically discuss on the whole experience.

2 System Description

The railway system considered in this work was the Computerized Central

Apparatus (ACC) [16], a control system - developed by ASF - responsible of

the supervision of railway stations. The ACC is an highly programmable cen-

tralized control system, which constitutes the core of a node in a distributed

architecture speci�cally designed to manage a large railway network. The

ACC can be instantiated onto particular railway realities, and it is devoted

to the control of a medium-large railway station, or a line section with small

stations, or a complete low tra�c line with simple interlocking logic. Its

architecture (see Figure 1) consists in two subsystems that independently

308

perform management and vital functions. In particular:

...

 RDT Safety Nucleus

Control Posts

Peripherical Control Units

Vital Section Management Section

remote
control
system

ACC

Figure 1: The Computerized Central Apparatus architecture and its envi-

ronment.

� the vital section (VS) controls train movements and wayside equipment.

It consists of a Safety Nucleus (SN), of input/output Peripheral Control

Units (PCUs), and of Control Posts.

� the management section, also called RDT (Recording, Diagnosis and

data Transmission), is dedicated to auxiliary functions, such as data

recording, diagnostic management and remote control interface.

In our experiment we considered only the VS and in particular we focused

mainly on the SN and the PCUs. In particular, the SN has been designed

for the execution of safe operations, and for control and safety purposes. It

is interposed between the Control Posts, from which human operator can

digit commands to be sent to the periphery, and the PCUs that, in turn,

execute the commands. These commands are considered critical because they

a�ect critical machinery such as railway semaphores, rail points, or crossing

levels. The SN achieves its purpose of safely delivering critical commands

to the periphery by running monitor tasks on the state of the ACC system.

In case of software/hardware faults in some components the SN tries to

recover a consistent state or to exclude the faulty component. The SN is

based on a triple modular redundant [21] con�guration of computers which

independently run di�erent versions of the same program.

309

3 PROMELA and SPIN

Promela (Process Meta Language) [10] is a modeling language of general
applicability introduced to describe distributed systems, communication pro-
tocols and, in general, asynchronous process systems. A Promela speci�ca-
tion, usually called a model, consists in one or more process templates (called
also proctype) and in at least one process instantiation. In a proctype a user
de�nes the behavior of a process as an imperative program in a C-like syntax.
The language is extended with nondeterministic control constructs, and with
communication primitives, in a CSP [9] style. Processes can communicate via
asynchronous message passing through bu�ered channels or shared memory.
Rendezvous is modeled by bu�ers of length zero. In addition any running
process can instantiate further asynchronous processes using proctypes.

Spin [11] is an e�cient formal veri�cation tool for checking the logical
consistency of a speci�cation given in Promela, and it can generate an
optimized on-the-
y veri�cation program from a Promela model. Techni-
cally Spin translates each Promela process template given as input, into
a �nite automaton. Conceptually a global automaton of a system behavior
is obtained by the interleaving product (referred as the space state) of all
the automata of the processes composing the system. In practice, e�cient
representations of the state space are used. Promela has been de�ned in
such a way a model is necessary bound and has only �nite state behavior.
Then, in theory all the correctness properties become formally decidable. In
practice, users needs to cope with limitations set by the state size and by
computational resources.

Spin accepts correctness claims speci�ed either in the syntax of standard
Linear Temporal Logic (LTL) [18], or as process invariants (using assertions)
expressing safety and liveness properties. It can be used as an e�cient on-
the-
y veri�er to check for deadlock presence, assertions violation, progress
cycles, unreachable code, unspeci�ed receptions,
ags incompleteness, race
conditions, and unwarranted assumptions about the relative speeds of pro-
cesses. Used as a LTL model checker, Spin supports all correctness require-
ments expressible in this logic, either directly in the syntax of next-time free
LTL, or indirectly as B�uchi Automata1.

1
Further information on Promela and Spin can be �nd at the o�cial URL:

http://cm.bell-labs.com/cm/cs/what/spin/

310

4 Formal Speci�cation and Veri�cation

In the following sections we introduce the general structure of our formal-

ization work and the veri�cation properties checked on it. About the for-

malization we developed two Promela models, we called respectively Tmr

and Tmr-Pcus, each describing di�erent views of the SN-PCUs system2. In

particular:

1. the Tmr model has been designed to describe in detail the SN. In

this model the PCUs behavior is described more abstractly, and all

the details regarding on the communication protocol between SN and

PCUs have been omitted. The Tmr model has been reserved to verify

safety properties on the triple modular redundant mechanism of the

SN in presence of byzantine behavior of one of its components;

2. the Tmr-Pcus model has been designed to describe in detail the SN-

PCUs communication protocol, and the PCUs themselves. Aspects of

the SN behavior not related to the communication protocol have been

left out. The Tmr-Pcus model has been reserved to verify liveness

properties on the SN-PCUs protocol, and safety properties on the same

protocol in presence of speci�ed hardware faults in the communication

buses or in some of the PCUs.

5 The TMR model

The Tmr model describes in detail the triple modular redundant mechanism

of the SN. In Figure 2 we report a scheme of the general architecture of

the system. We want to point out: (1) the three identical central module,

called A, B and C, implementing the triple modular redundancy; (2) a special

module called exclusion logic, devoted to checking the consistency of the three

modules, and able to disconnect a module; (3) the interconnections between

the modules (three symmetric channels), the modules and the exclusion logic

(three symmetric channels), and the modules and the PCUs (a single bus);

(4) the PCUs composed by n control units3. Our Promela model re
ects

quite faithfully this general architecture: we reserved a process for each of

the central module, a process for the exclusion logic and a process for each

PCUs. We de�ned three symmetric channels of length zero between the

2Indeed a whole model was �rst considered, but we successively decided to split it

because of serious state space dimension problems.
3In our study we have considered n = 2

311

Exclusion Logic

Module A

Module B Module C

1 2 n

Peripheral Control Units

...

Bus

Figure 2: The Tmr architecture

central modules, between the central modules and the exclusion logic. Finally

we de�ned a bus between the central modules and the PCUs.

To have an idea of the di�culties faced within the formalization work

and to understand the properties veri�ed on it, we now brie
y describe the

algorithm run by a central module and the algorithm run by a peripheral unit.

We �rst give a high level description of these algorithms and successively we

report some meaningful part of the corresponding Promela code.

5.1 A central module

The behavior of each module consists of repeated sequences of phases, as

described in the following pseudo-code.

loop

* <synchronization>

* <data exchange with the other modules>

<distribute voting>

* <communication to exclusion logic>

{communication with the PCUs}

for i = 1 to n do

if <is my turn> then

* <synchronization>

* <send command to the ith PCU>

endif

* <receive acknowledge from the ith PCUs>

endfor

endloop

312

During each phase a central module runs local computations or commu-

nicates with other components of the system (these latter phases are stressed

with an *). In particular, in the synchronization phase each module sends

to and receives from the other two modules, with time-out4, a synchroniza-

tion message. This phase is used to collect information about the activity

state of the other modules, and in particular: (1) if a time-out occurs, it

is interpreted by the receiver as a sign of inactivity; (2) if two time-out oc-

cur the receiver switches in a safe shut-down. In the data exchange phase

each module sends to the other modules a message containing its local state.

Symmetrically it receives from the other modules, with time out, information

about their local states. In the distribute voting each module performs a

majority voting using the information received in the previous phase. In the

communication with the exclusion logic, the result of the voting is sent

to the exclusion logic which can disconnect a module considered potentially

faulty. In the communication with the PCUs, a module communicates

with the PCUs. At each loop only two modules are selected to send a com-

mand to the PCUs: a tournament distributed procedure assures a cyclic

selection of the two modules communicating with the periphery.

In developing the Promela code we had to solve an important problem:

the simulation of a time-out in the communication. In fact Promela does

not deal with time. As a general solution we de�ned a particular EMPTY

message, whose presence in a channel must be interpreted, by the receiver,

as absence of any message it was waiting for. Then, whenever we had a

receive action we introduced additional code �nalized to discern, depending

on the message content, if a time-out has been expired. The send action

changed too: it has been implemented a non deterministic choice between

either transmitting the \real" message or transmitting the EMPTY message.

In the following we report a synthesis of the Promela code implementing

the synchronization phase for the module A:

/*** In the global environment ***/

#define EMPTY 0 // the empty message

#define SYNCH 1 // the synchronization message

/* 1 = active */

d_step{

activeB = 1; // local (for the module A) state of the module B

activeC = 1; // local (for the module A) state of the module C

}

4Most of communications in the ACC are with time-out; moreover because all the

channels are supposed to have no memory, a message sent in delay is to be considered lost.

313

/*== Synchronization phase ==*/

/* - inB,inC: input channels from module B,C */

/* - outB,outC: output channel to module B,C */

d_step{

sentB = 0; /* flag "sent" to module B */

recvB = 0; /* flag "received" from modules B */

sentC = 0; /* flag "sent" to module C */

recvC = 0; /* flag "received" from modules C */

}

atomic{

do

:: (!sentB) ->

if

// send the synch message if module B is active */

:: true -> outB(SYNCH && activeB);

// send the empty message

:: true -> outB(EMPTY);

fi;

sentB = 1;

:: (!recvB && inB?[synB]) ->

inB?[synB];

recvB = 1;

:: (!sentC) ->

if

// send the synch message if module C is active */

:: true -> outC(SYNCH && activeC);

// send the empty message

:: true -> outC(EMPTY);

fi;

sentC = 1;

:: (!recvC && inC?[syn1]) ->

inC?[synC];

recvC = 1;

:: (sentB && sentC && recvB && recvC) ->

if

:: synB == SYNCH -> activeB = 1;

// if a time-out occurred the module

// is considered not active

:: else -> activeB = 0;

fi;

fi

314

:: synC == SYNCH -> activeC = 1;

// if a time-out occurred the module

// is considered not active

:: else -> activeC = 0;

fi;

od;

}

/* Conditional jump to the code implementing a safe shutdown*/

atomic{

if

/* if the other modules are recognized not active */

:: !activeB && !activeC ->

global_activeA = 0; \\ global state of module A

goto SHUTDOWN

:: else -> skip

fi;

}

The Promela code implementing the other phases is similar to the one

of synchronization, except for the type of messages involved or for some local

computation.

More interesting is the implementation of a byzantine behavior, in order

to model a situation in which the failure in one module may cause con
ict-

ing information to be sent to the other modules. In this context, byzantine

behavior is to be intended as it was in Lamport et al. [13]: a byzantine

module runs the same algorithm of a loyal module, but it can arbitrarily

fail in executing it, and in particular it may send wrong messages, or send a

message delayed respect to a synchronization, or send no message at all. In

this interpretation of byzantine behavior, we focused the attention on com-

munication events: all the communication phases (tagged with a * in the

pseudo-code) have been realized in a byzantine version, where a communi-

cation error in sending a message may be possible. A communication error

has been modeled as either a communication of a corrupted message, or as a

delayed communication, or as no communication at all. In the following we

report the Promela code used to implement the synchronization phase of

module C, supposed to be a�ected by byzantine errors:

/*** In the global environment ***/

#define EMPTY 0 // the empty message

#define SYNCH 1 // the synchronization message

/* 1 = active */

d_step{

activeA = 1; // local (for the module C) state of the module A

315

activeB = 1; // local (for the module C) state of the module B

}

/*== Synchronization phase ==*/

/* - inA,inB: input channels from module A,B */

/* - outA,outB: output channel to module A,B */

d_step{

sentA = 0; /* flag "sent" to module A */

recvA = 0; /* flag "received" from modules A */

sentB = 0; /* flag "sent" to module B */

recvB = 0; /* flag "received" from modules B */

}

atomic{

do

:: (!sentA) ->

if

// send the synch message, if module A is active */

:: true -> outA(SYNCH && activeA);

// send the wrong message */

:: true -> outA(-SYNCH);

// send the empty message

:: true -> outA(EMPTY);

fi;

sentA = 1;

:: (!recvA && inA?[synA]) ->

inA?[synA];

recvA = 1;

:: (!sentB) ->

if

// send the synch message, if module B is active */

:: true -> outB(SYNCH && activeB);

// send the wrong message */

:: true -> outB(-SYNCH);

// send the empty message

:: true -> outB(EMPTY);

fi;

sentB = 1;

:: (!recvB && inB?[syn1]) ->

inB?[synB];

recvB = 1;

:: (sentA && sentB && recvA && recvB) ->

if

:: synA == SYNCH -> activeA = 1;

316

// if a time-out or an error occurred

// the module is considered not active*/

:: else -> activeA = 0;

fi;

fi

:: synB == SYNCH -> activeB = 1;

// if a time-out or an error occurred

// the module is considered not active*/

:: else -> activeB = 0;

fi;

od;

}

/* Eventually safe shutdown */

atomic{

if

/* if the other modules are considered not active */

:: !activeA && !activeB ->

globlal_activeC = 0; // global state of module C

goto SHUTDOWN

:: else -> skip

fi;

}

5.2 A peripheral control unit

On Tmr model the behavior of a peripheral control unit is quite simple:

it consists in waiting a commands from two modules, and in returning an

acknowledgment back to all the modules. The Promela code implementing

this simple communication protocol, for one of the peripheral unit (PCU1),

is the following:

#define PCU1 <value>

/* loop */

do

::

count == 0; // number of commands received within the current loop

atomic{

do

:: (count < 2) && (bus?[PCU1, sender, cmd]) ->

// message = (<PCU name>, <module name> <msg>)

bus?PCU1, sender, cmd;

count ++;

/* send acknowledgment to all the modules */

317

bus!PCU1, A, ACK;

bus!PCU1, B, ACK;

bus!PCU1, C, ACK;

:: count == 2 -> break

od;

}

od;

/* endloop */

5.3 Formal Veri�cation on TMR

In this section we list some of the most meaningful properties veri�ed on

the Tmr model and the most meaningful results. Some properties have been

formalized as LTL formulae, while the others with Promela assertions
5. We

used assertions for those properties that could be expressed as an invariant on

all the run sequences (i.e., as the modal formula always p). In the following

we assume the module C can show byzantine behavior, while modules A and

B are loyal.

(TMR1) after a communication phase it is always true that if two modules do

not receive any reply from the third module, this latter module will be

eventually disconnected by the exclusion logic;

[] (p1 -> [] (q1 -> <> r1))

In the previous formula p1 stands for \the module A does not receive any

message from C", q1 stands for \the module B does not receive any message

from C" and r1 \C is disconnected".

(TMR2) after a communication phase, it is always true that if one module does

not receive any reply from the other two modules, it will switch even-

tually in a safe shut-down state;

[] (p2 -> [] (q2 -> <> r2))

In the previous formula p2 stands for \the module A does not receive any

message from C", q2 stands for \the module A does not receive any message

from B" and r2 \A jumps to the SHUTDOWN entry label".

5An assertion in Promela is a statement including a boolean expression, which is

evaluated each time the statement is executed. If the expression evaluates false a violation

of the correctness requirement is reported.

318

(TMR3) after a distributing voting phase, it is always true that if two modules,
in reciprocal agreement on the global state knowledge, recognize that
a third module is not in agreement with them, this latter module will
be eventually disconnected by the exclusion logic;

[] (p3 -> [] (q3 -> <> r3 && t3))

In the previous formula p3 stands for \the module A and module B agree on
their local states", q3 stands for \ module C local states di�ers from module
A local state", r3 \C is disconnected" and t3 \A and B are active".

(TMR4) after a communication phase, every module has sent and received a
message (eventually the empty message) from the other modules;

assert{(recvB + recvC == 2) && (sentB + sentC == 2)}

The previous assertion has been posed after each communication phase.

(TMR5) if a module is in safe shut-down state then necessarily the other two
have caused a time-out in a previous communication phase;

assert{activeB + activeC == 0}

The previous assertion has been posed after the SHUTDOWN entry label.
The veri�cation runs have been performed on di�erent computers (for

scheduling needs) by using di�erent optimization options6 In Table 1 we re-
port on hardware characteristics of our computational resources and Table 2
we report on the results of the veri�cations.

I II III IV

SPARC St. SPARC St. 20 AMD K6 200 PC 486 133

40Mb RAM 64Mb RAM 64Mb RAM 32Mb RAM

SunOS 4.1.4 SunOS 5.5.1 LINUX RedHat 5.0 LINUX Debian 2.0.27

Table 1: Resources used in the veri�cation work

6In particular we used the following compiler options of Spin: COLLAPSE (CO) to

compress the state vector and MA to obtain a minimal automaton encoding.

319

property PC state vector options RAM (bytes) depth result

TMR1 III 192 CO+MA 22.098 5266 success

TMR2 I 192 CO+MA 14.898 5266 success

TMR3 IV 196 CO+MA 21.029 45273 fail

TMR4 IV 188 MA 25.170 297515 success

TMR5 I 188 CO 9.515 6808 success

Table 2: Veri�cation results on the TMR model

6 Discussion

We brie
y discuss the failed properties TMR3. In analyzing the counter-

example we noted that the byzantine module C can cause a module B to

be disconnected by the exclusion logic. In fact module C causing a time-out

in communicating with module B, makes module B to believe that module

C is not active. Successively in the distribute voting module B is found

in disagreement with A and C and then module B (and not module C) is

disconnected by the exclusion logic. This situation depicts a weakness in

the exclusion logic mechanism, already found by Ansaldo using traditional

simulation techniques.

7 The TMR-PCUs model

The Tmr-Pcus describes in detail the SN-PCUs communication protocol,

and the PCUs behavior. Target of the protocol is to deliver critical com-

mands also in presence of faults in the communication media. A scheme of

Tmr-Pcus architecture is reported in Figure 3. We want to stress: (1) the

three identical central modules, called module A, B and C, implementing

part of the SN; (2) the PCUs composed by n control units7, each constituted

by a con�guration of two computers, called A and B; (3) the interconnec-

tions among the modules (three symmetric channels), the ones between the

modules and the PCUs (two busses).

With the Tmr-Pcus model we were interested to verify:

1. liveness properties of SN-PCUs communication protocol in an error-free

environment hypothesis. This protocol is implemented as a distributed

algorithm designed to assure a cyclic use of the buses and a cyclic

selection of the two modules demanded to to send the commands.

7In our study we considered n=2

320

Safety
Nucleus

...pcu2 pcun

PRIMARY BUSSECONDARY BUS

PCUs

pcu1

module A

module B module C

computer A computer B

Figure 3: The Tmr-Pcus architecture

2. safety properties of SN-PCUs communication protocol in case of some

hardware faults. In particular we were interested in injecting faults in

the interconnection buses and in the computers component a peripheral

unit.

In our Promela code we reserved a process for each central module, and

a process for each peripheral unit. We de�ned a symmetric channel of length

zero between each pair of central modules, and two busses between the SN

and the PCUs.

We now brie
y describe the algorithm run by a central module and the

one run by a peripheral unit. The algorithm of the central module is given

only in a high level description, while the Promela code relative of the

algorithm run by a peripheral unit is reported.

7.1 A central module

The behavior of a module can be described as a repeated sequences of phases,

as in the following pseudo-code:

loop

<synthesis>

{communication with PCUs}

for i=1 to 2 do

for j=1 to n do

321

<synchronization>

<diagnostic>

<message elaboration>

if <is my turn> then

<send message to i-th computer of the

j-th PCUs using the selected bus>

endif

<receive acknowledge from the i-th computer of

the j-th PCUs using the selected bus>

endfor

endfor

endloop

In the synthesis phase we have synthesized a possible outcome from

phases 1 to 5 of the Tmr model: substantially we decide if a module is

active, or not active. Before communicating with each computer of each

peripheral unit a module tries to infer information about the global state

of the system. In particular, in the synchronization phase a module tries

to know the other modules activity state, by exchanging a synchronization

message. This information is used in the tournament procedure to decide

what two modules are selected to send message to the periphery. In the

diagnostic phase (which is quite complex in reality), by considering global

information collected in a previous loop, a module tries to infer the global

state of the PCU computers and of the two buses. Information collected is

used to decide which buses to use. In addition, in the message elaboration

phase depending on the state of peripheral computers, either the e�ective

peripheral command, or a special diagnostic message is prepared.

7.2 A peripheral unit

In Tmr-Pcus the PCUs model is realized in a deeper detail. Its behavior

can be synthesized with the following pseudo-code:

loop

<decide the state of each of the two busses>

<decide the state of each of the two computers>

{communication with the safety nucleus}

parallel for i=1 to 2 do

<computer[i] receives a message from bus1

and sends acknowledgments to all the modules>

<computer[i] receives a message from bus2

and sends acknowledgments to all the modules>

endfor

endloop

322

In the decide the state phase, a non-deterministic choice is made to

decide on the functional state of the buses and of the computers of the

peripheral unit. In case of state set to \fault" every communication via

the faulty bus or coming from the faulty computer resulted in an expiration

time-out until the end of the loop. In the following we report the Promela

code used to implement the previous algorithm.

#define DONE recvA1+recvA2+recvB1+recvB2==4

/* loop */

do

::

/* === Initialization of the variables: === */

/* recvA1: counter of messages received by the computer A via bus1*/

/* recvB1: counter of messages received by the computer B via bus1*/

/* recvA2: counter of messages received by the computer A via bus2 */

/* recvB2: counter of messages received by the computer B via bus2 */

/* stateBUS1: the state of bus1 */

/* stateBUS2: the state of bus2 */

/* stateA: the state of computers A */

/* stateB: the state of computers B */

/* decide the state */

d_step

{

if

/* fault in the 1st computer */

:: stateA = 0

/* 1st computer is ok */

:: stateA = 1

/* fault in the 2nd computer */

:: stateB = 0

/* 2nd computer is ok */

:: stateB = 1

/* fault in the 1st bus */

:: stateBUS1 = 0

/* 1st bus is ok */

:: stateBUS1 = 0

/* fault in the 2nd bus */

:: stateBUS2 = 0

/* 2nd bus is ok */

:: stateBUS2 = 1

/* no fault */

:: else -> skip

fi

};

RECEIVING:skip;

323

atomic{

i = 0;

/* A1 : computer A - BUS 1 */

/* A2 : computer A - BUS 2 */

/* B1 : computer B - BUS 1 */

/* B2 : computer B - BUS 2 */

do

:: !DONE && A1in?[PCU1, senderA1, msg] ->

A1in?PCU1, senderA1, msg;

if

/* if it is a diagnostic message */

:: msg == HEADER -> skip;

/* if it is a command message */

:: else -> msg[i] = msg; i++;

fi;

/* acknowledgment to all the module */

A1out!PCU1,A,(stateA && stateBUS1);

A1out!PCU1,B,(stateA && stateBUS1);

A1out!PCU1,C,(stateA && stateBUS1);

recvA1++;

:: !DONE && A2in?[PCU1, senderA2, msg] ->

A2in?PCU1,senderA2,msg;

if

/* if it is a diagnostic message */

:: msg == HEADER -> skip;

/* if it is a command message */

:: else -> msg[i] = msg; i++;

fi;

/* acknowledgment to all the module */

A2out!PCU1,A,(stateB && stateBUS1);

A2out!PCU1,B,(stateB && stateBUS1);

A2out!PCU1,C,(stateB && stateBUS1);

recvA2++;

:: !DONE && B1in?[PCU1, senderB1, msg] ->

B1in?PCU1,senderB1,msg;

if

/* if it is a diagnostic message */

:: msg == HEADER -> skip;

/* if it is a command message */

:: else -> msg[i] = msg; i++;

fi;

/* acknowledgment to all the module */

B1out!PCU1,A,(stateA && stateBUS1);

B1out!PCU1,B,(stateA && stateBUS1);

324

B1out!PCU1,C,(stateA && stateBUS1);

recvB1++;

:: !DONE && B2in?[CDA1, senderB2, msg] ->

B2in?PCU1,senderB2,msg;

if

/* if it is a diagnostic message */

:: msg == HEADER -> skip;

/* if it is a command message */

:: else -> msg[i] = msg; i++;

fi;

/* acknowledgment to all the module */

B2out!PCU1,A,(stateB && stateBUS2);

B2out!PCU1,B,(stateB && stateBUS2);

B2out!PCU1,C,(stateB && stateBUS2);

recvB2++;

:: DONE -> break;

od

};

RECEIVED: skip

/* endloop */

od;

7.3 Formal Veri�cation on TMR-PCUs

In this section we informally list some of the properties veri�ed on the Tmr-

Pcus model, and the most meaningful results. The properties can be infor-

mally described as:

(PCUS1) correctness of the communication protocols, in absence of faults;

We veri�ed these two properties checking for absence of deadlock. With the

term correctness we mean a a general correctness of the diagnostic and of

the tournament algorithm run by a central module. In this case we slightly

modi�ed the Promela code of the PCUs in such a way to force a peripheral

unit to receive messages according to the right cyclic use of the busses. An

incorrect use of it by one of the central module will have caused a deadlock.

The following properties has been veri�ed in presence of faults.

(PCUS2) when two or more modules are active each peripheral unit eventually

receives exactly two messages, in a single loop;

([]p2) -> (([]<> q2) && [] (q2 -> (<> r2)))

325

In the previous formula p2 stands for \at least two modules are active", q2

stands for \PCU1 is in RECEIVING" and r2 \PCUS1 is in RECEIVED and

it has received exactly two messages".

(PCUS2') in presence of byzantine errors in one module, when two or more mod-

ules are active each peripheral unit eventually receives exactly two mes-

sages, in a single loop;

This properties is the same of PCUS2, but was veri�ed with one module

running a byzantine synchronization phase.

(PCU3) when two or more modules are active each peripheral unit eventually
receives exactly two message via di�erent buses, in a single loop;

([]p3) -> (([]<> q3) && [] (q3 -> (<> r3 && s3)))

In the previous formula p3 stands for \at least two modules are active", q3

stands for \PCU1 is in RECEIVING", r3 \PCUS1 is in RECEIVED and

it has received exactly two messages", and s3 \the messages received come

from di�erent bu�ers".

(PCU4) when two or more modules are active each computer of every peripheral

units receives exactly one message, in a single loop.

([]p4) -> (([]<> q4) && [] (q4 -> (<> r4 && s4)))

In the previous formula p4 stands for \at least two modules are active", q4

stands for \PCU1 is in RECEIVING", r4 \PCUS1 is in RECEIVED and it

has received exactly two messages", and s4 \each computer has received at

most one message".

In the Table 3 we report some of the most signi�cant results.

property PC state vector options RAM (bytes) depth search output

1 IV 352 C0 60.702 44047 success

2 II 284 CO+MA 23.808 25465 success

2' IV 284 CO+MA 33.491 1295 fail

3 II 284 CO+MA 23.808 25465 success

4 IV 284 CO+MA 33.553 405178 success

Table 3: Veri�cation results on the TMR-PCUs model

326

7.4 Discussion

We brie
y discuss the result of properties PCU2'. We wanted to prove

safety properties of the tournament algorithm in the hypothetic situation

of a byzantine behavior. In fact the fail was due to the byzantine behavior of

a module, and analyzing the counter-example, we noticed that three modules

(and not two) send a message to the periphery. It worth to point out that

exclusion logic, we have omitted in this model, should have disconnected po-

tentially byzantine module before entering in the communication with the

periphery phase. Indeed this is what happens in the real system, as proved

by ASF on the real system.

8 Conclusions

The work described in this paper, related to a real and wider project, con-

sisted of the veri�cation e�ort performed on a formal model of a safety-critical

system developed by Ansaldobreda Segnalamento Ferroviario, to manage

medium-large scale railway networks. The real system, actually running at

one of the main Italian railway stations, has been validated also by Ansal-

dobreda Segnalamento Ferroviario. During the formal veri�cation we found

some interesting erroneous situations some of them due to imprecision in the

requirements, while others due to weakness in the system itself. In particular

the fail entry in Table 2 pointed out a situation in which a tricky combination

of byzantine communications distorted the exclusion logic mechanism; in Ta-

ble 3 the fail entry refers to a misunderstanding in the requirements of the

dependable protocol, successively �xed. We would underline that, by using

the results obtained in the formal analysis, all implementation errors were

also con�rmed by Ansaldobreda by using traditional veri�cation techniques.

Although brie
y described in this paper, many formalization problems

has been faced during the modeling phase, primarily due to the missing of

any concept of time in the Promela language, and secondly to an inap-

propriate (respect to our needs) treatment of the termination of a processes

in its run time support. These weaknesses obliged us both to abstract, in

our models, any reference to the time (for example in the communication

with time out), and to realize a safe-shutdown state as active process that

participates in all the active communications. Those modeling choices have

had a substantial impact in the formalization e�ort and, indirectly, in the

state dimension of the model realized. To face with this last problem we need

to design ad hoc abstraction strategies. All these formalization issues in a

companion paper [7]. On the contrary the contribution of this paper relies on

327

describing the bulk of the veri�cation work, consisting prevalently in de�ning

two di�erent models each depicting di�erent aspects of the control system at

a di�erent degree of abstraction.

9 Acknowledgment

This work was partly supported by the CNR/GMD cooperation project

DECOR and by Progetto speciale CNR \Strumenti Automatici per la Veri-

�ca Formale nel Progetto di Sistemi Software ".

References

[1] C. Bernardeschi, A. Fantechi, S. Gnesi, S. Larosa, G. Mongardi, and

D. Romano. A Formal Veri�cation Environment for Railway Signaling

System Design. Formal Methods in System Design, 2(12):139{161, 1998.

[2] A. Bor�alv. A Case Study: Formal Veri�cation of a Computerized Rail-

way Interlocking. Formal Aspect of Computing, 10(4):338{360, 1998.

[3] J. P. Bowen and M. G. Hinckey. Seven More Myths of Formal Methods.

IEEE Software, 12:34{41, 1995.

[4] A. Cimatti, F. Giunchiglia, G. Mongardi, D. Romano, F. Torielli, and

P. Traverso. Formal Veri�cation of a Railway Interlocking System using

Model Checking. Formal Aspect of Computing, 10(4):361{380, 1998.

[5] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic Veri�cation

of Finite-State Concurrent Systems Using Temporal Logic Speci�cation.

ACM Transaction on Programming Languages and Systems, 8:244{263,

1986.

[6] E.M. Clarke and E.A. Emerson. Design and Synthesis of Synchroniza-

tion Skeletons using Branching Time Temporal Logic. In D. Kozen,

editor, Proceedings of the Workshop on Logics of Programs, volume 131

of Lecture Notes in Computer Science, pages 52{71, Yorktown Heights,

New York, 1981. Springer-Verlag.

[7] S. Gnesi, D. Latella, G. Lenzini, C. Abbaneo, A. Amendola, and

P. Marmo. A formal speci�cation and validation of a critical system

in presence of byzantine error. submitted to TACAS'2000.

328

[8] J. F. Groote, S. F. M. van Vlijemn, and J. W. C. Koorn. The Safety
Guaranteeing System at Station Hoorn-Kersenboogerd in Propositional
Logic. In Proceedings of 10th Annual Conference on Computer Assur-

ance (COMPASS'95), pages 57{68, 1995.

[9] C. A. R. Hoare. Communicating Sequential Processes. Prantice-Hall
International, 1991.

[10] G. J. Holzmann. Design and Validation of Computer Protocols. Prentise
Hall, 1991.

[11] G. J. Holzmann. The Model Checker SPIN. IEEE Transaction on

Software Engineering, 5(23):279{295, 1997.

[12] IEC 61508 IEC. Functional safety of electrical/electronic/programmable
electronic safety-related systems.

[13] L. Lamport, R. Shostak, and M. Pease. The Byzantine Generals
Problem. ACM Transaction on Programming Languages and Systems,
4(3):382{401, 1982.

[14] P. G. Larsen, J. Fitzgerald, and T. Brookers. Applying Formal Speci�-
cation in Industry. IEEE Software, 13(7):48{56, 1996.

[15] P. Liggersmeyer, M. Rothfelder, M. Rettelbach, and T. Ackermann.
Qualit�atssincherung Software-basierter Technischer Systeme - Problem-
bereiche und L�osungs�ansatze. Informatik Spektrum, 21:249{258, 1998.
in German.

[16] G. Mongardi. Dependable Computing for Railway Control System, chap-
ter 3. Springer-Verlag, 1993.

[17] M. J. Morely. Safety-Level Communication in Railway Interlockings.
Science of Communication, 29:147{170, 1997.

[18] A. Pnueli. The temporal logic of programs. In Proceedings of the 18th

IEEE Symposium on the Foundations of Computer Science (FOCS-77),
pages 46{57, Providence, Rhode Island, 1977. IEEE, IEEE Computer
Society Press.

[19] pr EN 50128 CENELEC. Railways Applications: Software for Railway
Control and Protection Systems.

329

[20] J. P. Queille and J. Sifakis. Speci�cation and veri�cation of concurrent
systems in CESAR. In Proceedings 5th International Symposium on

Programming, Lecture Notes in Computer Science, Vol. 137, pages 337{
371. SV, Berlin/New York, 1982.

[21] Neil Storey. Safety Critical Computer Systems. Addison-Wesley, 1996.

330

331

A Case Study in Formal Methods:

Speci�cation and Validation of the

OM/RR Protocol

Tim Willemse1, Jan Tretmans2, and Arjen Klomp3

1 Eindhoven University of Technology, Formal Methods Group,

Department of Mathematics and Computing Science, P.O.Box 513, 5600 MB Eindhoven,

The Netherlands, timw@win.tue.nl
2 University of Twente, Formal Methods and Tools group, Faculty of Computing Science, P.O.Box 217,

7500 AE Enschede, The Netherlands, tretmans@cs.utwente.nl
3 CMG Den Haag B.V. Division Advanced Technology, P.O.Box 187, 2501 CD The Hague,

The Netherlands, arjen.klomp@cmg.nl y

Abstract. This paper reports on the results of the application of formal methods in the

development of an industrial, mission-critical system, called the Operator Support System.

A critical communication protocol of this system, the OM/RR Protocol, and its correspond-

ing service were formalised using the formal speci�cation language Lotos. The resulting

speci�cations have been validated using the tool set Lite and models of the speci�cations,

obtained by making abstractions, have been veri�ed using the tool Eucalyptus. Whereas

the use of formal methods is usually motivated by their ability to allow for unambiguous and

precise system descriptions amenable to mathematical reasoning, it turned out that in this

project most bene�ts were obtained by the sheer process of formalising the informal pro-

tocol description, revealing many omissions and ambiguities. The results and experiences

obtained during formalisation, validation, abstraction and veri�cation are discussed on a

non-formal basis in this paper.

Keywords & Phrases: application of formal methods, industrial case study, LOTOS, commu-

nication protocol.

1 Introduction

Formal methods have always been envisioned to be applied to systems that require unambiguous,

mathematically precise descriptions for their correctness. The use of formal methods in the industry

has been prophesied since their very dawn, however, reality learns that their acceptance is still

not very wide-spread. One way of increasing the acceptance is by applying formal methods in case

studies of real industrial systems. This paper reports on such a case study: the OM/RR protocol.

The project was conducted between 1997 and 1998.

TheOM/RR protocol, which is a short-hand forObject Management/Request Response protocol,

is a communication protocol used in the Operator Support System (OSS). OSS is a complex,

mission-critical system which is being developed to integrate di�erent Motor-way Management

Systems (MMSs). CMG Den Haag B.V. takes part in this development which is commissioned by

the TraÆc and Transportation Department of the Dutch Ministry of Transport, Public Works and

Water Management.

In the past years, various MMSs have been developed, such as fog detection systems, congestion

detection systems and variable message signs for controlling traÆc. For historical reasons, many

MMSs have their own speci�cation and implementation and they cannot interact. The control of

an MMS takes place at an Operating Centre. The current situation in The Netherlands is that

y Current aÆliation: CMG Eindhoven B.V. Sector Trade, Transport & Industry

Luchthavenweg 57, P.O.Box 7089, 5605 JB Eindhoven, The Netherlands

332

there are several Operating Centres throughout the country. Each Operating Centre has its own

domain, consisting of several MMSs. Since these domains are piecewise disjoint, this severely limits

the | nowadays much needed | cooperation between di�erent Operating Centres.

In recent years this awareness has grown, leading to the description of the OSS. This system

is intended to integrate the independent Operating Centres and MMSs, and thereby to increase

the power of the system regarded as a whole. The idea is to enable one Operating Centre to take

over duties from another Operating Centre, or to perform tasks that at some point go beyond

the Operating Centre's own domain, thus o�ering maximal
exibility in regulating and controlling

traÆc.

The cooperation between the Operating Centres is supported by communication and authori-

sation protocols. The communications protocol is intended to allow both communication between

Operating Centres and between an Operating Centre on the one hand and an MMS on the other

hand. The authorisation protocol is intended to restrict all possible communications allowed by

the communications protocol, avoiding possibly chaotic situations, in which control over MMSs

can be lost. Both protocols display complex behaviour and are critical to the well-functioning of

OSS, so they are sources of potential hazards to the functioning of the OSS.

The main motivation for CMG to incorporate formal methods in the development of the OSS

was the mission critical aspect of the OSS. Moreover, CMG had positive experiences with the use

of formal methods in another mission critical system: the BOS system, the decision support system

which controls and operates the storm surge barrier in the Nieuwe Waterweg near Rotterdam { a

movable dam which should protect Rotterdam from being
ooded [10, 20].

The main goals of applying formal methods to the OM/RR protocol were to check its feasibility

and suitability for OSS, and to judge the completeness, preciseness and consistency of its (informal)

speci�cation. It was acknowledged that, based on the documentation available for the OSS, no �rm

conclusions about these facts could be drawn. It was expected that formal methods could help in

giving an answer to these questions. A secondary goal for CMG was to increase their knowledge

of and their experience with formal methods and associated tools.

In this paper, we describe the successful application of formal methods to the analysis of the

OM/RR protocol { successful at least from the formal methods point of view, not from the OM/RR

protocol point of view, as will be seen. By carefully translating the informal documentation for

this protocol, taking into account the generally believed functionality of this protocol, a formal

speci�cation is constructed. This process allows one to determine omissions, as well as ambiguities

in the informal documentation. Simulation of the formal speci�cation is used to validate the formal

speci�cation against informal speci�cations and design requirements. Con�dence in the correctness

of the formal speci�cation is increased by showing proper, formal relations between models of the

formal service speci�cation and models of the protocol speci�cations.

The concepts of service and protocol, used in this project, are de�ned in [21] and stem from

the context of the OSI Reference Model [16]. It is illustrated in Fig. 1. A communication service is

provided by a service provider, which is considered as a blackbox. The service users communicate

with the service provider via shared interaction points, so-called Service Access Points (SAPs). The

layer-n service speci�cation de�nes the possible communications between the layer-n service users

by using the layer-n service provider. The layer-n protocol speci�cation describes how the layer

n-protocol entities should communicate via the n� 1 service provider to establish the n-service.

The rest of this paper is structured as follows. Section 2 discusses the communications protocol:

its basic, informal documentation, its ambiguities, its omissions and its characteristics, and the

choices that have been made in the process of formalising speci�cations are sketched. The validation

and veri�cation aspects of the formal speci�cations are the topic of Section 3, and concluding

remarks and an evaluation of the use of formal methods in this project are discussed in Section 4.

Full technical details of this project can be found in [23].

333

= =
n protocol entity

n-1 Service User n-1 Service User

n protocol entity

n Service Usern Service User

n Service Provider

n-1 Service Provider

Fig. 1. The Concept of Service

2 The OM/RR Protocol

This Section describes the informal and formal OM/RR protocol: the documentation for the

OM/RR protocol is discussed in Section 2.1. Subsequently, Section 2.2 discusses some of the prob-

lems and omissions of this document. Then Section 2.3 describes brie
y the process of formalising

the documentation for the OM/RR protocol.

2.1 The OM/RR Documentation

The starting point for the formalisation was the description of the OM/RR protocol in [7], which

was developed outside the current project. According to this document, the OM/RR protocol is

loosely modelled after the OSI CMIS [5], the OSI CMIP [6], some parts of Systems Management

[1] and the OSI Remote Operations [4] standards.

The document [7] is, including appendices, a little over 75 pages, describing the OM/RR pro-

tocol and Association Management. Several appendices are added to explain short-hand notations

and conventions, taking up 15 pages of the document. A few pages are dedicated to a more global,

informal, description of the OM/RR protocol and its relation with the OSS, creating a context for

the OM/RR protocol.

The contents of [7] consists mainly of information about data, described in the notation ASN.1

[19, 3]. Using this notation, the service primitives (i.e. primitives for communication between ser-

vice users and a service provider) and the protocol data units (i.e. units of data, handled by a

protocol entity) of the OM protocol entities and the RR protocol entities are speci�ed. Although

ASN.1 allows one to write data in a concise and platform independent way, it does not allow for

specifying dynamic behaviour. The OSI standards CMIS and CMIP also do not encompass any

dynamic behaviour, as they leave this part up to the users of these standards. Other issues, dis-

cussed in [7] deal with the decomposition of the OM/RR protocol in layers in an OSI/RM manner

(see Fig. 2).

2.2 Omissions

During careful, thorough analysis and study of the informal OM/RR document with the intent of

developing a formal description a lot of incompleteness, impreciseness, ambiguity and inconsistency

was discovered.

Although OSI/RM-like layering of Fig. 2 is visually very compelling, additional information

is required to understand the interaction mechanisms between the di�erent protocol entities and

layers. However, the functionalities of each layer are discussed only informally, ambiguously, or

not revealing the inter-dependencies between the protocol entities. This lack of information about

the entanglement of these protocol entities is regarded as a major omission.

Another major omission is the absence of descriptions for the dynamic behaviour (e.g. a service

speci�cation), except for a transition diagram described in one appendix and a scenario describing

334

OM

RR

Presentation

Session

TCP/IP

AM layer 7b

layer 7a

layer 6

layer 5

layer 1..4

Fig. 2. The protocol stack

OM

RR

Presentation

Session

TCP/IP

layer 7b

layer 7a

layer 6

layer 5

layer 1..4

Fig. 3. The alternative protocol

stack

aspects of communication for association management. The status of this diagram and the scenario,

however, is not explained. Service speci�cations are vital for users of a protocol, since the service

speci�cation accurately describes the behaviour to be expected by a service user. The (formal or

informal) protocol speci�cations are necessary for guiding a programmer to a correct program.

Absence of both means that the documentation is not complete.

The dynamic behaviour is always described based on certain design requirements. Using these

requirements, it should be possible to design a service speci�cation and protocol speci�cations.

Most design requirements, however, are not described in [7]. The design requirements that are

documented in [7] are mostly concerned with performance aspects instead of functionality. As

such, the documentation for the OM/RR protocol fails to meet its purpose.

Conversations with the developers revealed that they regarded the speci�cations of the service

primitives and the protocol data units as a suÆcient basis for implementing the OM/RR protocol.

Specifying dynamic behaviour was regarded to be a non-issue, since it was, as they believed,

\trivial". Within CMG, though, the opposite was believed. This feeling was con�rmed, since the

trajectory of formalisation revealed that various issues proved more complex than the developers

had expected.

At this point in the project, one of the goals of the formalisation process had, in fact, already

been achieved: the OM/RR protocol document [7] was not stable, complete and precise enough to

form an unambiguous basis for further development of conforming implementations.

2.3 Formalisation of the OM/RR Protocol

Analysis of the informal OM/RR protocol document [7] revealed that this document is not suitable

to be considered a basis for formalising the protocol, see Section 2.2. Despite this fact, we decided

to continue the formalisation process to see to what extent the other goal { checking the feasibility

and suitability of the design of the OM/RR protocol for OSS { could be met. An attempt has been

made to design formal speci�cations for the OM/RR protocol. Using the few design requirements,

documented in [7], information obtained in conversations with the developers of [7] and information

within CMG from people working on the OSS project, design requirements have been formulated.

These design requirements then served as the basis for formalising the OM/RR protocol. The focus

in the formalisation process has been on the dynamic behaviour, since the data was already fully

speci�ed using ASN.1. It should be noted that now we not only formalised the existing protocol,

but also were actually designing parts of it.

Subsequently, in the process of formalisation, a choice for a suitable formalism for describing

the speci�cations had to be made. This choice was made by considering two criteria to which the

formalism should adhere:

1. The formalism should allow for a concise and unambiguous speci�cation of dynamic behaviour;

335

2. The formalism should be supported by tools able to analyse, validate and verify descriptions

in this formalism.

Even though a number of formalisms adhere to these requirements, a slight preference for a

process algebraic formalism led to Lotos [8, 2]. The tool support used in this project for Lotos
consists of the tool-sets Lite [12] and Eucalyptus [14, 13] (various 1998-beta-versions of CADP
97b \Li�ege").

Managed Object Managed Object

OM protocol entity OM protocol entity

RR service provider

Provider
OM/RR Service

RR SAP

OM SAP

Fig. 4. The Relation between the OM/RR Service, the OM Protocol and the RR Service

The service speci�cation of the OM/RR system { actually the OM service { is based on the

design requirements formulated for OM/RR. Subsequent decomposition of this service speci�cation

leads to a lower-level service speci�cation and a protocol speci�cation. Visually, the decomposition

is expressed in Fig. 4. This decomposition also has its impact on the OM/RR protocol stack

(see Fig. 3 on page 4). The connection between the generic service/protocol structure in Fig. 1

and Fig. 4 is easily made. The service the OM/RR protocol, i.e. the OM/RR Service Provider,
provides to its service users, i.e. Managed Objects, is described in Lotos. The decomposition

of the OM/RR Service Provider leads to speci�cations for the OM Protocol Entities and the

RR Service Provider. These are also described in Lotos. The correctness of this decomposition

step can now easily be expressed in Lotos as follows, where OM RR Service Provider[OM SAP],

OM Protocol Entity[OM SAP,RR SAP], RR Service Provider[RR SAP] are Lotos processes for

the OM/RR Service Provider, OM Protocol Entity and RR Service Provider, respectively; OM SAP

and RR SAP are the Service Access Points of the OM layer and RR layer, respectively; and � is a

suitable semantic relation between processes.

OM RR Service Provider[OM SAP] �

HIDE RR SAP IN ((OM Protocol Entity[OM SAP,RR SAP]

||| OM Protocol Entity[OM SAP,RR SAP])

|[RR SAP]| RR Service Provider[RR SAP])

(2.1)

Basically, the service speci�cation of the OM/RR protocol describes communications between

the service users of the OM/RR protocol, which are according to [7] Managed Objects. The service
users impose, by de�nition, no restrictions on the OM/RR protocol. Managed Objects communi-

cate with one another via associations, which are considered to be binary relations. Two Managed

Objects connected with each other via an association are assigned roles based on the initiative in

establishing the association. One takes the role of a Manager and one takes the role of an Agent.
These roles have their impact on the set of service primitives a Managed Object is allowed to use

in an association with another Managed Object. The order in which service primitives are used to

establish, communicate and release an association, is described in Lotos. The view a Managed

Object has on an association is described by means of a state-transition diagram (see Fig. 5). This

state-transition diagram served as a framework for writing the Lotos speci�cations.

336

The speci�cation of the OM protocol entities describes formally how the OM/RR service

speci�cation can be met, using the service speci�cation of the RR protocol. The service speci�cation

of the RR protocol describes a connection-less service, o�ering reliable data transmissions between

two service users. It is not clear to us yet, and in [7] it is also not explained, why the developers

used a TCP/IP network below the RR layer (see Fig. 2 and 3).

Communicating

ReleasingAborting

Initial

disable

not established

initiated disable
provider/peer user

association
established

association

user initiated

provider initiated/
peer confirmed
disable

Fig. 5. A Managed Object's view on an Association

Speci�cation Lines of Lotos code

OM/RR service speci�cation 1000

OM/RR protocol speci�cation 1600

Table 1. Lines of Lotos Code

To give an indication into the complexity of the �nal speci�cations, an approximation of the

number of lines of Lotos code are mentioned in Table 1. In these speci�cations data not a�ecting

the dynamic behaviour (e.g. data for the service users), is abstracted from. Clearly, the OM/RR

service speci�cation is speci�ed more easily than the OM/RR protocol speci�cation, which is an

argument in favour of using the concept of service as a step in protocol development.

3 Validation, Veri�cation and Analysis

A part of the objectives in our project has been to reveal the (lack of) information contained

in documents concerning the OM/RR communications protocol. This part has been discussed

in Section 2. Another objective has been to show how formal methods can be applied to write

unambiguous speci�cations in an industrial project. Obtaining con�dence in such speci�cations

is also assisted by formal methods. The formal speci�cations written for the OM/RR protocol

have been validated and veri�ed using the tool-sets Lite [12] and Eucalyptus [14, 13]. These

validation and veri�cation e�orts are discussed in the subsequent sections.

337

3.1 Validation and Analysis using LITE

The validation and analysis of the formal speci�cations of the communication protocol has been

tackled in di�erent stages. The �rst stage consisted of checking the syntax and static semantics

of the Lotos-speci�cations. For this, the syntax and static-semantic analyser of Lite were used.

Although necessary for performing subsequent analysis, �xing the problems discovered in this stage

only provided more insight into the description language rather than in the speci�cation itself.

Given the amount of errors that were reported in this stage, one may consider the FDT Lotos
either unnatural or hard to learn. The main problems encountered in this stage were of the nature

of functionality of a process (i.e. exit versus. noexit), which at �rst seem very counter-intuitive.

The second stage involved checking the dynamic behaviour of the speci�cations. The design

requirements and the state transition diagram (see Fig. 5) have been used as a guideline in this

stage. The Lotos simulator (animator) Smile, which is part of the tool-set Lite, has been used

for this. At �rst, a simulation based approach was taken, using Smile to perform single stepping

through the speci�cations. Single stepping is a simulation in which actions are presented that can

occur immediately after choosing an action that has to occur. This analysis, however, is troubled by

the fact that the overall behaviour of the system is \contaminated" with internal actions that are

present in the speci�cation. To overcome this problem, one can look at the action pre�x to make

an educated guess about which action leads to the desired observable action. Although in theory

this can be used to perform some thorough simulations, it is also a very cumbersome method to

use.

Another option that has subsequently been taken is by making use of test cases, in which

certain behaviour of the system is expressed, i.e. so called may test cases [11]. In contrast to must

test cases, in which the test case must specify behaviour which is always possible, may test cases

specify only behaviour which in some cases is possible. Test cases control the behaviour of the

speci�cation into the direction expressed in the test cases. In this way (un)expected behaviour can

be checked. The construction of the test cases that have been used, was guided by the structure of

the state-transition diagram of Fig. 5. All test cases tested traces that started in the Initial state,

and speci�ed di�erent routes back to the Initial state again.

Although the execution of test cases usually leads to a more restricted dynamic behaviour, in

our case much of the behaviour was still blurred by the internal actions. Yet, many cases of faulty

behaviour were revealed using the test cases. Several rounds of improvement and re-testing were

necessary to mend the errors discovered at this stage. Note that in many cases, the translation

of the ideas expressed in the natural language to the formal Lotos-descriptions was incorrect,

instead of the basic intuition behind these ideas.

By using the static analysers and the simulator Smile from the tool-set Lite the con�dence

in the correctness of the Lotos speci�cations was increased. However, the possibilities for further
validation and analysis using tools from Lite are limited. This means that, in order to perform,

for instance, checks for absence of deadlock, or establish the relation expressed by equation (2.1)

formally, other tool-sets have to be used. The subsequent sections will go into more detail about

the additional analysis and validation.

3.2 Validation, Veri�cation and Analysis using EUCALYPTUS

The tool-set Eucalyptus [14, 13] is a collection of several tools for analysing and verifying Lotos
descriptions. However, the tools that come with this tool-set all have a major drawback in that they

pose restrictions on the Lotos grammar: not the full set of Lotos operators is supported. The

positive side is that these restrictions allow for more powerful tools, such as checking for deadlock,

livelock, (bi)similarity and preorder relations. These problems are in general not computable for

the full grammar of Lotos. The use of this tool-set on the complete Lotos speci�cation as it is,

however, is not possible due to this lack of support for the complete Lotos grammar. In order

to use the tools, simpli�cations and abstractions have to be made: models have to be constructed

from the speci�cations. These models should then focus on some part of the vital behaviour of the

338

communication protocol. A second reason for developing models from the complete speci�cations is

complexity. Although, with the restrictions on the Lotos grammar the above mentioned checking

problems are in principle computable, the size of the models, e.g. the number of system states,

may prevent their e�ective computation by Eucalyptus. Also for this reason simpli�cations and

abstractions are needed.

Although the use of models in the industry is fully accepted, various implications must be kept

in mind. A model is a simpli�cation of a real system, and as such it is often impossible to fully

analyse a system. Also, the construction of a model can, on the one hand, introduce errors not

present in the original speci�cation, while, on the other hand, it may hide errors that are present

in the original speci�cation.

Models for the OM/RR protocol were developed from the formal speci�cations by abstraction

and simpli�cation. These models, and not the complete formal speci�cations, were the subject

of veri�cation with Eucalyptus. The justi�cation for their development is given in Section 3.3,

while Section 3.4 gives a brief documentation of the results obtained in the validation, veri�cation

and analysis of the models.

3.3 From Speci�cations to Models

The Lotos constructs that are not supported by tools of the tool-set Eucalyptus are the follow-
ing: no process recursion is allowed on the left and right hand part of the parallel-operator |[..]|,

nor on the left hand part of the enable-operator >> and the disable operator [>. Furthermore, data

type de�nitions are restricted to de�ne only �nite and enumerable sorts, instead of possibly in�nite

sorts. Most of these problems can be overcome by considering only a subset of the behaviour of

the speci�cations. Design requirements in the case of the OM/RR protocol that led to a Lotos
description using unsupported Lotos constructs are the following:

{ An unbounded number of concurrent associations should be supported.

{ An unbounded number of messages can be in transit in the communicating state at any moment

in time.

{ Each association can have in�nitely many sessions, where a session is the period between and

including the successful establishment and release of an association.

In the Lotos speci�cation, each association is described as an independent entity, not a�ecting

(and aware of) the other associations. The unbounded number of associations is speci�ed using pro-

cess recursion combined with an interleaving operator (see Equation 3.2). Process associations

represents the dynamic behaviour of all associations. Each particular association, speci�ed by

process association, is identi�ed by an element of the (possibly in�nite) set AIdSet.

PROCESS associations[OM SAP] (A : AIdSet) =

CHOICE aa : AId [aa isin A] ->

(association[OM SAP] (aa)

||| associations[OM SAP] (remove (aa,A)))

ENCPROC (* associations *)

(3.2)

The use of the interleaving operator means there is no synchronisation on service access

points between di�erent associations, hence they are speci�ed as being truly independent enti-

ties; therefore, it is fair to assume that considering only one association does not a�ect the valid-

ity of results for an unbounded number of associations. Thus, the model considers only process

association(aa) for some aa 2 AIdSet. The same reasoning holds for the number of messages

in the communicating state that can be in transit at any moment in time. In order to obtain some

of the e�ects of the message reordering that has to be allowed by the OM/RR protocol, only a

few messages need to be considered. Since a distinction has been made between user con�rmed

and uncon�rmed service elements, which represent classes of service elements with equal numbers

and types of service primitives, it is only fair to consider at least one message of each of these two

339

classes to represent all messages in transit. As far as the �rst two problem areas in the speci�-

cation are concerned a reasonable solution exists. The third point of attention, i.e. the in�nitely

many sessions an association can have, is a more profound problem. The OM-service layer requires

that sessions cannot be distinguished from one-another, and it is up to the OM-protocol entities

and the RR-service layer to take care that this is actually the case. Yet, within an OM-protocol

entity, a distinction has to be made towards di�erent sessions, in order to eliminate the in
uence

past sessions might have on a current session. Here, no real solution can be provided. Although

considering only one or two sessions does not satisfactorily abstract from the in�nite number of

sessions, due to complexity reasons, no other options exist.

Concrete choices that have been made in writing down the dynamic behaviour of the models

are listed below.

{ Both the OM-service and the OM-protocol entities are restricted to one association only.

{ Both the OM-service and the OM-protocol entities support at most three communication

messages that can be in transit during the communicating state (see Fig. 5) at any point in

time.

{ The OM-protocol entities are restricted to at most two sessions.

{ For the RR-service, the number of messages that can be in transit is reduced to �ve.

Further simpli�cations that have been made concerned the data types, written as act-one
abstract data types in Lotos. In general, the number of service elements was reduced by consid-

ering only the di�erent classes of service elements instead of every single service element. The tool

Cæsar.adt was used to compile the abstract data types. In compiling the data types, an anomaly

in this tool was discovered. Instead of being able to enumerate the following (enumerable) sort

OSP:

...

SORTS OSP

OPNS enablereq (*! constructor *) : AID, ID -> OSP

enableind (*! constructor *) : AID, ID -> OSP

enableconf (*! constructor *) : AID, ID, BOOL -> OSP

...

Cæsar.adt reports a warning about a theoretical limitation stating that no enumeration of this

type de�nition can be made. This is against the intuition since in our case the sorts AID, ID and

BOOL are all enumerable and �nite. Indeed, an enumeration of the sort OSP does exist!

3.4 Veri�cation and Analysis of the Models

The models that were obtained by applying the restrictions in Section 3.3 were analysed with

tools from the tool-set Eucalyptus, in particular, with Cæsar, Cæsar.adt and Aldébaran.
Cæsar.adt compiles the data types into a processable form, Cæsar generates a labelled transition

system (LTS) from a Lotos model, which can then be analysed with Aldébaran. The goal was
in this case two-fold:

{ show absence of deadlock in both the OM-service and in the decomposition consisting of the

OM-protocol entities and the RR-service;

{ �nd a formal relation (if one exists!) between the OM-service and its decomposition consist-

ing of the OM-protocol entities and the RR-service, that is as strong as possible, i.e. verify

equation (2.1).

The model for the OM-service does not distinguish between di�erent sessions, whereas the

model for the OM-protocol does. Essentially, the model for the OM-service describes an unbounded

number of sessions and the model for the OM-protocol describes a bounded number of sessions.

Hence, only a preorder relation between the two models can be expected.

The �rst activity was to validate the models against the original Lotos speci�cations, using the
simulation tool Xsimulator, which is comparable to Smile. Alongside, each time changes were

340

made to one of the models, absence of deadlock was checked. The �nal versions of the OM-service

model and the OM-protocol model { with, due to complexity reasons, the additional restriction of

considering only one session { could be proved to have absence of deadlock using Aldébaran. At
that point, simulations of the OM-service and the OM-protocol did no longer reveal any strange

behaviour. The restriction of the RR-service model to model �ve messages in transfer proved to

be minimal: allowing only four messages in transfer introduced a deadlock in the OM-protocol.

The second objective was achieved by showing that a safety preorder [9] exists between the

OM-service and the OM-protocol decomposition (again, due to complexity reasons, restricted to

only one session). This was proved using the tool Aldébaran. This also is the strongest relation

that can be shown to exist with Aldébaran between the OM-service and the OM-protocol, as

Aldébaran produced counter-examples for stronger relations. Basically, the safety preorder says

that the protocol shows only behaviour that is allowed by the service.

A few comments and statistics for the generation of the LTSs are in order. Basically, two

methods for generating an LTS from a Lotos-source are possible: the compositional and the non-

compositional method. The non-compositional method is easiest to use, since it requires no insight

in the Lotos-source. However, the drawback may be that the LTSs generated this way are too

big to be calculated on most machines. The compositional method on the other hand, allows one

to generate LTSs of orthogonal parts of the Lotos-source and combine these LTSs (or the LTSs

that have been reduced to their strong bisimulation normal form) in a later stage. This yields

smaller LTSs in usually less time. Decomposing the Lotos-source into these orthogonal parts,

however, can be very diÆcult and may not always be the most eÆcient way. In generating LTSs

for our models, we used both strategies. The results (obtained on a Linux based Intel Pentium

II-300 Mhz, 64 Mb with 128 Mb swap) are listed in Table 2.

States # Transitions # � -Transitions Reduction

OM-service 420,611 2,404,442 n.a. none

non-compositional n.a. n.a. n.a. strong

OM-service 97,528 492,714 150,948 none

compositional 52,538 283, 512 80,720 strong

OM-protocol1 n.a. n.a. n.a. none

non-compositional n.a. n.a. n.a. strong

OM-protocol1 47,525 209,190 25,238 none

compositional 5,180 21,272 14,942 strong

OM-protocol2 n.a. n.a. n.a. none

non-compositional n.a. n.a. n.a. strong

OM-protocol2 n.a. n.a. n.a. none

compositional n.a. n.a. n.a. strong

Table 2. Statistics for the generation of the LTSs for the Lotos-sources. The subscripts 1 and 2 indicate

the number of considered sessions.

In Table 2, n.a. stands for not available. This means that the results of these operations could

not be computed due to the limitations on either the hardware, or the available time to do the

calculation. For instance, the time spent on calculating the LTS for OM-protocol2 { the LTS for the

combination of RR-service and two OM-protocol entities with two sessions { using a compositional

method, was aborted after running for more than �ve days, since Cæsar reported that still only

approximately 65% of the total state space was generated and this �gure had been stable for four

days. An attempt was made to calculate the LTS for OM-protocol2 on a more powerful machine,

however, no signi�cant improvement over the Linux machine was noted.

To illustrate the gain in time that can be achieved using the compositional method over the

non-compositional method, consider that the results for the OM-service in a non-compositional

341

strategy took more than three hours, whereas the compositional strategy took less than 30 minutes

on the same machine.

3.5 Speci�cations and Models

During formalisation, veri�cation and analysis of the OM/RR protocol we made a distinction

between a formal speci�cation and a formal model. They turn out to be related, but di�erent uses

of formal methods, which are both useful.

Speci�cations are meant to prescribe the behaviour of a system. They serve as the basis for

implementation, coding and testing. Consequently, speci�cations should be as complete as possible,

taking into account all possibilities of behaviour. On the other hand, models are meant to focus

on one particular aspect of a system while abstracting from other aspects.

Speci�cations also abstract from many details, but these details concern properties which are

not considered at all. For a given level of abstraction, or for a given family of properties under con-

sideration, speci�cations should be complete. Models, however, also abstract from properties which

are, in principle, under consideration. Consider, for instance, real-time properties of the OM/RR

protocol: they are not considered at all in our analysis and they appear neither in our speci�cations

nor in our models. On the other hand, in principle, we are interested in the behaviour of protocol

entities in the presence of 5 other protocol entities and communicating via 9 associations. This

behaviour is described in the formal speci�cation, but for the models we made simpli�cations and

restricted them to one other protocol entity communicating via only one association.

A speci�cation is often too complex and contains too much detail for checking of properties, e.g.

model checking. This is especially true if property checking is performed using a tool; state of the

art tools, like Eucalyptus, cannot deal with large and complex formal descriptions; restrictions

and simpli�cations are necessary. Hence, for checking of properties a formal model is developed.

A model is a simpli�cation of the system in which a lot of detail has been removed and only

those aspects which are deemed important for the property at hand, are formally expressed. But,

because of this, a model cannot be used, e.g. as the basis for testing of implementations: since

some allowed behaviours may have been removed for simpli�cation it cannot be decided for actions

executed by an implementation whether they are allowed or not.

Making models is an intricate process in which the right level of abstraction must be chosen

to achieve a good compromise between simplicity and completeness. As a consequence, verifying

a property for a model does not give certainty about the system: any veri�cation is only as good

as the validity of the model on which it is based. Validity of the model is usually assumed or

informally, using hand waving arguments, reasoned upon.

For the OM/RR protocol we �rst developed complete speci�cations (with respect to the prop-

erties under consideration), see Section 2.3. These speci�cations were analysed using tools from

Lite. These tools have low functionality but do not impose restrictions on the formal speci�-

cations. Based on the speci�cations, simpli�cations were made such as restricting the number of

associations, sessions, protocol entities, di�erent kinds of messages, etc., see Section 3.3. This led to

models which were amenable for the Eucalyptus tools. Properties were checked on these models

but no certainty is obtained that any checked property, e.g. deadlock freedom, also holds for the

complete speci�cation. Only informal and hand waving arguments were given in Section 3.3.

When constructing speci�cations and models, di�erent approaches are possible. On the one

hand, one can start by �rst constructing the complete speci�cation and then try to validate this

speci�cation. This validation may involve constructing models from the speci�cation and verify

these against desired properties. Another possibility is to consider models of the vital behaviour

�rst and prove them correct by means of veri�cation, and gradually extending these models to

become a speci�cation. Finally, a mixture of both approaches can be used, by constructing models

and a speci�cation hand in hand. The �rst approach is the one used in this project. Although very

suitable, it is felt that the third approach would have been more convenient in the end.

342

4 Conclusions

The results described in this paper deal with a case-study of an industrial mission critical system,

called the Operator Support System (OSS). Various inherently complex communication protocols,

part of the OSS, are potential hazards for the correct functioning of the OSS. Because of the

mission critical aspects of the OSS, CMG Den Haag B.V. decided to include formal methods in

the development of the OSS. This paper describes the formalisation, analysis and veri�cation of one

of these protocols, the OM/RR protocol, using the Formal Description Technique (FDT) Lotos.
The number of hours spent on this project roughly equals 9 man months. This time includes the

learning time of the FDT Lotos and familiarising with the OSS project and the tool-sets.

As we showed, the trajectory of formalising an informal document itself already reveals many

omissions, ambiguities and errors; as such, formalising informal documents is bene�cial, even with-

out doing anything with the resulting formal speci�cation. Due to the ambiguities and omissions,

the real functionality of the OM/RR protocol is shrouded in mist. This makes it hard to judge

the quality of the protocol itself. Since the OM/RR protocol serves as one of the backbones of the

OSS, it forms a severe risk for the reliability of the OSS.

Despite the severe omissions and ambiguities in the informal document we tried to develop a

formal speci�cation of the OM/RR protocol. Some of the ambiguities could be eliminated by taking

the design requirements into account. However, the general lack of documentation concerning the

design requirements did not allow for such solutions in general. Instead, conversations with the

developers of the protocol served to �nd out about the assumptions and design requirements that

were made during the trajectory of writing the formal speci�cations. These conversations revealed

that the developers considered the dynamic behaviour to be trivial. As such, it had not been

included in oÆcial documents. Formalising the behaviour of the protocol, however, raised many

questions. This implies the dynamic behaviour cannot be considered trivial.

The conversations with the developers can be characterised as conversations not so much about

design and speci�cation, as about implementation. Our level of abstraction of talking about the

protocol di�ered from the level of the developers. Our interest mainly focussed on the service

of the protocol, yet, the developers mainly focussed on how to overcome various problems when

implementing the protocol in real-life. Retrieving information and getting to the essence of the

matter proved harder than was expected.

Although some of the questions that were found in the trajectory of formalising the OM/RR

protocol have been answered, many questions remained open. As a result, the formal speci�cation

of the OM/RR protocol can only be considered as a �rst attempt. There is no guarantee at all

that our formal description corresponds with the intentions of the developers. Consequently, the

greatest bene�t that is obtained in this project is not in the formal speci�cations, but in the

number of questions that have been raised in the process of formalising, and that can be a basis

for a next version of the protocol. With respect to the OM/RR protocol, the conclusion of the

formalisation project is that the current document as it is [7], is not a good basis for implementing

the crucial OM/RR protocol; it must certainly be improved.

The FDT Lotos turned out not to be of great help in clarifying various questions posed to

the developers of [7]. The reason was that the Lotos descriptions were not really understood by

them. An explanation for this can be found in the style that was used to specify the system, i.e. a

constraint-oriented speci�cation style [22], and their inexperience with the FDT Lotos. This style
is very useful in specifying a system, however, reading a speci�cation in this style puts an extra

burden on the reader, since it requires a reader to combine various constraints found throughout

the speci�cation.

Another issue can be that a process algebraic approach might not be the most suited for use

in an industrial environment when confronted with people with no clear background in formal

methods. Case studies are required, in which various formal methods are used to tackle a problem,

in order to determine the most suited method (both in apprehension and application) for various

problems. It is expected that visual formal methods, e.g. SDL [17] or MSC [18], might be more

suited when explaining ambiguities and omissions to people with less experience in formal methods.

343

It can also be very bene�cial to present the results of validations in a visual formalism. For instance,

the traces of Lotos simulations could be presented as MSC. This was used successfully in the BOS

project (cf. Spin [15] and [10]). Complete speci�cations in visually oriented languages, however,

are thought to be hampered by the same problem of complexity. An interesting exercise would be

to investigate the time it takes for people to read and fully understand various speci�cations in

various formalisms. While Lotos was not easily understandable by the developers of the protocol,
the people doing the formalisation were reasonably satis�ed. There are some anomalies in the

language, e.g. see Section 3.1, but as a whole Lotos is useful.
Although a full-
edged speci�cation is inevitable when designing protocols, a fully formal

speci�cation of dynamic behaviour might not be most useful. On the one hand, writing a very

detailed formal speci�cation is a very cumbersome task, taking a lot of time, and on the other hand,

vital parts of a speci�cation are less likely to be recognised within a very detailed speci�cation.

As such, formal models or partial formal speci�cations may be more suited.

The tool-sets used in our project, Eucalyptus and Lite, are useful for this kind of projects.

Con�dence in a speci�cation is only achieved by validation and veri�cation. For any realisti-

cally sized formal description this cannot be done manually; tools are indispensable. The simu-

lator Smile contained in Lite turned out to be useful, mainly in the initial phases of develop-

ment, for analysing speci�cations, but its usage was rather cumbersome and laborious. Cæsar
and Aldébaran contained in Eucalyptus were mainly used for checking properties on mod-

els. Eucalyptus was found to have an omission concerning the abstract data types in the tool

Cæsar.adt, see Section 3.3. Moreover, a thorough investigation concerning the eÆciency of this

tool-set with respect to memory usage is needed. Memory over
ow, caused by state-space explo-

sion, is one of the best known and most studied problems restricting industrial usage of this kind

of tools. It would be interesting to investigate the use of the compositional approach in order to be

able to give some general guidelines for optimal usage of this approach, and ultimately automate

this approach. Last but not least, feedback from tools is an important issue, e.g. a deadlock found

in a labelled transition system, is hard to locate in the corresponding Lotos model. A tool helping

to bridge the gap between these two representations would have saved much time.

Acknowledgements

The �rst author would like to thank Jos Baeten of the Eindhoven University of Technology for

the supervision during this project. We thank the members of the SIG-MCS/FM group of CMG,

especially Michel Chaudron and Bart Botma for the numerous discussions on any topic and Jan

Friso Groote for proof-reading early versions of this paper. CMG Den Haag B.V. is thanked for

the pleasant working atmosphere and the �nancial support during this project.

References

1. ISO/IEC 10164. Systems Management. Geneva, 1990.
2. ISO/IEC 8807. Information Processing Systems, Open Systems Interconnection, LOTOS { A Formal

Description Technique Based on the Temporal Ordering of Observational Behaviour. Geneva, 1989.

3. ISO/IEC 8824. Information Processing Systems - Open Systems Interconnection, Speci�cation of

Abstract Syntax Notation One (ASN.1). Geneva, March 1988.

4. ISO/IEC 9072. Remote Operations. Geneva, 1990.

5. ISO/IEC 9595. Common Management Information Service De�nition. Geneva, 1991.

6. ISO/IEC 9596. Common Management Information Protocol Speci�cation. Geneva, 1991.
7. Adviesdienst voor Verkeer en Vervoer. OM/RR and Association Management Speci�cations,

version 1.2, July 18th 1997.

8. T. Bolognesi and E. Brinksma. Introduction to the ISO Speci�cation Language Lotos. In Computer

Networks and ISDN Systems, volume 14, pages 25{59, 1987.

9. A. Bouajjani, J. C. Fernandez, S. Graf, C. Rodriguez, and J. Sifakis. Safety for Branching Time

Semantics. In 18th ICALP. Springer-Verlag, 1991.

344

10. M. Chaudron, J. Tretmans, and K. Wijbrans. Lessons from the Application of Formal Methods to the

Design of a Storm Surge Barrier Control System. In J.M. Wing, J. Woodcock, and J. Davies, editors,

FM'99 { World Congress on Formal Methods in the Development of Computing Systems II, volume

1709 of Lecture Notes in Computer Science, pages 1511{1526. Springer-Verlag, 1999.

11. R. De Nicola. Extensional equivalences for transition systems. Acta Informatica, 24:211{237, 1987.

12. H. Eertink. Executing Lotos speci�cations: The smile tool. In T. Bolognesi, J. van de Lagemaat,

and C. Vissers, editors, LOTOSphere: Software Development with LOTOS, pages 221{234. Kluwer

Academic Publishers, 1995.

13. H. Garavel. OPEN/CAESAR: An Open Software Architecture for Veri�cation, Simulation, and Test-

ing. In B. Ste�en, editor, Proceedings of the Fourth International Conference on Tools and Algorithms

for the Construction and Analysis of Systems TACAS'98, volume 1384 of Lecture Notes in Computer

Science, pages 68{84. Springer-Verlag, March 1998.

14. Hubert Garavel. An overview of the eucalyptus toolbox. In Z. Brezo�cnik and T. Kapus, editors,

Proceedings of the COST 247 International Workshop on Applied Formal Methods in System Design

(Maribor, Slovenia), pages 76{88. University of Maribor, 1996.

15. G.J. Holzmann. The Model Checker Spin. IEEE Transactions on Software Engineering, 23(5):279{

295, 1997.

16. ISO. Information Processing Systems, Open Systems Interconnection, Basic Reference Model. Inter-

national Standard IS-7498. ISO, Geneve, 1984.

17. ITU-T. ITU-T Recommendation Z.100: Speci�cation and Description Language (SDL). ITU-T,

Geneva, 1992.

18. ITU-T. ITU-T Recommendation Z.120: Message Sequence Chart (MSC). ITU-T, Geneva, 1996.

19. D. Steedman. Abstract Syntax Notation One (ASN.1) - The Tutorial and Reference.

Isleworth: Technology Appraisals, 1990.

20. J. Tretmans, K. Wijbrans, and M. Chaudron. Software Engineering with Formal Methods: The

Development of a Storm Surge Barrier Control System { Seven Myths of Formal Methods Revisited.

In S. Gnesi and D. Latella, editors, Fourth Int. ERCIM Workshop on Formal Methods for Industrial

Critical Systems (FMICS'99) { Proceedings of the FLoC Workshop, volume II, pages 225{237, Pisa,

Italy, July 11{12 1999. Servizio Tecnogra�co Area di Ricerca del CNR.

21. C. A. Visser and L. Logrippo. The Importance of the Service Concept in the Design of Data Com-

munications Protocols. In M. Diaz, editor, Protocol Speci�cation, Testing, and Veri�cation V, pages

3{17. Elsevier Science Publishers B.V. (North-Holland), 1986.

22. C.A. Vissers, G. Scollo, M. van Sinderen, and E. Brinksma. Speci�cation styles in distributed systems

design and veri�cation. Theoretical Computer Science, 89:179{206, 1991.

23. T.A.C. Willemse. The Speci�cation and Validation of the OM/RR-Protocol. Master's thesis, Eind-

hoven University of Technology, July 1998.

345

Automatically Verifying an Object-Oriented

Speci�cation of the Steam-Boiler System

Paulo J. F. Carreira and Miguel E. F. Costa

fpcarreira, ecostag@oblog.pt

OBLOG Software S.A.,

Alameda Ant�onio S�ergio 7, 1-A

2795-023 Linda-a-Velha, Lisboa - PORTUGAL

tel:+351-214146930 fax:+351-214144125

Abstract. Correctness is a desired property of industrial software sys-

tems. Although the employment of formal methods and their veri�cation

techniques in embedded real-time systems has started to be a common

practice, the same cannot be said about object-oriented software. This

paper presents an experiment of a technique for the automated veri�ca-

tion of a subset of the object-oriented language OBLOG. In our setting,

object-oriented models are automatically translated to LOTOS speci�-

cations using a programmable rule-based engine included in the Develop-

ment Environment of the OBLOG language. The resulting speci�cations

are then veri�ed by model-checking using the Cadp tool-box. To illus-

trate the concept we develop and verify an object-oriented speci�cation

of a well known case study|the Steam-Boiler Control System.

Keywords: Automatic Veri�cation, Code Generation, LOTOS,

Model-Checking, Object-Oriented Systems, Steam-Boiler.

1 Introduction

The employment of an automatic method for verifying properties about formal

speci�cations known as model-checking [QS82,CES86,VW86,Kur90] experienced

a dramatic growth. It has emerged as an e�ective way of �nding errors and

proving correctness of hardware, and, more recently, software systems.

However, the applicability of this technique depends on the existence of mod-

els for the speci�cations with a �nite number of states. Speci�cations of real-

-world systems often have state-spaces that are in�nite or so large that would

disable their veri�cation in an automated1 way. Nevertheless, much e�ort has

been put in additional techniques that, when used in a combined way, allow the

exploration of the state-spaces of many real-world systems [CW96].

The lack of automated tools is only one of the reasons for the weak ac-

ceptance of formal methods for software development. Another lies in the fact

that speci�cation languages still require some degree of mathematical sophisti-

cation. Object-oriented graphical languages like UML [BJR97] and StateCharts

1 By automated we mean fully automated, without user intervention.

346

[HLN+90] were proposed and advocated as means to overcome the above situ-
ation. However, producing complete speci�cations using graphical speci�cation
languages is a labor-intensive task. Such speci�cations often become overwhelm-
ing thus compromising the initial goal of being easier to read.

The object-oriented language OBLOG [OBL99] is being used in industry
for the speci�cation and deployment of critical parts of software systems [AS96].
OBLOGmodels can be developed by using both graphical and textual notations,
making feasible the speci�cation of complete systems with thousands of objects
and classes.

In this paper we illustrate the applicability of model-checking technology
in the veri�cation of object-oriented software speci�cations. We present an ex-
periment with a technique that allows fully automated veri�cation of a subset
of OBLOG speci�cations by applying model-checking to corresponding LTSs
(Labelled Transition Systems). To obtain these LTSs the formal semantics for
OBLOG should have been de�ned. However, since the language is still under
development, only an intuitive semantics is available. We chose to base our ap-
proach on an intermediate translation to LOTOS [ISO88] speci�cations that are
subsequently expanded to LTSs, thus bridging the gap between the intuitive
semantics of OBLOG and the needed formal semantics over LTSs. Further-
more, the e�ort of implementing an algorithm to expand data non-determinism
is greatly reduced by using C�sar.Adt [Gar89], an abstract datatype compiler
for LOTOS included in Cadp [FGK+96].

In order to test our ideas, we decided to work with a simpli�ed version of the
Steam-Boiler Control System, a well known example from literature [ABL96],
which allowed a faster analysis of the problem and provided other results for
comparison.

Our paper is organized as follows: In Section 2, we present the requirements
of a simpli�ed version of the Steam-Boiler Control System and its modeling with
OBLOG. The translation mechanism for producing LOTOS code is detailed in
Section 3. We present and verify a formalization of the system requirements in
Section 4, and Section 5 draws the conclusions of this work.

1.1 Related Work

There have been other attempts to verify the Steam-Boiler System by model-
-checking but none of them, to the best of our knowledge, used a high lev-
el object-oriented language. In [WS96], Willig and Schieferdecker developed a
Time-Extended LOTOS speci�cation. The system was validated through simu-
lation and veri�ed for deadlock freedom using full state-space exploration tech-
niques. They used Cadp on a restricted model without time and without failures.

A formalization of the problem into Promela without time is given by Duval
and Cattel [DC96]. Their model also abstracts from communication failures and
major properties of the system are reported to have been veri�ed on a fully
automated way using the Spin Model-Checker. Jansen et al. [JMMS98] report
the veri�cation of Amber speci�cations using a translation into Promela. This

347

translation allowed the use of Spin in the automated veri�cation of �nite-state

subsets of Amber.

2 Modeling the Steam-Boiler Controller System

The Steam-Boiler Control system is composed of a Micro-Controller connected to

a physical system apparatus consisting of an Operator Desk and a Steam-Boiler

attached to a turbine. There is also a Pump to provide water to the Boiler,

an Escape Valve to evacuate water from the Boiler and devices for measuring

the level of water inside the Boiler and the quantity of steam coming out. The

Boiler is characterized by physical limits M1 and M2, and a safety range between

N1 and N2. When the system is operating, the water level can never go above

M1 or below M2, otherwise the Boiler could be seriously damaged. The safety

range establishes boundaries that, when reached, must cause a reaction from the

Controller that reverts the increasing or decreasing tendency of the water level.

2.1 System requirements

The Controller has di�erent modes of operation, namely: stopped, initialization,

normal and emergency stop. Initially the Steam-Boiler is switched o� and the

Controller is in stopped mode. System operations start when the start button of

the operator desk is pressed. However, before the Boiler can start, the Controller

must ensure that the water inside the Boiler is at an adequate level (between

N1 and N2). To do this, it enters the initialization mode in which it uses the

Water Pump and the Escape Valve to regulate the water level. When a safe

range is reached, the Controller switches to normal mode and the production

of steam initiates. In normal mode the Controller guarantees a safe water level

inside the Boiler by starting and stopping the Pump. If something goes wrong,

and the operator pushes the stop button, the Controller enters emergency stop

mode and shuts down the Steam-Boiler.

The system can be further characterized by a set of requirements that are

summarized as follows:

1. When the start button is pressed and the system is stopped the Controller

enters the initialization mode.

2. When the Controller is in the initialization mode and the water level is below

N1, the Pump must be started.

3. When the Controller is in the initialization mode and the water level is above

N2, the Valve must be opened.

4. When the Controller is in the initialization mode and the water level is in

the range N1 to N2, the Controller switches to normal mode.

5. When the Controller switches to normal mode and the Valve is opened, the

Valve must be closed.

6. When the Controller is in normal mode, the Pump is started and the water

level is above N2, the Pump must be stopped.

348

7. When the Controller is in normal mode, the Pump is stopped and the water

level is below N1, the Pump must be started.
8. When the stop button is pressed the Controller enters emergency stop mode.

9. When the water level of the Boiler is greater than N2, it will eventually

become lesser than or equal to N2.
10. When the water level of the Boiler is less than N1, it will eventually become

greater than or equal to N1.
11. If the Pump is started, the water will never reach a level above M2.

12. If the Boiler is started, the water will never reach a leve�cl below M1.
13. The Valve can only be opened if the Controller is in initialization mode.

2.2 The OBLOG Model

OBLOG (OBject LOGic) refers both to a language and a development

environment. The language OBLOG is a strongly-typed object-oriented spec-

i�cation language. Speci�cations are developed in a hierarchical fashion using

speci�cation regions. A speci�cation region can be a class or an object encap-

sulating local declarations consisting of constants, attributes and operations as

well as local speci�cations of datatypes and nested speci�cation regions. Class

and object operations can be implemented by several methods distinguished by

corresponding enabling conditions.

In the original speci�cation of the Steam-Boiler problem, the Controller in-

teracts with the physical units through a single communication medium which

has a specialized protocol de�ned for it. Our speci�cation abstracts communi-

cation by modeling it with usual interaction between objects i.e., calls to object

operations. However, we attempted to preserve the Controller's viewpoint by

which the physical units are seen as a single entity composed of several other

simpler entities.

Fig. 1. a) Top-level objects; b) Objects in the PhysicalSystem speci�cation region

At the top-level of our speci�cation we have the Controller object which

models the Controller software component and the PhysicalSystem object mod-

349

eling the uni�ed composition of all the physical units comprising the Steam-

-Boiler apparatus. In the speci�cation region of this object are models of those

units, namely the Boiler, Valve, Pump, WaterMeasurer and SteamMeasurer

objects. Finally, also at top-level, are the OperatorDesk object and the Clock

object, which is used to model time evolution.

In OBLOG there are two ways of initiating activity, signal reaction op-

erations (denoted with a pre�xing ^) and self-�re operations (denoted with a

pre�xing !). Reactions are triggered by signals sent by the external environment

and we use them to model the events of pressing the start and stop buttons in

the operator desk. Self-�re operations are used to model pro-active behavior. In

our setting, since we do not have time constructs in OBLOG, time evolution

was modeled with a self-�re operation of the Clock object named !clockTic().

The !clockTic() operation noti�es both the PhysicalSystem and the Con-

troller. The PhysicalSystem forwards this noti�cation to the Boiler, which

computes the new water level based on the current water level, the state of the

Valve and Pump objects and its own internal state
2
. When the Controller is

noti�ed, it takes the appropriate actions according to its current operation mode

as detailed above in the requirements section.

When a signal corresponding to the action of pressing the start or stop but-

ton is sent to the system, it is caught by the OperatorDesk object which con-

tains two corresponding signal reaction operations named ^startButton() and

^stopButton() respectively. When the Controller is in stopped mode and the

^startButton() operation is triggered, the Controller is started. Similarly, when

the ^stopButton() operation is triggered, the Controller is sent to emergency

stop mode.

3 Translating OBLOG Speci�cations into LOTOS

An OBLOG speci�cation can be automatically translated to another language

using an automatic code generation tool included in the OBLOG tool-set. Using

this, we developed a translation of a sequential subset of the OBLOG language

into LOTOS, which is a standard Formal Description Language for software sys-

tems. This language is composed of two specialized sub-languages for specifying

data and control parts. The data part is speci�ed using the language ActOne

[EM85] which is based on the theory of abstract datatypes. The control part is

speci�ed using a process algebraic language that combines and extends features

of both CSP [Hoa85] and CCS [Mil89].

3.1 Translation Framework

The current framework is an evolution from previous studies in emulating subsets

of the OBLOG language with process algebraic approaches to allow automatic

2 Recall that the Valve object can be either opened or closed, and both the Boiler

and the Pump can be either started or stopped.

350

object Controller

declarations

data types

OperationMode = enumf
Stopped,

Initialization,

Normal,

Emergency,

g default Stopped;

attributes

object

mode : OperationMode

:= Stopped;

operations

object

start();

stop();

timeNotify();

body

methods

start

method start is

if mode = Stopped

set mode := Initialization;

endif

end

timeNotify

method tnStopped

enabling

mode = Stopped;

is

skip;

end

timeNotify

method tnInit

local

waterLevel : Integer;

enabling

mode = Initialization;

is

call PhysicalSystem.

getWaterLevel(waterLevel);

if waterLevel < N1

call PhysicalSystem.

startPump();

endif

if waterLevel > N2

call PhysicalSystem.openValve()

endif

if (N1 <= waterLevel) AND

(waterLevel <= N2)

call PhysicalSystem.closeValve();

call PhysicalSystem.startBoiler();

set mode := Normal;

endif

end

timeNotify

method tnNormal

local

waterLevel : Integer;

enabling

mode = Normal;

is

call PhysicalSystem.

getWaterLevel(waterLevel);

if waterLevel < N1

call PhysicalSystem.startPump();

endif

if waterLevel > N2

call PhysicalSystem.stopPump();

endif

end

timeNotify

method tnEmergency

enabling

mode = Emergency;

is

skip;

end

stop

method stop is

if (mode = Normal) OR

(mode = Initialization)

call PhysicalSystem.stopPump();

call PhysicalSystem.closeValve();

call PhysicalSystem.stopBoiler();

set mode := Emergency;

endif

end

end object

Fig. 2. Speci�cation code of the Controller object

351

veri�cation [Car99]. These approaches are based on a translation that represents

each object as a parallel composition of two recursively instantiated processes,

one dedicated to the state and the other to the behavior of the object. The two

processes synchronize through designated gates for reading and writing attribute

values. In fact, this coding relies heavily on LOTOS gates, also using them for

both operation calls and parameter passing, resulting in a high degree of non-

-determinism which causes the explosion of the state-space. In our framework,

in order to produce a LOTOS speci�cation that can be compiled and veri�ed

in sensible time, an attempt was made to reduce non-determinism as much as

possible; thus, gates were used as least as possible.

The state attributes of all the objects were merged into a global system

variable that undergoes transformations corresponding to the behavior of the

objects. To support this, special abstract datatypes are de�ned, namely type

ObjType that for each object Obji (i ranging in the number of objects in the

system) with attributes A1 : TA1
; : : : ; An : TAn de�nes a sort named ObjSorti,

and type SysState that provides a representation of the global system state using

each of the ObjSorti sorts. The de�nition is as follows, where n is the number

of attributes of object Obji and m is the number of objects in the system:

type ObjState is TA1 ; : : : ; TAn
sorts

ObjSorti
constructors

mkObji : TA1 � � � � � TAn !
ObjSorti

functions

setObjiA1 : ObjSorti � TA1 !
ObjSorti

getObjiA1 : ObjSorti ! TA1
: : :
setObjiAn : ObjSorti � TAn !
ObjSorti

getObjiAn : ObjSorti ! TAn
equations

8x1 : TA1 ; : : : ; xn : TAn
8y1 : TA1 ; : : : ; yn : TAn
setObjiA1(mkObji(x1; : : : ; xn); y1) =
mkObji(y1; x2; : : : ; xn)

getObjiA1(mkObji(x1; : : : ; xn)) = x1
: : :
setObjAn(mkObji(x1; : : : ; xn); yn) =
mkObji(x1; : : : ; xn�1; yn)

getObjiAn(mkbj(x1 ; : : : ; xn)) = xn
endtype

type SysState is ObjType
sorts

SysState
constructors

mkSys : ObjSort1�� � ��ObjSortm !

SysState
functions

setObj1 : SysState � ObjSort1 !
SysState

getObj1 : SysState ! ObjSort1
: : :
setObjm : SysState�ObjSortm !

SysState
getObjm : SysState! ObjSortm

equations

8u1 : ObjSort1; : : : ; um : ObjSortm
8v1 : ObjSort1; : : : ; vm : ObjSortm
setObj1(mkSys(u1 ; : : : ; um); v1) =
mkSys(v1; u2; :::; um)

getObj1(mkSys(u1; : : : ; um)) = u1
: : :
setObjm(mkSys(u1; : : : ; um); vm) =

mkSys(u1; : : : ; um�1; vm)

getObjm(mkSys(u1; : : : ; um)) = um
endtype

The main di�erence to previous approaches is that we do not use statements

of the kind G?s:SysState in the LOTOS code, which are the main causes of the

state-space explosion problem because they correspond to a non-deterministic

choice ranging in the domain of the accepted variables.

In fact, no part of the system state is explicitly sent through any gate. Rather,

when operations are called, the corresponding processes that encode them are in-

stantiated taking the system state as a parameter. These processes are composed

of subprocesses that correspond to the several methods of each operation, which

352

are further composed of other subprocesses implementing elementary actions|

called quarks in OBLOG|like setting the value of an object attribute or calling

other operations. Generally, a behavior component bc (that can be an operation,

a method or a quark) is translated to a process that receives the system state

as a parameter, forwards it to the subprocesses or applies a transformation to

it, returning a potentially altered version of the system state. The translation of

bc, denoted by procbc, renders the following:

proc
bc

�

process namebc[G](s:SysState,inbc) : exit(SysState,outbc,Bool) :=

actionbc

where

subprocs
bc

endproc

where G is a set of gates, namebc is a unique identi�er for the behavior compo-

nent, actionbc is the action taken by the behavior component and subprocs
bc

is the declaration of subprocesses in the case of a compound behavior compo-

nent. If bc is an operation with input (resp. output) parameters, these will be

included in the inbc (resp. outbc) list. Moreover, if bc is a method with local

variables or a quark within a method with local variables, these will also be in

inbc.

In OBLOG, a behavior component may result in failure in which case the

Bool exit value of its corresponding LOTOS process is true. This is, however,

not relevant in this report since the model we present does not allow failure in

any case. This feature was only included in the framework for genericness sake.

The translation procedure can be summarized, in terms of behavior compo-

nents, as follows:

Operations If bc is an operation composed by methods M1; : : : ;Mn, with input

parameters I1 : TI1 ; : : : ; In : TIn and output parameters O1 : TO1
; : : : ; Om : TOm

we have:

actionbc �

nameM1
(s,I1,: : :,In)

[]

� � �

[]

nameMn(s,I1,: : :,In)

subprocs
bc

� proc
M1

� � �proc
Mn

inbc � I1:TI1, : : : ,In:TIn

outbc � TO1 , : : : ,TOm

Methods If bc is a method such that: (1) its parent operation has inputs

I1 : TI1 ; : : : ; In : TIn and outputs O1 : TO1
; : : : ; Om : TOm with default val-

ues DO1
; : : : ; DOm ; (2) has local variables L1 : TL1

; : : : ; Lk : TLk with default

values DL1
; : : : ; DLk

; (3) Q is its implementation quark; we have:

353

actionbc �

nameQ(s,I1,: : :,In,
DO1

,: : :,DOm
,DL1

,: : :,DL
k
)

>> accept s2:SysState,
I0

1
:TI1,: : :,I

0

n
:TIn,

O1:TO1,: : :,Om:TOm,

L0

1
:TL1,: : :,L

0

k
:TL

k
,

f:Bool

in
exit(s2,O1,: : :,Om,f)

subprocs
bc
� proc

Q

inbc � I1:TI1, : : : ,In:TIn

outbc � TO1, : : : ,TOm

Quarks In the context of a quark, no distinction is made between input param-

eters, output parameters and method local variables. Instead, if bc is a quark,

we say that it has a working set of variables declared as V1 : TV1 ; : : : ; Vn : TVn
that subsume the previous declarations.

If bc is an operation call quark of the form call op(!I1<<VI1,: : :,!In<<VIn,

!O1>>VO1
,: : :,!Om>>VOm) where !Ii<<VIi is an input binding associating in-

put parameter Ii to a local variable VIi , and !Oi>>VOi is an output binding

associating output parameter Oi to a variable VOi , we have that:

actionbc �

nameop(s,VI1,: : :,VIn)
>> accept s2:SysState,
O1:TO1,: : :,Om:TOm,

f:Bool
in

exit(s2,V [Oi=VOi],f)

inbc � V1:TV1, : : : ,Vn:TVn

outbc � TV1, : : : ,TVn

where V represents the list of variables V1; : : : ; Vn and V [Oi=VOi] represents

the list obtained from V by replacing each variable VOi with its corresponding

bound value Oi.

To verify the system requirements, these will later be translated to formulas

using predicates on the state of the objects. The generation procedure is param-

eterized with the predicates that belong to a particular formula. The obtained

LOTOS speci�cation is such that when modifying an object attribute, if the

assignment causes any of these predicates to become true, an appropriate gate

is signaled.

Let p1; : : : ; pn be predicates that involve an attribute A that is modi�ed and,

for each pi, let pi(s) designate the evaluation of the predicate in a given state

s. The predicate checking procedure for attribute A is de�ned by the following

processes, where i ranges in 1; : : : ; n:

checki �

process checkPi[gatep1
; : : : ; gate

pn
] (s1:SysState,s2:SysState) : exit :=

[NOT(pi(s1)) AND pi(s2)] -> gate
pi
, checkPi+1[gatep1

; : : : ; gate
pn

](s1,s2)

[]
[pi(s1) OR NOT(pi(s2))] -> checkPi+1[gatep1

; : : : ; gate
pn

](s1,s2)
endproc

checkn+1 �

process checkPn+1[gatep1
; : : : ; gate

pn
] (s1:SysState,s2:SysState) : exit :=

exit
endproc

354

where s and s
0
represent the state of the system respectively before and after

the modi�cation of the attribute, and gate
pi

is the corresponding gate for each

pi predicate. If bc is an attribute modi�cation quark of the form set A := exp

where A is an attribute of an object Obj and exp is an expression of the same

type as A, we have:

actionbc �

checkP1[gatep1
; : : : ; gatepn

](s,setObj(s,setA(getObj(s),exp)))

>>

exit(setObj(s,setA(getObj(s),exp)),V ,false)

subprocsbc � check1 � � � checkn+1 inbc � V1:TV1
, : : : ,Vn:TVn

outbc � TV1
, : : : ,TVn

Other quarks include the modi�cation of local variables and the sequential and

conditional quark compositions.

In order to prevent the state-space explosion, another important issue is

where activity starts. Instead of allowing any operation to be initiated at any

time, activity initiates at only a few well-determined points at a single top-

-level recursive process, corresponding to the triggering of self-�re operations

and reactions to external events. In each instantiation of this scheduler process,

every enabled self-�re operation and every reaction to received external signals

is called. In this context, the reception of signals is modeled as a choice between

receiving or not receiving them i.e., calling the corresponding reaction operations

or not. As with predicates, we can also con�gure the translation procedure to

include gates that are used as observers of receptions of signals.

On the �rst instantiation of the scheduler, the system state is initialized with

the default values speci�ed in the declaration of the objects. If an attribute of

an object was not given a default value, we convention the corresponding initial

value to be non-deterministically chosen in the range of the domain of that

attribute. While not a�ecting the semantic mapping, this convention allows us to

verify our properties for every possible initial scenario, in our case in particular,

for every possibility of the water level inside the boiler at start-up.

3.2 Automatic generation

OBLOG language concepts are represented in an object-oriented Meta-Model as

classes. An OBLOG repository can thus be regarded as a collection of instances

of these classes.

TheOBLOG Generator tool transforms repositories into actual implementa-

tions using transformation rules that map concepts described in the Meta-Model

into constructs of a given target language. These transformation rules are writ-

ten in RDL [OBL99] which is a scripting language executed in a specialized

355

rule-execution engine in the following way: rules can access properties and rela-

tionships of repository object; rules execute within a given object context; rules

may consist of statements for producing side e�ects (e.g., outputting to a �le),

navigating in the repository and calling other rules; navigating in the repository

can be done explicitly through the use of a context switching operator or im-

plicitly by iterating through collections of objects; when a rule calls another, the

calling rule implicitly passes its context to the called one.

4 Veri�cation

Our ultimate goal is to demonstrate that the Controller operates correctly, i.e.,

that all the system requirements are guaranteed. A formal representation for

each of the requirements must be produced and veri�ed.

4.1 Requirements formalization

A natural way of expressing properties about object-oriented systems is using a

logic that allows one to express properties about states and actions, e.g., when the

Controller is in stopped mode, the valve will never open. In our setting, states

are caracterised by predicates like Controller.mode= Stopped and actions can

be signal receptions like ^StartButtonPressed or calls to object operations like

Valve.close(). The Actl (Action CTL) temporal logic [NV90] is appropri-

ate for formalizing the Steam-Boiler requirements being expressive enough for

writing properties about states and actions. We selected a fragment of Actl

containing the following operators (besides usual logic connectors). Let p be a

predicate, � a set of action labels and � an Actl formula:

� ::= p j h�i� j [�]� j A[��U�
0
] j A[��U�

0�
0
]

Informally, the semantics of h�i� and [�]� is that \eventually" (respectively

\always") we reach states satisfying � performing \one" (respectively \all")

actions denoted by �. The operator A[��U�0
] means that in all paths, � holds

through � steps until it reaches �0
. The operator A[��U�0�0

] means that in all

paths, � holds through � steps until it reaches �0
through an �0 step. We write

AG(�) as a shorthand for A[�trueUfalse], meaning that all paths consist of

states satisfying �.

The system requirements can thus be formalized as:

1. AG(Controller.mode = Stopped)
[^StartButtonPressed]A[truetrueUController.mode = Initialization])

2. AG(Controller.mode = Initialization ^ Boiler.waterLevel < N1)
A[truetrueUPump.start()_^StopButtonPressedtrue])

3. AG(Controller.mode = Initialization ^ Boiler.waterLevel > N2)
A[truetrueUValve.open()_^StopButtonPressedtrue])

4. AG(Controller.mode = Initialization ^N1 6 Boiler.waterLevel 6 N2)
A[truetrueU(Controller.mode = Normal _ h^StopButtonPresseditrue)])

356

5. AG(Controller.mode = Initialization ^

N1 6 Boiler.waterLevel 6 N2 ^ Valve.state = V alveOpened)

A[truetrueUValve.close()true])

6. AG(Controller.mode = Normal ^ Pump.state = PumpStarted ^ Boiler.waterLevel > N2)
A[truetrueU(Pump.state = PumpClosed _ Controller.mode = Emergency)])

7. AG(Controller.mode = Normal ^ Pump.state = PumpStopped ^ Boiler.waterLevel < N1)
A[truetrueU(Pump.state = PumpStarted _ Controller.mode = Emergency)])

8. AG(Controller.mode = Initialization _ Controller.mode = Normal)

[^StopButtonPressed]A[truetrueUController.mode = Stopped])

9. AG(Controller.mode 6= Stopped ^ Boiler.waterLevel > N2)

A[truetrueU(Boiler.waterLevel 6 N2 _ Controller.mode = Emergency)])

10. AG(Controller.mode 6= Stopped ^ Boiler.waterLevel < N1)

A[truetrueU(Boiler.waterLevel > N1 _ Controller.mode = Emergency)])

11. AG(:Pump.state = PumpStarted ^ Boiler.waterLevel > M2)

12. AG(:Boiler.state = BoilerStarted ^ Boiler.waterLevel < M1)

13. AG(:Controller.mode 6= Initialization ^ Valve.state = V alveOpened)

4.2 Requirements veri�cation

To verify the above properties, we used the EvaluatorModel-Checker included

in the Cadp tool-box [FGK+96]. Cadp is a set of integrated tools for produc-

ing and analysing Labelled Transition Systems. LTSs can be obtained from low

level descriptions, networks of communicating automata and high-level LOTOS

speci�cations. Analysis functionalities include interactive simulation and veri�-

cation through comparison of LTSs according to di�erent simulation relations

and model-checking.

However, this Model-Checker does not allow the evaluation of predicates, and

observations on the system state must be included as actions in the model. As

was mentioned before, the generated LOTOS code can be augmented with gates

that are signaled when a given condition p becomes true. The subsequent LTSs

will be likewise enriched with transitions, labelled �p, that are taken when that

predicate is veri�ed. In view of this, we can reformulate the properties, to a form

allowed by the Model-Checker, as follows:

1. AG([�cond1A]A[truetrueU[^StartButtonPressed]A[truetrueU(�
cond1B)true]])

2. AG([�cond2]A[truetrueU(Pump.start()_^StopButtonPressed)true])

3. AG([�cond3]A[truetrueU(Valve.open()_^StopButtonPressed)true])

4. AG([�cond4A]A[truetrueU(�
cond4B)_(^StopButtonPressed)true])

5. AG([�cond5]A[truetrueU(Valve.close())true])

6. AG([�cond6A]A[truetrueU(�
cond6B)true])

7. AG([�cond7A]A[truetrueU(�
cond7B)true])

8. AG([�cond8A]A[truetrueU[^StopButtonPressed]A[truetrueU(�
cond8B)true]])

357

9. AG([�cond9A]A[truetrueU(�
cond9B_�cond9C)true])

10. AG([�cond10A]A[truetrueU(�
cond10B_�cond10C)true])

11. AG(:h�cond11itrue)

12. AG(:h�cond12itrue)

13. AG(:h�cond13itrue)

where:

cond1A � (Controller.mode = Stopped)

cond1B � (Controller.mode = Initialization)
cond2 � (Controller.mode = Initialization ^ Boiler.waterLevel < N1)
cond3 � (Controller.mode = Initialization ^ Boiler.waterLevel > N2)

cond4A � (Controller.mode = Initialization ^N1 6 Boiler.waterLevel 6 N2)
cond4B � (Controller.mode = Normal)

cond5 � (Controller.mode = Initialization ^

N1 6 Boiler.waterLevel 6 N2 ^ Valve.state = V alveOpened)

cond6A � (Controller.mode = Normal ^ Pump.state = PumpStarted ^

Boiler.waterLevel > N2)
cond6B � (Pump.state = PumpStopped _ Controller.mode = Emergency)

cond7A � (Controller.mode = Normal ^ Pump.state = PumpStopped ^

Boiler.waterLevel < N1)

cond7B � (Pump.state = PumpStarted _ Controller.mode = Emergency)
cond8A � (Controller.mode = Initialization _ Controller.mode = Normal)
cond8B � cond9C � cond10C � (Controller.mode = Emergency)

cond9A � (Controller.mode 6= Stopped ^ Boiler.waterLevel > N2)
cond9B � (Boiler.waterLevel 6 N2)

cond10A � (Controller.mode 6= Stopped ^ Boiler.waterLevel < N1)
cond10B � (Boiler.waterLevel > N1)

cond11 � (Pump.state = PumpStarted ^ Boiler.waterLevel > M2)
cond12 � (Boiler.state = BoilerStarted ^ Boiler.waterLevel < M3)
cond13 � (Controller.mode 6= Initialization ^ Valve.state = V alveOpened)

The veri�cation yielded the following results, using a Cadp installation on a

500MHz Intel machine with 128Mb of RAM running the Linux operating system:

Requirement Lines of LOTOS Number Number Veri�cation

number LOTOS compilation of of time

code timings states transitions

1 1762 00'53.27" 215191 221763 00'22.22"

2 1786 00'49.68" 159815 164725 00'16.32"

3 1786 00'50.02" 159765 164675 00'16.26"

4 1806 00'56.00" 251418 259112 00'28.39"

5 1808 00'51.71" 160687 165597 00'16.08"

6 1838 00'55.69" 252625 260346 00'28.28"

7 1838 00'57.15" 253569 261263 00'28.43"

8 1762 00'51.77" 216362 222904 00'22.42"

9 1832 00'54.56" 252911 260605 00'46.43"

10 1804 00'57.16" 252896 260590 00'41.33"

11 1774 00'52.67" 159029 163939 00'16.35"

12 1774 00'49.10" 159526 164436 00'15.80"

13 1763 00'47.35" 140117 144421 00'13.73"

358

Each requirement corresponded to the generation of a single LOTOS spec-

i�cation from an OBLOG source �le with 548 lines of code. All speci�cations

were compiled and veri�ed with a restriction on the integer domain to a range

between 0 and 50.

5 Conclusions

Writing speci�cations using a high-level object-oriented language can be highly

desirable. Typically, in many problem domains, using them for writing speci�ca-

tions is much easier. This promotes their use by domain experts wanting to skip

the mathematical background needed by traditional speci�cation languages.

We have seen how to verify properties of a subset of object-oriented speci�ca-

tions in a completely automated way. Our approach is based on a translation to

LOTOS, which allowed us to establish a veri�cation framework for the OBLOG

language taking advantage of existing veri�cation tools.

In the formalization of the system requirements, expressing apparently simple

properties resulted initially in complex speci�cation patterns. This seems to

con�rm [DAC98] that formalization in temporal logic can be quite error prone,

although this e�ort increased our understanding of the problem through the

analysis of the counter-examples provided by the Model-Checker. Indeed, some

errors in our model were found and corrected.

Concerning the overhead of using an intermediate language, it can be claimed

that a direct translation from OBLOG to LTSs could avoid many undesired

transitions resulting from the LOTOS compilation. This direct translation can

be enhanced through connecting to the API provided with the Open/C�sar

environment for generation and on-the-
y exploration of LTSs. However, by

analyzing the obtained LOTOS speci�cations as high level representations of

LTSs, we were able to isolate sources of non-determinism and devise strategies

to optimize our initial translation.

This work is a contribution to a broader project that aims to the veri�ca-

tion of OBLOG speci�cations. For the moment we are leaving out features like

dynamic creation of objects, dynamic references and exception handling which

can result in in�nite state-spaces. To cope with this, we are planning to incor-

porate techniques based on abstraction [CGL94], in particular we are looking at

recent developments in the combined use of abstraction and program analysis

techniques [DHZ99,SS98].

A formal semantics document for OBLOG is currently being organized. It

will allow us to extend the supported subset of speci�cations and verify the

correctness of this translation framework.

References

[ABL96] J. Abrial, E. B�oger, and H. Langmaack, editors. Formal Methods for Indus-

trial Applications { Specifying and Programming the Steam Boiler Control,
volume 1165 of Lecture Notes in Computer Science. Springer-Verlag, 1996.

359

[AS96] Luis F. A. Andrade and Amilcar Sernadas. Banking and Management In-
formation System Automation. In Proceedings of the 13th world congress of

the International Federation of Automatic Control (San Francisco, USA),
volume L, pages 113{136. Elsevier-Science, 1996.

[BJR97] Grady Booch, Ivar Jacobson, and James Rumbaugh. The Uni�ed Modeling

Language User Guide. Addison-Wesley, 1997.
[Car99] Paulo J. F. Carreira. Automatic Veri�cation of OBLOG Speci�cations.

Master's thesis (to be published), Faculdade de Ciências da Universidade de
Lisboa, Departamento de Inform�atica, 1700 Campo Grande - Lisboa, 1999.

[CES86] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic Veri�cation
of Finite State Concurrent Systems Using Temporal Logic Speci�cations.
volume 8(2) of ACM Transactions on Programming Languages and systems,
pages 244{263. 1986.

[CGL94] E.M. Clarke, O. Grumberg, and D. E. Long. Model Checking and Abstrac-
tion. volume 16(5) of ACM Transactions on Programming Languages and

Systems, pages 834{871. 1994.
[CW96] E. M. Clarke and J. M. Wing. Formal Methods: State of the Art and Future

Directions. volume 28(4es) of ACM Computing Surveys. December 1996.
[DAC98] Matthew B. Dwyer, George S. Avrunin, and James C. Corbett. Property

Speci�cation Patterns for Finite-state Veri�cation. In Proceedings of the

2nd Workshop on Formal Methods in Software Practice, Clearwater Beach,
Florida, USA, March 1998.

[DC96] Gregory Duval and Thierry Cattel. Specifying and Verifying the Steam
Boiler Problem with SPIN. In Jean-Raymond Abrial, Egon B�oger, and Hans
Langmaack, editors, Formal Methods for Industrial Applications { Specifying

and Programming the Steam Boiler Control, volume 1165 of Lecture Notes

in Computer Science, pages 203{217. Springer-Verlag, 1996.
[DHZ99] Matthew B. Dwyer, John Hatcli�, and Hongjun Zheng. Slicing Software for

Model Construction. In ACM SIGPLAN Partial Evaluation and Program

Manipulation. January 1999.
[EM85] H. Ehrig and B. Mahr. Fundamentals of Algebraic Speci�cation, volume I.

Springer-Verlag, 1985.
[FGK+96] Jean-Claude Fernandez, Hubert Garavel, Alain Kerbrat, Radu Mateescu,

Laurent Mounier, and Mihaela Sighireanu. CADP (C�SAR/ALDEBARAN
Development Package): A Protocol Validation and Veri�cation Toolbox. In
Rajeev Alur and Thomas A. Henzinger, editors, Proceedings of the 8th Con-

ference on Computer-Aided Veri�cation (New Brunswick, New Jersey, US-

A), volume 1102 of LNCS, pages 437{440. Springer-Verlag, August 1996.
[Gar89] Hubert Garavel. Compilation of LOTOS Abstract Data Types. In Son T.

Vuong, editor, Proceedings of the 2nd International Conference on Formal

Description Techniques FORTE'89 (Vancouver B.C., Canada), pages 147{
162. North-Holland, December 1989.

[HLN+90] David Harel, H. Lachover, A. Naamad, Amir Pnueli, M. Politi, R. Sherman,
A. Shtul-Trauring, and M. Trakhtenbrot. STATEMATE: A Working Envi-
ronment for the Development of Complex Reactive Systems. volume 4 of
IEEE Transactions on Software Engineering, pages 403{414. 1990.

[Hoa85] C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.
[ISO88] ISO/IEC. LOTOS | A Formal Description Technique Based on the Tem-

poral Ordering of Observational Behaviour. International Standard 8807,
International Organization for Standardization | Information Processing
Systems | Open Systems Interconnection, Gen�eve, September 1988.

360

[JMMS98] Wil Janssen, Radu Mateescu, Sjouke Mauw, and Jan Springintveld. Verify-
ing Business Processes using SPIN. In Proceedings of the 4th International

SPIN Workshop (Paris, France), 1998.
[Kur90] Robert P. Kurshan. Analysis of Discrete Event Coordination. In W. P.

de Rover J. W. de Bakker and G. Rozenberg, editors, Stepwise Re�nemen-

t of Distributed Systems: Models, Formalisms, Correctness, volume 430 of
Lecture Notes in Computer Science, pages 414{453, Berlin, 1990. Springer-
Verlag.

[Mil89] Robin Milner. Communication and Concurrency. International Series in
Computer Science. Prentice Hall, 1989.

[NV90] R. De Nicola and F. W. Vaandrager. Action versus State Based Logics
for Transition Systems. volume 469 of Lecture Notes in Computer Science,
pages 407{419. Springer-Verlag, 1990.

[OBL99] OBLOG. The OBLOG Technical Information. Technical report, OBLOG
Software S.A., www.oblog.com/tech, 1999.

[QS82] J. P. Queille and J. Sifakis. Speci�cation and Veri�cation of Concurrent
Systems in CAESAR. In M. Dezani-Ciancaglini and U. Montanari, editors,
International Symposium on Programming, volume 137 of Lecture Notes in

Computer Science, pages 337{351, Berlin, 1982. Springer-Verlag.
[SS98] D. A. Schmidt and B. Ste�en. Data-Flow Analysis as Model-Checking of

Abstract Interpretations. In G. Levi, editor, Proceedings of the 5th Static

Analysis Symposium, volume 1165 of Lecture Notes in Computer Science,
Pisa, Italy, September 1998. Springer-Verlag.

[VW86] Moshe Y. Vardi and Pierre Wolper. An Automata-Theoretic Approach to
Automatic Program Veri�cation. In Logic in Computer Science. IEEE Com-

puter Society Press, page 332. 1986.
[WS96] Andreas Willig and Ina Schieferdecker. Specifying and Verifying the Steam

Boiler Control System with Time Extended LOTOS. In Jean-Raymond
Abrial, Egon B�oger, and Hans Langmaack, editors, Formal Methods for In-

dustrial Applications { Specifying and Programming the Stem Boiler Con-

trol, volume 1165 of Lecture Notes in Computer Science, pages 473{492.
Springer-Verlag, 1996.

361

Cooperative Information Systems Modelling and Validation

Using the Co-nets Approach:

The Chessmen Making Shop Case Study

Nasreddine Aoumeur
�
Gunter Saake

ITI, FIN, Otto-von-Guericke-Universit�at Magdeburg
Postfach 4120, D{39016 Magdeburg, Germany

E-mail: faoumeur|saakeg@iti.cs.uni-magdeburg.de

Abstract

The Co-nets approach that we are developing is an object oriented speci�cation model

based on a sound and complete integration of object oriented (OO) concepts and construc-

tions into a variant of algebraic Petri nets. The Co-nets approach is interpreted in rewriting

logic and is particularly suited for specifying and validating advanced information systems

as autonomous, distributed, but yet cooperative components. This suitability is especially

re
ected by the following main Co-nets features. First, the approach is based on a percep-

tion of classes rather as modules with hidden (structural and behavioural) features enhancing

autonomy and external features which may be exchanged with the environment and other

classes. Second, the approach allows an incremental constructions of complex components,

as a hierarchy of modules, through di�erent forms of inheritance, object composition and ag-

gregations; where each component behaves with respect to an appropriate intra-component

evolution pattern supporting intra- as well as inter-object concurrency. Third, for interacting

components, an appropriate inter-component interaction pattern is proposed promoting con-

currency and keeping encapsulated all local features of communicating components. Fourth,

due to their interpretation in rewriting logic, Co-nets modules can be rapid-prototyped

using concurrent rewriting techniques.

Besides a didactic presentation of this approach, the objective of this paper is to en-

hance its practicability by handling a complex case study dealing with a Chessmen Making

Shop(CMS) as a speci�c variant of a complex production system. In this system more than

six autonomous components cooperate through explicit interfaces for achieving �nal (chess-

men) products. Moreover, from a methodological point of view the paper shows how to

specify and validate the corresponding Co-nets modules from their informal OO descrip-

tion, using well-known diagram notations, is a very straightforward way.

Keywords: Co-nets, production systems modelling, rewriting logic, components.

1 Introduction

Information systems, mostly characterized as reactive systems with large databases and appli-

cation programs, have potentially bene�ted from the object-oriented (OO) structuring mech-

anisms. Indeed, thanks to this paradigm, all developing phases (i.e. analysis, speci�cation /

validation, design, and implementation) uniformly regard such systems as a community of inter-

acting objects but with di�erent levels of abstraction. Particularly, for the crucial speci�cation /

validation phase on which we are focusing, a very promising OO formalisms have been forwarded

�This work is partially supported by a DAAD scholarship and by the Deutsche Forschungsgemeinschaft (DFG)

project "Integration of Software Speci�cations for Engineering Applications".

362

during the last decade; they are based on di�erent frameworks going from the algebraic setting

[EGS92, GD93] (just to cite some), temporal setting [DB95], to Petri nets [Lak95, SB94, BBG97].

Nevertheless, the ever-increasing in size and space of present-day organizations has shown

some shortcomings of existing approaches particularly for coping with the intrinsic distribution

of such systems and with their natural description as cooperating components and not as a whole

community (of objects). This unsatisfactory state of a�airs has recently yield an overwhelm-

ing need for investigating on more advanced conceptual models for specifying and validating

such systems rather as fully distributed, autonomous but nevertheless cooperative components

[PS98]. In such characterization, each component has to be (at least) regarded as a hierarchy of

classes through di�erent forms of inheritance, object composition and aggregation. On the other

side, distribution in such components has to be re
ected by a true intra- as well inter-object

concurrency and by exhibition of di�erent forms of communication including synchronous and

asynchronous ones. Finally, autonomy that has to be coupled with close cooperation should be

particularly re
ected by encapsulation of proper features in each component and by the existence

of explicit interfaces [AG97].

As a signi�cant contribution towards the achievement of these challenges, we are developing

a multi-paradigm advanced conceptual modeling approach that we argue ful�lls as far as possible

the mentioned requirements. The approach that we referred to as Co-nets approach [AS99a,

AS99b, AS00] is a formal and complete integration of OO concepts and constructions into an

appropriate variant of algebraic Petri nets named Ecatnets [BM92]. The key features of Co-

nets approach in modeling cooperative systems are the following:

� A clean separation between data |speci�ed algebraically1 and used for describing object

attributes (values and identi�ers) and messages| and objects as indivisible units of struc-

ture and behaviour. Moreover, we regard a class rather as a module |in the spirit of

[EM90] (at the syntactical level)|with a hidden part including structure as well as be-

haviour, and an observed part as interface for interacting with the environment and other

modules.

� An incremental construction of components, as a hierarchy of modules2, through simple

and multiple inheritance (with rede�nition, associated polymorphism and dynamic bind-

ing), object composition and aggregation. Such components behave with respect to an

appropriate intra-component evolution pattern that naturally supports intra- as well as

inter-object concurrency (i.e. without su�ering from the inheritance anomaly problem).

� For interacting di�erent components and thereby constructing more complex systems as

cooperative components, an adequate inter-component interaction pattern is proposed;

it enhances concurrency and preserves encapsulated local (i.e. hidden) features of each

component.

� By interpreting the CO-Nets behaviour in rewriting logic, rapid-prototypes may be gener-

ated using rewrite techniques and current implementation of theMaude language [Mes93]

particularly.

Besides a simpli�ed presentation of this framework, the objective of the present paper is

to assess the model against a real-life case study dealing with chessmen-making as a particular

variant of production systems. In this production system more than six components behave au-

tonomously and concurrently nevertheless cooperate for producing the desired chessman. More-

over, from a methodological point view, our framework allow a straightforward speci�cation

(and then validation) from a given informal OO description using well known OO diagrams.

1Using Ordered Sorted Algebra(OSA) [GD94].
2Throughout the rest of the paper, we use indi�erently module or class.

363

The rest of this paper is organized as follows. In the second section, �rst, we informally

introduce the Chessmen Making Shop case study. Then, using some appealing OO graphical

notations, we describe in more detail each component of this application. In the main section,

di�erent features of the Co-nets approach are introduced and applied to a signi�cant part

(i.e. three components) of the CMS problem, while for sake of readability the other component

speci�cations are given in the appendix. The last section presents some concluding remarks and

future work.

2 The Chessmen Making Shop

In this section, �rst, we informally describe the CMS problem that we borrow from [DB95].

Then, we propose an object oriented description of di�erent components of this case study.

2.1 CMS : Informal Description

The Chessmen Making Shop is a small manufacturing unit in charge of producing chessmen

from wooden cylinders. It is composed of production components (automated units), and is

supervised by a manager (as a human actor). The shop manager gives a production order to a

component when a chessman has to be machined. The order speci�es the type of chessman to

be produced (king, queen, castle, bishop, knight or pawn) and a coded reference. The system is

composed of the following components: machine tools, a stock, a robot, a clamping system, an

auto-guided vehicle (AGV), and a controller (i.e. computer).

The cylinders and end-products are stored in the stock. Before they can be machined,

cylinders have to be clamped on a pallet. This work is done by the clamping system. The

robot is used to withdraw parts from the stock and furnish them for the clamping operation.

Once clamped, parts are transported to one machine by the AGV. If additional machining is

required, the AGV picks the partly-machined part and transports it to another machine (one or

several times) until the desired chessman is obtained. The chessman is then transported to the

clamping system to be unclamped and stored by the robot in the stock (at the location where

the raw cylinder was withdrawn). All these activities are coordinated by a controller.

The stock is composed of a number of locations identi�ed by addresses. Each location may

contain at most one item (a cylinder or a chessman). Items can be entered in or withdrawn from

the stock either manually by the shop manager or automatically by the robot. The manager is

able to see if the stock is empty, and an alarm is sent to him by the stock each time it is full.

The robot is in charge of loading and unloading the clamping system. The grip of the robot

is equipped with a sensor, so it can detect which item is stored at a given location of the stock

when its arm reaches that location. The same holds for the contents of the clamping system.

The robot receives commands from the controller to load the clamping system with an item and

commands to unload it. The commands specify the item to be transported and the address of

the stock concerned by the operation.

The clamping system role is to clamp and unclamp the items it receives. It is an automatic

device: it automatically clamps any item put on it by the robot and automatically unclamps

any item brought by the AGV. The clamping system may handle one item at a time and must

be unloaded between two operations.

The AGV has two places where items can be put. But those places can never be occupied at

the same time during transportation; they are only used to perform some exchange between an

item already in the AGV and an item located on a device i.e. machine tool or clamping system.

The AGV receives commands from the controller asking it to carry one item from one location

to another. In reaction to these commands, it has to move to the origin (if it was not there yet),

364

pick up the item, move to the destination and deliver the item. The AGV noti�es the devices

when it picks up (resp. delivers) an item from (resp. to) it.

Machine-tools are used to apply basic transformations to raw materials or partly-machined

items. Each machine-tool has some capabilities, i.e. the set of programs it is able to run. A

machine-tool receives commands from the controller. A command, addressed to a given machine

tool, speci�es the program to be run. Machine-tools notify the controller when the program they

had to run has been completed.

The controller is in charge of achieving orders it receives from the manager by issuing com-

mands to a corresponding component. The software running in the controller contains a 'recipe

book' which associate a recipe to each chessman type. A recipe consists in a sequence of pro-

duction steps. Each production step is characterized by a machine and a program to be run on

it. The controller keeps traces of the status of each order under processing and the status of

each component.

2.2 CMS : Corresponding Object Oriented Description

Following OO methodologies [RBP
+
91] and the modeling of classes rather as modules, the di�er-

ent components of this case study are depicted in �gure 1. In this (semi-) graphical description

we have used intuitive notations borrowed from [Weg90] that we have enriched with explicit

distinction between local attributes (included in each ellipse) and observed ones (outside the

ellipse). On the other hand, we have also made a distinction between local messages (included

in the internal box) and external ones (included in the external box) with a precise indication,

using arrows, to which component(s) such (external) messages are sent (i.e. exported). More

precisely, each component may be described as follows:

The Stock component: It is characterized by the following state components (i.e. attributes):

Contents as a set of locations, each one is uniquely referenced by its address and it may

contain either a cylinder or a chessman; this attribute is observed (by the robot class);

capacity as a natural number �xing the number of locations; and as derived (boolean-

valued) attributes we have empty and full. As messages there is: Alarm-full sent to other

components (i.e. Manager component) when all locations are full. As imported messages

we have, from the manager, Remove and Store of an item from/at a given address, and

equivalent ones from the Robot component i.e. Put and Get respectively.

The Robot component: Internal attributes are: Grip that takes as value an item (i.e. cylin-

der or chessman) and busy as boolean attribute indicating if the grip contains an item or

not. Observed is the location attribute that represents current position (i.e. address) of

the robot. Local messages are : load (resp. unload) re
ecting loading (resp. unloading)

of an item from (resp. at) a given address; Goto to a location and Move from a location

to another. Messages exported to other components are Put and Get. Finally, the robot

receives orders from the controller component| as imported messages| corresponding to

load-clamp and unload-clamp parameterized by a location and an item.

The Clamping System component: as observed attribute is Contents containing the item

to be clamped, while as internal is a corresponding boolean attribute Clamped. Local

messages are : Clamp and Unclamp. Exported messages (to the controller) are: Clamping-

done and Umclamping-done signaling respectively the end of clamping and unclamping

operations. Imported messages from the AGV component are: Deliver an item from one

of the two places of the AGV and Pick-up an item from a given place. Imported from the

Robot component are Put and Get messages.

365

The Auto-guided Vehicle component: Attributes of this class are both places place1 and

place2 containing (alternatively) an item, the Location of the AGV, and a boolean attribute

Busy evaluated to true when one of the place is occupied. Local messages are Goto to a

given location, Transport an item from a given location to another, and Move from a

location to another. Also, we have load an item in a given place (from a given location) as

local message. Exported to other components are the messages: Pick-up an item in a given

place and Deliver an item from a given place to the clamping system or robot component.

Imported message (from the controller) is Carry.

The Machine Tool component: Attributes of this component are: Contents containing the

item as a cylinder or an intermediate product to be machined or an end-product; this

attribute has to be observed by the AGV component. Busy is an internal attribute. Also

as attributes we have an abstract attribute Capabilities storing the names of programs that

o�er the concerned machine. Local message is work. Exported message to the Controller

component is work-done parameterized by programs. Imported messages are: Deliver and

Pick-up from the AGV and Run a given program on a given machine from the controller.

The Controller component: its attributes are: Orders as a list of orders indexed by a refer-

ence denoting the type of currently under processing chessmen, Recipes as a list indexed by

di�erent types of chessmen corresponds to the recipe that have to be followed to produce

each type. Proc is a list of references denoting the orders currently handled by the machine

tools, and Status is a list of status keeping current status (i.e. working or down) of each

machine. Agv-ord is a set of references denoting the orders currently handled by the AGV.

Free-cyl is set of stock addresses denoting the set of stock cells containing not booked

cylinders. Local messages are: Machining and Machining-step parameterized by the type

and the reference. Exported messages are: Unload-clamp and Load-clamp parameterized

by the reference of the orders and a stock or a clamping address; both messages are sent

to the Robot component; Carry parameterized by a reference of an order, an item and the

initial and the �nal location to be carried to; Run parameterized by an order reference, a

machine tool and a corresponding program; and Alarm message. Imported messages are:

Produce, Remove and Store from the manager; Clamping-done and Unclamping-done from

the Clamping-System; Put from the Robot; Deliver from the AGV; and Work-done from

the Machine-tool.

The Manager component: This component has no attributes. Messages that are exported

from this component are: Produce parameterized by a type and an associated order ref-

erence and is sent to the Controller. Remove and Store parameterized by an item and a

corresponding address are to be sent to the Stock and the Controller components. Im-

ported messages are: Alarm from the Controller and Alarm-full from the Stock.

3 The Co-nets Approach : An Overview

The purpose of this section is to present this approach in an incremental, didactic way with the

help of a formal speci�cation, dealing with three components, of the CMS case study; but we note

that the complete speci�cation is given in the appendix. More precisely, �rst, we describe how the

Co-nets approach structurally and semantically captures notions of template as a description of

kind of objects with explicit interfaces and a component (or a class) as a time varying collection

of object-state (and message) instances. Second, we present how more abstraction mechanisms,

particularly inheritance and interaction are speci�ed using this approach.

366

Full : bool

Empty : bool

Capacity: Nat

Carry(REF,IT,L-AGV,L-AGV

Alarm-full

Contents[ADR] : ..

Unload(ADR)

Load(ADR)

Move(LOC,LOC)

Transport(LOC,LOC)

Move(LOC,LOC

Goto(LOC)

A
la

rm

P
ro

du
ce

(T
yp

e,
R

ef
)

St
or

e(
It

em
,A

D
R

)

R
em

ov
e(

It
em

,A
D

R
)

Work-done(PGM)

work

Pick-up(Item,Place)

Deliver(It,Place,It)

U
nc

la
m

pi
ng

-d
on

e

U
nc

la
m

pC
la

m
pi

ng
-d

on
e

 Machining(Type,Ref)

 Machining-step(Ref)

Run(REF,Mach-Tool,PgmUnload-camp(REF,ADR)

Load-clamp(Ref,ADR

Goto(LOC)

Get(IT,LOC)

Put(IT,LOC)
Location : Adress-robot

Place1:ITEM

Place2:ITEM

Busy : Bool

Status[L-AGV] : ..
Proc[L-AGV] : ..

Recipes[Type] : ..
Orders[Ref] : ..
Agv-ord : ..

Orders[Ref] : ..

T
he

 C
on

tr
ol

le
r

C
la

ss

Location : LOC-A

Busy : Bool

Capabilities : PGM

Contents : Item

Free-cyl: ..

C
on

te
nt

s
:

IT
E

M

C
la

m
pe

d
:B

oo
l

Grip : item

Busy : bool

The Stock Class

The Chess Making Shop System

The Machine Tool Class

The Auto-guided Vehicle Class

T
he

 C
la

m
pi

ng
 S

ys
te

m
 C

la
ss

T
he

 M
an

ag
er

 C
la

ss
The Robot Class

Figure 1: The Graphical illustration of di�erent components and their Interaction

3.1 Co-nets : Template and Class Speci�cation

This section deals with the modelling of the basic concepts of the object oriented paradigm,

namely objects, templates and classes. We �rst present the structure or what is commonly

called the `object' signature templates [EGS92], then we describe how `speci�cation' templates

and classes are speci�ed.

3.1.1 Template Signature Speci�cation

A template signature de�nes the structure of object states and the form of operations that have

to be accepted by such states. Basically, in the Co-nets approach, we follow the general object

signature proposed for Maude [Mes93]. That is to say, object states are regarded as terms

|precisely as a tuple| and messages as operations sent or received by objects. However, apart

from these general conceptual similarities, and in order to be more close to the aforementioned

information system requirements, the OO signature that we propose can be informally described

as follows:

� The object states are terms of the form hIdjatr1 : val1; :::; atrk : valk; at bs1 : val0
1
; :::; at bsk0 :

val0si; where Id is an observed object identity taking its value from an appropriate abstract

367

data type OId; atr1; ::; atrk are the local, hidden from the outside, attribute identi�ers

having as current values respectively val1; ::; valk. The observed part of an object state is

identi�ed by at bs1; :::; at bss and their associated current values are val01; ::; val
0

s. Also, we

assume that all attribute identi�ers (local or observed) range their values over a suitable

sort denoted AId, and their associated values are ranged over the sort V alue with OId <

V alue (i.e. OId as subsort of V alue) in order to allow object valued attributes.

� In contrast to the indivisible object state proposed inMaude that avoids any form of intra-

object concurrency, we introduce a powerful axiom, called 'splitting / recombination' axiom

allowing to split (resp. recombine) the object state out of necessity. As described in more

detail later, this axiom can be described as follows: hIdjattrs1; attrs2i = hIdjattrs1i �
hIdjattrs2i

3.

� In addition of conceiving messages as terms |that consist of a message name, identi�ers

of objects the message is addressed to, and, possibly, parameters|, we make a clear

distinction between internal, local messages and the external as imported or exported

messages. Local messages allow for evolving the object states of a given component, while

external ones allow for interacting di�erent components by exclusively using their observed

attributes and external messages.

Following these informal description and some ideas from [Mes93], the formal description of
object states as well as template structures, using an OBJ [GWM+92] notation, is depicted in
what follows.

obj Object-State is

sort AId .

subsort OId < Value .

subsort Attribute < Attributes .

subsort Id-Attributes < Object .

subsort Local-attributes External-attributes < Id-Attributes .

protecting Value OId AId .

op : : AId Value ! Attribute .

op ; : Attribute Attributes ! Attributes [associ. commu. Id:nil] .

op h j i : OId Attributes ! Id-Attributes .

op � : Id-Attributes Id-Attributes ! Id-Attributes [associ. commu. Id:nil] .

vars Attr: Attribute ; Attrs1, Attrs2: Attributes ; I:OId .

eq1 hIjattrs1i � hIjattrs2i = hIjattrs1; attrs2i .

eq2 hIjnili = I

endo.

obj Class-Structure is

protecting Object-state, s-atr1,...,s-atrn, s-arg11;1,.., s-argl1;l1,

...,s-argi1;1,...,s-argi1;i1 : : :

subsort Id.obj < OId .

subsort Mesl1, Mesl2,...,Mesll < Local Messages .

subsort Mese1, Mese2,...,Mesee < Exported Messages .

subsort Mesi1, Mesi2,...,Mesii < Imported Messages .

sort Id.obj, Mesl1, . . . ,Mesip

(* local attributes *)

op h jatr1 : ; :::; atrk : i : Id.obj s-atr1 : : : s-atrk

! Local-Attributes.

(* observed attributes *)

op h jatrbs1 :; :::; atrbsk0 : i : Id.obj s-atbs1 : : : s-atbsk0

! External-Attributes.

(* local messages *)

op msl1: s-argl1;1 : : : s-argl1;l1 ! Mesl1 . : : :

3
attri stands for a simpli�ed form of atri1 : vali1; :::; atrik : valir.

368

(* export messages *)

op mse1: s-arge1;1 : : : s-arge1;e1 ! Mese1 . : : :

(* import messages *)

op msi1: s-argi1;1 : : : s-argi1;i1 ! Mesip . : : :

endo.

Remark 3.1 Local messages in a given component Cp have to include at least two usual mes-

sages: the message for creating a new object state and the message for the deletion of an

existing object. We denote them respectively by AdCp and DlCp. It is also worth mentioning

that imported messages being part of a given component have to be declared as exported ones

in (exactly one) another components. }

Example 3.1 Following this Co-nets general form of template signature, we present in what

follows the description of the Stock, Robot, and Manager components.

Robot template signature: First we have to specify the data types that are used in this tem-
plate signature for specifying attribute values and/or event parameters. For the attributes
we have: Boolean for Busy , ITEM (i.e. constants composed of [cyl, King, Queen, ..]) for
grip and a set of constants re
ecting either stock (shortly, ST-ADR) or clamping (shortly,
CL-ADR) addresses on which the Robot (i.e. its location attribute) may be in. We denote
this (Robot location) by R-ADR. For events parameters the (same) sorts are used. All
these data types will be referred to as R-DATA and speci�ed using an OBJ notation as
follows:

obj R-DATA is

protecting Bool .

sort ITEM .

subsort ST-ADR CL-ADR < R-ADR .

op Cyl, King, Queen, Castle, Bishop, Knight, Pawn : ! ITEM .

endo.

Using these data types and respecting the informal description given in the previous section,
the corresponding Robot template signature can be de�ned as follows:

obj Robot-signature is

protecting Object-state R-ADR .

subsort Id.Robot < OId .

subsort Local Robot External Robot < Robot .

subsort GOTO MOVE LOAD UNLOAD < Local Robot Mes .

subsort GET PUT < Exported Robot Mes .

(* local attributes *)

op h jBusy : ; Grip : i : Id.Robot Bool ITEM ! Local Robot.

(* observed attributes *)

op h jLocation : i : Id.Robot R-ADR ! External Robot .

(* local messages *)

op Goto : Id.Robot R-ADR ! Local Robot Mes .

op Move : Id.Robot R-ADR R-ADR ! Local Robot Mes .

(* export messages *)

op Put, Get : Id.Robot OId ITEM R-ADR ! Exported Robot Mes .

(* Imported messages *)

op Load-cp, Unload-cp:OId Id.Robot REF ST-ADR ! Imported Robot Mes (* from the Controler *).

vars R : Id.Robot .(* these variables are used in the corresponding net *).

vars L L1 : R-ADR .

vars it : ITEM .

endo.

Stock template signature: Data types associated with this template are ST-ADR specifying

di�erent addresses of the stock; CONTENT as a list of pairs of addresses and corresponding

contents (i.e. nil for empty, cyl for cylinder or Chm for an end product (the speci�c type

of a given chessman is irrelevant in this class); capacity as a natural constant re
ecting

the capacity. These data types will be referred to as S-DATA.

369

obj S-DATA is

protecting Bool .

sort Bool ITEM-ST NAT.

sort ST-ADR .

subsort ELT < CONTENT .

op nil, cyl, Chm : ! ITEM-ST .

op capacity : ! NAT .

op [.] : ST-ADR ITEM-ST ! ELT .

op . : ELT CONTENT ! CONTENT [assoc. commu] .

endo.

obj Stock-signature is

protecting Object-state S-ADR .

subsort Id.Stock < OId .

subsort Local Stock External Stock < Stock .

subsort ALARM < Exported Stock Mes .

(* local attributes *)

op h jFull : ; Empty : ; Capacity : i : Id.Stock Bool Bool NAT ! Local Robot.

(* observed attributes *)

op h jContents : i : Id.Robot CONTENT ! External Stock .

(* export messages *)

op Alarm : Id.Stock OId ! Exported Stock Mes .

(* Imported messages *)

op Remove, Store : OId Id.Manager ITEM ST-ADR

! Imported Stock Mes (* from the Manager Component *).

op Produce : OId Id.Manager TYPE REF ! Imported Stock Mes (* from the Manager Component *).

op Put, Get : OId Id.Robot ITEM R-ADR ! Imported Stock Mes (* from the Robot Component *).

vars S : Id.Stock .(* these variables are used in the corresponding net *).

vars Adr : S-ADR .

vars C Ls : CONTENT .

endo.

Manager template signature: This class just allows for coordinating some tasks and there-

fore it contains no attributes. Its corresponding signature takes the form:

obj Manager-signature is

protecting Object-state S-ADR REF .

subsort Id.Manager < OId .

subsort Local Stock External Stock < Stock .

subsort REMOVE STORE PRODUCE < Exported Manager Mes .

(* export messages *)

op Remove, Store : Id.Manager OId ITEM ST-ADR ! Exported Manager Mes .

op Produce : Id.Manager OId TYPE REF ! PRODUCE .

(* Imported messages *)

op Alarm : Id.Stock Id.Manager ! Imported Manager Mes (* from the Stock Component *).

op Alarm-full : Id.Controller Id.Manager ! Imported Manager Mes (* from the Controller Component *).

vars M : Id.Manager .

endo.

3.1.2 Template and component speci�cation

On the basis of the template signature, we de�ne the notion of template speci�cation as a Co-

net and the notion of a component (here just a class with interface) as a marked Co-net.

Informally the associated Co-net structure, with a given template signature, can be described

as follows:

� The places of Co-net are precisely de�ned by associating with each message generator

one place that we called `message' place. Henceforth, each message place has to contain

370

message instances, of a speci�c form, addressed to objects (and not yet performed). In

addition to these message places, we associate with the object sort one `object' place that

has to contain the current object states of this component. Note also that places associated

with `external' messages will be drawn with bold circles.

� The Co-net transitions re
ect the e�ect of messages on the object states to which they are

addressed. Also, we make distinction between local transitions that re
ect object states

evolution and external ones modeling the interaction between di�erent components. The

requirements to be ful�lled for each transition form are given in the subsection below.

Both input and output arcs are de�ned as multisets of terms respecting the type of their

input and/or output places|the associated union operation is denoted by �.

� Conditions may be associated with transitions. They involve attribute and/or message

parameters variables.

Example 3.2 Following the above (informal) component and template de�nitions, the three

Co-nets that have to be associated with the afore described template signatures are as follows:

The robot Co-net component: This net as depicted in �gure 2 is composed of an object

place denoted by ROBOT and containing the current (object) state of di�erent robots4; and

six message places corresponding to di�erent messages declared in this template in addition

to the two imported messages. The e�ect of each message is captured by an appropriate

transition. For instance, the e�ect of the message Goto(R,L1) is captured by the transition

GT that takes as input the current location of the robot (i.e. hR j Location : Li5) and as

result its change to the new location (i.e. L1) provided that it is di�erent from L. The

e�ect associated with Move(R,L1,L2) can be easily understood similarly. A more complex

e�ect is for instance the e�ect of the LOAD message. This e�ect modeled by the transition

LD can be explained as follows: First this message is existing only after sending of a

Load-clamp message from the controller; this fact is captured by the transition LDCp.

Second, the e�ect of Load(R,Rf,Adr), as a loading by the robot R of an item from the

(stock-) address Adr (with respect to a given reference Rf of an order) and its deposit at the

clamping system, is equivalent to the following output messages: going to this address (i.e.

Goto(R,Adr)) followed by getting the corresponding item (i.e. Get(R,Adr,-)) followed

by going to the clamping system (with this item) (i.e. Goto(R,Clamping)) and �nally

putting this item in the clamping system. The same reasoning may applied to the e�ect

associated with the Unload message, but here after receiving an Unload-clamp from the

controller through the transition ULDCp the robot has just to go to the (stock-) address

Adr and then put griped (end-product) item. The partial e�ect6 of a Put(R,-,-,L), as

modeled by transition PUT consists in deposing the griped item it in the (stock-) address

corresponding to L (i.e. where the robot is located). This means that the robot state before

have to be hRjgrip : it; Busy : True; Location : Li, while its state after change will be

hRjgrip : nil; Busy : False; Location : Li. The same reasoning may be applied to the

e�ect of a Get message.

4Although in this application just one robot have to used, using our approach it is quite possible to have more

than one robot. However, in this later case some constraints have to be added in order to avoid con
ict between

them.
5Remark that due to the splitting axiom only the location which is the just concerned attribute in this e�ect

is selected.
6Because both Put and Get message have to interact with either the stock of the clamping system, in addition

to their local e�ect an observed e�ect as interaction with each one of these classes have to be modeled (see the

interaction subsection).

371

Get(R,...)

putR,...)

Move(R,L1,L2)

goto(ri, li)
move(r,l1,l2)

 Unload-cp(C,..)

load-cp(C,..)

 Goto(R, Adr)

<R | Location : L2>

<R | Location : L1>

<R | Location : L>

<R | Location : L1>

Goto(R, Adr) Goto(R, Clamping)

<R | Grip : it, Busy : True, Location : L>

<R | Grip : nil, Busy : False, Location : L>

<R | Grip : nil , Busy : False, Location : L>

<R | Grip : it, Busy : True, Location : L>

<R1 | grip: It1,Busy:False, Location:L1>

Load-cp(C,R,Rf,Adr)

Load(R,Rf,Adr)

Unload(R,Rf,Adr)

Load(R,Rf,Adr)

load(C,..)

Get(R,-, L, it)

Goto(R,L1)

Put(R, -,- , Adr)

 Unload(..)

Unload(R,Rf,Adr)

Get(R, Adr, -)

Put(R,-,-, Adr)

ROBOT

Put(R,-,-, L)

Put(R,-,it, -)

Unload-cp(C,R,Rf,Adr)

True

True

True

TrueTrue

True

. . ..

. . ..

The Internal Behaviour

LOAD

T
he

 im
po

rt
ed

 M
es

ss
ag

es

UNLOAD

L <>L1
GT

PUT

GET

LD

ULD

LDCp

ULDCp

GOTO

GET

. . ..

. . ..

. . ..
. . ..

True

The Robot Component as a Co-net

LOAD-Clamp
(controller)

. . ..

. . ..

UNLOAD-Clamp
(controller)

PUT

T
he

 E
xp

or
te

d
M

es
sa

ge
s

MVT

. . ..

Figure 2: The Robot Component as a Co-net.

The stock component: as depicted in �gure 3, in addition to the object place denoted by

STOCK we have six places corresponding to di�erent message generators. As local e�ect

we have just the automatic sending of an alarm (to the Manager) if the capacity of the

stock is reached.

. . ..

T
he

 E
xp

or
te

d
M

es
sa

ge
s

T
he

 im
po

rt
ed

 M
es

ss
ag

es

Length(C)=P

The Internal Behaviour

ALARM

Alarm(S)

. . ..

. . ..

PUT
(Robot)

(Robot)
GET

. . ..

. . ..

. . .. Remove(S,M..)

REMOVE
(Manager)

STORE

lStore(S,M..)
(Manager)

PRODUCE
(Manager)

 produce(S,M..)

 Get(..)

 Put(S,M..)

The Stock Component as a CO-Net

Alarm(S)

FULL

. . ..

<S | Full:false, Empty:false,Capacite:120,Contents:[adr1,it1].[adr2,it2]..>

<R | Contents:C,Capacity:P, Full : True>

<R | Contents:C,Capacity:P, Full : False>

Figure 3: The Stock Component as a Co-net .

The manager class: In this component depicted in �gure 4, there is no object place because

this (functional) component has no attributes. So we have just places associated with the

messages.

3.2 Co-nets : Semantical Aspects

After highlighting how Co-nets templates and components are constructed, we focus herein

on the behavioural semantics aspects of such components. That is, how to construct a coherent

object society as a community of object states and message instances associated with each

component, and how such a society evolves only into a permissible states. By coherence we

372

T
he

 E
xp

or
te

d
M

es
sa

ge
s

T
he

 im
po

rt
ed

 M
es

ss
ag

es

. . ..

ALARM (controller)

Alarm(..)

. . ..

. . ..

PRODUCE

Produce(..)

Remove(..)

REMOVE

STORE

Store(..)
. . ..

The Manager Component

Figure 4: The Manager Component as a Co-net.

mainly mean the respect of the system structure, the uniqueness of object identities and the

non violation of the encapsulation property.

3.2.1 Objects creation and deletion

In order to ensure the uniqueness of object identities, we propose the following conceptualiza-

tion:

1.We associate with each marked Ob-net, modeling a component denoted Cl, a new place of

sort Id:obj (< OId) containing actual object identi�ers of the objects in Cp.

2. For the creation of new objects, we introduce a new message sort denoted AdCp and an

associated symbol operation (i.e. creation message) denoted adCl indexed by Id:obj �AdCp.

3. Each object state creation should be performed through the net depicted in the left hand side

of �gure 5. The intended semantics for the notation � is that for �ring the transition NEW

the identi�er Id should not already exist in the place Id:obj. After �ring this transition,

there is an addition of the new identi�er Id to the place Id:obj and creation of a new object

namely hIdjatr1 : in1; :::; atrk : inki, where in1; :::; ink are optional initial attributes values.

The deletion process given in the right hand of Figure 5 is conceived in the same way.

Id~

True
Id

NEW

.

obj
. . . .

Id.obj

.

True

DEL

Id

. . .

Id.obj
. . . .

obj

. . .
Ad.Cp Dl.Cp

hIdijatri1
: vali1

; ::i

hIdijatri1
: vali1

; ::i

hIdjatr1 : val1 ; :::; atrk : valki

hIdjatr1 : val1 ; :::; atrk : valki

adCp(Id) dlCp(Id)

Id1

Id1

Idn

Idn

adCp(Id1)

adCp(Idp)

dlCp(Id1)

dlCp(Idp)

Figure 5: Objects Creation and Deletion Using Co-nets

3.2.2 Evolution of Object States in Classes

For evolving object states in a given class, we propose a general pattern that has to be respected

in order to ensure the encapsulation property|in the sense that no object states or messages

of other classes participate in this communication | as well as the preservation of the object

identity uniqueness. Following such guidelines and in order to exhibit a maximal concurrency,

this evolution schema is depicted in Figure 6, and it can be intuitively explained as follows:

The contact of the just relevant parts of some object states of a given Cl|namely hI1jattrs1i

373

;..; hIkjattrski| with some messages msi1; ::;msip|declared as local or imported in this class|

and under some conditions on the invoked attributes and message parameters results in the

following e�ects. First, the messages msi1; ::;msip vanish. Second, some (parts of) object states

participating in the communication, namely Is1; ::; Ist, may change (such change is symbolized by

attrs0

s1; ::; attrs
0

st). The other (unchanged part of) object states are denoted by attrsi1 ; ::; attrsir
so that fi1; :::irg [fs1; ::; stg = f1; ::; kg7. Third, there may be a deletion of some objects using

explicit sending of delete messages to such objects; and �nally messages may be sent to objects

of Cl, namely msh1 ; ::;mshr .

Conditions on attributes values
 and messages parameters

. .

. .

t

obj

.

hIdijatri1
: vali1

; :::i

k

�
i=1

hIdijattrsii

st

�
i=s1

hIdijattrs
0

i
i �

ir

�
i=i1

hIdijattrsii

Mesi1 Mesip

Mes
h1

Mes
hr

msi1

msip

msh1 mshr

Figure 6: The intra-component evolution pattern in Co-nets

3.2.3 Rewriting rules governing the Co-nets behaviour

In the same spirit as in [BM92], each Co-net transition is captured by an appropriate rewriting

rule interpreted into rewrite logic. Following the intra-component evolution pattern in �gure 6,

the general form of rewrite rules that we associate with it takes the following form:

t: (Obj;
k
�
i=1

hIijattrsii)

p

k=1

(Mesik;msik)) (Obj;
t
�
k=1

hIs
k
jattrs0s

k

i �
r
�
k=1

hIi
k
jattrsi

k
i)

r

k=1

(Mesh
k
;msh

k
) if Condition ^ M(Ad:Cp) = ; ^ M(Dl:Cp) = ;.

Remark 3.2 The operator
 is de�ned as a multiset union and allows for relating di�erent

places identi�ers with their current marking. Moreover, we assume that
 is distributive over

� i.e. (p;mt1 � mt2) = (p;mt1)
 (p;mt2) with mt1, mt2 multiset of terms over � and p

a place identi�er. The condition M(AdCp) = ; and M(DlCp) = ;, in this rule, means that

the creation and the deletion of objects have to be performed at �rst; In other words, before

performing the above rewrite rule the markings in the AdCp as well of the DlCp places have

to be empty. This allows particularly to avoid inconsistency like the manipulation of an object

that is already logically deleted (i.e. a corresponding delete message was already sent) and not

really or 'physically' deleted by �ring its corresponding transition. Finally, please note that

that the selection of just the invoked parts of object states, in this evolution pattern, is quite

possible because of the splitting /recombination axiom|that has to be performed before and in

accordance with each invoked state evolution. }

Example 3.3 By applying this general form of rule, it is not diÆcult to generate the rules gov-
erning the three component behaviour. These rules may be straightforwardly described as follows:

The robot component rewriting rules

7In other words, there is no implicit creation or deletion of (part of) object states| that may lead to incon-

sistency w.r.t. the above described creation/deletion schema.

374

GT8: (GOTO;Goto(R;L1))
 (ROBOT; hR j Location : Li))
) (ROBOT; hR j Location : L1i) if (L 6= L1)

MVT: (MOV E;Move(R;L1; L2))
 (ROBOT; hR j Location : L1i)
) (ROBOT; hR j Location : L2i)

PUT: (PUT; Put(R;�;�; L))
 (ROBOT; hR j Grip : it; Busy : True; Location : Li)
) (ROBOT; hR j Grip : nil; Busy : False; Location : Li)Put(R;�; it; L)

GET: (GET;Get(R;�; it; L))
 (ROBOT; hR j Grip : nil; Busy : False; Location : Li)
) (ROBOT; hR j Grip : it; Busy : True; Location : Li)

LDCp: (LOAD-Cp;Load-cp(C;R;Rf;Adr))) (LOAD;Load(R;Rf;Adr))

LD: (LOAD;Load(R;Rf;Adr))) (GOTO;Goto(R;Adr)) ; (GET;Get(R;Adr;�)) ;
(GOTO;Goto(R;Clamping)) ; (PUT; put(R; I;�; Clamping))

LDCp: (UNLOAD-Cp;Unload-cp(C;R;Rf;Adr))) (UNLOAD;Unload(R;Rf;Adr))

ULD: (UNLOAD;Unload(R;Rf;Adr))) (GOTO;Goto(R;Adr)) ; (GET;Get(R;Adr;�))

The stock class rewriting Rule

FULL :(STOCK; hS j Contents : S;Capacity : C;Full : Falsei)
) (STOCK; hS j Contents : S;Capacity : C;Full : Truei)
 (ALARM; alarm(S;M))
if (length(S) = C)

Remark 3.3 In the above rewrite rules we have used an additional operator for enforcing

an (sequential) order on which the messages should be performed. We denote this sequential

operator as usual by ";"9. The appropriate semantics of this operator and other (process-algebra-

like ones such as choice, synchronization, etc) operators have been already introduced by Wirsing

et al. in [LLNW96, WNL95] for the Maude language. This complete rewriting algebra that

allows for controlling the rewriting process like in process algebras, has been presented as follows.

mod MSG Algebra is

protecting CONFIGURATION

op + (* for specifying the choice between two rules *) .

op ; (* for specifying the sequence of two rules *) .

op jj (* for specifying parallel composition *) .

vars m1;m2; n1; n2 : Msg .

vars c; d; c1; c2; d1; d2; h : Configuration (as a multiset of object states and messages using the `empty' binary operator).

(* The rewrite rules specifying their semantics *)

rl (m1 +m2) c) d if m1 c) d _ m2 c) d.

rl (m1 ; m2) c1 c2) d1 d2 if m1 c1) d1 h ^ m2 c2 h) d2.

rl (m1 jj m2) c1 c2) d1 d2 if m1 c1) d1 ^ m2 c2) d2 .

endm

We limit ourselves here just to the adaptation of the choice operator to the Co-nets setting;

the other operators may be done following the same reasoning.

choice :(P ms1;ms1) ; (P ms2;ms2)

k

(Pk; [tk]�)

l

(Pl; [tl]�))

k0

(Pk0 ; [tk0]�)

l0
(Pl0 ; [tl0]�)

if (P ms1;ms1)

k

(Pk; [tk]�))

k0

(Pk0 ; [tk0]�)

h

(Ph; [th]�) and (P ms2;ms2)

l

(Pl; [tl]�)

h

(Ph; [th]�))

l0
(Pl0 ; [tl0]�) }

Finally, given such rewrite rules and an initial community (of objects and messages) of each

component, is is quite possible to derive in a true concurrent way any reachable community.

Such computation using concurrent rewriting techniques and Maude [CDE+99] is simultaneously

accompanied by the corresponding graphical animation which allows to detect missing and errors.

However, due to space limitation we kindly advice the reader to consult our paper [ACS99] where

a large banking account system is prototyped.
9We are grateful to one of the two referees for pointing out the inappropriateness of using in this case the

operator
 due to its commutativity.

375

3.3 Co-nets : More Advanced Constructions

So far, we have presented only how the Co-nets approach allows for conceiving independent

classes. In what follows, we give how more complex systems can be constructed using advanced

abstraction mechanisms, especially inheritance and interaction between classes. However, due

to space limitation and to the straightforward extension of simple inheritance to multiple inher-

itance (with or without rede�nition) we only present the former one.

3.4 Inheritance in Co-nets

Giving a (super) class Cl modeled as a CO-Net, for constructing a subclass that inherits the

structure as well as the behaviour of the superclass Cl and exhibits new behaviour involving

additional attributes, we propose the following straightforward conceptualization.

� We de�ne the structure of the new subclass by introducing the new attributes and mes-

sages. Structurally, the new attribute identi�ers with their value sorts and the message

generators are described using the extending primitive in the OBJ notation.

� As object place for the subclass we use the same object place of the superclass; which

means that such place should contains now the object states of the superclass as well as

the object states of the subclass. This is semantically sound because the sort of this object

place is a supersort for objects including more attributes.

� As previously described, the proper behaviour of the subclass is constructed by associating

with each new message a corresponding place and constructing its behaviour (i.e. tran-

sitions) with respect to the communication model of �gure 3 under the condition that at

least one of the additional attributes has to be involved in such transitions.

Remark 3.4 Such conceptualization is only possible because of the splitting / recombination

operation. Indeed this axiom permits to consider an object state of a subclass, denoted for

instance as hIdjattrs; attrs0i with attrs0 the additional attributes (i.e. those proper to the

subclass), to be also an object state of the superclass (i.e. hIdjattrsi). Obviously, this allows a
systematic inheritance of the and structure as well as the behaviour. }

Example 3.4 With respect to our case study, we assume that, besides the 'standard' robots
more 'sophisticated' ones can be used| as a subclass of (standard) robot. In such special robots,
for instance, the speed of the performed actions, as an additional attribute, may be changed
(increased or decreased) when such special robots are not busy. Moreover, we assume that such
robots are equipped with a second grip and so they can get or put two items at the same time.
Of course, such a 'sophisticated' robot besides this proper behaviour behaves exactly as standard
robot when it receives message like Goto, Move, ..ect; In other words it inherits all the struc-
ture and the behaviour of standard robots. More precisely, following the aforementioned steps,
we present hereafter the structure as well as the associated Co-net modeling this subclass.

obj Special-Robot is.

extending Robot .

subsort Id-Sp.Robot < Id.Robot .

subsort CHG-SPEED < Local Sp-Robot Mes .

subsort GET-TWO PUT-TWO < External Sp-Robot Mes .

subsort Local Sp-Robot < Local Robot .

subsort External Sp-Robot < External Robot.

(* local attributes *)

op h jSpeed : i : Id.Sp-Robot Nat ! Local Sp-Robot.

(* observed attributes *)

op h jGrip2 : i : Id.Sp-Robot ITEM ! External Sp-Robot .

(* local messages *)

376

op Chg-speed : Id-Sp-Robot Nat ! CHG-SPEED .

(* export messages *)

op Put-Two, Get-Two : Id.Robot OId ITEM ITEM R-ADR ! Exported Sp-Robot Mes .

endo.

Chg-Speed(R,Sp1)

 <R | Speed : Sp1, Busy : False>

The Robot (class)

<R | Grip : it1, Busy : True, Grip2: it2, Location:L>

<R | Grip : it1, Busy : True, Grip2 : it2, Location:L>

<R | Grip : nil , Busy : False, Grip2 : nil ,Location : L>

Get-two(R, -, it1, it2, L) <R | Grip : nil, Busy : True, Grip2 : nil, Location:L>

Put-two(R,-, -, -, L)

Put-two(R,-, it1, it2, L)

 <R | Busy : False, Speed : Sp>

The Proper Behaviour of the Special Robot

ROBOT-AND-SP-ROBOT

The Inherited Behaviour

. . ..

<R1 | grip: It1,Busy:False, Location:L1,Speed:120,Grip2:iti>

CHG

P-TWO

CHG-SP

T
he

 E
xp

or
te

d
M

es
sa

ge
s

G-TWO

. . ..

PUT-TWOPUT-TWO

GET

. . ..

put-two(R..)

Get-two(R..)

<R1 | grip: It1,Busy:False, Location:L1>

The Special Robot as a CO-Net Subclass

load(R,C,..)

. . ..True

True

True

Figure 7: The Special Robot as a Subclass in the Robot component

3.5 Component interaction

Taking into account that object state evolution in components is ensured by the intra-component

pattern speci�ed in �gure 6, and in order to ensure the encapsulation property which stipulate

that the internal part of an object state as well as the local messages have to be hidden from

the outside, we propose an appropriate inter-component interaction pattern for communicating

these components by exclusively using their explicitly declared observed attributes and external

messages.

As depicted in �gure 8, the general schema of 'external' transitions and may be explicit as

follows|by selecting just one object place from each component. The contact of some but only

external parts of some objects states namely �
i
hId1i jattrs bs1ii; : : : �

j
hIdpj jattrs bspj i respec-

tively belonging to components Cp1; :::; Cpp, with some external (i.e. declared as imported or

exported) messages, namely msi1 ; ::;msir ;msj1 ; ::;msjh from such components, and under some

conditions on attributes values and parameters messages, results in the following: (1) messages

msi1 ; ::;msir being consumed; (2) states of some external parts of object participating in the

communication change; and (3) new external messages (that may involve deletion/creation ones)

are sent to objects of di�erent in di�erent components, namely msh1; ::;mshr .

Example 3.5 In order to achieve the expected objective, that is, the production of di�erent

chessmen, the seven components have to interact through their imported / exported messages and

observed attributes with respect to the general inter-component pattern described above. When

377

.
. . Conditions on attributes values

 and messages parameters

. .

. .

t
hIdkjatr bsk1

: valk1
; :::i

hIdljatr bsl1
: vall1

; :::i

Bs(obj1)
Bs(objp)

Mesoi1 Mesoip

Mesoh1
Mesohr

msi1

msip

msh1 mshr

�
i
hId1i

jattrs bs1i
i

�
j
hIdpj jattrs bspj

i

�
i
hId1i

jattrs0 bs1i
i

�
j
hIdpj jattrs

0
bspj

i

Figure 8: The Inter-component interaction pattern

we restrict ourselves to the three components Robot, Stock and Manager, the corresponding

interaction Co-nets is depicted in �gure 9. In this interaction, the e�ect of a Put message|

that have afterwards to be consumed in the internal behaviour of the Robot| is the result of the

interaction of the Stock and Robot component; they interact here only through their observed

attributes Content and Location respectively. More precisely, to get an item from the stock,

the robot should be at the corresponding location (i.e. Location = address-content) that have

to be non empty. The same reasoning may be applied to the message Get. Equivalent to these

messages are the Store and Remove messages by the manager into / from stock component.

<S | Contents:Ls.[L,nil]>

<S | Contents:Ls.[L,it]>

OBS-ROBOT

ST
O

R
E

F
U

L
L

-I
N

T
R

GET-INTR

PUT-INTR

<S
 |

C
on

te
nt

s:
L

s.
[L

,it
]>

<S
 |

C
on

te
nt

s:
L

s.
[L

,n
il]

>

<S
 |

C
on

te
nt

s:
L

s.
[L

,n
il]

>

<S
 |

C
on

te
nt

s:
L

s.
[L

,it
]>

St
or

e(
M

,S
,it

)

<R | Location:L>

Put(R,S,L, it)

<S | Contents:Ls.[L,it]>

<S | Contents:Ls.[L,nil]>

Get(S, R,L)

Get(S, R,L,it)

<R | Location:L1>

R
em

ov
e(

M
,S

,it
)

<S
 |

C
on

te
nt

s:
L

s>

R
E

M
O

V
E

. . ..

 T
ru

e

The Encapsulated Internal
Behviour

Behviour

 T
ru

e

 True

The Encapsulated Internal

 Messages
The Exported

PUT

True

The Interaction Between Stock, Robot and Manager Components

GET

OBS-STOCK

putR,S,it,Adr)

. . ..

 L
en

gh
(L

s)
=C

ap
ac

it
y

<S | Contents:[adr1, it1]...>

. . ..

<R1 | Location:L1>

. . ..

Get(R,S,adr,it)

R
em

ov
e(

..)

R
E

M
O

V
E

ST
O

R
E

A
la

rm
(.

.)

A
L

A
R

M

.
 .

 .
.

.
 .

 .
.

.
 .

 .
.

St
or

e(
..)

Figure 9: The Robot-Stock-Manager interaction behaviour.

The rewriting rules governing this interaction can be captured in a similar way, as done for the

internal behaviour, from the e�ect of each transition.

378

4 Conclusion

We proposed an object Petri nets based conceptual model for specifying and validating infor-

mation systems as a distributed, autonomous and cooperating components. The model called

Co-nets is a sound and complete combination of OO concepts and constructions in a variant of

algebraic Petri nets. The semantics of the Co-nets is expressed in rewriting logic allowing us to

derive rapid-prototypes using concurrent rewriting. Some key features of the Co-nets approach

for specifying complex and distributed information systems include: (1) a straightforward mod-

eling of simple and multiple inheritance with the possibility of overriding; (2) a characterization

of two communication patterns|an intra-component model for evolving object states in a hier-

archy of classes with the possibility of exhibiting intra-object as well as inter-object concurrency,

and an inter-component communication model for interacting di�erent components.

Di�erent features of the approach have been presented through a non trivial case study

dealing with a typical Chess Making Shop; where more than six interacting components coop-

erate through their explicit interfaces for achieving �nal chessmen product. This case study

shows that the Co-nets conceptual model, with its di�erent abstractions mechanisms, is well

suited for dealing with complex information and production systems conceived as cooperating

components.

As nearest future work we plan to focus on the validation phase; where we have to con�rm

the relevance of Co-nets graphical simulation with the symbolic computation (using rewriting

techniques [DJ90]) in verifying main properties of the speci�ed at hand. Moreover, although we

have just sketched in this present paper, the control of the order in �ring di�erent transitions,

either by adapting the message algebra proposed in [WNL95, LLNW96] or more elegantly by

following rewriting logic re
ection capabilities [CM96], deserves more deeper investigations.

Acknowledgments

We acknowledge the two anonymous referees for their sharp comments and very detailed sug-

gestions which resulted in a signi�cant improvement of the paper.

References

[ACS99] N. Aoumeur, S. Conrad, and G. Saake. Prototyping Object Speci�cations Using the Co-

nets Approach. In J. Desel and A. Oberweis, editors, Proc. Sixth Workshop Algorithmen

und Werkzeuge f�ur Petrinetze, Frankfurt/Main, October 1999, pages 7{17, 1999.

[AG97] R. Allen and D. Garlan. A Formal Basis for Architectural Connection. Technical report,
School of Computer Science, Carnegie Mellon University, 1997.

[AS99a] N. Aoumeur and G. Saake. Towards a New Semantics for Mondel Speci�cations Based on the
CO-Nets Approach. In J. Desel and K. Pohl and P. Schuerr, editor, Proc. of Modellierung'99,
pages 107{122, Karlsrule, Germany, March 1999. B.G. Teubner-Verlag.

[AS99b] N. Aoumeur and G. Saake. Towards an Object Petri Nets Model for Specifying and Validating
Distributed Information Systems. In M. Jarke and A. Oberweis, editors, Proc. of the 11th

Int. Conf. on Advanced Information Systems Engineering, CAiSE'99, Heidelberg, Germany,
volume 1626 of Lecture Notes in Computer Science, pages 381{395, Berlin, 1999. Springer-
Verlag.

[AS00] N. Aoumeur and G. Saake. Co-nets: A Formal OO Framework for Specifying and Validat-
ing Distributed Information Systems. Preprint Nr. 2, Fakult�at f�ur Informatik, Universit�at
Magdeburg, 2000.

[BBG97] O. Biberstein, D. Buchs, and N. Guel�. CO-OPN/2: A Concurrent Object-Oriented Formal-
ism. In Proc. of Second IFIP Conf. on Formal Methods for Open Object-Based Distributed

Systems(FMOODS), pages 57{72. Chapman and Hall, March 1997.

379

[BM92] M. Bettaz and M. Maouche. How to Specify Non Determinism and True Concurrency with
Algebraic Term Nets. In M. Bidoit, and C. Choppy, editor, Proc. of 8th Workshop on

Abstract Data Types, volume 655 of Lecture Notes in Computer Science, pages 164{180,
1992.

[CDE+99] M. Clavel, F. Duran, S. Eker, J. Meseguer, and M. Stehr. Maude : Speci�cation and
Programming in Rewriting Logic. Technical report, SRI, Computer Science Laboratory,
March 1999. URL : http://maude.csl.sri.com.

[CM96] M. Clavel and J. Meseguer. Re
ection and Strategies in rewriting logic. In G. Kiczales,
editor, Proc. of Re
ection'96, pages 263{288. Xerox PARC, 1996.

[DB95] P. Du Bois. The Albert II Language: On the Design and the Use of a Formal Speci�cation

Language for Requirements Analysis. PhD thesis, Computer Department, University of
Namur, Namur(Belgique), September 1995.

[DJ90] Nachum Dershowitz and Jean-Pierre Jouannaud. Rewrite systems. In J. van Leeuwen, edi-
tor, Handbook of Theoretical Computer Science, volume B: Formal Methods and Semantics,
chapter 6, pages 243{320. North-Holland, Amsterdam, 1990.

[EGS92] H.D. Ehrich, M Gogolla, and A. Sernadas. Objects and Their Speci�cation. In M. Bidoit and
C. Choppy, editors, Proc. of 8th Workshop on Abstract Data Types, volume 655 of Lecture
Notes in Computer Science, pages 40{66. Springer-Verlag, 1992.

[EM90] H. Ehrig and B. Mahr. Fundamentals of Algebraic Speci�cations 2 : Module Speci�cations
and Constraints. EATCS Monographs on Theoretical Computer Science, 1990.

[GD93] J.A. Goguen and R. Diaconescu. Towards an Algebraic Semantics for the Object Paradigm.
In Proc. of 10th Workshop on Abstract Data types, 1993.

[GD94] J. Goguen and R. Diaconescu. An Oxford Order Sorted Algebra. Mathematical Structures

in Computer Science, 4(4), 1994.

[GWM+92] J. Goguen, T. Winkler, J. Meseguer, K. Futatsugi, and J.P. Jouannaud. Introducing OBJ.
Technical Report SRI-CSL-92-03, Computer Science Laboratory, SRI International, 1992.

[Lak95] C. Lakos. From Coloured Petri Nets to Object Petri nets. In Proc. of 16th Application and

Theory of Petri Nets, volume 935 of Lecture Notes in Computer Science, pages 278{287.
Springer-Verlag, 1995.

[LLNW96] U. Lechner, C. Langauer, F. Nickel, and M. Wirsing. (Objects + Concurrency) & Reusability
{ A Proposal to Circumvent the Inheritance Anomaly. In ECOOP'96 - Object-Oriented

Programming, volume 1098 of Lecture Notes in Computer Science, pages 232{248. Springer
Verlag, 1996.

[Mes93] J. Meseguer. A Logical Theory of Concurrent Objects and its Realization in the Maude
Language. In G. Agha, P. Wegner, and A. Yonezawa, editors, Research Directions in Object-

Based Concurrency, pages 314{390. The MIT Press, 1993.

[PS98] M. P. Papazoglou and G. Schlageter, editors. Cooperative Information Systems : Trends and

Directions. Academic Press, Boston, 1998.

[RBP+91] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen. Object Oriented Mod-

eling and Design. Prentice Hall, Englewood Cli�s, 1991.

[SB94] C. Sibertin-Blanc. Communicative and cooperative nets. In E. Astesiano, R. Reggio, and
A. Tarlecki, editors, Proc. of the 15th International Confernce on the application and Theory

of Petri Nets, volume 815 of Lecture Notes in Computer Science. Springer-Verlag, 1994.

[Weg90] P. Wegner. Concepts and paradigms of Object-Oriented Programming. OOPS Messenger,
1:7{87, 1990.

[WNL95] M. Wirsing, F. Nickel, and U. Lechner. Concurrent Object-Oriented Speci�cation in Spec-
trum. In Y. Inagaki, editor, Workshop on Algebraic and Object-Oriented Approaches to

Software Science, Nagoya/Japan, Electronic Notes in Theoretical Computer Science, pages
39{70. Nagoya University, 1995.

380

A a Complete Co-nets Chess Making Shop Speci�cation

The controller template speci�cation: The data types that are associated with the Controller sig-

nature are: RECIPE as a list of pairs: programs (shortly, PGM) and their corresponding machines

MACH-TOOL. The ORDER as triplet consisting of: Loc as a set of pairs of AGV identities and

their corresponding location i.e. LOC-AGV; Dest as �nal destination corresponding to a LOC-

AGV; and Tdl as the corresponding Recipe of this orders. TYPE for capturing di�erent types

of chessmen i.e. Cyl, King, Queen, Castle, Bishop, Knight and Pawn. STATUS for representing

di�erent states of the machines i.e. Free, Booked, Working, Done and Down. Finally, Place of the

AGV corresponding to Place1 or Place2. The corresponding speci�cation of these data types can

be done as follows:

obj CONTROL-DATA is

protecting ROBOT-DATA .

sorts REPICE ORDER STATUS.

subsorts REPICE-ELT < RECIPE .

subsorts LOC-ELT < LOC .

op Cyl King Queen Castle Bishop Knight Pawn: ! TYPE .

op Free Booked Working Done Down : ! STATUS .

op Place1 Place2 : ! PLACE .

op [;]: MACH-TOOL PRG ! RECIPE-ELT .

op : : RECIPE-ELT RECIPE ! RECIPE .

op [;]: AGV LOC-AGV ! LOC-ELT .

op ; : LOC-ELT LOC ! LOC [assoc. comm.] .

op [; ;]: LOC LOC-AGV RECIPE ! ORDER .

endo.

Using these data types and respecting the structure of the Controller as described in �gure 1,
corresponding template signature and associated Co-net are given in what follows.

obj Controller-signature is

protecting Object-state, CONTROL-DATA .

subsort Id.Controler < OId .

subsort Local Controller External Controller < Controller .

subsort MACHINING-STEP MACHNING < Local Controller Mes .

subsort UNLOAD-CAMP LOAD-CAMP RUN CARRY

ALARM< Exported Controller Mes .

(* local attributes *)

op h jFree� cyl : ; Agv � ord : ; Recipe[Type] : ; P roc[LOC-AGV] : ;

STATUS[LOC �AGV] : i : Id.Controller ST-ADRS REF RECIPE

REF STATUS ! Local Controller.

(* observed attributes *)

op h jOrders[Ref] : i : Id.Controller ORDER ! External Controller .

(* local messages *)

op Machning-step Machining ! Local Controller Mes .

(* export messages *)

op Load-clamp, Unload-clamp : Id.Controller OId REF ST-ADR ! Exported Controller Mes .

op Run : Id.Controller OId REF MACH-TOOL PGM ! RUN .

op Carry : Id.Controller OId REF ITEM LOC-AGV LOC-AGV ! CARRY .

op Alarm : Id.Controller OId ! ALARM .

(* Imported messages *)

op Put : OId Id.Controller ITEM LOC ! Imported Controller Mes (* from the Robot Component *).

op Clamping-done, Unclamping-done : OId Id.Controller

! Imported Controller Mes (* from the Clamping-system Component *).

op Remove, Store : OId Id.Controller ITEM ST-ADR

! Imported Controller Mes (* from the Manager Component *).

op Produce : OId Id.Controller TYPE REF

! Imported Controller Mes (* from the Manager Component *).

op Work-done : OId Id.Controller PGM

! Imported Controller Mes (* from the Machine Tool Component *).

op Deliver : OId Id.Controller ITEM PLACE ITEM

381

! Imported Controller Mes (* from the Auto-Guided Vehicle Component *).

endo.

<C | Status[m]: Down>

 Run(Ref,m,-)

<C | Status[m]:free, Order[ref]: [-,-,T]>

<C | Status[c2]:working, Agv-org:nil, Orders[ref]:[-,-,-]>

<C | Status[c2]:Booked, Agv-org: ref, Orders[ref]:[agv,-,-]>

<C | Proc[Clp]: ref, Orders[ref]:[Clp,-,-], Free-cyl: F>

 Carry(ref,-,-,c2)

 Alarm(m)

<C | Status[m]:working>

<C | Status[m]: Working, Order[ref]: [-,-.Tail(T)]>

<C | Proc[Clp]:-, Orders[ref]:[-,-,-], Free-cyl:c.F>

 Load-clmp(ref,c)

True

. . ..

<C1 | Orders[ref1]:O1,Recipes[type1]:R1, Proc[Lg1]:: ref2, Status[Lag1]:S1, Free-cyl:ST-ADR, Agv-ord:ref>

. . ..

True

True

T
he

 E
xp

or
te

d
M

es
sa

ge
s

ALARM

RUN

True

LOAD-CLAMP

T
he

 im
po

rt
ed

 M
es

ss
ag

es

The Internal Behaviour

The Controller Component as a Co-net
CONTROLER

. . ..

. . ..

. . ..

. . ..

REMOVE
(Manager)

 Remove(...)

 Produce(..)

PRODUCE

STORE

(Manager)

(Manager)

PUT
(Robot)

 Store(...)

 Put(R,C,..)

CLAMPING-SYS
(Clamp-sys)

UNCLAMP-SYS
(Clamp-sys)

. . ..

. . ..

. . ..

. . ..

DELIVER
(AGVehicle)

 Deliver(..)

 Clamping-sys(..)

WORK-DONE
(Mach-tool)

Work-done(..)

 Unclamp(..)

ALARM

RUN

CARRY

CARRY

LOAD-Cp

alarm(mi)

. . ..
run(rfi,mi,..)

. . ..
Carry(rf1,,..)

. . ..

load-cp(rfj,,..)

Figure 10: The Controller Component as a Co-net .

The auto-guided vehicle speci�cation:

obj AGV-signature is

protecting Object-state CONTROL-DATA .

subsort Id.AGV < OId .

subsort Local AGV External AGV < AGV .

subsort MOVE LOAD GOTO TRANSPORT < Local AGV Mes .

subsort PICK-UP DELIVER RUN < Exported AGV Mes .

(* local attributes *)

op h jP lace1 : ; P lace2 : ; Recipe[Type] : i : Id.AGV PLACE PLACE ! Local AGV.

(* observed attributes *)

op h jLocation : i : Id.AGV Clamping ! External AGV .

(* local messages *)

op Goto : Id.AGV Clamping ! GOTO .

op Load : Id.AGV ITEM PLACE ! LOAD .

op Move : Id.AGV Clamping Clamping ! MOVE .

op Transport : Id.AGV ITEM Clamping Clamping ! TRANSPORT .

(* export messages *)

op Pick-Up Id.AGV OId ITEM R-ADR! Exported AGV Mes .

op Deliver Id.AGV OId ITEM Clamping! Exported AGV Mes .

(* Imported messages *)

op Carry : Id.Controller OId REF ITEM LOC-AGV LOC-AGV

! Imported AGV Mes (* from the Controller Component *).

endo.

The machine tool component speci�cation:

obj MACHINE-DATA is

protecting R-DATA .

subsorts PGM < LIST-PGM .

op : : PGM LIST-PGM ! LIST-PGM [assoc. comm.] .

endo.

obj Machine-signature is

protecting Object-state MACHINE-DATA .

382

Load(L,it,i)

<V | Place(i):it,Location:L>

<V | Place(i):nil,Location:L>

Goto(V, L1)

Goto(V,L1) Goto(V,L2)

AGV-Veh

<V | Location:L2>

Transport(it,p,L1,l2)

Deliver(it,p,-)

Transport(V,it,p,L1,L2)

Carry(C,V,it,L1,L2)

<V | Location:L> <V | Location:L1> Move(V,L1,L2)

<R | Location:L1>

Load(L1,it,p)

True

. . ..

. . ..

GOTO

goto(v1,li)

. . ..

LOAD

move(l1,l2)

. . ..

TRANSPORT

lTransport(..)

L <>L1

<V | Place(1):It1, Placve(2):nil, Busy:true, Location:Clamp>
T

he
 E

xp
or

te
d

M
es

sa
ge

s

. . ..
pick-up(...)

 Deliver(...)
. . ..

Deliver

Pick-up

True

(l1,l2)

True

(controller)

Carry(..)
. . ..

CARRY

. . ..

The Internal Behaviour

T
he

 im
po

rt
ed

 M
es

ss
ag

es

MOVE

i=1

The Auto-Guided Vehicle Component as a CO-Net

Figure 11: The Auto-Guided Vehicle Component Co-Net.

subsort Id.Machine < OId .

subsort Local Machine External Machine < Machine .

subsort WORK < Local Machine Mes .

subsort WORK-DONE < Exported Machine Mes .

(* local attributes *)

op h jBusy : ; Capabilities : i : Id.Machine Bool LIST-PGM ! Local Machine .

(* observed attributes *)

op h jContents : i : Id.Machine ITEM ! External Machine .

(* local messages *)

op Work : Id.Machine PGM ! Local Machine Mes .

(* export messages *)

op Work-done : Id.Machine OId PGM ! Exported Message Mes .

(* Imported messages *)

op Run : Id.Controller OId REF MACH-TOOL PGM

! Imported Machine Mes (* from the Controller Component *).

endo.

<M | Busy: True, Contents:it>

Run(-,C, M,SELF,PGM)

Work-done(M,PGM)

Work(M,PGM)

MACHINE

Work(M,PGM)

< M | Busy : False , Contents: Apply(PGM)>

< M | Busy : False , Contents: nil, Contents:P>

Work-done(M,PGM)

T
he

 im
po

rt
ed

 M
es

ss
ag

es

(controller)RUN

. . ..

Run(..)
True

<M | ,Busy:true, Capabilities: prg1.prg2.., Contents:it1>

. . ..

Pgm in P

work(..)
. . ..

True

. . ..

The Machine Tool Component as a Co-net

work-done(..)

The Internal Behaviour

T
he

 E
xp

or
te

d
M

es
sa

ge
s

WORK-DONE

Figure 12: The Machine Tool Component Co-Net.

The clamping system component speci�cation:

obj Clamping-signature is

protecting Object-state S-DATA .

subsort Id.Clamping < OId .

subsort Local Clamping External Clamping < Clamping .

subsort UNCLAMP CLAMP < Local Clamping Mes .

383

subsort UNCLAMPING CLAMPING < Exported Clamping Mes .

(* local attributes *)

op h jClamped : i : Id.Clamping Bool ! Local Clamping.

(* observed attributes *)

op h jContents : i : Id.Clamping ITEM ! External Clamping .

(* local messages *)

op Uclamp Clamp : Id.Clamp ! Local Clamping Mes .

(* export messages *)

op Clamp-done Unclamp-done: Id.Clamping OId ! Exported Clamping Mes .

(* Imported messages *)

op Put, Get : OId Id.Controller ITEM LOC

! Imported Clamping Mes (* from the Robot Component *).

op Pick-up, Deliver : OId Id.Controller ITEM PLACE !
Imported Clamping Mes (* from the Auto-Guided Vehicle Component *).

endo.

< Cp | Clamped : True, Contents: it>

Unclpam-done(C, Cp)

Unclamp(Cp)
Deliver(G,Cp,it)

CLAMPING

Unclamp(Cp)

Put(R,-,Clamp)Clamp(Cp)

< Cp | Contents: nil >

Unclamp-done(C, Cp)

Cplam-done(C, Cp)

Clpam-done(C, Cp)

< Cp | Clamped : True, Contents:it>

Unclpam-done(C, Cp)

Clamp-done(C, Cp)

<Cp | Clamped : Flase, Contents:it>

< Cp | Clamped : False, Contents:it>

< Cp | Contents: nil >

Clamp(Cp)

CLAMP-DONE

it <> nil

. . ..

. . ..

(Robot)

PICK-UP

. . ..

Get(..)

T
he

 im
po

rt
ed

 M
es

ss
ag

es

True

GET

. . ..

True

True

The Internal Behaviour

. . ..
True

 unclamping(..)

. . ..

<Cp | Clamped:true, Contents : It2>

T
he

 E
xp

or
te

d
M

es
sa

ge
s

DELIVER(AGV)

(Robot)
PUT

clamping(..). . ..

. . ..

(AGV)

Unclamp(..)

Pick-up(..)

Clamp(..)

it <> nil

Deliver(..)

Put(..)
. . ..

The Clamping System Component as a CO-Net

CLAMPG

UNCLAMPG

DELIVER

PUTCLAMP

UNCLAMP

UNCLAMP-DONE

UNCP

 CP

Figure 13: The Clamping Component Co-Net.

