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Abstract— This work proposes a novel approach to recon-
struct three-dimensional vehicle trajectories in monocular video
sequences. We leverage state-of-the-art instance-aware semantic
segmentation and optical flow methods to compute object video
tracks on pixel level. This approach uses Structure from Motion
to determine camera poses relative to vehicle instances and
environment structures. We parameterize vehicle trajectories
with a single variable by combining object and background
reconstructions. The naive combination of vehicle and environ-
ment reconstruction results in inconsistent motion trajectories
due to the scale ambiguity of SfM. We determine consistent
object trajectories by projecting dense vehicle reconstructions
on the terrain surface. Our scale ratio estimation approach
shows no degenerated camera-vehicle-motions. We demonstrate
the usefulness of our approach using publicly available video
data of driving scenarios. We extend this evaluation showing
trajectory reconstruction results using drone footage. We use
synthetic data of vehicles in urban environments to evaluate
the proposed algorithm. We achieve an average reconstruction-
to-ground-truth distance of 0.17 meter.

I. INTRODUCTION

A. Trajectory Reconstruction

The reconstruction of three-dimensional vehicle trajecto-
ries is crucial not only for autonomous vehicles, but also
for driver assistance systems. Recent Structure from Motion
(SfM) [1], [2] and Multi-View Stereo (MVS) [3] libraries
are able to build city scale 3D environment models using
monocular cameras. In contrast to other sensing modalities,
like LIDAR, commodity cameras are cheaper, lighter and
require less energy. While this is in general a desirable aspect
for all types of transportation systems, it is of particular
interest for small sensor platforms, like drones. We propose
a method to reconstruct three-dimensional trajectories of
vehicles using SfM and MVS techniques with a single
camera.

Due to the scale ambiguity of SfM additional motion as-
sumptions are required to compute three-dimensional vehicle
trajectories consistent to terrain structures. [4]-[6] focus on
driving scenarios where the relative pose and height of the
camera is known. These approaches are not applicable to
scenarios with variable camera poses like drones or motor-
cycles.

[7] presents a principle to reconstruct independent object mo-
tions exploiting non-accidentalness. By applying additional
motion constraints this approach allows determining the scale
ratio between vehicle and environment reconstruction. For

instance, [8]-[10] tackle the scale ambiguity by propos-
ing specific object-camera-motion constraints. In contrast to
previous works, we propose a degeneracy-free method to
compute object-background-scale-ratios by exploiting terrain
geometry constraints.

To reconstruct moving vehicles in video data with Structure-
from-Motion or Visual SLAM approaches it is necessary
to separate object instances and background structures. The
joint triangulation of independently moving vehicle and
background feature correspondences results in missing object
or scene points as well as omitted object or scene cameras.
[11], [12] use motion segmentation and keypoint tracking to
detect, track and reconstruct three-dimensional vehicle trajec-
tories. Since motion segmentation fails to segment stationary
objects and keypoint tracking is not suitable for occlusion
handling, we apply instance-aware semantic segmentation
and Structure-from-Motion techniques as basis for the pro-
posed vehicle trajectory reconstruction pipeline. Our method
does not rely on specific camera pose constraints such
as fixed camera-ground-angles or known camera-ground-
distances. We demonstrate the effectiveness of our approach
showing results for a variety of input videos including driving
scenarios and sequences captured by drones.

B. Contribution

(1) This paper presents a system for vehicle trajectory
reconstruction in monocular video data. We exploit state-
of-the-art Structure from Motion and semantic segmentation
approaches to compute three-dimensional vehicle trajecto-
ries. (2) Structure from Motion reconstructions are scale
ambiguous. Thus, the naive combination of object and back-
ground reconstruction results in inconsistent vehicle mo-
tion trajectories. We propose a novel constraint to compute
object-background-scale-ratios and vehicle trajectories con-
sistent to terrain shape and image observations. In contrast
to previously published approaches, the presented constraint
shows no degenerated motion cases. (3) The computation of
the proposed constraint requires the intersection of camera-
object-rays and terrain shape. We describe an efficient
intersection computation approach exploiting depth buffer
values of terrain mesh renderings of corresponding camera
poses. (4) We present two filter steps to remove outliers in
dense object reconstructions. (5) We perform a quantitative
evaluation of our vehicle trajectory reconstruction algorithm
using virtual data and (6) show the feasibility of the al-
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Fig. 1: Pipeline of the vehicle trajectory reconstruction approach. Computation results are represented by boxes with corners
and computation steps by boxes with rounded corners. Arrows show computational dependencies.

gorithm using the CityScapes dataset and additional drone
footage.

C. Related Work

The presented vehicle trajectory reconstruction approach
builds on top of instance-aware semantic segmentation and
Structure from Motion methods. While early ConvNets de-
signed for semantic segmentation applied patchwise training
[13], current Fully Convolutional Networks [14] are trained
end-to-end. Recent works [15]-[17] perform semantic seg-
mentation on instance level, i.e. pixels are associated with
instance identifiers in addition to class labels. Currently,
there are two popular categories of rigid SfM approaches:
sequential and global SfM. Sequential SfM methods [1],
[2], [18]-[20] register images iteratively whereas global
SfM approaches [1], [20] compute camera poses jointly, for
example, by rotation averaging.

The naive combination of object and environment recon-
struction leads to inconsistent motion trajectories due to the
scale ambiguity of Structure-from-Motion results. [7] intro-
duces the reconstruction of 3D trajectories of independently
moving objects exploiting non-accidental motion constraints.
[8] leverages the same principle while assuming that the
object of interest moves perpendicular to a single ground
plane. [11] applies a bearing-only-tracker based multibody
VSLAM to reconstruct trajectories of moving vehicles. [21]
approximates the ground with locally planar surfaces and as-
sumes that distances of object points to corresponding ground
representations are constant. [9] represents the motion of
single 3D points with linear combinations of trajectory basis
vectors. This approach is suitable to reconstruct indepen-
dently moving point sets. In contrast to previously published
three-dimensional trajectory reconstruction approaches, our
method does not show degenerated motion cases. [21]

presents a virtual dataset to quantitatively evaluate vehicle
trajectories using monocular video data. [7]-[9], [11] show
only qualitative results.

II. OBJECT MOTION TRAJECTORY RECONSTRUCTION

Fig. 1 outlines the pipeline of our approach. The input
is an ordered image sequence. We track two-dimensional
object shapes on pixel level across video sequences following
the scheme proposed in [22]. In contrast to [22], we used
[17] for instance-aware semantic segmentation and [23] for
optical flow computations to increase the robustness of the
tracking pipeline. We use the term object images to denote
images that show only pixels of single vehicle instances. In
contrast, background images depict exclusively environment
structures. We apply SfM [1], [2] to object and background
images as shown in Fig. 1. The corresponding Structure
from Motion results are denoted with sfm(® and sfm(®.
We use sfm(® and sfm(® to define three-dimensional
scale-dependent object motion trajectories. We project dense
vehicle point clouds onto reconstructed terrain meshes to
determine consistent vehicle environment scale ratios.

A. Object Trajectory Representation

Previous works [7], [8], [11], [21] propose different nota-
tions to describe scale dependent object trajectory represen-
tations. We provide a brief description of scale dependent
vehicle trajectories following the notation presented in [21].
Without loss of generality, we describe scale dependent
trajectory representations for single vehicles. [21] denotes the
reconstructed points in sfm(® and s fm® with 05»0) € Pl
and b,gb) € P®). The indices j and k identify specific points
in the corresponding point cloud. The superscripts (o) and
(b) distinguish between elements (e.g. vectors and camera
poses) defined w.r.t. the coordinate frame systems of s fm(®)
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Fig. 2: Intermediate results for scale ratio computation. Results are computed using the Cityscape dataset [24].

and sfm(®).

We use the term reconstructed camera to denote extrinsic
and intrinsic parameters of registered object and background
images. We associate reconstructed cameras in sfm(®) with
their counterpart in s fm(b) and vice versa, i.e. reconstructed
cameras belonging to the same input frame. Reconstructed
cameras without corresponding counterparts are removed
from the reconstructions.

Let Rgo) and cz(-o) denote camera rotation and center of input
image i contained in the object reconstruction sfm(®). The
rotation and center are defined w.r.t. the reconstructed object
point cloud o ) e pl), Equation (1) allows us to convert

vehicle points o ; °)

@

given in object coordinates to vehicle

points o, given in camera coordinates of camera i.
() _Rrl) (5 (o)
o;” =R; -(oj —-c;”) (D
A pair of reconstructed cameras in sfm(®) and sfm(®) share

. b
the same camera coordinate system. The camera center CE )

and rotation R(b) contained in the background reconstruction
sfm® allows us to convert object points 0()

(’2 in background coordinates

in camera

coordinates to object points o
as shown in equation (2)
o) = + R®" . oli). 2)
Due to the scale ambiguity of SfM the naive combina-
tion of vehicle and environment reconstruction results in
inconsistent motion trajectories [25]. We model the scale
ambiguity by extending equation (2) with an additional
variable representing the scale ratio r between object and
background reconstruction. Equation (3) allows to convert
vehicle points o %) defined in object coordinates to vehicle

() ’
points o, ; in environment coordinates of camera 1.

o) = ® . RO

3)

To define a scale ratio parameterized object motion trajectory
we represent the object points for each frame with equation
(3). Substituting r in equation (3) with the real scale ratio
allows us to compute a consistent vehicle motion trajectory.

B. Scale Ratio Estimation using Shape Constraints

We tackle the problem of determining consistent object-
background-scale-ratios by exploiting geometric consistency
constraints applicable to ground restricted object categories,
like vehicles. In contrast to previous works, our approach
does neither rely on restrictions of camera and object mo-
tions nor specific camera poses. The proposed scale-ratio
estimation approach shows no degenerated cases, in which a
consistent object trajectory computation is impossible. Our
method exploits the fact that some vehicle points should
touch the terrain surface, like 3D points corresponding to
the wheels of a car.

To ensure the presence of suitable 3D points we enhance
the points in sfm(®) by leveraging the Multi-View Stereo
(MVS) algorithm presented in [3]. In contrast to sparse SfM
algorithms, the MVS library [3] reliably triangulates points
at wheels of driving vehicles. We exploit the previously
computed instance-aware object segmentations to determine

outliers in the dense object point cloud. Let p,; be the

homogeneous image projection of a point o( o)

world coordinates w.r.t. to camera 7.

Pj; = KiRz(‘O) (0§°) —-C

given in object

) “)
K denotes the corresponding calibration matrix. We define
the object affinity of a 3D point ogo) in the dense object
point cloud according to equation (5)

05 = Zai(pj,i) / Zgi(pj,z‘)~

The pixel classification function 6;(p) = 1, if p corresponds
to the object in image ¢ and 6;(p) = 0, otherwise. o;(p) takes
the visibility into account, i.e. o;(p) = 1, if p is visible in
image ¢ and o;(p) = 0, otherwise. We classify an object

(&)
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Fig. 3: Projection of the object point cloud (red) onto the ground mesh using the depth buffer. The projected points are
shown in green. The inconsistent initial scale ratio becomes apparent by examining the distance between object points and
corresponding projections. Results are computed using the StuttgartO1 sequence in the Cityscape dataset [24].

point j as outlier, if 0; < 0.9. This threshold is empirically
determined and takes the robustness of the instance-aware
segmentation computed with [17] into account. We apply
statistical outlier removal to the previously computed object
points using the standard deviation of the mean distance as
outlier criterion. The mean distance is computed considering
the five next neighbors. Fig. 2(b) and 2(f) show a dense object
reconstruction with and without outliers, respectively.

We apply the MVS algorithm presented in [3] to the sparse
background reconstruction s fm(®) to compute a dense back-
ground representation. We exploit ground segmentations to
classify 3D points in the background point cloud as ground
or non-ground points. Let p(j) be the set of image indices
used to triangulate background point j and v;; be the pixel
position of the corresponding observation in image i. We
define the ground afﬁnity according to equation (6)

Z ¢i(v;.) ©6)

lE#(J)

= Iu
The pixel classification function ¢;(v) = 1, if v corresponds
to ground in image 4 and 6;(v) = 0, otherwise. The (non)-
ground segmentation is computed using [14]. We use the
points bg-b) in the dense background point cloud with g; >
0.5 to compute a dense ground point cloud. Fig. 2(c) shows
the dense background reconstruction and Fig. 2(g) only the
points classified as ground.

We use the algorithm described in [26] to compute watertight
ground meshes. This allows us to inter- and extrapolate
ground surface areas occluded by moving objects. We de-
termine connected components in the ground mesh and
remove isolated mesh parts. Fig. 2(h) shows an example
of a computed ground mesh. The removal of non-ground
points before computing the mesh speeds up the computation
and leads to a more precise representation of the ground
geometry.

To determine a consistent object-background-reconstruction
scale ratio we use equation (3) to create for each camera ¢

a set of vectors v(b) pointing from the camera center c (b) to

the position o; b> of point j. Let F' denote the set of faces
contained 1n the ground mesh and h;; the ray defined by
cgb) and v, ;. ()

A naive approach to determine the closest ray-ground-mesh-
intersection of a ray h;; requires the ray-face-intersection

and corresponding ray-face-intersection parameter computa-

tion for each face f € F'. This includes intersection tests with
occluded faces and faces not visible in the field of view of the
current background camera 7. This makes the object-ground-
ray intersection computation for all rays h;; computationally
expensive.

Instead of computing object-ground-ray intersections, we use
the visualization toolkit (VTK) [27] to render the ground
mesh from the perspective of camera ¢. We exploit the
information stored in the depth buffer to determine 3D-3D
object-ground correspondences. We determine for each %Jomt
0§o) the corresponding point o (-) = R(o)( 5 clo in
the camera coordinate system of camera 1 as well as the
corresponding image projection z; ; = K; oj . For x; ; we
use the corresponding depth buffer value to determine a

point p ) lying on the ground mesh surface with the same

prOjCCthI’l than 05-) w.rt. to camera i. We apply bilinear

interpolation while accessing depth buffer values.
To determine a consistent scale ratio, we must find the
smallest 7, which satisfies ||0§»1) |=r- ||p§-2) || for an arbitrary
point 0§-Z) in the object point cloud. We compute r according
to equation (7) for each image i, separately.

ri = min({|p}" || - (Jof"I)~"lj € {1..... [P} D
The scale ratio and intersection parameter r; corresponds to
the point being closest to the ground surface, i.e. a point
at the bottom of the vehicle. Plugging r; in equation (3)
for camera ¢ places the object point cloud on top of the
ground surface. Thus, the smallest ray-plane-intersection-
parameter r; represents the object-to-background-scale-ratio.
We reconstruct the three-dimensional vehicle trajectory as
defined in equation (8).

r=med({r;li € {1,...,n1}}) (8)

Here, med denotes the median and n; the number of
images. We do not consider invalid image scale ratios 7;, i.e.
cameras which have no camera-object-point-rays intersecting
the ground representation.
To compute the final object trajectory we compute equation
(3) for each point 5 at all time steps i. The removal of outliers
greatly improves object trajectory visualizations, since a
single outlier in the object reconstruction results in multiple
outliers in the final object trajectory.
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Fig. 4: Qualitative evaluation of the proposed trajectory reconstruction approach. First and second column: driving sequences
of the Cityscape dataset [24]. Third column: drone sequence. Fourth column: synthetic drone sequence of the dataset presented
in [21]. Reconstructed cameras are shown in red. The last two rows show the reconstructed environment mesh with vehicle
trajectories in green, blue, pink and teal. The figure is best viewed in color.
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Fig. 5: Quantitative evaluation of the proposed method using the dataset presented in [21]. The dataset contains seven
different vehicle trajectories (Right Curves, Left Curves, Crossing ...) and five different vehicle models (Lancer, Lincoln
Navigator, ...). The figure shows the trajectory error in meter, which is the average trajectory-point-mesh distance, i.e. the
shortest distance of each vehicle trajectory point to the vehicle mesh at the corresponding time step. The trajectory error
is affected by object and background camera poses registration errors, incorrect vehicle point triangulations and scale ratio

inaccuracies.

(a) Reconstructed vehicle trajectory in the coordinate frame system
of the virtual environment.
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(b) Registered vehicle trajectory at selected frames with correspond-
ing ground truth vehicle models.

Fig. 6: Registration of the reconstructed vehicle trajectory for quantitative evaluation. The trajectory points are shown in
green. The virtual environment is part of the synthetic dataset presented in [21]. The figure is best viewed in color.

III. EVALUATION

Fig. 4 shows qualitative results of our vehicle trajectory
reconstruction approach using publicly available video data
[24]. We used the instance-aware segmentation in [17] and
the optical flow algorithm in [23] to segment and track visible
objects following the approach described in [22]. We observe
that [23] outperforms [28] for large object displacements. We
evaluated different SfM pipelines for object and environment
reconstructions: Colmap [2], OpenMVG [1], Theia [20]
and VisualSfM [19]. We notice that Colmap computes the
best vehicle and OpenMVG the most stable environment
reconstructions. We also applied different MVS algorithms
for ground reconstruction: [29], MVE [30] and Colmap
[3]. Using drone imagery all MVS approaches achieved
decent results, however in driving scenarios only Colmap
reconstructed the ground surface with satisfying quality.
Fig. 2(b) and Fig. 2(f) show the MVS object reconstruction
result before and after the outlier removal described in
section II-B. Fig. 2(c) shows the MVS background recon-
struction and Fig. 2(h) the corresponding ground mesh.
Due to the lack of datasets with TV video data of driv-
ing vehicles and suitable 3D ground truth data, we show
quantitative results using the synthetic dataset presented in
[21]. The dataset consists of 35 sequences containing five
vehicles and seven different motion paths of drone footage

in an urban environment. The dataset provides pose and
shape information of vehicles for each frame as ground
truth. The dataset contains also ground truth camera poses
used to render the sequences. The ground truth camera
poses and the camera poses of the background reconstruc-
tion allow registering the reconstructed vehicle trajectory
with the ground truth coordinate system. Fig. 6 shows an
example. See [21] for more details about the registration
of the trajectories with the ground truth coordinate system.
Fig. 5 shows the trajectory error of all vehicles for each
motion path. [21] defines the trajectory error as the average
trajectory-point-mesh-distance, i.e. the shortest distance of
each vehicle trajectory point to the vehicle mesh at the
corresponding time step. In a few cases, the algorithms
presented in [2] and [3] compute degenerated object point
clouds, which decreases the quality of the corresponding
scale ratio estimation. Table I shows the trajectory errors
per vehicle in comparison to [21]. Our method achieves a
trajectory error of 0.17 meter and outperforms the results
reported in [21]. Table I highlights the importance of the
outlier removal described in section II-B.

IV. CONCLUSIONS

This paper presents a pipeline to reconstruct the three-
dimensional trajectory of vehicles using monocular video
data. We leverage Multi-View Stereo techniques to compute



Scale Ratio Average Trajectory Error (meter)
Est. Type Lancer Lincoln Smart Van  Golf

[21] 0.20 0.23 0.33 0.33 047
Ours 0.11 0.09 0.14 021 0.30
Ours (no o.r.) 1.13 1.51 1.40 1.29 147

TABLE I: Trajectory error per vehicle of the benchmark
dataset presented in [21]. Our approach achieves an average
trajectory error of 0.17 m considering all sequences and
outperforms the method presented in [21] by 0.14 m. The last
row shows the results of our method without outlier removal

(o.r.).

accurate vehicle and environment models. We propose a
novel approach to estimate consistent vehicle trajectories
using terrain shape constraints. In contrast to previous
approaches, the presented scale ratio constraint shows no
degenerated motion cases. We show the effectiveness of
the proposed vehicle trajectory reconstruction approach
using drone footage and publicly available video data of
driving scenarios. We perform a quantitative evaluation of
the proposed approach using synthetic drone footage. We
achieve an average trajectory error of 0.17 m evaluating
35 different sequences. In future work, we will analyze
breakdown points of the proposed pipeline in more detail.
This includes minimal object sizes and object occlusions.
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