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Abstract

A serious problem in image classification is that a trained model might perform well
for input data that originates from the same distribution as the data available for model
training, but performs much worse for out-of-distribution (OOD) samples. In real-world
safety-critical applications, in particular, it is important to be aware if a new data point is
OOD. To date, OOD detection is typically addressed using either confidence scores, auto-
encoder based reconstruction, or contrastive learning. However, the global image context
has not yet been explored to discriminate the non-local objectness between in-distribution
and OOD samples. This paper proposes a first-of-its-kind OOD detection architecture
named OODformer that leverages the contextualization capabilities of the transformer.
Incorporating the transformer as the principal feature extractor allows us to exploit the
object concepts and their discriminatory attributes along with their co-occurrence via
visual attention. Based on contextualised embedding, we demonstrate OOD detection
using both class-conditioned latent space similarity and a network confidence score. Our
approach shows improved generalizability across various datasets. We have achieved a
new state-of-the-art result on CIFAR-10/-100 and ImageNet30. Code is available at :
https://github.com/rajatkoner08/oodformer.

1 Introduction
Deep learning has been shown to give excellent results when the data in an application comes
from the same distribution as the data that was available for model training, also called in-
distribution (ID) data. Unfortunately, performance might deteriorate drastically for out-of-
distribution (OOD) data. The reason why application data might be OOD can be manifold
and is often attributed to complex distributional shifts, the appearance of an entirely new
concept, or random noise coming from a faulty sensor. As deep learning becomes the core of
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many safety-critical applications like autonomous driving, surveillance system, and medical
applications, distinguishing ID from OOD data is of paramount importance.

The recent progress in generative modelling and contrastive learning has led to a signifi-
cant advancement in various OOD detection methods. [26, 36] improved softmax distribution
for outlier detection. [45, 48, 52] used contrastive learning for OOD detection. The common
idea in these works is that in a contrastively trained network, similar objects will have similar
embeddings while dissimilar objects will be repelled by the contrastive loss. However, these
approaches often require fine-tuning with OOD data or rely on several negative samples
and often suffer from inductive biases prevalent in convolution based architectures. Hence,
it is difficult to train and deploy them out-of-the-box. This motivates us to go beyond
the conventional practice of using negative samples or inductive biases in designing an
OOD detector. Along this line, we argue that systematic exploitation of global image
context presents a potential alternative to obtain a semantically compact representation.
To systematically exploit the global image context, we leverage the multi-hop context
accumulation of the vision-transformer (ViT) [14].

Figure 1: Comparison of Transformer with traditional
ResNet based variant, both trained with ID (CIFAR-
10) samples, for distinguishing ID vs OOD (SVHN)
samples .

Transformer’s visual attention
significantly outperforms convolutional
architectures on various image-
classification [14, 49], object-detection
[4], relationship-detection [30, 32]
and other vision-oriented task
[5, 24, 31, 38]. However, transformer’s
ability to act as a generalized OOD
detector remains unexplored so far. As
a suitable transformer candidate, we
investigate the emerging transfomer
architecture in image-classification
tasks, namely the Vision Transformer
(ViT) [14], and its data-efficient variant
DeiT [49].ViT explores the global
context of an image and its feature-
wise correlations that are extracted from small image patches using visual attention.
Intuitively, the difference between an ID and OOD is a small-to-large perturbation in form
of the incorrect ordering or corruption (incl. insertion or deletion). Thus, we argue that
capturing class/object attribute interaction is important for OOD detection, which we have
implemented via a transformer.

To the best of our knowledge, we are the first to propose and investigate the role of
global context and feature correlation using vision transformer to generalise data in terms of
OOD detection. Our key idea is to train ViT with an ID data set and use the similarity of its
final representative embedding for outlier detection. Through the patch-wise attention on the
attributes, we aim to reach a discriminatory embedding that is able to distinguish between
ID and OOD. First, we follow a formal supervised training of ViT with an in-distribution
data set using cross-entropy loss. In the second step, we extract the learned features from
the classification head ([class] token) and calculate a class conditioned distance metric for
OOD detection. Our experiment exhibits that softmax confidence prediction from the ViT
is more generalisable in terms of OOD detection than the same from the convolutional
counterpart. We also observe that the former overcomes multiple shortcomings of the latter,
e.g., poor margin probabilities [15, 37]. Figure 1, illustrates our claim that, even with much
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fewer parameters, transformer-based architecture performs significantly better compared to
traditional convolution-based architecture. This shows the superiority of the transformer in
the outlier detection task.

We evaluate the effectiveness of our model on several data sets such as CIFAR-10,
CIFAR-100 [33], ImageNet30 [22] with multiple setting (e.g., class conditioned similarity,
softmax score). Our model outperforms the convolution baseline and other state-of-the-art
models in all settings by a large margin. Finally, we have conducted an extensive ablation
study to strengthen the understanding of the generalizability of ViT and the impact of the
shift in data. In summary, the key contributions of this paper are:

• We model the OOD task as an object-attribute-based compact semantic representation
learning. In this context, we are the first to propose a vision-transformer-based OOD
detection framework named OODformer and thoroughly investigate its efficiency.

• We probe extensively into the learned representation to verify the proposed method’s
efficacy using both class-conditioned embedding-based and softmax confidence score-
based OOD detection.

• We provide an in-depth analysis of the learned attention map, softmax confidence, and
embedding properties to intuitively interpret the OOD detection mechanism.

• We have achieved state-of-the-art results for numerous challenging datasets like
CIFAR-10, CIFAR-100, and ImageNet30 with a significantly large gain.

2 Related Work
OOD detection approaches can be classified into a number of categories. The first and
most intuitive approach is to classify the OOD sample using a confidence score derived
from the network. [20] propose max softmax probability, consecutively improved by ODIN
using temperature scaling [36]. [34] utilised Mahalanobis distance and [26] improved
ODIN without using OOD data even further. Other density approximation-based generative
modelling [39, 44, 46] also contributed in this approach. [6] also shown density based
uncertainty estimation could also be used for OOD detection. A second direction towards
OOD detection is to train a generative model for likelihood estimation. [41, 55] focuses
on learning representations of training samples, using a bottleneck layer for efficient
reconstruction and generalisation of samples. Another advancement on OOD detection is
based on self-supervised [7, 8, 9, 35] or supervised [10, 29] contrastive learning. It aims
on learning effective discriminatory representations by forcing the network to learn similar
representations for similar semantic classes while repelling the others. This property has
been utilised by many recent works [45, 48, 52] for OOD detection. The common idea in
these works is that in a contrastively trained network, semantically closer objects from ID
samples will have similar representation, whereas OOD samples would be far apart in the
embedding space.

3 Attention-based OOD detection
In this section, the OOD detection problem is presented followed by a brief background about
vision transformer, and the feature similarity-based outlier detection. As OOD labels may
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not be available for most scenarios, our method primarily relies on similarity score-based
detection.

3.1 Problem Decomposition : OOD Detection
Let xin ∈ X ⊆ Rk a training sample with kth dimensions and let yin ∈ Y = {1, ...,C} be its
class label, where C is number of classes. For a given neural feature extractor (Ff eature),
learned feature X f eat ⊆ Rd is obtained as X f eat = Ff eature(X). Finally we get posterior class
probabilities as P(y = c|x f eat), where x f eat ∈ X f eat and y ∈ Y = Fclassi f ier(X f eat). Ff eature
and Fclassi f ier are two learned functions that map an image from data space to feature space
and then derive the posterior probability distribution. In a real world setting, data drawn
from X in an application may not follow the same distribution as the training samples (xin).
We refer these data as OOD (xood ∈ X , p(xood) 6= p(xin)). A question now is to what extent
OOD data diverges from an ID in their representations? A second question is how reliable
the prediction of the posterior probability distributions is for OOD data. To quantify the
shift in data from the ID samples, we compute the similarity of the embedding between the
samples (xin or xout ) and the nearest ID class mean. In an ideal scenario, this representational
similarity should be much less for OOD (xout ) than ID (xin). Also, its softmax confidence
should be significantly lower than that of ID samples, allowing the use of a simple threshold
to distinguish between ID and OOD samples.

3.2 Feature extraction: Vision Transformer
In our work we employ the Vision Transformer (ViT) [14] and its data efficient variant DeiT
[49]; they use an identical transformer encoder [50] architecture with the same configura-
tion. However, ViT uses ImageNet-21K for pre-training, whereas DeiT uses more robust
data augmentation and is only trained with ImageNet. The encoder of ViT takes only a 1D
sequence of tokens as input. However, to handle a 2D image with height H and width W ,
it divides the image into N number of small 2D patches and flattened into a 1D sequence
X ∈ RN×(P2·C′), where C′ is the number of channels, (P,P) is the resolution of each patch
and N is the number of sequences obtained as N = HW/P2. A [class] token (xcls) similar to
BERT [13] prepended (first position in sequence) to the sequence of patch embeddings, as
expressed in Eq.1,

zx = [xcls;x1
pE;x2

pE; ...;xN
p E]+Epos,E ∈ R(P2·C′)×d ,Epos ∈ R(N+1)×d (1)

where xcls,Epos are learnable embedding of dth dimension. E is the linear projection layer
of d dimension for a patch embedding (e.g., x1

pE). The [class] token embedding (x f eat ∈Rd)
from the final layer of the encoder is used for classification. This classification token serves
as a representative feature from all patches accumulated using global attention.

At the heart of each encoder layer (for details, see supplementary) lies a multi-head
self-attention (MSA) and a multi-layer perception (MLP) block. The MSA layers provide
global attention to each image patch; thus, it has less inductive bias for local features or
neighbourhood patterns than a CNN. One image patch or a combination thereof represents
either a semantic or spatial attribute of an object. Therefore, we hypothesise that cumulative
global attention on these patches would be helpful to encode discriminatory object features.
Positional embedding (Epos) of the encoder is also beneficial for learning the relative position
of a feature or a patch. Subsequently, a local MLP block makes those image features
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translation invariant. This combination of MSA and MLP layers in an encoder jointly
encodes the attributes’ importance, associated correlation, and co-occurrence. In the end,
[class] token being a representative of an image x, consolidate multiple attributes and their
related features via the global context, which is helpful to define and classify a specific object
category.

The [class] token from the final layer is used for OOD detection in two ways; first, it is
passed to Fclassi f ier(x f eat) for softmax confidence score, and second it is used for latent space
distance calculation as described in next section.

3.3 OOD detection
For an OOD sample, one or more attributes of the object are assumed to be different (e.g.
corrupted or new attributes). Hence, an OOD sample should lie in a distribution that has
significant distributional shift from training samples. We assume these shifts in data would be
captured by the representational features extracted from the ViT. We quantify this variation
of features or attributes compared to ID samples using 1) a distance metric on the latent space
embedding and 2) softmax confidence score.

Algorithm 1: OOD detection using distance metric
Input: training samples {xi

in} and training labels {yi
in} for i = 1 : n, test sample xtest

Output: xtest is a outlier or not?
for each class: c← 1 to C do
{xi

f eat}i=1:nc = Ff eature({xi
in|yi

in = c}i=1:nc ), where nc = |{xi
in|yi

in = c}|
compute mean : µc =

1
nc

∑
nc
i=1(x

i
f eat)

compute covarience : Σc =
1

nc−1 ∑
nc
i=1(x

i
f eat −µc)(xi

f eat −µc)
>

end
xtest

f eat = Ff eature(xtest)

distance = minc(∑
C
c=1(x

test
f eat −µc)Σ

−1
c (xtest

f eat −µc)
>)

con f = maxc(so f tmax(Fclassi f ier(xtest
f eat))

if (distance > tdistance) OR (con f < tcon f ) then
xtest is an outlier

else
xtest is not an outlier

end

Distance in Latent Space: Multiple attributes of an object can be found in different
spatial locations of an image. In vision transformer, image patches are ideal candidates
for representing each of the individual attributes. Global information contextualisation from
these attributes plays a crucial role in the classification of an object (see Sec. 4.2). Supervised
learning (e.g.,cross-entropy) should benefit accumulation of object-specific semantic cues
through [class] token for such global attributes and their context. This incentivises implicit
clustering of object classes that have similar attributes and features, which are favourable for
generalisation. To take advantage of attribute similarities, we compute class-wise distance
over the activation of [class] token. First, we compute the mean (µc) of all class categories
present in training samples. Second, for a test sample, we compute the distance between
its embedding from the mean embedding of each class. Finally, the test sample is classified
as OOD if its distance is more than the threshold (tdistance) to its nearest class. We have
used the Mahalanobis distance metric for our experiment. The output from a representative
[class] token is normalised with the transformer default layer normalisation [1] for every
token. It makes the embedding distribution normal, thus Mahalanobis distance could utilise
the normally distributed mean and co-variance unlike Euclidean distance which only uses
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ID CIAFR-10 CIFAR-100 IM-30

(Out-of-Distribution) SVHN CIFAR-100 SVHN CIFAR-10 CUB Dogs

Baseline OOD[20] 95.9 89.8 78.9 78.0 - -
ODIN[36] 96.4 89.6 60.9 77.9 - -

Mahalanobis[34] 99.4 90.5 94.5 55.3 - -
Residual Flows[54] 99.1 89.4 97.5 77.1 - -

Outlier exposure[21] 98.4 93.3 86.9 75.7 - -
Rotation pred[23] 98.9 90.9 - - - -

Contrastive + Supervised[52] 99.5 92.9 95.6 78.3 86.3 95.6
CSI[48] 97.9 92.2 - - 94.6 98.3

SSD+[45] 99.9 93.4 98.2 78.3 - -

OODformer(Ours) 99.5 98.6 98.3 96.1 99.7 99.9

Table 1: Comparison of OODformer with state-of-the-art detectors trained with supervised loss.

mean. Mahalanobis distance from a sample to distribution of mean µc and covariance Σc can
be defined as

Dc(xtest
f eat) = (xtest

f eat −µc)Σ
−1
c (xtest

f eat −µc)
> (2)

We have also examined Cosine and Euclidean distances as shown in Figure 3a. The complete
algorithm to compute an outlier has been given to Algorithm 1.
Softmax confidence score: We get the final class probabilities from Fclassi f ier through
softmax. Softmax based posterior probability has been reported in earlier studies to
give erroneous high confidence score when exposed to outliers [34]. Prior works used
this posterior probability for OOD detection task, using either a binary classifier [20] or
temperature scaling [36]. We argue that for a good attribute cluster representation as in the
case of a transformer no extra module for OOD detection is needed (see Table. 3). Thus in
this work, we use only simple numerical thresholds (tcon f ) from ID samples for the detection
of outliers without using additional OOD data for fine-tuning.

4 Experiments
In this section, we evaluate the performance of our approach and compare it to state-of-the-
art OOD detection methods. In Sec. 4.1, we report our results on labeled multi-class OOD
detection and one class anomaly detection. It also contains a comparison with state-of-the-art
methods and a ResNet [19] baseline. In Sec.4.2, we examine the influence of architectural
variance and distance metric on the OODformer in the context of the OOD detection.
Area under PR and ROC : A single threshold score may not scale across all the data sets.
In order to homogenise the performance across multiple data sets, a range of thresholds
should be considered. Thus, we report the area under precision-recall (PR) and ROC curve
(AUROC) for both the latent space embedding and the softmax score.
Setup: We use ViT-B-16 [14] as the base model of our all experiments and ablation study.
Variants of ViT (Base-16, Large-16 with embedding size 768 and 1024 along with patch size
16) and DeiT (Tiny-16, Small-16 with corresponding embedding size of 192 and 384) used
a similar architecture but differ on embedding and the number of attention head (full details
provided in appendix). As transformers have inherent lesser inductive biases compared to
CNNs, it can exploit similarities more efficiently when pre-trained with large datasets as
prevalent with well-known architecture like BERT [13] or GPT2 [42]. Thus, pre-training
with large datasets is a necessary precondition for most transformer based architectures
and their use cases. Hence, all the models we use are pre-trained on ImageNet [12] as
recommended in [14]. Supervised cross-entropy loss is used for training along SGD as
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Methods Airplane Automobile Bird Cat Dear Dog Frog Horse Ship Truck Average

GT[16] 74.7 95.7 78.1 72.4 87.8 87.8 83.4 95.5 93.3 91.3 86.0
Inv-AE[27] 78.5 89.8 86.1 77.4 90.5 84.5 89.2 92.9 92 85.5 86.6
Goad[2] 77.2 96.7 83.3 77.7 87.8 87.8 90 96.1 93.8 92 88.2
CSI[48] 89.9 99.9 93.1 86.4 93.9 93.2 95.1 98.7 97.9 95.5 94.3
SSD[45] 82.7 98.5 84.2 84.5 84.8 90.9 91.7 95.2 92.9 94.4 90.0

OODformer 92.3 99.4 95.6 93.1 94.1 92.9 96.2 99.1 98.6 95.8 95.7

Table 2: Comparison of OODformer with other methods on one-class OOD from CIFAR-10.

an optimizer and we followed the same data augmentation strategy like [29]. ResNet-50
[19] is our default convolution-based baseline architecture used across all result and ablation
studies. Mahalanobis distance-based score on representational embedding is used as the
default score for the AUROC calculation.
Datasets: We trained our networks on the following in-distribution data sets: CIFAR-10/-
100 [33] and ImageNet-30 (IM-30) [22]. AS OOD data for CIFAR-10/-100 we have chosen
resized Imagenet (ImageNet_r) [36] and LSUN [22] and SVHN [40] as specified in [48]. In
case of IM-30 we flow the same setup of [48], and used Places-365 [53], DTD [11], Dogs
[28], Food-101 [3], Caltech-256 [18], and CUB-200 [51]. Details about these data set are
given in the appendix.

4.1 Results
Comparison with State-of-the-Art: Table 1, exhibits that even with a simple cross-entropy
loss, OODformers achieve new state-of-the-art results on all data sets. Most importantly,
OODformer supersedes its predecessor on the complex near OOD data sets, which strongly
affirms substantial improvements in generalisation. In particular, detection of CIFAR-100 as
OOD samples with a network trained in CIFAR-10 (ID) or vice-versa is the most challenging
task since they share a significant amount of common attributes in similar classes. For
example, a ‘truck’ is an ID sample in CIFAR-10, whereas a ‘pickup-truck’ from CIFAR-100
is an OOD sample, despite being semantically closer and having many similar attributes.
These attributes vs class conflict leads to a significant drop in AUROC value for previous
methods, especially when CIFAR-100 is ID and CIFAR-10 is OOD. We gained a notable
5.2% and 17.8% gain in AUROC when trained on CIFAR-10 and CIFAR-100, respectively.
This can also be visualised in Figure.3b. These results show that the OODformer has superior
generalizability of the representational embedding due to the global contextualization of
object attributes from single or multiple patches, even with complex near OOD classification.
One class anomaly detection: Similar to OOD detection, anomaly detection is concerned
with certain data types or specifically one class. Apart from that, the specific class presence
of any class will be considered an anomaly. In this setting, we consider one of the classes
from CIFAR-10 as an in-distribution, and the rest of the classes are anomalies or outliers.
We train our network with one class (ID) and the rest of the nine classes become OOD and
we repeat these experiments for every class similar to [48]. Table 2, shows our OODformer
outperforms all existing methods and achieves new state-of-the-art results.
Comparison with ResNet: Table 3, shows the performance of OODformer in comparison
with ResNet baseline. To show the generalisability and scalability, we trained our network
with three in-distribution datasets and tested on nine different OOD datasets. Here, we use
softmax confidence score in addition to our default embedding distance-based score for OOD
detection. As discussed in Sec 1, softmax suffers from poor decision margin and lack of
generalisation when used for ODD detection with CNNs. This can be addressed using our
proposed OODformer. Table 3, shows that ours softmax based OOD detection significantly
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ID OOD Emb-Distance Softmax
ResNet OODformer ResNet OODformer

CIFAR-10
CIFAR-100 87.8 98.6 87.4 97.7
Imagenet_r 91.4 98.8 90.9 96.0

LSUN 93.4 99.2 92.4 97.6

CIFAR-100
CIFAR-10 73.7 96.1 69.3 88.9
Imagenet_r 79.9 92.5 72.4 86.1

LSUN 79.0 94.6 72.9 86.2

IM-30

Places-365 82.9 99.2 91.8 98.2
DTD 97.8 99.3 90.9 98.2
Dogs 75.29 99.9 92.3 99.0

Food-101 73.44 99.2 83.2 97.2
Caltech256 86.37 98.0 91.4 96.8
CUB-200 87.22 99.7 91.9 99.4

Table 3: Comparison of OODformer with ResNet baseline

and consistently outperforms ResNet and achieves an improvement as high as 19.6%. Our
default AUROC score using embedding similarity also outperforms our baseline by a large
margin. This result proves the objectness properties and exploitation of its related attributes
through global attention play the most crucial role for outlier detection. It bolsters our
hypothesis that, for outlier detection, a transformer can serve as the de-facto feature extractor
without any bells and whistles.

Figure 2: Representative example of an ID sample of Truck (above), and an OOD sample of Mountain
(below). Among the four attention maps of each image, top left represents the class token, the
remaining correspond to the image position marked with green square block. The right bar plot shows
the top 3 similar class embedding.

4.2 Dissection of OODformer
In this section, we extensively analyse the attention and impact of different settings via an
ablation study. We have used CIFAR-10 as ID and ViT-B-16 as default model architecture
for our experiments.
Global Context and Self-Attention: To understand how vision transformers discriminate
between an ID and OOD, we analyse its self-attention and the embedding space. Figure 2
depicts examples of both ID and OOD samples with their attention maps collected from the
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last layer. Self-attention accumulates information from all the related patches that define an
object. For an ID sample (‘truck’), [class] token attention focuses mostly on the object of
interest, while other selected patches put their attention based on properties similar to them
like colour or texture. However, in the case of an OOD sample, the object ‘mountain’ is
unknown to the network, the [class] token attention mostly focused on the sky and water,
while we draw similar observations for other patches as before. This misplaced attention
and absence of known object attributes leads to a lower similarity score and predicts wrong
classes just because of background similarity.

Model Acc. CIFAR100 Imagenet_r LSUN

Resnet-34 95.6 87.2 89.7 91.4
Resnet-50 95.4 87.5 90.0 91.7
Resnet-101 95.7 87.8 91.4 93.4

Resnet-34(PT) 97.0 89.5 93.8 96.0
Resnet-50(PT) 97.1 89.9 94.1 96.1
Resnet-101(PT) 98.0 90.1 94.6 96.0

DeiT-T-16 95.4 94.4 95.2 97.3
DeiT-S-16 97.6 96.6 96.3 98.4
ViT-B-16 98.6 98.6 98.8 99.2
ViT-L-16 98.8 99.1 99.2 99.4

Table 4: Comparison of various ResNet baseline (both
not pre-trained and pre-trained) and vision transformer
architecture. Here, (PT) defines the ResNet has been
pre-trained on large scale ImageNet dataset.

Figure 2, also shows objectness and
its related attributes exploration in a
hierarchical way is crucial for OOD
distance score. This can also be inferred
from Figure 3b, where we notice that
the transformer not only reduces intra-
class distance for ID samples, it also
increases the distance of OOD samples
from the ID class mean.
ResNets vs ViTs: This section
examines the effect of model
complexity or expressiveness of a
model for OOD or outlier detection. We have conducted experiments on multiple variants of
ViT in comparison with variants of ResNet baseline (top rows) as shown in Table 4. As all
the variants of ViT and DeiT are pre-trained on ImageNet, for the sake of the comparison,
we also evaluate ResNet variants that are pre-trained on ImageNet. As all the pre-trained
ResNet models are trained with larger image size (224x224 pixel for ImageNet), thus for
efficient utilisation of pre-training an up-scaling is needed. We fine-tune pre-trained ResNet
on training in-distribution dataset using an up-scaling of 7x (from 32 to 224).

• ResNet Baseline : Table 4, shows that Deit-T-16 which is the lightest among all
variants of ViT and much smaller in size than all ResNet baseline variants performs
substantially better on OOD detection(94.4 compared to 87.8 of R-101 for CIFAR-
100). Furthermore, despite being similar in accuracy DeiT-T-16 is significantly
superior with respect to OOD detection like all other ViT variants.

• ResNet Baseline with pre-trained on ImageNet : Transformer based architecture
relies on training with large-scale data in order to achieve superior performance. ViT
also requires large-scale pre-training on ImageNet for an efficient performance similar
to a few well-known transformer based architectures like BERT[13], GPT2[42].
Moreover, a few recent work [43], suggests pre-training of convolution offer better
performance for outlier detection. Thus, to demonstrate the true performance of
OODformer, we compare it with pre-trained convolutional models like ResNets
(middle rows). Table 4, suggests fine-tuning with upscale images offers good accuracy,
but limited gain over OOD detection. Pre-trained ResNet follows a similar trend as
the baseline models like increasing model capacity has a marginal effect on OOD
detection in contrast to ViT variants. One of the key observations we found, apart from
pre-training, up-scaling of images helped to attain higher performance on accuracy and
OOD detection score.
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As per the above discussion based on Table 4, we can clearly observe irrespective of
their accuracy, image size, pre-training features extracted from ResNet deliver sub-optimal
performance compare to all variants of ViT. Furthermore, with an increase in model
complexity, the performance of ResNet reaches a plateau, whereas the performance of ViTs
consistently improves with an increase in expressive power. This distinctly demonstrates the
importance of objectness context, the role of an object attribute, and their mutual correlation
(e.g, spatial) as hypothesised in the Sec 1. Such observations contribute to our belief, that
the transformer architecture is better suited for OOD detection tasks than classical CNNs
primarily for less inductive bias, object attribute accumulation using attention.

(a) (b)
Figure 3: Ablation Experiment : a) with distance metric, b) distance of ID and OOD samples from its
corresponding class mean.

Analyzing Distance Metrics: We examine the influence of various distance metrics like
Cosine and Euclidean in Figure.3a. Euclidean utilises only the mean of the ID distribution
thus it could be an intuitive reason for its underperformance. Furthermore, [45] shows that,
in embedding space, Euclidean distance is dominated by higher eigenvalues that reduce the
sensitivity towards outliers. Both Cosine and Mahalanobis perform very similarly. However,
the slightly better performance of Mahalanobis, compared to Cosine, could be attributed to
its less dependency on a higher norm between two features and its utilisation of both mean
and covariance. Figure 3a, shows OODformer is quite robust (±2% variance) to various
distances.

5 Conclusion
In this paper, we made an early attempt utilising a vision transformer namely the OODformer
for OOD detection. Unlike prior approaches, which rely upon custom loss or negative sample
mining, we alternatively formulate OOD detection as object-specific attribute accumulation
problem using multi-hop context aggregation by a transformer. This simple approach
is not only scalable and robust but also outperforms all existing methods by a large
margin. OODformer is also more suitable for being deployed in the wild for safety-critical
applications due to its simplicity and increased interpretability compare to other methods.
Building on our work, emerging methods in self-supervision, pre-training, and contrastive
learning will be of future interest to investigate in combination with OODformer.
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A ViT Architecture

Vision Transformer [14] uses transformer encoder [50] for patch based image classification.
The core of ViT relies on multi-head self-attention (MSA) and multi-layer perception (MLP)
for processing sequence of image patches.

Multi-head Self-Attention: The attention mechanism is formulated as a trainable
weighted sum based approach. One can define self-attention as

Attention(Q,K,V ) = softmax(
QKT
√

dk
)V (3)

where Q,K,V are a set of learnable query, key and value and d is the embedding dimension.
A query vector q ∈ Rd is multiplied with key r ∈ Rd using inner product obtained from the
sequence of tokens as specified in Eq. 1. The important features from the query token is
dynamically learned by taking a softmax on the product of query and key vectors. It is then
multiplied with the value vector v that incorporates features from other tokens based on their
learned importance.

Multi-Layer Perception: The transformer encoder uses a Feed-Forward Network (FFN)
on top of each MSA layer. An FFN layer consists with two linear layer separated with GleU
activation. The FFN processes the feature from the MSA block with a residual connection
and normalizes with layer normalization [1]. Each of the FFN layer is local for every patch
unlike the MSA (MSA act as a global layer), hence the FFN makes the encoder image
translation invariant.

B Implementation Details

Our backbone ViT [14] and DeiT [49] are pretrained on ImageNet, and fine-tuned in an in-
distribution dataset with SGD optimizer, a batch size of 256 and image size of 224× 224.
We use a learning rate of 0.01 with Cyclic learning rate scheduler [47], weight decay=0.0005
and train for 50 epochs. We follow the data augmentation scheme same as [29].

B.1 Model Detail

We use multiple variants of ViT and DeiT, primarily because DeiT offers lighter model,
whereas ViT mainly focusses on havier model. The idea being an enhanced outlier
detection performance with a lighter variant will bolster our assumption that exploring an
object’s attributes and their correlation using global attention plays a crucial role in OOD
detection. In comparison, a heavier variant will offer increased model capacity to improve
the performance of the OODformer. Table. 4 exhibits the performance of OODformer
with multiple backbone variants in support of our hypothesis. Specially the significant
performance gain with the smallest variant of DeiT (T-16) bolster our claim. Table 5 shows
the variation of their parameter, number of layers, hidden or embedding size, MLP size,
number of attention head.
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Model Prams #Layers Hidden Size MLP Size #Heads
DeiT-T-16 5 12 192 768 3
DeiT-S-16 22 12 384 1536 6
ViT-B-16 86.5 12 768 3072 12
ViT-L-16 307 24 1024 4096 16

Table 5: DeiT and ViT model architecture.

B.2 Dataset Details

Among the in-distribution dataset, CIFAR-10/-100 [33] consists of 50K training and 10K test
images with corresponding 10 and 100 classes. The CIFAR-100 dataset also contains twenty
superclasses for all the hundred classes present in it. Even though CIFAR-10 and CIFAR-100
has no overlap for any class, some classes share similar attributes or concepts (e.g., ‘truck’
and ‘pickup-truck’) as discussed in Section.4.2. As a result of this close semantic similarity
these two datasets poses the most challenging near OOD problem and the performance of
OODformer in this context has shown in Table 1. Another in-distribution dataset, ImageNet-
30 [22], is a subset of ImageNet[12] with 30 classes that contains 39K training and 3K test
images.
Out-Of-Distribution dataset used for CIFAR-10/-100 are as follows : Street View Housing
Number or SHVN [40] contains around 26K test images of ten digits, LSUN [22] consists
of 10K test images of ten various scenes, ImageNet-resize [22] is also a subset of ImageNet
with 10K images and two hundred classes. For multi-class ImageNet-30, we follow the same
OOD datsets as specified in [48], they are : Places-365 [53], Describable Texture Dataset
[11], Food-101 [3], Caltech-256 [18] and CUB-200 [51].

C Ablation and Interpretation
In addition to the analysis provided in Sec. 4.2, we ablate OODformer on various batch
sizes, epochs and analyze the cluster in embedding space.

Figure. 4a, demonstrates large batch size helps in OOD detection, though we observe it

(a) (b)
Figure 4: Ablation Experiment : a) with various batch size, b) improvement of AUROC over the
epochs.

doesn’t significantly impact accuracy on the in-distribution test set. An intuitive reason could
be large batch size improves generalization [25], which enables the network to generalize
object-specific properties that are helpful for outlier identification. Despite this gain, we
observe OODformer remain relatively stable across all the batch sizes with OOD detection
accuracy±1.5%. However, the gain in AUROC gradually becomes stagnant with an increase
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of batch size suggest further scope of tuning learning rate is required using a linear scaling
[17].
Figure. 4b, shows an increase of outlier detection accuracy with the number of epochs.
One of the important observation is easier OOD dataset (e.g., LSUN, ImageNet) are
distinguishable with fewer epochs whereas difficult OOD dataset like CIFAR-100 takes more
time. In comparison with the state-of-the-art i.e. convolution [23] or contrastive [45], our
proposed OODformer converges significantly faster, even with much less batch size. This
promising result shows the efficacy of the OODfromer in a real-world scenario and directs
to further scope of research of transformer in outlier detection.

Manifold Analysis : Fig. 5a and 6a, shows both for OODformer and ResNet-50
baseline, all the classes in CIFAR-10 have formed a compact cluster as shown by their
corresponding UMAP. As discussed in Sec. 3, we can observe supervise loss helps in the
formation of the compact clustering, which can be exploited for class conditioned OOD
detection provided there is a separability between ID and OOD data. Figure. 5b, shows that
for OODformer, OOD samples in the embedding space lie far from any cluster center of an
in-distribution sample due to its large distributional shift or lack of object-specific attributes.
This variation of distance between an ID and OOD sample is effectively utilized by our
distance metric. However, Fig. 6, suggests that despite being able to form a distinctive
cluster for ID samples, our ResNet baseline has failed to maintain a clear separation between
an ID and OOD samples.

This UMAP analysis supports our earlier assumption on results of Table 4, in spite
of lower or similar accuracy for classification of ID samples, features extracted from
transformer have more distinctive separable features for OOD detection.

(a) (b)
Figure 5: OODformer UMAP analysis: a) ID (CIFAR-10) samples and their corresponding cluster, b)
ID (blue) and OOD (red) samples shown in UMAP clustering.
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(a) (b)
Figure 6: ResNet-50 baseline UMAP analysis: a) ID (CIFAR-10) samples and their corresponding
cluster, b) ID (blue) and OOD (red) samples shown in UMAP clustering.


