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In brief

In our drug repurposing approach, we

combined knowledge mined from a

variety of sources with focused

experimental screening data of selected

drug candidates into our drug-target-

mechanism-oriented data model, the

Human Brain Pharmacome (HBP). We

identified previously unreported drug-

target combinations that show evidence

as being viable therapeutic candidates for

Alzheimer disease (AD). Data-driven

approaches combining in silico and

in vitro analyses are increasingly in the

spotlight and represent a future path to

knowledge discovery, especially in the

context of complex diseases.
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THE BIGGER PICTURE Owing to current setbacks in the discovery and development of novel treatments
tackling Alzheimer disease (AD), a re-evaluation of research and development (R&D) strategies is underway.
Here, we present a holistic pharmacological approach that combines drug-target information with knowl-
edge graphs that represent essential pathophysiology mechanisms. The resulting Human Brain Pharma-
come (HBP) embeds hundreds of relevant drug-target interactions in the context of disease mechanisms
governing AD. We demonstrate how such a tool can be used to aid AD research by identifying already-
approved drugs that have the potential to treat the disease, thereby bypassing the expensive and time-
consuming task of researching and developing a newdrug. In our study, we identified newdrug-target com-
binations and provided mechanistic explanations that help to improve our understanding of AD pathology
and support future development of effective therapeutic strategies.

Development/Pre-production:Data science output has been
rolled out/validated across multiple domains/problems
SUMMARY
The high number of failed pre-clinical and clinical studies for compounds targeting Alzheimer disease (AD)
has demonstrated that there is a need to reassess existing strategies. Here, we pursue a holistic, mecha-
nism-centric drug repurposing approach combining computational analytics and experimental screening
data. Based on this integrative workflow, we identified 77 druggable modifiers of tau phosphorylation
(pTau). One of the upstream modulators of pTau, HDAC6, was screened with 5,632 drugs in a tau-specific
assay, resulting in the identification of 20 repurposing candidates. Four compounds and their known targets
were found to have a link to AD-specific genes. Our approach can be applied to a variety of AD-associated
pathophysiological mechanisms to identify more repurposing candidates.
INTRODUCTION

Aging societies face a rapidly growing number of people

suffering from AD, resulting in an enormous socioeconomic

burden.1 Billions of dollars are invested to address this problem,

but despite all efforts to find effective therapeutics, treatment op-
This is an open access article under the CC BY-N
tions are sparse and have largely failed to achieve satisfying

results in the fight against AD. More than 100 candidate com-

pounds were abandoned in development or showed disap-

pointing results in clinical trials (CTs), leaving only a limited

number of remedies that are currently approved and used for

symptomatic treatment of AD.2
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Why do CTs in AD treatment continue to fail? An incomplete

understanding of pathophysiological mechanisms, erroneous

selection of target and drug candidates, shortcomings of pre-

clinical animal models, wrong drug dosage regimens, and false

recruiting of best responders are some of the reasons why these

clinical studies have so far failed.3,4 Novel therapeutic avenues

must be established, and achieving this requires a re-evaluation

of the strategies currently used.

Drug repurposing, the process of identifying new therapeutic

uses for existing drugs, has grown in popularity in recent years

and has been shown to be quite successful.5,6 This strategy,

also referred to as drug repositioning, offers an enormous advan-

tage: substances that have already been well examined and

approved with a wide spectrum of data, including safety and ef-

ficiency profiles, can be critically evaluated in a new disease

context. Drug repurposing maximizes the therapeutic applica-

tion of drugs while minimizing the risk of failure, leading to a

reduced period of time by which they are ready for the market

with a new indication context.7

Repositioning of drugs can be driven by structural in silico an-

alyses (e.g., molecular docking, pharmacophore modeling, vir-

tual screening, or cryoelectron microscopy (cryo-EM) or X-ray

structural determination)8 or by the experimental domain

(in vitro biochemical and cellular assays, high-throughput

screening, in vivo animal tests),9,10 or approached through a

combination of both fields.11 Generally, drug repurposing strate-

gies are drug, target, or disease centric depending on the

research focus or pharmaceutical interest.12 In a drug-centric

approach, a drug is connected to a formerly unknown target

(off-target) and its target-associated indications, whereas in a

target-centric approach, the drug-target relationship is known

(on-target) and linked to a new therapeutic context.

New avenues of drug repurposing are being explored, including

signature-based approaches that focus on evidence-driven iden-

tification of new repurposing compounds,13 which is in line with

our mechanism-oriented strategy. In the repurposing approach

described here, we are not restricted to a single approach, there-

fore allowing greater flexibility in terms of repositioning candidate

identification. We combined knowledge mined from a variety of

sources with focused experimental screening data of selected

drug candidates into our drug-target-mechanism-oriented data

model, the HumanBrain Pharmacome (HBP). Information retrieval

and extraction were applied in a reciprocal manner for the enrich-

ment of targets, ligands, chemical similarity, or assays in the HBP.

The enrichment of our computational model was complemented

by information extracted from the patent literature aswell asquan-

titative information extracted from tables in published articles.

Dedicated mining strategies enabled us to use this information

for drug/target prospective and retrospective validation as well

as for assay refinement. The dynamic nature of literature and the

continuous research efforts in AD prompted us to develop and

implement processes for progressive updates of the knowledge

graph with several internal checks to ensure that novel and even

controversial findings were added back to the HBP with full prov-

enance of the information source.

Here, we demonstrate our approach in an AD-biomarker-

centric search strategy. TheHBPmodel includes a highly granular

representation of mechanistic underpinnings of tauopathies, a

class of neurodegenerative disorders characterized by the depo-
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sition of abnormal microtubule-associated tau protein (MAPT) in

the brain in the form of neurofibrillary tangles (NFTs).14,15 Phos-

phorylation of MAPT (pTau), and thus creation of insoluble aggre-

gates, is considered one of the key regulatory factors that drives

AD pathology, and its abundance is used as a predictive

biomarker of AD.16 Based on our work in the pTau context, we

implemented a generalizable workflow (Figure 1; Video S1) for

the identification of new druggable targets in relation to AD-spe-

cificpathophysiologyprocesses. In our in silico-driven knowledge

mining approach, we focused on mechanisms related to post-

translational modifications. Starting with pTau as the root node

(primary target, see methods), we sought to answer the following

questions in the context of this AD pathological hallmark:

1) Are there druggable targets (secondary targets, see

methods) that modulate pTau?

2) Which of the targets identified in (1) are putative repurpos-

ing targets based on qualitative and quantitative data

analysis?

3) Which repurposing compounds are highly active in our

pTau-focused experimental setting?

4) Can we validate unknown drug-target pairs in the context

of AD therapeutics?
RESULTS

The HBP
We created a drug- and mechanism-oriented model, the HBP,

that covers a broad spectrum of biological processes relevant in

the pathophysiological context of AD (Figures 2A and 2B). By aug-

menting it with metadata, quantitative data, and contextual infor-

mation, we have created a comprehensive framework for in silico

identification of druggable mechanisms and a broad information

base for evaluating potential therapeutic targets and agents.

Identification of druggable modulators of pTau
Using our secondary target selection pipeline (see methods), we

identified 77 druggable targets (cited in 155 documents) that also

have an upstream causal interaction with pTau (Figures 2A and

2C; Data S1). Our initial list contained proteins from several

different gene families: MAPK1, MAPK3, MAPK8, MAPK9,

MAPK10, MAPK11, MAPK12, MAPK13, and MAPK14 (mitogen-

activatedprotein kinases); PPP1CA,PPP2CA, PPP2CB,PPP3CA,

and PPP5C (protein phosphatase catalytic subunits); PPP2R1A

and PPP2R2A (protein phosphatase 2 regulatory subunits);

S100A1 and S100B (S100 calcium binding proteins); CDK1,

CDK2, CDK5, and CDK5R1 (cyclin dependent kinases); CAMK2A

and CAMK2B (calmodulin dependent protein kinases); and ABL1

and ABL2 (Abl family tyrosine kinases). Cross-validation of

protein-protein-interaction data from several resources (IntAct,

BioGRID, Pathway Commons, STRING, https://bikmi.pharmacome.

scaiview.com/) confirmed 54 of these targets as direct interactors of

pTau (Data S2).

Qualitative and quantitative data analysis reveal
putative repurposing targets
One of our primary goals was to find new or repurposed com-

pounds for treating pTau in the context of AD. To this end, we

https://bikmi.pharmacome.scaiview.com/
https://bikmi.pharmacome.scaiview.com/


Figure 1. Generalized workflow for identi-

fying novel therapeutic strategies

(1) A knowledge-based ‘‘cause-and-effect’’ disease

model (here: Alzheimer disease) is initiated using

manually curated information as well as standard-

ized data from reputable repositories (see ‘‘The

HBP’’ in results). (2) An entry point (primary target;

here: pTau) associated with a pathophysiology

mechanism of interest is selected, and upstream

regulators (secondary interactors) modulating key

elements of this mechanism are identified (see

‘‘Identification of druggable modulators of pTau’’ in

results). (3) The secondary interactors are ranked

according to chosen criteria, and the top hits are

selected for further evaluation (see ‘‘Qualitative and

quantitative data analysis reveal putative re-

purposing targets’’ and ‘‘Secondary-target candi-

date selection: HDAC6’’ in results). (4) Suitable

biochemical and cellular assays are chosen for

testing the activities of a library of compounds

against top secondary interactors (see ‘‘Experi-

emntal validation of HDAC6 and candidate com-

pounds’’ in results). (5) Experimental results are

quantitatively analyzed to identify new repurposing

drugs and compounds for each given secondary

interactor (see ‘‘Mapping of identified HDAC6 inhibitors to the HBP’’ in results). (6) Novel target/compound combinations are designed and used to gain new

insights for future experiments. (7) Earmarked combinations and screening data are mapped to the knowledge graph to enhance future queries (see ‘‘General

applicability of the HBP’’ in results). From here, an entry point of interest can be selected to reinitiate the pipeline.
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performed a statistical analysis of the secondary target metadata

to identify the best candidate for additional screening (Data S1).

First, we determined the number of BioAssays available for

eachsecondary target toevaluatewhichofour candidateproteins

had the most screening data available. These calculations are

indicative of the number of known drug-target interactions as

confirmed by several independent studies and serve as better

values to evaluate protein/compound associations as opposed

to looking purely at drugs that are approved and on the market.

Our search resulted in a list of the top five ranked proteins:

HDAC6, ABL1, CDK2, MAPK14, and SRC with 1,938, 1,929,

1,518, 1,490, and 1,363 BioAssay mentions, respectively. We

thencalculated the ratioof thesecounts to thenumberof available

drugs for eachprotein, therebydeterminingwhichcandidateshad

the greatest opportunity for drug repurposing exploration. Based

on the informationmined fromDrugBank, HDAC6 had the highest

BioAssay-to-known-drug ratio of the top five candidates with

1,938 available assays at the timeofwriting andonly six approved

drugs on the market, thus making it a prime candidate for testing

potential new therapeutic compounds. Additionally, among the

top five ranked proteins, HDAC6 had the fewest mentions within

the parsed corpus of patents. Furthermore, research into the cur-

rent clinical trial landscape revealed that there is only one trial in

the recruiting phase in context of both AD and an approved

HDAC6selective compound (NCT03056495;DataS1). Therefore,

assay availability, the lack of market-available or patented drugs,

and the sparseclinical focus strongly argue in favor ofHDAC6asa

suitable target candidate to demonstrate our repurposing selec-

tion workflow.

Secondary-target candidate selection: HDAC6
Research into HDAC6 revealed that it was previously the focus of

cancer research20 owing to its role in chromatin remodeling, cell
motility, and gene regulation.21 However, HDAC6 activity has

also been shown to influence the structure of microtubules,

thus making it an enticing candidate in the context of neurode-

generative diseases.22,23 Interestingly, the HBP revealed a new

potential intervention pathway: HDAC6 was shown to have a

direct influence on acetylation of pTau.19 According to Carlo-

magno et al., HDAC6 mediated deacetylation of tau at certain

sites (such as K321; Figure 3A), which also allow for phosphory-

lation of the tau protein (pTau).24 One such study reported that

HDAC6 activity at K280 and K281 positively correlated with the

pTau protein abundance,25 while another group demonstrated

that a direct acetylation of MAPT was shown to favor the gener-

ation of pathological pTau aggregates.26 The study mentioned

first suggests that the inhibition of HDAC6 and thereby the acet-

ylation of K280 and K281, should lead to a decrease in harmful

pTau aggregation by indirectly preventing phosphorylation

from taking place at key residues.We have adapted this informa-

tion in our hypothesis (Figure 2C). Though the dynamics of the

post-translational modifications of MAPT, their mutual influence,

and the downstream effects on the formation of pathological tau

tangles are not fully understood, especially in a human context,

HDAC6 does appear to have a central role in which disease-rele-

vant signal cascades in AD are integrated.

Experimental validation of HDAC6 and candidate
compounds
As classical HDAC6 assays often use consensus sequences

derived fromhistonesubstrates,wesought to useamorespecific

readout for our experimental validation step. We therefore devel-

oped a substrate derived from amino acid (AA) sites 278–281 of

the human tau protein, which was shown to be directly linked to

pathological tau aggregation.26 This peptide, Ile-Asn-(dimethyl)

Lys-(ac)Lys was used for the development of our in-house
Patterns 3, 100433, March 11, 2022 3
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Figure 2. Cause-and-effect model genera-

tion, enrichment, and identification of drug-

gable modulators of pTau

(A) Workflow illustrating the stepwise formation of a

data-enriched cause-and-effect model, subse-

quent knowledge mining, and target analysis.

(B) Beginning with the entire Human Brain

PHARMACOME, a primary target is selected

(pTau) and its cause-and-effect context (tau

subgraph, magnified square) is defined.

(C) Illustration of a drug-HDAC6-MAPT relational

network17,18 in BiKMi, available at https://bikmi.

pharmacome.scaiview.com/ left). The graph can

be generated by applying the path query: From:

‘‘6675804’’, To: ‘‘MAPT’’, Depth 2-2. The "Depth"

limits the size of the network by specifying the

number of edge steps searched for between the

‘‘From’’ and ‘‘To’’ entities. Each node (box) repre-

sents a specific subject/object (according to BEL).

Each edge (line) is a unique source of evidence. The

graphical representations from BiKMi are simplified

representations of BEL subgraphs. Because it was

listed as one of the druggable secondary targets,

HDAC6 was further investigated using this tool. This

network provided evidence (evidence boxes not

shown) that HDAC6 is known to deacetylate tau19

(edge highlighted with ‘‘a’’), which correlates with

tau phosphorylation17 (edge highlighted with ‘‘b’’).

As the network (left) indicates, pharmacological

HDAC6 inhibition (edge highlighted with ‘‘c’’) re-

sulted in reduced tau phosphorylation17 (edge

highlighted with ‘‘d’’). Based on these known re-

lationships, we hypothesized (right) that inhibition of

HDAC6 (indicated by ‘‘c’’) blocks (crossed out

edge) the tau deacetylation process (indicated by

‘‘a’’), which leads in turn to a decrease in pTau (ef-

fect indicated by ‘‘d,’’ dotted arrow; reduction of

pTau is indicated in red) by indirectly preventing

phosphorylation at key residues through remaining

acetylation (green). The edges (left and right)

marked with the same lowercase letter correspond

to each other.
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HDAC6 assay (Figures 3A and 3B) and validated against two un-

specific standard inhibitors, vorinostat (SAHA) and trichostatin A.

These inhibitors had half-maximal inhibitory concentration (IC50)

values of 3.1 nM and 2 nM respectively, concentrations that are

similar to those found in a histone-based HDAC6 assay (6.2 nM

and 3.8 nM, respectively).28 This result not only reflects the over-

lapping specificity of the two catalytic HDAC6 domains,29 but

also demonstrates the feasibility of the approach and the direct

involvement of HDAC6 at K281 deacetylation of human tau. To

identify promisingHDAC6 inhibitors that canmodulate its activity

on human tau, we screened a collection of drugs to identify those

with the greatest effect on tau peptide deacetylation.
4 Patterns 3, 100433, March 11, 2022
In total, 5,632 compounds were

screened on 16 plates with a z0 exceeding
0.5 on all plates. The average signal inten-

sity of all data points was 1.4% inhibition,

indicating no systematic errors were pre-

sent within the screening, with a standard

deviation of 0.35. Interestingly, 65% of
the 279 active molecules from the primary screening were

confirmed as hits, with a hit being defined as a compound

showing at least 75% inhibition. Such a confirmation rate is

reasonable for this type of complex and coupled enzymatic

assay. To validate the 183 confirmed active compounds, a sec-

ond HDAC6 screening was conducted in addition to dose

response studies (Figure 3D). This assay employing a shorter,

less specific peptide derived from histone H3 resulted in 104

compounds inhibiting to at least 75%. From these, 23 molecules

were found to be specific for the histone H3 substrate, and 81 in-

hibited the conversion of both substrates. As a result, 102 com-

pounds from the tau-based screening were specific for this

https://bikmi.pharmacome.scaiview.com/
https://bikmi.pharmacome.scaiview.com/
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Figure 3. Schematic representation of the

assay principle and screening results of

HDAC6 inhibitors

(A) Schematic representation of the developed

peptidic HDAC6 substrate. Cryo-EM structure was

used to represent MAPT/hTau.27 Acetylated lysines

are highlighted. A D-aminoluciferin coupled peptide

was developed, containing a dimethylated and an

acetylated lysine. One letter abbreviation ‘‘Z’’ refers

to the Cbz protecting group of the peptide.

(B) Workflow of the coupled enzymatic HDAC6 ac-

tivity assay. HDAC6 (highlighted in blue) deacety-

lates the peptide, which becomes a substrate for a

protease, thereby releasing the D-aminoluciferin

from the peptide. Luciferase is catalyzing the last

step of this cascade by converting D-aminoluciferin

to oxyluciferin in a light-emitting reaction.

(C) All active compounds were subjected to dose

response studies, and pIC50 values were deter-

mined.

(D) Validation of the hit population using two

different substrates revealed distinct hit pop-

ulations. Hits highlighted in blue are compounds

acting only on histone-based substrate, hits in the

red area are active against the peptidic substrate

derived from MAPT/hTau sequence, while the pur-

ple corner shows compounds active against both

substrate assays.

(E) Activity of the compound VU0361737 (brown),

relative to vorinostat (SAHA; shown in blue) and

trichostatin A (TSA; shown in green). Data are shown

as mean with SD of three independent experiments.

(F) Densitometric analysis of a western blot (see also

Figure S3) depicting SAHA, TSA, and increasing

concentrations of VU0361737.
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substrate and subjected to dose response studies (Figures 3C

and 3D). In the following step, their activities were confirmed,

and the 20 molecules that specifically were found to be the

most active in inhibiting tau-based substrate conversion and

had favorable physicochemical properties (Figure 3; Table S3)

were selected. Suitable properties included drug likeliness, tak-

ing into account molecular weight (MW), solubility, and rule of

five criteria,30 as well as likeliness for central nervous system

(CNS) penetration (topological polar surface area [TPSA] below

100) and having fewer than 8 rotatable bonds, although certain

molecules were still included even if one of the rules was violated

(Table S4). These compounds were further validated using west-

ern blots against pTau (Figures 3E and 3F). The reduced phos-

phorylation of tau further demonstrated the applicability of

HDAC6 inhibitors in the context of tau hyperphosphorylation

and may represent promising avenues for AD therapy.

Mapping identified HDAC6 inhibitors to the HBP
The compounds found to inhibit HDAC6 activity were queried

against the ChEMBL database to determine any additional

drug targets for these molecules (Figure 4A). During data collec-

tion, we made sure that two parameters were controlled:

pCHEMBL >6 and confidence level >7 were used. A pCHEMBL

value of more than 6 signifies that all measurementss of inhibition

are less than 1 mM (pIC50 = negative log 6 [IC50 in mM]). The con-

fidence level corresponds to the ChEMBL confidence score (see
https://chembl.gitbook.io/chembl-interface-documentation/

frequently-asked-questions/chembl-data-questions).With these

two parameters, we were able to control the quality of the data

sampled as well as the potency of the interactions surveyed.

Of the 20 compounds, 17 were found to interact with targets

other than HDAC6. Using information collected from the

GWAS Catalog,31 a list of known, disease-associated genes

was compiled based on identified single nucleotide polymor-

phisms (SNPs) (p < 10�7) and compared against the compound

targets. Only four of the drugs—quercetin (ChEMBL:

CHEMBL50), GW441756X (ChEMBL:CHEMBL1516890), Debio

1347 (ChEMBL:CHEMBL3907479), and indirubin-30-monoxime

(ChEMBL:CHEMBL216543)—targeted proteins that were found

to be associated with AD (Figure 4B; Data S3). It was not surpris-

ing that quercetin and GW441756X would have additional tar-

gets of interest, as these compounds were found to interact

with the greatest number of molecules from those in our list (80

and 62, respectively). Interestingly, of the eight overlapping hits

from the AD association analysis, three were found to be tar-

geted by multiple drugs in our list. CDK1 and CSNK2A1 are

both targets of quercetin and GW441756X, while GSK3B was

also found to be modulated by these compounds as well as in-

dirubin-30-monoxime. Based on the information collected from

the GWAS Catalog, we were able to calculate what percentage

of each compound’s target list was associated with AD (Fig-

ure 4C). We found that indirubin-30-monoxime had the highest
Patterns 3, 100433, March 11, 2022 5
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Figure 4. Computational analysis of drug re-

purposing candidates

(A) Targets of screened compounds were mined

from the ChEMBL database and compared against

AD-associated genes parsed from the GWAS Cat-

alog. Sankey diagram depicting the ratio of AD-

associated (red edges) to non-disease-related (blue

edges) targets of the four compounds described

in (C).

(B) Node labels indicate the number of targets

associated with a given compound or disease state,

and bar size is proportional to this measurement.

(C) Overlap analysis resulted in four compounds that

targeted proteins associated with AD.

(D) Summary of computational analysis for a given

compound (here: indirubin-30-monoxime). Analyses

of other compounds available in Figure S5 and

Sunbursts in Data S5.
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score, with 33.3% of its targets being associated with AD, while

Debio-1347 had the second highest score at 14.7%. This sug-

gests that indirubin-30-monoxime would have the greatest

chance of repurposing due to its strong focus on AD-related

targets.

To extract additional information on the candidate compounds

in relation to the primary (pTau)/secondary (HDAC6) targets,

queries consisting of concepts and keywords were generated

and executed using https://pharmacome.scaiview.com/ (Fig-

ure 4D; Data S4). Debio-1347 was not found in the context of

HDAC6, MAPT, or AD, whereas quercetin has clear connections

to these molecules (230 and 1,416 mentions, respectively) and

AD (1,679 mentions). Meanwhile, both indirubin-30-monoxime

and GW441756X were found to be mentioned in publications in

association with MAPT (13 and 4 mentions, respectively) and

AD (6 and 7 mentions, respectively). Next, we searched both

ClinicalTrials.gov and patent literature for recent information on

the candidate compounds and any ongoing investigations into

their therapeutic uses. Again, among these four compounds,

only quercetin has been used in a clinical trial performed in the

context of AD (a total of 4 trials were found). A patent search via

dedicatedconceptqueries andanalysis of disease-related topics

(Medical SubjectHeadings [MeSH]) extended thecoverageof the

elucidated contextual information. For Debio-1347 and

GW441756X compounds, cancer-related terms dominated the

results, with a relevance score (Kullback-Leibler divergence) of

6.12 for ‘‘small cell lung carcinoma’’ (Debio-1347) and 5.98 for

‘‘glioblastoma’’ (GW441756X), whereas indirubin-30-monoxime

appeared in an inflammatory context first (‘‘prostatitis’’ relevance

score: 3.67), followed by ‘‘hemangiosarcoma’’ (relevance score:

3.65). For quercetin, a broad rangeof disease context information

could be identified (Figures S4 and S5; Data S4). All four com-
6 Patterns 3, 100433, March 11, 2022
pounds were mentioned together with the

MeSH terms ‘‘arthritis,’’ ‘‘asthma,’’ ‘‘coli-

tis,’’ ‘‘fibrosis,’’ ‘‘hemangiosarcoma,’’

‘‘multiple myeloma,’’ ‘‘psoriasis,’’ ‘‘stom-

ach neoplasm,’’ and ‘‘wounds and in-

juries.’’ Only patents containing the com-

pounds quercetin and indirubin-30-
monoxime specifically contained MeSH
terms in the context of neurodegenerative disorders (quercetin:

‘‘Alzheimer disease,’’ ‘‘Parkinson disease,’’ ‘‘nervous systemdis-

eases’’; both: ‘‘plaque, amyloid’’).

Because of their relevance to AD (Figure 4B), these four

selected compounds and their identified targets were mapped

to the HBP to improve the performance of subsequent iterations

of the pipeline. A new node was created for any drug or protein

that did not already exist within the network, and generated

edges were annotated with the parsed interaction information.

In summary, our computational analysis identified repurposing

candidate compounds based on their proximity to protein tar-

gets and biological pathways relevant to AD pathology. Among

those, indirubin-30-monoxime had the highest score based on

the ratio of AD-relevant genes and pathways it targets, suggest-

ing that it would serve as a suitable, focused therapeutic, while

minimizing potential side effects due to off-target interactions.

Furthermore, cellular characterization of AD-relevant cell types

and evidence collected from literature that include this com-

pound revealed the mechanism by which it can positively regu-

late AD, thereby strengthening it as a potential repurposing

candidate and further validating our pipeline.

General applicability of the HBP
With the HBP, we have created a computational model that links

drugs, their targets, and highly associated mechanisms. This

complex framework of interactions spans multiple modalities

and consists of biological processes complemented by highly

granular representations of biological mechanisms. Though

thismodel focuses primarily on AD, it can also be used to explore

other diseases that share pathological aspects with AD. The

HBP is enriched with qualitative and quantitative data, thus facil-

itating the ability to filter data using a variety of metadata, the

https://pharmacome.scaiview.com/
http://ClinicalTrials.gov
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development of specific assays, and the assessment of experi-

mental data.

Though our pipeline was initiated using a modified protein, it is

not limited to this type of entity. A primary target can also be a

biological process in the form of a single entity or an entire sub-

graph. A drug could also serve as the starting point for in silico

processing and in vitro validation (or vice versa). The flexibility

of this workflow enables far-reaching possibilities in terms of po-

tential biological questions and hypothesis generation.

For example, assume that a biological process, such as auto-

phagy, is the entry point (primary target) of our workflow. Patho-

logical autophagic processes play an essential role across dis-

eases32 as in AD.33 Therefore, this primary target would allow

one to start from the in vitro perspective and answer the following

question: Which repurposing compounds have a regulatory ef-

fect on autophagy? In a subsequent step, one could determine

where the compound-specific targets (secondary targets) are

located in the graph. These targets could be in a relationship

with autophagy itself or affect a process or another protein target

that are elements of the autophagic process. This information

can be used to hypothesize potential mechanisms of action in

the autophagy context, which in turn could be tested via appro-

priate in vitro assays. In theory, the HBP could provide possible

explanations for how compounds work in the autophagy

context.

In summary, our network and the associated hybrid workflow

offer a wide range of opportunities to answer open questions in

the search for appropriate approaches to new therapeutic treat-

ments, extending beyond the context of AD.

DISCUSSION

AD research has suffered greatly from a lack of successful clin-

ical trials and a scarcity of effective treatment options.2 It has

taken 18 years for a new drug, the antibody aducanumab which

reduces Ab plaques in AD patients,34 to be approved, but its ef-

ficacy is highly controversial.35 These shortcomings are due in

part to our lack of understanding of the underlying mechanisms

governing the disease, resulting in massive loss of time and

money spent testing compounds that were not well understood.

To avoid repeating such mistakes, we have developed the HBP,

a comprehensive network of molecular interactions focused on

the pathways and mechanisms that regulate the pathophysi-

ology of AD.

Here, we demonstrated that the HBP can aid researchers in

quickly screening and identifying novel therapeutics by applying

the principles of drug repurposing to AD. In our example, we

experimentally validated 5,632 compounds against HDAC6, a

secondary interactor that was identified by our pipeline as being

a druggable regulator of our biomarker of interest, pTau. Our re-

sults showed that of the compounds screened, 183 successfully

increased the amount of acetylated tau, thereby decreasing the

number of sites available for phosphorylation. Further character-

ization of these compounds revealed that four compounds

already had links to AD (quercetin, GW441756X, indirubin-3-

monoxime and Debio-1347), and as a result, metadata for these

compoundswere gathered and added to the HBP via text mining

and table extraction approaches for use in subsequent iterations

of the workflow.
To ascertain their potential in treating AD, we investigated our

list of compounds and found evidence to support our selection.

Quercetin is a flavonoid found in fruits and vegetables and has a

wide range of biological associations, such as anti-carcinogenic,

anti-inflammatory, and anti-viral activity.36 GW441756X (syno-

nym: GW-441756, see ChEMBL1516890) is a tropomyosin re-

ceptor kinase A (TrkA) inhibitor.37 TrkA signaling has been

recently described as a potential therapeutic target for pain38

and, moreover, is suggested to contribute to degeneration of

basal forebrain cholinergic neurons (BFCNs), which is associ-

ated with cognitive decline in AD.39 Debio-1347 is a selective

fibroblast growth factor receptor (FGFR) inhibitor and exhibits

high antitumor activity. Fibroblast growth factors (FGFs) and

their receptors have been shown to be involved in the pathogen-

esis of Parkinson disease and AD.40,41 Indirubin-30-monoxime is

an inhibitor of cyclin-dependent protein kinases (CDKs), and

recently inhibitors of these enzymes have been of interest for

the treatment of cancer. CDK isoforms have also been shown

to play a key role in cancer proliferation via abnormal cell-cycle

regulation.42 Interestingly, indirubin-30-monoxime is described

to play a role in neuronal apoptosis in AD,43 and in Sf9 cells ex-

pressing human tau 23, the compound was found to suppress

tau phosphorylation.44

Though these compounds all had links to AD andwere of great

interest to our drug repurposing efforts, one of them did not have

enough metadata available for proper analysis because it is rela-

tively novel. Indeed, VU0361737, a positive allosteric modulator

(PAM) of metabotropic glutamate receptors,45 did show prom-

ising results in our pTau specific assay. Interestingly, this com-

pound is mentioned in a patent together with HDAC6 and

MAPT (US patent 10500232); however, no focus on neurodegen-

eration is described.

The presented examples also highlight another problem of

drug discovery approaches that target neurodegenerative dis-

eases, which is the complexity of the underlying biology. Human

tau can be phosphorylated at 85 different sites within the protein,

and each site plays a different role in regard to microtubule bind-

ing and aggregation.46 Two important post-translational modifi-

cations that have arguably the largest influence on activity of tau

are phosphorylation and acetylation. Tau can be acetylated at

more than 20 sites47 by p300 or CREB binding protein or via au-

toacetylation48 and deacetylated by SIRT1 and HDAC6.48 Some

of these acetylations are critical for tauopathies, for example,

K280 and K281, on which the peptidic substrate of this work

was based.47 Unfortunately, the regulation of the acetylation pat-

terns and their effect on phosphorylation and aggregation are

complex. This complexity extends to the proteins responsible

for the post-translational modifications, such as the protective

versus detrimental effects of both SIRT1 and HDAC6 in terms

of known tauopathy symptoms.49 While some groups report a

protective effect of HDAC6,50 others suggest that inhibiting this

protein can lead to improvement.51,52 Some of these effects

might be cell line specific or more relevant for certain tau iso-

forms, which adds another layer of complexity. The N2a cells

used in this study represent a simple and robust model, which

expresses many different tau isoforms.53 More complex cell

lines54 as well as models based on induced pluripotent stem

(iPS) cells can be applied in the future55 to achieve a more pro-

found biological validation of the compounds for progression
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toward in vivo efficacy testing, but this is beyond the scope of the

present study. Here, we emphasize the mechanism-centric

approach complemented by targeted experimental validation,

which should serve as an inspiration for the development of

new drug repurposing approaches. In the future, the HDAC6

modulators identified in this study may help to dissect some of

the contradicting effects observed by tau acetylation.

In silico methods are becoming increasingly important in the

pharmacological setting and have found their place alongside

in vitro and in vivo methods.56,57 Combining in silico with in vitro

techniques is a relatively new approach, but it shows enormous

potential in drug repurposing and drug discovery.58 In particular,

the coronavirus disease 2019 (COVID-19) pandemic has helped

to rapidly advance these approaches, but it has also highlighted

its limitations.59 Models are currently limited to what information

is present in databases and their underlying network, while limited

capabilities restrict what can be validated in in vitro experiments.

Another essential factor to consider is the lack of understanding

of key biological mechanisms. With all these factors in mind, we

sought toaddressasmanyof themaspossibleusing thehigh-level

HBP concept. The HBP benefits from a unique constellation of

expertise, both in silico and in vitro based, and through mutual

interaction, enrichment through the integration of experimental re-

sults, and periodic reviewing, the model continues to grow and

evolve resulting in a dynamic computational ecosystem.

Weare aware that ourHBPconcept is not freeof limitations and

biases. Directed data toward AD and tau pathology are comple-

mented by a largely unbiased collection of data to balance the

model. Other biases arise from our target-based filtering criteria.

Selecting targets based on available screening data might intro-

duce historical bias and givemoreweight to unsuccessful targets

previously hyped, mostly in areas outside neurodegenerative

research. Moreover, the non-exhaustive number of patents cho-

sen as a filtering criterion to favor targetsmight create a tendency

to excludepotentially robust, but underutilized targets associated

with AD and other neurodegenerative diseases. We deliberately

chose these criteria to specifically highlight more novel targets

in the AD context. The use of protein-protein-interaction (PPI)

data to narrow down target candidates is a tool that should also

beconsideredwithcaution, asPPIdatamaynothavebeengener-

ated from CNS cells and may be limited in the types of target in-

teractions listed in the specific use case.

Our strategy is generalizable and applicable to a wide variety of

conditions as we have shown in Schultz et al.,60 where we used a

similar drug targetmechanismgraph (COVID-19PHARMACOME)

to predict the synergistic effect of specific drug pairs for combina-

tion therapyofSARS-CoV-2 infections.Ourmethod isalso flexible

in terms of the entry point: from an in silico perspective, the

context-enriched, qualitative biomedical knowledge graph is

used to mine data related to drugs or targets to generate mecha-

nistic hypotheses that can be validated through experimental

testing. In turn, an in vitro-centric strategy would generate exper-

imental output aboutputativedrug-target combinationsoractions

of drugs on biological processes, which is then underpinned by

computational insights about associated biological mechanisms

as well as referential drug, target, genetic, and disease data.

With our drug repurposing strategy, we have found previously

unreported drug-target combinations that represent very inter-

esting candidates for AD therapeutic purposes. Furthermore,
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we have gained knowledge about potential new targets through

our dynamic HBP concept. Our methodology and the resulting

findings could steer research in a new direction and pave the

way toward successful therapeutic intervention.

Data-driven approaches are increasingly in the spotlight as the

amount of available data and metadata grows and artificial intel-

ligence (AI) approaches offer a way to keep track and derive in-

sights. In particular, cross-validation over everything known,

mediated by an interplay of in silico and in vitro analysis, repre-

sents a future path to knowledge discovery, especially for com-

plex diseases.

EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Further information and requests for resources should be directed to and will

be fulfilled by the lead contact, Vanessa Lage-Rupprecht (vanessa.lage-

rupprecht@scai.fraunhofer.de).

Materials availability

This study did not generate new unique reagents.

Data and code availability

The data and code for extracting and ranking druggable interactors are avail-

able at https://doi.org/10.5281/zenodo.5779103. A Jupyter Notebook is

included in the code repository demonstrating how the repurposing target

list for this article was generated. The HBP itself (i.e., the knowledge graph

used for this ranking analysis) is available at https://graphstore.scai.

fraunhofer.de and labeled as the ‘‘pharmacome’’ database. The HDAC6

screening dataset using tau-based substrate in an enzymatic assay is avail-

able at https://doi.org/10.5281/zenodo.5578613. Any additional information

required to reanalyze the data reported in this article is available from the

lead contact upon request.

Methods

Generation of a compound screening library

The collection of 5,632 compounds was assembled by an external partner

(SPECS) in a manner aligned to the recommendations from the Broad Institute

(Cambridge, MA, USA).61 In assembling this ‘‘mirror’’ collection, compounds

were purchased from the same set of more than 70 high-quality suppliers iden-

tified by the Broad Institute and quality controlled by liquid chromatography/

mass spectrometry (LC/MS) for purity and identity (minimum purity >90%).

Compounds at 10 mM were stored in 100% DMSO at �20�C. A curated data-

base is available containing the compound, indication, primary target (where

known), and mechanism of action as well as analysis tools that can assist in

mechanism of action determination and target elucidation.61 In total, the library

contains 2,350 launched drugs, 95 withdrawn drugs, 1,600 drugs in clinical

phases, and 1,587 drugs in preclinical development.

Construction of an AD-centered OpenBEL model

We re-curated our existing ADmodel62,63 and adapted all relations to the latest

version of OpenBEL (BEL v2.1; https://bel.bio/). BEL allows one to encode

causal and correlative relations between entities, including information such

as origin of the relation (PMID) and annotations of associated metadata

(e.g., species, tissue, assay, or disease). The revision was carried out using

defined processes, implemented in the software systems e(BE:L) and Py-

BEL.64 We expanded our model by further curation and enrichment proced-

ures to increase the granularity of the existing data and incorporated additional

biological information to sharpen the AD pathological picture (Table S1). In to-

tal, we curated 115 abstracts and 2,317 full-text articles, which yielded

159,962 relations (Table S1) with more than 7,350 annotations. Further,

13,580 drugs from DrugBank were mapped directly onto the HBP itself and

were supplemented with compounds extracted from ChEMBL. The tau sub-

graphwas identified and labeled within the HBP and comprised 6,269 relations

(Table S1) with 1,161 unique annotations.

Enrichment of the OpenBEL model

To supplement our model with interactions that were not directly cited in the

curated publications, we compiled data from several repositories and

mailto:vanessa.lage-rupprecht@scai.fraunhofer.de
mailto:vanessa.lage-rupprecht@scai.fraunhofer.de
https://doi.org/10.5281/zenodo.5779103
https://graphstore.scai.fraunhofer.de/
https://graphstore.scai.fraunhofer.de/
https://doi.org/10.5281/zenodo.5578613
https://bel.bio/
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converted them into the OpenBEL format so that we could enrich our AD

model with established biological relationships and metadata (Table S2).

Pathway data from KEGG,65,66 Pathway Commons,67,68 and Reactome69

were transformed and normalized70 to complement our AD knowledge graph

as well as PPIs from IntAct,71 BioGRID,72 and StringDB73 As our primary goal

was to create a tool for investigating drug repurposing candidates, we also

included data form both DrugBank74 and Clinical Trials75 to identify known

drug interactions and the disease contexts in which they were studied, respec-

tively. After this enrichment step, the total number of edges in our graph

increased to 728,809, while the tau subgraph grew to 7,100 relations.

Integration of quantitative information

To extract quantitative information, we employed our general-purpose table

extraction system that was developed to extract information from unstructured

scientific documents, in which relevant content is arranged in tabular format

(Figure S1). The details of this system are presented in Namysl et al.76 Here,

we will give a brief overview of the table recognition method and highlight its

experimental evaluation.

We were able to parse two popular input formats: the born-digital PDF files

and the digitized document images. Our table recognition system employs

two ad hoc heuristics for table structure recognition. The first heuristic recog-

nizes tables that are typeset with a LaTeX packagebooktabs. The second algo-

rithm handles the bordered table format. Moreover, the system includes a

regular expression- and graph-based table interpretation method for attri-

bute-value pairs extraction. This complementary table interpretation phase

additionally ensures that the tabular structure was correctly recognized. The

system was validated using two well-known table recognition bench-

marks.77,78 It achieved results that are competitivewith thebest academic table

recognition approaches on the ICDAR 2013 benchmark,77 which consists of

digital-born government and business documents. The flexibility of the system

was additionally validated using the ICDAR 2019 dataset,78 which comprises

low-quality scanned document images. In particular, our table recognition sys-

tem reachedhighest precision among the examined commercial andacademic

table recognition methods on both datasets. For more details about the evalu-

ation using the general-purpose benchmarks, please refer to the article

describing our table recognition system.76

Moreover, we evaluated our system using an in-house biomedical dataset

consisting of documents collected in the context of tau aggregation and

retrieved from PubMed Central.79 The ground-truth annotations were gener-

ated semi-automatically from the XML article content and then manually

curated. In total, our benchmark consists of more than 1,100 PDF documents

containing over 1,600 tables. We compared our table recognition approach

with a leading commercial document analysis system and two popular

open-source table recognition toolkits. We outperformed all baselines in terms

of precision in this scenario. The detailed description of our biomedical bench-

marking dataset, the evaluation procedure, the experimental setup, and the re-

sults are presented in Adams et al.80

Furthermore, in Figure S2, we present an example of a table recognized us-

ing our system.

Integration of contextual information

For retrieval of contextual information, we used our semantic search engine

https://pharmacome.scaiview.com/. This repository contains more than 37

million articles and 2.7 million reviews as well as more than 10 million patents.

More than 1.15 million documents were annotated with ontologies and ter-

minologies, including the Anatomical Therapeutic Chemical (ATC) Classifica-

tion System, Bioassay Ontology (BAO), the Brain Region and Cell Type

terminology (BRCT), the DrugBank Database, HUGO Gene Nomenclature

Committee, and Medical Subject Headings (MeSH). We performed queries

to identify literature containing drug, target, and disease relations and used on-

tologies such as BAO to filter selectively for assay information. MeSH-specific

analytics in patents for selected candidate compounds was used to identify

disease-related terms, which were investigated in the context of the corre-

sponding compound (Figure S4). Terms were ranked according to Kullback-

Leibler divergence, an information-based measure of disparity among proba-

bility distributions.81

Selection of disease-related primary target/candidate compound

The HBP represents a high-level concept with various entry points, such as

genes, proteins, drugs, or even cellular processes. The primary target defines

the center node from which we start our mining routine.
Selection of the primary target in the context of AD was done based on one

of the following criteria:

d Biomarker qualified by the European Medicines Agency (EMA) (pTau)

d Suggested biomarker identified in relevant literature

d Drug action indicated to be significantly relevant for AD therapeutic

intervention

Secondary target selection pipeline

As many therapeutic strategies focus on regulating a key biomarker directly

through compounds and medication, we chose to expand our range of targets

by first establishing a workflow to identify interactors (secondary targets) that

work upstream of a given node (primary target). In short, the pipeline is initiated

with the gene symbol of a given protein of interest as well as with an optional

post-translational modification. The node matching these parameters is iden-

tified within the graph, and a list comprised of neighboring nodes found to have

a ‘‘causal’’ relationship to the matched node is generated. Individual proteins

are extracted from these identified neighbors and are considered a possible

secondary protein-target interactor.

For a secondary target to be valid for further consideration, the following

conditions were defined:

d Druggability: A drug or compound targets and modulates the activity of

the protein. Proteins in the model have links to drugs and compounds

extracted from DrugBank as well as those added by experimental ev-

idence.

d Known mechanism of action of secondary target on primary candidate:

The effect of the secondary target on the primary candidate (either acti-

vation or inhibition) must be known to discern the outcome of a drug on

the activity/abundance of the primary target.

Identified secondary targets were further filtered based on following criteria:

d Promiscuity: Proteins within our model that are considered ‘‘hubs’’

(edge count >1,000) were excluded from our list. Targeting such pro-

teins would likely result in unforeseen downstream effects in associated

pathways and processes.

d High assayability: To verify our findings, secondary targets for which an

assay exists that allows one to measure their effect on the activity or

abundance of the primary target were given preference.

d PubChem BioAssays: The number of assays available according to

PubChem82 were considered during evaluation. Secondary targets

were excluded and labeled with ‘‘suboptimal experimental accessi-

bility’’ when no confirmatory assay was given, while the highest

numbers were taken as a measure for ‘‘degree of focus of interest.’’

d Interaction type: secondary targets that could not be clearly confirmed

as direct interactors modulating pTau were excluded.

PPI analysis

A PPI analysis was performed to limit the list of druggable pTau modulators to

possible direct interactors. We extracted our druggable targets list from BiKMi

and compared these PPI data with four other sources: IntAct, BioGRID,

Pathway Commons, and StringDB. Selection criteria were applied only when

extracting data from String DB. It was specified that for a valid interaction an

experiment had to be present. Targets were sorted by frequency of occur-

rence. Targets that occurred repeatedly in three or four sources were recog-

nized as putative MAPT interactors with direct influence on pTau. Targets

with fewer than two mentions were manually reviewed and rejected if biolog-

ical data indicated an indirect influence on pTau (e.g., signaling cascades

between primary and secondary target) and/or if a direct influence on phos-

phorylation could not be supported by a study. For each putative direct modu-

lator of pTau, a reference was given.

Drug prioritization pipeline

Once secondary targets were identified and filtered, a list of drugs and com-

pounds was generated for each protein. Each compound was ranked using

the available metadata:

d Primary target outcome: The effect of the drug on its target results in the

desired downstream change in activity or abundance of the primary
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target. Drugs producing unknown or undesirable outcomes were

excluded from further analysis.

d Patent: Drugs that are currently patented were not prioritized.

d Clinical trials: Drugs that have not been tested in a clinical stage II trial in

context of AD were preferred.

d Generics: Drugs with generic, cost-effective versions available were

preferred over drugs that are on patent.

d Promiscuity: Compounds with fewer targets (thus being more specific)

were ranked higher than those that bound non-specifically to a wide

range of proteins.

HDAC activity assay

The assay analyzing the tau-based substrate was designed around a coupled

enzymatic reaction (Figures 3A and 3B). Deacetylation of a luciferi- labeled

substrate peptide through HDAC6 allows for trypsin, a serine protease, to

cleave an N-terminal aminoluciferin, thereby enabling a quantifiable biolumi-

nescent reaction. Assays were performed in 384-well microtiter plates (Greiner

784904) with 15 mL total volume. Before the assay, 20 nL of compound or con-

trol substance was added to designated wells using an Echo550 liquid handler

(Beckman Coulter, USA). Initially, 10 mL enzyme buffer containing 2 nM

HDAC6, 50 mM aminoluciferin peptide, and 0.05% BSA in HEPES buffer solu-

tion (25 mM, with added 137 mM NaCl, 2.7 mM KCl, and 1 mM MgCl2, pH 7)

was added to each well and incubated for 30 min at room temperature. After

incubation, 5 mL of detection reagent (0.5 mg luciferase [Biomol, Germany])

(final concentration 0.067 mg/mL), 2 mg trypsin (Sigma-Aldrich, USA)

(0.133 mg/mL), and 400 mM ATP (Jena Bioscience, Germany) (final concentra-

tion 133 mM) in HEPES (25 mM, with added 137 mM NaCl, 2.7 mM KCl, and

1mMMgCl2, pH 7) were added andmeasured directly using an EnVisionmulti-

mode reader (PerkinElmer, USA) at 200 ms integration time.

To analyze a histone-based peptide substrate, HDAC-Glo I/II Assay and

Screening System (Promega, USA) was used according to the instructions

of the manufacturer. Briefly, reagents were prepared as described in the

manual, and plates and compounds were handled as described previously.

HDAC6 was added to all wells in 5 mL assay buffer (0.2 nM, final concentration

0.1 nM) and incubated for 10 min. Afterward, 5 mL of substrate reaction was

added and incubated for 10 min followed by luciferase measurement using

an EnVision multimode reader as described previously. Assay quality was

assured by Z0 calculation with all plates above 0.5 regarded as valid.

Western blot

Neuro-2a cells were cultivated in 75 cm2 flasks using DMEM with penicillin

(100 U/mL), streptomycin (0.1 mg/mL), L-glutamine (2 mM), and FBS (10%).

Medium was changed every third day, and cells were incubated at 37�C and

5% CO2. Passaging was done in 1:5 dilution, as soon as confluency was

around 90%, usually once a week. For cell seeding, the monolayer was

washed using 10 mL PBS, followed by detachment and dissociation of cells

using 1.5 mL of 0.05% trypsin/0.02% EDTA solution (Capricorn Scientific,

Germany) for 3 min at 37�C. Cells were resuspended in culture medium,

centrifuged at 300 3 g for 5 min, resuspended in fresh medium, and

counted.

Cells were seeded at 500,000 cells per well in non-coated 6-well plates

(Greiner BioOne, Germany). After 12 h, compounds and controls were added

at the desired concentrations in 4 mL total volume and incubated for an addi-

tional 12 h. After treatment, the wells were washed with PBS for 3 min, and

150 mL lysis buffer (RIPA buffer [Thermo Fisher Scientific, USA] supplemented

with protease and phosphatase inhibitor cocktails [both Sigma-Aldrich, USA])

was applied, followed by a shaking incubation for 10 min on ice. Cells were

scraped off, collected in Eppendorf tubes, and centrifuged (21 3 g at 4�C)
for 10 min. The supernatant was collected in a separate tube, and protein con-

centration was measured using Pierce BCA Assay kit (Thermo Fisher Scienti-

fic, USA) according to the manufacturer’s recommendations.

For western blot experiments, protein from cell lysates was prepared in

loading buffer and reducing agent. In each sample, 24 mg protein, 3 mL 103

SDS, and 7.5 mL 43 LDS were filled with deionized H2O to a final volume of

30 mL. Contents of each tube were boiled at 95�C for 10 min. Gradient gels

(1.0 mm, 4%–12% [Thermo Fisher Scientific, USA]) were used and run using

MOPS buffer (Thermo Fisher Scientific, USA) for 45–60 min at 200 V and

4�C. Protein transfer was done as a "wet" transfer using activated polyvinyli-

dene fluoride (PVDF) membrane for 1 h at 400 mA at 4�C.
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After protein transfer, membranes were washed in TBS-T twice for 5min and

blocked in 5%BSA inTBS-T for 1 h. Primary antibodieswere applied indifferent

dilutions (monoclonalmouseanti-a-tubulin [DM1A] 1:2,000,Cell Signaling,Cat.

No. 3873;monoclonal rabbit anti-acetyl-a-tubulin [Lys40] 1:800, Cell Signaling,

Cat. No. 5335; polyclonal rabbit anti-phospho-Tau [Ser396] 1:500, Invitrogen,

Cat. No. 44-752G; monoclonal mouse anti-Tau antibody [HT7] 1:100, Invitro-

gen, Cat. No.MN1000) in blocking buffer overnight on a spinner at 4�C. Tubulin
and tau levels, either total protein levels or post-translational modifications,

were detected simultaneously. After washing for 5 min, 3 times with TBS-T,

the secondary antibody (WS HRP polyclonal goat anti-mouse, Li-Cor, Cat.

No. A11029; WS HRP polyclonal goat anti-rabbit, Li-Cor, Cat. No. A31576)

was applied at 1:15,000 dilution for 1 h in the dark on a spinner at 4�C. After-
ward, themembranewaswashed3 times for 5min eachwithPBSandanalyzed

using chemiluminescent detection reagent (Li-Cor, USA).

After detection, the membranes were stripped to apply a different set of an-

tibodies. Therefore, the membrane was washed with PBS, then a western blot

stripping buffer (Thermo Fisher Scientific, USA) was applied for 7 min. After

washing (3 3 5 min, PBS), the membranes could be blocked again and sub-

jected to the next antibody. Rabbit antibodies were generally applied first, fol-

lowed by the antibodies raised in mouse.

Validated compound target comparison against disease-specific

proteins

Experimentally validated compounds were initially selected and tested based

on their downstream effect on the primary target via a specific secondary in-

teractor. However, drugs often interact with several different components,

thereby requiring one to assess how each compound fits into the disease-spe-

cific interactome. To this end, we compiled a list of all known targets for each

compound that passed the experimental screening and compared them

against those known to be associated with AD. Drug targets were collected

from the ChEMBL database, while genes of SNPs that were found to have a

significant link (p < 5 3 10�7) with AD were collected from the GWAS Catalog

dataset stored within our knowledge graph. The resulting overlapping set of

symbols and their found drug interactions were subsequently mapped to the

knowledge graph to be used as new starting points for the workflow described

above.
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Figures 
 
 
 

 
Figure S1: Table extraction system. Preprocessing involves binarization, skew angle correction, 
layout analysis, and OCR. Table recognition consists of two parts - detection and segmentation. Table 
interpretation is domain- and application-dependent. The result is a matching between the data cells in 
a table and the predefined meanings. The figure was adapted from the work of Namysl et al., 2021 1. 
  



  
 

  
 

 

 
 
a) Original table image from an article of Sharma et al. 2. 

 
b) Recognized table borders of the table image in a). 

Figure S2: Table recognition example. The recognized cell borders are marked with thick blue lines. 



  
 

  
 

 
Figure S3: Protein quantification using western blot. Related to Figure 3. Tubulin levels are shown 
in (A), while Tau protein levels are shown in (B). Post translational modifications are shown in the upper 
band, acetyl (K40) alpha-tubulin in (A) and phospho-Tau (S396) levels in (B), while total protein is shown 
in the lower band. While SAHA has a dramatic effect on acetyl alpha-tubulin, it has little effect on 
phosphorylated Tau, the opposite effect can be seen with VU0361737 a positive allosteric glutamate 
receptor modulator. 
 
 
 
  



  
 

  
 

 
 
Figure S4: Patent search and analysis in https://pharmacome.scaiview.com/. Candidate drugs 
were searched (here: Quercetin) to check for presence in patents (n= 3555) (A). Left: Documents 
contain annotations to retrieve information about drug targets (HUGO), assays (BAO), drugs and 
chemicals (DrugBank, ATC), biological/ biomedical expressions (MeSH) and brain regions (BRCT) (B). 
Right: Concept and meta data information for annotated compound. Statistical relevance of the 
occurrence of MeSH terms together with a drug. Right: concept and meta data information for resulting 
MeSH term (C). 
  



  
 

  
 

 

 

 
 
Figure S5: Summary of computational candidate compound analysis. Related to Figure 4. Shown 
are hit candidates resulting from GWAS analysis and emerging screening results (A1-4). The sunbursts 
show the meta data signature for Debio-1347, Quercetin, GW441756X and VU0361737, derived from 
compound mapping to the HBP and context analysis in https://pharmacome.scaiview.com/. 



  
 

  
 

Tables 
 

  Whole Graph Tau Subgraph 

N
od

es
 

protein 32953 1230 
gene 32250 23 
rna 30252 54 
drug 7633 1221 
activity 7288 389 
composite 6816 161 
abundance 6656 518 
complex 3687 443 
reaction 3306 10 
biological_process 2032 220 
other 10430 303 
Total Nodes 143303 4572 

    

Ed
ge

s 

increases 56699 2641 
association 42019 467 
has_component 31919 1 
decreases 14445 1628 
has_product 4723 0 
positive_correlation 3045 559 
negative_correlation 1769 230 
regulates 1384 133 
has_variant 1045 3 
causes_no_change 957 160 
other 1957 447 
Total Curated Edges 159962 6269 
edges added by e(BE:L) 568847 831 
Total Edges 728809 7100 

    
PMIDs  2432 431 

 
Table S1: AD model statistics. Related to Figures 1 & 2. Calculated number of node and edge 
types residing in the AD model. 
 
  



  
 

  
 

Genetic/SNPs  Gene/Protein Definitions  Pathway  Interaction Metadata  PPIs  
ClinVar  Flybase  KEGG  Clinical Trials  IntAct  
DisGeNet  HGNC  Pathway Commons  DrugBank  BioGrid  
Ensembl identifiers  MGI  Reactome  SIDER  StringDB  
GWAS Catalog  RGD           
   UniProt           
 
Table S2: Included resources and databases. Related to Figure 1. The AD-centered knowledge 
graph was enriched with additional metadata from the listed repositories.  
  



  
 

  
 

 
Compound 
name 

Smile of salt 
stripped 
molecule 

SlogP TPSA AMW Lipinski's 
Rule of Five 
compliant 

Rotatable 
bonds count 
(non-terminal) 

SIB-1757 Cc1ccc(O)c(/N
=N/c2ccccc2)n
1 3.51102 57.84 213.24 Yes 2 

CH5183284 
(Debio-1347) 

Cc1nc2ccc(-
n3ncc(C(=O)c4
cc5ccccc5[nH]4
)c3N)cc2[nH]1 3.35152 105.38 356.389 Yes 3 

Alpha pifithrin Cc1ccc(C(=O)C
n2c3c(sc2=N)C
CCC3)cc1 3.09919 45.85 286.4 Yes 3 

SIB-1893 Cc1cccc(/C=C/
c2ccccc2)n1 3.56042 12.89 195.265 Yes 2 

N-(4-
methoxyphenyl)
-1-phenyl-1H-
pyrazol-3-
amine 

COc1ccc(Nc2c
cn(-
c3ccccc3)n2)cc
1 3.6245 39.08 265.316 Yes 4 

SB-206553 Cn1ccc2cc3c(c
c21)CCN3C(=O
)Nc1cccnc1 3.1679 50.16 292.342 Yes 1 

VU0361737 COc1cc(NC(=O
)c2ccccn2)ccc1
Cl 2.9959 51.22 262.696 Yes 3 

Nitazoxanide CC(=O)Oc1ccc
cc1C(=O)Nc1n
cc([N+](=O)[O-
])s1 2.2289 111.43 307.287 Yes 5 

SU-4312 CN(C)c1ccc(/C
=C2\C(=O)Nc3
ccccc32)cc1 3.2453 32.34 264.328 Yes 2 

GW-441756 Cn1cc(C=C2C(
=O)Nc3cccnc3
2)c2ccccc21 3.066 46.92 275.311 Yes 1 

SB-366791 COc1cccc(NC(
=O)/C=C/c2ccc
(Cl)cc2)c1 4.0005 38.33 287.746 Yes 4 

Cyclic pifithrin Cc1ccc(-
c2cn3c4c(sc3n
2)CCCC4)cc1 4.25002 17.3 268.385 Yes 1 

Tyrphostin AG 
1296 

COc1cc2ncc(-
c3ccccc3)nc2cc
1OC 3.314 44.24 266.3 Yes 3 

Indirubin-3-
monoxime 

O=C1Nc2ccccc
2/C1=C1/Nc2cc
ccc2/C1=N\O 2.6538 73.72 277.283 Yes 0 

Amlexanox CC(C)c1ccc2oc
3nc(N)c(C(=O)
O)cc3c(=O)c2c
1 2.745 106.42 298.298 Yes 2 

Resveratrol Oc1ccc(/C=C/c
2cc(O)cc(O)c2)
cc1 2.9738 60.69 228.247 Yes 2 

WAY-207024 CC(C)(C)c1ccc(
-
c2nc3cccc(N4C
CN(Cc5ccc6nc 5.7928 60.94 476.628 No 5 



  
 

  
 

cnc6c5)CC4)c3
[nH]2)cc1 

Quercetin O=c1c(O)c(-
c2ccc(O)c(O)c2
)oc2cc(O)cc(O)
c12 1.988 131.36 302.238 Yes 1 

MPEP Cc1cccc(C#Cc
2ccccc2)n1 2.78982 12.89 193.249 Yes 0 

Pixantrone 
(dimaleate) 

NCCNc1ccc(N
CCN)c2c1C(=O
)c1ccncc1C2=
O 0.5982 123.13 325.372 Yes 6 

 
Table S4: Molecular properties of the 20 most interesting specific HDAC6 inhibitors identified 
using the Tau-based substrate. Related to Figure 3. These data illustrate the section process. Data 
given include the canonical smile of the salt stripped molecule, the SlogP, the topological polar surface 
area (TPSA), the calculated molecular weight (AMW), a statement if the molecule is compliant with the 
Rule of Five and the number of non-terminal rotatable bonds.  
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