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Abstract—Static data flow analysis is an integral building
block for many applications, ranging from compile-time code
optimization to security and privacy analysis. When assessing
whether a mobile app is trustworthy, for example, analysts need
to identify which of the user’s personal data is sent to external
parties such as the app developer or cloud providers. Since
accessing and sending data is usually done via API calls, tracking
the data flow between source and sink API is often the method of
choice. Precise algorithms such as IFDS help reduce the number
of false positives, but also introduce significant performance
penalties. With its fixpoint iteration over the program’s entire
exploded supergraph, IFDS is particularly memory-intensive,
consuming hundreds of megabytes or even several gigabytes for
medium-sized apps.

In this paper, we present a technique called CLEANDROID
for reducing the memory footprint of a precise IFDS-based data
flow analysis and demonstrate its effectiveness in the popular
FlowDroid open-source data flow solver. CLEANDROID efficiently
removes edges from the path edge table used for the IFDS fixpoint
iteration without affecting termination. As we show on 600 real-
world Android apps from the Google Play Store, CLEANDROID
reduces the average per-app memory consumption by around
63% to 78%. At the same time, CLEANDROID speeds up the
analysis by up to 66%.

I. INTRODUCTION

Static dataflow analysis is a well-researched area. Its algo-
rithms build the foundation for many applications, especially
in security and privacy analysis. Modern mobile applications
process large amounts of sensitive personal data such as
contacts, e-mails, banking and health data, text messages, or
location data. Several stakeholders have incentives to gain
access to such data, usually without the user’s notice, be it for
targeted advertising [1]–[3] or impersonation [4]. To prevent
such unauthorized data leaks, mobile applications must be
vetted for how they operate on sensitive data, i.e., which data
they access, and where they transfer this data. Due to the large
number of apps in modern app stores, manually inspecting
each application before publishing it to end users is clearly
infeasible. Therefore, automated techniques are required.

The properties in question are traditional data flow prop-
erties. Apps obtain sensitive data by calling API methods
provided by the respective framework or operating system such
as Android. If they need to transfer data to remote locations,

e.g., via network connections, they again need to call an API
method. The semantic transmission of the data record from
the phone to the remote server directly translates to a code-
level data flow between two API calls [5]. Especially when
dealing with large amounts of applications on specialized
platforms such as mobile devices [6]–[8] or large amounts
of possible code configurations [9], static data flow analysis
is a common choice. Dynamic analyses are often not a
suitable alternative, because of the well-known code coverage
problem [10]. Additionally, dynamic analyses on thousands
of apps are infeasible on real-world mobile devices, despite
recent advances in scalability [11]. Even though emulators
exist, they require the complete mobile operating system to be
emulated along with the app, which is significant overhead.
Furthermore, the performance of emulating an ARM-based
mobile phone on an x64 desktop computer or server is poor,
and not all apps are available for the rather uncommon x86-
based mobile OS versions [12], [13].

Static data flow analysis must be precise and avoid false pos-
itives to be suitable for a mass inspection of hundreds or even
thousands of apps. Therefore, analyzers such as FlowDroid
rely on the context-, and flow-sensitive IFDS framework [14],
[15], and its implementations for popular program analysis
frameworks [16]. The IFDS algorithm reduces the data flow
problem to graph reachability in a structure called the exploded
supergraph. The number of nodes in the exploded supergraph
is in O(n ∗ m) where n is the number of statements in
the program and m is the number of possible different data
flow abstractions. Section II explains IFDS in more detail.
This paper focuses on the memory consumption of an IFDS-
based data flow analyzer, which is largely driven by the size
of the exploded supergraph. Modern apps have hundreds of
thousands of lines of code. If we assume that a taint abstraction
encodes the tainted variable, there are hundreds of thousands
of different taint abstractions in an analysis, leading to a huge
exploded supergraph. In fact, as we show in our evaluation in
section V, this amounts to hundreds of megabytes or even
gigabytes for modern apps of moderate size. While such
hardware requirements might still be feasible for a small
number of apps on a dedicated machine, it effectively hinders



analyzing many apps at once, as it would be required for
vetting a large app store within a realistic time frame.

Note that IFDS performs a fixed-point iteration on the
exploded supergraph. Modern IFDS implementations such
as Heros [16] or FlowDroid’s FastSolver [17] reduce their
memory footprint by incrementally building the exploded
supergraph. A node in the graph for a statement S and a data
flow abstraction D is only created once the taint D actually
arrives at S, instead of building the maximum graph SxD
upfront. Nevertheless, the resulting graphs are huge. Since
building these graphs is essentially a fixpoint operation that
terminates when no additional edges are added to the graph
anymore, the graph grows continuously. Once an edge has
been added to the graph, it remains in the graph until the
analysis has finished. When creating the edge, the analysis
cannot determine whether it will later encounter a loop or
recursive call in the code and thus return to the same nodes in
the exploded supergraph. It therefore assumes that each new
edge is potentially relevant for detecting that a fixpoint has
been reached and to ensure the termination of the analysis.
Consequently, the memory consumption grows over time.

The key observation of this paper is twofold. Firstly, the
majority of edges are only visited once, and are therefore not
actually relevant for ensuring the termination of the analysis.
Secondly, there is a frontier in taint propagation, i.e., the
current set of edges over which taints are propagated. The
IFDS solver can only return to edges that are reachable from
this frontier. Inversely, all other edges can be removed. While
propagation continues, the frontier shifts and more edges
become redundant. This paper presents CLEANDROID, an
approach for efficiently computing the frontier of the taint
propagation as well as the set of redundant edges. It then
removes the redundant edges from the exploded supergraph to
regain memory, while guaranteeing that the overall data flow
analysis still terminates. Note that removing edges also implic-
itly removes those taint abstractions that are no longer refer-
enced by any edge, therefore freeing up significant amounts of
memory. We consider our approach to be a semantic garbage
collector for IFDS-based analyses.

Computing the frontier and identifying the redundant edges
introduces additional computational overhead. We therefore
evaluate the effects of different computation strategies (e.g.,
when to perform garbage collection) on memory consumption
and computation time. Particular challenges arise in modern,
multi-threaded IFDS solvers that propagate taints as one
independent work item per edge. When new taints are created,
each taint is propagated individually, potentially in different
threads, even if all of them originate from the same statement.
Consequently, the frontier is never stable, i.e., the set of taint
abstractions at any given statement can change at any time
depending on thread scheduling. There is no inherent ordering
when taints arrive at a particular statement or when the taint
set of that statement is complete. Garbage collection cannot
introduce such synchronization points without massive adverse
effects on the performance and scalability of the solver. We
designed CLEANDROID such that it operates on a “moving

target” without stopping the solver threads.
This paper presents the following original contributions:
• CLEANDROID, an approach for efficiently garbage-

collecting edges from an IFDS exploded supergraph to
regain memory during the analysis,

• an implementation of CLEANDROID in the FlowDroid
open-source data flow analysis tool, and

• an evaluation on the performance (time and memory)
effects of CLEANDROID in FlowDroid on 600 real-world
Android apps from the Google Play Store.

We will contribute CLEANDROID to the FlowDroid open-
source project once this paper has been accepted. Note that
our approach is applicable to IFDS in general, and not limited
to a particular implementation. The remainder of this paper is
structured as follows: In section II, we give a short introduction
into the IFDS framework, before presenting the CLEANDROID
approach in section III. We discuss our implementation in
section IV. In section V, we evaluate the time overhead and
the memory gains of our approach, before presenting related
work in section VI and concluding the paper in section VII.

II. BACKGROUND

This section explains the key concepts and algorithms to
which this paper presents novel extensions.

A. IFDS

In their 1995 paper, Reps et al. [14] define a set of
problems called IFDS (inter-procedural, finite, distributed,
subset) and provide an algorithm for solving them. Many
data flow problems fall in this category, such as taint tracking
for privacy-sensitive data in Android apps [17] or checks for
injection vulnerabilities [18]. The set of possible data flow
abstractions is finite, if we assume the abstraction to simply
reference the tainted variable (or access path [19], which is a
variable followed by a sequence of field dereferences such as
var.f1.f21). The sets of tainted variables or access paths
for two different paths through the inter-procedural control
flow graph can be computed independently, and unioned at the
join point, i.e., the statement in the code where the two paths
meet. Therefore, the problem is a distributed subset problem.

The core idea of IFDS is to reduce the data flow problem
to a graph reachability problem. There is one node for each
possible combination of access path and statement, denoting
that a specific access path is tainted at a specific statement.
An edge from one node to another indicates that if the source
of the edge holds (e.g., “x is tainted at statement S”), the
destination of the edge (e.g., “y is tainted at statement T”) also
holds. Tautologies are placed at the sources (“z is tainted”),
represented as edges from the special zero node to the
respective access path.

The graph that consists of the pairs of statements and access
paths as nodes and the effects of statements on taints as edges
is called the exploded supergraph. To detect whether data

1Access paths are generally unbounded for recursive data structures, but
techniques exist to approximate them to a finite subset [20].
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return b;

a b 0

Fig. 1: Example for exploded supergraph

obtained from a source API call at a statement S is leaked
through a sink API call at a statement T, the analyzer searches
for a path from node (0, S) to node (x, T), assuming that
x is the variable that is passed into the sink. Figure 1 shows
an example. The left side code portion is the main method
with the program entry point. The right side code portion is
a callee. The dotted arrows between the statements represent
the interprocedural control flow graph. The solid black lines in
the exploded supergraph indicate the path from the tautology
(0, x=source()) to the sink node (z, sink(z)). The
dashed lines inside the exploded supergraph represent edges
that are computed, but not relevant for the path in question.

Note that modern IFDS implementations [15], [16] do
not compute complete exploded supergraph upfront and then
perform a graph search. Instead, they incrementally extend the
graph, i.e., start at each source (0, S) with the respective
access path, and then incrementally add new edges by process-
ing each transitive successor statement in the interprocedual
control flow graph. The operation finishes once a fixpoint
is reached and no further edges are added. This approach
avoids adding unnecessary edges to the graph. In practice,
only a minority of all possible combinations of statement and
access path can actually receive a taint. Conversely, only a
small subset of the entire exploded supergraph is actually
required for the analysis. Furthermore, client analyses can
check whether a sink has been reached when propagating
new edges, i.e., during taint propagation. Therefore, they never
perform a full graph search to find leaks, and thus only need
the graph for their termination checks on the fixpoint iteration.

Still, even such minimal fractions of the exploded super-
graph can grow very large as we show in section V-B. For
ensuring that a fixpoint is reached when incrementally adding
new edges, classical IFDS implementations never remove any
edges. Note that the interprocedural control flow graph may
contain loops, e.g., due to recursive method calls or loops
in the program code. Therefore, keeping a set of edges that
have already been traversed is essential for termination, i.e.,
for detecting that the fixpoint has been reached. In this paper,
we present and evaluate techniques for selectively garbage-
collecting edges in this set at appropriate stages during the
overall fixpoint iteration.

Summaries are another key concept of IFDS. In the example,
an incoming taint on the first parameter of the callee always
leads to the return value being tainted, regardless of the
concrete call site. The analysis therefore creates a context-
specific summary. Whenever it encounters another call site
for the same callee in which the first argument is tainted as
well, it immediately taints the return value (i.e., applies the
summary) without propagating any edges through the callee.
We will use this property in section III to delete edges from
callees that are guaranteed to be fully replaced by summaries.

Also note that modern multi-threaded IFDS solvers propa-
gate their edges point-wise and independently. Each edge to
be propagated is a new work item that is picked up by the next
available worker thread. This allows the solver to use as many
threads as there are edges currently being worked on, which
effectively exploits modern multi-core processors. Therefore,
even if one incoming taint at one statement yields a set of
new abstractions to be propagated (i.e., new edges from the
same start node in the exploded supergraph), these edges are
all independent. There is no notion of a path being complete,
aside from the overall fixpoint.

B. IDE

CLEANDROID is applicable to arbitrary IDE [21] problems
as well. IDE is an extension to the IFDS framework and
consists of two phases, where the first phase propagates path
edges with functions as taint abstractions. In the second phase,
IDE computes concrete values along the path edges in the
exploded supergraph by computing the respective sequence of
functions on a given input value. We observe that the first
phase is equivalent to IFDS, only with a special universe
of taint abstractions. Nothing in CLEANDROID is specific to
a certain type of taint abstraction. CLEANDROID garbage-
collects path edges in the first phase of IDE, which reduces
the memory consumption for the exploded supergraph. Note
that the second phase, which is by far less memory-intensive,
remains unchanged. In fact, popular IFDS solvers such as
Heros [16] are built on top of IDE solvers, and CLEANDROID
would be integrated into the IDE solver in such a case.

C. IFDS-Based Alias Analysis

FlowDroid uses an IFDS-based alias analysis implemented
through a second instance of an IFDS solver, which oper-
ates on an inverse (backward) interprocedural control flow.
Whenever a heap object is tainted, the forward solver, which
handles the normal taint propagation, injects an edge into the
backward solver. The backward solver propagates this edge
backward, since aliases are introduced before they are used.
Once an alias is found, the backward solver injects a new taint
on the respective access path into the forward solver, which
propagates the taint on the alias along with all other “normal”
taints. With passing edges between solvers, FlowDroid is
able to retain context-sensitivity in the alias analysis. For the
details of the two interleaved solvers, we refer the reader
to the original paper [6]. In the context of this work, it is
sufficient to note that edges may be propagated by two different



solvers, which each build up their own independent exploded
supergraphs. This property is important for the notion of edge
liveliness, which we introduce in section III. Note other IFDS-
based works [18] also use multiple interleaved solvers, i.e.,
this property is not specific to FlowDroid. We therefore design
CLEANDROID to support multiple solvers.

D. Callgraph Analysis

CLEANDROID requires an inter-procedural control flow
graph (ICFG), which combines intra-procedural control flow
with a callgraph in a single graph. We re-use the existing
ICFG analysis in FlowDroid without any modifications, as
FlowDroid precisely models the Android application lifecycle.
It generates a dummy main method that serves as the program
entry point for Soot’s SPARK callgraph algorithm [22]. Since
CLEANDROID uses the ICFG as a black-box input, it is not
specific to FlowDroid. Note that loops and recursive calls are
equivalent in the ICFG, since the ICFG contains call/return
edges as well as edges inside methods.

III. APPROACH

The challenge of garbage-collecting edges in the exploded
supergraph is equivalent to identifying those edges that will
not be visited by the IFDS solver anymore. We call these
edges redundant edges. We call edges that are not redundant
edges, i.e., that can still be visited, live edges. When checking
whether a given edge is a redundant edge or a live edge, this
current edge is called a candidate edge. In other words, a
candidate edge is live if the solver may generate a set of
intermediate edges in the exploded supergraph in the future
such that its propagation returns to the candidate edge. Falsely
considering a candidate edge as live wastes memory and
reduces the effectiveness of the garbage collector. Falsely
considering a candidate edge as redundant, on the other hand,
may lead to a non-terminating solver. Therefore, the algorithm
should conservatively only consider those edges as redundant
that are definitely unreachable from all edges that are currently
being propagated. We call the edges that are currently being
processed the frontier of the taint propagation. Note that, in
a multi-threaded solver, the set of frontier edges is the union
of the edges in the solver’s worklist that are currently waiting
for an executor with free capacity, and those edges that are
currently being worked on. Frontier edges are, by definition,
always live. Not all live edges are frontier edges, though.
Recall that an edge is live when the solver transitively returns
to it in the future, which may require starting at a frontier
edge and then propagating an arbitrary number of intermediate
edges before reaching the live edge in question.

As explained in section II-C, we design CLEANDROID for
IFDS analyses with multiple solvers. We assume that each
solver keeps its own exploded supergraph. Each solver can
inject arbitrary edges into the other solver for propagation.
We call a set of solvers that may inject edges into each
other a solver peer group. From the perspective of a single
solver, a new edge can appear at any node, without requiring
any path to that node inside the current solver’s exploded

supergraph, as it may be contributed by another solver. We
therefore define the union of all frontiers of all solvers inside a
peer group as the global frontier. There may be multiple peer
groups, but the global frontier is always relative to a single
peer group. Similarly, a globally redundant edge is redundant
for all solvers in a peer group. If an edge is only redundant
for a subset of solvers, we call it locally redundant. As an
example of dependencies between solvers, let us assume that
we remove an edge that is only locally redundant for solver S
but not for solver T in the same peer group from the exploded
supergraph of S. In this case, solver T may inject the same
edge back into S. Then, assume the same edge becomes locally
redundant for T and is removed from T’s exploded supergraph,
until S re-injects the edge into T, which re-creates the original
situation. Due to the intermittent removals followed by re-
injections, none of the two supergraphs reaches a fixpoint and
the analysis never terminates. We therefore conclude that only
globally redundant edges may be removed from any exploded
supergraph in any solver of the peer group. To simplify the
presentation, we assume the global properties unless explicitly
stated otherwise or obvious from context (e.g., frontier usually
refers to global frontier).

Each solver runs its own garbage collector. The garbage col-
lectors of all solvers in a peer group form a garbage collector
peer group. We use the term peer group interchangeably for
solver peer groups and garbage collector peer groups in the
respective context. Whenever a solver schedules a new edge
for propagation, this new edge becomes part of the frontier
and the solver registers it as live with its associated garbage
collector. When an edge has been processed (i.e., the graph has
been extended with potentially new edges beyond the current
one), it is no longer part of the frontier, and unregistered from
the garbage collector. This allows each garbage collector to
keep track of the local frontier for its corresponding solver.

Listing 1: Target Program for IFDS Analysis
1 p u b l i c vo id main ( S t r i n g [ ] a r g s ) {
2 i n t a = s o u r c e ( ) ;
3 f o r ( i n t i = 0 ; i < 100 ; i ++) {
4 i n t b = c a l l e e 1 ( a ) ;
5 a = c a l l e e 2 ( b ) ;
6 }
7 }

We now use the example in listing 1 to give a better
intuition of live edges in an interprocedural analysis. We later
use the same example to explain an efficient approximation
for live edges. For simplicity, we describe a traditional Java
program instead of an Android app. In the example, we
consider the methods callee1 and callee2 to be arbitrary
computations of significant code size, whose details are not
important. As explained in section II, the IFDS analysis only
terminates when reaching a fixpoint on the edges of the
exploded supergraph. In the example, we assume that the
global frontier only contains edges from method callee1.
We observe that the analysis will later return from callee1,



call callee2, and return from callee2 again. It will then
taint variable a in the main method before following the
control flow graph back to the loop header, and finally arriving
back at the call to callee1. Therefore, the edge that brings
variable a into the loop is live, as it is visited transitively from
the frontier in method callee1. An ideal garbage collector
would precisely compute the set of all outgoing paths through
the exploded supergraph from the frontier and mark all edges
on these paths as live. In the example, this would include all
edges in the loop to ensure that the incremental generation of
this cyclic subgraph reaches its fixpoint. However, the problem
of precisely enumerating the live edges (and thus checking
whether a candidate edge is live or redundant) is equivalent
to the IFDS problem. Edges are created incrementally and
the full exploded supergraph is only known when the full
IFDS problem has been solved. While creating this graph, the
analysis cannot already traverse the edges that are yet to be
created, to see whether it will re-visit a certain candidate edge
in the future.

To avoid this problem, CLEANDROID applies conservative
over-approximation of live edges. Our approach reduces the
frontier computation problem to a graph search in the im-
mutable call graph of the program, which is not only much
smaller than the exploded supergraph, but which can be pre-
computed before the IFDS analysis begins. We observe that
the solver can only re-visit the edges in a particular method,
if it can return to that method via a control flow edge. In the
following, we build a recursive over-approximated definition
of live edges around this observation. Note that considering
too many edges live reduces the effectiveness of the garbage
collection, but does not impact the correctness or termina-
tion property of the IFDS algorithm. In fact, CLEANDROID
gracefully degenerates to basic IFDS in the worst scenario.
Therefore, the approach retains these properties of IFDS, as
long as the approximation is complete, i.e, contains at least
those methods in which the solver may propagate edges in
the future. Reducing the computation to a callgraph search
is efficient, because since plain IFDS already requires the
interprocedural control flow graph, which is in turn based on
the callgraph. Therefore, this data structure already exists in
a plain IFDS analysis and does not require additional work
to implement CLEANDROID. In practice, we translate the
callgraph into a map from each method to the set of transitive
callees of that method for faster queries. The time and memory
required to create and store this map, respectively, are not
significant. As we show in section V, CLEANDROID reduces
both the time and memory consumption of the IFDS analysis
in comparison to the original FlowDroid implementation.

Our approximation is recursively defined as follows. We
consider a method as live if there is at least one edge known
to be live in that method. Recall that frontier edges are live,
i.e., they are the base case in our definition. A method is
also live if it (directly or transitively) calls a method that is
already known to be live. All edges inside a live method are
considered live as well. A method that is not live is called
redundant. All edges inside a redundant method are considered

redundant. The basic idea behind this approximation is as
follows: We assume that all methods in which the solver
is currently propagating edges or to which the solver might
return (i.e., transitive callers) may potentially contain loops.
All these potential loops may lead to cyclic subgraphs in the
exploded supergraph, i.e., we conservatively consider all edges
in these methods live. CLEANDROID makes no attempt to
verify whether the solver may actually return to a specific
edge inside any of these methods (over-approximation).

We use the example in listing 1 to explain why our ap-
proximation of live methods is complete, i.e., no live methods
are considered redundant by our approximation. Note that
redundant methods may be considered live, though. We also
show why our definition of live methods only needs to consider
method returns and not method calls. In the example, we again
assume a state in which all current frontier edges belong to
method callee1. Therefore, method callee1 is live. It
might contain a loop, and removing edges from inside a loop
may lead to non-termination. More precisely: removing edges
from this part of the exploded supergraph therefore poses the
risk that this edge is a part of a cyclic subgraph, and removing
it would lead to an intraprocedural infinite propagate/remove
cycle. Method main is live, because its callee callee1 is
live. In other words, the IFDS solver eventually returns to
main from callee1 via a return edge. Removing edges
from main can therefore lead to the issue we described when
introducing the example. If the taint abstraction on variable
a is always removed while working on callee1, and re-
created upon return, before processing callee1 again, an
infinite propagate/remove cycle may occur.

Method callee2, on the other hand, is not live. It does
not contain any frontier edges, nor does it call any live
method. We now explain why this does not impact termination.
Recall from section II that IFDS creates method summaries for
methods that have already been processed. When the solver
processes a method call for the same callee and context for
which a summary exists, it applies the summary instead of
propagating edges through the callee again. The edges in
methods for which summaries exist can therefore safely be
removed. Consider method callee2 in the example. If a
summary for a given incoming taint abstraction already exists
and the call is encountered once again, the solver applies the
summary instead of propagating edges through callee2. If
no summary exists for the current context (i.e., the incoming
taint abstraction), the solver propagates through the method
once. While this propagation is running, the method is live,
because its edges are on the frontier and thus live. Alternatively
the solver has descended into transitive callees, which also
makes the method live, since it has live callees. Once the
solver has completed analyzing the transitive callees rooted
in callee2, and the method is no longer live, the summary
exists. Therefore, the edges inside callee2 are never visited
again for this context and can be deleted safely. Note that edges
are context-sensitive just like summaries. Therefore, CLEAN-
DROID only deletes those edges that correspond to the same
context for which the summary was created. CLEANDROID



never deletes summary edges. In the notation of Naeem et
al. [15], we only remove entries from the PathEdge table.

Since CLEANDROID is designed for IFDS problems with
multiple interacting solvers, each garbage collector queries its
entire peer group whether a particular method is redundant.
The edges inside a method are only removed if the method
(and thus all edges in it) are globally redundant in all solvers
of the peer group. Note that all solvers share the same control
flow graph, allowing for a shared cache of transitive callee
relationships already queried before.

Algorithm 1 shows the implementation of the garbage
collector. The global variable λ maps methods to the number
of unfinished edge propagations in that method, while variable
c contains the candidate methods for garbage collection once
they are no longer live. Method Initialize is called
before the IFDS solver schedules its first edge for processing.
Method RunGarbageCollector is run in a separate thread
concurrently to the garbage collector and constantly checks for
edges that can be removed. The IFDS solver invokes method
OnEdgeScheduled whenever it schedules a new edge for
processing. Note that we define the method to take a full
edge 〈d1, n, d2〉 as parameter to be consistent with common
presentations of the IFDS algorithm [15]. Once an edge has
been taken from the worklist and has been fully processed, the
solver calls method OnEdgePropagated. The IFDS solver
only needs to be modified to call these methods in the garbage
collector and can otherwise remain unmodified. Frontier com-
putation is handled in method TransitiveCallees, which
obtains the set of transitive callees of a given method via a
callgraph search. With a call to MethodOf, the garbage col-
lector can retrieve the method that contains a given statement.
In the algorithm, we iterate over all edges in the exploded
supergraph (represented by the edge set Graph) to find all
edges in a given method and remove them one by one. In
our actual implementation, we instead adapted the solver to
quickly remove all edges within a given method without
having to iterate over all edges in the graph.

Method RunGarbageCollector is run concurrently to
the other methods. It computes the set of live methods based on
a method reference counter, which is concurrently being mod-
ified by OnEdgeScheduled and OnEdgePropagated.
When the solver processes an edge that leads to one or
more new edges being added to the worklist, it calls
OnEdgeScheduled on all of them. Only then, it marks its
current edge as done via OnEdgePropagated. Therefore,
CLEANDROID works on an over-approximation of live edges,
to prevent infinite sequences of edge removal and re-creation
as explained above. As we show in section V-D, even on a
highly-concurrent system with 144 cores and as many IFDS
worker threads, CLEANDROID is thread-safe.

Recall that FlowDroid checks for leaks while propagating
edges, i.e., whenever it processes a statement, it checks
whether this statement is a sink and whether the incoming
data flow abstraction references a variable passed to that sink.
Therefore, removing edges from the exploded supergraph has
no effect on the correctness of the data flow analysis, as long

Algorithm 1: Garbage Collection Algorithm
GLOBAL VARIABLES: λ – method reference
counter, c – candidate methods

Function Initialize():
1 λ = (x 7→ 0)
2 c = ∅

Function RunGarbageCollector():
3 while AnalysisIsRunning() do
4 foreach m ∈ c do
5 if λ(m) = 0 then
6 if ∀m′ ∈ TransitiveCallees(m) :

λ(m‘) = 0 then
7 // Remove the edges for

method m
99 foreach e : 〈d1, n, d2〉 ∈ Graph do

1111 if MethodOf(n) = m then
1313 RemoveEdgeFromSolver(e)
1515 c = c \ {m}

Function OnEdgeScheduled(d1, n, d2):

INPUT: d1 – incoming abstraction, n – current
statement, d2 – outgoing abstraction
OUTPUT: nothing

16 m = MethodOf(n)

17 λ =

{
x 7→ λ(x) + 1 ifx = m

x 7→ λ(x) otherwise

18 c = c ∪ {m}

Function OnEdgePropagated(d1, n, d2):

INPUT: d1 – incoming abstraction, n – current
statement, d2 – outgoing abstraction
OUTPUT: nothing

19 m = MethodOf (n)

20 λ =

{
x 7→ λ(x)− 1 ifx = m

x 7→ λ(x) otherwise

as all sink edges are propagated at least once.

IV. IMPLEMENTATION

We implemented CLEANDROID as an extension to the
FlowDroid open-source data flow solver with about 400 lines
of code. FlowDroid’s architecture supports integrating new
solvers that can be selected by the configuration. Our new
garbage collecting solver is an adapted version of FlowDroid’s
original FastSolver IFDS solver. A garbage collector run is a
sequence in which the garbage collector first computes the
redundant edges on its associated solver. It then limits this set
to those edges that are also globally redundant. This subset
is then removed from the solver’s exploded supergraph. We



TABLE I: Category Distribution of the Data Set

Category Apps Category Apps
Age Range 1 22 Game Music 3
Age Range 2 27 Game Puzzle 18
Age Range 3 27 Game Racing 9
Android Wear 23 Game Role Playing 20
Art and Design 7 Game Simulation 16
Auto and Vehicles 6 Game Sports 6
AR Core 7 Game Strategy 12
Books and Reference 6 Game Trivia 1
Business 4 Game Word 10
Communication 16 Health and Fitness 9
Dating 17 House and Home 3
Education 2 Libraries and Demos 2
Entertainment 9 Lifestyle 15
Events 5 Maps and Navigation 5
Family Action 8 Medical 17
Family Braingames 3 Music and Audio 11
Family Create 3 News and Magazines 18
Family Education 9 Parenting 2
Family Music Video 7 Personalization 9
Family Pretend 5 Photography 16
Finance 3 Productivity 15
Food and Drink 2 Shopping 10
Game Action 10 Social 12
Game Adventure 14 Sports 8
Game Arcade 19 Tools 15
Game Board 11 Travel & Local 18
Game Card 9 Video Players 11
Game Casino 3 VR Device 1
Game Casual 12 Weather 6
Game Educational 6

do not share multiple solvers (and thus multiple exploded
supergraphs) between a single garbage collector, because the
load (the number of new edges per time unit) can be largely
different between solvers, and we want to allow for potentially
different garbage collector configurations per solver in the
future. Each garbage collector (one per solver) runs in a
separate thread and regularly performs runs while the IFDS
solver is running. After each run, it pauses for the GC interval,
to allow the IFDS solver to extend the exploded supergraph
before searching for the next set of redundant edges.

V. EVALUATION

In this section, we evaluate CLEANDROID with regard to
the following research questions:

RQ1 How much time and memory does FlowDroid con-
sume on our data set (baseline)?

RQ2 How does CLEANDROID affect the memory con-
sumption of FlowDroid?

RQ3 How does CLEANDROID affect the time consump-
tion of FlowDroid?

RQ4 How does CLEANDROID perform on large apps?
RQ5 How does CLEANDROID affect the correctness of

FlowDroid?

A. Experimental Setup

The experiments described in this section were conducted
on a randomly-selected set of 600 free apps from the Google
Play Store, downloaded in spring 2020. Table I shows the
apps’ category distribution. If an app is in multiple categories,
we list the first and usually most relevant category.

TABLE II: Machine Configurations for the Evaluation

Machine M1 Mach. M2 Mach. M3
CPU Cores 144 4 8
CPU Type Intel Xeon Gold 6154 AMD EPYC 7542
Physical Memory 3 TB 64 GB
Java Heap Size 250 GB 50 GB
Machine Type Physical Virtual

The focus of this paper is on the relative difference in mem-
ory and time consumption between CLEANDROID and the
base case. We used three different machines for the evaluation
as shown in table II. All machines run the Oracle JDK version
1.8.0 on Ubuntu Linux 18.04. Our high-performance machine
M1 allows us to test the effect of CLEANDROID in the case of
a highly parallel data flow analysis. Recall that there are two
solvers with one garbage collector thread each to clean up data
flow facts. On the other hand, there are 144 threads (one per
core as per FlowDroid’s default settings) that create new data
flow facts, putting maximum pressure on the garbage collector.
Since the solvers’ worklists do not always contain 144 items,
the solver does not put full load on the system. Consequently,
the CLEANDROID garbage collector threads usually do not
compete with the solver threads for CPU cores on M1. On
M2 and M3, on the other hand, with far fewer cores, such
competition occurs frequently.

For calculating the required memory, we did not rely on
FlowDroid’s default metric, which queries the JVM for its
total amount of memory, from which it subtracts the amount
of free memory reported by the JVM. We found this method
to be unreliable, e.g., reporting a memory consumption in the
tens of megabytes, even with millions of abstractions present
in the exploded supergraph. External memory analysis tools
consequently also reported much larger values, sometimes in
the gigabytes. However, these tools were not immediately
applicable to our analysis as they only capture snapshots for
a later offline analysis. These snapshots are as large as the
consumed memory and costly to write to disk. Since the exact
contents of the objects are irrelevant to our experiments and
we only require precise sizing, we instead integrated Twitter’s
memory calculation library for Java 2 into our evaluation
tool. With this library, we measured the actual size of the
exploded supergraph (represented by the path edge table and
all objects reachable through it) in both the forward and
backward solver of FlowDroid. Note that we excluded the size
of the Soot data objects that represent the app’s parsed classes,
methods, statements, etc., since they are loaded regardless of
the concrete analysis and are not specific to FlowDroid or the
data flow problem.

For the FlowDroid base case without CLEANDROID, we
measured the memory consumption once per solver after the
data flow analysis has finished. Since no edges are ever
removed, this method is accurate. For CLEANDROID, we
measured the memory consumption every 15 seconds in a
separate thread. This approach reduces the negative effect of
the sampling on the performance of the IFDS solver. Oth-
erwise, we would risk propagating significantly fewer edges

2https://mvnrepository.com/artifact/com.twitter.common/objectsize



TABLE III: Baseline Performance Results (All Apps)

Metric Avg. Median Min. Max.
Taint Propagation Time 152s 80s 1s 307s
Memory Forward Solver 3,369 MB 2,809 MB 0 MB 12,259 MB
Memory Backward Solver 1,557 MB 1,220 MB 0 MB 12,589 MB
Total Solver Memory 4,926 MB 4,191 MB 0 MB 16,539 MB
Abstractions Forward 1,152 829 2 7,342
Abstractions Backward 652 367 0 5,716
Total Abstractions 1,805 1,208 2 13,058
Sources 81 51 2 680
Sinks 439 360 2 2,032
Classes 17,441 14,890 57 103,216
Methods 100,761 85,720 173 546,653
Statements 188,103 146,466 1,500 892,514

than in the base case before the timeout is triggered. The
final per-app memory consumption is the maximum over all
samples and the final size of the edge cache after the analysis
has completed. Still, we measured memory consumption and
required time in separate runs for CLEANDROID for further
reducing the impact of the measurement overhead on the
results. To get consistent snapshots, the memory analysis needs
to intermittently pause other threats (i.e., lock on the individual
data objects being measured). We wanted to ensure that these
(albeit minimal) effects do not affect our timing evaluation.
Note that the final size of the exploded supergraph need
not be zero when running with garbage collection enabled.
Edges may be propagated between the last run of the garbage
collector and the end of the analysis.

We ran FlowDroid’s callback collection phase once per app,
serialized the results, and re-used it for all data flow runs to
ensure that all runs work on the same callgraph. We used a
timeout of five minutes on the taint propagation part of the
data flow analysis. For the path reconstruction, we did not
specify a timeout. Selecting appropriate sources and sinks is
an orthogonal area of work [5]. This paper focuses on the delta
of time and memory consumption between FlowDroid’s IFDS
solver with and without CLEANDROID’s garbage collection
when both are used with the same set of sources and sinks.
We therefore used an adapted version of FlowDroid’s default
source/sink definition file3.

B. RQ1: Baseline Experiment

In this section, we report on the baseline of the FlowDroid
data flow solver on our dataset without CLEANDROID. On 12
apps, the analysis did not complete, because either the APKs
were invalid, or due to errors in the analysis. Table III shows
our measurements for the remaining 588 apps, on machine M1.
On 80 apps (about 14%), the analysis timed out. Note that the
average timings over all apps are inaccurate, because they are
always bound by roughly the 5 minute cut-off 4. To avoid this
issue, table IV shows the values only for the remaining 508
apps that FlowDroid processed without a timeout.

We observe that FlowDroid consumes significant amounts
of memory during the data flow analysis. While up to 16

3We removed some overly broad source definitions to reduce the number
of timeouts in the base case.

4Recall that FlowDroid’s timeouts are not totally precise, since they prevent
new IFDS edges from being processed, but allow all solver threads to finish
their current work item, i.e., edge.

TABLE IV: Baseline Performance Results (No Timeout)

Metric Avg. Median Min. Max.
Taint Propagation Time 14s 2s 1s 82s
Memory Forward Solver 484 MB 13 MB 0 MB 3,723 MB
Memory Backward Solver 195 MB 4 MB 0 MB 1,413 MB
Total Solver Memory 679 MB 17 MB 0 MB 5,135 MB
Abstractions Forward 516 168 2 3,271
Abstractions Backward 275 72 0 1,778
Total Abstractions 791 240 2 5,049
Sources 44 25 2 313
Sinks 311 226 3 1,101
Classes 14,135 13,901 238 51,366
Methods 84,252 79,614 1,249 332,869
Statements 115,602 80,946 1,500 467,512

GB are still acceptable for analyzing a single app, it does
not scale to mass analyses. App store providers, for example,
need to check all uploaded apps for security vulnerabilities and
privacy violations [23]. Since stores contain millions of apps,
many of which are regularly updated [12], they must scan
dozens or even hundreds of apps concurrently. CLEANDROID
is an important step towards making precise approaches such
as FlowDroid applicable to such use cases.

We repeated our baseline evaluation on machines M2 and
M3. As expected, the analyses require significantly more time
on M2 and M3 than on the high-performance compute server
M1. For the apps without timeout, FlowDroid takes 33s on
M2 on average and 31s on M3. This is about 2.4 times, and
2.2 times the values for M1, respectively. The timings for all
apps, including those with timeouts, are biased by the 300s
timeout. We therefore find only a 37% increase for both M2
and M3. The increased analysis time did, however, not increase
the number of timeouts, which is 75 apps (about 13%) on M2
and 74 apps on M3. Note that slight variations in timeouts
are expected for apps with timings close to the timeout. These
apps may time out in one run, and complete in another one
with just seconds of difference in timing.

We found 166 apps (28%) to require more than 1 GB
of memory. On these apps, FlowDroid requires 8.3 GB of
memory and takes 260s on average on machine M1. All of the
80 apps on which FlowDroid times out require more than 1 GB
of memory, i.e., the 166 high-memory apps are a superset of
the 80 apps with timeouts. On only the remaining 86 large apps
without timeout, FlowDroid requires 3.1 GB of memory and
takes 60s for the analysis on average. We found the analysis
time to be almost equal on all three machines. If we exclude
the large apps over 1 GB, the average memory consumption
of the remaining apps is 18 MB.

C. RQ2: Memory Evaluation of CLEANDROID

Figure 2 shows a comparison between the average baseline
memory consumption (solid line) and CLEANDROID’s average
memory consumption for different GC intervals on machine
M1. We ran each app with CLEANDROID, configured with the
respective interval (x value). We then measured the average
and median memory consumption of all apps, and recorded
it as the y value in the graph. Running with longer intervals
(x > 10) did not provide any new insights. The graph on the
left side shows the data for the entire data set. The graph on



the right side includes only those apps on which the data flow
analysis did not time out. The lines represent the baseline,
solid blue for the average memory consumption, dashed red
for the median memory consumption over the respective app
set (all apps or only those without timeout). The black bullets
represent the averages over the apps with CLEANDROID for
the respective GC interval. The red diamonds show medians.

We observe that CLEANDROID significantly decreases
FlowDroid’s memory consumption in all cases. For all apps,
the memory gain is between 11% (x = 9) and 63% (x = 0) on
average. For the apps on which the data flow analysis did not
time out, the average memory gain is between 22% (x = 1)
and 78% (x = 0). Continuously running the garbage collector,
i.e., not pausing between garbage collector runs (x = 0),
offers the highest memory gain in both cases. For the apps
on which FlowDroid timed out, CLEANDROID provides a
memory gain of up to 23%. In the worst case, CLEANDROID
degenerates to the base case. When considering the median
memory consumption, the reduction on the entire app set
is almost 100%. For x = 0, the median baseline memory
consumption for all apps is 3,297 MB, whereas CLEANDROID
only requires about 5 MB.

For x > 0, the memory gain is less than for x = 0.
This is expected, because the garbage collector pauses, i.e.,
allows more edges to accumulate in the IFDS solver before
a new garbage collection is triggered. More edges in the
solver require more memory. However, this process is non-
deterministic because of the non- deterministic thread schedul-
ing between the 144 worker threads of the IFDS solver and the
two worker threads (one per solver) for the garbage collector.
Therefore, increasing the intervals does not steadily lead to
higher memory consumption.

We measure similar memory gains on machines M2 and
M3. On machine M2, the memory consumption is reduced by
68% for all apps, and by 59% for the apps that did not time
out. On machine M3, the memory gain is 70%, and 87%,
respectively. All values were measured for x = 0.

D. RQ3: Time Evaluation of CLEANDROID

Figure 3 compares the required data flow time for the base
case (solid line) with the time required in CLEANDROID
on machine M1. The presentation is similar to the memory
evaluation presented before. The graph on the left side shows
the timings for all apps in our data set. The graph on the
right side shows the timings of only those apps on which
the data flow analysis completed without a timeout. Since the
number of apps with timeouts is equal for the base case and
CLEANDROID, the timeout of 300 seconds does not influence
the validity of the averages presented in the figure, although
it introduces an upper limit for the timings. We focus on the
effect of CLEANDROID on the time and memory consumption
of FlowDroid. Therefore, we only consider relative differences
between the base case and CLEANDROID, not the absolute
number of seconds or timeouts.

Although CLEANDROID was not designed for increased
speed, we observe that our approach actually reduces the

time required for the data flow analysis. Investigation with a
profiling tool showed that deleting edges from the IFDS solver
reduces the load factor of the hash maps that store the edges.
Consequently, fewer re-hashings were necessary to insert new
edges afterwards, because the maps had more free entries left
in their backing data structures. For all apps, CLEANDROID
is between 5% (n = 9) and 66% (n = 0) faster than the
baseline on average. The median speedup is 99% - from 80s
to one second for x = 0 on the entire data set. For the apps
for which the data flow analysis completed without a timeout,
CLEANDROID is between 0% (n = 7) and 57% (n = 0) faster
than the baseline on average. The median timings are almost
identical to the baseline for all apps.

On machine M2, the average data flow analysis is 46%
faster (113s instead of 208s) for all apps. For the subset of
apps without timeout, the data flow time decreased by 61%
on average (13s instead of 33s). On machine 3, the analysis
for all apps is 35% faster (136s instead of 209s). For the apps
without timeouts, the speedup is 38% (18s instead of 25s). All
timings were measured for x = 0.

E. RQ4: Evaluation of CLEANDROID on Large Apps

For all apps with a memory consumption of more than 1 GB
in the baseline, including those with a timeout, CLEANDROID
achieves an average reduction by 25% on machine M1, by 54%
on M2, and by 53% on M3. In the median, the reduction is
27% on M1, 49% on M2, and 49% on M3. For the apps that
were analyzed without a timeout, CLEANDROID saves 31%
on M1, 46% on M2, and 54% on M3 on average (median:
33% on M1, 44% on M2, and 55% on M3). Note that the
lower percentages on the large apps are outweighed by the
larger absolute numbers, since these apps require 8.3 GB of
memory on average in the base case. Therefore, CLEANDROID
still provides considerable savings. The timings were identical
between the base case and CLEANDROID (within a 5%
margin) for the large apps, i.e., CLEANDROID degenerates to
the base case with respect to timings on large apps.

F. RQ5: Correctness Evaluation of CLEANDROID

We compared the leaks detected by the FlowDroid base-
line with the results of CLEANDROID for the 508 apps on
which both FlowDroid and CLEANDROID terminate without a
timeout on machine M1. We found that CLEANDROID had no
influence on the leaks discovered by FlowDroid, i.e., identified
the same set of leaks for each app.

G. Discussion

We observe that CLEANDROID performs best when run
continuously, i.e., without pausing between garbage collector
runs (x = 0). This is expected, because continuous cleanup re-
duces the number of abstractions that accumulate in the IFDS
solvers. CLEANDROID reduces the memory consumption by
between 63% (all apps) and 78% (apps without timeout). It
speeds up the analysis by between 66% and 57% respectively.
The effect of longer pauses between GC cycles (x = 1, 2, 3...)
is non-deterministic, and depend on the operating system’s
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Fig. 3: Taint Propagation Time over GC Intervals (left: all apps, right: apps that did not time out, blue solid line: baseline
average, red dashed line: baseline median, black bullets: CLEANDROID average over the apps, red diamonds: CLEANDROID
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thread scheduling and the precise properties of each app (e.g.,
average out-degree of a node within the exploded supergraph).

We find that CLEANDROID also performes well on fewer
cores, although FlowDroid’s worker threads and the CLEAN-
DROID cleanup threads compete for cores in such as scenario,
potentially leading to fewer garbage collector runs. For large
apps, CLEANDROID can save gigabytes of memory (around
50% of 8.3 GB on average), making large-scale analyses on
app stores more efficient.

H. Threats to Validity

Machine M1 is physical hardware, while M2 and M3 are
virtual machines. The shared host machine for M2 and M3
uses different hardware than M1. Therefore, the timing values

for M1 and M2/M3 might not be directly comparable to the
values for M1. We find a larger standard deviation in the
timings on the VMs already in the base case, most likely due
to VM scheduling and varying loads on the host machine.

VI. RELATED WORK

Various researchers have improved the performance of data
flow analyses. While reducing the solver’s memory consump-
tion is usually not the prime goal, approaches that reduce
the number of propagated edges (usually for performance
improvement) also implicitly reduce the memory consumption.
None of these approaches, however, solve the problem that the
exploded supergraph can only grow, and never shrink.



Bodden [24] argues that carefully designing the abstract
domain of the taint abstractions can benefit precision as well as
performance. Lerch et al. [25] provide guidance on designing
such abstractions. Access-Path Abstraction [26] is a technique
for generalizing access paths to reduce the overall number of
different taint abstractions that are propagated through a pro-
gram. All of these works focus on improving summary re-use
in IFDS and thus a smaller exploded supergraph and less mem-
ory consumption. He et al. [27] propagate data flow facts not
along the control flow graph, but directly to the their respective
next possible use point. This approach skips all statements in
between and does not create edges for them. Weiss et al. [28]
use a database as a fallback for IFDS problems with high
memory consumption. They store the exploded supergraph in
a hybrid disk/memory configuration, effectively using disks
when memory is exhausted. Graspan [29] uses big data graph
analysis based on disks. These approaches are othogonal to
CLEANDROID. An ideal version of FlowDroid would incor-
porate all of these approaches along with CLEANDROID to
make abstractions as small as possible, remove them from
memory as early as possible (CLEANDROID’s contribution),
and write them to disk if memory is still exhausted.

Other approaches avoid re-computing the same data flows
multiple times. Reviser [30] attempts to incrementally update
the data flow results after changes to the code under analysis,
e.g., after each build in continuous integration. This approach
reduces the overall time consumption, but does not affect
the peak memory requirement. StubDroid [31] pre-computes
library summaries for later re-use during app analysis. Stub-
Droid is orthogonal work and already part of FlowDroid and
therefore of the base case in this work. Both the base case and
CLEANDROID use StubDroid summaries. Rountev et al. [32]
present similar work for IDE analyses [21], an extension to
IFDS. While Rountev et al.’s work summarizes IDE / IFDS
edges, StubDroid summarizes the effects of the library method
on access paths. In either approach, the exploded supergraphs
of all libraries, which would normally be subgraphs of the
analysis on the programs that use these libraries, are replaced
by summary edges. Consequently, these approaches inherently
reduce the memory consumption of the analysis.

Aside from taint tracking, researchers have also worked on
symbolic execution for data flow analysis, including mobile
targets such as Android [33]. Others have extended Java-based
abstract interpretation frameworks to run precise data flow
analysis on Android [34], or have focused on model checking
for data flow properties [35], [36]. Taint tracking and symbolic
execution can achieve the same degree of completeness, and
neither approach offers superior performance in general [37].
In an attempt to combine the different approaches, work has
been done to post-process taint tracking results using symbolic
execution [38]. Such a combined approach would benefit from
CLEANDROID in its taint tracking phase. Kim et al. [39] have
improved the memory efficiency of abstract interpretation [40]
(AI), which is more generic than IFDS. While data flow
analysis has been implemented in AI [41], IFDS can exploit
the distributivity property for improved baseline efficiency.

Comparing CLEANDROID to an equivalent AI-based data flow
tracker with Kim et al.’s optimization is future work.

Weighted Pushdown Systems (PDS) [42] and Synchronized
Pushdown Systems (SPDS) [43], [44] are alternative methods
for precise static data flow analysis. They can efficiently
encode recursive access paths without loss of precision. We
plan to apply CLEANDROID to the automaton’s saturation
process post* in Späth’s work as future work. In this
algorithm, we can define a frontier on the nodes and edges
that are incrementally added, and can check whether the
algorithm can return to a certain node that has been added
previously. If not, the node can be removed. This will yield
an incomplete automaton, similar to CleanDroid, which yields
an incomplete exploded supergraph. Still, all SPDS data flow
analyses can be refactored to check for sinks inside of post*,
i.e., while building the automaton, instead of querying the final
automaton. The automaton is only required for termination,
which is not affected by CLEANDROID’s garbage collection.

Garbage collection for heap objects has been a prominent
research topic, especially for managed programming languages
such as Java. Classic stop-the-world collectors stop all worker
threads to identify objects that are no longer reachable.
Modern approaches, on the other hand, try to run mostly
in parallel, but still require a sequential phase in which all
worker threads are paused [45]–[48]. CLEANDROID does
not require any sequential phase. Further, our approach must
reason about an edge being re-visited in the future, i.e., via
edges that do not yet exist at the time of garbage collection.
In traditional garbage collectors, all references already exist
when determining reachability.

VII. CONCLUSION

In this paper, we have presented CLEANDROID, an approach
for efficiently garbage-collecting edges and taint abstractions
inside an IFDS data flow solver. We have integrated our
approach into the FlowDroid open source data flow solver,
and evaluated it on 600 real-world apps. We have shown
that CLEANDROID reduces FlowDroid’s average memory con-
sumption by up to 63% (entire dataset), and 78% (apps on
which no timeout occurred). Further, CLEANDROID speeds up
the data flow analysis by up to 66% and 57% respectively. In
total, CLEANDROID is an important step towards scaling the
highly-precise FlowDroid analysis to large numbers of apps,
e.g., when checking all newly-uploaded apps in an app store
for security and privacy issues. We further plan to optimize
the implementation of CLEANDROID before contributing our
work to the FlowDroid open source project.
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