
Emulation and Behavior Understanding through Shared Values

Yasutake Takahashi, Teruyasu Kawamata, Minoru Asada∗

Dept. of Adaptive Machine Systems,

Graduate School of Engineering, Osaka University,
∗JST ERATO Asada Synergistic Intelligence Project

Yamadaoka 2-1, Suita, Osaka, 565-0871, Japan

Email: {yasutake,kawamata,asada}@er,ams.eng.osaka-u.ac.jp

Mario Negrello

Fraunhofer IAIS,

Schloss Birlinghoven, 53754 Sankt Augustin, Germany

Email: mario.negrello@ais.fraunhofer.de

Abstract— Neurophysiology has revealed the existence of
mirror neurons in brain of macaque monkeys and they shows
similar activities during executing an observation of goal
directed movements performed by self and other. The concept of
the mirror neurons/systems[1] is very interesting and suggests
that behavior acquisition and the inferring intention of other
are related to each other. That is, the behavior learning modules
might be used not only for behavior acquisition/execution but
also for the understanding of the behavior/intention of other.

We propose a novel method not only to learn and execute a
variety of behaviors but also to understand behavior of others
supposing that the observer has already acquired the utilities
(state values in reinforcement learning scheme) of all kinds of
behaviors the observed agent can do. The method does not need
a precise world model or coordination transformation system
to deal with view difference caused by different viewpoints.
This paper shows that an observer can understand/recognize
a behavior of other not by precise object trajectory in al-
locentric/egocentric coordinate space but by estimated utility
transition during the observed behavior.

I. INTRODUCTION

Recent robots in real world are required to perform mul-

tiple tasks, adapt their behaviors in an encountered multi-

agent environment, and learn new cooperative/competitive

behaviors through the interaction with others. Reinforcement

learning has been studied well for motor skill learning and

robot behavior acquisition in single/multi agent environ-

ments. However, it is unrealistic to acquire various behaviors

from scratch without any instruction from others in real en-

vironment because of huge exploration space and enormous

learning time. Therefore, importance of instructions from

others has been increasing, and in order to understand the

instructions, it is necessary to infer their intentions to learn

purposive behaviors.

Understanding other agent behavior is also a very impor-

tant issue to realize social activities, for example, imitation

learning, cooperative/competitive behavior acquisition, and

so on. Recently, many researchers have studied on methods

of other agent’s behavior recognition/imitation system (e.g.

[2], [3], [4], [5], [6], [7]). These typical approaches assume

detailed knowledge of a given task, an environment, their

body structure and sensor/actuator configuration, and so on

based on which they can transform the observed sensory

data of the others’ behaviors into the global coordinate

system of the environment, or an egocentric parameter space

like the joint space of the others to infer their intentions.

However, such an assumption seems unrealistic in the real

world and brittle to the sensor/actuator noise(s) or any

possible changes in the parameters. Furthermore, there are

a variety of motion trajectories for a behavior achieving a

certain task. The variety will be caused by constraints of

body and/or environments, or experiences received so far.

It is almost impossible to cover all variation of motion

trajectories even for one behavior achieving one certain

tasks. Additionally, almost of them focus on mimicry of

the observed motions. Mimicry is to reenact someone else’s

action, without that action leading to reaching an immediate

goal; it is to copy the behavior as in pantomime. It requires

no understanding of the action beyond the motor mappings.

Robotic and computational models dealing with mimicry set

to understand what are motor programs, motor parsing and

storage for sequences and the correspondence problem[8]. It

usually does not touch the mechanisms of empathy, and goal

selection. Conversely, emulation is when after observing an

action, the observer jumps to conclusions and performs only

those actions that will lead it to the goal, without caring about

the exact methods of the demonstrator (although observed

methods biases future actions). It requires sharing of values

and reading of rewarded behavior. It is in effect a degenerate

subset of imitation, and the one most often employed by non-

human primates. Imitation is the crowning of copying, the

sophisticated capability of reenacting sequence of actions to

detailed levels, with the agent clearly aiming for the same

objective as the demonstrator’s [9]. This paper focuses on

“emulation” of observed behavior.

Reinforcement learning generates not only an appropri-

ate behavior (a map from states to actions) to achieve a

given task but also an utility of the behavior, an estimated

discounted sum of reward value that will be received in

future while the robot is taking an optimal policy. This

estimated discounted sum of reward is called “state value.”

This value roughly indicates closeness to a goal state of

the given task, that is, if the agent is getting closer to

the goal, the value becomes higher. This suggests that the

observer may understand which goal the observed agent

likes to achieve if the value of the corresponding task is

going higher. The relationship between an agent and objects

such that the agent gets close to the object or the agent

Proceedings of the 2007 IEEE/RSJ International
Conference on Intelligent Robots and Systems
San Diego, CA, USA, Oct 29 - Nov 2, 2007

ThD3.1

1-4244-0912-8/07/$25.00 ©2007 IEEE. 3950



faces to a direction is much easier to understand from

the observation, and therefore such qualitative information

should be utilized to infer what the observed agent likes to

do. The information might be far from precise ones, however,

it keeps qualitative information and we can estimate well

the temporal difference of the value during achieving the

given task. If the observer can estimate the value of each

behaviors of the other, it might be possible to recognize the

other’s intention, therefore the observer not only imitate the

observed behavior but also cooperative/competitive behaviors

according to the recognized intention.

We propose a novel method not to only learn/execute a

variety of behaviors but also to understand/emulate behaviors

of others. The method does not need a precise world model

or an accurate coordination transformation system to cope

with the problem of view dependency. We apply the method

to a simple multi-agent situation where the agent has kinds

of tasks such as chasing a ball, pushing a ball into a box,

passing a ball to another, and so on, and the observer judges

which goal the agent is now achieving from the observation

with estimated values.

II. EXPERIMENTAL SETUP

Fig. 1. Two robots and color coded toys objects

Fig.1 shows two robots and color-coded objects, e.g., an

orange ball, a blue bucket, and an yellow box. The players are

VolksBots [10] mobile robots endowed with omni-directional

cameras on top. A simple color image processing is applied

in order to detect the color-coded objects and players in real-

time. The mobile platform is based on a differential wheeled

vehicle and has simple basic actions, e.g. approaching an

object, turning around it in clock-wise and counter-clock-

wise, which were designed in advance. The two robots play

by displacing objects, for example, dribbling a ball, kicking a

bucket, taking a ball to a box, bringing the bucket to the other

robot, and so on. While playing with objects, they watch each

other and try to understand observed behaviors and emulate

them, in case they see fit.

III. OUTLINE OF THE MECHANISMS

The reinforcement learning scheme, the state value func-

tion, and the modular learning system for various behavior

acquisition/emulation are explained, here.

A. Behavior Learning Based on Reinforcement Learning

Fig. 2. Agent-environment interaction

Fig. 3. Sketch of state value propagation

Fig.2 shows a basic model of reinforcement learning. An

agent can discriminate a set S of distinct world states. The

world is modeled as a Markov process, making stochastic

transitions based on its current state and the action taken by

the agent based on a policy π. The agent receives reward rt

at each step t. State value V π , the discounted sum of the

reward received over time under execution of policy π, will

be calculated as follows:

V π
=

∞
∑

t=0

γtrt . (1)

Fig.3 shows a sketch of a state value function where a robot

receives a positive reward when it stays at a specified goal

while zero reward else. The state value will be highest at the

state where the agent receives a reward and discounted value

is propagated backward to the most recent states.

The state value increases if the agent follows a good policy

π. The agent updates its policy through the interaction with

the environment in order to receive higher positive rewards

in future. Analogously, as animals get closer to former action

sequences that led to goals, they are more likely to retry it.

For further details, please refer to the textbook of Sutton and

Barto[11] or a survey of robot learning[12].

B. Modular Learning System
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Fig. 4. Modular learning system

In order to observe/learn/execute a number of behaviors

simultaneously, we adopt a modular learning system. Jacobs

3951



and Jordan [13] proposed a mixture of experts, in which

a set of the expert modules learn and are weighted by

the gating system to produce the output. Fig.4 shows a

sketch of such a modular learning system. We prepare a

number of behavior modules (BM in the figure) each of

which adopts the behavior learning method described in III-

A. The module is assigned to one goal-oriented behavior

and estimates one state value V π . A module receives a

positive reward when it accomplishes the assigned behavior

and zero reward else. The behavior module has a controller

that generates predictions of next state values, selecting the

action with the maximum value. The gating module will then

select one output from the inputs of the different behavior

modules according to the player’s intention.

C. Behavior Categorization based on Estimated Values

Each behavior module can estimate a state value of

observed behavior at an arbitrary time t to accomplish

the specified task. An observer watches a demonstrator’s

behavior and maps the sensory information from an observer

viewpoint to a demonstrator’s one with a simple mapping

of state variables. Fig.5 shows a simple example of this

transformation. It detects color-coded objects on the omni-

directional image, finds the demonstrator, and shifts the axes

so that the position of the demonstrator comes to center of

the image. Then it roughly estimates the sensory information

in the egocentric coordinate and the state of the demonstrator.

Every behavior module estimates a sequence of its state value

from the estimated state of the observed demonstrator and

the system selects modules which values are increasing.

Fig. 5. Simple view transformation from self’s to other’s. left : a captured
image the of observer, Center : object detection (center is self), Right :
moving the position of demonstrator to center

Fig. 6. Sketch of different behaviors in a grid world

Fig.6 shows an example task of navigation in a grid

world. There is a goal state at the top center of the world.

An agent can move one of the neighboring square in the

grids every step. It receives a positive reward only when it

stays at the goal state while zero else. There are various

optimal/suboptimal policies for this task as shown in Fig.6.

If one tries to match the action that the agent took and the

Fig. 7. Inferring intention by the change of state value

one based on a certain policy in order to infer the agent’s

intention, he or she has to maintain various optimal policies

and evaluate all of them in the worst case.

On the other hand, if the agent follows an appropriate pol-

icy, the value is going up even if it is not exactly the optimal

one. Likewise, in emulation one is not committed with the

optimal policy, as the behaviors are the ones available in the

portfolio of the agent, which are not necessarily the optimal

ones, but the ones that the agent knows to lead to the goal

(Fig.7).

This indicates a possibility of robust intention recognition

even if several appropriate policies can exist for the current

task. An agent tends to acquire various policies depending

on the experience during learning. The observer cannot

practically estimate the performer’s experience beforehand,

therefore, it needs a robust intention recognition method,

which is provided by the estimation of state values.

The method has also a possibility of robustness against

calibration error of view transformation self’s to other’s. The

relationship between an demonstrator and objects such that

the demonstrator gets close to the object or the agent faces to

a direction is much easier to understand from the observation,

and therefore such qualitative information should be utilized

to infer what the observed agent intends. The information

might be far from precise, however, it keeps qualitative

information so it can estimate well the temporal difference

of the value.

Fig. 8. Behavior inference diagram

While an observer watches a demonstrator’s behavior,

it uses the same behavior modules for categorization of

observed behavior as shown in Fig.8. Each behavior module

estimates the state value based on the estimated state of

the observed demonstrator and sends it to the selector. The

selector watches the sequence of the state values and selects

a set of possible behavior modules of which state values are

going up as a set of behaviors the demonstrator is currently

taking. As mentioned before, if the state value goes up during

a behavior, it means that the module is valid for explaining
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the behavior. The observed behavior is categorized into a set

of behavior whose modules’ values are increasing.

Here we define reliability g that indicates how much the

observed behavior would be reasonable to be categorized into

a behavior

g =







g + β if Vt − Vt−1 > 0 and g < 1

g if Vt − Vt−1 = 0

g − β if Vt − Vt−1 < 0 and g > 0 ,

where β is an update parameter, and 0.1 in this paper. This

equation indicates that the reliability g will become large if

the estimated utility rises up and it will become low when

the estimated utility goes down. We put another condition in

order to keep g value from 0 to 1.

IV. EXPERIMENTAL RESULTS

In this section, we describe experimental results of behav-

ior generation based on my value, categorization of observed

behavior, and emulation of observed behavior, one by one.

A. My Action, My Value, My Behavior

We let one player learn a number of behaviors shown

in Table I at the beginning. In the environment, there are

two players, one with a magenta marker and the other

with a cyan marker, along with a yellow box, and a red

ball. There is no blue bucket at this moment. The player

has learned each behavior with a little human support and

acquired experiences enough to cover all of the explorable

state space. After the learning phase, the player can take

an appropriate action in every state based on value of the

action, then it produces a behavior. As mentioned, if it

Fig. 9. A behavior of pushing a ball into an yellow box

takes an optimal policy, the value of the behavior keeps

increasing until it reaches the goal state of the behavior

while the other values pace up and down. Fig.9 shows one

scene that a magenta player shows a behavior of pushing a

ball into a yellow box. Fig.10 shows a sequence of values

during the scene. The orange line indicates the value of the

behavior. It shows increasing tendency during the behavior.

The behavior is composed of behaviors of approaching a ball

and approaching a yellow box so that the red line goes up

in the earlier stage and the yellow line goes up in the later

stage.

Fig. 10. Sequence of values during a behavior of pushing a ball into
an yellow box, red line : approaching a ball, yellow line : approaching an
yellow box, orange line : pushing a ball to yellow box, light magenta :
approaching another player, dark magenta : pushing a ball to another player

Fig. 11. Magenta player observes an demonstrator’s behavior of pushing
a ball to the magenta player

1) Categorization of Observed Behavior: When a player

watches a behavior of the other, it categorizes the observed

behavior based on repertoire of its own behaviors. Fig.11

shows one scene in which the magenta player observes an

demonstrator’s behavior of pushing a ball to the magenta

player. Figs.12(a) and (b) show sequences of estimated

values and reliabilities of the behaviors, respectively, as

the demonstrator pushes a ball to the player. The dark

magenta line indicates the behavior and keeps tendency of

increasing value during the behavior in this figures. This

behavior is composed of behaviors of approaching a ball and

approaching to another player again, then, the red line goes

up at the earlier stage and the light purple line goes up at

the later stage in Fig.12(a). All reliabilities start from 0.5 and

increase if the value goes up and decrease else. Even when

the value stays low, if it is increasing with small value, the

reliability of the behavior increases rapidly. The reliability

of the behavior of pushing a ball into another player, dark

magenta line, reaches 1.0 at middle stage of the observed

behavior.

B. Emulation of Observed Behavior

Here, we introduce a new object in the environment, a blue

bucket. Because a player does not have any experience with

a blue bucket, there is no associated behavior with the object
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TABLE I

LIST OF BEHAVIORS LEARNED BY SELF AND STATE VARIABLES FOR EACH BEHAVIOR

Behavior State variables

Approaching a ball distance to the ball
Approaching an yellow box distance to the box position
Approaching another player distances to the ball, the player, and angle between them
Pushing a ball to an yellow box distances to the ball, the box, and angle between them
Pushing a ball to another player distances to the ball, the player, and angle between them

(a) Estimated Values

(b) Reliabilities

Fig. 12. Sequence of estimated values and reliabilities during a behavior of
pushing a ball to the magenta player, red line : approaching a ball, yellow
line : approaching an yellow box, orange line : pushing a ball to yellow
box, light magenta : approaching another player, dark magenta : pushing a
ball to another player

in the player’s repertoire. However, after one player shows

some interaction with the blue bucket, the other should be

able to recognize the goal, and later effectively emulate it.

This procedure will be as follows:

1) A player watches a behavior of the demonstrator,

2) transforms the sensory information in observer’s coor-

dinate to the one in demonstrator’s coordinate,

3) reads demonstrator’s reward,

4) back-propagates the reward as values to sequence of

states estimated during the observation,

5) emulates the observed behavior and updates values by

exploration through trial and error or mental rehearsal.

First of all, a behavior of approaching a blue bucket is

shown to a player as a simple case. The player executes from

1 to 3 of the list above one by one. Fig.13(a) shows estimated

state value function after it reads the demonstrator’s reward.

The x and y axes indicate distance to the bucket and state

value, respectively. It has only one peek at a state where it
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(c) Correction of Value

Fig. 13. Development of value through observation of other

will get a positive reward and other state’s values are zero.

It back-propagates the reward to the sequenced states at 4th

procedure of the list above, then, estimates state values based

on the state sequence of observed behavior (see Fig.13(b)).

After the player estimates the value of the observed

behavior, it tries by itself, thereby achieving emulation. The

estimated state value function is a good reference to imitate

the observed behavior while the estimated state values might

be inconsistent because of difference of their body dynamics

or error of estimated sensory information during observation.

In order to correct values of the behavior, a state transition

model or self-experience of the behavior is necessary. A state

transition model can be acquired through some exploration. If

it has the model in advance through the experience of playing

with the object, it is able to use it without further exploration.

Fig.13(c) shows the corrected state value function after some

exploration.

Next, a behavior of pushing blue bucket to the yellow box

are shown to a player. It follows the same procedure of the

lists above, in this manner acquiring a new behavior through

the observation. Fig.14 shows a sequence of observed be-

havior and Fig.15 shows sequences of estimated values and

reliabilities of behaviors during the observation. The blue

and green lines indicate the behavior of approaching a blue

bucket and the one of pushing it to the yellow box. It shows

that it successfully recognizes the observed behavior.
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Fig. 14. The magenta player observes an demonstrator’s behavior of
pushing a blue bucket to an yellow box

V. CONCLUSION

Above, values are defined as categories of behaviors,

which are defined by the achieved goals. The observer uses

its own reward functions to understand what the other will

do. Preliminary investigations in a similar context have been

done by Takahashi at el. [14] and they showed much better

robustness of behavior recognition than a typical method.

Unknown behaviors are also categorized and understood in

term of one’s own reward functions. Moreover, the agent

chooses the next action at every time step, and that action

is chosen according to experience of rewards that were

back-propagated through the states with the reinforcement

learning algorithm. Therefore, recognition of context leads

always to selection of the action that was most likely to

provide reward (adequate policy, not necessarily optimal).

This shows the choice of action as a process determined

by previous experience. Also in the case of novel goals,

the robot performing the action, uses his own action set.

This is proposed as a simple model of emulation and action

understanding.
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