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Abstract. Model-predictive control is a smart control technique that can unlock the potential
of the building’s thermal production leading to improvements in energy efficiency or energy
flexibility, which is obtained by a demand responsive operation based on external grid signals.
This work explains the set-up of a Hardware-in-the-Loop experiment to test an energy flexible
heat pump controller under realistic conditions. The developed simple, low-cost model-
predictive control algorithm can easily be integrated with a traditional heat pump controller.

1. Introduction
Future heat pump systems should interact with the electrical grid in order to balance generation
and consumption of electricity and avoid peak load, which can lead to stability failures. This
becomes particularly important with the increased share of the strongly intermittent renewable
energy sources. Combined with thermal storage, the heat pump system can provide grid service
in form of up- or down-regulation during a demand response event, i.e., consume more or
less electricity. Such a demand responsive operation strategy involves the complex interaction
between various conflicting objectives such as low energy consumption, grid-supportive operation
and satisfaction of user comfort requirements. The resulting complex optimization problem can
be solved by model-predictive control (MPC), an established control algorithm that exploits
available predictions of the future behavior while solving a simplified optimization problem in
an iterated moving-horizon fashion. Consequently, the closed-loop control system can correct
possible forecasting errors or modeling inaccuracies.

Hardware-in-the-Loop (HIL) testing combines real building hardware with numerical
simulations to evaluate the complete system under realistic settings emulated in a lab
environment. Compared to numerical simulations, it avoid several modeling uncertainties of
the real behavior of the plant but allows to carry out only a limited number of tests. The
main aspects of HIL tests for building energy systems reported in the literature are either the
test of the controller hardware and communication infrastructure while the heat generation and
distribution system are emulated, cf. [1], or the evaluation and validation of single components,
e.g. cf. [2, 6]. Only few consider the operation of real heat pump systems in a HIL environment
and investigate the complete interaction of thermal, hydraulic, electrical and communication
interfaces, cf. [3, 4, 5]. MPC for analyzing the energy flexibility potential of building heating
systems, however not in form of HIL tests, has been addressed in several works, e.g., [10, 7, 8, 9].



Compared to the aforementioned publications, the focus of this article is on the implementation
of a simple, low-cost MPC algorithm that can quickly be integrated with a traditional heat pump
controller. To guarantee real-time operability and the simple implementation into the limited
building controller hardware, a fast, gradient-based optimization algorithm has to be used. This
poses challenges on the structure of the employed system model and optimization formulation,
which are addressed in this work.

2. HIL testbed and communication interface
The employed HIL platform can be classified into four levels: the high-level controller, the
hardware under test, the emulation system and the simulation models. The hardware under
test comprises the modulating ground-source water/water heat pump with inverter technology
and a water storage tank. Two circulation pumps are integrated into the heat pump on the
source and sink side. The ground source for the heat pump and the heat consumer are emulated
via hydraulic interfaces in two conditioning modules that provide the required temperatures
to the heat pump and storage tank, respectively. The thermal behavior of the building and
ground source emulators are modeled directly in Python or provided as a functional mock-up
unit (FMU) using the PyFMI interface. The data acquisition via Modbus Ethernet was realized
with the in-house middleware software tool Remus.

Figure 1. Structure of HIL platform in the test lab.

3. MPC implementation
The structure of the simplified system model for testing MPC in the HIL test bed is depicted
in Figure 2. The heat pump is connected in parallel with a storage tank. The water for space
heating is injected into the top of the storage tank while the return water for the heat pump is
taken from the bottom. The ground source and heat consumer are emulated in the lab in two
conditioning modules. The low-level heat pump controller is in charge of keeping the heat pump
supply temperature to the storage tank close to the set-point THP by selecting an appropriate
compressor frequency. The high-level MPC controller determines THP as well as the heat pump
operation times in order to facilitate a grid-supportive operation. Thermal management of the
pump speeds and valves is done by the corresponding low level controllers.

3.1. Model description
3.1.1. Heat pump model The heating power Q̇HP = ṁHPcp(THP − TSN

) is calculated from the
difference between return temperature to the heat pump TSN

and and the supply temperature



Figure 2. Simplified test bed model for MPC with additional conditioning modules.

from the heat pump to the tank THP where the mass flow is set constant to ṁHP = 0.583 and
the specific heat capacity of water is assumed to be cp ≈ 4181 J/kg K. The used electricity

Pel = Q̇HP/COP is expressed as the ratio of heat produced Q̇HP and the heat pump’s coefficient
of performance (COP).

The COP is expressed as a 2nd-order polynomial and fitted with manufacturer data as per
standard EN14511. For variable compressor speed heat pumps, the polynomial comes in the
form of:

COP = c0 + c1 · THP + c2 · TGS + c3 · fcomp + c4 · THP · TGS + c5 · THP · fcomp

+ c6 · TGS · fcomp + c7 · T 2
HP + c8 · T 2

GS + c9 · f2
comp.

As it can be seen the COP shows a non-linear behavior over compressor speed fcomp as well as
sink and source temperatures THP and TGS.

3.1.2. Storage model The employed stratified storage model, cf. [11], with Nlayer = 4 layers
is based on nodal energy and mass flow balances for the temperature evolution of each layer i
with mass mi accounting for transmission losses to the exterior Q̇loss,i, heat conduction between

layers Q̇cond,i and mixing introduced during charge and discharge cycles:

micp
dTSi

dt
= −Q̇loss,i + Q̇cond,i + Q̇HP,i − Q̇load,i + δ+

i ṁicp(TSi−1 − TSi) − δ−i ṁi+1cp(TSi − TSi+1).

The effective mass flow ṁi = ṁHP − ṁload is positive if energy enters from layer i − 1, i.e.
ṁHP > ṁload, in which case the parameter δ+

i = 1 (otherwise δ+
i = 0). A negative effective

mass flow from layer i + 1, i.e. dominance of the load mass flow and thus cooling of layer i, is
taken into account by parameter δ−i .

3.1.3. Heat demand profiles For a given demand profile Q̇load the resulting mass flow at the
storage is given by ṁload = Q̇load/(cp(TS1 −Tret,set)). The supply and return temperature of the
heating distribution system are denoted by Tsup,set and Tret,set, respectively, and are calculated
by using a heating curve depending on the ambient temperature and the characteristics of the
building heat emission system. In order to satisfy the heating demand, the temperature of the
upper layer of the storage tank must be sufficiently high, i.e. TS1 ≥ Tsup,set whenever Q̇load > 0.

3.2. MPC formulation
3.2.1. Optimal control problem The resulting optimization problem is given in the form of an
economic nonlinear MPC problem with hybrid, i.e. non-continuous, dynamics in the storage



modeling. It minimizes the amount paid for the needed electrical energy while ensuring that
the tank water temperature is sufficiently high to be able to satisfy the heating demand. This
is realized by a soft constraint formulation with constraint (4) with weighting factor w and
non-negative slack variable s(t) ≥ 0 that is only active whenever the heating demand is positive.

min
x,u,p,s

∫ tf

0
cel(t)Pel(t) + Q̇load(t)/4181s(t)2 + 0.01s(t)2 dt (1)

s.t. ẋ(t) = f(x(t), u(t), p(t)) (2)

x(0) = x0 (3)

Tsup,set(t) ≤ TS1(t) + s(t) (4)

Q̇HP,min(t) ≤ Q̇HP(t) ≤ Q̇HP,max(t). (5)

The state vector x = (TS1 , . . . , TSN
)T holds the storage layer temperatures. The controllable

input is the heat pump supply temperature u = THP. The time dependent system parameters
or external influences are p = (Q̇load, cel, Tamb, Tsup,set, Tret,set)

T, i.e. the heat demand for space
heating, the grid signal, the ambient temperature and the supply and the return set point
temperature of the heating distribution system, respectively. The thermal capacity of the heat
pump depends on THP and is included as time variant lower and upper bounds in constraint (5).

The quality of the solution will be evaluated by the cost
∫ tf

0 celPel dt and by the deviation of

the upper storage layer temperature from the load set-point temperature
∫ tf

0 (Tret,set − TS1)+ dt

where (Tret,set − TS1)+ =

{
Tret,set − TS1 if TS1 < Tret,set and Q̇load > 0

0 else
.

3.2.2. Relaxation of hybrid formulation State-dependent discontinuities arise from the
temperature dependent lower bound Q̇hp,min, which equals 0 if the heat pump is off and a
minimum output power larger than 6kW otherwise, and the upward or downward direction of
the mass flows between different layers in the storage model. In order to apply a gradient-based
solver, the discontinuous formulations must be relaxed by using sub-optimal heuristic rules, e.g.
a post-processing step to meet the lower heat pump bound and the simplifying assumption that
the building load mass flow is smaller than that of the heat pump.

3.2.3. Solution of the MPC problem For solving the MPC problem, the optimal control problem
is transformed into a nonlinear optimization problem using direct collocation [12] on a time grid
of step size 900s, which prevents an over-frequent cycling of the heat pump. The MPC algorithm
as well as the system model are implemented in Python, using the symbolic differentiation
framework CasADi [14] and the nonlinear programming solver IPOPT [13]. The sampling length
for MPC is 900s while the prediction horizon is 24h. The solution time for one MPC iteration
and for a yearly simulation takes less than 1s and half a day, respectively, on a PC with limited
performance.

4. Case study
The heat pump employed in the test bed allows to modulate the thermal power output in the
range of 7 to 25 kW at W10/W35. The water tank has a volume of 1m3, which gives a maximum
storage capacity of approximately 23kWh (assuming a low-temperature load supply of 35◦C and
a large storage over-heating temperature of 20K). Thus, the energy flexibility potential lies in
the range of a few hours during one day and requires a heat pump charging operation of 1 hour
at full heat pump load and almost 3 hours at optimum compressor speed. Whether the system



can exploit the energy storage capacity during a demand response event and provide up- or
down-regulation to the grid, depends on the heating load profile.

As current electricity prices, e.g. the variable day-ahead-price, or other grid flexibility signals
do not offer sufficient variations to stimulate grid-supportive operation [15], we consider an
artificial renewable energy cost signal that is based on the solar and wind energy production in
Germany over the heating season (January till April, October till December) of 2018 [16]. The
averaged and scaled cost signal is presented in Figure 4 with high cost in the late morning and
afternoon.

In a short case study, we show how the developed MPC algorithm can exploit the flexibility
potential of the heat pump storage system. The load profile features an energy-efficient office
building with a maximum heating power demand of 20kW. Since the considered flexibility
potential is in the range of hours, the HIL testing duration can be reduced to one type day for
the considered grid signal. The employed averaged demand profile is presented in Figure 4. The
resulting grid-supportive storage temperature profile as well as heat pump thermal production
are illustrated in Figures 3 and 4. The energy efficient reference operation is obtained by using

Figure 3. Charging of storage tank computed by energy flexible MPC for 24h. Upper and
lower tank temperature, heat pump supply and consumer set-point temperature are plotted as
red solid, blue solid, black and dashed cyan curve, respectively.

Figure 4. grid-supportive heat pump operation computed by MPC for 24h. Heat pump thermal
power and heating load are plotted as red solid and green dash-dotted curve. The grid signal
cel is plotted as light blue-colored dashed curve.

a constant grid signal and takes into account the minimum heat pump power requirement. The
flexible operation is compared to the reference strategy by computing the percentage increase
or decrease factor 1−Cflex/Cref where C represents the considered indicator, e.g., energy usage,
cost or grid support. The latter is evaluated by the grid support coefficient GSC [15], which
indicates whether electricity is consumed in average at a grid pricing signal lower (GSC < 1),
equal (GSC = 1) or higher than average (GSC > 1). The simulation results are presented in
Table 1 and confirm the achieved energy flexibility resulting from the MPC. The energy efficient
reference strategy, which follows the heat demand profile, can be classified as grid-neutral. To
support the validity of the reduced HIL type day set-up, the comparable results for the full
heating year are included.

5. Summary and future work
This contribution presents the set-up of a HIL experiment for testing the energy flexibility
potential of a heat pump system. The focus is on the development of a simple, low-cost MPC



Table 1. Increased energy usage and improvement in energy flexibility of grid-supportive
operation compared to reference operation for type day and simulation of the full heating year.

test duration single type day heating year

energy usage increase 1.9% 0.3%
GSC improvement 15.2% 16.0%
GSC absolute values 0.84 (flex), 0.99 (ref) 0.84 (flex), 1.0 (ref)
cost saving 3.1% 5.72%

controller that is suitable for implementation in control hardware, and the set-up and evaluation
of the testing sequence. The actual lab experiments are currently in operation.
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