
Gaining Certainty about Uncertainty* 
Testing Cyber-Physical Systems in the Presence of Uncertainties at 

the Application Level 

Martin A. Schneider, Marc-Florian Wendland, Leon Bornemann 

Fraunhofer FOKUS 
Berlin, Germany 

{martin.schneider,marc-florian.wendland, 
leon.bornemann}@fokus.fraunhofer.de 

Abstract. A cyber-physical system (CPS) comprises several connected, embed-
ded systems and is additionally equipped with sensors and actuators. Thus, CPSs 
can communicate with their cyber environment and measure and interact with 
their physical environment. Due to the complexity of their operational environ-
ment, assumptions the manufacturer have made may not hold in operation. Dur-
ing an unforeseen environmental situation, a CPS may expose behavior that neg-
atively impacts its reliability. This may arise due to insufficiently considered en-
vironmental conditions during the design of a CPS, or – even worse – it is im-
possible to anticipate such conditions. In the U-Test project, we are developing a 
configurable search-based testing framework that exploits information from 
functional testing and from declarative descriptions of uncertainties. It aims at 
revealing unintended behavior in the presence of uncertainties. This framework 
enables testing for different scenarios of uncertainty and thus, allows to achieve 
a certain coverage of those, and to find unknown uncertainty scenarios. 

Keywords: Cyber-Physical Systems, Reliability, Search-based Testing, Uncer-
tainty, UML State Machines 

1 Introduction 

Cyber-physical systems (CPS) are increasingly affecting our daily lives, e.g. in form 
of an autopilot of airplanes and autonomous cars, medical devices such as insulin 
pumps, or less visible in logistic centers that are receiving, storing and distributing 
goods. They often perform safety-critical tasks (as for autonomous vehicles and medi-
cal devices) or mission-critical tasks (as for logistic centers). Due to this criticality and 
their impact on our daily lives, it is even more important that CPSs work reliably, oth-
erwise health or business is at risk. 

Due to their nature, CPS interact with their cyber environment as well as with their 
physical environment. Along with the increasing connectivity and pervasiveness of 
                                                        
*  The research leading to these results has also received funding from the European Union’s 

Horizon 2020 Programme under grant agreement no 645463. 



CPSs, the complexity of such interaction increases as well and is getting more complex, 
in particular for the physical world. Manufacturers cannot predict all circumstances, in 
particular with respect to the physical world, CPSs are exposed to. They have to make 
assumptions to make the design and development of CPSs manageable and affordable. 
Incomplete knowledge leads to uncertainties about their assumptions. If such an as-
sumption fails while a CPSs is in operation, it may heavily impact its reliability and 
may harm human beings in their environment. Hence, finding uncertainties and testing 
CPSs in their presence is inevitable to increase their reliability. Since the complexity of 
the environment and the uncertainties of manufacturers’ assumptions are difficult to 
grasp, traditional testing approaches are not sufficient and have to be adapted to over-
come these issues. 

In this paper, we propose a search-based approach to testing CPSs that copes with 
the challenges of the complexity of the environment and the implicit uncertainties of 
manufacturers’ assumptions. The proposed approach provides means to declaratively 
describe uncertainties that are already known, e.g. due to analysis or from field tests. 
These descriptions are then used to bootstrap the search-based algorithm, to confine the 
search space and to find new uncertainties. The presented approach is subject to ongo-
ing work done under the European research project U-Test1. 

The remaining paper is organized as follows: Section 2 discusses related work rele-
vant for this paper, Section 3 introduces the uncertainty taxonomy used as a conceptual 
model for declarative description of uncertainties with respect to CPSs and catches a 
glimpse on declarative descriptions of uncertainties by means of an uncertainty taxon-
omy. Section 4 describes the proposed methodology for uncertainty testing of CPS. 
Section 5 closes with a conclusion and future work. 

2 Related Work 

2.1 Uncertainty 

The term uncertainty has several meanings in different sciences and contexts as 
pointed out by Ramirez et al. [1]. While we are not specifically interested in the mean-
ing in the science of psychology and economics and can ignore them, even in the field 
of systems engineering this term has different meanings with respect to latent or un-
known properties and behaviors of a software system [2] or from the perspective of 
assumptions upon a certain goal [3]. 

However, a recognized article from Walker et. al. [4] defines uncertainty as “any 
deviation from the unachievable ideal of completely deterministic knowledge of the 
relevant system”. This definition takes into account the fact that there might be different 
kinds of knowledge beside completely deterministic knowledge. Ramirez et al. [1] de-
fines uncertainty from the perspective of a dynamically adaptive system as a system 
state of incomplete or inconsistent knowledge such that it cannot decided which envi-
ronmental or system configuration holds. 

                                                        
1  http://www.u-test.eu 



Refsgaard et al. [5] specify incomplete, inaccurate, unreliable, inconclusive, or po-
tentially false information as sources for uncertainty. Ramirez et al. [1] collected several 
sources of uncertainties from the literature, e.g. missing or ambiguous requirements, 
false assumptions, unpredictable entities or phenomena in the execution environment, 
incomplete or inconsistent information caused by imprecise, inaccurate, and unreliable 
sensors. Thus, uncertainties can be introduced in the requirements, design, and runtime 
phase. 

Walker [4] also introduces the classification in epistemic and variability uncertain-
ties and called this the nature of an uncertainty: epistemic uncertainty results from miss-
ing knowledge whereas variability uncertainty results from the variability, for instance 
in human and natural systems, and is also called aleatory, stochastic, or ontological 
uncertainty. Erkoyuncu et al. [6] and Refsgaard et al. [5] also use the terms epistemic 
uncertainty and stochastic or aleatoric uncertainty in order to express the unpredictabil-
ity of an event. 

According to the classification of nature of uncertainties from Walker [4], Erko-
yuncu et al. [6] describe the characteristics of epistemic uncertainties by a lack of 
knowledge. Further research may increase the amount of knowledge and thus, reduce 
epistemic uncertainty. In contrast, aleatoric uncertainties are characterized to be sto-
chastic and random where the uncertainty cannot be reduced by further research. 

In order to determine the knowledge level about an uncertainty, Walker [4] intro-
duced a scale reaching from statistical uncertainty to total ignorance: Statistical uncer-
tainty can be described in statistical terms. Scenario uncertainty is characterized by 
scenarios that indicate what might happen in the future, and what the effects to the 
system are. Recognized ignorance means that functional relationships are nearly un-
known and there is no significant scientific basis for developing acceptable scenarios. 
However, for reducible uncertainties, this missing knowledge can be investigated in 
order to shift such recognized ignorance to scenario uncertainty or even statistical un-
certainty. Total ignorance comprises all the uncertainties that one is aware of but have 
no or only little knowledge, those we do not know, in principle as well as those uncer-
tainties we are not aware of. 

 
Refsgaard [5] merged Walker’s knowledge level with Brown’s [7] spectrum of con-

fidence by a taxonomy of imperfect knowledge as shown in Fig. 1. This taxonomy 
distinguishes uncertainties by the knowledge of possible outcomes and the probabilities 
of the different outcomes. Refsgaard [5] mapped this taxonomy to Walker’s scale de-
scribed above. 

 



 
Fig. 1. Brown’s Taxonomy of imperfect knowledge adapted by Refsgaard et al. [5] 

However, as discussed by Erkoyuncu [6], there are also opinions that uncertainties 
do not have a probability assigned and this is the main distinction between uncertainties 
and risks [8][9]. Uncertainty is considered as a source of risk [10]. Erkoyuncu [6] dis-
tinguishes uncertainty from risk by the lack of any outcome predictability – in contrast 
to Walker and Refsgaard – and that uncertainty covers positive outcomes while risk 
only covers negative outcomes. 

2.2 Mutation Testing, Fault-based Test Generation and Search-based Testing 

Mutation testing [11] and mutation analysis [12] are techniques to introduce faults 
either in the implementation, i.e. source code, or in the specification, e.g. models, to 
assess the quality of test cases and test suites. Mutation operators are considered as fault 
models that are applied to code or models and can be used to generate test cases 
[13][14]. Higher order mutation testing uses combinations of mutation operators to find 
real bugs [15]. Mutation operators are specific to a modelling or programming language 
and thus, work on a syntactic rather than on a semantic level. Semantic-level mutation 
is considered as a relevant research-topic [15]. 

Search-based testing employs search-based software engineering algorithms for test-
ing purposes. The typical search-space is usually too large for exhaustive testing. Thus, 
search-based testing employs metaheuristics [16] [17] to explore the search space more 
efficiently. Since those metaheuristics are generic techniques that requires the formu-
lation of the problem as an optimization problem, a quality function is used to assess 
individual candidate solutions, e.g. test cases for search-based testing. A frequently 



used algorithm belonging to the class of search-based algorithm is the genetic algorithm 
[18] that employs mutation as used by mutation analysis, and additionally crossover 
and selection based on fitness values calculated by a quality function. The guidance by 
fitness values is one of several differences to mutation testing and higher order mutation 
testing. However, mutation and crossover is usually done on a syntactical level guided 
by the fitness calculation. Depending on the quality and appropriateness of the fitness 
function, even search-based testing may degenerate into random testing. Therefore, de-
veloping the fitness function has to be done carefully and may pose a significant chal-
lenge. 

3 The Uncertainty Taxonomy: Declarative Descriptions of 
Uncertainty 

In this paper, we consider uncertainties coming from the environment and accord-
ingly, call them environmental uncertainties [19], [20], [21] [22] [23]. According to 
Cheng [20], environmental uncertainties come from the physical environment and the 
cyber environment. Uncertainties from the physical environment come from unfore-
seen or environmental conditions with a lack of knowledge about it and may also result 
from sensor failures or noisy environments [23]. Uncertainties from the cyber environ-
ment may result from malicious threats or unexpected (human) input [23]. 

In addition to environmental uncertainties, uncertainties of CPS may also occur 
within the technical infrastructure when connected embedded systems, sensors and ac-
tuators interact in an unforeseen way or errors occur in the communication infrastruc-
ture of a CPS. However, in this paper we consider uncertainties in the environment of 
a CPS since uncertainties in the infrastructure are different compared to environmental 
level uncertainties, are often originating from technical uncertainties within the CPS’s 
technical infrastructure and have to deal with other aspects than the environment, e.g. 
elasticity and virtualization. Therefore, we assume the infrastructure was sufficiently 
tested and is working fine. 

Environmental uncertainties may impact the application running on the technical in-
frastructure of a CPS either directly, if the application is confronted with invalid or 
unexpected data or behavior, e.g. from another system or a user, or indirectly because 
a sensor works correctly but its reading is tampered by physical circumstances such as 
smoke. Therefore, we refer to environmental uncertainties by the term application level 
uncertainties. 

An application level uncertainty is constituted by a circumstance that does not com-
ply with the specified or expected environmental behavior, and may not be foreseen by 
a CPS’ manufacturer. If a CPS behaves in an undesired manner due to an uncertainty, 
i.e. in a way that negatively impacts its reliability, we call such a behavior an uncertain 
behavior to indicate that it results from an unforeseen or unexpected environmental 
condition. We distinguish between known uncertain behaviors that are known by anal-
ysis or field tests, i.e. before the system is deployed, and those that are not known a 



priori, and call them unknown uncertain behaviors. Accordingly, the corresponding un-
certainties are referred to by the terms known uncertainty for those that may be known 
a priori and unknown uncertainty for uncertainties one not aware of. 

To describe known uncertainties, we developed a taxonomy that allows to specify 
their characteristics. The purpose of the taxonomy is twofold. On one hand, by provid-
ing a scheme for properties of uncertainties may support their analysis and thus, their 
understanding. Furthermore, we use it to test for these, in order to find uncertainty sce-
narios and even new uncertainties as explained in Section 4. 

The characteristics of uncertainties comprise properties such as the origin, i.e. 
whether the uncertainty occurs in the physical or the cyber environment, or its causes, 
on a high-level distinguishing between human behavior, natural process and technolog-
ical process. Fig. 2 provides an excerpt of the taxonomy.  

We aim at characterizing uncertainties systematically by its origin, its cause, its lo-
cation and its impact on a system. The origin is related to the environment where the 
uncertainty may occur. This is denoted by the environment and may either be the cyber 
environment or the physical environment. The cause is used to characterize the origi-
nator of an uncertainty. We basically distinguish human behavior, natural process and 
technological processes as cause for an uncertainty. A person that regularly interacts 
with a cyber-physical system may show behavior that may contribute to an uncertainty. 
Natural processes are usually related to the physical environment where randomness 
may come into play, a very simple example may be radiation that may impact the read-
ings of a sensor. Technological processes are distinguished in those related to resources, 
timing, protocols and the application itself.  

Timing issues may result from the uncertainty whether a system is working with the 
expected performance while abstracting of real time, e.g. by a cycle counter.  

Resource issues are reflecting different issues with respect to the cyber world as well 
as to the real world, e.g. resource competition meaning that two instances are working 
on or using the same resources and thus interfering with each other. Resource location 
means that the expected resource is not where it is expected to be. Insufficient resources 
comprises uncertainties regarding the demanded and the provided resources where the 
demanded resources are higher than the provided resources, e.g. a missing resource 
item in the physical environment or insufficient CPU resources with respect to the cyber 
environment.  

Protocol issues summarize different uncertainties with respect to communication 
protocols. Interoperability issues occur if the specification of a communication protocol 
is ambiguous and two communication partners differ in their protocol implementation 
Faulty protocol implementation is a result of an incorrect protocol implementation lead-
ing to communication errors between two communication partners, e.g. different com-
ponents of the application or between the application and the infrastructure of the cyber-
physical system. 

 



 
Fig. 2. Excerpt of the Taxonomy for Application Level Uncertainties 



Application issues comprise uncertainties inherent to the application itself. Commu-
nication issues with platform is referring to situations where the application fails to 
communicate with platform devices, maybe resulting from a faulty application config-
uration. Functional faults are traditional implementation bugs within the application. 

The concept impact represents the impact of an uncertainty from the environment to 
the impacted element of a cyber-physical system, such as hardware and/or application. 

4 Uncertainty Testing 

This section introduces the proposed approach for search-based uncertainty testing by 
(i) providing an overview how to create models suitable for uncertainty testing in the 
first subsection and (ii) describing how the proposed approach evolve such models, 
aiming at revealing uncertain behavior by eventual test case generation and execution, 
in the second subsection. Since we employ a genetic algorithm, we require a quality 
function that provides a measure to evaluate whether we are about to find uncertain 
behavior of a system under test (SUT). To do so, we provide a model-based framework 
to describe relevant behavioral characteristics of the SUT for fitness evaluation in the 
third subsection. The last subsection provides information that can be used to describe 
an exit criterion when to stop uncertainty testing in terms of coverage criteria. 

 
Fig. 3. Overview of Uncertainty Testing Process Steps 

4.1 Modelling for Uncertainty Testing 

Modelling for uncertainty testing requires two artifacts: modelled uncertainties and 
functional models in terms of UML state machines. The latter one can be easily ob-
tained from a functional testing process performed in a model-based way. Such models 
can be reused for uncertainty testing and thus, reducing the effort to start the proposed 
approach. If functional descriptions in form of UML state machines do not exist, they 
can be created by anyone who has enough information on the requirement but does not 
need specific knowledge about uncertainties. The more challenging task is to describe 
characteristics of uncertainties. Such information can be obtained by a risk analysis 
approach or by obtaining information from tests in the field. Fig. 4 provides an example 
of a UML state machine describing valid interaction of the environment with the SUT. 
It describes a simple geo-locating system that determines the positions of tags whose 
positions are determined through a set of locators. The locators receive the signal of a 
tag and the application calculates its position via triangulation. First, tags are configured 
for the system (transition ‘configureTag’) and locators mounted (transition ‘subse-
quentMonitoring’). After that, the system is calibrated (transition ‘calibrate’), and by 
changing the position of a tag (transition ‘setPosition’), it can be checked whether the 
tag’s position is correctly calculated by the system (transition ‘getAllPositions’).  



 

Fig. 4. UML State Machine Providing a Functional Description 

The system may not calculate a tag’s position correctly if a locator is mounted after 
the system has been calibrated. The corresponding uncertainty would influence the cor-
rect recording of position data. The uncertainty consists in the unmodified position of 
the locators, i.e. that locators are not remounted after calibration. Hence, the correct 
functionality may be discontinued by an application level uncertainty related to the 
mount operation on an already mounted locator (referred by the transition ‘subsequent-
Mounting’) after the system has been calibrated. Fig. 5 provides a description of such 
an uncertainty whose impact refers to this mount operation.  

 

Fig. 5. Example of a Modelled Application Level Uncertainty 

For this small example, it’s enough information to perform uncertainty testing as 
described in the next subsection. 

4.2  Evolving UML State Machines and Generating Test Cases 

Uncertainties at the application level comprise all the stimuli from the environment 
of the SUT. The purpose of uncertainty testing is (i) discovering known uncertain be-
haviors resulting from uncertainties that may be known at design time, and (ii) discov-
ering unknown uncertain behaviors that may occur in the presence of yet unknown 
uncertainties. 



Since we do not know all the manifestations of an uncertainty and would like to 
reveal unknown uncertain behavior resulting from unknown uncertainties, we employ 
search-based techniques to efficiently walk through the input space. Aiming at meas-
uring whether we are approaching an uncertainty that may expose known or unknown 
uncertain behavior or if we have already discovered one, we exploit different outputs 
of the SUT as inputs to a fitness function.  

The modelled uncertainties and the functional models as described in the previous 
subsection form the basis for evolving state machines. Thus, we exploit the coupling 
effect [24]. The goal is to gain state machines of which at least one path reveals uncer-
tain behavior. 

Mutation. Mutation is performed on one hand using information from modelled uncer-
tainties, and on the other hand independent from that by using information of the system 
provided by the test model. In contrast to mutation analysis and search-based testing, 
we take into account semantical information provided by modelled uncertainties for 
mutation and eventual test generation. Thus, we do not apply mutation on a syntactical 
level but on the semantic level as well. By this approach, we can reduce the search 
space further. 

We apply mutations to transitions based on information from modelled uncertainties, 
evaluating its impact property that refers to a single operation or an interface containing 
operations. Several mutations of the same element are allowed, although a few combi-
nations of mutations are excluded to generate executable test cases eventually, e.g. 
those combinations that do not lead to a new state machine, e.g. in case one mutation is 
the inverse of another mutation. Based on the literature [9] [18], we use the mutation 
operators as follows and adapted them to UML state machines. 

• Add Transition: Adds a new transition by duplicating an existing one and setting a 
new source and target state. 

• Remove Transition: Completely removes a transition.  
• Reverse Transition: Swap source and target of a transition. 
• Change Source/Target of Transition: Move the source/target of a transition to any 

other state. 
• Remove Trigger of Transition: Transforms a transition to a completion transition. 
• Change Trigger of Transition: Changes the operation of a transition’s trigger to an-

other one of the same interface. 

Based on the example state machine depicted in Fig. 4 and an application level un-
certainty depicted in Fig. 5, we can identify those transitions that refer to the operation 
mount as the uncertainty. Such a mutation looks as in Fig. 6. 

 



 
Fig. 6. UML State Machine Mutated by Adding a Transition with Trigger mount 

Crossover. Mutations are the atomic piece of information to perform uncertainty test-
ing. Therefore, for the recombination/crossover of state machines, we solely consider 
mutations instead of whole state machines. We propose to use the following crossover 
operators: Combine all mutations of both parents. This yield one new child UML state 
machine. Uniform crossover: swap n mutations of both state machines. This yield two 
new child state machines. This approach can be refined by swapping an unfit mutation 
of state machine A with a fit mutation of state machine B if the share at least one path. 
Combine only the fittest path(s): This yields one new state machine with less mutations. 

Test Case Generation. We generate test cases based on evolved UML state machines 
using Microsoft’s Spec Explorer [30] that calculates all paths through it. To generate 
executable test cases, we use UML-based behavioral description of so-called execution 
invariants that describe those sequences that all test cases must respect. A simple ex-
ample of such an execution invariant is that a system must be switched on before it can 
be configured. These execution invariants are different from system requirements since 
we would like to intentionally violate system requirements. Execution invariants rep-
resent those invariants whose violation is actually impossible and would lead to test 
cases that could not be executed against the system under test or that would impede 
evaluation of test cases. 

Considering again the example state machine depicted in Fig. 4. It has two transitions 
named ‘setPosition’ to change the position of a tag and ‘getAllPositions’ to retrieve the 
position calculated by the SUT. Each time we change the position, we would require to 
retrieve the calculated position to decide whether it still matches sufficiently. Therefore, 
we would describe this as an execution invariant in form of a sequence diagram as 
shown in Fig. 7. 



 
Fig. 7. Simple Example of an Execution Invariant Requiring That getAllPositions is Called Im-

mediately After setPosition 

4.3  Modelling Fitness Factors 

To specify use-case specific factors, we provide stereotypes to identify elements that 
allow obtaining values from test runs (FitnessFactorProviders) that may be compared 
with an expected value by the corresponding counterpart (ExplicitProvider). These can 
be used for instance, to measure the distance between a measured position and the ac-
tual position. For measured values without any comparative value, ImplicitProviders 
can refer to them. An optional threshold can be specified together with a metricGoal 
that specifies whether the actual, measured value should be minimized, maximized or 
approach the threshold. In case of ExplicitProviders, the difference between the actual 
and the expected value can be minimized or maximized. System-specific factors can be 
identified by the same means. Furthermore, we use generic measures such as response 
time, CPU load, and memory consumption if we can obtain these values from the SUT. 
Fig. 8 shows the different stereotypes for fitness factor descriptions. 

With respect to the example given in Fig. 4, we would use the stereotype Explicit-
Provider referring to the operation to retrieve the position that was actually set with the 
kind property set to the value expected to describe the expected position data, i.e. set-
Position, and a second one referring to the operation that retrieves the position data 
calculated by the SUT with the kind property set to the value actual, i.e. the operation 
getAllPositionData. Since both values should be equal, the corresponding MetricFunc-
tion would have the metricGoal minimize, and an implementation would calculate the 
difference between the values provided by the actual and the expected fitness factor 
provider. 



 

Fig. 8. Framework for Model-Based Fitness Factors Description 

4.4 Metrics for Measuring the Progress of Uncertainty Testing 

To measure the progress of uncertainty testing and to be able to provide an exit cri-
terion to determine when the testing process should be stopped, we described an Un-
certainty Space Coverage metric that would be first step towards this goal. 

It measures all generations of evolved state machines related to a single uncertainty. 
The Uncertainty Space is spanned by all the possible mutation on triggers, guards and 
effect of transition in a UML state machine denoted by the variable N. If g is the number 
of steps of evolving a state machine, i.e. the number of generations (equal to the number 
of mutations), we can describe all the possible mutations by 

!"(!, %) = 	%
(% + 1)
2 ! − 2-.(/ − 1)

0

123

4

023

 

that can be simplified to the following version: 

!"(!, %) = 	%
(% + 1)
2 ! − 256(6 + 1)

2

4

023

− 6 

The Uncertainty Space comprises all possible combinations: 

789:;<=>8<?@A=9:(!, %) = 	.!"(!,%)
4

023
 

As expected, the uncertainty space may grow strongly with the number of muta-
tions applied to a single state machine and strongly depends on the constant N. 

5 Conclusion and Future Work 

We introduced an approach for testing the reliability of CPS in the presence of un-
certainty with the help of declarative descriptions and UML state machines eveolved 



by a genetic algorithm. The approach aims at finding manifestations of known uncer-
tainties and unknown uncertainties and the corresponding uncertain behaviors. We de-
scribed execution invariants to ensure generation of executable test cases. Finally, we 
proposed a coverage criterion based on the uncertainty space appropriate for specifying 
an exit criterion for uncertainty testing. 

Since this paper presents ongoing work, there is still a lot of work to do. Obviously, 
information used from uncertainty description is currently. For an effective approach, 
other kind of information should be obtained, particularly with respect to the cause of 
an uncertainty. Currently, the number of mutation operators is limited. Krenn et al. [11] 
provides an exhaustive specification of mutation operators for UML state machines. 
Since the uncertainty space is very huge, more ways to confine the process should be 
investigated. Eventually, the approach has to show its feasibility, effectiveness and ef-
ficiency by a thorough evaluation and compare it with traditional approaches. 

References 

[1] A. J. Ramirez, A. C. Jensen, and B. H. C. Cheng, “A Taxonomy of Uncertainty for 
Dynamically Adaptive Systems,” in Proceedings of the 7th International Symposium on Software 
Engineering for Adaptive and Self-Managing Systems, Piscataway, NJ, USA, 2012, pp. 99–108. 

[2] H. J. Goldsby and B. H. C. Cheng, “Automatically Discovering Properties That Specify 
the Latent Behavior of UML Models,” in Model Driven Engineering Languages and Systems, D. 
C. Petriu, N. Rouquette, and Ø. Haugen, Eds. Springer Berlin Heidelberg, 2010, pp. 316–330. 

[3] K. Welsh and P. Sawyer, “Understanding the Scope of Uncertainty in Dynamically 
Adaptive Systems,” in Requirements Engineering: Foundation for Software Quality, R. Wieringa 
and A. Persson, Eds. Springer Berlin Heidelberg, 2010, pp. 2–16. 

[4] W. E. Walker et al., “Defining Uncertainty: A Conceptual Basis for Uncertainty Man-
agement in Model-Based Decision Support,” Integr. Assess., vol. 4, no. 1, Feb. 2005. 

[5] J. C. Refsgaard, J. P. van der Sluijs, A. L. Højberg, and P. A. Vanrolleghem, “Uncer-
tainty in the environmental modelling process – A framework and guidance,” Environ. Model. 
Softw., vol. 22, no. 11, pp. 1543–1556, Nov. 2007. 

[6] J. A. Erkoyuncu, R. Roy, E. Shehab, and K. Cheruvu, “Understanding service uncer-
tainties in industrial product–service system cost estimation,” Int. J. Adv. Manuf. Technol., vol. 
52, no. 9–12, pp. 1223–1238, Feb. 2011. 

[7] J. D. Brown, “Knowledge, uncertainty and physical geography: towards the develop-
ment of methodologies for questioning belief,” Trans. Inst. Br. Geogr., vol. 29, no. 3, pp. 367–
381, Sep. 2004. 

[8] D. Faro and Y. Rottenstreich, “Affect, Empathy, and Regressive Mispredictions of Oth-
ers’ Preferences Under Risk,” Manag. Sci., vol. 52, no. 4, pp. 529–541, Apr. 2006. 

[9] F. H. Knight, Risk, Uncertainty and Profit. Courier Corporation, 2012. 
[10] J. Emblemsvåg, Life-Cycle Costing: Using Activity-Based Costing and Monte Carlo 

Methods to Manage Future Costs and Risks. John Wiley & Sons, 2003. 
[11] W. Krenn, R. Schlick, S. Tiran, B. Aichernig, E. Jobstl, and H. Brandl, “MoMut::UML 

Model-Based Mutation Testing for UML,” in 2015 IEEE 8th International Conference on Soft-
ware Testing, Verification and Validation (ICST), 2015, pp. 1–8. 



[12] S. P. F. Fabbri, M. E. Delamaro, J. C. Maldonado, and P. C. Masiero, “Mutation anal-
ysis testing for finite state machines,” in Software Reliability Engineering, 1994. Proceedings., 
5th International Symposium on, 1994, pp. 220–229. 

[13] R. A. DeMillo, R. J. Lipton, and F. G. Sayward, “Program mutation: A new approach 
to program testing,” Infotech State Art Rep. Softw. Test., vol. 2, no. 1979, pp. 107–126. 

[14] P. E. Ammann, P. E. Black, and W. Majurski, “Using model checking to generate tests 
from specifications,” in Proceedings Second International Conference on Formal Engineering 
Methods (Cat.No.98EX241), 1998, pp. 46–54. 

[15] Y. Jia and M. Harman, “An Analysis and Survey of the Development of Mutation Test-
ing,” IEEE Trans. Softw. Eng., vol. 37, no. 5, pp. 649–678, Sep. 2011. 

[16] S. Luke, Essentials of Metaheuristics. lulu.com, 2013. 
[17] P. McMinn, “Search-based Software Test Data Generation: A Survey: Research Arti-

cles,” Softw Test Verif Reliab, vol. 14, no. 2, pp. 105–156, Jun. 2004. 
[18] M. Harman, Y. Zhang, and S. A. Mansouri, “Search Based Software Engineering: A 

Comprehensive Analysis and Review of Trends Techniques and Applications,” King’s College, 
2009. 

[19] B. H. C. Cheng, P. Sawyer, N. Bencomo, and J. Whittle, “A Goal-Based Modeling 
Approach to Develop Requirements of an Adaptive System with Environmental Uncertainty,” in 
Model Driven Engineering Languages and Systems, A. Schürr and B. Selic, Eds. Springer Berlin 
Heidelberg, 2009, pp. 468–483. 

[20] “Tackling Uncertainty for Transportation Cyber-Physical Systems | CPS-VO.” 
[Online]. Available: http://cps-vo.org/node/11229. [Accessed: 25-Sep-2016]. 

[21] “NIST Foundations for Innovation for Cyber-Physical Systems.” [Online]. Available: 
http://events.energetics.com/NIST-CPSWorkshop/. [Accessed: 25-Sep-2016]. 

[22] A. J. Ramirez, A. C. Jensen, B. H. C. Cheng, and D. B. Knoester, “Automatically Ex-
ploring How Uncertainty Impacts Behavior of Dynamically Adaptive Systems,” in Proceedings 
of the 2011 26th IEEE/ACM International Conference on Automated Software Engineering, 
Washington, DC, USA, 2011, pp. 568–571. 

[23] J. Whittle, P. Sawyer, N. Bencomo, B. H. C. Cheng, and J.-M. Bruel, “RELAX: a lan-
guage to address uncertainty in self-adaptive systems requirement,” Requir. Eng., vol. 15, no. 2, 
pp. 177–196, Mar. 2010. 

[24] R. A. DeMillo, R. J. Lipton, and F. G. Sayward, “Hints on Test Data Selection: Help 
for the Practicing Programmer,” Computer, vol. 11, no. 4, pp. 34–41, Apr. 1978. 

[25] “Spec Explorer.” [Online]. Available: https://msdn.microsoft.com/en-us/li-
brary/ee620411.aspx. [Accessed: 25-Sep-2016]. 

 


