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Abstract

Biodiversity research studies the variability and diversity of organisms, including variability

within and between species with particular focus on the functional diversity of traits and their

relationship to environment. Managing biodiversity data implies dealing with its heterogeneous

nature using semantics and tailored ontologies. These are themselves differently conceived and

combining them in semantically enabled applications necessitates an effective alignment between

their concepts. This paper describes the ontology matching of biodiversity and ecology related

ontologies. We illustrate diverse challenges introduced by this kind of ontologies to ontology

matching in general. Real use cases requiring pairwise alignments between environment and trait

ontologies are introduced. We describe our experience creating a new track at the Ontology

Alignment Evaluation Initiative (OAEI) designed for this specific domain and report on the

results obtained by state of the art participating systems. The biodiversity and ecology use case

turns out to be a strong one for ontology matching, introducing new interesting challenges. Even

if most of the matching systems perform relatively well in the proposed matching tasks there is

still room for improvement. We highlight possible directions in that matter and elaborate on our

plan to further progress with the track.

1 Introduction

Research practice has become increasingly data-intensive and more and more data is being made

available online by researchers all over the globe. Biodiversity research is no exception, with

data ranging from observation and specimen collections to genome and environmental data,

encompassing anthropogenic impacts like land use patterns (IPBES 2018). The biodiversity

community has been exploring means to discover and filter this large volume of multidisciplinary

data by creating proper and rich metadata conform to the FAIR principles (Wilkinson et al.

2016), foundational concepts seeking to enhance findability, accessibility, interoperability, and

reusability of research data.

This highlights the need for bridging technologies to facilitate the cross-domain re-use and

re-purposing of biodiversity data. An interoperable exchange of such information is enabled

through the use of ontologies that provide ”meaning” to data. Considerable effort is being put in

formalizing domain knowledge in terms of ontologies and enriching data by means of annotations.

In this paper we consider the ontology matching problem in the biodiversity and ecology

domain, motivated by real use cases from two projects we are carrying out in this domain,
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namely GFBio1 (The German Federation for Biological Data) and AquaDiva2. Both projects

aim at providing semantically enriched data management solutions for data capture, annotation,

indexing and search.

Environment and trait ontologies have particular relevance within the framework of our

projects and for biodiversity big data in general. ’Trait’ in this context means a morphological,

anatomical or physiological feature measurable at the individual level (Kattge et al. 2011). Huge

datasets are provided by mass digitization efforts, which open up large amounts of trait and

environmental data, link these data to digital resources like sequence databases and foster the

setup of biodiversity knowledge graphs. To enable analysis and knowledge discovery, machine

learning methods based on word embeddings (Mikolov et al. 2013) were developed: OPA2Vec

demonstrates the usage of ontology meta-data and annotations (class labels, descriptions and

synonyms) to implement new approaches for semantic similarity measures on biodiversity

knowledge graphs emphasizing the need for reliable matching of the underlying ontologies (Smaili

et al. 2018, Weiland et al. 2019).

Motivated by our use cases, we introduced a new track to the Ontology Alignment Evaluation

Initiative3 (OAEI), the first OAEI track designed to evaluate matching systems performance on

biodiversity and ecology related ontologies.

In particular, we did consider two pairs of ontologies to be aligned based on their importance in

the considered domain and their high degree of overlap: (i) the Environment Ontology (ENVO)

(Buttigieg, Morrison, Smith, Mungall & Lewis 2013, Buttigieg, Pafilis, Lewis, Schildhauer, Walls

& Mungall 2013) and the Semantic Web for Earth and Environment Technology Ontology

(SWEET) (Raskin & Pan 2004), and (ii) the Flora Phenotype Ontology (FLOPO) (Hoehndorf

et al. 2016, 2018) with the Plant Trait Ontology (TO) (Walls et al. 2012).

To our knowledge, the aforementioned ontologies do not contain any mappings to each other

except for a mapping between ENVO and a small subset of the SWEET Realm subdomain

that has been manually curated. Using automated ontology matching for the generation of such

mappings, with minimal manual intervention, is probably the best solution compared to the efforts

needed for a manual curation process especially considering the size and dynamic evolution of

those ontologies.

The main contributions of this work are the following:

• We elaborate on specific challenges in the biodiversity and ecology domain and why there is

a need for automated ontology matching;

• How the considered domain ontologies introduce new and specific challenges that can lead

to the improvement of ontology matching systems;

• We describe our experience developing a new track for OAEI, the challenges faced in this

process and report on the results and limits of state of the art ontology matching systems in

coping with the track tasks.

The rest of the paper is organized as follows. In Section 2, we describe the context of this

work and the need for automated ontology matching in the biodiversity domain. Preliminaries

are introduced in Section 3. In Section 4 we detail the process of developing a dedicated track and

present results from the OAEI 2018 edition. A detailed discussion of the challenges and future

directions are presented in Section 5. Section 6 concludes the paper.

2 Context and motivation

In this section, we will elaborate on the particular challenges faced in the biodiversity and

ecology domain and the importance of including automated ontology matching processes into data

curation workflows. We introduce two real use cases where finding pairwise alignments between

1www.gfbio.org
2www.aquadiva.uni-jena.de
3oaei.ontologymatching.org/2018/biodiv/

www.gfbio.org
www.aquadiva.uni-jena.de
oaei.ontologymatching.org/2018/biodiv/
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ecological and phenotype ontologies is needed. Finally, we present how the characteristics of the

considered ontologies can raise new challenges for the ontology matching community.

Biological and ecological research has the particularity of dealing with a large number of

disciplines (e.g Botany, Microbiology, Chemistry) and addressing diverse topics ranging from

marine ecosystems to species distribution (Alves et al. 2018). This results in heterogeneous data

stored in disparate data archives which makes data acquisition more and more time consuming

and a challenging task for researchers. The biodiversity community has responded to those

challenges by developing a set of metadata standards as well as formalizing domain knowledge

in terms of vocabularies and ontologies. This formal knowledge provides a mean to enrich data

with annotations which enables efficient data discovery and curation.

The need for matching biodiversity and ecology ontologies came from real use cases related

to two biodiversity projects we are involved in. The GFBio project (Diepenbroek et al. 2014) is

developing an infrastructure providing data management and archiving solutions for biological

scientists and projects at the German national level. The projects semantic component, the

GFBio Terminology service (GFBio TS) (Karam et al. 2016, Fichtmüller et al. 2017), is the

backbone giving meaning to the data and offering a set of semantic services enabling more

efficient data capture and discovery. The GFBio TS includes ontologies and taxonomies useful for

describing data in biodiversity and ecology. Those ontologies are used to annotate project-related

datasets and the integration of such datasets requires pairwise alignments between the underlying

ontologies.

AquaDiva4 is a large collaborative research center (CRC) aiming to study the effect of

biodiversity on the subsurface levels in the German Hainich forest. To this end, several scientists

from different domains, including ecology, biology and geosciences, are collecting samples covering

different aspects and thus generating a large number of heterogeneous data sets. In order to deal

with the heterogeneity issue, the AquaDiva CRC is building a semantic layer on top of the datasets

stored in a common repository (Klan et al. 2017). These datasets cover a wide range of aspects

and a large number of ontologies is required to cover them. An essential step to build such a

conceptual layer is to identify semantically similar entities across the considered ontologies.

In a joint effort to improve data retrieval in the search applications we are hosting within the

aforementioned projects, we consolidated a set of high-level entities in the biodiversity domain

that are relevant for biodiversity researchers when searching for data (Löffler et al. 2017). Those

entities appear across different sources and cover as much as possible of the domain spectrum

both from a user and an application perspective. The identified entities served as a basis to

identify and link existing ontologies useful for data annotation as illustrated by the examples in

Table 1.

Table 1 Relevant high-level entities in the biodiversity domain

Organism
quercus(NCBITAXON:3511), cyclothone(NCBITAXON:48440), globigerina bulloides(NCBITAXON:69025)

Environment
vegetated area(ENVO:01001305), ground water(ENVO:00002041,SWEET:Groundwater)

Quality and Phenotype
fruit color(FLOPO:0000147,TO:0002617), leaf area(FLOPO:0010323,TO:0000540), photosynthetic rate (TO:0001015)

Process
climate change(ENVO:01000629,SWEET:ClimateChange), land degradation(ENVO:02500005,SWEET:LandDegradation)

Material and Substance
sediment(ENVO:00002007,SWEET:Sediment), rock(ENVO:00001995,SWEET:Rock), CO2(CHEBI:16526)

Anatomical Entity
DNA(PLOSTHES:2568), leaf (PO:0025034), nut fruit (PO:0030102)

Method
sequencing assay(OBI:0600047), remote sensing(PLOSTHES:3097)

A strong focus of current ecological research lies on the link between the environment and

functional traits (Diaz et al. 2013, Bruelheide et al. 2018), enabling the identification of consistent

4www.aquadiva.uni-jena.de

www.aquadiva.uni-jena.de
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and predictable associations between plant traits and environmental conditions. In the context

of this work, we focus on the traits that constitute the morphology and function of taxa

corresponding to Quality and Phenotype and covered by FLOPO and TO, as well as the habitats

and ecosystems with ENVO and SWEET, covering environmental features (Environment),

processes (Process) and materials (Material and Substance).

The environment ontology (ENVO) was developed in 2013 and is frequently updated and

extended. As shown in Table 2, the used version has 6909 concepts. ENVO has been chosen

for being a well-established ontology for describing environmental features, materials, processes

as well as biomes (Buttigieg, Morrison, Smith, Mungall & Lewis 2013, Buttigieg, Pafilis, Lewis,

Schildhauer, Walls & Mungall 2013). ENVO is used by many GFBio related projects, e.g. the

MIxS standard (Minimum Information about any x Sequence) (Yilmaz et al. 2011) and the

PANGAEA database (Diepenbroek et al. 2017), underlining its importance for the natural science

community. In order to foster reuse and interoperability and in order to increase the extent of

the ontology, ENVO was aligned with other OBO Foundry ontologies, such as BFO5, ChEBI6

(Chemical Entities of Biological Interest) and UBERON7 (Uber Anatomy Ontology).

Adding a different scope of environmental entities, the Semantic Web for Earth and Envi-

ronment Technology ontology (SWEET) (Raskin & Pan 2004) was selected to be matched with

ENVO. With over 4,500 classes as shown in Table 2, SWEET is the second-largest ontology

in the environmental realm. Originally, SWEET was developed in 2003 by NASA JPL (NASA

Jet Propulsion Laboratory), but since 2017 it is hosted by ESIP’s (Earth Science Information

Partners) Semantic Technologies Committee8. Prospectively, SWEET will soon increase its

importance for describing earth system science due to subsequent advancement.

Table 2 Summary of the versions, number of classes and source of the ontologies included in the
Biodiversity and Ecology track.

Ontology Version Number of classes Download source

ENVO 2017-08-22 6909 http://purl.obolibrary.org/obo/envo.owl

SWEET 2018-03-12 4543 https://github.com/ESIPFed/sweet

FLOPO 2016-06-03 24199 http://purl.obolibrary.org/obo/flopo.owl

TO 2017-09-11 1504 http://purl.obolibrary.org/obo/to.owl

The development of FLOPO is driven by the objective to cover the global trait spectrum of

plant life with 100,000s of species. Plant data grouped by region and time period are collected in

comprehensive compendia called Floras (Hoehndorf et al. 2018). The creation of the FLOPO was

motivated by the lack of a standardized vocabulary to systematically compare and analyze the

trait information in Floras. Initially, FLOPO was completely based on an automated data-driven

workflow (Vos et al. 2014). The Plant Ontology (PO) (Cooper et al. 2013) and the Phenotype

And Trait Ontology (PATO)(Gkoutos et al. 2005) were used to extract entity-quality relationships

from digitized taxon descriptions in Floras, and a formal ontological approach based on phenotype

description patterns and automated reasoning was applied to create both the ontology FLOPO

and a knowledge base containing FLOPO-annotated traits of plants (Hoehndorf et al. 2016).

The Trait Ontology (TO) was originally developed to describe rice traits and then expanded

in addition to PO (which provides the vocabulary for morphological and anatomical structures

as well as for stages of development (Arnaud. et al. 2012)) to characterize traits from all green

plants (Cooper et al. 2018). It is of special interest to provide mappings between FLOPO and

TO, since both complement each other regarding coverage of qualitative and quantitative traits

and phenotypes.

5basic-formal-ontology.org
6www.ebi.ac.uk/chebi
7uberon.org
8github.com/ESIPFed/sweet

http://purl.obolibrary.org/obo/envo.owl
https://github.com/ESIPFed/sweet
http://purl.obolibrary.org/obo/flopo.owl
http://purl.obolibrary.org/obo/to.owl
basic-formal-ontology.org
www.ebi.ac.uk/chebi
uberon.org
github.com/ESIPFed/sweet
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The chosen ontologies present interesting characteristics that can raise new challenges for the

ontology matching community. For instance, the SWEET ontology has a particular structure,

it is composed of 220 single small ontologies representing its different sub-domains. Within two

different sub-domains, the same term can be used to express two different semantic meanings

which results in a lot of homonyms in this ontology. Homonymy together with the absence of

definitions may compel ontology matching developers to improve the structural matching part of

their algorithms. On the other hand, the size and particular lexical content of FLOPO can boost

lexical matching and particularly the use of specialized background knowledge.

3 Preliminaries

In this section, we present some preliminary notions used in the rest of the paper. We outline

the definition of an ontology, a mapping and an ontology alignment. For more details, we refer

the reader to (Ehrig 2006, Shvaiko & Euzenat 2013, Euzenat & Shvaiko 2013, Kalfoglou &

Schorlemmer 2005).

An ontology is formally represented as a 6-tuple: O = < C, R, I, HC , HR, X > (Ehrig

2007), where: C and R are disjoint sets representing the set of concepts and the set of relations,

respectively; I denotes a set of instances of C or R; HC denotes a partial order relation on C,

called hierarchy or taxonomy of concepts. It associates to each concept its super or sub-concepts;

HR denotes a partial order relation on R, called hierarchy or taxonomy of relations. It associates

to each relation its super or sub-relations and X denotes a set of axioms. The ontologies considered

in this work are represented using the OWL (Web Ontology Language) format (Grau et al. 2008).

A mapping (also called a correspondence) (Shvaiko & Euzenat 2013), is a quintuple < id, e,

e′, n, rel > where: id denotes a unique identifier of the mapping; e and e′ are entities from two

ontologies O and O′ respectively; n denotes a measure of confidence, typically a value within the

interval [0, 1], and rel denotes the semantic relation between e and e′ (equivalence (≡), more

specific (v), more general (w), disjunction (⊥)).

An alignment can be defined as a set of mappings, usually expressed using the RDF alignment

format defined by the ontology matching community (David et al. 2011). The alignment process

receives as input two ontologies O and O′ and produces as output an alignment between entities

of O and O′. Other elements that may be used to complete this definition are: (i) an initial

alignment to be completed or refined by the process, (ii) external resources such as a thesaurus

or a dictionary, and (iii) parameters, such as thresholds or weights.

Given these definitions, ontology matching is defined as the identification process of mappings

between entities of different ontologies to ensure semantic interoperability. These mappings are

the bridge that holds heterogeneous ontologies together and ensures interoperability between

semantically annotated resources.

The Ontology Alignment Evaluation Initiative9 (OAEI) is an annual campaign for the

systematic evaluation of ontology matching systems. The main objective is to evaluate ontology

matching systems on the same basis and to enable the reproducibility of the results. A matching

task is typically composed of one or more pairs of ontologies with their corresponding reference

alignments.

Reference alignments can be categorized into gold standards, silver standards and baselines. A

gold standard contains mapping sets that have been manually curated by domain experts and are

almost complete (Dahdul et al. 2018). A silver standard is typically composed of automatically

generated mappings that could be partially curated. Finally, baseline mappings are automatically

generated mappings that are highly incomplete.

For our track, we created a silver standard reference alignment. The methodology we followed

for the creation of such an alignment is presented in the following section.

In order to evaluate ontology matching systems, a set of standard evaluation measures can

be used, including precision, recall, and F-measure (Euzenat & Shvaiko 2013). Precision, P ,

9oaei.ontologymatching.org

oaei.ontologymatching.org
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determines the degree of correctness of the matching result. Recall, R, assesses the degree of

completeness of the matching systems. Given a reference alignment set referred to as Aref and

an automatically generated alignment by a matching system denoted Am, precision and recall

are computed as follows:

Precision =
|Am ∩Aref |
|Am|

(1)

Recall =
|Am ∩Aref |
|Aref |

(2)

Precision evaluates the post-match effort that is needed to remove false positives, while recall

evaluates the post-match effort that is needed to add false negatives from the final matching

result. It is necessary to consider a trade-off between those two measures. There are several

methods to handle such a trade-off, one of them is to combine both measures. The most used

combined measure is the F-measure and it is computed as follows:

F −measure = 2× precision× recall

precision + recall
(3)

4 Experience from the Ontology Alignment Evaluation Initiative

The OAEI 201810 edition included 12 tracks organized by different research groups and involving

different matching tasks. The Biodiversity and Ecology track was one of the additions to the

OAEI 2018 campaign. The track aims at evaluating matching systems in an important domain

that has not been tackled before at OAEI. It consists of two alignment tasks that involve the

alignment of ENVO with SWEET, and FLOPO with TO.

We designed and developed this track based on the methodology presented in (Harrow et al.

2017) for the creation of the Disease and Phenotype track and which closely follows the OAEI

phases, taking place between June and October as depicted in Figure 1. We performed the

preparatory phase in advance using ontology matching systems from the OAEI 2017 campaign

for the creation of the consensus alignments. The ontologies and reference alignments were made

available online mid of July. During the execution phase, we attended to technical issues reported

by matching systems’ developers. Finally, we evaluated the participating systems performance

and the results were published online mid of October.

Figure 1 Phases of the OAEI 2018

4.1 Track preparatory phase

The main objective of this phase is to produce a set of reference mappings that will be used as

a basis to evaluate ontology matching systems performance on biodiversity and ecology related

ontologies.

The reference alignments have been composed using: (1) consensus alignments based on

systems vote, (2) unique mappings validated by domain experts and (3) manually generated

10oaei.ontologymatching.org/2018/

oaei.ontologymatching.org/2018/
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mappings. Figure 2 shows the steps followed for the creation of the reference alignment for each

task. In a first step, we used well-known ontology matching systems to generate alignments

between the two ontologies. Those are used to generate consensus alignments based on systems

vote. The unique mappings generated by only one system are then assessed by an expert, valid

mappings are added to the reference as well. Finally, experts have been asked to generate manual

mappings, namely ones that have not been found by any matching system. A visualization tool

was used to help in this process. In the following sections, we will go through those different steps

in detail and discuss our choices and the challenges we faced.

Figure 2 Biodiversity and ecology track preparatory phase

4.1.1 Creation of consensus alignments

The consensus alignments have been generated based on a voting system using the alignments

produced by matching systems from the last OAEI Edition. The reason for it is that we started

the preparatory phase before having access to the latest versions of the participating systems.

Systems were selected based on their availability and ability to cope with the matching tasks. We

used AML (Faria et al. 2013, 2014), LogMap (Jiménez-Ruiz & Grau 2011, Solimando et al. 2017),

LogMapBio, LogMapLite, LYAM (Duchateau & Bellahsene 2016), POMap (Laadhar et al. 2017)

and YAMBio (Annane et al. 2016). Additionally, we used mappings extracted from Bioportal

(Whetzel et al. 2011) via its REST API11. Bioportal mappings are based on the Lexical OWL

Ontology Matcher (LOOM) tool and based on a lexical similarity algorithm (Ghazvinian et al.

2009).

A vote corresponds to the number of times a mapping appeared in the sets generated by the

matching systems. Consensus of vote 2 for instance will contain mappings suggested by at least

2 systems. The more votes, the smaller is the size of the conscensus alignment. Votes have been

grouped by family, systems with different variants like LogMap, LogMapBio and LogMapLite have

been counted only once. This has been done to reduce bias as reported in (Jiménez-Ruiz et al.

2013) where systems outputs have been compared and systems from the same family resulted in

mappings sets that clearly overlapped. At the end, five systems families have been participating

to the vote.

Table 3 (respectively Table 4) shows the sizes of the consensus alignments for the ENVO-

SWEET matching task (respectively the FLOPO-TO matching task) as well as each systems

family mappings ratio contribution. The five system families could cope with the ENVO-SWEET

task and only three families could cope with the FLOPO-TO task, presumably due to the large

size of the FLOPO ontology. Note that some of the matching systems could cope with this task

during the evaluation phase of the track with the latest version of their system (c.f. Section 5).

It is noticeable that the Bioportal mappings are quite incomplete, representing only half of

the total mappings produced by at least two system families for the ENVO-SWEET matching

task. They cover in the other hand a big part of the mappings produced by AML and LogMap

11data.bioontology.org/documentation#Mapping
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Figure 3 Evolution of precision, recall and F-score for the ENVO-SWEET consensus alignments

families for the FLOPO-TO task which indicates that the mappings computed by the matching

systems were mainly detected using lexical similarity.

Table 3 Consensus alignments for the ENVO-SWEET matching task.

Vote 2 Vote 3 Vote 4 Vote 5

Mappings 689 563 404 248

AML 94.9% 99.3% 100.0% 100.0%

Bioportal 50.5% 61.8% 79.2% 100.0%

LogMap 81.6% 89.0% 93.8% 100.0%

POMap 77.8% 84.0% 89.4% 100.0%

YAM 71.6% 81.7% 99.0% 100.0%

Table 4 Consensus alignments for the FLOPO-TO matching task.

Vote 2 Vote 3

Mappings 149 140

AML 100.0% 100.0%

Bioportal 94.0% 100.0%

LogMap 100.0% 100.0%

Figure 3 shows the size and evolution of the average systems precision, recall and F-measure

for the different consensus alignments in the ENVO-SWEET task. The maximum precision

(respectively recall) is reached with the maximum (respectively minimum) number of votes. We

have selected the consensus alignment of vote 3 (i.e., mappings suggested by at least 3 system

families) to be included in the reference alignment as it has the best trade-off between precision

and recall. We preferred not to consider consensus alignments of vote 2 as it may take only

two systems to induce erroneous alignments. For the FLOPO-TO task, we considered by default

consensus of vote 3 as only three system families were involved and considering the good quality of

the Bioportal mappings for this particular task this was not a problem. The consensus alignments

contain 563 mappings for ENVO-SWEET and 140 mappings for FLOPO-TO.
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Consensus alignments are in general not sufficient to assess systems performances for many

reasons. First, they allow only a comparison of the systems to each other. Second, they may

contain erroneous mappings especially if the considered systems use the same background

resources (like for example the UMLS metathesaurus). And finally, valid alignments that have

been found by only one system or none of them will be missing. For this reason, we completed

this initial set with manually assessed and manually generated alignments as described in the

following sections.

4.1.2 Manual assessment of unique mappings
Unique mappings are mappings generated by one and only one matching system, no other system

explicitly found those mappings nor could they be derived via entailment based on the aligned

ontologies. These unique mappings have been manually assessed by domain experts who are

creators or curators of the ontologies and co-authors of this paper (one expert for ENVO-SWEET

and two for FLOPO-TO).

Around 300 unique mappings have been manually assessed for the ENVO-SWEET matching

task and around 100 mappings for the FLOPO-TO task. Two systems generated the most unique

mappings for the task ENVO-SWEET, namely AML and POMap. For the FLOPO-TO task, due

to the reduced number of systems which could cope with the task, only AML was able to generate

a set of unique mappings.

Mappings have been validated into equivalent mappings and related mappings (subclass

relationships, unidirectional synonyms). The different types of related mappings are discussed

more in detail in section 5. Only equivalent mappings have been added to the reference alignment.

75 validated mappings have been added to the reference alignment for ENVO-SWEET and 66

for FLOPO-TO.

To evaluate the contribution of each system to the set of valid mappings added to the reference

alignment we used the measures of positive and negative contribution introduced in (Harrow

et al. 2017), estimating the weight of correct respectively incorrect unique mappings found by

the systems. For a set of unique mappings Um generated by a matching system, given that the

set of all considered unique mappings is denoted as Uall, the positive and negative contributions

(denoted PC and NC resp.) are calculated as follows:

PC(Um) =
|Um|.P recision(Um)

|Uall|
(4)

NC(Um) =
|Um|.(1− Precision(Um))

|Uall|
(5)

Table 5 (respectively table 6) shows the number of unique mappings generated by the

considered systems for the ENVO-SWEET matching task (respectively FLOPO-TO matching

task) and the result of their manual assessment in terms of positive and negative contribution.

Table 5 Assessment of unique mappings and positive and negative contributions for the task ENVO-
SWEET.

Mappings Positive Contribution Negative Contribution

AML 153 15% 37%

POMap 139 11% 42%

4.1.3 Manual Mappings
Manually generated mappings have been curated by the same domain experts assessing the unique

mappings (three authors of this paper). The goal of the manual mappings generation was to find

at least 30 additional mappings, which have not been found by any of the matching systems. We
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Table 6 Assessment of unique mappings and positive and negative contributions for the task FLOPO-
TO .

Mappings Positive Contribution Negative Contribution

AML 92 71% 29%

chose this specific number as a minimal requirement for several reasons, beside the well-known

difficulty of the process especially on large ontologies, systems performed well in terms of recall

making it difficult to find new unidentified mappings. The manual alignments were added to the

automatically created ones in order to assess systems recall in a more reliable way.

In the following, we describe the manual creation process and report on the encountered

difficulties. To begin with and in order to help the experts identify ontology areas to investigate,

we proposed to visualize the ontologies and a set of automatically generated alignments. We did

use COMA 3.0 (Arnold & Rahm 2014) for the visualization with the set mappings generated by

the underlying ontology matching system as well as mapping sets generated by other systems.

The visualization was useful to a certain extent but the tool was not very practical to use, we

faced some scalability issues when processing larger ontologies (in particular FLOPO), which left

the application occasionally unresponsive. As pointed out in (Dragisic et al. 2016), there is a need

for best practices and guidelines for good UI design in ontology alignment. Visualization tools

need to be enhanced in terms of usability and user involvement support.

For the ENVO-SWEET task, an initial list of terms relevant to certain environmental

domains was created. Chosen domains included: geophysics (plate tectonics, volcanism, internal

earth structure), glaciology (snow and ice types, glacier types), oceanography (zonation, waves

and currents), geomorphology (terrestrial, fluvial and oceanic landforms), meteorology (storm

and wind types), environmental chemistry (biochemical cycling), pedology (soil types) and

sedimentology (sediment types). The initial list served as a starting point to identify hot spot areas

of a certain topic within the target ontologies. This step was a prerequisite due to the dispersion

of topic-related terms among different ontology nodes caused by different modeling approaches by

both ontologies. Topics which were barely covered by either SWEET or ENVO were excluded from

further consideration. Promising areas have been chosen for further comparison. Subsequently,

a tabular juxtaposition of terms from these areas was created. The table was enriched with

additional domain-relevant terms and corresponding synonyms if they could be found in at least

one of both ontologies, using Protégé (Musen 2015) as a search tool. The comparison table was

then used to find mappings between ENVO and SWEET. Mappings which were not already

present in the consensus alignments file have been added to the reference alignment. Term

equivalence was justified by literature research (dictionaries, scientific publications and books),

checking the definitions within the ontology itself, but also by checking the associated term

relations to avoid wrong matching of homonyms. The latter was very important for the SWEET

ontology due to the absence of definitions for most terms.

Additionally, a small number of subclass relation mappings derived from the juxtaposition

have been saved as well. The requirement for this choice was, that the subclass terms from one

ontology did not have any equivalent matches to terms from the other ontology and that the

superclass terms related to this subclass term did not yield any equivalent matches either so that

these terms would have been missed by the matching otherwise.

For the FLOPO-TO matching task, we followed the same procedure mentioned above for

ENVO-SWEET, glossaries of plant morphology (Wagenitz 2008, Hickey 1973, Stevens 2001

onwards) were consulted for related and synonymous terms.

Table 4.1.3 shows examples of manually created mappings from both tasks.
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Table 7 Examples of manually generated mappings.

Entity 1 Entity 2

Divergent tectonic movement (ENVO:01001095) Plate divergence (SWEETPhenGeolTectonic:PlateDivergence)

Tectonic movement (ENVO:01001093) Continental drift (SWEETPhenGeolTectonic:ContinenetalDrift)

Inflorescence absent (FLOPO:0006051) Inflorescenceless (TO 0002679)

Leaf alternate placement (FLOPO:0001032) Phyllotaxy (TO:0006014)

4.1.4 Semantic validation of the reference alignment

The ontologies, as well as the generated reference alignments have been tested for consistency.

For that purpose, we used the ELK reasoner12 on (1) the ontologies themselves and (2) their

merged version together with the corresponding reference alignment.

In the first step, the ontology files have been merged using the OWLAPI. Then, we created the

equivalence relation between entities of both ontologies based on mappings defined in the reference

alignment. Those have been added one by one to the merged ontologies and the resulting ontology

have been checked for consistency after each addition.

As a result, the consensus alignment for FLOPO-TO was consistent. However, 8 mappings

from the ENVO-SWEET reference alignment made the merged ontology inconsistent.

This process allowed us to detect erroneous mappings introduced by the consensus

alignment, due to the presence of homonyms in the SWEET ontology. For instance,

SWEETPhenFluidDynamics:Depression and SWEETReprSpaceGeometry:Depression, were both

matched to ENVO:Depression which made the equivalence between their subclasses

ENVO:00000394 and realmHydroBody:Strait insatisfiable. Due to the small number of mappings

leading to inconsistency, we perfomed the curation and discarded invalid mappings manually.

For instance both mappings above were erroneous and had to be removed from the reference

alignment. In fact, ENVO:Depression should have been mapped to SWEETRealm:Depression.

4.2 Evaluation phase and results

We have run the evaluation of the biodiversity and ecology (biodiv) track on Windows 10 (64-bit)

desktop with an Intel Core i5-7500 CPU @ 3.40GHz x 4, allocating 15.7Gb of RAM. We conducted

experiments by executing each system in its standard settings and we calculated precision, recall,

F-measure as well as its run-time dealing with each task.

4.2.1 Participating systems

In the following, we are going to describe ontology matching systems that have been successfully

participating to the biodiv track, namely: AML, Lily, LogMap (with its different variants),

POMap, and XMap. We highlight the main characteristics of each system and their use of external

knowledge which is needed in order to explain their performances coping with the matching tasks

of the proposed track.

AML (Agreement Maker Light) (Faria et al. 2013, 2014) is a highly scalable ontology matching

system, primarily designed to align biomedical ontologies. AML relies heavily on lexical matching

techniques, with an emphasis on the use of background knowledge but also includes structural

components for both matching and filtering. It features a logical repair algorithm ensuring that the

final alignment is coherent and that it has the desired cardinality. AML uses the Uber Anatomy

Ontology (Uberon) (Mungall et al. 2012), the Human Disease Ontology (DOID) (Kibbe et al.

2015) and the Medical Subject Headings (MeSH) (Bodenreider 2004) as mediators between the

input ontologies.

12www.cs.ox.ac.uk/isg/tools/ELK/

www.cs.ox.ac.uk/isg/tools/ELK/
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Lily (Wang & Xu 2009, Wang et al. 2011) is a scalable matcher that implements reduction

anchors to support the matching of large scale ontologies. Lily extracts a semantic subgraph for

each entity, then it uses both linguistic and structural information for similarity computation.

Lily uses a structure-based matcher, which is an extension of the similarity flooding algorithm

(Melnik et al. 2002). Alignments are extracted and refined by mapping debugging. Lily uses

the UMLS Metathesaurus (Bodenreider 2004) as background knowledge, it relies on synonyms

provided by the Metathesaurus.

LogMap (Jiménez-Ruiz & Grau 2011, Solimando et al. 2017) is a highly scalable ontology

matching system with built in reasoning and repair capabilities. LogMap implements optimized

data structures for lexically and structurally indexing the input ontology. it constructs an inverted

lexical index for each input ontology allowing the use of an external lexicon, such as WordNet and

UMLS to find their synonyms and lexical variations. Furthermore, the matching system exploits

the information in the class hierarchy of the input ontologies. It employs reasoning and repair

techniques to minimize the number of logical errors (inconsistency) in the aligned ontology. In

addition to the main matching system, LogMap has two more variants:

• LogMapLite is a lightweight variant of LogMap, which essentially only applies (efficient)

string matching techniques.

• LogMapBio includes an extension to use BioPortal13 as a (dynamic) provider of mediating

ontologies instead of relying on a few preselected ontologies.

While LogMapBio uses Bioportal as background knowledge, LogMap uses the UMLS Lexicon14

which is a different resource than the UMLS Metathesaurus (Bodenreider 2004). LogMap splits

and normalizes each label of each class in the input ontologies into terms and looks for its lexical

variation in the UMLS lexicon.

POMap (Laadhar et al. 2017) is an ontology matching system that relies on lexical and

structural indexes to match scalable ontologies. The system uses the Uber Anatomy Ontology

(Uberon) (Mungall et al. 2012) (an external biomedical knowledge source) to generate the first set

of semantic mappings then employs a syntactic matcher to add mappings that can be discovered

at the lexical level. POMap enriches this alignment by applying a structural matcher, which

exploits information from the ontologies structure.

XMap (eXtended Mapping) (Djeddi & Khadir 2014, Djeddi et al. 2018) implements a divide-

and-conquer technique with parallel processing to enable the composition of different matchers

and therefore handling the matching of large scale ontologies. The system relies on the use of

external resources such as the UMLS Metathesarus and WordNet15. It computes similarity using

a terminological layer and a structural layer. The terminological layer comprises string, linguistic

(based on WordNet and UMLS) and semantic matchers. The structural layer comprises matchers

at the hierarchy, as well as the internal structure of concepts. These matchers are executed in

parallel to tackle the scalability problem. It employs an ALCOMO technique ”Applying Logical

Constraints on Matching Ontologies” (Meilicke 2011) to detect and remove the inconsistent

mappings.

4.2.2 Results against complete reference alignment
Table 8 shows the results for the ENVO-SWEET alignment task in terms of F-measure and the

size of alignments. Regarding F-measure, most systems performed well, the top 4 ranked systems

are AML, XMap, POMap and LogMap. Among these, AML achieved the highest F-measure

(0.84) but lower precision. XMap and Lily achieved the highest precision, followed by LogMap,

LogMapBio and POMap. In terms of number of mappings, AML and LogMapLite generated

much more mappings than other systems with a lower precision which corresponds mainly to

lexical based generated mappings.

13bioportal.bioontology.org/
14www.nlm.nih.gov/pubs/factsheets/umlslex.html
15wordnet.princeton.edu/

www.nlm.nih.gov/pubs/factsheets/umlslex.html
wordnet.princeton.edu/
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Table 8 Results for the ENVO and SWEET matching task

Systems Size Precision F-measure Recall Time (s)

AML 791 0,776 0,844 0,926 46

Lily 491 0,866 0,737 0,641 255

LogMap 583 0,839 0,785 0,738 20

LogMapBio 572 0,839 0,777 0,724 341

LogMapLite 740 0,732 0,772 0,817 18

POMap 583 0,839 0,785 0,738 210

XMap 547 0,868 0,785 0,716 21

Table 9 shows the results for FLOPO-TO in terms of F-measure and size of alignments.

Regarding F-measure, the top 3 ranked systems are AML, LogMap and LogMapBio. Among

these, AML achieved the highest F-measure (0.86). AML is well balanced: it achieved more than

80% recall with still a quite high precision. The systems with the highest precision but lower

recall are XMap and LogMapLite, the latter being essentially based on string matching, this

indicates that there are fewer issues with homonyms and lexically similar entities between the

pair of considered ontologies. The lower recall, on the other hand shows that lexical matching is

not sufficient to detect all correct mappings. Furthermore, the number of mappings generated by

AML, LogMap and LogMapBio are quite the same, those systems achieved a better recall.

Table 9 Results for the FLOPO and TO matching task

Systems Size Precision F-measure Recall Time (s)

AML 233 0.88 0.86 0.84 35

Lily 176 0.813 0.681 0.586 954

LogMap 235 0.817 0.802 0.787 24

LogMapBio 239 0.803 0.795 0.787 355

LogMapLite 151 0.987 0.755 0.611 10

POMap 261 0.663 0.685 0.709 1261

XMap 153 0.987 0.761 0.619 22

In terms of run-time, 4 out of 7 systems were able to achieve the alignment task in less than

50 seconds for both matching tasks (see Tables 8 and 9). These are LogMapLite followed by

LogMap, XMap and AML. LogMapLite has the shortest run-time. However, the tables show that

there is no correlation between the quality of the generated alignment in terms of precision and

recall and the required run-time. AML is the most balanced system: it achieves more than 80%

F-measure with a less than 50 seconds run-time for both tasks.

4.2.3 Results against unique and manual mappings

In the following, we show the results of the matching systems against the manually assessed

mappings and the manual mappings. Table 10 shows the recall obtained by the matching systems

against the manually assessed unique mappings. For the ENVO-SWEET matching task, the set

of unique mappings that have been assessed were detected by AML and POMap, thus those two

systems performed the best. The highest recall has been attained by AML which already had the

best positive contribution with the former version of the system (c.f. Table 5). XMap was able to

detect 20% of the mappings despite the fact that it was not used in the track preparatory phase.

For the FLOPO-TO matching task, AML being the only system contributing to the manually

assessed mappings, it has naturally the best recall followed by LogMap, LogMapBio and POMap
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Table 10 Recall against manually assessed mappings.

AML Lily LogMap LogMapBio LogMapLite POMap XMap

ENVO-SWEET 0.73 0.05 0.04 0.04 0.16 0.23 0.19

FLOPO-TO 0.86 0.0 0.64 0.64 0.0 0.55 0.15

which could detect a bit more than half of the mappings. In both tasks, LogMapLite performed

poorly which indicates that those mappings cannot be detected with a purely lexical matcher.

We clearly did introduce bias by assessing a large number of mappings produced by some of

the systems. In future editions we will avoid this by considering the same number of manually

assessed mappings per system.

Concerning manual mappings, none of the systems has been able to detect them. Detecting

this kind of mappings necessitate the use of domain-specific background knowledge capturing

biodiversity-related concepts.

5 Discussion

The results from the OAEI track confirmed our assumption about the need for specific

consideration while dealing with biodiversity and ecology related ontologies. The specificities

of the considered ontologies in terms of structure and vocabulary highlight well-known challenges

and introduces new ones. In the following, we illustrate particular issues raised during the

evaluation process.

One well-known issue in the ontology matching realm is the difference between equivalence and

unidirectional synonymy. Various ontologies deal with this issue in different ways, thus having

different modeling approaches.

While SWEET uses equivalence relations between terms, ENVO is modeling equivalence

using the annotation relations has exact synonym and has related synonym. The annotation

has exact synonym can be treated as equivalence, however, the value of has related synonym is

more ambiguous. Most likely, the latter can be treated as a unidirectional synonym. An example

is the class ”Archipelago” (ENVO:00000220). The related synonym ”Island arc” is kind of an

archipelago however not all archipelagoes are island arcs (only the arc-shaped ones are). Those

specific cases must be tackled by the matching process.

Many unnecessary and redundant mappings are the result of consideration of unidirectional

synonyms. For example ENVO ”Landslide” (ENVO:00000520) has been mapped to ”Slide” in

SWEET (SWEETPhenGeolGeomorphology:Slide), although SWEET already contains Landslide.

On the other hand, connections between mapped ontologies might also get lost, if these

unidirectional synonyms were not considered.

In future studies, it would be interesting to investigate the influence of unidirectional synonyms

on semantic precision and recall and to determine the extent of unidirectional synonym mappings

among different matching systems outputs. The assessment of unidirectional synonyms could be

useful for the evaluation of matching systems. The concept of synonym synergy, which has been

developed and applied to calculate the coverage metric for SWEET previously (DiGiuseppe et al.

2014), might be adapted for that purpose.

A different issue we have been facing is error propagation. If an ontology already contains

modeling errors, especially regarding equivalence relationships, the mapping output between two

ontologies will also be erroneous. For example, SWEET contains an equivalence relationship

between ”Mountain”, ”Orography” and ”Orographic”. This relationship does not only mixes up

different word types but also different lexical meanings.

Also, homonyms can lead to wrong mapping results. The same wording can have two com-

pletely different semantic meanings within two different domains. Especially for SWEET, which

consists of over 220 single small ontologies corresponding to different subdomains, homonyms can
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be wrongly mapped to other ontologies. An example of a false positive match between SWEET

and ENVO due to homonyms is ENVO ”Trough” (ENVO:00000499) and SWEET ”Trough”

(SWEETPhenFluidDynamics:Trough). While the first denotes a linear depression of the earth

surface, the latter denotes a linear region of low pressure.

In order to deal with such cases, ontology matching algorithms should take into account

the origin of the terms which is encoded within the term-URI (e.g. http://sweetontology.

net/phenFluidDynamics/Trough). This can help identify the corresponding domain. Another

consideration would be to give more importance and strengthen the structural matching part of

systems’ algorithms.

Closely related to the homonym problematic, another origin of false positives is the wrong

evaluation of differences between terms, which share a common domain in principle, but whose

definitions vary to a large extent. An outstanding example is the difference between the definition

of ”Ice” within SWEET and ENVO. SWEET ”Ice” (SWEETMatrWater:Ice) refers to solid water,

while ENVO ”Ice” (ENVO:01001125) refers to any crystalline, solid substance. False positive

mappings could be observed for this example. The appropriate mappings should have been

SWEET Ice (SWEETMatrWater:Ice) and ENVO ”Water ice” ENVO:01000277).

FLOPO and TO agree to a minor extent by formal structure, but to a greater extent

by reference to a common vocabulary (provided by PO). For instance, TO:0000906 exocarp

morphology trait is as well as TO:0000945 pericarp morphology trait a direct subclass of

TO:0000843 portion of plant tissue morphology trait. Compared with this, FLOPO follows the

structure of PO (where exocarp is part-of pericarp), so FLOPO:0006675 exocarp morphology is

- reflecting fruit anatomy - a subclass of FLOPO:0001339 pericarp phenotype.

Due to the data-driven generation of FLOPO, which is based on identifying entity-quality

descriptions of traits in Floras, a class in FLOPO corresponds to at least one taxon annotation

in one of the source texts (Hoehndorf et al. 2016) - which implies that terminology not

used in the processed Floras is not incorporated in the ontology. For instance, considering

the pollen-producing organs of a flower shows that the successful matches stamen morphology

(FLOPO:0005561) and stamen morphology trait (TO:0000215) are derived from conceptually

different class trees: in FLOPO from an entirety, the androecium phenotype (FLOPO:0000720)

and in TO from microsporophyll morphology trait (TO:0000868), from a more general term for

spore-bearing leaves, less commonly used in flowering plants and Floras, which renders structural

analogies difficult to identify.

6 Conclusion

In this paper, we investigated ontology matching applied to the biodiversity and ecology domain.

We started by showing the specific challenges related to this particular domain which is known

to be multidisciplinary and data intensive. We illustrate the specific matching needs and the

ontologies to be considered based on a set of high-level entities identified in previous work to

improve semantic aware data discovery applications in two of our current projects.

To investigate the actual state of automatic ontology matching systems and their ability to

deal with biodiversity and ecology related ontologies, we proposed a new track to the OAEI. The

track contains the ENVO, SWEET, FLOPO and TO ontologies with their pairwise reference

alignments. We did follow a well-established process for the generation of those alignments. The

set was composed using a voting process on the basis of matching systems generated mappings,

the manual curation of mappings generated by only one system and a set of manually created

alignments.

The Biodiversity and Ecology track was introduced in OAEI 2018 and the results obtained are

very promising. Most participating systems coped well with the detection of mappings against

the consensus alignments but struggled to detect mappings generated by domain experts. This

deserves more attention in future developments of ontology matching systems by considering

knowledge bases from the biodiversity domain.

http://sweetontology.net/phenFluidDynamics/Trough
http://sweetontology.net/phenFluidDynamics/Trough
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Ontology matching systems struggled with the specific features of the considered ontologies

as well. In particular, the structure of the SWEET ontology, which encodes concept meaning

entirely in the ontology hierarchy, was particularly challenging for matching systems and did

lead to a high number of false positives. Systems could not cope with homonyms and structural

matching solely, indicating a need to strengthen the structural matching algorithms in the absence

of sufficient lexical information. On the other hand, the highly specific lexical content of FLOPO

and its limited structure agreement with TO puts forward the need for dynamic and personalized

use of background knowledge and domain dictionaries.

This is the first work considering the ontology matching problem in biodiversity and ecology, a

significant and highly dynamic domain. We confirmed with our experience at OAEI that this

domain deserves a particular consideration and that the ontology matching community can

greatly benefit from its specific characteristics. In future editions of the OAEI campaign, we

will improve the reference alignment by involving more systems in the creation of the consensus

alignment and avoiding the bias introduced by assessing a higher number of unique mappings

from specific systems. In a longer run, we will expend the track with new tasks, considering

additional ontologies from the biodiversity realm.
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031A539B). We would like to thank Ernesto Jiménez-Ruiz and the organizers and participants

of the OAEI campaign.

References

Alves, C., Castro, J. A., Ribeiro, C., Honrado, J. P. & Lomba, A. (2018), Research data

management in the field of ecology: an overview, in ‘Proc. International Conference on Dublin

Core and Metadata Applications’.

Annane, A., Bellahsene, Z., Azouaou, F. & Jonquet, C. (2016), Selection and combination of

heterogeneous mappings to enhance biomedical ontology matching, in ‘Knowledge Engineering

and Knowledge Management - 20th International Conference, EKAW 2016, Bologna, Italy,

November 19-23, 2016, Proceedings’.

Arnaud., E., Cooper., L., Shrestha., R., Menda., N., Nelson., R. T., Matteis., L., Skofic., M.,

Bastow., R., Jaiswal., P., Mueller., L. & McLaren., G. (2012), Towards a reference plant

trait ontology for modeling knowledge of plant traits and phenotypes, in ‘Proceedings of the

International Conference on Knowledge Engineering and Ontology Development - Volume 1:

KEOD, (IC3K 2012)’, INSTICC, SciTePress.

Arnold, P. & Rahm, E. (2014), ‘Enriching ontology mappings with semantic relations’, Data

Knowledge Engineering 93. Selected Papers from the 17th East--European Conference on

Advances in Databases and Information Systems.

Bodenreider, O. (2004), ‘The unified medical language system (UMLS): integrating biomedical

terminology’, Nucleic Acids Research 32(Database-Issue).

Bruelheide, H., Dengler, J., Purschke, O. & al. (2018), ‘Global trait-environment relationships of

plant communities’, Nature Ecology & Evolution .



17

Buttigieg, P. L., Morrison, N., Smith, B., Mungall, C. J. & Lewis, S. E. (2013), ‘The environment

ontology: contextualising biological and biomedical entities’, Journal of Biomedical Semantics

4(1).

Buttigieg, P. L., Pafilis, E., Lewis, S. E., Schildhauer, M. P., Walls, R. L. & Mungall, C. J. (2013),

‘The environment ontology in 2016: bridging domains with increased scope, semantic density,

and interoperation’, Journal of Biomedical Semantics 7(1).

Cooper, L., Meier, A., Laporte, M.-A., Elser, J. L., Mungall, C., Sinn, B. T., Cavaliere, D.,

Carbon, S., Dunn, N. A., Smith, B., Qu, B., Preece, J., Zhang, E., Todorovic, S., Gkoutos, G.,

Doonan, J. H., Stevenson, D. W., Arnaud, E. & Jaiswal, P. (2018), ‘The planteome database:

an integrated resource for reference ontologies, plant genomics and phenomics’, Nucleic Acids

Research 46(D1).

Cooper, L., Walls, R. L., Elser, J., Gandolfo, M. A., Stevenson, D. W., Smith, B., Preece, J.,

Athreya, B., Mungall, C. J., Rensing, S., Hiss, M., Lang, D., Reski, R., Berardini, T. Z., Li,

D., Huala, E., Schaeffer, M., Menda, N., Arnaud, E., Shrestha, R., Yamazaki, Y. & Jaiswal, P.

(2013), ‘The plant ontology as a tool for comparative plant anatomy and genomic analyses’,

Plant and Cell Physiology 54(2).

Dahdul, W. M., Manda, P., Cui, H., Balhoff, J. P., Dececchi, T. A., Ibrahim, N., Lapp, H., Vision,

T. J. & Mabee, P. M. (2018), ‘Annotation of phenotypes using ontologies: a gold standard for

the training and evaluation of natural language processing systems’, Database 2018.

David, J., Euzenat, J., Scharffe, F. & dos Santos, C. T. (2011), ‘The alignment API 4.0’, Semantic

Web 2(1).

Diaz, S., Purvis, A., Cornelissen, J. H. C., Mace, G. M., Donoghue, M. J., Ewers, R. M., Jordano,

P. & Pearse, W. D. (2013), ‘Functional traits, the phylogeny of function, and ecosystem service

vulnerability’, Ecology and Evolution 3(9).
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