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ABSTRACT: Measurement images of solar cells provide information beyond current-voltage characteristics regarding 
process and material quality in a spatially resolved manner. However, this information is only partially used because 
algorithms search for human-defined defects and structures. These labels can be inaccurate and incomplete, a relevance 
in terms of electrical quality is not necessarily given. Thus, we propose a purely data-based approach to derive a 
comprehensive representation from the measured images that is meaningful in terms of electrical quality and show how 
it can be used for efficient defect detection. We call this representation the empirical digital twin. For its calculation, 
we design a convolutional neural network combining multiple measurement images by correlating them with quality 
variables. The digital twin is an intermediate representation of the network and summarizes quality-related defect 
signatures that are visible in the images. We show how this representation can be used to derive sorting criteria for 
quality inspection within an efficient human-in-the-loop approach detecting defects such as finger interruptions, shunts, 
etc. The human-in-the-loop method not only needs fewer training samples and thus fewer labels but also improved the 
𝐹𝐹1 − 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 detection rate by about 2% on average. 
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1 INTRODUCTION 

Imaging measurement methods such as 
electroluminescence (EL), photoluminescence (PL) or 
infra-red thermography (IR) images are broadly used in 
production to reveal material and process losses [1–5]. 
They allow defects such as microcracks, shunts, poor 
contact formation, etc. to be spatially visualized. Because 
of this property, they extend the opportunities available 
through analysis of the current-voltage curve (IV curve) 
by drawing conclusions about the defect origins and 
positions. 
 The interpretation and analysis of the measurement 
images is challenging even for experts due to overlapping 
defect structures and high complexity of the data. So far, 
different approaches have been presented for defect 
detection: 
 On the one hand, classical image processing 
algorithms are developed by experts. These usually 
combine filtering techniques to extract defect-typical 
structures and features with machine learning (ML) 
models such as support vector machines (SVMs) [6] to 
process those structures and features. For instance, 
microcracks and finger interruptions in PL images [7,8] or 
in EL images [9–16] are found by these kinds of 
techniques. 

On the other hand, so-called end-to-end approaches 
have been pursued in recent years, which are mostly based 
on convolutional neural networks (CNNs). These are 
supposed to derive the defects directly from the images. 
The difference to classical image processing is that here 
the filters are optimized empirically with a large dataset 
and not developed by humans. In many works, for 
example, microcracks, dislocation structures or finger 
interruptions in EL and IR images are detected using 
CNNs [17–39].  

Both techniques, be it based on image processing or 
CNNs, have disadvantages in practice limiting their 
application and making them costly. Especially for CNNs 
but also for image processing algorithms, annotations of 
the searched defects are needed before the networks can 
be trained and evaluated. Firstly, this process of labeling is 

both time-consuming and costly, as well as error prone. 
Greulich et al. have shown that even experts cannot 
reliably find microcracks in EL images and also vary in 
their detection rate [40]. Secondly, the transferability to 
other processes is limited, so that re-labeling for CNNs or 
algorithmic adaptions may be necessary. Here, purely 
data-based techniques, as for example proposed by 
Demant et al. and Kovvali et al. regarding as-cut wafer 
rating, can help overcome these drawbacks [41–43]. 

Following these ideas, we propose the empirical 
digital twin, which is learned from measurement images 
without label overhead, purely data-driven, and can be 
used for efficient defect detection.  

Our contributions are: 
1. We present an approach to learn the empirical 

digital twin describing the quality status of the 
solar cell by combining the information from 
multiple measurement images. 

2. We utilize the empirical digital twin for 
efficiently including expert knowledge into 
defect detection within an iterative “Human-in-
the-Loop”-Approach. 

This approach, with additional research and 
explanation, is described in our journal paper [44]. 

 
 

2 APPROACH 
We propose a sequence of algorithms for solar cell 

inspection. First, we derive a meaningful representation of 
the solar cell from measurement images by semantically 
compressing measurement images with respect to quality-
describing quantities. The representation, which we call 
empirical digital twin, and its computation is explained in 
Section 2.1. Following this, we present an efficient way to 
use the empirical digital twin to incorporate expert 
knowledge into defect detection. We describe this iterative 
human-in-the-loop approach in Section 2.2. 

 
2.1 Learning the empirical digital twin 

We compute a comprehensive representation of solar 
cell measurement images by deriving features from them 
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that are expressive in terms of quality-describing 
quantities such as IV parameters. The procedure is shown 
in Figure 1 for two samples (one per row). The 
measurement images 𝒙𝒙𝑖𝑖 of the 𝑖𝑖-th sample are given to a 
CNN model 𝑓𝑓θ(𝒙𝒙) which predicts the quality parameters 
in 𝒚𝒚𝑖𝑖, θ being the model’s parameters to be optimized.  

The CNN consists of a sequence of some 
convolutional and pooling layers as well as rectified linear 
unit (ReLU) activation functions. This gradually reduces 
the spatial resolution of the measurement images while 
increasing the semantic expressiveness with respect to the 
target parameters. The last neurons of the network form a 
vector 𝝆𝝆𝑖𝑖 describing the connection between the images 
and the quality variables. In the following, we call the 
vector empirical digital twin (EDT). 

The EDT offers the possibility to compare 
measurement images quantitatively. Column 5 in Figure 1 
shows the distribution of 𝝆𝝆1 and 𝝆𝝆2 in the form of a bar 
diagram. Below this, the extreme examples of the dataset 
studied are shown for features 𝜌𝜌2,𝑖𝑖 and 𝜌𝜌3,𝑖𝑖 revealing which 
image features they represent. Feature 2 (blue) represents 
poor contact formation during the firing process and 
feature 3 (yellow) represents finger interruptions. These 
two process defects occur in the example samples, 
highlighted by the blue and yellow outlines in the 
measurement, respectively. Accordingly, these entries in 
the corresponding EDTs are particularly low as shown in 
the bar diagram. 

In the proposed approach, several different 
measurement images can be passed to the model and the 
model can predict various quality parameters. We use EL 
as well as IR images in conjunction with reflectance values 
at 390nm and 950nm wavelength, scaled up to match the 
images’ spatial dimensions. In Table 1, columns 1 and 2 
show the 18 parameters that the model should predict. 
These include typical 𝐼𝐼𝐼𝐼 parameters such as the open 
circuit voltage 𝐼𝐼𝑜𝑜𝑜𝑜, the short circuit current density 𝐽𝐽𝑠𝑠𝑜𝑜, the 
fill factor 𝐹𝐹𝐹𝐹 and the efficiency 𝜂𝜂, as well as more specific 
parameters such as the pseudo fill factor 𝑝𝑝𝐹𝐹𝐹𝐹, the ideal fill 
factor 𝐹𝐹𝐹𝐹0 and their difference 𝐹𝐹𝐹𝐹0 − 𝑝𝑝𝐹𝐹𝐹𝐹. We have 
chosen a large set of parameters so that the EDT can be a 
comprehensive representation of many properties. 
However, it is an open question which and how many 
parameters are best suited for a meaningful EDT. 

The EDT vector 𝝆𝝆 consists of 720 entries in our 
implementation. For each of the predicted parameters, 40 
entries are provided in 𝝆𝝆 within our realization. This adds 
up to 720 values for 18 parameters. We found this number 
effective in terms of prediction accuracy, however, it can 
be optimized in future works. 
 
2.2 Efficient defect detection with Human-in-the-Loop 
 The digital twin is well suited for quality inspection 
because it contains the essential measurement image 
information in a compressed form. Quality-relevant defect 
structures are already learned indirectly through the 
regression of the quality parameters. In addition, EDTs 
have significantly fewer dimensions than their original 
measurement images and correspondingly less 
complexity, making it easy to optimize a classifier model 
based on them. 
To use the EDT efficiently and with low label overhead 
for defect detection, we propose an iterative human-in-the-
loop approach, which is schematically outlined in Figure 
2. It consists of four steps: 

1. The EDTs are calculated for all measurement 
images of the dataset as described in Section 2.1. 
From these, a small, representative selection is 
taken for labeling. 

2. This compact dataset is labeled by an expert 
based on the corresponding measurement images. 

3. An ML model based on the labeled compact 
dataset is trained. 

4. The model is applied to the remaining unlabeled 
dataset and an uncertainty value is calculated for 
each sample. The most uncertain samples are 
again given to the expert to be labeled. 

 Steps 2-4 can be iteratively repeated so that only the 
most uncertain samples are used for training, since it is 
assumed that these can give the most information to a 
classifier model.  
The individual steps are described in more detail below. 
For the representative selection of the of samples for a 
compact dataset (step 1), we use a k-means [6] with 𝑛𝑛𝑜𝑜𝑐𝑐 
clusters. The 𝑛𝑛𝑜𝑜𝑐𝑐 samples whose EDTs have the shortest 
distance to the cluster centroids are selected. These are 
sorted into defect classes by experts considering the 
corresponding measurement images (step 2). As a model, 

 
Figure 1: Schematic representation of the calculation of the empirical digital twin for two example cells. The measurements 
(first column) are passed to a CNN model (second column), which predicts quality variables (third column). The model is 
used to derive the empirical digital twin (fourth column), whose entries represent quality-describing image features (fifth 
column). 
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we use a small neural classification network (NN) 
consisting of a few linear layers and ReLU activation 
functions, which is trained with the 𝑛𝑛𝑜𝑜𝑐𝑐 EDTs as input and 
expert labels as targets (step 3). 
Regarding the uncertainty, we consider the NN as 
Bayesian approximation by applying dropout [45] 
multiple times, as described in [46,47]. The NN is 
described as 𝑔𝑔: 𝝆𝝆 ↦ 𝑝𝑝𝑑𝑑 ∈ [0,1], which maps an EDT 𝝆𝝆 to 
a defect probability 𝑝𝑝𝑑𝑑. Based on this, we can calculate the 
entropy 𝐻𝐻 as described in Equation (1): 

𝐻𝐻(𝝆𝝆) = −𝑝𝑝𝑑𝑑 𝑙𝑙𝑆𝑆𝑔𝑔2 𝑝𝑝𝑑𝑑 − (1 − 𝑝𝑝𝑑𝑑) 𝑙𝑙𝑆𝑆𝑔𝑔2(1 − 𝑝𝑝𝑑𝑑) (1) 

By applying dropout, i.e. with a certain probability 
some activations of the NN are randomly set to 0 (are 
dropped), and multiple entering of the same EDT 𝝆𝝆𝑖𝑖 to the 
NN, an entropy distribution results. Equation (2) describes 
that as uncertainty value 𝑈𝑈 the mean value of this 
distribution is used: 

𝑈𝑈(𝝆𝝆𝑖𝑖) =
1
𝑇𝑇 � 𝐻𝐻(𝝆𝝆𝑖𝑖)

𝑇𝑇

𝑡𝑡=1

 (2) 

 

 𝑇𝑇 describes the number of inputs. 
 
 

3 EXPERIMENTS 
 The dataset consists of 1600 Cz-Si industrially 
processed passivated emitter and rear cells (PERCs) of 
size 156 × 156mm2. They were sorted out due to 
electrical or optical defects. Therefore, they contain 
various defects such as finger interruptions, microcracks, 
shunts, edge isolation defects, poor contact formation, etc. 
Each of the cells was measured by electroluminescence 
and thermography by a system from h.a.l.m. elektronik 
GmbH. For the EL measurements, the cells were excited 
with a current of 20A and the integration time of the Si 
CCD camera was 50ms. In addition, the reflectance at 
390nm and 950nm wavelengths and the parameters from 
Table 1 were measured.  
 As CNN we use a variation of the DenseNet [48]. 
Here, the EL and IR images and the reflectance 
measurements are first processed in separate CNN 
branches. Then the results of these are concatenated and 
processed together. Finally, this path splits to predict the 
individual quality parameters and compute the EDT. A 
detailed description of the architecture can be found in 
[44]. 
 The network is optimized to predict the quality 
parameters in Table 1, as described in Section 2.1. The 
input data (EL, IR, and reflectance) are scaled to a size of 

Table 1: Predicted parameters, their absolute errors and correlation coefficients with respect to the measured values. 
Name Parameter Absolute Error Correlation Coefficient 
Open circuit voltage 𝐼𝐼𝑜𝑜𝑜𝑜 0.69 mV 0.93 
Short circuit current density 𝐽𝐽𝑠𝑠𝑜𝑜 0.06 mA cm-2 0.62 
Fill factor 𝐹𝐹𝐹𝐹 0.55 % 0.88 
Efficiency η 0.16 % 0.88 
Pseudo fill factor 𝑝𝑝𝐹𝐹𝐹𝐹 0.52 % 0.86 
Ideal fill factor 𝐹𝐹𝐹𝐹0 0.02 % 0.91 
Difference: Pseudo & fill factor 𝑝𝑝𝐹𝐹𝐹𝐹 − 𝐹𝐹𝐹𝐹 0.16 % 0.98 
Difference: Ideal & pseudo fill factor 𝐹𝐹𝐹𝐹0 − 𝑝𝑝𝐹𝐹𝐹𝐹 0.53 % 0.86 
Suns open circuit voltage 𝑠𝑠𝑠𝑠𝑛𝑛𝑠𝑠𝐼𝐼𝑜𝑜𝑜𝑜 0.65 mV 0.94 
Pseudo Efficiency 𝑝𝑝η 0.15 % 0.86 
Saturation current density D1 𝐽𝐽01 0.01 pA 0.96 
Saturation current density D2 𝐽𝐽02 2.6 nA 0.94 
Reverse current density @−12𝐼𝐼 𝐽𝐽𝑟𝑟𝑟𝑟𝑟𝑟,1 1.05 mA cm-2 0.88 
Reverse current density @−15𝐼𝐼 𝐽𝐽𝑟𝑟𝑟𝑟𝑟𝑟,2 1.15 mA cm-2 0.89 
Grid Resistance Front 𝑅𝑅𝑔𝑔𝑟𝑟𝑖𝑖𝑑𝑑,𝑓𝑓𝑟𝑟 3.56 Ω m-1 0.93 
Grid Resistance Rear 𝑅𝑅𝑔𝑔𝑟𝑟𝑖𝑖𝑑𝑑,𝑟𝑟𝑟𝑟 1.05 Ω m-1 0.53 
Series Resistance 𝑅𝑅𝑠𝑠 0.02 Ωcm2 0.98 
Parallel Resistance 𝑅𝑅𝑝𝑝 0.29 Ωcm2 0.83 

 

 
Figure 2:  Schematic representation of the human-in-the-loop approach. (1) Measurement images are mapped into the space 
of empirical digital twins, (2) from which a representative selection based on the measurement images are labeled. (3) Based 
on the compact dataset, a sorting model is trained. (4) After application to the rest of the dataset, the most uncertain samples 
are labeled. 
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224 × 224px2, standardized using mean and standard 
deviation, and randomly rotated and flipped during 
training. The model is trained on an Nvidia GeForce RTX 
2080 Ti GPU for 250 epochs with a batch size of 40 on the 
training dataset. The adam-optimizer [49] is used with an 
L1 loss function. The best model is selected based on the 
validation dataset and tested on the test dataset. 
 
3.1 Analysis of the empirical digital twins 
 To investigate the meaningfulness of the EDTs, an 
exploratory analysis of the representation space is 
performed. For this purpose, all measurements were 
examined by an expert, so that the main losses of each cell 
are known. Since the EDTs have 720 dimensions, they  
cannot be examined directly. Therefore, the t-SNE [50] 
algorithm is applied for the analysis, which reduces the 
high-dimensional EDTs to two dimensions. Here, 
neighboring points in the high-dimensional space are also 
close to each other in the two-dimensional space. The 
resulting clusters are compared with the expert labels. 
 
 
 

3.2 Defect detection with Human-in-the-Loop 
 In this experiment, the possibilities of process defect 
detection and the human-in-the-loop approach are 
investigated. All cells were sorted according to the defect 
classes finger interruptions, poor edge isolation, overfired 
regions and hotspots and shunts by an expert. 
 Two approaches to defect detection are compared. 
First, based on the entire labeled dataset, an NN for defect 
detection is trained with a 5-fold cross-validation. This NN 
serves as a supervised reference to the human-in-the-loop 
approach. Here, the same NN is also trained with a 5-fold 
cross-validation as described in Section 2.2. Starting with 
𝑛𝑛𝑜𝑜𝑐𝑐 = 100 samples, in each iteration, the 100 most 
uncertain samples are added to the training dataset until 
1000 samples are reached. Uncertainty is calculated using 
Equation (2) with 𝑇𝑇 = 200. Results are compared using 
𝑃𝑃𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑠𝑠𝑖𝑖𝑆𝑆𝑛𝑛, 𝑅𝑅𝑆𝑆𝑆𝑆𝑅𝑅𝑙𝑙𝑙𝑙 and 𝐹𝐹1 − 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆. These quantities are 
described in the appendix.  
 
 
4 RESULTS 
 
4.1 Results - Analysis of the empirical digital twins 
 The quality parameters of the cells can be accurately 
predicted by the trained CNN. In Table 1, columns three 
and four show the respective absolute error and correlation 
coefficient between predicted and measured values. In 
most cases the correlation coefficient is above 0.8 and 
sometimes even up to 0.98. Exceptions are the grid 
resistance on the rear side 𝑅𝑅𝑔𝑔𝑟𝑟𝑖𝑖𝑑𝑑,𝑟𝑟𝑟𝑟 and the short circuit 
current density 𝐽𝐽𝑠𝑠𝑜𝑜, which have lower correlation 
coefficients of 0.53 and 0.62, respectively. 
 The EDTs contain information regarding quality-
relevant process properties and defects. Figure 3 (a) shows 
the low-dimensional embedding of the EDTs, the points 
are colored according to their efficiency. Clusters are 
formed which contain samples with specific defects. 
Based on our previous expert labels the groups are 
bordered and annotated. Typical examples for each cluster 
are shown in Figure 3 (b). 
 In Figure 3 (a), four smaller clusters with reduced 
efficiency are observed on the right side. They contain 
finger interruptions, overfired regions, and stripe 
structures and shunts. Example EL and IR images are 
shown in Figure 3 (b) in the left column. Cells with poor 
edge isolation and diffuse temperature distribution are 
positioned in the region above. The example images in 
Figure 3 (b) in the right column show an increased 
temperature in the IR image at the edges of the cell, and a 
larger area of increased temperature, respectively. The rest 
of the large cluster contains only minor losses, but splits 
into areas of different bows. In addition, there are two 
smaller clusters which show a combination of shunts and 
overfiring, or a radiating region around the busbar contact. 
Example images of this can be found in Figure 3 (b) in the 
right column in rows three and four.  
 

 
(a) 

 
(b) 

Figure 3: (a) Low-dimensional embedding of the 
empirical digital twins with cluster annotations and (b) 
example images for each of the annotated clusters. 

Table 2: Detection results of the supervised reference and human-in-the-loop approach with respect to the process defects 
finger interruptions, poor edge isolation, hotspots & shunts and firing defect. 

 Supervised Reference Human-in-the-Loop 
Process Defect 𝐹𝐹1 − 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑅𝑅𝑆𝑆𝑆𝑆𝑅𝑅𝑙𝑙𝑙𝑙 𝑃𝑃𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑠𝑠𝑖𝑖𝑆𝑆𝑛𝑛 𝐹𝐹1 − 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑅𝑅𝑆𝑆𝑆𝑆𝑅𝑅𝑙𝑙𝑙𝑙 Precison 
Finger Interruptions 0.972 0.946 1 0.991 0.982 1 
Poor Edge Isolation 0.861 0.812 0.919 0.897 0.874 0.922 
Hotspots & Shunts 0.959 0.970 0.949 0.963 0.965 0.961 
Firing Defect 0.762 0.643 0.950 0.782 0.689 0.884 
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4.2 Results – Defect detection with Human-in-the-Loop 
 As a reference to the human-in-the-loop approach, 
four NNs were trained with respect to the defects finger 
interruptions, poor edge isolation, hotspots & shunts, and 
firing defect based on 1250 samples each within a 5-fold 
cross-validation. They can detect the defects well based on 
the EDTs. The detection results can be seen in Table 2 in 
the columns 2-4. In terms of 𝐹𝐹1 − 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆, the best detection 
results are finger interruptions (0.972), followed by 
hotspots & shunts (0.959), poor edge isolation (0.861) 
and firing defect (0.762). 
 The human-in-the-loop approach can achieve slightly 
improved results compared to the supervised reference 
while only needing few labeled samples. In Figure 4, the 
𝐹𝐹1 − 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 is plotted against the number of samples 
required for the defect classes mentioned. The filled 
symbols represent the supervised reference (Sup. 
Reference) and have a horizontal auxiliary line. The empty 
symbols represent the human-in-the-loop (HitL) approach. 
Depending on the defect class, this approach achieves the 
same or slightly better 𝐹𝐹1 − 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 already with about 
200 − 400 samples.  
 Figure 4 also shows that the 𝐹𝐹1 − 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 of the human-
in-the-loop approach stabilizes at higher 𝐹𝐹1 − 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆. The 
corresponding values can be seen in Table 2: Detection 
results of the supervised reference and human-in-the-loop 
approach with respect to the process defects finger 
interruptions, poor edge isolation, hotspots & shunts and 
firing defect. in columns 5-7. On average, the 𝐹𝐹1 − 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 
can be increased by about 2%. 
 
 
5 DISCUSSION 
 It was shown that quality parameters can be derived 
from EL and IR images as well as reflectance values. The 
individual influence of the three inputs remains to be 
investigated. The empirical digital twins of the solar cells, 
derivable from the CNN, cluster into visible process 
defects. This indicates that the EDTs are meaningful in 
terms of the quality parameters and different defects. Thus, 
they are suitable to compare measurement images 
quantitatively. It is desirable to investigate the influence of 
the input data, the predicted quantities, and the size of the 
EDT in future studies. 
 The digital twin is suitable for deriving fast and 
efficient sorting criteria from process defects. The human-

in-the-loop method is an effective way to derive 
classification criteria. With little effort, expert knowledge 
can be incorporated to derive a classification scheme, 
enabling user-specific defect detection. Slightly better 
detection results compared to the reference can be 
achieved in our experiments. In this context, the label 
effort was reduced by a factor of 4-6. Due to the low effort, 
the method promises to detect self-defined defects and 
process properties. Due to the iterative approach, it can 
also be trained parallel to the production process.  
 In addition to the mentioned properties, the digital 
twin promises high transferability between different cell 
lines and concepts and could also be suitable for process 
optimization. Since the measurement images are 
correlated with measured quality variables, no time-
consuming and error-prone human labels are necessary. 
Therefore, they can be quickly adapted to other cell lines. 
Furthermore, due to the quantitative representation of the 
sample with regard to process defects, it is also 
conceivable to utilize the EDTs for process optimization. 
 
 
6 CONCLUSION 
We introduced the empirical digital twin of the solar cell, 
which contains quality-describing features with respect to 
the electrical quality from any number of measured 
images. For this purpose, a deep neural network was 
trained to correlate high-dimensional image data with IV 
parameters, allowing the digital twin to represent features 
in terms of these quantities. As an example, we combine 
EL and IR images as well as reflectance measurements to 
predict in total 18 quality variables. The empirical digital 
twin is derived from the activations of the network in the 
form of a vector, which allows a quantitative comparison 
of one or more measurement images. 
The digital twin is suitable for quality inspection. Using a 
human-in-the-loop approach, we show how expert 
knowledge can be efficiently incorporated into learning of 
a classification scheme with 4-6 times less label effort. It 
was demonstrated that the F1 score of detecting the 
considered defect types could be increased by about 2% on 
average. As a result, F1 scores of 0.99 for finger 
interruptions, 0.96 for hotspots and shunts, 0.90 for edge 
isolation problems, and 0.78 for inhomogeneous contact 
formation due to the firing process could be achieved. A 
detailed and comprehensive investigation of empirical 
digital twin with additional applications can be found in 
[44]. 
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 APPENDIX 
 If a defect is correctly predicted, it is called true 
positive (TP), if a defect is incorrectly predicted, it is 
called false positive (FP). If a non-defect is correctly 
predicted, it is called true negative (TN), if a non-defect is 
incorrectly predicted, it is called false negative (FN). Some 
quantities can be derived from this. The 𝑃𝑃𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑠𝑠𝑖𝑖𝑆𝑆𝑛𝑛 is 
defined in Equation (3) and indicates how many defect 
predictions were defects. 

𝑃𝑃𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑠𝑠𝑖𝑖𝑆𝑆𝑛𝑛 =
𝑇𝑇𝑃𝑃

𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑃𝑃 (3) 

 The 𝑅𝑅𝑆𝑆𝑆𝑆𝑅𝑅𝑙𝑙𝑙𝑙, defined in Equation (4), is a measure of 
how many defects were found of all defects. 

𝑅𝑅𝑆𝑆𝑆𝑆𝑅𝑅𝑙𝑙𝑙𝑙 =
𝑇𝑇𝑃𝑃

𝑇𝑇𝑃𝑃 + 𝐹𝐹𝐹𝐹 (4) 

 The 𝐹𝐹1 − 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆, defined in Equation (5), is the 
harmonic mean of Precision and Recall. 

𝐹𝐹1 − 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 2
𝑃𝑃𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑠𝑠𝑖𝑖𝑆𝑆𝑛𝑛 ⋅ 𝑅𝑅𝑆𝑆𝑆𝑆𝑅𝑅𝑙𝑙𝑙𝑙

𝑃𝑃𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑠𝑠𝑖𝑖𝑆𝑆𝑛𝑛 + 𝑅𝑅𝑆𝑆𝑆𝑆𝑅𝑅𝑙𝑙𝑙𝑙 
(4) 
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