
Vol. 68

Manuel Rudolph

Generation of Usable
Policy Administration Points
for Security and Privacy

Editor-in-Chief: Prof. Dr. Dieter Rombach
Editorial Board: Prof. Dr. Peter Liggesmeyer

Prof. Dr. Frank Bomarius

FRAUNHOFER VERLAG

Ph
D

 Th
eses in

 Exp
erim

en
tal So

ftw
are En

g
in

eerin
g

usable

se
cu

ri
ty privacy

policy

us
ab

ilit
y

te
m

pla
te

use

PAP

user

hypothesis

attacker

de
fa

ul
t

po
lic

ie
s

resources

G
D

PR

va
ri

ab
le

th
re

at

vi
ew

wiza
rd

fra
m

ew
or

k

lazy expert

amateur

barriers
ef

fe
ct

siz
e

model

expert

SLP

ILP

case studies
age

task

user group

vo
ca

bu
lar

y

result

as
se

t

er
ro

r
m

istake

security level

skill

fe
as

ibi
lit

y

PhD Theses in Experimental Software Engineering
Volume 68

Editor-in-Chief: Prof. Dr. Dieter Rombach

Editorial Board: Prof. Dr. Frank Bomarius
Prof. Dr. Peter Liggesmeyer
Prof. Dr. Dieter Rombach

Manuel Rudolph

Generation of Usable
Policy Administration Points
for Security and Privacy

Fraunhofer Verlag

Zugl.: Kaiserslautern, TU, Diss., 2019

Printing:
Mediendienstleistungen des
Fraunhofer-Informationszentrum Raum und Bau IRB, Stuttgart

Printed on acid-free and chlorine-free bleached paper.

All rights reserved; no part of this publication may be translated, reproduced, stored in a
retrieval system, or transmitted in any form or by any means, electronic, mechanical,
photocopying, recording, or otherwise, without the written permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. The quotation of those designations in whatever way does not
imply the conclusion that the use of those designations is legal without the consent of the
owner of the trademark.

© by Fraunhofer Verlag, 2020
ISBN (Print): 978-3-8396-1579-9
Fraunhofer-Informationszentrum Raum und Bau IRB
Postfach 800469, 70504 Stuttgart
Nobelstraße 12, 70569 Stuttgart
Telefon +49 711 9 70 - 25 00
Telefax +49 711 9 70 - 25 08
E-Mail verlag@fraunhofer.de
URL http://verlag.fraunhofer.de

Generation of Usable Policy Administration
Points for Security and Privacy

Vom Fachbereich Informatik
der Technischen Universität Kaiserslautern
zur Verleihung des akademischen Grades

Doktor der Ingenieurwissenschaften (Dr.-Ing.)

genehmigte Dissertation
von

Manuel Rudolph, M. Sc.

Fraunhofer-Institut für Experimentelles Software Engineering IESE
(Fraunhofer IESE)

Technische Universität Kaiserslautern

Berichterstatter:

Prof. Dr. Dr. h.c. Dieter Rombach
Prof. Dr. Alexander Pretschner

Dekan:

Prof. Dr. Stefan Deßloch

Datum der wissenschaftlichen Aussprache:

11.12.2019

D 386

To Sabrina and Emily

v

Acknowledgements

I would like to express my gratitude to many people who supported me
in the last years while doing my PhD.

First, I would like to thank my family and friends who have helped me in
many ways over the last few years while I was doing my doctoral thesis.
My special thanks go to my wife Sabrina, who has continuously supported
and encouraged me with great patience to pursue my PhD. I would like
to thank my parents Monika and Werner for making my carefree
education possible and for constantly believing in my goals. Finally, I
would like to thank my daughter Emily, who strongly motivated me to
finish this work fast.

I thank Prof. Dieter Rombach and Prof. Alexander Pretschner for their
valuable advice and guidance during this thesis. Especially their insightful
questions and feedback, which provided different perspectives on the
thesis, improved it in many ways. Many thanks also go to my division head
Dr. Jörg Dörr for continuously giving me feedback and many valuable hints
for improvement.

During the thesis research, I received much support from my colleagues at
Fraunhofer IESE. I am very grateful to my colleague Svenja Polst for her
advice regarding psychological aspects and support on the experiment in
this thesis. My work also much benefited from countless discussions with
my esteemed colleagues Christian Jung, Denis Feth, Cornelius Moucha,
Raj Shah and Anne Hess. I thank the students Kevin Schmitt, Christian
Vollat and Thorsten Reinberger-Eyer who performed parts of the
implementation work and literature research. Finally yet importantly, I
would like to thank Reinhard Schwarz for proofreading this piece of work.

vii

Abstract

Users want to gain more self-determination in the form of self-responsible
definition and control of their security and privacy demands. To this end,
they can use so-called Policy Administration Points (PAPs) for the
specification of security and privacy policies. However, users face usability
problems with existing tools. PAPs provide different specification
paradigms, which determine the specification process for the task of
policy specification including the level of expressiveness and guidance that
the user is getting during the specification.

This thesis addresses the topic of automated creation of usable Policy
Administration Points. First, it focusses on the mapping of specification
paradigms to user groups for increasing the usability by means of
effectiveness, efficiency and satisfaction. Second, we propose a method
for the automated creation of PAPs. This includes a method for eliciting
security and privacy policy templates from an application domain, a policy
template model for formalizing these policy templates as well as a PAP
generation framework for the automated creation of policy specification
interfaces within PAPs based on an instance of the policy template model.

We first present two case studies that reveal improvement potential for
our contributions and next explain another two case studies that validate
our results. More specifically, we confirm with these case studies the
effectiveness of the policy template elicitation method, the completeness
of the policy template model and the feasibility of the policy specification
interface generation with our PAP generation framework. Finally, we
confirm in an experiment that selecting the most appropriate specification
paradigm for a user significantly increases the usability of a PAP for the
task of policy specification.

ix

Table of Contents

Acknowledgements ..v

Abstract ..vii

List of Figures... xiii

List of Tables .. xxi

List of Abbreviations ... xxiii

1 Introduction ..1
1.1 Motivation ..1
1.2 Problem Derivation Surveys ...3

1.2.1 PDS1: »SECCRIT« Survey ... 4
1.2.2 PDS2: »Museum Pfalzgalerie Kaiserslautern« Survey 6
1.2.3 PDS3: Survey in the context of the policy specification

experiment .. 9
1.2.4 Summary and Conclusion .. 11

1.3 Problem Statement ...12
1.4 Contribution ...16
1.5 Hypotheses ...19

1.5.1 Hypotheses for RQ1: Usability of Specification
Paradigms .. 19

1.5.2 Hypotheses for RQ2: Elicitation 23
1.5.3 Hypotheses for RQ3: Formalization 25
1.5.4 Hypotheses for RQ4: Automation 26

1.6 Research Approach ...27
1.7 Assumptions and Limitations ...28
1.8 Outline ..29

2 Foundations and Related Work ..31
2.1 Research Approach ...31
2.2 Elicitation of Security and Privacy Requirements31
2.3 Policy Models and Languages ..36
2.4 Usable Security and Privacy Policy Specification40
2.5 Existing PAPs and Derived Specification Paradigms45

2.5.1 Security and Privacy Specification Approaches and
Tools .. 45

2.5.2 Overview of Derived Specification Paradigms 51
2.6 User Behavior ..54

2.6.1 Intension Models ... 54
2.6.2 User Type Models .. 55

2.7 Summary and Conclusion ...57

Table of Contents

x

3 Policy Template Elicitation Method ... 61
3.1 Research Approach .. 62
3.2 Method Overview .. 64
3.3 Step 1: Information Retrieval .. 66
3.4 Step 2: Workshop Preparation.. 68
3.5 Step 3: Execution of Elicitation Workshop 71
3.6 Step 4: Documentation of Workshop Results 75
3.7 Step 5: Policy Template Derivation and Validation 78
3.8 Summary and Conclusion ... 81

4 Policy Template Model .. 83
4.1 Research Approach .. 84
4.2 Overview of Policy Template Model 85
4.3 Domain Sub-model .. 87
4.4 Security and Privacy Sub-model .. 90
4.5 Template Sub-model .. 90
4.6 Specification-Level Template Sub-model 93
4.7 Implementation-Level Template Sub-model 95
4.8 Specification Paradigm Projection Sub-model 98
4.9 Example ... 100
4.10 Summary and Conclusion ... 108

5 PAP Generation Framework ... 111
5.1 Research Approach .. 112
5.2 Reference Architecture ... 114

5.2.1 Architectural Overview ... 114
5.2.2 Concept for Embedding a Generated Policy

Specification Interface into a PAP 124
5.3 Specification Paradigms .. 124

5.3.1 Selection of Specification Paradigms 124
5.3.2 Specification Paradigm Algorithms 127

5.4 Reference Implementation ... 134
5.5 Summary and Conclusion ... 140

6 Mapping Users to Specification Paradigms 143
6.1 Research Approach .. 143
6.2 Mapping Specification Paradigms to Users 144

6.2.1 User Intention Model ... 145
6.2.2 Example for Barriers of a PAP 148
6.2.3 Matching Specification Paradigms to Users 149

6.3 Mapping Specification Paradigms to Personas 150
6.3.1 Selection of Persona Model 151
6.3.2 Mapping the Specification Paradigms to the

Personas of Dupree .. 151
6.4 Summary and Conclusion ... 153

7 Method for Usable PAP Generation .. 155
7.1 Research Approach .. 155
7.2 Method Overview .. 156

Table of Contents

xi

7.3 Step 1: Policy Template Elicitation 158
7.4 Step 2: Instantiation of Policy Template Model 159
7.5 Step 3: Instantiation of PAP Generation Framework 161
7.6 Step 4: Specification Paradigm Selection 162
7.7 Step 5: Specification of Policy with PAP 163
7.8 Summary and Conclusion .. 164

8 Evaluation for Improvements .. 165
8.1 Research Approach .. 165
8.2 Case Study: Software Cluster Project »SINNODIUM« 165

8.2.1 Project Summary .. 166
8.2.2 Design and Execution .. 166
8.2.3 Results ... 168
8.2.4 Observations and Lessons Learned 171
8.2.5 Threats to validity .. 172
8.2.6 Summary ... 173

8.3 Case Study: European Project »SECCRIT« 174
8.3.1 Project Summary .. 174
8.3.2 Design and Execution .. 175
8.3.3 Results ... 176
8.3.4 Observations and Lessons Learned 178
8.3.5 Threats to validity .. 180
8.3.6 Summary ... 181

8.4 Summary and Conclusion .. 182

9 Evaluation for Validation ... 185
9.1 Research Approach .. 185
9.2 Case Study: Software Campus Project »BeSure« 186

9.2.1 Project Summary .. 186
9.2.2 Design and Execution .. 187
9.2.3 Results ... 190
9.2.4 Observations and Lessons Learned 194
9.2.5 Threats to validity .. 198
9.2.6 Summary ... 199

9.3 Case Study: »Digital Villages« .. 200
9.3.1 Project Summary .. 200
9.3.2 Design and Execution .. 201
9.3.3 Results ... 203
9.3.4 Observations and Lessons Learned 207
9.3.5 Threats to validity .. 208
9.3.6 Summary ... 209

9.4 Policy Specification Experiment .. 210
9.4.1 Design and Execution .. 211
9.4.2 Data Analysis and Results ... 217
9.4.3 Discussion .. 235
9.4.4 Threats to validity .. 238
9.4.5 Summary and Conclusion .. 239

9.5 Summary and Conclusions ... 241

Table of Contents

xii

10 Summary and Future Work .. 249
10.1 Methodological and Technological Contributions 250
10.2 Empirical Contributions .. 251
10.3 Validation Results ... 253
10.4 Open Issues and Future Work... 256

References ... 261

Appendix A Security Policy Template Elicitation 269
A.1 Elicitation Techniques ... 269
A.2 Documentation Techniques .. 275
A.3 Validation Techniques .. 278
A.4 Prioritization Techniques .. 280
A.5 Generic Attacker Roles, Threats and Countermeasures 281

Appendix B PAP Generation Framework 285
B.1 XML Schema for Policy Vocabularies 285

Appendix C The Personas of the Dupree Model 291

Appendix D Case Study: »SECCRIT« ... 295
D.1 Excerpt of »SECCRIT« Study Results 295
D.2 Example of Policy Template in Policy Vocabulary 301

Appendix E Case Study: »BeSure« ... 305
E.1 Excerpt of »BeSure« Study Results 305

Appendix F Case Study: »Digital Villages« 309
F.1 Excerpt of »Digital Villages« Study Results 309

Appendix G Policy Specification Experiment 311
G.1 Invitation Email .. 311
G.2 Experiment Handout .. 312
G.3 Screenshots of Experiment ... 314
G.4 Sample Solution ... 334
G.5 Detailed Results of Statistical Analyses 337
G.6 Raw Data ... 351

Lebenslauf ... 353

xiii

List of Figures

Figure 1: Overview of the Problem Derivation Surveys 3
Figure 2: SECCRIT Survey Question 1 – »Do You Think That End

Users Should Be Enabled to Specify Their Own Security
Policies for Protecting Their Data in Cloud Services?« 5

Figure 3: SECCRIT Survey Question 2 – »Do You Think That Usability
Issues Are a Major Concern Regarding End Users Specifying
Their Own Security Policies?« ... 6

Figure 4: MPK Survey Question 1 – »How Often Do You Check Your
Security and Privacy Settings?« .. 7

Figure 5: MPK Survey Question 2 – »Why Don’t You Use Security
and Privacy Settings More Often?« 8

Figure 6: Experiment Survey Question 1 – »How Often Do You
Update the Security and Privacy Settings of Each Web
Service on Average?« ... 10

Figure 7: Experiment Survey Question 2 – »What Keeps You from
Updating Your Security and Privacy Settings More Often?« 10

Figure 8: Overview of Survey Results ... 12
Figure 9: Relation of Practical Problems, Scientific Problem and

Research Questions .. 16
Figure 10: Relation between Practical Problems, Scientific Problem,

Research Questions and Contributions 18
Figure 11: The Empirical Contributions Mapped to the Evaluations for

Improvement and Validation .. 27
Figure 12: Relation between Contributions, Hypotheses and Case

Studies and the Experiment.. 28
Figure 13: Relation between Practical and Scientific Problems and

Case Studies, the Experiment and the Hypotheses 28
Figure 14: Dupree’s Persona Model .. 56
Figure 15: Research Approach for the Policy Template Elicitation

Method.. 63
Figure 16: Policy Template Elicitation Method 65
Figure 17: Examples of Elicited Assets, Threats and Countermeasures 72
Figure 18: Exemplary Result of the Asset Elicitation 75
Figure 19: Research Approach for the Policy Template Model 84
Figure 20: Policy Template Model ... 87
Figure 21: Domain Sub-model .. 88
Figure 22: Security and Privacy Sub-model .. 89

List of Figures

xiv

Figure 23: Meta Model - Model - Instance .. 91
Figure 24: Template Sub-model .. 92
Figure 25: Specification-Level Template Sub-model 94
Figure 26: Implementation-Level Template Sub-model 95
Figure 27: Specification Paradigm Projection Sub-model 97
Figure 28: Excerpt of the Policy Template Model Showing the

Interplay of SLP and ILP Elements and the Relation of
a Policy to Domain Elements .. 101

Figure 29: Generated Specification Interface for Exemplary SLPT
Implementing the Specification Paradigm »Template
Instantiation« ... 103

Figure 30: Exemplary Instantiated Policy in the IND²UCE Policy
Language ... 105

Figure 31: Excerpt of the Policy Template Model Showing the
Interplay between SLPTs and the Elements for Defining
Projection Rules for Different Specification Paradigms 106

Figure 32: Generated Specification Interface Implementing the
Specification Paradigm »Default Policies«, which Shows
the Specified Projection Rules for the Exemplary SLPT 106

Figure 33: Generated Specification Interface Implementing the
Specification Paradigm »Wizard«, which Shows one
Wizard Page for the Exemplary SLPT 107

Figure 34: Research Approach for the PAP Generation Framework ... 112
Figure 35: Model-View-Controller Concept in the PAP Generation

Framework ... 114
Figure 36: Inheritance Relation between Model, Presenter and

Controller Layers .. 116
Figure 37: Relation of Elements between Layers 117
Figure 38: Interfaces for View Elements of the View Layer 118
Figure 39: Interfaces for Presentation Elements of the Presentation

Layer .. 120
Figure 40: Interfaces and Elements of the Controller Layer 122
Figure 41: Concept for Embedding a Generated Policy Specification

Interface into a PAP .. 123
Figure 42: Selection of Specification Paradigms 125
Figure 43: Mockup of Specification Paradigm »Default Policies« 128
Figure 44: Mockup of Specification Paradigm »Security Levels« 129
Figure 45: Mockup of Specification Paradigm »Wizard« 130
Figure 46: Mockup of Specification Paradigm »Template

Instantiation« ... 133
Figure 47: Current Modules in the Reference Implementation of the

PAP Generation Framework ... 135
Figure 48: Injection of Presentation Elements at runtime 138

List of Figures

xv

Figure 49: Policy Editor in UI Framework »JavaFX« that Embeds a
PAP and Supports Policy Management Functionality 138

Figure 50: Exemplary PAP Using View Module »JavaFX«, Policy
Vocabulary »CS4« and Presentation Module »Template
Instantiation« ... 138

Figure 51: ILP in MYDATA Policy Language Version 4.0 Generated
by the PAP in UI Framework »JavaFX« 139

Figure 52: Example PAP using View Module »JavaFX«, Policy
Vocabulary »CS4« and Presentation Module »Wizard« 139

Figure 53: Example PAP using View Module »JavaFX«, Policy
Vocabulary »CS4« and Presentation Module »Default
Policies« ... 140

Figure 54: Example PAP using View Module »JavaFX«, Policy
Vocabulary »CS4« and Presentation Module »Security
Levels« ... 140

Figure 55: User Intention Model ... 145
Figure 56: User Type and Persona Models .. 150
Figure 57: Assumed Matching of our Specification Paradigms to the

Personas of Dupree for Best Usability 152
Figure 58: Research Approach for the Method for Usable PAP

Generation .. 156
Figure 59: Customization Decisions for a PAP at Development Time

and Runtime .. 157
Figure 60: Overview of the Method for Usable PAP Generation 158
Figure 61: Exemplary PAP Using View Module »Android«, Policy

Vocabulary »SINNODIUM« and Presentation Module
»Template Instantiation« ... 170

Figure 62: ILP in IND²UCE Policy Language Version 1.1 Generated
by the Android PAP .. 171

Figure 63: Second Version of the Policy Template Elicitation Method 175
Figure 64: Example PAP Using View Module »Android«, Policy

Vocabulary »BeSure« and Presentation Module
»Template Instantiation« ... 193

Figure 65: Security Knowledge to Persona Mapping 220
Figure 66: Security Motivation to Persona Mapping 220
Figure 67: Boxplot Diagram of the Participants’ Age. 221
Figure 68: Ratio of Mistakes Made by Personas per Paradigm to All

Decisions.. 224
Figure 69: Time Needed in Seconds to Complete all Six Tasks with a

Specification Paradigm per Persona 228
Figure 70: Participant’s Satisfaction with Specification Paradigms 231
Figure 71: Participant’s Satisfaction with Specification Paradigms

per Persona .. 231

List of Figures

xvi

Figure 72: Goal Tree - OR Decomposition ... 277
Figure 73: Goal Tree - AND Decomposition 277
Figure 74: Character Traits for Persona »Fundamentalist« 291
Figure 75: Character Traits for Persona »Amateur«........................... 292
Figure 76: Character Traits for Persona »Marginally Concerned« 292
Figure 77: Character Traits for Persona »Lazy Expert« 293
Figure 78: Character Traits for Persona »Technician« 294
Figure 79: Example PAP Using View Module »Swing«, Policy

Vocabulary »SECCRIT« and Presentation Module
»Template Instantiations« .. 298

Figure 80: ILP in IND²UCE Policy Language Version 1.1 Generated
by PAP in UI Framework »Swing« 298

Figure 81: Example PAP Using View Module »Swing«, Policy
Vocabulary »SECCRIT« and Presentation Module
»Default Policies« ... 299

Figure 82: Example PAP Using View Module »Android«, Policy
Vocabulary »SECCRIT« and Presentation Module
»Template Instantiations« .. 299

Figure 83: ILP in IND²UCE Policy Language Version 1.1 Generated
by PAP in UI Framework »Android« 300

Figure 84: Example PAP Using View Module »Android«, Policy
Vocabulary »SECCRIT« and Presentation Module
»Default Policies« ... 300

Figure 85: Example PAP Using a Preliminary Version of the View
Module »Web«, the Policy Vocabulary »SECCRIT« and
the Presentation Module »Default Policies«...................... 301

Figure 86: Example PAP Using View Module »Web«, Policy
Vocabulary »Digital Villages« and Presentation Module
»Template Instantiation« ... 309

Figure 87: Example PAP Using View Module »Web«, Policy
Vocabulary »Digital Villages« and Presentation Module
»Default Policies« ... 309

Figure 88: Example PAP Using View Module »Web«, Policy
Vocabulary »Digital Villages« and Presentation
Module »Wizard« .. 310

Figure 89: Example PAP Using View Module »Web«, Policy
Vocabulary »Digital Villages« and Presentation Module
»Security Levels« .. 310

Figure 90: Policy Specification Experiment - Handout Page 1 312
Figure 91: Policy Specification Experiment - Handout Page 2 313
Figure 92: Screenshot - Language Selection 314
Figure 93: Screenshot - Login Page ... 314
Figure 94: Screenshot - Demographic Questions 315

List of Figures

xvii

Figure 95: Screenshot - Relation to Fraunhofer IESE 315
Figure 96: Screenshot - Relation to Fraunhofer IESE 316
Figure 97: Screenshot - Motivation Question 316
Figure 98: Screenshot - Persona Fundamentalist 317
Figure 99: Screenshot - Persona Amateur ... 317
Figure 100: Screenshot - Persona Marginally Concerned 318
Figure 101: Screenshot - Persona Lazy Expert 318
Figure 102: Screenshot - Persona Technician 319
Figure 103: Screenshot - Persona Confirmation 319
Figure 104: Screenshot - Scenario ... 320
Figure 105: Screenshot - Specification Explanation 320
Figure 106: Screenshot - Specification Type: Template 1 321
Figure 107: Screenshot - Specification Type: Template 2 321
Figure 108: Screenshot - Specification Type: Template 3 322
Figure 109: Screenshot - Specification Type: Template 4 322
Figure 110: Screenshot - Specification Type: Template 5 323
Figure 111: Screenshot - Specification Type: Template 6 323
Figure 112: Screenshot - Specification Type: Template Confirmation .. 324
Figure 113: Screenshot - Specification Type Rating 324
Figure 114: Screenshot - Specification Type: Default Policies 1 325
Figure 115: Screenshot - Specification Type: Default Policies 2 325
Figure 116: Screenshot - Specification Type: Default Policies 3 326
Figure 117: Screenshot - Specification Type: Default Policies 4 326
Figure 118: Screenshot - Specification Type: Default Policies 5 327
Figure 119: Screenshot - Specification Type: Default Policies 6 327
Figure 120: Screenshot - Specification Type: Wizard 1 328
Figure 121: Screenshot - Specification Type: Wizard 2 328
Figure 122: Screenshot - Specification Type: Wizard 3 329
Figure 123: Screenshot - Specification Type: Wizard 4 329
Figure 124: Screenshot - Specification Type: Wizard 5 330
Figure 125: Screenshot - Specification Type: Wizard 6 330
Figure 126: Screenshot - Specification Type: Wizard 7 331
Figure 127: Screenshot - Specification Type: Wizard 8 331
Figure 128: Screenshot - Specification Type: Privacy Levels 332
Figure 129: Screenshot - Specification Type Preference Ordering 333
Figure 130: Screenshot - Identification with Scenario and Persona 333
Figure 131: Screenshot - Final Page and Scores 334
Figure 132: Kruskal-Wallis-Test on Influence of Specification

Paradigms on Conducted Mistakes with Pairwise
Comparison of Specification Paradigms (Q1.1.1) 337

List of Figures

xviii

Figure 133: Kruskal-Wallis-Test on Influence of Specification
Paradigms on Conducted Mistakes for Marginally
Concerned (Q1.1.2) ... 337

Figure 134: Kruskal-Wallis-Test on Influence of Specification
Paradigms on Conducted Mistakes for Amateurs with
Pairwise Comparison of Specification Paradigms
(Q1.1.2) ... 338

Figure 135: Kruskal-Wallis-Test on Influence of Specification
Paradigms on Conducted Mistakes for Lazy Experts with
Pairwise Comparison of Specification Paradigms
(Q1.1.2) ... 338

Figure 136: Kruskal-Wallis-Test on Influence of Specification
Paradigms on Conducted Mistakes for Technician with
Pairwise Comparison of Specification Paradigms
(Q1.1.2) ... 339

Figure 137: Kruskal-Wallis-Test on Influence of Specification
Paradigms on Conducted Mistakes for Fundamentalists
with Pairwise Comparison of Specification Paradigms
(Q1.1.2) ... 339

Figure 138: Kruskal-Wallis-Test on Influence of Persona Selection on
Conducted Mistakes with Pairwise Comparison of
Specification Paradigms (Q1.1.3) 340

Figure 139: Cross Tables including Fisher’s Exact-Test on Influence of
Specification Paradigms on Correct Self-Evaluation
regarding Objective Correctness (Q1.2.1) 340

Figure 140: Cross Tables including Fisher’s Exact-Test on Influence of
Specification Paradigms on Correct Self-Evaluation
regarding Objective Correctness for Marginally
Concerned (Q1.2.2) ... 341

Figure 141: Cross Tables including Fisher’s Exact-Test on Influence of
Specification Paradigms on Correct Self-Evaluation
regarding Objective Correctness for Amateurs (Q1.2.2) 341

Figure 142: Cross Tables including Fisher’s Exact-Test on Influence of
Specification Paradigms on Correct Self-Evaluation
regarding Objective Correctness for Lazy Experts
(Q1.2.2) ... 342

Figure 143: Cross Tables including Fisher’s Exact-Test on Influence of
Specification Paradigms on Correct Self-Evaluation
regarding Objective Correctness for Technicians
(Q1.2.2) ... 342

Figure 144: Cross Tables including Fisher’s Exact-Test on Influence of
Specification Paradigms on Correct Self-Evaluation
regarding Objective Correctness for Fundamentalists
(Q1.2.2) ... 343

List of Figures

xix

Figure 145: Cross Tables including Fisher’s Exact-Test on Influence of
Persona on Correct Self-Evaluation regarding Objective
Correctness (Q1.2.3) .. 343

Figure 146: Kruskal-Wallis-Test on Influence of Specification
Paradigms on Needed Time with Pairwise Comparison of
Specification Paradigms (Q1.3.1) 344

Figure 147: Kruskal-Wallis-Test on Influence of Specification
Paradigms on Needed Time for Marginally Concerned
(Q1.3.2) ... 344

Figure 148: Kruskal-Wallis-Test on Influence of Specification
Paradigms on Needed Time for Amateurs with Pairwise
Comparison of Specification Paradigms (Q1.3.2) 345

Figure 149: Kruskal-Wallis-Test on Influence of Specification
Paradigms on Needed Time for Lazy Experts with Pairwise
Comparison of Specification Paradigms (Q1.3.2) 345

Figure 150: Kruskal-Wallis-Test on Influence of Specification
Paradigms on Needed Time for Technicians with Pairwise
Comparison of Specification Paradigms (Q1.3.2) 346

Figure 151: Kruskal-Wallis-Test on Influence of Specification
Paradigms on Needed Time for Fundamentalists
(Q1.3.2) ... 346

Figure 152: Kruskal-Wallis-Test on Influence of Personas on Needed
Time (Q1.3.3) ... 347

Figure 153: Kruskal-Wallis-Test on Influence of Specification
Paradigms on Satisfaction with Pairwise Comparison of
Specification Paradigms (Q1.4.1) 347

Figure 154: Kruskal-Wallis-Test on Influence of Specification
Paradigms on Satisfaction for Marginally Concerned
(Q1.4.2) ... 348

Figure 155: Kruskal-Wallis-Test on Influence of Specification
Paradigms on Satisfaction for Amateurs with Pairwise
Comparison of Specification Paradigms (Q1.4.2) 348

Figure 156: Kruskal-Wallis-Test on Influence of Specification
Paradigms on Satisfaction for Lazy Experts with Pairwise
Comparison of Specification Paradigms (Q1.4.2) 349

Figure 157: Kruskal-Wallis-Test on Influence of Specification
Paradigms on Satisfaction for Technicians (Q1.4.2) 349

Figure 158: Kruskal-Wallis-Test on Influence of Specification
Paradigms on Satisfaction for Fundamentalists (Q1.4.2) ... 350

Figure 159: Kruskal-Wallis-Test on Influence of Personas on
Satisfaction (Q1.4.3) .. 350

xxi

List of Tables

Table 1: List of PAPs from Academia and Practice and Their Used
Specification Paradigms ... 53

Table 2: Tabular Documentation of Assets 76
Table 3: Tabular Documentation of Threats 76
Table 4: Tabular Documentation of Countermeasures 76
Table 5: Exemplary Documented Asset .. 77
Table 6: Exemplary Documented Threat .. 77
Table 7: Exemplary Documented Countermeasures for a Threat 77
Table 8: Tabular Notation of a Policy Template 79
Table 9: Exemplary Policy Template ... 81
Table 10: Exemplary Policy Template »Access to Financial Data in

Different Situations« .. 100
Table 11: Examples for Mapping of View Elements with UI

Framework Components .. 136
Table 12: Barrier Categories as Discrepancies between User

Requirements and User Resources 147
Table 13: Potential Barriers for Users of the Twitter PAP 148
Table 14: Required user resources of the selected specification

paradigms .. 149
Table 15: Documented Asset »Financial Data of Client« 168
Table 16: Documented Threat »Data Theft of Financial Data for

Creation of Tax CD« .. 169
Table 17: Policy Template »Mass Retrieval of Data« 170
Table 18: Asset »Communication Data« ... 190
Table 19: Threats for Asset »Communication Data« 191
Table 20: Countermeasures for Threat »T4: Unintentional Sending

of Hidden, Sensitive Information« 191
Table 21: Policy Template »Secure Email Sending« 192
Table 22: Lists of Elicited Use Cases, Assets and User Roles 203
Table 23: Mapping of Use Cases (X-Axis), Assets (Y-Axis) and User

Roles (Numbers in Cells) ... 204
Table 24: 3-6-5 Sheet for Threat Elicitation of Use Case

»Exchanging« (Dmg: Damage; Pb: Probability) 205
Table 25: Identified Countermeasures for Use Case »Exchanging« .. 205
Table 26: Derived Example Policies for Use Case »Exchanging« 206
Table 27: Exemplary Policy Template »DorfFunk: Help Requests

and Offers« ... 207

List of Tables

xxii

Table 28: Personas Chosen by Participants of the Experiment 219
Table 29: Mistakes per Paradigm ... 221
Table 30: Participants with 100 Percent Objective Correctness 222
Table 31: Participants per Personas Making Zero Mistakes per

Paradigm ... 222
Table 32: Ratio of Mistakes Made by Personas per Paradigm to All

Decisions .. 223
Table 33: Perceived Correctness per Specification Paradigm 225
Table 34: Accuracy of Perceived Correctness (Correct Positive (P)

and Negative (N) Self-Evaluations) 226
Table 35: Mean Time in Minutes of Specification with Different

Specification Paradigms.. 228
Table 36: Satisfaction with Specification Paradigms for Personas

(SD: Standard Deviation) .. 230
Table 37: Selection of Elicitation Techniques 275
Table 38: Goal Description Template ... 276
Table 39: Stakeholder Description Template 277
Table 40: Documented Asset »Critical Service« 295
Table 41: Policy Template »Critical VM Migration« 296
Table 42: Asset »Job Data« ... 305
Table 43: Threats for Asset »Job Data« ... 305
Table 44: Asset »Public Data« ... 306
Table 45: Threats for Asset »Public Data« .. 306
Table 46: Countermeasures for Threat »T5: Intentional

Tampering« ... 307
Table 47: Countermeasures for Threat »T6: Unencrypted Sending

of Confidential Emails« .. 307
Table 48: Policy Template »Secure Email Receiving« 307

xxiii

List of Abbreviations

C Contribution
CS Case Study
E Experiment
H Hypothesis
ID Identifier
ILP Implementation-level Policy
ILPT Implementation-level Policy Template
IT Information Technology
M Metric
PAP Policy Administration Point
PDS Problem Derivation Survey
PP Practical Problem
Q Question
RE Requirements Engineering
RQ Research Question
SLP Specification-level Policy
SLPT Specification-level Policy Template
UI User Interface
UML Unified Modeling Language
VM Virtual Machine
XACML eXtensible Access Control Markup Language

1

1 Introduction

We start this thesis with a short motivation of the topic. Next in this
chapter, we present three surveys that underpin the practical relevance of
this work followed by a detailed description and refinement of the
addressed practical and scientific problems. We formulate hypotheses to
measure the benefits of our approach and present our concrete
contribution. The chapter ends with a description of our research
approach, assumptions and limitations as well as an outline of the
research work carried out in support of this thesis.

1.1 Motivation

Since the beginning of the Internet age, users have been increasingly
sharing personal and sensitive data with online services and other users.
In 2018, every minute users worldwide conducted 3,877,140 searches on
Google, shared 2,083,333 snaps on Snapchat, posted 49,380 photos on
Instagram and 6,940 users got matched on Tinder in the same period [1].
These numbers are increasing year after year. The companies behind those
online services collect, store, analyze, reuse and partially resell these data.
As most of those services are free for users, the companies build their main
business model on data analytics, data reselling or personalized
advertisement.

The prevalent data-centric business models make it increasingly
complicated for users to understand and control the use of personal data
by third parties. Therefore, users become increasingly afraid of data
misuse, and their need for a better protection of their privacy raises.

In Germany, only a minority of four percent think that they still have
complete control over the information they provide online and 45 percent
feel they lost control. Sixty-eight percent of the latter are concerned about
not having the complete control over their personal data [2]. A majority
of users are uncomfortable with the way in which Internet companies use
their data for their business [2, 3]. »There is now a level of uncertainty
regarding data. People are beginning to express their mistrust in
businesses, particularly in the technology space«, says, for example, Siân
John from Symantec [3]. Especially in social networks, the majority of users
also want to restrict the usage of their data, for example, the audience of
shared data [2]. According to the state of the art, for example, Cranor and
Buchler [4] demand user decision making when it comes to the
configuration of security features.

Introduction

2

Thus, users want and should gain more self-determination in the form of
self-responsible definition and control of their security and privacy
demands for personal data shared with online services. Therefore, they
want to specify security and privacy policies that are then enforced by the
IT system.

Definition: Policy

A policy is a set of requirements and/or their implementation.

Definition: Specification-level Policy

A specification-level policy (SLP) is a policy that has been specified by a
human.

Definition: Implementation-level Policy

An implementation-level policy (ILP) is a policy that can be directly used
to implement requirements. The implementation can be done technically
(e.g., by a software system) or organizationally.

Definition: Security Policy

In the context of this thesis, we define a security policy to be a policy
that targets at the protection of data and systems.

Definition: Privacy Policy

In the context of this thesis, we define a privacy policy to be a policy that
targets at the protection person rights and personal data.

When we talk about policies in the context of this thesis, we refer to
security and privacy policies. Many online services recognize the user
concerns and provide tools to users for configuring measures for their
online accounts (security policies) and for controlling the use of their
uploaded data (privacy policies). These tools are called »policy editors«,
»security and privacy settings« or »Policy Administration Points«. We use
the latter academic term for such tools in the context of this thesis.

Definition: Policy Administration Point (PAP)

A policy administration point is a tool with which users can specify their
requirements in order to (manually or automatically) produce one or
more ILPs1.

1 This definition extends the one from the XACML standard, which defines a PAP as

»the system entity that creates a policy or policy set« [5]. In the context of this work,
we explicitly define that a user is creating a policy with a PAP.

Introduction

3

A user specifies his security and privacy demands in a PAP. As we defined,
those are specification-level policies. SLPs specified by non-expert users
are oftentimes natural-language representations of their own demands
and describe which assets need to be protected. These SLPs typically lack
details about the implementation of the demands, as users oftentimes do
not have the necessary background knowledge and skills. The PAP
produces implementation-level policies as output that describe how the
user’s demands have to be enforced, for example, technically by a security
system. We focus on PAPs for non-experts in the context of this work.
However, there also exist PAPs for expert users that allow the specification
of policies with concrete enforcement instructions. In this case, the
specification-level policy (specified by the user) equals the implement-
tation-level policy (to be enforced by the system).

Despite the users’ concerns of having the possibility to use PAPs as
described above, a study in the field of social network shows that 42
percent of the users have never tried to change their security and privacy
settings [2]. When asked why they did not change their settings, users
replied that they did not consider it necessary, or did not know how to do
it. Thus, even if the need arises to specify security and privacy policies for
Internet services, many users do not do it. As studies in the past revealed
[6–8], one major reason is that users have usability problems when using
PAPs. Therefore, usability issues needs to be considered when developing
a PAP for the specification of security and privacy policies [9–11]. We
empirically substantiate the usability issues with PAPs in the next section.

1.2 Problem Derivation Surveys

Figure 1: Overview of the Problem Derivation Surveys

Above, we claim that users struggle with the specification of their own
security and privacy policies, because they face usability issues with
existing PAPs. In addition, we assume that companies generally want to
provide PAPs to users. Both assumptions motivate the entire work
presented in this thesis. That is why we substantiate these assumptions
with evidence before deriving concrete practical and scientific problems.
Therefore, we present the results of three problem derivation surveys

PDS1: SECCRIT Survey

- 15 participants
- Questions about involvement

of users for security policy
specification

- Participants from SECCRIT
user and advisory board

PDS2: MPK Survey

- 1391 participants
- Questions about usage

frequency of security and
privacy settings and reasons

- Participants from a museum
exhibition

PDS3: Experiment Survey

- 61 participants
- Questions about usage

frequency of security and
privacy settings and reasons

- Invited participants of an
experiment

Companies Users Users

Introduction

4

(PDS1–3) in the following, which we conducted with companies acting as
PAP providers and PAP users. We present an overview in Figure 1.

1.2.1 PDS1: »SECCRIT« Survey

The goal of the first survey was the determination of the relevance of end
user involvement in the policy specification process for industry. The
survey was conducted in the context of the European research project
»SECCRIT« (Secure Cloud Computing for Critical Infrastructure IT). The
project aimed to improve IT security, trustworthiness, and assurance in the
area of cloud-computing for critical infrastructure IT. One key contribution
of the project were usability improvements for the specification of security
policies for critical infrastructure IT. We present more information about
this project in Section 8.3.1.

 Setup and Execution

We conducted this survey in 2014 in order to elicit new and confirm
already known needs regarding cloud security. To this end, we designed
an online questionnaire. In total, the survey consisted of 15 questions. The
survey was rolled out to the user and advisory board of the »SECCRIT«
project, whose members represented companies potentially eligible as
PAP providers. At the time of our survey execution, 46 companies settled
in the domain of critical infrastructure or cloud provisioning took part in
the user and advisory board. In total, we sent the questionnaire to 60
persons from those companies. Participation was voluntary and the
participants could skip questions if they felt unable or unwilling to answer
them. We anonymized participants and aggregated all results so that
individual results could not be attributed to the participant or its
institution. The following two questions of the survey are relevant for this
thesis:

 Do you think that end users should be enabled to specify their own
security policies for protecting their data in cloud services?

 Do you think that usability issues are a major concern regarding end
users specifying their own security policies?

A complete documentation of the survey can be found in [12].

 Results

Nineteen of the 60 invited persons started the survey and partially
answered the questionnaire. Fifteen participants finished the
questionnaire.

Introduction

5

Most participants (12 out of 14; one participant skipped the first question)
stated that users should be able to specify security policies on their own
in order to protect their own data in cloud services (see Figure 2).
However, five of them doubted that users are capable of specifying
security policies. Two participants would rather deny end users the option
to specify security policies as this would jeopardize security. Not a single
participant stated that there is no need for end users to specify security
policies on their own.

Figure 2: SECCRIT Survey Question 1 – »Do You Think That End Users Should Be Enabled to Specify
Their Own Security Policies for Protecting Their Data in Cloud Services?«

The opinions of the participants whether usability issues are a major
concern for users with respect to security policy specification diverged as
shown in Figure 3. Four participants voted for usability as a major concern.
Eight participants were uncertain but two of them tended to »yes« and
two of them to »no«. Three participants did not see usability as a major
concern.

 Summary and Conclusion

This excerpt of the »SECCRIT« survey shows that industry predominantly
supports the participation of users in the specification process of security
policies. However, some participants feared security threats resulting from
this participation. Therefore, when providing PAPs for users, a strong
focus must be set on the objective correctness of the security policies
specified by users. The participating companies seem to be undecided
about whether usability issues are a major concern for users when
specifying security policies.

50.0%

35.7%

14.3%

0.0%

0 1 2 3 4 5 6 7 8

Yes, I think so

Yes, but end users are in most cases not capable
of specifying security policies

No, end users should not be enabled to specify
security policies, because it would jeopardize

security

No, end users need not to specify any security
policies

Do you think that end users should beenabled to
specify their own security policies for protecting their

data in cloud services? (n = 14)

Introduction

6

Figure 3: SECCRIT Survey Question 2 – »Do You Think That Usability Issues Are a Major Concern
Regarding End Users Specifying Their Own Security Policies?«

1.2.2 PDS2: »Museum Pfalzgalerie Kaiserslautern« Survey

The goal of the second survey was to elicit the behavior of users regarding
security and privacy policy specification in PAPs of online services. This
includes their frequency of specifying security and privacy policies. In
addition, the surveyed reasons why users do not perform this task more
regularly. We conducted this survey as part of an exhibition from
September 2018 until February 2019 in the museum »Pfalzgalerie«
located in Kaiserslautern, Germany. The topic of the exhibition was
»Without Key and Lock – Chances and Risks of Big Data«.

 Setup and Execution

The survey was part of an interactive security awareness quiz that we
created as an exhibit. We installed instances of the quiz on eight touch
screen monitors that stood next to each other. We offered the interactive
exhibit in German language. It included nine questions. Five questions
were quiz question challenging the security and privacy knowledge of the
participants; the other four were survey questions to capture the spectrum
of opinions from the entire population. We did not inform the participants
about their participation in a survey. The mixture of quiz and survey has
the disadvantage that we cannot rule out an influence of the quiz part on
the survey results. On the other hand, a quiz has the advantage that it
attracts the visitors’ attention and motivates them to finish the survey.

We relate two of the survey questions directly to the work in this thesis.
The first one is: »How often do you check your security and privacy
settings?«. We provided multiple options for answering (see Figure 4) with

20.0%

13.3%

26.7%

13.3%

26.7%

0 1 2 3 4 5

No

No Maybe

Maybe

Maybe Yes

Yes

Do you think that usability issues are a major
concern regarding end users specifying their own

security policies? (n = 15)

Introduction

7

a single choice. During the design of the experiment, we defined that
checking the security and privacy settings »multiple times per year« or
»before every usage« are acceptable frequencies. This means that, in our
opinion, less frequent checking of the settings poses a threat to security
and privacy. In these cases, the frequency of checking should be increased.
Therefore, we asked all participants who chose one of the other options
»at most once a year«, »only directly after registration« or »never« for
their reasons for only rarely checking security and privacy settings: »Why
don’t you use security and privacy settings more often?«. We gave
multiple-choice answers (see Figure 5).

We provided only single and multiple choice answers, because the exhibit
did not allow the input of text. Visitors did not need to identify themselves
before starting the survey. Thus, it was anonymous. Hence, we did not
prevent multiple participations. In addition, we did not supervise
participants when filling in the survey. Thus, we do not know whether
participants were influenced by others during the participation.

Due to the anonymous setting, we did not elicit demographic data from
the participants. However, we assume that visitors of the museum
exhibition represent a wide range of different people. Thus, we believe
that this survey covered a cross section of society—i.e., it also included
people without any special expertise in security and privacy. The cross
section was important to us to get a holistic picture of users of PAPs of
online services.

Figure 4: MPK Survey Question 1 – »How Often Do You Check Your Security and Privacy Settings?«

9.1%

32.2%

11.7%

11.4%

18.5%

11.9%

5.1%

0 50 100 150 200 250 300 350 400 450 500

Before every usage

Multiple times per year

At most once a year

Only directly after registration

Never

I am not using such services

I do not know what security settings are

How often do you check your
security and privacy settings? (n = 1391)

Introduction

8

Figure 5: MPK Survey Question 2 – »Why Don’t You Use Security and Privacy Settings More Often?«

 Results

In total, 1,391 participants answered the first question: »How often do
you check your security and privacy settings?« The results are presented
in Figure 4. The figure shows that 9.1 percent of all participants claim to
check their security and privacy settings of online services before each use.
A significant share of 32.2 percent check them multiple times per year,
11.7 percent at most once a year and 11.4 percent only once directly after
registration. Regarding the remaining answers, 18.5 percent of the 1,391
participants state that they never check their security and privacy settings,
11.9 percent said that they do not use such services and 5.1 percent
answered that they do not know what security settings are.

All participants checking their security and privacy settings too
infrequently were asked the second question: »Why don’t you use security
and privacy settings more often?« The survey tool informed the
participants that they could select multiple answers. Figure 5 shows the
results. Of the 558 participants, 34.9 percent stated that these PAPs are
too complicated, and 28.1 percent answered that checking the security
and privacy settings is too time consuming. Of all respondents, 25.8
percent said that they do not think that checking the security and privacy
settings is necessary, and 14.7 percent were not interested in the settings.
Moreover, 14.7 percent stated to have other reasons.

 Summary and Conclusion

The answers to these two questions indicate that many users use PAPs for
checking security and privacy settings, but most of them only sporadically.
About 40 percent of the participants check security and privacy settings
once a year or less. The main reason for such infrequent use is that they

28.1%

14.7%

34.9%

25.8%

14.7%

0 50 100 150 200 250

It is too time consuming

I am not interested in it

It is too complicated

I do not think it is necessary

For other reasons

Why don’t you use security and privacy settings
more often? (n = 558)

Introduction

9

perceive this task as unnecessary or as too complicated and time
consuming. The latter two reasons indicate usability issues.

The too time-consuming use of PAPs indicates that users experience a lack
of efficiency. Users also answered that they experience the task of
checking security and privacy settings as too complicated. This indicates a
limited satisfaction with the tools. In addition, it leads to the assumption
that users fear incorrect specifications, which would result in a lack of
effectiveness of the PAP causing incorrect specified security and privacy
policies. In summary, the survey shows that users have problems using
PAPs that we can explain with usability issues.

1.2.3 PDS3: Survey in the context of the policy specification experiment

The goal of the third survey was to confirm the findings of the MPK survey
described in the previous section. In particular, it aimed to elicit the
frequency in which users use PAPs for checking their security and privacy
settings and reasons why they do not perform this task more frequently.
We conducted this survey as part of a larger experiment, which is part of
the overall evaluation of this work (see Section 9.4). We sent the
invitations to the online experiment on February 7, 2018 and accepted
participations for 14 days. We collected the results on February 22, 2018.

 Setup and Execution

The survey was part of a security and policy specification experiment. We
designed the experiment as an online experiment accessible via a browser.
We invited all participants and prevented multiple participations by the
same participant. The experiment was offered in German or English
language.

We asked all participants two questions, similar to the ones of the MPK
survey:

 »How often do you update the security and privacy settings of each
web services on average?« (six single-choice answering options; see
Figure 6)

 »What keeps you from updating your security and privacy settings
more often?« (ten multiple-choice answering options; possibility to
name other reasons; see Figure 7)

The first question was designed as single-choice, the second one as
multiple-choice with the option to name additional reasons.

Introduction

10

Figure 6: Experiment Survey Question 1 – »How Often Do You Update the Security and Privacy

Settings of Each Web Service on Average?«

Figure 7: Experiment Survey Question 2 – »What Keeps You from Updating Your Security and

Privacy Settings More Often?«

 Results

In total, 61 participants finished in the experiment and answered both
questions. We present further information about participants’
demographic data in Section 9.4.2. Of all participants, as we show in
Figure 6, 16.4 percent never update their security and privacy settings of
web services, and 26.2 percent do it only once when using the web service
the first time. All other participants update the settings more frequently.
Among them, 21.3 percent update the settings about once a year, 29.5

1.6%

4.9%

29.5%

21.3%

26.2%

16.4%

0 5 10 15 20

Each time I use theweb service

Several times amonth

Several times a year

About once a year

Once, when using theweb service the first time

I never do that

How often do you update the security and privacy
settings of each web services on average? (n = 61)

44.3%

24.6%

3.3%

14.8%

23.0%

31.1%

13.1%

16.4%

8.2%

8.2%

0 5 10 15 20 25 30

Too time consuming

Too complicated

That does not interest me

I did not know you had to do this

I do not feel competent to do it appropriately

I just forget to do it regularly

I do not believe this is necessary

I do not believe that my privacy settings are really enforced

It is boring

Other

What keeps you fromupdating your
security and privacy settings moreoften? (n = 61)

Introduction

11

percent several times a year, 4.9 percent several times a month and 1.6
percent on each use of the web service.

All participants answered the second question. The top four reasons were
named as »too time consuming« (44.3%), »I just forget to do it regularly«
(31.1%), »too complicated« (24.6%) and »I do not feel competent to do
it appropriately«. Further responses are shown in Figure 7.

 Summary and Conclusion

The answers to those two questions show that more than 60 percent of
all participants update security and privacy settings only once a year or less
frequently. The main reasons are that users perceive the task of checking
security and privacy settings in PAPs as too time-consuming or too
complicated, that they do not feel competent enough to do it or that they
just forget to do it. All these reasons indicate usability issues. There seems
to be a lack of efficiency of these available tools. Users perceive the
necessary time for using security and privacy settings as too high. In
addition, users seem to fear the incorrect use of such tools and, thus, too
low effectiveness, as they perceive the tools as too complicated and feel
not competent enough to use them.

1.2.4 Summary and Conclusion

The three surveys revealed that industry recognizes the need to bring users
into the loop of specifying policies with PAPs. However, a significant
portion of users uses PAPs too infrequently. Participants stated that PAPs
are too complicated and too time-consuming and users do not feel
competent enough for using them. These and other reasons indicate
usability problems with existing PAPs.

Usability can be defined as »the extent to which a product can be used by
specified users to achieve specified goals with effectiveness, efficiency,
and satisfaction in a specified context of use« [13]. If the use of a tool is
too time-consuming, then the user does not accept the efficiency of the
tool and its specification process. The unacceptability of the perceived
complexity and the refusal of the use of the tool indicate that users are
dissatisfied with the tool. Furthermore, the high complexity for the users
and their fear not being competent enough may also negatively affect the
effectiveness of the tool, which means that settings are potentially set
incorrectly.

In summary, after analyzing the results of the surveys, we see the need to
provide PAPs for specifying security and privacy policies to users, but
current PAPs and their specification processes lack usability. We show an
overview of the survey results in Figure 8.

Introduction

12

Figure 8: Overview of Survey Results

The results of the survey also indicate a lack of security and privacy
awareness among users. However, we do not consider this issue in this
thesis.

1.3 Problem Statement

In the context of this thesis, we use the ISO 9241 definition of usability
[13]:

Definition: Usability

Usability is the »extent to which a system, product or service can be used
by specified users to achieve specified goals with effectiveness, efficiency
and satisfaction in a specified context of use« [13].

The usability issues identified in the surveys can be categorized in
effectiveness, efficiency and satisfaction issues.

Definition: Objective Correctness of Policies

A policy is objectively correct if it expresses the security or privacy
demand of the user who specified the policy.

Definition: Perceived Correctness of Policies

A policy is perceived correct by the user if the user is confident that his
specified policy expresses his actual security or privacy demand.

The use of a PAP is effective for a user if he can specify objectively correct
policies and if he can correctly self-evaluate the objective correctness of
the specified policies (perceived correctness). The PAP is efficient for a
user, if the time required for specifying a policy is acceptable to the user.
The PAP is satisfying for a user if he enjoys the experience of using it.
Several studies [2, 3, 11] and our problem evidence surveys (see Sections
1.2.2 and 1.2.3) show that users face usability issues when using state-of-
the-art PAPs. For example, Zhao et. al [11] surveyed existing approaches

PDS1: SECCRIT Survey PDS2: MPK Survey PDS3: Experiment Survey

Companies (PAP Providers)

Industry has strong tendency to
involve users, but fears that

users might jeopardize security
due to their lack of expertise.

About 40 % of users check
security and privacy settings too

seldom, because they face
usability issues.

More than 60 % of users update
security and privacy settings too

seldom, because they face
usability issues.

PAP Users PAP Users

Introduction

13

for privacy policy specification and found that »their tool developments
have largely failed to deliver a user-friendly interface« [11]. Thus, we
formulate the following first practical problem to be addressed in this
thesis:

Practical Problem 1 (PP1) – Usability Issues of Users

Users have usability issues (too low effectiveness, efficiency and
satisfaction) when specifying policies with existing Policy Administration
Points.

In practice, users can configure their security and privacy policies (e.g., for
online services) in several ways. The user interfaces for policy specification
in PAPs differ, for example, in their specification process, their
expressiveness and their guidance. We call these different types of policy
specification interfaces and processes »specification paradigms«.

Definition: Specification Paradigm

A specification paradigm defines the specification process and the user
interface in a PAP for the task of policy specification including the
expressiveness and the guidance that the user receives during the
specification.

Specification paradigms are generic concepts that describe the
functionality of the user interface of a PAP. This includes the
expressiveness, which defines the granularity on which the user can
influence the policy specification. On the one hand, the user may freely
assemble fine-grained policy elements to the demanded policy. On the
other hand, the user may select from pre-defined policies or sets of
policies, which are provided by security or privacy experts. Specification
paradigms also describe the guidance, which defines, for example, the
provision of additional information (e.g., explaining elements of policies
or their effects) or the segmentation of the policy specification process in
small and ordered steps. Specification paradigms do not define the
content, thus, the policies that can be potentially specified with the PAP,
and do not consider domain-specific concepts.

Most online services provide in their PAP exactly one specification
paradigm for all users. However, users have different capabilities and
motivations for using PAPs [14, 15]. Studies have shown that
personalization to the user can increase the usability of, for example e-
commerce websites [16] or security mechanisms [17]. One possible
personalization of PAPs is the user-specific selection of a specification
paradigm based on the user’s capabilities and motivation. We assume that
this user-specific selection has a positive effect on the usability of a PAP.
We expect that users can achieve faster and more effective specifications

Introduction

14

and have a more satisfying experience when using the most appropriate
specification paradigm. We know from literature that the optimization of
user interfaces of PAPs can improve their usability and positively influence
the security and privacy specification experience for users [10, 18].
Literature also states, that security, privacy and usability need to be
considered together [9]. However, there have not been any studies
conducted so far that investigate usability effects of different specification
paradigms of PAPs on users. We want to clarify this issue by answering
the following research question in this thesis:

Research Question 1 (RQ1) – Usability of Specification Paradigms

Which specification paradigm fits best to the user of a PAP in order to
support effective, efficient and satisfying policy specification?

As pointed out in the first problem derivation survey (see Section 1.2.1),
industry is generally willing to provide PAPs to users. However, their
development requires effort. We know from literature that companies are
only willing to invest this effort if they have an incentive [19]. Especially, if
companies wanted to provide usable PAPs with multiple supported
specification paradigms to users, their development effort would be
multiplied potentially. This leads to our second practical problem:

Practical Problem 2 (PP2) – Specification Paradigms increase Effort

Creation of usable PAPs with multiple supported specification paradigms
increases development effort

One common approach for the reduction of development effort is
automation, for example, by generating source code automatically. Thus,
with respect to the development effort it would be beneficial to generate
the user interfaces for policy specification according to the specification
paradigms in PAPs. So far, no such method has been proposed in the
literature. Thus, we identify the following scientific problem for this thesis:

Scientific Problem (SP) – No Automation for PAP Creation

No method for generating usable PAPs with multiple supported
specification paradigms exists

Further open research questions exist that we want to answer for solving
the scientific problem. First, the mapping of users to specification
paradigms, as we addressed in RQ1, needs to be researched.

Furthermore, PAPs allow the users to specify security or privacy policies
within a specific application domain.

Introduction

15

Definition: Application Domain

We define an application domain as the target area for a PAP, in which
the policies specified by the PAP are applied. An application domain
contains stakeholders with security and privacy demands for data and
systems that need to be protected with policies. An application domain
can range from a single application or web service to an organization or
industry branch.

Ideally, the specification boundaries of the PAP within which the user can
express his security and privacy preferences should be aligned to the
application domain. These specification boundaries differ for different
specification paradigms as they provide different specification processes
and expressiveness during the specification. Thus, when industry is
providing a new PAP, the security and privacy demands that should be
reflected in the PAP need to be elicited from the application domain (e.g.,
from the various stakeholders). However, there is no established method
for eliciting the security and privacy demands and other relevant
information from an application domain that are needed for providing
PAPs with multiple supported specification paradigms. Thus, we derive the
following research question:

Research Question 2 (RQ2) – Elicitation

How can we efficiently and effectively elicit all relevant information from
an application domain that is necessary for providing usable PAPs with
multiple supported specification paradigms?

As multiple examples in academia [20–22] show, the automated
generation of application code can be supported by models. Thus, we
need a model to describe security and privacy demands from an
application domain in such a way that they can be used for the generation
of policy specification interfaces for multiple specification paradigms in
PAPs. According to our definition, a PAP must be usable by a human, for
example by displaying the specification options in a human-
understandable representation (SLP). In addition, a PAP must be capable
of creating policies in a machine-understandable format as the output
after specification (ILP). However, experts may understand the machine-
understandable format and specify policies accordingly. We do not
consider this in our work and focus on non-expert users, which may need
a human-understandable policy format such as natural language. We
require that our model must be capable of describing policies as both
human-understandable and machine-understandable representations.
Furthermore, rules for the transformation of human-understandable
policy instances into machine-understandable equivalents must be
definable. However, current research lacks methods for modelling security
and privacy demands in such a way that usable policy specification

Introduction

16

interfaces in PAPs with multiple supported specification paradigms can be
generated from them. In addition, the modelling of security demands is
requested in the literature as a major requirement for the development of
high assurance systems [23]. This leads to the third research question:

Research Question 3 (RQ3) – Formalization

How can we classify and represent security and privacy demands with a
model so that they can be used for the generation of usable PAPs with
multiple specification paradigms?

Finally, we want to use the elicited and modelled security and privacy
demands to automate the creation of usable PAPs. However, we are
lacking a technology for the generation of policy specification interfaces
in PAPs that represent multiple specification paradigms. Code generation
can replace manual development and reduce implementation effort,
especially if PAPs with multiple supported specification paradigms need to
be created. Thus, we can derive the fourth research question:

Research Question 4 (RQ4) – Automation

How can we automate the creation of policy specification interfaces in
PAPs that represent multiple specification paradigms?

We expect to solve the two practical problems if we can provide a method
for generating usable PAPs with multiple supported specification
paradigms for users. Therefore, we want to answer the four research
questions. We summarize the practical problems, the scientific problem
and the research questions addressed in this thesis in Figure 9.

Figure 9: Relation of Practical Problems, Scientific Problem and Research Questions

1.4 Contribution

In order to enable flexible user-specific customization of policy
specification tools for enhanced usability, we aim at providing an

derive

SP: No method for generating usable PAPs with multiple supported specificationparadigmsexists

PP1: Users have usability issues (too low effectiveness,
efficiency and satisfaction)when specifying policieswith
existing Policy AdministrationPoints

PP2: Creationof usable PAPs with multiple supported
specificationparadigms increases developmenteffort

RQ2: How can we efficiently and
effectively elicit all relevant
information from an application
domain that is necessary for
providing usable PAPs with multiple
supported specification paradigms?

RQ3: How can we classify and
represent security and privacy
demands with a model so that they
can be used for the generation of
usable PAPs with multiple
specification paradigms?

RQ1: Which specification
paradigm fits best to the user
of a PAP in order to support
effective, efficient and
satisfying policy
specification?

RQ4: How can we
automate the creation
of policy specification
interfaces in PAPs that
represent multiple
specification paradigms?

Introduction

17

automated creation process for domain-specific, multi-paradigm PAPs.
The usability improvements of the PAP are addressed by the selection of
an appropriate specification paradigm and the use of application domain-
specific terminology. Our solution idea is the method for usable PAP
generation. This approach contains four contributions:

 Contribution 1 (C1) – User to Specification Paradigm Mapping:
A broad body of research exists on the usability improvement of
security and privacy systems [6, 7, 10, 11, 18, 19, 24–41]. However,
the literature is lacking studies on the effect of different specification
paradigms on the usability of a PAP. One relevant problem is the
identification of the adequate expressiveness of a PAP for a given type
of user [25]. We address this gap by providing guidance for selecting
the appropriate specification paradigms for (types of) users in terms of
usability (effectiveness, efficiency and satisfaction) based on empirical
data.

 Contribution 2 (C2) – Policy Template Elicitation Method: The
state of the art regarding the elicitation of security and privacy
requirements reveals a lot of methods and approaches for the
elicitation of security and privacy related requirements [23, 42–50],
policies [51–55] and risks [56–60]. We could not identify a systematic
approach for eliciting policy templates directly from the stakeholders
of an application domain in the literature. Thus, we devise a method
for eliciting security and privacy demands from an application domain
using state of the art RE techniques. The output of the method are
policy templates aligned to the terminology of the users and the
domain. Such a template can be instantiated as a concrete policy that
reflects a security and privacy demand.

 Contribution 3 (C3) – Policy Template Model: We identified several
very specific models in the state of the art that explain security and
privacy principles and concepts [61–73] and revealed model-driven
approaches for the refinement and generation of machine-
understandable policies [74–76]. However, the literature lacks a
generic model for modelling security and privacy demands in the form
of policy templates that is capable of building the baseline for the
automation of the PAP creation. We provide such a model, which
contains all information necessary for the PAP generation framework
to generate a PAP that supports multiple specification paradigms.

 Contribution 4 (C4) – PAP Generation Framework (Concept and
Implementation): We contribute the PAP generation framework for
the automation of the PAP creation. The framework is capable of
generating user interfaces for policy specification, which can
implement multiple specification paradigms, at runtime. Our
framework includes generation algorithms for four state of the art
specification paradigms. The specification options on the user

Introduction

18

interfaces and the transformation rules for producing machine-
understandable policies stem from an instance of the policy template
model. The PAP can be configured at runtime to use this specific
instance. We did not find a comparable approach in the literature for
automating the creation of policy specification interfaces like our PAP
generation framework.

 Contribution 5 (C5) – Method for Usable PAP Generation: The
method for usable PAP generation combines the previous four
contributions to a comprehensive approach for generating usable PAPs
with multiple supported specification paradigms, as requested in the
scientific problem. We could not find a comparable method in the
literature.

We illustrate the relations of the contributions to the research questions
in Figure 10.

Figure 10: Relation between Practical Problems, Scientific Problem, Research Questions and

Contributions

In addition to our methodical and technical contributions, we provide
empirical contributions regarding the validation of our results comprising
four case studies and one experiment:

 In two case studies, we applied our contributions in industrial
settings. These case studies aimed at improving the completeness and
correctness of the elicited information with the policy template
elicitation method and the completeness of the policy template model.
The case studies also explored the general feasibility of automating the
PAP creation with the PAP generation framework. In the studies, we
demonstrate the applicability of the method for usable PAP generation
in two different application domains.

derive solve combine

C5: Method for Usable PAP Generation

C2: Policy TemplateElicitation
Method

C3: Policy TemplateModelC1: User to Specification
ParadigmMapping

C4: PAP Generation
Framework (Concept
& Implementation)

SP: No method for generating usable PAPs with multiple supported specification paradigms exists

PP1: Users have usability issues (too low effectiveness,
efficiency and satisfaction)when specifying policieswith
existing Policy AdministrationPoints

PP2: Creationof usable PAPs with multiple supported
specification paradigms increases developmenteffort

RQ2: How can we efficiently and
effectively elicit all relevant
information from an application
domain that is necessary for
providing usable PAPs with multiple
supported specification paradigms?

RQ3: How can we classify and
represent security and privacy
demands with a model so that they
can be used for the generation of
usable PAPs with multiple
specification paradigms?

RQ1: Which specification
paradigm fits best to the user
of a PAP in order to support
effective, efficient and
satisfying policy
specification?

RQ4: How can we
automate the creation
of policy specification
interfaces in PAPs that
represent multiple
specification paradigms?

Introduction

19

 In addition, we validated our contributions in our end-to-end
evaluation of the overall method, which we split into two parts:

o We applied the method for usable PAP generation in two more
case studies to confirm our previous results.

o We conducted a policy specification experiment in which we
assessed the usability improvements of a multi-paradigm PAP in
terms of increasing effectiveness, efficiency and satisfaction
when providing the best of four specification paradigms to
different user groups (personas).

In the next section, we formulate hypotheses and map them to the
contributions and research questions for a systematic evaluation of our
contributions.

1.5 Hypotheses

We presented our problem statement and contributions in the preceding
sections. We formulated four research questions and proposed
contributions for answering these questions. To justify our contributions
in the evaluation, we present hypotheses for each research question. Our
hypotheses concern four aspects:

 The usability of generated PAPs

 The correctness, completeness and user satisfaction with respect to the
policy template elicitation method

 The completeness of the policy template model

 The feasibility of the automation of PAP creation.

1.5.1 Hypotheses for RQ1: Usability of Specification Paradigms

According to RQ1, we want to determine how to map suitable
specification paradigms to users in order to increase the usability of PAPs.

Hypothesis 1 (H1): Usability of PAP

The usability of a PAP with the best matching specification paradigm is
30% higher than with the worst matching specification paradigm.

According to the ISO 9241 definition [13], the quality »usability« can be
split into the sub-qualities effectiveness, efficiency and satisfaction. Thus,
for measuring usability improvements, we subdivide H1 into different sub
hypotheses and measure the effect of different specification paradigms
on these sub-qualities independently. We expect that the effects of

Introduction

20

different specification paradigms on the sub-qualities vary for different
users. Therefore, we compare these effects for different user groups,
which are represented by so-called personas. We present more details
about personas and the chosen persona model in Section 6.3.

If we want to improve the specification of security and privacy policies, we
need to consider two different types of effectiveness. On the one hand,
users need to specify objectively correct policies with PAPs. The policy, that
is the output of the PAP, must express the security or privacy demand of
the user. We call this the objective effectiveness of the policy specification.
On the other hand, the user must be confident that the resulting policy is
objectively correct. We call this the perceived effectiveness of the policy
specification. Therefore, we split the effectiveness in two hypotheses
regarding objective and perceived effectiveness. The hypothesis regarding
the objective effectiveness of different specification paradigms is:

Hypothesis 1.1 (H1.1): Objective effectiveness of PAP

H1.1A: On average, users make at least 30% fewer mistakes with a PAP
when comparing the best matching specification paradigm to the worst
matching specification paradigm.

H1.10: Users cannot achieve 30% fewer mistakes with a PAP when
comparing the best matching specification paradigm to the worst
matching specification paradigm.

GQM for H1.1
Object Analyze the specification paradigms

Purpose for the purpose of comparison
Focus with respect to objective effectiveness

Stakeholder from the viewpoint of users and personas
Context Factors in the context of an experiment.
Question Q1.1.1 Can the optimal mapping of specification para-

digms of PAPs to users reduce the number of
specification mistakes at least by 30%?

Metric M1.1.1 Ratio of percentage mistakes with best
specification paradigm to percentage mistakes
with worst specification paradigm.

Question Q1.1.2 Is the optimal mapping of specification paradigms
reducing the number of specification mistakes for
each persona by at least 30%?

Metric M1.1.2 Percentage of personas for which the optimal
mapping reduces the specification mistakes by 30
percent.

Introduction

21

Question Q1.1.3 Does the persona selection influence the objective
effectiveness when using the different specifi-
cation paradigms?

Metric M1.1.3 Significance of influence of selected persona on
made mistakes with specification paradigms.

We formulate the following hypothesis with respect to the perceived
effectiveness of the policy specification with different specification
paradigms:

Hypothesis 1.2 (H1.2): Perceived effectiveness of PAP

H1.2A: On average, the users’ self-evaluation regarding objective policy
correctness (perceived correctness) when specifying policies with a PAP
has at least a 30% higher accuracy when comparing the best matching
specification paradigm to the worst matching specification paradigm.

H1.20: Users cannot achieve a 30% higher accuracy regarding the self-
evaluation of objective policy correctness with a PAP when comparing
the best matching specification paradigm to the worst matching
specification paradigm.

GQM for H1.2
Object Analyze the specification paradigms

Purpose for the purpose of comparison
Focus with respect to perceived effectiveness

Stakeholder from the viewpoint of users and personas
Context Factors in the context of an experiment.
Question Q1.2.1 Can the optimal mapping of specification

paradigms of PAPs to users increase the accuracy
of the correct self-evaluation regarding objectively
correct specified policies by at least 30%?

Metric M1.2.1 Ratio of correct positive estimations plus correct
negative estimations to all estimations

Question Q1.2.2 Does the optimal mapping of specification
paradigms increase the accuracy of estimations
regarding objectively correct specified policies for
each persona by at least 30%?

Metric M1.2.2 Percentage of personas for which the optimal
mapping increases the accuracy of estimations
regarding objectively correct specified policies by
at least 30 percent.

Question Q1.2.3 Does the persona selection influence the perceived
correctness?

Introduction

22

Metric M1.2.3 Significance of influence of selected persona on
perceived correctness with specification para-
digms.

Additionally, we investigate the specification time that users need with
different specification paradigms to specify policies, as seen in the
following hypothesis:

Hypothesis 1.3 (H1.3): Efficiency of PAP

H1.3A: On average, users are specifying policies at least 30% faster
when specifying policies with a PAP comparing the best matching
specification paradigm to the worst matching specification paradigm.

H1.30: Users cannot achieve 30% faster specifications with a PAP when
comparing the best matching specification paradigm to the worst
matching specification paradigm.

GQM for H1.3
Object Analyze the specification paradigms

Purpose for the purpose of comparison
Focus with respect to efficiency

Stakeholder from the viewpoint of users and personas
Context Factors in the context of an experiment.
Question Q1.3.1 Can the optimal mapping of specification

paradigms of PAPs to users decrease the time
needed to specify policies by at least 30%?

Metric M1.3.1 Time necessary to specify policy.
Question Q1.3.2 Is the optimal mapping of specification paradigms

for decreasing the time needed to specify policies
valid for all personas?

Metric M1.3.2 Percentage of personas for which the optimal
mapping decreases the time needed to specify
policies by at least 30 percent.

Question Q1.3.3 Does the persona selection influence the time
needed to specify policies?

Metric M1.3.3 Significance of influence of selected persona on
the time needed to specify policies with
specification paradigms.

The last considered sub-quality of usability is user satisfaction. We
investigate the user satisfaction when using the different specification
paradigms with the following hypothesis:

Introduction

23

Hypothesis 1.4 (H1.4): Satisfaction with PAP

H1.4A: On average, the user satisfaction during a policy specification
with a PAP when using the best matching specification paradigm is
significantly higher than with the worst matching specification paradigm.

H1.40: We cannot achieve a significantly higher user satisfaction with a
PAP when comparing the best matching specification paradigm to the
worst matching specification paradigm.

GQM for H1.4
Object Analyze the specification paradigms

Purpose for the purpose of comparison
Focus with respect to satisfaction

Stakeholder from the viewpoint of users and personas
Context Factors in the context of an experiment.
Question Q1.4.1 Can the optimal mapping of specification

paradigms of PAPs to users significantly increase
the satisfaction experienced by users during the
policy specification?

Metric M1.4.1a Significance for the increase of users’ satisfaction
of specification paradigms measured with a rating
on a scale from 1 (unsatisfied) to 5 (satisfied).

Metric M1.4.2b Ranking of specification paradigms
Question Q1.4.2 Is the optimal mapping of specification paradigms

for increasing the satisfaction experienced by users
during the policy specification valid for all
personas?

Metric M1.4.2 Percentage of personas for which the optimal
mapping significantly increases the user satis-
faction.

Question Q1.4.3 Does the persona selection influence the
satisfaction with specification paradigms?

Metric M1.4.3 Significance of influence of selected persona on
the satisfaction with specification paradigms.

1.5.2 Hypotheses for RQ2: Elicitation

All relevant information from an application domain that is necessary for
providing PAPs with multiple supported specification paradigms must be
elicited. It is important that the information is complete so that users can
specify all their security and privacy demands using the PAP. Thus, we
formulate the following hypothesis regarding the completeness of the
elicited policy templates with the policy template elicitation method:

Introduction

24

Hypothesis 2 (H2): Completeness of elicited information

H2A: On average, the elicited policy templates cover at least 90% of the
security and privacy demands from an application domain.

H20: We cannot elicit policy templates that cover at least 90% of the
security and privacy demands from an application domain.

GQM for H2
Object Analyze the policy template elicitation method

Purpose for the purpose of evaluation
Focus with respect to completeness

Stakeholder from the viewpoint of expert
Context Factors in the context of four case studies.

Question Q2.1 Is the policy template elicitation method capable
of eliciting 90% of all necessary policy templates
for the application domain?

Metric M2.1 Ratio of elicited policy templates to all required
policy templates in the application domain.

In addition, the content of the elicited policy templates must correctly
represent the security and privacy demands from the application domain:

Hypothesis 3 (H3): Correctness of elicited information

H3A: On average, at least 90% of the elicited policy templates correctly
represent the security and privacy demands from an application domain.

H30: We cannot elicit policy templates from which at least 90% correctly
represent the security and privacy demands from an application domain.

GQM for H3
Object Analyze the policy template elicitation method

Purpose for the purpose of evaluation
Focus with respect to correctness of elicited policy

templates
Stakeholder from the viewpoint of expert

Context Factors in the context of four case studies.
Question Q3.1 Is the policy template elicitation method capable

of eliciting correct policy templates that cover the
security and privacy demands from the application
domain?

Metric M3.1 Ratio of correctly elicited policy templates to all
elicited policy templates.

Introduction

25

The participants of elicitation workshops in which the policy template
elicitation method is used shall have a positive experience:

Hypothesis 4 (H4): User acceptance of elicitation method

H4A: At least 90% of the participants feel comfortable with the policy
template elicitation method.

H40: Less than 90% of the participants feel comfortable with the policy
template elicitation method.

GQM for H4
Object Analyze the policy template elicitation method

Purpose for the purpose of evaluation
Focus with respect to user acceptance

Stakeholder from the viewpoint of users
Context Factors in the context of four case studies.

Question Q4.1 Do users rate a workshop in which the policy
template elicitation method is applied as a positive
experience?

Metric M4.1 Ratio of users who rate the participation in a
workshop in which the policy template elicitation
method is applied as a positive experience to the
total number of participants

1.5.3 Hypotheses for RQ3: Formalization

The following hypothesis for RQ3 describes the desired capability of the
policy template model to model security and privacy demands completely
in the form of policy templates:

Hypothesis 5 (H5): Completeness of policy template model

H5A: On average, the policy template model can model at least 90% of
the elicited security and privacy demands from an application domain in
the form of policy templates.

H50: We cannot model at least 90% of the elicited security and privacy
demands from an application domain in form of policy templates using
the policy template model.

Introduction

26

GQM for H5
Object Analyze the policy template model

Purpose for the purpose of characterization
Focus with respect to completeness

Stakeholder from the viewpoint of expert
Context Factors in the context of four case studies.

Question Q5.1 Is the policy template model capable to represent
more than 90 percent of the elicited security and
privacy demands in the form of policy templates?

Metric M5.1 Number of policy templates modeled in the policy
template model divided by number of policy
templates elicited in the case studies

1.5.4 Hypotheses for RQ4: Automation

Finally, the feasibility of automation in the PAP creation process based on
an instance of the policy template model is to be investigated by the
following hypothesis:

Hypothesis 6 (H6): Feasibility of automation of PAP creation

H6A: With respect to our case studies, 100 percent of the user interfaces
for the policy specification that implement different specification
paradigms can be generated in PAPs during runtime.

H60: With respect to our case studies, less than 100 percent of the user
interfaces for the policy specification that implement different
specification paradigms can be generated in PAPs during runtime.

GQM for H6
Object Analyze the PAP generation framework

Purpose for the purpose of evaluation
Focus with respect to automation

Stakeholder from the viewpoint of expert
Context Factors in the context of four case studies.

Question Q6.1 Is the process of user interface creation for the task
of policy specification automatable for multiple
specification paradigms and UI frameworks?

Metric M6.1 Ratio of supported specification paradigms to all
tested specification paradigms.

Metric M6.2 Ratio of UI frameworks for which policy
specification interfaces in PAPs can be generated
to all tested UI frameworks based on different
policy template model instances.

Introduction

27

1.6 Research Approach

In the following, we describe the scientific approach for realizing the five
contributions C1 to C5 and for answering the four respective research
questions RQ1 to RQ4.

In general, we chose an iterative exploration and improvement process.
First, we identified existing PAPs in practice and academia to derive
specification paradigms in common use. Next, we surveyed the state of
the art for approaches regarding user type models, elicitation approaches
for security and privacy requirements and policies, security and privacy
models and usable security and privacy specification. Based on the gained
insights, we devised the first versions of our contributions.

We applied each version of our aforementioned contributions in two case
studies for eliciting their improvement potential. After each case study, we
improved the contributions accordingly. After finalizing the contributions,
we validated their quality with respect to the research questions and
hypotheses of this thesis in two more case studies and one experiment.
Figure 11 summarizes our empirical contributions.

Figure 11: The Empirical Contributions Mapped to the Evaluations for Improvement and Validation

We show the relation between the contributions, hypotheses, case studies
and the experiment in Figure 12. Figure 13 summarizes the evaluation
plan of our research approach with respect to the practical and scientific
problems.

Last, we aimed to receive feedback for informal validation of our
contributions from the academic communities. Therefore, we presented
our contributions and the evaluation results at various workshops and
conferences [77–84].

Evaluation for Improvement

»Sinnodium« case study
»SECCRIT« case study

Evaluation for Validation

»BeSure« case study
»Digital Villages« case study
Policy specification experiment

Introduction

28

Figure 12: Relation between Contributions, Hypotheses and Case Studies and the Experiment

Figure 13: Relation between Practical and Scientific Problems and Case Studies, the Experiment and

the Hypotheses

1.7 Assumptions and Limitations

The following assumptions and limitations apply to this thesis:

 In this thesis, we do not address missing security and privacy
awareness that users may have according to our problem
derivation studies.

C
5:

 M
et

ho
d

fo
r

U
sa

bl
e

PA
P

G
en

er
at

io
n

C3: Policy
Template Model

C4: PAP
Generation
Framework

C2: Policy
Template

Elicitation Method

C1: User to
Specification

Paradigm Mapping

Contributions Evaluations

Experiment

H5: Completeness of policy template model

H2: Completeness of elicited information

H3: Correctness of elicited information

H4: User acceptance of elicitation method

H6: Feasibility of automation of PAP creation

Case Studies

CS4: Digital Villages

CS3: BeSure

CS2: SECCRIT

E1: Policy Specification
Experiment

H1: Usability of PAPs

H1.1: Objective effectiveness of PAP

H1.2: Perceived effectiveness of PAP

H1.3: Efficiency of PAP

H1.4: Satisfaction with PAP

CS1: Sinnodium

Pr
ac

ti
ca

l
Pr

o
b

le
m

s • Users have usability issues when
specifying policies with existing PAPs

• Creation of usable PAPs with multiple
supported specification paradigms
increases development effort

C
as

e
St

ud
y

an
d

Ex

p
er

im
en

t • Increased usability for
users (H1)

• No development effort
for PAP creation (derived
by H6)

Sc
ie

nt
if

ic

Pr
o

b
le

m • No method for generating
usable PAPs with multiple
supported specification
paradigms exists

So
lu

ti
on

 Id
ea • PAP Personalization Method

• Policy template elicitation method
• Policy template model
• PAP generation framework
• User to specification paradigm mapping

C
as

e
St

ud
ie

s • Elicitation of complete and correct
policy templates (H2, H3)

• User acceptance of elicitation
method (H4)

• Complete policy template model (H5)
• Feasibility of PAP generation (H6)

CS3: BeSure

CS2: SECCRIT

CS4: Digital Villages

E1: Policy Specification
Experiment

PDS1-3: Problem
Derivation Studies

CS1: Sinnodium

Introduction

29

 We do not propose a new method for transforming specification
level natural language security policies into machine-
understandable policies in this thesis. Appropriate approaches
already exist (e.g., [76]). However, we provide the option for
defining respective transformation rules in our policy template
model.

 We do not address the topics of policy conflicts or policy
negotiation in this thesis.

 Our method for usable PAP generation is lacking an evaluated
approach for the specification of projection rules for multiple
specification paradigms and transformation rules for generating
machine-understandable policies from specified human-
understandable policies. This is currently an expert-based task.

 We selected four specification paradigms from the state of the
art and practice that strongly vary in the dimensions of
expressiveness and guidance. Therefore, we assume to represent
the spectrum of available specification paradigms well with our
selection. However, we do not know whether other specification
paradigms provide better results with respect to usability.

 The PAP generation framework is currently not supporting or
using the domain sub-model or the security and privacy sub-
model of the policy template model. Further research is required
to integrate this information into the policy specification
interfaces of PAPs.

1.8 Outline

This thesis is structured into ten chapters as follows:

In Chapter 2, we surveyed the state of the art with respect to elicitation
approaches for security and privacy requirements, security and privacy
models, usable security and privacy specification and models for user
behavior. In addition, we present existing PAPs from practice and
academia and derive specification paradigms.

In Chapter 3, we present our policy template elicitation method, which
we use for retrieving policy templates from stakeholders of an application
domain. After a method overview, we describe the five steps of the
method in detail: information retrieval, workshop preparation, execution
of elicitation workshop, documentation of workshop results as well as
policy template derivation and validation.

Introduction

30

In Chapter 4, we describe our policy template model including the various
sub-models. These include the representation of specification-level policy
templates, the definition of transformation rules for generating
implementation-level policies and the specification of projection rules to
allow the support for multiple specification paradigms.

In Chapter 5, we present the PAP generation framework for automating
the creation of usable policy specification interfaces in PAPs that support
multiple specification interfaces. We explain the architecture of the
framework and explain how developers can integrate it in existing
software. Next, we discuss the selection of the four supported
specification paradigms and explain the generation algorithms for each
paradigm. Finally, we present our reference implementation of the PAP
generation framework.

In Chapter 6, we explain the theoretical work behind our user to
specification paradigm mapping. We first present a user intention model
that explains barriers that users may have when using a PAP. We argue
that users differ in their capabilities. Therefore, we select a user type model
for clustering users of PAPs into groups for better mapping individual users
to specification paradigms.

In Chapter 7, we combine the previous four contributions to the method
for usable PAP generation and explain their joint application.

In Chapter 8, we describe the two industrial case studies »SINNODIUM«
and »SECCRIT« that we used for gaining improvement potential for the
iterative enhancement of our contributions. For both case studies, we
present a project summary, explain the design and execution, show the
results, discuss our observations and lessons learned as well as explain
how we addressed threats to validity.

In Chapter 9, we describe how we validated our contributions with two
more case studies and one experiment. One of the case studies was
conducted in an industrial setting. For each case study, we give a project
summary, explain the design and execution, present the results, discuss
our observations and lessons learned as well as explain how we addressed
threats to validity. For the experiment, we first describe the setup and
execution. Next, we explain how we analyzed the results, which are
presented afterwards. In addition, we discuss the meaning of our results.
Finally, we discuss threats to validity and our conclusions. For both the
case studies and the experiment, we discuss how the results address our
research goals by confirming or refusing our hypotheses.

In Chapter 10, we summarize the results of this thesis and our
conclusions. Furthermore, we discuss open issues as well as potential
future work.

31

2 Foundations and Related Work

In this chapter, we provide an overview of relevant related work with
respect to the research questions investigated in this thesis. We discuss
relevant approaches and identify gaps in the body of research to which
we contribute with our work. In addition, we present the foundation for
the selection of specification paradigms and the persona model.

We structure the remainder of this chapter as follows. We first explain our
research approach in Section 2.1. The state of the art in the elicitation of
security and privacy requirements is presented in Section 2.2 (related to
RQ2), followed by the relevant work on existing security and privacy
models in Section 2.3 (related to RQ3). In Section 2.4, we discuss the body
of research into usable security and privacy policy specification (related to
RQ1 and RQ4). In Section 2.5, we present existing PAPs from state of the
art and practice, and we derive and compare specification paradigms
(related to RQ4). Finally, we present related work in the field of user
behavior in Section 2.6. Section 2.7 summarizes this chapter and our
conclusions.

2.1 Research Approach

The foundations and related work presented in this chapter has been
obtained through continuous and iterative literature research. We
conducted individual literature surveys with respect to the four research
questions. In addition, we have continuously expanded our knowledge of
the state of research through supervised student research projects and
diploma theses, advice from colleagues, conference visits and discussions
with specialist colleagues.

2.2 Elicitation of Security and Privacy Requirements

We claim in RQ2 that we want to devise an approach for eliciting all
relevant information from an application domain that is necessary for
providing PAPs with multiple supported specification paradigms. Thus, we
need to elicit security and privacy demands systematically from
stakeholders of the application domain. This field is well researched, and
a plethora of well-evaluated approaches already exists. Hence, we decided
to reuse existing approaches in our policy template elicitation method. In
the following, we describe the related work in the areas of »elicitation
techniques« and »security and risk assessment«.

Foundations and Related Work

32

Several types of elicitation techniques have been proposed in research and
industry that are relevant for our work. We first identify »general
requirements elicitation techniques«. Next, we present more specific
»elicitation techniques for security and privacy requirements«, which are
already adapted to the area of security and privacy. Finally, we further
narrow the focus down and discuss »elicitation techniques for policies«.

 General Requirements Elicitation Techniques

In general, the entire spectrum of established requirements engineering
techniques proposed in the literature can be applied to elicit assets, use
cases, threats and countermeasures in our policy template elicitation
method. Examples are brainstorming [85], domain analysis [86], interviews
[87], questionnaires [88] and task analysis [89]. Pohl [90], Pohl and Rupp
[91], Rupp [92], Zowghi and Coulin [86] as well as Zhang [93] survey
existing requirement engineering techniques. In our method, we
recommend the use of some of these techniques based on our experience.
However, the suitability of a technique depends on various factors, such
as goal, application domain, available time and group size of participants
in a workshop. Thus, other techniques may fit better in other applications
of our method. In Appendix A.1, we present a selection of requirements
engineering techniques in more detail.

One important aspect for the elicitation of requirements is the selection
of stakeholders. Alexander [94] proposes a stakeholder analysis approach.
In Alexander’s terminology, a stakeholder is an individual person or a legal
entity. Stakeholders can be clustered; they represent one or more roles.
He describes the onion model approach for relating roles to the target
systems. TORE [95] and the approach by Mitchell et al. [96] classify and
map stakeholders to specific characteristics. Cameron et al. [97] describe
a method for analyzing stakeholders’ needs and prioritize them regarding
their value to others. Although their method was developed to identify
stakeholders related to space exploration, it can be adapted and applied
to different application domains such as security policies. Stakeholder
identification and analysis methods are used in the second step of the
policy template elicitation method (see Section 3.4).

 Elicitation Techniques for Security and Privacy Requirements

In addition to the generic requirement elicitation techniques, several
approaches specifically devised for the domain of security and privacy have
been proposed in research.

Dörr [42, 44] proposes a method for eliciting non-functional requirements
including security requirements. The elicitation is built on experience-
based quality models that describe general characteristics of quality
attributes, including metrics to measure the quality attributes and means

Foundations and Related Work

33

to achieve them. The quality models are tailored to the specific needs of
each project during application. The method also offers guidance for the
elicitation by providing checklists and prioritization questionnaires and for
the documentation of the results.

Alexander [43] presents misuse case modelling to describe abnormal use
of assets. He defines a misuse case to be »simply a use case from the point
of view of an actor hostile to the system under design« [43]. The misuse
cases are expected to reveal security and safety problems that could have
caused systems failures or higher development effort.

Olzak [45] describes a high-level threat modeling approach for guided and
practical conduction of threat analysis within a business environment. His
approach comprises six steps: identification of critical assets,
decomposition of the system, identification of possible points of attack,
threat identification, categorization and prioritization of threats and threat
mitigation. Threat identification is mainly based on the systematic analysis
of software development artifacts such as UML diagrams. In contrast to
this approach, we aim at eliciting security and privacy demands based on
assets, threats and countermeasures that are elicited from stakeholders of
the application domain. However, the steps of our method closely
resemble the steps of Olzak’s method.

The framework by Haley et al. [46] supports an asset-based elicitation and
analysis of security requirements. The approach contains similar process
steps as proposed by Olzak and by us in our policy template elicitation
method: Assets are identified, and based on those, threats are derived.
Finally, security requirements for preventing these threats are defined as
security-related system constraints.

Van Lamsweerde et al. [23] published an extension for the KAOS approach
that identifies threats by systematically analyzing anti-goals of a system.
To this end, they first define process requirements for a security
requirements engineering process to achieve results with high assurance.
Next, they present a process for the elicitation, modeling and analysis of
security requirements based on their requirements. Among the proposed
requirements for security requirement elicitation, they demand the
seamless integration of security requirements elicitation into the system
engineering process and they require the introduction of formalization.

Deng et al. [47] developed the LINDDUN method as a »comprehensive
framework to model privacy threats in software-based systems [47]«. The
method supports the elicitation and fulfillment of privacy requirements
and therefore clusters privacy threats into the following categories:
linkability, identifiability, nonrepudiation, detectability, information
disclosure, content unawareness and consent/policy noncompliance. The
method guides experts in the identification of threats and their mapping

Foundations and Related Work

34

on system elements. To this end, discovered threats are mapped to data
flow diagrams in order to identify misuse case scenarios and to elicit
privacy requirements.

Mead et al. [48] propose Security Quality Requirements Engineering
(SQUARE) as a systematic process for eliciting security requirements. The
SQUARE process puts emphasis on a recommended sequence of process
steps, but it does not propose any specific elicitation technique.

Fletcher and Liu [49] propose a structured object-oriented approach for
security requirements analysis. They develop a context object diagram for
cyber-physical systems (CPSs), which is a high-level representation of the
CPS that shows interactions between the target system and external
objects. Using this representation, use cases are specified to identify the
main functionalities of the CPS. In order to identify potential threats to the
CPS correctly, each use case is decomposed using so-called activity swim
lanes to reveal the detailed activities performed by an actor to achieve that
associated task.

Phan et al. [50] describe a security engineering process for web-service
applications, which may also be applicable for more generic scenarios. The
process is based on conventional software development processes. At the
same time, it takes into account the additional aspects relating to security
requirements. Their approach is called SOABSE (service-oriented
architecture business security engineering).

 Elicitation Techniques for Policies

Few approaches were proposed in research regarding the systematic
elicitation of policies. Existing proposals address different levels of policies:
specification-level policies, such as organizational company policies, and
implementation-level policies, such as XACML policies.

As part of the SPARCLE workbench, Karat et al. [52] present an approach
for eliciting concrete privacy demands from company representatives.
They use questionnaires and semi-structured interview techniques for
retrieving information from the stakeholders. However, their specific
elicitation of privacy demands is not very structured, but based on open
questions and on discussions about use cases. They also do not compare
the applicability of different requirements engineering techniques to the
elicitation process.

Callele and Wnuk [53] present techniques for crafting corporate policies
based on traditional requirements engineering. They conclude that
interviews, brainstorming and survey techniques have been effective in
gathering the information needed to support the development of a
corporate intellectual property (IP) policy. According to the authors, these

Foundations and Related Work

35

techniques can also be used for other types of policies. In order to draw
this conclusion, a case study was carried out in a company in the
information and communications technology sector, which confirmed
their findings. Requirements engineering techniques were successfully
applied to the task of IP policy generation, resulting in the creation of a
corporate IP policy. This IP policy was positively validated by the senior
management of the company.

Sainan and Yu [54] investigated how to integrate requirements for access
control policies into the analysis phase of the system development process.
They describe how functional requirements of the system are elicited. By
modeling the functional requirements, they obtain the access control
requirements, and they model security requirements by extending the
UML notation.

Hibshi et al. [51] evaluate the effect of different security levels on users by
letting them rate different instantiations of so-called security vignette
templates. In a study, the researchers instantiated the templates for
creating concrete security requirements in order to assess the user
perception. Those vignette templates are a simplistic equivalent of our
policy templates. In our terminology, they correspond to policy templates
with only text and selectable text elements. In contrast to Hibshi et al.,
however, we aim to provide policy templates to users so that they can
instantiate them as concrete security and privacy policies that reflect their
own demands.

In an approach proposed by Oladimeji et al. [55], security requirements
are analyzed based on UML diagrams. The authors relate security concerns
to functional models and record their findings in a soft goal
interdependency graph. Security policies are modeled using UML.

The security controls suggested in the NIST publications 800-30 [98], 800-
37 [99], and 800-53 [100] can be seen as a kind of policy templates.
However, these security controls are described in a rather generic way and
need to be adapted to the application domain. This includes the
adjustment of terminology. With the application domain-specific
elicitation of policy templates in our approach, we directly handle the
adaption during the elicitation process. Nevertheless, especially the NIST
800-53 catalog can provide valuable input for the elicitation process.

 Security and Risk Assessment

The elicitation of security requirements is closely related to security and
risk assessment because security needs and security risks are two
complementary concepts. Accordingly, security and risk assessment
methods can provide a suitable basis for policy elicitation.

Foundations and Related Work

36

Security-related checklists, guidelines, control question and catalogs help
to gain a systematic overview of the relevant security issues of a given
application domain. Examples are the NIST special publication 800-53
[100], the German »IT Grundschutz Kompendium« [101], the Common
Criteria [102], or the ISO/IEC 27001 standard [103]. Most of the security
requirements proposed in such standards are quite generic and not
tailored to a specific application domain. However, they can be used as
input during the elicitation of policy templates in our method. In addition
to those generic standards, domain-specific equivalents exist, for example,
for the domain of cloud computing [104].

Risk assessment approaches and their documentation can also provide
valuable input for the elicitation of policy templates. Behnia et al. [56] and
Busby et al. [57] give overviews of risk assessment approaches.

The OCTAVE Allegro method (Operationally Critical Threat, Asset and
Vulnerability Evaluation) [58] can be used for identifying and managing
information security risks. It focuses primarily on information assets as we
also do in our approach. In OCTAVE Allegro, risk elicitation workshops are
carried out. However, the method does aim to derive policy templates
from the elicited information, and the use of different RE techniques is not
considered.

CORAS [59, 60] is a model-based method for performing security risk
analysis. Similar to OCTAVE, CORAS does not focus on eliciting policy
templates, but on getting a complete list of risks and corresponding
treatments to address them. In CORAS, an expert uses the CORAS tool for
modelling security risks. There is no explicit elicitation workshop described
in OCTAVE as in our approach.

 Summary

In sum, the literature provides multiple approaches for the elicitation of
security and privacy requirements. This includes approaches for the
elicitation of security and privacy related requirements [23, 42–50],
policies [51–55] and risks [56–60]. We could not identify a systematic
approach for eliciting policy templates directly from the stakeholders of
an application domain in the literature. Thus, we devise a method for
eliciting security and privacy demands from an application domain using
state of the art RE techniques.

2.3 Policy Models and Languages

We claim in RQ3 that we want to devise a model for formalizing security
and privacy demands. We surveyed the state of the art in order to identify

Foundations and Related Work

37

existing security and privacy related models that can contribute to this
task.

In the past, numerous security models have been proposed that describe
security requirements for systems, such as the models by Bell and LaPadula
[61], Biba [62], Landwehr et al. [63] and Lampson [64]. These models
typically describe exactly one security property, such as confidentiality in
the Bell-LaPadula model.

Similarly, many access control models were proposed in the literature.
Today, the most commonly used access control model is the role-based
access control (RBAC), introduced by Ferraiolo et al [65]. The basic idea is
to control the access to resources based on user roles instead of individual
users, and to assign one or more roles to each user. The authors show
that RBAC is a policy rich mechanism and that its configuration reflects
organizational policies, which allows RBAC to be adaptable to any
organizational structure and any way of conducting business.

Joshi et al. [66] describe a generalized temporal extension of role based
access control, called generalized temporal role based access control
(GTRBAC). Because of its generality, GTRBAC can be used for defining a
diverse set of access control policies. Moreover, it simplifies authorization
administration in large enterprises. The authors provide a framework that
augments the GTRBAC model with XML to support policy enforcement in
a heterogeneous, distributed environment. X-GTRBAC is a policy
specification language that provides compact representation of access
control policies for a generic computer-integrated enterprise, while
allowing content-based and context-aware access control.

At the SACMAT conference in 2008, Alturi and Ferraiolo raised two
questions concerning access control models:

 Is it possible for a unifying access control meta-model to be developed
given the large diversity and types of existent access control policies?

 What practical good would such a meta-model serve?

The answers to these questions are relevant for us as we try to find a meta-
model for security and privacy policies and templates in general based on
previous research work.

Barker [105] tries to answer both questions. He addresses the
fundamental concepts an access control meta-model has to have. More
specifically, he describes access control in general in relation to the
primitive notions of categories, relationships among categories and
relationships between categories and principals. Classification types used
in access control, such as classification by role, user attributes and

Foundations and Related Work

38

clearance, are particular instances of the more general class of categories.
Principals include any elements that may access a resource in a system to
which access must be controlled. Furthermore, Barker’s model describes
the semantics of the relevant relations. Moreover, Barker states that
having a shared conception of an access control meta-model is important
for reducing the burden on policy administrators when it comes to
representing application-specific access control requirements. Identifying
a common access control model is also desirable because it allows various
general syntaxes to be developed in terms of the generic model. However,
Barker’s model is restricted to access control and does not fit our
requirements for a policy template model.

Leitner et al. [67] focus on Process-Aware Information Systems (PAIS).
They present a unified security policy data model based on responsibilities,
permissions and constraints to cover structural as well as operational
aspects of processes. They claim that security policies and processes must
be designed separately from each other and that the relation between
them should be expressed by an explicit mapping, which avoids side
effects by changing either business processes or security policies.
Moreover, the separation simplifies »consistency checks and enforcement
of the security policies on the one side and evolution of processes and
associated policies on the other« [67].

Choi et al. [68] address the security issues that cloud computing
environments face. The classic access control models used nowadays
(mainly RBAC) cannot provide dynamic access control, since they do not
include context-aware elements. The main reason why RBAC is not
sufficient is that in cloud computing, access permissions of service
providers and users differ. In order to address this issue, Choi et al.
propose a new access control model based on context-reasoning with
ontologies (Onto-ACM) for dynamic access control. Onto-ACM is a
semantic analysis model that can address differences in the granted
permissions between service providers and users.

Haguouche and Jarir [69] also address the problem of heterogeneity of
access-control models. In practice, many different access-control models
(languages, types of enforcement) may possibly interact with each other,
for example, in cross-organizational collaboration. The authors describe
different access-control models and derive an abstraction in order to
define a generic model that expresses general authorization rules and
represents the access-control entities using a high-level access control
model.

Another common access control approach is the attribute-based access
control (ABAC) model. Ed-Daibouni et al. [70] point out that ABAC has
drawbacks in terms of privacy-aware concerns. They present an extended

Foundations and Related Work

39

ABAC model, called privacy-aware ABAC model (PA-ABAC) that addresses
these issues.

Caramujo et al. [71] propose and discuss the RSL-IL4Privacy language, a
structured language format for the specification and documentation of
privacy policies with multiple representations. The language partially uses
natural language in order to allow users to specify their privacy policies.
The approach aims to formalize existing natural language policies of, for
example, social media platforms in order to be able to compare them more
easily.

The aforementioned models are mainly concerned with access control.
However, with the advent of a data-driven economy it has become
increasingly important not only to protect access to data but also to be
able to control what happens after granting access. Usage control is a
generalization of access control: Apart from access permissions, it also
regulates the subsequent data usage after initial access has been granted.
[106].

Sandhu and Park [72, 106, 107] propose an usage control model (UCON),
which is an attribute-based access control model that evaluates access
conditions not only before granting it (the so-called pre-access phase) but
also during the ongoing access phases. The UCON model is
comprehensive enough to cover traditional access control models and to
provide protection of system resources in a collaborative and dynamic
environment.

Jürjens [73] proposes UMLsec as an extension of the Unified Modelling
Language (UML). UMLsec enables a security expert to specify security-
related information formally in a system design with UML diagrams.
UMLsec can express security constraints that provide criteria for the
security evaluation of a system design.

Basin et al. [74] argue that security models can be used for the precise
documentation of security requirements and for the generation of code,
for example, for generating completely preconfigured security
infrastructures. However, the focus of their work is on the enforcement
of security in software system, not on the specification of security and
privacy demands by users with a PAP.

In another work, Basin et al. [108] provide an approach for the model-
driven generation of security-aware graphical user interfaces. They aim for
limiting the visible actions of users in a software user interface based on
the currently active policies. They generate the user interface based on
information that was modeled by security and GUI designers. However,
they do not support the generation of policy specification user interfaces.

Foundations and Related Work

40

Neisse and Dörr [75] present an approach for the specification of usage
control policies and their refinement from specification-level policies into
implementation-level policies with a meta model for policy specification at
different layers of abstraction. They specify a software system with the
Interaction System Design Language (ISDL) and enrich it with usage
control policies. However, they do not consider the policy specification by
users of the system.

Kumari [76] also proposes an approach for the model-driven refinement
of specification-level policies into implementation-level policies with a
policy derivation framework. She proposes to specify the domain-specific
formal semantics of actions by instantiating a meta model supporting the
hierarchical refinement of actions. In her work, users can specify
specification level policies with a template-based PAP. The resulting
policies are automatically refined into machine-understandable
equivalents. However, Kumari is investigating neither the process for
template elicitation from an application domain nor the usability of the
PAP nor the generation of usable PAPs.

Policy languages support the specification of security or privacy demands
during the runtime of a system in a machine-understandable format
(implementation level). Various policy languages for the specification of
machine-understandable policies have been proposed. De Coi and
Olmedilla [109] give an overview on implementation-level policy
languages. We do not discuss them in detail, as they are outside the focus
of our work. We merely extend our policy template model with models of
XML-based policy languages to support the transformation of SLPs into
ILPSs. However, the specification of those transformation rules is not
researched in this work and is, thus, in its infancy. In our reference
implementation, we use the IND²UCE policy language [110] or the
MYDATA policy language [111], respectively, both of which are based on
the policy language for distributed usage control by Hilty et al. [112].

In sum, we identified multiple models in literature that explain security and
privacy principles and concepts [61–73] and model-driven approaches for
the refinement and generation of machine-understandable policies [74–
76]. The area of modelling security and privacy demands in form of policy
templates is not yet covered in the state of the art. We elaborate such a
model that builds the baseline for the automation of the PAP creation.

2.4 Usable Security and Privacy Policy Specification

As stated in the introduction, we aim to increase the usability of PAPs
(compare RQ1 and RQ4). Several approaches with a similar objective have
been proposed. In the following, we present work that contributes to

Foundations and Related Work

41

improving the usability of PAPs and other security and privacy-related
software during their creation.

Whitten and Tygar [27] state that the design principles required to achieve
usable security are significantly different from those of general consumer
software. They tested their hypothesis in a case study where they
evaluated the usability of PGP 5.0. They conclude that »a body of public
work on usability evaluation in a security context would be extremely
valuable, and will almost certainly have to come from research sources,
since software developers are not eager to make public the usability flaws
they find in their own products« [27]. Later, Cheng et al. [28] as well as
Ruoti et al. [29] independently found that the usability of email encryption
with PGP did not significantly improve in later versions of the software.

In [24], Whitten shows how the usability patterns »safe staging« and
»metaphor tailoring« improve the usability of security software, in her
case an application for email encryption with PGP. The safe staging
approach proposes the step-by-step activation of security functionality.
This means that less experienced users start with a limited functionality of
the software and after the fulfillment of specific conditions (e.g., an
application time threshold, a skill test or an explicit activation by the user)
more features are enabled and introduced to the more experienced users.
Whitten evaluated the step-by-step increase of the expressiveness of her
tool. Metaphor tailoring proposes to use known symbols as metaphors for
representing concepts of security.

A major problem with security policy configuration is that interfaces are
often designed poorly and that usability aspects are not considered
properly. To better address the security and usability co-design issues,
Cranor and Garfinkel [30] propose concepts and processes for making
security software more usable.

A more generic approach to usable security is presented by Zurko [31].
She examines the human and social aspects of IT security and notes that
there is a difference between understanding and effectively using security
controls. Zurko observes that computer systems (and therefore security
mechanisms) are often too complex for users to understand. However, in
order to use security effectively, she argues that users do not need to
understand every detail of the implementation. The utility of the security
mechanism helps users, not the knowledge of their functionality. Zurko
proposes to make unsecure options less attractive and harder to select, so
that less experienced users do not activate insecure security settings by
accident. The also states that usable security should be used as an
instrument for marketing.

Kuo et al. [32] consider the configuration of secure 802.11 networks. They
note that today's configuration interfaces often fail to consider how

Foundations and Related Work

42

people interact with technology and that the configuration task is a
dysfunctional conversation. Among other measures, they propose the
following three design principles: Developers of security configuration
tools should not expect any technical knowledge or expertise from the
users. In addition, the effort of users using the tool should be minimized.
Finally, they emphasize the importance of letting users have a positive user
experience when configuring security aspects.

Reeder et al. [33] discovered open challenges in the task of specifying
security and privacy policies with PAPs. They therefore made the following
suggestions:

 Ensure that users understand the relations between protectable
objects and the terminology.

 Provide a clear and consistent terminology to the user.

 Communicate and enforce a clear structure of the policies and their
specification process.

 Explain the default policies (security and privacy by default) to the user.

 Discover and prevent policy conflicts.

We address the first three challenges in our work by eliciting information
directly from stakeholders of an application domain and by using their
terminology when deriving policy templates. In addition, we provide
different specification processes and policy structures in the form of
group-specific specification paradigms, which we map to the respective
users to increase usability.

Vaniea et al. [34] report on experimental evaluations of improving the
usability of policy specifications with SPARCLE by assisting the users in the
specification process. For example, the authors propose to add syntax
highlighting to a natural language policy specification interface. In the
experiment, their hypothesis was that highlighting would help users to
learn how to write policies. During the experiment, the users said that they
liked the new feature, but the effectiveness of policy specification did not
increase.

Kuo [35] demonstrates that security in communication can be enhanced
significantly by reducing the impact of user errors. To this end, several
design strategies are introduced and the applicability of these strategies
for secure communication is discussed. One major aspect is that
developers should »make realistic assumptions of user knowledge and
human behavior« [35]. We agree that user errors must be prevented.
However, we focus on the increase of objective effectiveness by matching
appropriate specification paradigms.

Foundations and Related Work

43

Lampson [19] identified reasons for the lacking usability in security
solutions. Mainly, he argues, usability is poor because vendors have little
incentives for spending effort to make security solutions more usable.
According to Lampson, the lack of incentive is ultimately caused by the
many users who do not care about security, mainly because they do not
understand the potential monetary loss from security incidents. In
addition, Lampson requests more simple models of security that users can
understand.

Johnson et al. [25] proposed guidelines for solving remaining challenges
for security and privacy policy authoring interfaces in addition to those
recommendations presented by Reeder et al. [33]. They propose an
appropriate limitation of expressiveness in PAPs to communicate risks and
threats to the user as well as to provide access to metadata. We follow
this proposition, as we provide specification paradigms with different
levels of expressiveness.

In addition, Johnson et al. [10] positively evaluated the use of policy
templates for the process of policy specification for non-experts. Based on
their experimental results, they recommended to use such templates. We
accept this advice and propose the specification paradigm »template
instantiation«.

Fang and LeFevre [26] propose an active-learning privacy wizard for social
networking sites in order minimize the configuration effort for users. At a
high level, the wizard solicits a limited amount of user input and other
information already visible to the user. Using this information the wizard
infers a privacy-preference model describing the user’s personal privacy
preferences. This model is used to configure the user’s detailed privacy
settings automatically. We also propose the specification paradigm
»wizard«.

Zhao et al. [11] surveyed existing approaches for the specification of
privacy policies by the user. They found that existing PAPs fail to deliver a
user-friendly interface. They argue that one major reason is the tool
designers’ lack of understanding of the user group, whose available
mental resources do not match the required resources of the tool. This
mismatch causes usability issues for the user, which makes the tool appear
complicated and error-prone.

Morisset and Sanchez [36] propose a user-friendly tool for the visualization
and handling of large numbers of attribute-based access control policies.
They aim to reduce the cognitive load of the user by applying the circle
packing visualization technique to the task of policy visualization. This
technique first displays an overview of the policies, and then the user can
zoom in to see more details of specific policies. They positively evaluated
their approach in an experiment in which users were asked to perform

Foundations and Related Work

44

changes on existing policies. They found that the approach is accepted by
users in terms of satisfaction. Moreover, users can perform fast with their
tool. However, they did not evaluate the effectiveness of their tool, that
is, the correctness of the specified or modified policies, as we did in our
experiments.

Narouei et al. [37] consider the challenge of time consuming and error-
prone retrieval of access control policies from documents with an
automated extraction process based on semantic role labeling. They use
the high-level requirements specification documents in unrestricted
natural language that most organizations have to extract access control
policies with their approach. However, they do not involve the user in the
policy specification process, and they do not provide a corresponding PAP.

Gerl and Prey [38] present a personal privacy policy user interface, which
uses the »Visual Information Seeking Mantra« [39] design principle. This
principle proposes a step-wise refinement of displayed data from an
overview to a detailed view. They mainly focus on the presentation of
privacy policies in a human-understandable format, and they evaluate
their approach in comparison to state-of-the-practice privacy policies.
Their approach provides different specification paradigms on one user
interface. More specifically, the user creates a coarse-grained specification
in a specification paradigm with low expressiveness and then switches to
a specification paradigm with more expressiveness to flesh out the details
of the policy. We currently do not support such switching between
specification paradigms at runtime; however, this is part of our future
work.

A significant body of work assesses the usability of privacy settings in
online social networks, such as Facebook.

Strater and Lipford [6] and Lipford et al. [18] examined how privacy
settings in social networks (Facebook) are used. These authors identify two
main problems: Users do not understand the accessibility of personal
information by others; thus, before they can define meaningful privacy
policies they need to learn what to disclose and what to protect. In
addition, many users only change the default specification of their privacy
settings if something bad happens, such as a privacy breach. Therefore,
the authors propose to use more restrictive default policies but note that
this will not help users to understand their privacy settings and may not
accurately reflect the users’ actual privacy needs. Moreover, they argue
that users need to be made aware of what information is shared with
whom, which can be achieved with improved interfaces that make privacy
settings as simple as possible and include them into regular profile
modification (instead of locating them on separate pages).

Foundations and Related Work

45

Boyd and Hargittai [40] investigated reasons why users do not configure
their privacy settings in Facebook. They found that both frequency and
type of Facebook use as well as Internet skills affect the user habits
regarding the specification of privacy settings. The authors also carried out
research to improve the usability of privacy settings and policy
specification. Similar to Boyd and Hargittai, we reason in our user
intention model that the knowledge and skill level of the users influences
their behavior.

Liu et al. [7] as well as Madejski et al. [41] investigated the discrepancy
between desired and actual privacy settings in Facebook. Both author
groups confirmed that users were seemingly unable to specify their privacy
settings in Facebook correctly. They studied the actual sharing intentions
of the users in order to identify violations in the users’ privacy settings.
They identified severe mismatches between users’ intention and actual
settings. Madejski et al. also found that a majority of users cannot or will
not fix those mismatches.

To summarize, a broad body of research exists on the usability
improvement of security and privacy systems [6, 7, 10, 11, 18, 19, 24–41].
However, we identified a gap in the literature with respect to studies that
investigate the effect of different specification paradigms on the usability
of a PAP. We address this gap by providing guidance for selecting the
appropriate specification paradigms for (types of) users in terms of
usability (effectiveness, efficiency and satisfaction) based on empirical
data.

2.5 Existing PAPs and Derived Specification Paradigms

A specification paradigm defines the specification process in a PAP for the
task of policy specification. Thus, every PAP has to implement at least one
specification paradigm. Multiple PAPs exist in practice and in academia.
We derived multiple specification paradigms from the state of the art and
practice. Therefore, we first identified and analyzed existing PAPs in
section 2.5.1. Next, we survey proposed paradigms derived from existing
specification approaches in Section 2.5.2.

2.5.1 Security and Privacy Specification Approaches and Tools

PAPs used for the specification of security and privacy demands can be
found in various application domains. They are present in tools used on a
daily basis, such as social media networks or Internet browsers. Other
PAPs, such as the ones found in commercial tools, are mainly used by
experts for the administration of security and privacy demands for other
users in a community. We clustered the PAPs we identified into the
following four categories:

Foundations and Related Work

46

 Security and privacy settings in online services

 Security and privacy settings in browsers

 Security and privacy settings in commercial tools

 Tools and prototypes for security and privacy policy specification from
academia

The following subsections describe the relevant PAPs that we found in the
literature and in the field.

 Tools and Prototypes for Security and Privacy Policy Specification from
Academia

A lot of research went into the specification of privacy and security settings
by security experts in the form of machine-understandable policies. Even
if the focus of our work is to enable non-experts to specify privacy
demands in natural language, the interface concepts for machine-
understandable policies can be transferred to natural language interfaces
for privacy policy specification. Some concepts are introduced in this
section.

PERMIS [113] is a generic RBAC-based (Role-Based Access Control)
authorization infrastructure developed at the University of Kent, UK.
PERMIS policies are created with the »Policy Editor« or the »Policy
Wizard«. These tools target expert users and system administrators,
respectively. The policy wizard uses a policy specification paradigm with
multiple sequential small specification steps. It asks supportive questions
to guide the user through the specification process. The policy editor
provides the user a template-based approach for the policy specification.
Specified policies are generated on the fly as XML clauses and displayed
to the user. Both tools can be attached to local LDAP systems to facilitate
specification. They use a generic terminology that might be incompre-
hensible to non-experts. PERMIS supports the conversion of policies to the
policy languages XACML or OWL/RDF.

KAoS [114–116] is a policy and domain services framework. It contains
the KAoS Policy Administration Tool (KPAT), which is a policy editor for
the specification of OWL-DL or DAML policies. It was designed to provide
policy specification capabilities for administrators that do not require
intensive training. The KPAT editor is driven by the ontologies of the
computational environment and the application context loaded into it.
Policy templates are provided for instantiation, which are based on the
ontology and presented as hypertext templates forming natural English
sentences. Specified policies are automatically transformed into machine-
understandable equivalents. In addition, a policy wizard is provided, which
divides the decisions to be made by the user into several small, well-

Foundations and Related Work

47

explained steps. To limit the decisions that need to be made by the user,
KPAT also provides customization options for creating specific policy
editor instances tailored to an individual application-domain.

Karat et al. [33, 52, 117] propose a tool named SPARCLE that allows users
to enter their security demands in natural language or in a structured
natural language-based format. SPARCLE can transform the structured
format into machine-understandable policies. The authors worked out
several key usability challenges that need to be mastered to improve the
policy specification process. Among others, the used terminology must be
clearly defined and structured, and it must be used consistently. Default
rules that apply if no other security policy is specified must always be
described. Rule conflicts must be detected and explained to the policy
creator. However, Karat et al. do not use and compare different
specification paradigms.

Fang and LeFevre [26] propose an active learning wizard that enables users
to set their own privacy policies by making regular, brief decisions on
whether or not to share a particular data item with an entity. The authors
chose an iterative learning approach to minimize the difficulties of users
in making holistic decisions on the privacy of their own data. Their privacy
wizard instantiates a privacy-preference model describing the user’s
privacy preferences. This model instance is then used to configure the
user’s privacy settings automatically. They aim at limiting the amount of
user input as much as possible in order to relieve the user of the
specification burden.

The Hades Java Applet Permission Editor [118] was developed at TU
Hamburg. It allows the specification of security settings for the Java VM.
It provides a text editor in which policies can be specified or changed
directly in plain text according to a given grammar. The user can add a
permission block that can be used as text-based template. Besides that,
Hades does not provide any specification support, help functionality or
GUI.

Inglesant et al. [119] present a method and tool for transforming access
control policies into machine-understandable policies. The policy creator
needs to specify his security demands in a controlled natural language
format. The controlled language consists of simple sentence templates
with variables that can be instantiated.

MotOrBAC [120, 121] is an open source policy editor based on the OrBAC
model developed by Telecom Bretagne. It provides various different forms
and options to create and manage OrBAC policies. Furthermore, it
supports the simulation of policies and access requests.

Foundations and Related Work

48

The UMU-XACML-Editor [122] is a policy editor developed at the
University of Marcia (UMU). It provides a template-based graphical user
interface for building XACML policies. The specification process is strongly
aligned to the XML representation of the policy, which requires XACML
expertise from users. The tool provides schema validation and checks for
missing parameters.

Stepien et al. [8] argue that early XACML editors, such as the UMU-
XACML editor, require expert knowledge of users in order to be usable.
They propose an XACML editor for non-experts, which is based on a
natural language notation of XACML. Users can specify policies by
formulating access control policies in a structured language format.
Stepien et al. see positive effects in basing the specification on natural
language.

Vollat [123] discusses the applicability of various usability patterns to PAPs
and to the policy specification process in general. He applies usability
patterns to various PAP prototypes and evaluates their effect on users, for
example, by evaluating the tools with AttrakDiff tests. To carry out his
studies, he implemented a template-based policy editor and a policy
wizard.

Verlaenen et al. [124] present a policy ontology with a generic policy
model, which can be extended to a specific policy language. They aim to
bridge the gap between general-purpose and domain specific policy
languages. XML was chosen as the base language for their policies, but
since XML is not suited for non-experts, they propose a template approach
on the specification level.

Reeder et al. [125] note that most of the time, policies are displayed as a
list of rules; therefore, interactions between policies cannot be properly
portrayed. It is up to the user to determine rule interactions. While
experienced administrators might invest the time to learn and use complex
user interfaces, novice and occasional users will not. To address the need
for better PAPs, the authors introduce a new model (called Expendable
Grids) for displaying and editing policies. In a user study, they show that
using their interface for authoring file permissions is superior to the
Windows XP native file permissions interface. The Expendable Grid
interface allows users to complete tasks more accurately and faster than
does the Windows file permission interface.

Conti et al. [126] developed a prototype of a privacy PAP for the
healthcare domain. This PAP provides two different template-based policy
specification user interfaces: The first is a simple one for non-experts with
a very limited expressiveness; the second provides a higher expressiveness
for experts.

Foundations and Related Work

49

Kumari [76] proposes a prototype of a PAP for privacy policies in a social
network scenario. With her tool, users can define specification-level
policies at two levels of granularity. She shows that inexperienced users
can select from predefined privacy policies whereas advanced users can
use a template-based specification. However, Kumari mainly focuses on
the model-based transformation of specification-level policies to
implementation-level policies.

Villarreal et al. [127] propose privacy tokens as a mechanism for privacy
specification by users. They developed a system with which users can
specify generic privacy policies that can be handed over to different online
services for enforcement. They provide a list of predefined privacy profiles,
and the users select one of them or specify an individual profile. Token
customization is realized by predefined privacy policies that the user can
select for creating an individual privacy profile.

 Security and Privacy Settings in Online Platforms

Besides academic approaches, many domain-specific PAPs exist in
practice. For many users, security and privacy are important issues when
sharing personal data online, for example, in social networks and Internet
platforms. Therefore, many companies provide their users interfaces for
setting their security and privacy preferences.

Facebook [128] allows users to specify their privacy settings in a very fine-
grained manner. Facebook supports several security settings, where users,
in addition to standard security features such as password control, can
limit the visibility of their information. Settings are supposed to be usable
by non-expert users. Consequently, users receive a lot of support during
specification, such as explanations, examples or simulations of the effects
of the specified policies. For example, users can see their profiles from the
perspective of other users. Facebook uses a mixture of different concepts
for the various specification options: They use template-based
specifications, small specification wizards and predefined policies that can
be enabled or disabled by the user. Facebook updates the corresponding
user interfaces regularly. In the past, studies revealed usability problems
with Facebooks privacy settings. For example, users expected in some
cases a different behavior from their specified privacy policies [7]. Lipford
et. al demonstrated how usability improvements in Facebook’s privacy
settings can influence privacy management of users in a positive way [18].

Google [129] provides web interfaces for the specification of privacy and
security policies for the one’s personal Google account. For the privacy
settings in online accounts, the company has introduced a privacy check
wizard that guides the user through multiple pages to configure the use
of personal information by Google services and third parties. In addition,

Foundations and Related Work

50

Google provides a set of categorized and predefined policies that can be
enabled or disabled by the user.

Twitter [130] provides security and privacy settings as predefined policies.
In some cases, the user can select the most suitable option from a list of
policies. In all other cases, the user can only enable or disable predefined
policies.

 Security and Privacy Settings in Internet Browsers

Users use Internet browsers to access online services. In doing so, they
share personal data with services in the Internet and with other service
users. We analyzed four of the most popular browsers [131] regarding
security and privacy settings.

Google Chrome (Version 64) [132], Mozilla Firefox [133] and Microsoft
Edge (Version 41) [134] offer configuration options for security and
privacy settings. In most cases, they offer users predefined policies in two
different ways: Either they provide individual, independent policies that
the user can enable or disable, or they provide a policy list from which the
user can choose. Those two ways mainly differ in the number of
specification options.

Microsoft Internet Explorer (Version 11) [135] uses a security level
approach for setting the coarse-grained security settings. The security
levels are named »Medium«, »Medium-high« and »High«. By default,
each level denotes a predefined set of configuration settings. Optionally,
users can customize these default profiles by enabling or disabling the
predefined policies according to their individual preferences.

 Security Settings in Commercial Tools

There exist a variety of other software containing security and privacy
settings to configure the corresponding data protection measures. We
highlight some examples in the following.

Microsoft’s Local Group Policy Editor [136] of the Windows operating
system (e.g., Windows 10) offers a variety of settings (e.g., firewall
settings, password policies, startup/shutdown scripts) for Windows
environments. The editor provides extensive specification support, such as
explanations and examples. It uses template-based specification, small
specification wizards, predefined policies to select from and specific
security settings that can be enabled or disabled.

Using Windows File Permissions [136] of the Windows operating system,
users can restrict the access to individual files and folders (e.g., in the
network or for other users). Although file permissions are mainly used by

Foundations and Related Work

51

experienced users, non-experts may also get in touch with these settings.
Windows divides the settings into a simple standard screen and an
advanced detail view. In the simple view, fixed permissions (e.g., read or
write) can be granted for users. The advanced settings offer more options
for assigning file permissions to entities. Both views are structured as
templates that the user can instantiate as concrete permissions. However,
inexperienced users will hardly understand the terminology (e.g., the
difference between modify and write or the meaning of object type).

IBM P3P (Platform for Privacy Preferences) is a technical platform to
provide data protection information, which is mainly supported by
Internet Explorer. With the IBM policy editor [137], website administrators
can specify protection information policies. Policies can be created from
scratch or from templates, and users navigate through a tree structure to
specify their data usage preferences. The policy editor provides views for
XML and HTML, and it supports error checking and recommendations.
Extensive documentation is available.

The Policy Design Tool [138] by IBM is an Eclipse-based tool to model and
analyze high-level security requirements and to specify templates and
XACML policies. It contains a PDP that allows the simulation of access
requests.

The Identity Server by WSO2 [139] is an open source identity and
entitlement server. It supports the specification of XACML policies. The
user interface is a web-based application providing dynamic forms; it
mainly targets system administrators, that is, experts. It offers specification
support to the extent that variables can be chosen from lists or drop-down
menus. The identity server is an expert tool that requires deep knowledge
about the system.

2.5.2 Overview of Derived Specification Paradigms

The PAPs described in the previous subsection differ in their underlying
specification paradigm. During policy specification, the PAPs request
different input in different ways, and they provide different expressiveness
and different levels of guidance to the user. We derived the following
specification paradigms from existing PAPs:

 Template Instantiation: The user can instantiate the desired privacy
setting by adjusting selection options in a template-based interface.
Usually, templates offer multiple decision options and thus allow a
fine-grained specification of one’s personal security and privacy
demands. The templates can be domain-specific or generic. The user
can choose the specification order on his own.

Foundations and Related Work

52

 Wizard: The user can instantiate privacy settings based on a template-
based interface, where the specification process is subdivided into
several small steps. The user cannot decide on the specification order.
The specification process is usually well guided.

 Default Policies: The user can select from multiple predefined privacy
policies per topic. The expressiveness in the specification is therefore
limited.

 Security and Privacy Levels: The user can select a level of security
and privacy that contains a predefined set of default privacy policies
without offering customization possibilities per policy.

 On/off Switches: The user enables or disables one or more
predefined policies without any customization options per policy. This
paradigm is a specialization of the paradigm »default policies«
allowing only the activation or deactivation of exactly one privacy
policy per topic.

 Text-based Specification: The user enters plain text security and
privacy policies into a tool. The grammar of the text is given by either
natural language, a controlled natural language or a policy language.
The text input and the corresponding policy output can be on the level
of specification and implementation policies.

 Grid-based Specification: The user maps individual assets and
policies with a PAP based on a grid layout.

 By Design: Security by design and privacy by design without any
customization options are not a specification paradigm, but one way
how service developers can handle security and privacy settings. Users
do not set anything by themselves, but have to rely on the default
security and privacy configuration. Many smaller online services, such
as web shops, do not provide options to their users for configuring
personal security and privacy preferences.

Table 1 summarizes the PAPs found in the state of the art and state of the
practice and maps the derived specification paradigms to those PAPs. In
addition, the table shows whether the PAPs allow the specification of
policies on the human-understandable level (specification-level policy –
SLP) or on the machine-understandable level (implementation-level policy
– ILP).

We use a selection of the specification paradigms derived from literature
in our PAP generation framework in order to create respective PAPs. We
explore and empirically substantiate the mapping of specification
paradigms to users to increase the usability of the PAP (in terms of
effectiveness, efficiency and user satisfaction).

Foundations and Related Work

53

Table 1: List of PAPs from Academia and Practice and Their Used Specification Paradigms

PAP in SotA and SotP

Specification Paradigms

A
ca

de
m

ic
/P

ra
ct

ic
e

IL
P/

SL
P

le
ve

l

Te
m

pl
at

e
In

st
an

tia
tio

n

W
iz

ar
d

D
ef

au
lt

Po
lic

ie
s

O
n/

of
f

Sw
itc

he
s

Se
cu

rit
y

Le
ve

ls

Te
xt

-b
as

ed
 S

pe
ci

fic
at

io
n

G
rid

-b
as

ed
 S

pe
ci

fic
at

io
n

Conti et al. A SLP X

Facebook Privacy Settings P SLP X X X

Fang and LeFevre Wizard A SLP X

Google Chrome P SLP X X

Google Privacy Dashboard P SLP X X

Hades Java Policy Editor A ILP X

IBM P3P Policy Editor P SLP X

IBM Policy Design Tool P SLP/ILP X

Inglesant et al. A SLP X

KPAT A SLP/ILP X X

Kumari A SLP X

Microsoft Edge P SLP X X

Microsoft Internet Explorer P SLP X X

MotOrBAC Editor A ILP X

Mozilla Firefox P SLP X X

PERMIS A ILP X X

Reeder et al. A SLP X

SPARCLE tool A SLP X X

Stepien et al. XACML editor A SLP X

Twitter P SLP X X

UMU-XACML-Editor A ILP

Verlaenen et al. A SLP/ILP X

Villarreal et al. A SLP X X

Vollat’s Usable Policy Editor A SLP X X

Windows File Permissions P SLP X

Windows Group Policy Editor P SLP X X X X

WSO2 Identity Server P SLP X

Foundations and Related Work

54

2.6 User Behavior

In order to be capable of mapping specification paradigms to users, we
need to understand users and their capabilities better. Therefore, we
explored the literature about user intention models and user type models.

2.6.1 Intension Models

Theories and models that try to explain human behavior, but are not
specialized in security or privacy, inspired our intention model (compare
Section 6.2.1). A key element in the model is the user’s »intention«.
Psychological models often distinguish intention from behavior. For
instance, in the theory of planned behavior (TPB) by Ajzen [140], intention
and behavior are distinct elements. In that theory, however, intention is
equivalent to what we call »motivation«, and the element »perceived
behavioral control« is part of our element »barriers«. According to TPB,
perceived behavior control influences the behavior and what the author
calls »intention«. Thus, the TPB is included in our user intention model,
but our model integrates the user requirements of PAPs and offers
therefore a more detailed view on barriers (perceived behavioral control).
The TPB also has an element called »attitude«. In our model, a positive
attitude towards PAPs is a prerequisite for the application of our model.

The interrelation of barriers and motivation is part of the behavioral model
for persuasive design by Fogg [141]. Fogg presents the interrelation of
motivation and simplicity factors, which are barriers but positively
formulated, in a graph. The graphical representation illustrates that high
motivation can lead to the performance of a behavior even if there are
barriers and that low motivation can lead to the performance of a behavior
when the barriers are low.

The element »need for privacy« was inspired by the well-known hierarchy
of needs by Maslow [142]. According to Maslow, persons are dominated
and their behavior is organized by unsatisfied needs only. We consider the
need for privacy to be a subset of Maslow’s need for safety and security.
In our model, we assume that users whose need for security and privacy
is satisfied will not take action to improve their security and privacy.

The Privacy Paradox describes the dichotomy between the need for privacy
and the actual behavior of users with respect to taking privacy-related
actions. Kokolakis et al. surveyed the state of the art regarding the privacy
paradox [143]. They outline multiple explanations for this phenomenon.
However, they do not address the concept of barriers users must master
for specifying policies. We consider barriers in our user intention model in
Section 6.2.1.

Foundations and Related Work

55

2.6.2 User Type Models

Each user has different characteristics, capabilities and resources. This
leads us to the assumption that different specification paradigms are likely
to fit differently well to a certain user with respect to usability. To explore
the relationship between suitable specification paradigms and user types,
we explored related work regarding user type models.

Many generic user type models exist in psychology that cluster users into
categories. Each category explains the character traits and behavior of a
certain user type. Those methods describe human traits and behavior in
general, that is, they are not tied to a particular situation or domain.
Examples are the Big Five personality traits [144], Keirsey's Temperaments
[145] and the Myers-Briggs Type Indicators [146].

Besides these generic user type models, other work relates to the use of
computers and the character traits relevant for security and privacy
decisions.

Westin conducted around 30 privacy surveys for classifying users [147]. In
most of his privacy surveys, he clusters the users into three categories
based on their privacy concerns: Fundamentalist (high concern),
Pragmatist (medium concern), and Unconcerned (low concern). However,
Westin’s approach is controversially discussed in the literature. For
example, Urban and Hoofnagel [148] argue that Westin’s work is
neglecting the importance of knowledge or available information about
privacy practices and domain specific business processes.

The approach »Concern for Information Privacy (CFIP)« of Smith et al.
[149] measures the privacy concern of a person as a numerical value. This
value is calculated based on fifteen statements about privacy, which the
person rates on a 7-point Likert scale. The scenarios of CFIP are kept quite
abstract and do not directly relate to online services that collect and
process user data.

Malhotra et al. propose their approach »Internet Users' Information
Privacy Concerns (IUIPC)« [150], which extends the existing work of Smith
(CFIP). IUIPC reflects the concerns of Internet users about information
privacy with a special focus on the individuals’ perception of fairness in
the context of data privacy.

The Information Seeking Preferences by Morton and Sasse [151] are an
approach to cluster users into the five groups: information controllers,
security concerned, benefit seekers, crowd followers and organizational
assurance seekers. The categorization is based on the ranking of 40
privacy related statements. Their approach aims to support companies in

Foundations and Related Work

56

providing services that are better adopted by users in terms of privacy
behavior.

Dupree et al. proposed a model with five privacy personas [14]. They
reacted to the criticism of Westin’s privacy indexes by considering both
motivation (concern) and knowledge. The persona model was built upon
empirical data. Dupree derived the five personas from personal interviews
with 32 university-related digital natives, who had an average age of 26.3
with a standard deviation of 5.9. The five personas can be differentiated
according to two attributes of the user: the user’s knowledge of security
and privacy and the user’s motivation to spend effort on privacy and
security protection. The personas also describe the handling of personal
data in the Internet age and the general need for security in the IT sector.

Figure 14: Dupree’s Persona Model

Dupree’s model distinguishes users by their motivation (willingness to
specify privacy settings) and their knowledge of how to specify
appropriate privacy settings. The five personas are (see Figure 14):

 Marginally Concerned: Low knowledge and low motivation

 Amateur: Medium knowledge and medium motivation

 Technician: Medium knowledge and high motivation

Foundations and Related Work

57

 Lazy Expert: High knowledge and low motivation

 Fundamentalist: High knowledge and high motivation

The personas are described in detail in Appendix C.

 Summary

In sum, we explored multiple user intension models [140–143] and user
group models [14, 144–151] in the literature. We use the user intension
models from the state of the art for the creation of an extended user
intension model that explains the discrepancy between the users’
demands for security and privacy protection and the reality of the users
ignoring their interaction options, thus, the use of a PAP. We use our
model to identify barriers for users to use PAPs and relate them to usability
issues that users face with PAPs. We select one of the user group models
for matching different specification paradigms to user groups to evaluate
the potential usability increase when selecting the best matching
specification paradigm.

2.7 Summary and Conclusion

In this chapter, we described and discussed the foundation of our research
and related work. We presented the state of the art in the fields of
»elicitation of security and privacy requirements«, »policy models and
languages« and »usable security and privacy policy specification«. In
addition, we built the foundation for this work with respect to the
following two aspects: We collected existing PAPs from literature and
practice to derive specification paradigms, and we presented the state of
the art in the field of user behavior including user type models.

A broad body of research exists on the usability improvement of security
and privacy systems. Many approaches evaluate and improve the usability
of PAPs or security software in general (e.g., [6, 18, 24, 25]). Some of
them propose explicit specification paradigms to be used, such as the
»template instantiation« by Johnson et al. [10] and by Hibshi et al. [51] or
the »wizard« by Fang and LeFevre [26]. However, the effect of different
specification paradigms on the usability of a PAP has not been studied
intensively so far. One key problem is to identify the adequate
expressiveness of a PAP for a given type of user [25]. We address this gap
with the User to Specification Paradigm Mapping, which is
Contribution 1 (C1) of this thesis. We analyze the effect of specification
paradigms on users with respect to usability in order to give
recommendations for specification paradigm selection. Kuo [35] states
that realistic assumptions about user knowledge must be considered.
Boyd [40] sees knowledge as an important requirement for users to specify
privacy settings. We address this issue by analyzing the usability of

Foundations and Related Work

58

specification paradigms with respect to user groups (personas) clustered
according to knowledge and motivation.

The state of the art regarding the elicitation of security and privacy
requirements reveals a lot of methods and approaches for the elicitation
of security and privacy related requirements [23, 42–50], policies [51–55]
and risks [56–60]. All these methods aim to elicit concrete security or
privacy requirements, threats and risks in the early software development
phases. However, we did not identify a systematic approach for eliciting
policy templates directly from the stakeholders of an application domain
using state of the art RE techniques. In contrast to previous work, we aim
at eliciting policy templates whose concrete instances (security or privacy
policies) are specified by users at runtime. Thus, we do not want to enforce
one static set of policies for a system, but allow users to adapt the policies
to their individual security and privacy demands at runtime. Thus, we
propose the Policy Template Elicitation Method as Contribution 2
(C2) of this thesis. To this end, we reuse and combine existing, proven
concepts and techniques from the state of the art in our method (e.g.,
[85–93]). We elicit and derive example policies during the elicitation of
policy templates by identifying assets, use cases, threats and
countermeasures. Similar process steps are proposed, for example, by
Haley et al. [46] for their security requirements elicitation, by Olzak [45]
for his threat modelling approach and by Cranor and Garfinkel [30] in their
secure system design. Multiple RE techniques have been proposed for the
elicitation of security and privacy requirements and policies. For example,
Karat et al. [52] use questionnaires and semi-structured interviews. Callele
and Wnuk [53] confirm that interview, brainstorming and survey
techniques to be applicable techniques. We decided to use group
dynamics and selected RE techniques that can be used in workshops with
varying group sizes.

We identified several very specific models in the state of the art that
explain security and privacy principles and concepts [61–73]. In addition,
several model-driven approaches for the refinement and generation of
machine-understandable policies have been proposed [74–76]. None of
the identified models and model-driven approaches is a generic model for
modelling security and privacy demands in the form of policy templates
that is capable of building the baseline for the automation of the PAP
creation. We propose the Policy Template Model as Contribution 3
(C3) of this thesis. We decided to develop a more generic model for
formalizing policy templates including their projection on different
specification paradigms and their transformation into implementation-
level policies. To the best of our knowledge, such a model does not yet
exist.

Lampson [19] noted a missing incentive for vendors to spend effort on
improving the usability of security solutions. Having security and privacy

Foundations and Related Work

59

demands formalized as policy templates, the next logical step is the
provision of these templates to users as GUIs in PAPs. In order to limit the
implementation effort, we propose the (semi-)automatic generation of
such PAPs with our PAP Generation Framework, which is Contribution
4 (C4) of this thesis. We did not find a comparable approach in the
literature for automating the creation of policy specification interfaces like
our PAP generation framework. However, we identified several
specification paradigms in the state of the art and practice, which we
apply in our framework.

In summary, we combine the aforementioned four contributions to a
comprehensive method for automating the creation of policy specification
interfaces representing multiple specification paradigms in PAPs. We call
this approach the Method for Usable PAP Generation, which is
Contribution 5 (C5) of this thesis. We could not find a comparable
method in the literature. However, we align parts of our contributions to
existing approaches or reuse existing work as described above.

61

3 Policy Template Elicitation Method

The specification of policies can be challenging, especially for users
inexperienced in security and privacy. One problem for users of PAPs can
be an inadequate expressiveness of the specification options provided by
the PAP [25]. Depending on the application domain in which a PAP is used
for specifying policies, different security and privacy demands may exist.

To reduce the expressiveness of a PAP, it can be tailored to a given
application domain by only offering relevant specification options to the
user. One way to provide specification options with limited expressiveness
are policy templates.

Definition: Policy Template

A policy template is a pattern formulated in a policy language that can
be instantiated as a concrete policy.

Either the policy language can have a machine-understandable format and
grammar, or it can be a natural language. Compared to the specification
of policies from scratch, the instantiation of such a template at runtime
with a PAP is easier and less error-prone. Johnson et al. evaluated policy
templates to increase the usability of policy specification for users [10].
Natural-language policy templates can still be difficult to use if, for
example, unknown terminology is used. This observation suggests that
templates should be drafted according to the stakeholders’ preferences in
the domain of application in which a PAP is to be used.

In this chapter, we present a method for eliciting policy templates from an
application domain, which represents Contribution 2 of this thesis (see
Section 1.4). The overall goal of this method is to elicit all available
information from the application domain that is needed for the
instantiation of the policy template model.

We structure this chapter as follows. We explain the research approach
for the policy template elicitation method in Section 3.1. In Section 3.2,
we present an overview of the method. The five main steps of the method
are presented in the following sections: the information retrieval in
Section 3.3, the workshop preparation in Section 3.4, the conduction of
the elicitation workshop in Section 3.5, the documentation of the
workshop results in Section 3.6 and the derivation and validation of policy
templates in Section 3.7. We summarize and conclude this chapter in
Section 3.8.

Policy Template Elicitation Method

62

3.1 Research Approach

We developed the policy template elicitation method in an iterative
process. We devised three versions of the method and applied each
version in a case study. We used the observations and lessons learned
from the first two case studies for improving the method. We validated
the application of the final version in two more case studies, and we
assessed the quality of the results of our method in an experiment.

Our method is aligned to existing methods for security requirements
elicitation and risk assessment from the literature. Similar to other
approaches [30, 45, 46], we first elicit assets, threats for these assets and
countermeasures for mitigating or preventing these threats. From this
information and other collected documents, we derive policy templates.

Existing approaches for gathering security and privacy requirements focus
on the elicitation of general security requirements [23, 47] or on risk
assessment [98–100]. Mellado surveyed existing work [152]. However, the
existing work does not cover the elicitation of policy templates for a
specific application domain directly from stakeholders.

In the first version of our method, the method expert (the person
executing the policy template elicitation method) elicited all information
solely from existing documentation and discussions with stakeholders of
the application domain without a structured process. However, we
learned that we could derive policy templates from assets, threats,
countermeasures and example policies. Based on this insight, we defined
the first version of the policy template notation format to reflect these key
ingredients and applied it in a case study. We used this first version of the
policy template elicitation method in the »SINNODIUM« case study. At the
end of the study, we carried out several interview sessions between 2013
and 2014 to ask the domain and technology experts from the company
»vwd«, our application partner in the study, for improvement suggestions
regarding the template and the elicitation process. The feedback obtained
led to an improved second version of our method.

In the second version of the policy template elicitation method, the
method expert created an initial list of assets, threats and
countermeasures drawn from existing documentation and derived policy
templates. Next, domain and technology experts from the companies
»Amaris«, »ETRA«, »Mirasys« and »OTE« were asked to validate and
improve these initial policy templates. We let those experts present their
policy templates in a workshop on April 3, 2014. In this workshop, we
further improved the policy templates based on the expert’s feedback and
suggestions. In contrast to the first version, we integrated a workshop for
the cooperative elaboration of policy templates into our method.
However, the initial assets, threats and countermeasures were still elicited

Policy Template Elicitation Method

63

by the method expert. However, this may strongly bias the method result,
the policy templates.

To avoid these biases in the final version of the method, we decided to
elicit assets, threats and countermeasures directly from stakeholders of the
application domain in a workshop. We identified key stakeholders that
need to be involved in the workshop for information elicitation and result
validation. We created a coarse framework of our method, containing the
following three steps: preparation of elicitation, conduction of elicitation
and derivation and validation of policy templates.

For the elicitation of assets, threats and countermeasures from
stakeholders in the workshop, we decided to use existing requirements
engineering techniques, because there already exist a plethora of
established and well-tested methods. Thus, we surveyed potential RE
techniques in the literature. We mapped their characteristics on our
requirements for each step of the policy template elicitation method.
Finally, we selected appropriate techniques per step with the support of a
requirements engineering expert.

We executed the »BeSure« case study for confirming the feasibility and
user acceptance of the method as well as the completeness and
correctness of the results. On April 14, 2015, we conducted a workshop
together with experts from the company »DATEV« to validate our new
version. The workshop consisted of three elicitation rounds for assets,
threats and countermeasures. We used different RE techniques for each
elicitation round. In contrast to the previous versions of the method, we
elicited information directly from the stakeholders and used established
RE techniques for this task.

To confirm the feasibility and user acceptance of our approach, we
reapplied this final version of the policy template elicitation method in the
case study »Digital Villages« with experts of »Fraunhofer IESE«. To this
end, we conducted an elicitation workshop on July 7, 2017. We partially
tested different RE techniques for the elicitation.

Figure 15: Research Approach for the Policy Template Elicitation Method

Policy Template Elicitation
Method (Version 1)

- Method expert elicits assets,
threats and countermeasures
from stakeholders and
documentation

- Policy template notation format

Policy Template Elicitation
Method (Version 2)

- Conduction of elicitation
workshop

Policy Template Elicitation
Method (Version 3)

- Structured elicitation process
- Elicitation of assets, threats and

countermeasures in three rounds
from stakeholders

- Use of existing RE techniques

Application in Case Study
»Sinnodium« in 2013-2014

Application in Case Study
»SECCRIT« in 2014

Application in Case Study
»BeSure« in 2015 and in Case
Study »Digital Villages« in 2017

Policy Template Elicitation Method

64

Figure 15 summarizes the improvements for the three versions of the
policy template elicitation method and their relation to the case studies.

In this thesis, we document the policy template elicitation method as a
process with five steps. In comparison, we described this method with only
three steps in [80]. By splitting the three steps into five steps, we aimed to
achieve a more structured description of the method in this thesis
including the involved roles and the necessary input and output per step.
We are confident that these changes do not influence the evaluation
results. In addition, we extended the policy template notation format by
variable types, maximal and minimal values for numerical variables,
minimal and maximal numbers of selectable values in selections as well as
the conjunction type (»AND« and »OR«) of selections. However, this
optional extension has not been evaluated in the case studies described
here.

We identified the following requirements for our policy template
elicitation method:

 Req_Elicitation_Derivation-of-Policy-Templates: We require the
method to produce policy templates as its major output. We want to
use policy templates as the basic concept as they have been evaluated
to be usable for ordinary users in the literature [10] and meet a major
challenge for policy specification: the appropriate limitation of
expressiveness [25].

 Req_Elicitation_Application-Domain: The policy templates elicited
with the proposed method must reflect security and privacy demands
of users from the application domain, in which the elicitation took
place. The focus on the application domain limits the expressiveness of
the policy templates as required by Johnson et al. [25].

 Req_Elicitation_Understandable-Terminology: Policy templates
have to be understood, instantiated and managed not only by software
engineers, but also by end users as required by Reeder et al. [33]. As
we cannot expect deep technical knowledge from typical end users,
we require policy templates to use understandable terminology for
users.

3.2 Method Overview

In this section, we present our entire process for the systematic elicitation
of policy templates from an application domain. We call this process the
policy template elicitation method. A method expert is executing the
method in an application domain. The method consists of five steps as
shown in Figure 16:

Policy Template Elicitation Method

65

 Step 1 – Information Retrieval: The method expert contacts a
contact person from the application domain. He identifies relevant
stakeholders to be involved in the elicitation of policy templates and
other useful information sources.

 Step 2 – Workshop Preparation: The method expert prepares a
workshop for eliciting information from stakeholders of the application
domain. He defines the goals and constraints of the elicitation together
with the contact person. In addition, the method expert gains a basic,
high-level understanding of the application domain, which supports
the preparation of the elicitation workshop. Based on the information
already collected, exemplary assets, threats and countermeasures are
elaborated. A list of workshop participants is finalized.

 Step 3 – Execution of Elicitation workshop: The method expert
conducts a workshop with the stakeholders to extract relevant
information. First, the assets of the application domain and typical use
cases for them are elicited. Next, threats with respect to these assets
are identified. Finally, potential countermeasures are determined.

 Step 4 – Documentation of Workshop Results: The method expert
documents all results from the workshop. In addition, he derives
exemplary policies from the elicited information by combining assets,
threats and countermeasures.

 Step 5 – Derivation and validation of policy templates: The
method expert derives policy templates from the workshop results. A
validation of the results with users from the application domains
concludes the method execution.

Figure 16: Policy Template Elicitation Method

The five steps are explained in more detail in the following sections. For
each step, we explain the roles involved, the input and output of the step,
the execution of the step and the RE techniques being used.

Information
retrieval

Contact person

Artifact

LE
GE

N
D Process flow

M Method expert

C Contact person T Minute taker

E Experts

Project offer

Workshop
constraints

Information about
application domain

Stakeholders

Information sources
and documents

Policy language

Elicitation
workshop
preparation

Execution of
elicitation
workshop

Documentation
of workshop
results

Policy template
derivation and
validation

Exemplary assets,
threats and
countermeasures

Real assets, use
cases, threats and
countermeasures

CM

Description of the
application domain

Participants
(experts)

Workshop plan and
materials

E

M

T

Documented assets,
use cases, threats and
countermeasures

Example policies

Policy templates

E

M

M

CM

Process step

Policy Template Elicitation Method

66

3.3 Step 1: Information Retrieval

The goal of the first step is the retrieval of information for the preparation
of the elicitation workshop in Step 2.

 Roles Involved

 The method expert executes the entire policy template elicitation
method. In the first step, he collects available information about the
application domain. To this end, he contacts a contact person from the
application domain.

 The contact person is a domain expert from the application domain.
He should have an in-depth knowledge of the application domain,
including knowledge of typical use cases and relevant stakeholders.
Multiple contact persons may exist.

 Input

One mandatory input is the contact information of at least one contact
person. Further optional inputs exist. For example, an official project
offer or a similar document may exist that summarizes the key
expectations of the customer about the elicitation workshop results or the
creation of usable PAPs.

 Output

The goal of the first phase is the retrieval of relevant information for the
elicitation workshop. Therefore, the constraints for the workshop need
to be identified and agreed with the contact person. The method expert
collects information about the application domain. In addition,
together with the contact person the method expert must create a list of
relevant stakeholders. Moreover, the method expert identifies a list of
other relevant information sources and documents. If a PAP shall
produce ILPs for an existing security or privacy system within the
application domain, the method expert needs to identify the used policy
language.

 Process Description

First, the method expert needs to obtain a basic understanding of the
general goal of the elicitation. Therefore, he performs a document analysis
on existing documents, such as the project offer, to discover the
customer’s goals and potential constraints for the elicitation.

Policy Template Elicitation Method

67

Second, the method expert sets up the baseline for the elicitation
workshop. To this end, the method expert elicits the following information
from the contact person(s):

 Information about the application domain: The method expert lets
the contact person explain the key characteristics of the application
domain and an overview of assets, use cases, already known threats
and countermeasures in place. In addition, an overview of the technical
system where the assets are used and for which later on policies should
be specified is provided. This includes the policy language used for
policy enforcement in the technical system.

 Workshop constraints: The method expert clarifies constraints with
respect to the elicitation workshop with the contact person such as the
date and the duration of the workshop and the number of participants.

 Stakeholders: The method expert identifies relevant stakeholders of
the application domain for participation in the workshop. This may
include domain experts (who know assets and potential threats in the
application domain), technology experts for the target system where
the policies will be enforced, security and privacy experts (e.g., security
officers), legal experts (who understand the applicable legal
regulations), asset owners and typical users of the target system and
the assets in the application domain. The contact person must deliver
contact details for these stakeholders. Stakeholder description
templates may be used for documentation.

 Further information sources: The contact person must provide
existing documentation to the method expert for the preparation of
the workshop. This includes relevant regulations, laws and guidelines
as well as a technical description of the target system in which the PAP
should be integrated and for which users shall specify policies.

Finally, the method expert documents the workshop baseline.

 Recommended Requirements Engineering Techniques

We recommend that the method expert conducts a »semi-structured
interview« with the contact person. This interview can be performed via a
personal meeting or a phone call. If three or more contact persons exist,
a short »workshop« should be conducted. If it is difficult to organize an
interview or a workshop (due to limited availability of contact persons), a
»questionnaire« could be prepared and sent to the contact persons.
However, we have not elaborated such a questionnaire, yet. See Appendix
A.1 for further elicitation techniques.

To extract information from existing documentation, the method expert
can use the RE technique »document analysis«. Several RE techniques

Policy Template Elicitation Method

68

exist for the structured documentation of the workshop baseline.
Recommended formats are, for example, »goal trees«, »goal description
templates« and »stakeholder description templates«. See Appendix A.2
for further documentation techniques.

 Example

The method expert Mr. White receives the request for eliciting policy
templates in the application domain of data protection for a mobile app
in the area of financial advisory. The contact person of the customer is
Mrs. Black. In an initial phone call, Mr. White and Mrs. Black discuss details
about the information elicitation. Mrs. Black explains that the application
domain is a mobile app with which financial advisors of a bank can access
financial data of bank clients on business trips and in direct consultations
at the client’s home. Mr. White and Mrs. Black identify relevant
stakeholders to be users of the app (bank clients and financial advisors),
security, technology and domain experts of the bank and legal experts
that understand the assets, which are subject to regulations of the BaFin
(German Federal Financial Supervisory Authority). Mrs. Black provides a list
of potential participants. Mrs. Black can organize a half-day workshop
with one representative of each stakeholder role at the customer’s place.
She also notes that the instantiated policies shall be enforced in their
mobile app and in their backend. Therefore, Mr. White and Mrs. Black
agree on using the MYDATA policy language.

3.4 Step 2: Workshop Preparation

The goal of the second method step is the preparation of the elicitation
workshop in step 3. This includes the validation of documentation created
by the method expert, yet.

 Roles Involved

 The method expert prepares the elicitation workshop.

 The contact person reviews already documented goals and
constraints for the workshop, exemplary assets, threats and
countermeasures as well as other gathered information.

 Input

The method expert uses the constraints for the workshop and the list
of stakeholders for the workshop preparation. The method extracts
information from the description of the application domain and other
relevant information sources and documents.

Policy Template Elicitation Method

69

 Output

The method expert devises a high-level description of the application
domain containing typical scenarios and use cases. In addition, he derives
a list of exemplary assets, threats and countermeasures of the
application domain from existing documentation for triggering workshop
participants. The method expert creates a workshop plan and material
including date, location, agenda with fixed time-slots, introductory slide
show, workshop material for creativity methods and a list of participants.

 Process Description

First, the method expert analyzes the existing documentation including
notes from the interview with the contact person. Using this information,
he devises a high-level description of the application domain containing
typical scenarios and use cases. A description of typical scenarios within
the application domain can narrow down the scope of the elicitation, and
it helps the method expert to prepare the elicitation workshop.

Second, the expert identifies initial exemplary assets in the application
domain. An asset can be a digital document containing sensitive
information or any other file or resource that is valuable for at least one
stakeholder in the application domain. As this asset has a value, others
might be interested to steal, manipulate or destroy it, which is a threat for
this asset. Countermeasures must be taken in order to prevent or mitigate
the threat. A policy describes a security or privacy rule for applying a
countermeasure to protect an asset against a threat. A list of exemplary
assets, threats and countermeasures for the application domain may be
used during the workshop to trigger introverted or uncreative participants.

Third, the method expert creates a workshop plan with respect to the
constraints, which are, for example, limitations in duration of the
workshop, the room in which the workshop takes place and the number
and roles of participants. The method expert selects elicitation techniques
for the different elicitation rounds (see Section 3.5) of the workshop and
makes an agenda with fixed time-slots for each elicitation round. During
the workshop, new assets and threats may come into the mind of
participants in the second or third elicitation round, respectively. The
method expert needs to decide how to integrate these additional
information. Either, there is an integration session after each elicitation
round or the workshop is planned iteratively so that the three rounds are
executed multiple times until no further input is given by the participants.

Fourth, the method expert prepares the material necessary for the
execution of the selected elicitation techniques and prepares an
introductory slideshow, which explains the agenda and workshop process
to the participants.

Policy Template Elicitation Method

70

Fifth, the method expert selects the participants from the list of potential
participants provided by the contact person. We recommend that the
method expert selects one representative of each stakeholder role:
domain expert, technology expert, security expert, asset owner and a
typical user. In total, the number of workshop participants is
recommended to be between five and ten [91].

Last, the method expert sends all material to the contact person for
validation. The contact person verifies the correctness of the information
provided in the material. Finally, the contact person invites the participants
to the workshop.

 Recommended Requirements Engineering Techniques

The method expert performs a document analysis based on available
information sources. The contact person can use validation techniques for
the information review. A description of different validation techniques
can be found in Appendix A.3.

 Example

The method expert Mr. White prepares the elicitation workshop. First, he
concretizes the description of the application domain based on the
information retrieved during the phone call with Mrs. Black. In addition,
he picks some exemplary assets, threats and countermeasures of the
application domain. The key assets are the financial data of bank clients.
These must be protected in use cases inside the bank, on business trips
and in consultations at the client’s home. Mrs. Black named a potential
attacker to be a hacker that wants to steal and sell information about
high-value clients of public life such as politicians. Potential threats are the
loss or theft of the mobile device or the accidental display of financial data
of a wrong bank client. Exemplary countermeasures may be the automatic
increase of security measures for the mobile device outside the bank (e.g.,
password-based screen lock) or the context-aware permission to access
client data based on the current position of the mobile device (e.g., only
access to data of client Mrs. Orange at the home of Mrs. Orange).

In addition, the method expert prepares the workshop agenda and
material. Mr. White selects »brainstorming on cards« as the technique for
asset as well as threat elicitation. He therefore prepares colored cards for
the different information types (assets, data owners, policy authors, use
cases and relevant regulations and laws, threats, attackers, existing
documentation on threats, prioritization). He further selects the »6-3-5
method« for the countermeasure elicitation and prepares respective 6-3-
5 sheets for 6 countermeasures per each of three top threats of one asset.

Policy Template Elicitation Method

71

Mr. White sets the agenda to 20 minutes introduction, 1 hour per each
elicitation round including discussion, two breaks of 10 minutes each
between the elicitation rounds and a 20 minutes final discussion with
feedback collection.

Finally, the method expert Mr. White selects the appropriate participants
that Mrs. Black shall invite to the workshop.

3.5 Step 3: Execution of Elicitation Workshop

The goal of the third step is the elicitation of assets, use cases, threats and
countermeasures from stakeholders of the application domain.

 Roles Involved

 The method expert moderates the elicitation workshop.

 The participants actively contribute to the elicitation workshop and
provide information about the application domain.

 A minute taker documents all information revealed by the
participants vocally or written on workshop material.

 Input

The method expert moderates the workshop according to the plan and
with the material prepared in the previous step. In case of uncreative
participants, the method expert can provide examples from the prepared
list of exemplary assets, threats and countermeasures of the
application domain. The invited participants attend the elicitation
workshop.

 Output

The major outputs of the elicitation workshop are real assets, use cases,
threats and countermeasures of the application domain and their
relation among each other. The minute taker captures this information in
a photo protocol and in the written documentation. We demonstrate
examples of assets, threats and countermeasures in Figure 17.

 Process Description

The objective of the workshop is to elicit and document relevant assets
(i.e., valuable domain objects to be secured), threats (i.e., intentional or
unintentional actions harming security or privacy), and countermeasures
(i.e., actions to prevent or mitigate threats). This information is required
to derive policy templates.

Policy Template Elicitation Method

72

We propose to elicit the information in three elicitation rounds using
appropriate elicitation techniques. These elicitation rounds are also used
in other method known from literature [30, 45, 46].

Figure 17: Examples of Elicited Assets, Threats and Countermeasures

 Round 1 – Assets and Use Cases:

The first elicitation task is the identification of assets of the application
domain and their properties. Properties include information about the
owner, monetary value, and sensitivity of the assets, applicable laws and
regulations as well as typical use cases and the users that want to use and
to protect the assets (i.e. policy authors). The method expert asks all
participants to share assets and their properties with the entire group of
participants. The way of communication depends on the used elicitation
technique. For example, if brainstorming on cards is applied, a participant
writes an asset and properties on respective cards and explains them to
the other participants before pinning the cards to a board. Discussions are
welcome. However, the method expert needs to stop discussions that do
not contribute to the goal of the workshop. The method expert clusters
the cards on the board according to similar categories of assets or similar
properties.

In the second elicitation round, threats for the assets are identified. Due
to time constraints, it might be necessary to exclude some assets from
further investigation. Therefore, all assets are prioritized after elicitation.
We suggest using the two ordinal scales »monetary value of asset« and
»sensitivity of asset« to support the prioritization:

Policy Template Elicitation Method

73

 Monetary value of asset:

o low (€)

o medium (€€)

o high (€€€)

 Sensitivity of asset:

o public

o internal use only

o highly confidential

Each workshop participant has to estimate these properties. The median
value of all votes is used. We use the top prioritized assets for the threat
elicitation.

 Round 2 – Threats:

We want to identify relevant threats of the application domain. Threats
can be elicited either per asset or per use case (if the use case has a list of
relevant assets assigned). It is beneficial to elicit properties of each threat
including relevant attackers and existing documentation (e.g., risk
assessment documents). We propose to prioritize the threats as well.
Therefore, after elicitation, all threats are prioritized using the two ordinal
scales »severity of the potential damage caused by threat« and
»probability of threat occurrence« to facilitate prioritization. Each
workshop participant has to estimate the severity and the probability of
each threat. The median value of all votes is used. We recommend
combining these two properties into a single risk value according to
literature [45, 153]. The method export should carefully consider whether
the typical scale with the values high, medium and low is appropriate.
Some users can hardly differentiate between the values and their meaning
is up to interpretation [154]. Instead, more understandable and easily
differentiable values per scale could be used, such as:

 Severity of the potential damage caused by threat:

o irrelevant

o costly

o existence-threatening

 Probability of the threat occurrence:

o almost impossible

o likely

o permanently

Policy Template Elicitation Method

74

 Round 3 – Countermeasures:

In the final elicitation round, countermeasures for preventing, mitigating
or at least detecting attacks are collected from the participants. Typically,
multiple countermeasures exist for each threat. We know that this list of
countermeasures is most probably incomplete and that suggested
countermeasures may not sufficiently mitigate the threats. Thus, the
method expert needs to assess and extend elicited information during
documentation and policy template derivation.

 The end of the workshop:

The method expert asks for feedback, especially regarding the used RE
techniques. This feedback can be used to build up an experience base with
respect to the feasibility of the applied RE methods.

After the workshop, the method expert takes photos of all boards and
workshop material. The results of the workshop are provided as a photo
protocol. All workshop material is collected and archived.

 Recommended Requirements Engineering Techniques

We propose to use »brainstorming on cards« or »mind mapping« as
techniques for the identification and elicitation of assets. For the elicitation
of threats, we recommend »brainstorming on cards«, »mind mapping«,
»brainstorming paradox«, »6-3-5 method«, »change of perspective« or
»attack trees«. All these techniques fit to the challenge of eliciting threats.
However, we did not evaluate all of them. For the elicitation of
countermeasures, we suggest to use a »brain writing« method (e.g.,
6-3-5 Method), as the brain writing forms are well suited to efficiently
collect a variety of countermeasures. We base our suggestions about
elicitation techniques on our own experiences. However, the scientific
literature also confirms the feasibility of the techniques »interview«,
»brainstorming« and other »survey techniques« for the elicitation of
corporate policies [53]. See Appendix A.1 for further information about
the elicitation techniques.

For the prioritization of assets and threats, we recommend using the
techniques »ranking« or »top-ten technique«. See Appendix A.4 for
further information about the prioritization techniques.

 Example

The method expert Mr. White conducts the elicitation workshop as
planned. The participating stakeholders reveal a variety of real assets, use
cases, threats and countermeasures. The minute taker Mrs. Red takes

Policy Template Elicitation Method

75

photos of each pin board. The resulting photo of an asset on the pin board
could look like Figure 18.

Figure 18: Exemplary Result of the Asset Elicitation

3.6 Step 4: Documentation of Workshop Results

The goal of the fourth step is the documentation of the elicited assets, use
cases, threats and countermeasures. With the documented information,
the method expert derives policy templates in the fifth and last step of the
policy template elicitation method.

 Roles Involved

 The method expert documents the workshop results.

 Input

The method expert documents the information elicited in the workshop.
The elicited assets, use cases, threats and countermeasures of the
application domain from the workshop material, the photo protocol and
the documentation from the minute taker are used.

 Output

The method expert produces documented assets, use cases, threats
and countermeasures of the application domain. In addition, he
combines the elicited information into example policies.

 Process Description

First, the method expert documents the assets, use cases, threats and
countermeasures. We propose tabular templates for their documentation

Asset
Financial Data

of Client

Policy Author
Bank Client

Use Case
The financial advisor accesses financial data
of clients on a mobile device duringwork.
The access can be at the bank, at the home

of a client or on business trips

Policy Template Elicitation Method

76

as shown for assets in Table 2, for threats in Table 3 and for
countermeasures in Table 4.

After documenting the assets, use cases, threats and countermeasures,
the method expert combines the retrieved information into exemplary
security and privacy policies. For each countermeasure, the method expert
formulates an example policy. The method expert may rephrase the
elicited information to harmonize terminology. An exemplary policy is: »If
a financial advisor wants to access financial data of a client and is neither
in the bank nor in an appointment at the client’s home, access is
prohibited and an error message is displayed.«

Table 2: Tabular Documentation of Assets

Asset ID Identifier of the asset

Asset Name of the asset

Data Owner Owner of the asset

Example Use Case Exemplary use case that describes the use of the asset in the
application domain

Policy Authors Potential policy authors that would want to protect the asset

Prioritization
Properties

Prioritization with the two scales »monetary value of asset« and
»sensitivity of asset«

Legal Regulations Relevant legal laws and regulations that need to be considered for the
creation of example policies and policy templates

Table 3: Tabular Documentation of Threats

Threat ID Identifier of the threat

Related Use Case Use case that is affected by the threat

Related Asset Asset that is affected by the threat

Attackers Person causing the threat

Threat Natural language description of the threat including the prioritization
scales »probability« and »damage«

Existing
Documentation

References to existing documentation about the threat

Table 4: Tabular Documentation of Countermeasures

Countermeasures for threat:
T1 Data theft of financial data after stealing mobile device

Countermeasure description in natural language.

Countermeasure description in natural language.

Countermeasure description in natural language.

Countermeasure description in natural language.

Policy Template Elicitation Method

77

 Example

The method expert Mr. White documents the elicited assets, use cases,
threats and countermeasures using the proposed templates. Table 5
shows an example of an identified asset.

Table 5: Exemplary Documented Asset

Asset ID A1

Asset Financial data of client

Data Owner Client

Example Use Case The financial advisor accesses financial data of clients on a mobile
device during work. The access can be at the bank, at the home of a
client or on business trips.

Policy Authors Bank administrator

Prioritization
Properties

Monetary value of asset: high (€€)
Sensitivity of asset: confidential

Legal Regulations Regulations of BaFin

Table 6 shows an exemplary threat for the asset in Table 5.

Table 6: Exemplary Documented Threat

Threat ID T1

Related Use Case UC1: Financial advisor works outside the bank

Related Asset A1: Financial data of client

Attackers Data thieve

Threat Data theft of financial data after stealing mobile device

 probability: likely (medium)

 damage: existence-threatening (high)

Existing
Documentation

not available

Table 7 shows an excerpt of countermeasures identified for the threat in
Table 6.

Table 7: Exemplary Documented Countermeasures for a Threat

Countermeasures for threat:
T1 Data theft of financial data after stealing mobile device

Allow access to client’s financial data only in bank or at client’s home.

Deny access to client’s financial data on business trips.

Let client authenticate before access on financial data outside the bank.

Inform supervisor on denied access request on financial data.

Mr. White derives example policies from the elicited assets, use cases,
threats and countermeasures, such as:

Policy Template Elicitation Method

78

 If the financial advisor is about to access financial data of client Mrs.
Orange at the home of Mrs. Orange, access is granted.

 If the financial advisor is about to access financial data of client Mrs.
Orange at the home of Mrs. Orange, Mrs. Orange needs to enter her
PIN before access is granted.

 If the financial advisor is about to access financial data of client Mrs.
Orange on the business trip, access is denied.

 If the access or the financial advisor to client data is inhibited, inform
the supervisor of the financial advisor about this access attempt.

3.7 Step 5: Policy Template Derivation and Validation

The goal of the fifth and final step of the policy template elicitation
method is to derive and validate policy templates.

 Roles Involved

 The method expert derives policy templates

 Experts from the application domain validate the policy templates

 Input

The method experts uses the documented assets, use cases, threats,
countermeasures and example policies for deriving policy templates.

 Output

The final output of the method is a list of policy templates.

 Process Description

First, the method expert derives policy templates. To this end, he uses the
assets, use cases, threats, countermeasures and example policies elicited
and elaborated in the previous steps. Example policies with identical
meanings must be unified, and overlapping policies can be generalized to
initial template prototypes. After this derivation step, multiple templates
may implement the same countermeasure or protect the same asset. Next,
the method expert refines the templates by adding branches and
parameters. A parameter is a variable part of the template that is assigned
during instantiation. Parameter types can be text (e.g., an email address
for notifications), numbers (e.g., number of letters in a password), or a
predefined list of values (e.g., active directory entries). A branch is a
selectable part of the policy template. The method expert defines rules for
the selection of the branches (How many branches may be selected? Are

Policy Template Elicitation Method

79

selected branches combined with an »AND« or an »OR« as the
conjunction?). Eventually, each documented example policy must be
instantiable by using one of the derived policy templates. The method
expert extends the policy templates with respect to additional reasonable
countermeasures. He identifies those countermeasures mentioned in
existing documentation (e.g., risk assessment documentation or relevant
guidelines for security and privacy). Additionally, the method expert adds
countermeasures known from his experience in this task. Finally, the
method experts validates whether all example policies can be instantiated
from the derived policy templates. Table 8 shows the structure of a policy
template.

Table 8: Tabular Notation of a Policy Template

ID Policy Template Name Asset Target System Policy Author

ID The name of policy
template

The asset for
which policies can
be instantiated

The system on
which the policies
will be enforced

The users, which
will use the policy
template for policy
instantiation in a
PAP

Policy Template Syntax The syntax of the policy template described with the policy
template notation format

Description Natural language description of the policy template

Threat Related threat(s) for the asset that can be mitigated or prevented
with instantiated policies

Security/Privacy Goals Relevant security and privacy goals

Example Instantiation Exemplary policy instantiated from this policy template

Second, experts from the application domain review the policy templates
with respect to quality characteristics such as correctness and
completeness. The validation of the security policy templates is a manual
task. The method expert asks the participants of the workshop to confirm
correctness and completeness of the derived policy templates and the
terminology used in the templates. Especially the completeness should be
confirmed or supported by the stakeholders of the application domain as
the derivation of policy templates from the example policies can be
incomplete. In case of mistakes, inconsistencies or missing information,
the method expert consolidates the reviews and adjusts the policy
templates accordingly. Next, the method expert asks the experts to
validate them again. This iteration ends when all policy templates are
considered correct and complete.

 Policy Template Notation Format for Specification-level Policies

A policy template is a blueprint of a security or privacy policy that is not
completely instantiated. PAPs provide policy templates for instantiation.

Policy Template Elicitation Method

80

Thus, during the specification, a user fills in the variable parts of a policy
template in such a way that a complete policy results.

We developed a notation format with a simple grammar for specification-
level policy templates. The method expert can use this notation format to
describe specification-level policy templates in documents. The format is
composed of natural language statements that we can concatenate with
the following grammatical elements:

 We write natural language statements in plain text. An example is:

o »The deliverer may not access my complete address.«

 Variables are surrounded by angle brackets. The name of the variable
is written between the angle brackets. Variables with the same name
are bound, that is, they are two instances of the same variable. By
default, a variable can contain any text value like a String variable in
Java. If other variable types are required, the type can be defined after
the variable name with a leading colon symbol. Available types are
string, integer, float, boolean and date. The values for the two number
types integer and float can be further restricted by a minimum and a
maximum value notated with a comma-separated list within
parentheses. The »*« symbol expresses an infinite maximum value. An
example is:

o »<actor:string> may not see my complete address and
<actor:string> may get access to the first <phoneDigits:integer>
digits of my phone number and to the first
<creditCardDigits:integer(2,14)> digits of my credit card
number.«

 We denote selectable texts by surrounding square brackets and
separate selectable items by pipe symbols. The selectable items may
only contain text. An examples is:

o »The deliverer [may not see my complete address | may get
access to my phone number].«

 We denote selections by surrounding square brackets and the trailing
notation of the conjunction and quantifiers. The selectable items are
separated by pipe symbols. If no conjunction and no quantifier is
specified, the selection is exclusive by default. The selection is limited
to one instance of each element. The conjunction can be specified as
the first value within parentheses after the closing square bracket. The
available conjunctions are »AND« and »OR«. The second and third
value, separated by commas, specify the minimum and maximum
allowed number of selected items. For simplification, we added the
two quantifiers »+« (at least one selection item) and »*« (any number
of selection item) that can replace the minimum or maximum value
and the conjunction, which is set to »AND«. Examples are:

Policy Template Elicitation Method

81

o »The deliverer [may not see my complete address|may get
access to my phone number|may get access to my credit card
number](AND,1,2).«

o »The deliverer [may not see my complete address|may get
access to my phone number|may get access to my credit card
number]+.«

 »<actor:string> is informed if somebody accesses [contact details | file
<filename:string>].«

In addition to the notation format, we enriched the policy template with
additional information. We give each policy template a unique identifier
and a descriptive name. Each template references an asset, a target
system, and security and privacy goals. A policy template structure is
shown in Table 8.

 Example

The method expert defines policy templates based on the elicited
information and the derived example policies. For the specification of the
policy template syntax, Mr. White combines similar example policies and
transforms the diverging parts of those example policies as variable parts
in the policy template. We present an exemplary policy template in
Table 9.

Table 9: Exemplary Policy Template

ID Policy Template Name Asset Target System Policy Author

PT1 Access to financial data
in different situations

Financial data of
bank client

Mobile advisory
app

Bank administrator
or bank client

Policy Template Syntax If the financial advisor is about to access financial data of
<client:string> [inside the bank|on a business trip|at the home of
<client:string>], then [allow access|allow access after successful
authentication by <client:string>|inhibit access].

Description The access of financial advisors to financial data of bank clients
need to be restricted in different situations for different clients.

Threat Unintended access to financial data of bank clients

Security/Privacy Goals Confidentiality

Example Instantiation If the financial advisor is about to access financial data of client
Mrs. Orange at the home of Mrs. Orange, allow access.

3.8 Summary and Conclusion

In this chapter, we presented the policy template elicitation method.
Below, we briefly address the fulfillment of the requirements for the policy
template elicitation method (as stated in Section 3.1):

Policy Template Elicitation Method

82

 Req_Elicitation_Derivation-of-Policy-Templates: Our method uses
information from stakeholders of an application domain elicited in a
workshop for deriving actual policy templates. The policy templates
limit the expressiveness of the policy specification if provided in a PAP.

 Req_Elicitation_Application-Domain: As the method builds upon
an elicitation workshop with representative stakeholders from the
application domain, we are confident that the resulting policy
templates reflect the security and privacy demands of the application
domain.

 Req_Elicitation_Understandable-Terminology: We elicit assets,
threats and countermeasures from stakeholders of the application
domain in a workshop. Therefore, all elicited information is formulated
by the stakeholders in the terminology that is typically used in the
application domain. Thus, if the method expert carefully avoids
changing the terminology during the derivation of policy templates,
the templates reflect the domain-specific terminology. Moreover,
stakeholders are requested to validate the final templates with respect
to terminology.

Overall, we created a method for to deriving policy templates from
information elicited in an application domain by representative
stakeholders. The elicited information contains assets, use cases, threats
and countermeasures typical for the application domain. The resulting
policy templates can be used for tailoring a PAP to the application domain.
A user can instantiate policy templates in order to express his personal
security and privacy demands. We elicit the information in a workshop.
We partially use established RE techniques for elicitation, documentation,
prioritization and validation of information.

83

4 Policy Template Model

The security and privacy demands of different users in an application
domain are often very diverse. Users want to use PAPs to specify and
enforce policies that express their individual security and privacy demands
when using a system. The method expert must therefore collect the
security needs of users from an application domain and turn them into
configurable security policies.

To formalize the security and privacy demands of an application domain,
an appropriate model for the specification of policy templates is required.
Our policy template model, which represents Contribution 3 of this thesis
(see Section 1.4), constitutes the foundation for the instantiation of
security and privacy policies. The idea behind our policy model is to
describe real world security and privacy demands in the form of threats
and corresponding countermeasures within an application domain and to
derive security policy templates from the countermeasures. Policy
templates are specified in a human-understandable format, on the
specification level. A user can instantiate such a policy template as a
human-understandable policy, that is, a specification-level policy (SLP). In
addition, we want to support the transformation of an SLP into a machine-
understandable representation of this policy, that is, an implementation-
level policy (ILP).

In addition, we want to support different specification paradigms for the
user interfaces for policy specification in PAPs. All specification paradigms
differ in their expressiveness with which the user can specify policies and
their guidance the user receives during the specification process. In our
approach, all supported specification paradigms are based on different
presentations of and interactions with the policy templates. Thus, users
can instantiate policies from policy templates or select from already
instantiated policies.

In summary, an instance of the policy template model must contain all
information that is necessary for generating policy specification interfaces
in PAPs with multiple supported specification paradigms and for
supporting the generation of ILPs. We call the instance of a policy model
that is used in a PAP a policy vocabulary:

Definition: Policy Vocabulary

A policy vocabulary is a configuration for the PAP generation framework
that is based on an instance of the policy template model.

Policy Template Model

84

This chapter describes the policy template model, which is the link
between the policy template elicitation method and the generation of
policy specification interfaces in PAPs with multiple supported
specification paradigms. We divide the policy template model into several
sub-models, which are interwoven, each serving a specific purpose. We
explain our research approach in Section 4.1. Section 4.2 gives an
overview of the sub-models. Sections 4.3 to 4.8 present the individual sub-
models in detail. We provide an example in Section 4.9. In Section 4.10,
we summarize and conclude the chapter.

4.1 Research Approach

We developed the policy template model in an iterative way. First, we
elicited key requirements and created the initial version of the policy
template model. We supported the specification of security policy
templates on the specification level. In addition, we enabled the definition
of generation rules for generating ILPs from instantiated policy templates.
We applied this first version in the industrial case study »SINNODIUM«.

In the second version, we extended the policy template model by an
application domain model that describes the relation between entities in
the application domain and policy templates. Threats and
countermeasures act as intermediate elements. In addition, we added
support for the specification paradigm »default policies« by providing
model elements for the specification of pre-defined policy template
instantiations. Moreover, we improved the definition of transformation
rules for the ILP generation.

Finally, we devised version 3 of our model, which additionally provides
two additional specification paradigms: »security levels« and »wizard«.

Figure 19: Research Approach for the Policy Template Model

We derived several requirements from the state of the art that our policy
template model must meet:

Security Policy Template
Model (Version 1)

- Security policy
templates

- Transformation rules to
implementation level
policies

- Support of specification
paradigm »template
instantiation«

Security Policy Template
Model (Version 2)

- Application domain
model

- Improved
transformation rules

- Support for
specification paradigm
»default policies«

Security Policy Template
Model (Version 3)

- Support for
specification paradigms
»security levels« and
»wizard«

Application in Case Study
»Sinnodium« in 2013-2014

Application in Case Study
»SECCRIT« in 2014 and in
Case Study »BeSure« in 2015

Application in Case Study
»Digital Villages« in 2017

Policy Template Model

85

 Req_Model_Domain-Independence: A key requirement for our
model is domain independence. That is, the model should be
applicable in any application domain. As security and privacy demands
of stakeholders and therefore requirements for security and privacy
solutions differ in different application domains, the model must not
be limited to a specific domain. The policy templates and the supported
policy language for technically enforcing ILPs must be exchangeable.
The domain model must cover all entities and relationships that are
relevant for the derivation of policy templates. This includes, but is not
limited to organizational structures, use cases, assets, threats and
countermeasures. The ability to address multiple application domains
is essential to limit the expressiveness of the policy templates as
required by Johnson et al. [25].

 Req_Model_Understandable_Templates: The model must support
the specification of human-understandable policy templates (SLP
templates) as required in the literature [10, 33]. We want to support
policy templates on the specification level that is written in natural
language.

 Req_ILP_Generation: The model must support the specification of
generation rules for the generation of an ILP from an SLP instantiated
from a policy template. Kumari [76] states that ideally, policies should
be specified on the specification level and then be transformed into
the implementation level specification. Therefore, we support the
transformation of SLPs into ILPs. However, we only support the manual
specification of transformation rules. Research into more sophisticated
and automated ILP transformation is not part of this thesis, but several
approaches have been described in the literature (e.g., [75, 76]).

 Req_Model_Specification-Paradigm-Projection: The model must
support the definition of projection rules for representing the policy
templates with different specification paradigms on the policy
specification interface of a PAP. This requirement stems from our
ambition to support multiple specification paradigms in PAPs, as
described in contribution C1.

4.2 Overview of Policy Template Model

The policy template model bridges the gap between an application
domain and the technical implementation of a PAP. It explains the
relationships between entities and their actions in the application domain,
assets, corresponding threats and countermeasures. The method expert
can instantiate the policy template model to describe the relevant policy
templates for an application domain and to define necessary information
for the automated generation of policy specification interfaces in PAPs
with multiple supported specification paradigms.

Policy Template Model

86

Our model consists of six connected sub-models. We first give an overview
of the sub-models and then describe each of the sub-models in detail in
subsequent sections. We define the following six sub-models:

 The domain sub-model can be used to describe the application
domain in which the PAP is about to be applied. The model describes
the relevant relations among domain objects. An instance of this model
highlights relevant stakeholders and other entities in this application
domain that perform actions on assets that need to be protected.
Further details can be found in Section 4.3.

 The security and privacy sub-model describes how threats and
countermeasures relate to actions from the domain sub-model and to
the policies from the template sub-model. More details are presented
in Section 4.4.

 The template sub-model describes the relationship between the
policy templates and concrete policy instances on the two abstraction
levels, the specification level and the implementation level. The
specification level reflects natural language descriptions of the policies
whereas the implementation level considers machine-understandable
representations of the policies, for example in XML notation. We
present the template sub-model in Section 4.5.

 The specification-level template sub-model allows the method
expert to create policy templates on the specification level with several
template elements. The aim is to provide policy templates in natural
language. The policies resulting from instantiated templates describe
concrete countermeasures for preventing or mitigating a threat on an
asset. However, they lack information about how this countermeasure
is technically enforced. Further details can be found in Section 4.6.

 The implementation-level template sub-model allows the method
expert to create policy templates on the implementation level in a
machine-understandable format. In addition to the specification-level
policy templates, information about the technical enforcement of the
resulting policies is included. The instantiation of an implementation-
level policy template is linked to the instantiation of the corresponding
specification-level policy template. Therefore, transformation rules can
be specified by the method expert. This means that when the user
creates a specification-level policy, a corresponding implementation-
level policy is automatically generated. The resulting policies describe
how the system enforces the security demand, but most users will
probably not understand this representation of the policy. More details
are presented in Section 4.7.

 Using a PAP, users can specify a set of security policies in many
different ways. We call these different approaches specification
paradigms. The specification paradigm projection sub-model

Policy Template Model

87

describes how the different specification paradigms are linked with the
specification-level policy templates. The sub-model contains all
information necessary for the representation of the policy templates in
policy specification interfaces of the PAP with multiple supported
specification paradigms. We present the specification paradigm
projection in Section 4.8.

We show an overview of the sub-models and their dependencies in
Figure 20. All model diagrams use UML syntax, and we created them with
Enterprise Architect.

Figure 20: Policy Template Model

The method expert instantiates the security policy template as a policy
vocabulary as part of the method for usable PAP creation. Details can be
found in Section 7.4.

4.3 Domain Sub-model

For systematically collecting and understanding the threats on assets and
potential countermeasures within an application domain, we must first
identify the relevant elements in this domain. Therefore, the domain sub-
model primarily describes entities in the application domain and their
actions that affect assets. The domain model was designed to be very
generic so that it can describe multiple application domains.

class Security Policy Template Model

Specification Level Template Submodel

Implementation Level Template Submodel

Specification Paradigm Projection Submodel

Template Submodel

Security Submodel

Domain Submodel

Policy Template Model

88

Figure 21: Domain Sub-model

Figure 21 depicts the domain model. The domain model describes entities,
their relations and the actions they perform. A domain can have one or
more entities, which can be either active or passive. Active entities have
one or more intrinsic goals they want to achieve. Therefore, they can
trigger multiple actions affecting different active or passive entities to
fulfill certain goals. Active entities can be persons or software systems,
both are generalized to agents. Agents can own assets and other passive
entities in the application domain. Roles can be assigned to persons, which
means that a role can also act as an active entity and perform actions in
the application domain. A very special role is the attacker, which is the
generic representation for a person performing a malicious action that
represents a threat. Passive entities are those entities that do not trigger
actions by themselves, but that can be affected by actions. Examples are
organizational units, infrastructural objects, hardware or data. Data is
stored on hardware systems and processed by software that runs on

class Domain Submodel

DomainObject

description: String
id: String
name: String

Entity

ActiveEntity PassiveEntity

OrganizationalUnit

Data

type: DataType

Infrastructure

Hardware

SoftwareSystem

Agent

Asset

sensitivity: Sensitivity

Value

value: Value
valueType: ValueType

Person

Role

Attacker

Action

description: String
name: String

Goal

«enumeration»
DataType

BUSINESS
PERSONAL
PUBLIC

«enumeration»
Sensitivity

PUBLIC
INTERNAL USE ONLY
HIGHLY CONFIDENTIAL

«enumeration»
Value

HIGH
MEDIUM
LOW

«enumeration»
ValueType

MONETARY
INTELECTUAL PROPERTY
IDEOLOGICAL

0..*

assignedTo
0..*

1

owns

0..*

1..*value
1

1

superior

0..*

1
hosts

0..*

0..*

performs
1..*

1..*

contains

0..*

1
subActions

0..*

1

valueableTo

0..*

0..*

affects

1..*

1..*
processes

0..*

1
subRoles

0..*

0..*
relatedActions

0..*

1

owns

0..*

0..*

fulfills
0..*

1..*

has
0..*

0..*

storedOn

0..*

1
contains

0..*

0..*

subEntities

0..*

0..*

concerns

0..*

Policy Template Model

89

hardware, which in turn is part of a certain infrastructure (e.g., a building).
Types of Data include personal data, business data and public data.

All entities can be part of an asset. An asset is in addition of value to a
particular active entity. Therefore, assets have a particular sensitivity
ranging from public to highly confidential and a monetary value that is
measurable in a currency or can have an ideational value to an active
entity. As it is very hard to determine concrete numbers for monetary or
ideational values, we rate asset values on a three step ordinal scale from
low over medium up to high value. Both sensitivity and value have an
impact on the diligence in which threats to an asset need to be elicited
and prevented or mitigated.

Figure 22: Security and Privacy Sub-model

class Security and Privacy Submodel

Asset

sensitivity: Sensitivity

SecurityRegulation

Countermeasure

Action

description: String
name: String

Threat

potentialDamage: PotentialDamage
propability: Probability

PrivacyPrinciple SecurityPrinciple

Principle

Condidentiality Integrity Availability Accountability Authenticity

ConsentNecessityLawfulnessRightsOfTheIndividualTransparencyPurposeBinding

Policy

DomainObject

description: String
id: String
name: String

Goal

Role
Attacker

«enumeration»
Probability

PERMANENTLY
LIKELY
ALMOST IMPOSSIBLE

«enumeration»
PotentialDamage

EXISTENCE THREATENING
COSTLY
IRRELEVANT

SecurityDemand

0..*
fulfills

0..*

0..*

fulfills 0..*

0..*

relatedActions

0..*

0..*concerns
0..*

0..* demands
1..*

1..*

affects

0..*

0..*

isRealizedBy 0..*

0..*

mitigates

1..*

0..*
concerns

0..*

0..*

causes

0..*

0..*

endangers

0..*

1

subActions

0..*

Policy Template Model

90

4.4 Security and Privacy Sub-model

The security and privacy sub-model describes the threats that can occur in
the application domain and the corresponding countermeasures. We
present the sub-model in Figure 22.

Threats are a specialization of actions from the domain model; actually,
they denote malicious actions performed by an attacker. The attacker can
be, for example, a malicious hacker, a script kiddie or an intentional or
accidental attacker from inside the organization. Threats can occur with a
certain probability and cause a certain amount of damage. Since both
parameters are difficult to determine exactly, we have opted for a 3-point
value scales (severity of the potential damage: irrelevant – costly –
existence-threatening; probability of the threat: almost impossible – likely
– permanently). Threats must be prevented or at least mitigated with
suitable countermeasures. With the rating on those scales, the method
expert in cooperation with security experts can assess the urgency of the
technical implementation of the countermeasure for each threat during
the policy elicitation phase.

Countermeasures are also a specialization of actions in the application
domain. Threats jeopardize basic security and privacy principles, which can
be protected with countermeasures. We use the IT security principles
according to the ISO 27000 standard [155], which are confidentiality,
integrity, availability, accountability and authenticity. As privacy principles,
we use the purpose binding, transparency, rights of the individual,
lawfulness, necessity and consent by design from the ENISA report
»Security and Data Protection by Design« [156].

4.5 Template Sub-model

The template sub-model describes the relationship between the two levels
of abstraction of a security policy and between security policy templates
and concrete security policies. We support users in expressing their own
security and privacy demands. We have recognized in our own project
experience and in reviewing the state of the art that security needs differ
from user to user. This demands the possibility of individual customization
of the security policies. Templates of policy are required to enable
customization. To this end, we elicit policy templates for the application
domain with the policy template elicitation method.

Kumari and Pretschner [157] and Neisse et al. [158] distinguish two levels
of abstraction for policies: specification-level policies (SLPs) and
implementation-level policies (ILPs). SLPs describe security demands in a
format that is easy to understand for non-experts. We defined SLPs to be
specified by a human and chose natural language as the specification-level

Policy Template Model

91

format. The focus of the specification-level is clearly on the explanation of
the security and privacy requirements of a user in the application domain.
An SLP might therefore lack details about the implementation of the user
demand. An ILP describes the concrete technical implementation of the
demands so that it is interpretable and enforceable by the security or
privacy system. Thus, the policy must exist in a format that can be
executed by a machine, such as a policy language in XML notation. To
transform an SLP into an ILP, concrete transformation rules are required.
These rules must contain the information for the technical enforcement
of the policy, which is missing on the abstract specification-level. We have
opted for individual transformation rules specified by the method expert.

We define policy templates in an instance of the policy template model,
both on the specification level and on the implementation level. As
described above, the policy templates also need to be specified on two
abstraction levels. Thus, for each specification-level policy template (SLPT),
we also define an implementation-level policy template (ILPT). A user can
instantiate a specification-level policy template as a concrete SLP in natural
language. However, the security system requires an equivalent machine-
understandable ILP for enforcement. Therefore, the expert refines the
SLPT into an ILPT and links the ILPT to the corresponding SLPT. This linkage
facilitates the transformation of a specification-level policy into an
implementation-level policy based on the respective templates. Figure 23
illustrates the relationship between templates and policies on the different
abstraction levels.

Figure 23: Meta Model - Model - Instance

Generic transformation rules or automated transformations are not in the
focus of this work. A more sophisticated approach for the derivation of
implementation level policies, such as the one proposed by Kumari [76,
157, 159], could improve the model and the elicitation method (see
Chapter 3).

Details of both abstraction levels of policy templates and the
transformation rules are described in the subsequent sections. In
Section 4.6, the sub-model for creating specification-level policy templates

Specification level
Security Policy

MetaModel

Model

Instance
is instantiated as

is instantiated as

Specification level
Security Policy Template

Specification level
Template Sub model

Implementation level
Security Policy

Implementation level
Security Policy Template

Implementation level
Template Sub model

is instantiated as

is instantiated as

describes

is refined into

Policy Template Model

92

is presented. Section 4.7 explains the creation of implementation-level
policy templates and their linkage to the specification-level.

Figure 24: Template Sub-model

Figure 24 depicts our template sub-model. A policy in our model is part of
a policy set and realizes a countermeasure of the security and privacy sub-
model. Each policy contains exactly one SLP, which describes the
countermeasure in natural language. In addition, multiple ILPs can exist as
part of a policy. A security system (implying the privacy functionality) in
our model is the software component that executes ILPs in order to
enforce countermeasures technically. Different security systems require
different machine-understandable notation, such as the policy languages
of IND²UCE [110] or XACML [5]. Thus, if multiple security systems shall be
supported, multiple equivalent ILPs must be specified. Each SLP is an
instantiation of a specification-level policy template, and each ILP is an

class Template Submodel

PolicyVocabulary

language: NaturalLanguageType

ImplementationLevelPolicy

ImplementationLevelPolicyTemplate

Policy

PolicyLanguage

SpecificationLevelPolicy

SpecificationLevelPolicyTemplate

PolicyTemplate

description: String
exampleInstantiation: String
id: String
name: String

PolicySet

«enumeration»
NaturalLanguageType

GERMAN
ENGLISH

DomainObject

description: String
id: String
name: String

SecuritySystem

Agent
SoftwareSystem

Action
Countermeasure

0..*

uses

1

0..*

enforcedBy

0..*

0..*

1

1..*
1

1

describes

0..*

0..*

1

1
instantiatesTo

0..*

0..*

1

1

1

0..*
supports

0..*

1
1

0..*

isRealizedBy

0..*

1
instantiatesTo

0..*

1

refinesTo

0..*

Policy Template Model

93

instantiation of an implementation-level policy template. An ILPT uses one
specific policy language to formulate machine-understandable
instructions that represent the natural language description on the
specification-level. A policy template in our model is a container for exactly
one SLPT and multiple ILPTs refining the SLPT. A policy vocabulary is a
container for multiple policy templates within an application domain. We
also use this term for the complete instantiation of a policy template
model, because the policy vocabulary is the root element of the policy
template model. All specification-level policies within a policy vocabulary
must use the same language (e.g., English or German).

4.6 Specification-Level Template Sub-model

The specification-level template sub-model (see Figure 25) refines the SLPT
from the template sub-model. An SLPT consists of multiple elements,
which we call SLPT elements (Specification-Level Policy Template
Elements). The SLPT elements are building blocks for constructing policy
templates. The method expert can use them to define the specification
boundaries in which users can instantiate the templates to create policies
that meet their individual security and privacy demands. We have defined
the following SLPT elements, which reflect the elements of the policy
template notation format introduced in Section 3.7:

 Text: This element corresponds to a text block that is to explain part
of the policy template to the user. The text is defined by the method
expert and cannot be changed by the user. In addition, text elements
can be used to complement the remaining elements in such a way that
complete and comprehensible natural language sentences are created.
In the user interface, this element can be realized as a text viewer.

 Selection: This element offers the user a selection of different paths
in the template. Each path is represented by an element group. In an
element group, all SLPT elements can be used to refine this path. We
limit the instantiation options so that a user may only select each
element group once per instantiation. The method expert must specify
the minimum and maximum number of paths that the user may select
when instantiating the template. The selection is optional if no path
has to be selected. The selection is mandatory if at least one path has
to be selected. The selection is exclusive if exactly one path has to be
selected. In the user interface, exclusive selections can be implemented
as radio buttons and other selections as check boxes.

 Variable: This element allows text input by the user. This allows the
user to individualize the template during instantiation. The method
expert can typify the variable to restrict user input. Possible types are
full text (string), integers, floating point numbers (float) and date/time
specifications. For numeric input types, a minimum value and a

Policy Template Model

94

maximum value can be defined. On the graphical user interface, this
element can be implemented as an input field.

 Selectable text: This element is a specialization of the variable. The
method expert provides a list of possible variable values (variable
choices) from which the user must choose the appropriate one. Note
that a variable choice contains both a natural language value and a
machine-understandable equivalent. For example, a user name can be
displayed on the user interface, but an appropriate user id can be used
at the implementation level. This element can be implemented as a
drop-down box on the graphical user interface.

Figure 25: Specification-Level Template Sub-model

class Specification Level Template Submodel

PolicyVocabulary

language: NaturalLanguageType

PolicyTemplate

description: String
exampleInstantiation: String
id: String
name: String

SpecificationLevelPolicyTemplateSlptElement

description: String
id: String
longDescription: String

SpecificationLevelPolicy

DomainObject
Policy

DomainObject
PolicySet

Text

value: String

Variable

numberMaxValue: int
numberMinValue: int
type: VariableType
value: String

Selection

conjunction: BooleanOperator
maxSelectedElements: int
minSelectedElements: int

ElementGroup

description: String
id: String
longDescription: String
maxClones: int
selected: boolean

SelectableText

type: VariableType
value: String

VariableChoice

description: String
id: String
longDescription: String
value: String

«interface»
ReferenceableSlptElement

«interface»
ValueSlptElement

«enumeration»
BooleanOperator

AND
OR

«enumeration»
VariableType

STRING
INTEGER
FLOAT
DATETIME

1..*

1

1..* 1

1..*1

1

1

0..*1

1..*

1

1

instantiatesTo
0..*

1

1

1..*

1

Policy Template Model

95

For linking the SLPTs with the corresponding ILPTs (described in Section
4.7) and with the specification paradigms (described in Section 4.8) two
interfaces were defined, with which different SLPT elements are grouped:

 ValueSlptElement: All SLPT elements, for which a value specified by
the user can be read, implement this interface. This means that the
specified values can be read out from an SLP (i.e., an instantiated SLPT)
and injected when an ILP is generated.

 ReferenceableSlptElement: When configuring the different
specification paradigms, the method expert can pre-instantiate parts
of an SLPT or set different values. To do this, the corresponding SLPT
elements must be referenceable, which is ensured by this interface.

4.7 Implementation-Level Template Sub-model

The implementation level template sub-model (see Figure 26) refines the
implementation-level policy template of the template sub-model.

Figure 26: Implementation-Level Template Sub-model

class Implementation Level Template Submodel

ImplementationLevelPolicyTemplate

ImplementationLevelPolicy
DomainObject
Policy

DomainObject
PolicySet

PolicyLanguagePolicyLanguageElementIlptGroup

id: String

IlptBlock

id: String

SlptElement
Variable

numberMaxValue: int
numberMinValue: int
type: VariableType
value: String

ElementGroup

description: String
id: String
longDescription: String
maxClones: int
selected: boolean

SlptElement
SelectableText

type: VariableType
value: String

«interface»
ValueSlptElement

SecuritySystem

Agent
SoftwareSystem

«enumeration»
VariableType

STRING
INTEGER
FLOAT
DATETIME

0..*

IlptGroupReference

0..*

1

instantiatesTo
0..*

0..*

useIfSelected

1..*

0..*1

0..*
referencesTo

1

0..*

enforcedBy

0..*

1..* 1

0..*

1

0..*

uses

10..*

1 0..*

supports

0..*

1..*
1 1..*

1

1..*

1

Policy Template Model

96

An ILP describes a user's demand for privacy or security in a machine-
understandable format so that a security system can enforce it. Since a
security system generally supports only one specific policy language, the
implementation-level policy must be formulated in this policy language. In
our approach, the user instantiates an SLP from an SLPT. If this SLP is to
be technically enforced, an ILP must be created analogously. Since many
users do not understand machine-understandable policy languages and
cannot specify ILPs on their own, we decided to generate ILPs from SLPs
with defined transformation rules. Therefore, the method expert develops
an implementation-level policy template analogous to the specification-
level policy template. This ILPT is linked to the instantiation options of the
specification-level policy template so that an ILP can be generated directly
by the PAP when a SLP is instantiated by a user. The method expert must
ensure that each instantiation of the linked policy templates leads to
equivalent policies at both levels of abstraction.

An ILPT consists of elements of the chosen machine-understandable policy
language, which we call policy language elements. We have limited our
approach to XML-based policy languages. Other policy languages with
other notation formats are conceivable, but have not been examined and
are therefore currently not supported.

The method expert specifies a template structure similar to the one on the
specification level. Immutable policy language elements are modeled
directly as child elements of the ILPT. The transformation rules consist of
the following parts:

 The method expert can associate an attribute value of a concrete policy
language element with a ValueSlptElement, which is an element that
contains a value entered or selected by the user. This value is used as
the attribute value of the policy language element when generating
the ILP. Examples of values defined by the user are user ids (»Only Tom
may access my data«), email addresses (»If my data is used, send a
message to mail@mail.com«) or the number of permitted data uses
(»The advertising provider may use my data only three times«).

 The method expert can model the selection paths defined at
specification level. He can specify blocks of policy language elements,
which he inserts into the ILPT depending on the element groups
selected by the user at the specification level. To do this, he links an
ILPT block to an element group. If the user selects this element group
at the specification level, the linked ILPT block is added to the
implementation-level policy. The method expert groups ILPT blocks
into ILPT groups. ILPT groups are part of an ILPT. The method expert
can reference an ILPT group in a policy language element in the ILPT.
When instantiating the ILPT as a concrete implementation-level policy,
he inserts all selected ILPT blocks of the ILPT group as child elements.

Policy Template Model

97

In summary, the method expert needs to specify an ILPT that describes the
same countermeasures as its corresponding SLPT, but with more technical
details for enforcement. If the policies are to be enforced with several
security systems that support different policy languages, several ILPTs per
SLPT need to be specified.

In this thesis, we do not prove that an ILPT can be specified for every
possible SLPT. Natural language can express any need for security and
privacy. SLPTs use natural language. ILPTs use a policy language. This
language is limited to a certain vocabulary and can cover a set of security
and privacy demands. Therefore, it would be necessary to prove that the
policy language is complete in terms of the specification of all conceivable
security and privacy demands. This is not the focus of this work and can
be part of future work.

Figure 27: Specification Paradigm Projection Sub-model

class Specification Paradigm Projection Submodel

PolicyVocabulary

language: NaturalLanguageType

PolicyTemplate

description: String
exampleInstantiation: String
id: String
name: String

SecurityLevelDefinition

WizardDefinition

DefaultPolicyDefinition

DefaultPolicy

description: String
id: String

DefaultValue

value: String

TemplateReference

description: String

SecurityLevel

description: String
id: String
name: String

DefaultPolicyReference

WizardPageDefinitionWizardPage

id: String
title: String

«interface»
ReferenceableSlptElement

«interface»
WizardPageElement

SlptReference WizardPageDescription

description: String

«enumeration»
NaturalLanguageType

GERMAN
ENGLISH

1 1

1

referencesTo
1

1
1

1..* 1

1
1

0..*referenceToDefault
1

referencesTo

1..*
1

0..*

referencesToTemplate

1

1..*

1

1..*

1

0..* 1

0..*
referencesTo

1

1..* 1

1..* 1

0..*

1

1

1

Policy Template Model

98

4.8 Specification Paradigm Projection Sub-model

We present multiple specification paradigms in the context of this thesis
in the Sections 2.5 and 5.2.2. These specification paradigms differ in the
graphical representation of the user interface and in the interaction
process between the user and the security system.

Our policy template model and the PAP generation framework currently
support four different specification paradigms. The method expert defines
projections rules to configure these four specification paradigms when
instantiating the specification paradigm projection sub-model (see
Figure 27). Since this configuration differs for all specification paradigms,
the available paradigms are explained below:

 Template Instantiation: When instantiating the specification-level
template sub-model, the method expert specifies policy templates. The
individual elements of the policy template correspond to graphical
elements on the user interface. When using the specification paradigm
»template instantiation«, a PAP displays the elements on the graphical
user interface exactly as specified in the policy template. The user can
instantiate a concrete policy from the policy template by selecting
paths in selections and text modules in selectable texts and by entering
values in variables. The method expert does not need to specify any
projection rules for this specification paradigm.

 Default Policies: The specification paradigm »default policies« limits
the specification options for the user when instantiating the policy
templates. Thus, the user can select per policy template the default
policy that best matches his personal security and privacy needs. The
method expert specifies a default policy element from the model for
each pre-instantiated default policy per policy template. In this default
policy element, he creates a default value element for each modifiable
element in the SLPT. All SLPT elements that implement the
»ReferenceableSlptElement« interface can be referenced via their id.
For variables, the variable element of the SLPT template itself is
referenced and the specified default value is used during instantiation.
With selectable texts, the selectable text element of the SLPT template
itself is referenced and the id of the desired variable choice is specified
as the value. With selections, the paths to be selected are referenced
individually in the policy template, that is, the element groups. The
value specifies whether they are selected or not (true/false). The
method expert can specify any number of default policies per policy
template. On the user interface, the user selects the desired default
policies per template. However, the user cannot modify default
policies.

 Security Levels: The specification paradigm »security levels« severely
limits the specification options of the users. They can choose exactly

Policy Template Model

99

one of several security or privacy levels. For brevity, we only talk about
security levels in the following, but the same principles apply to privacy
levels as well. The method expert specifies the security levels as part of
the policy vocabulary. A security level consists of a name, a description
and a set of references to default policies. This means that the method
expert provides a selection of different lists of default policies (i.e., pre-
instantiated policy templates) to the user by specifying security levels.
A security level may reference any number of default policies per policy
template.

 Wizard: For the specification paradigm »wizard«, the user instantiates
the policy templates in a fixed order. The method expert defines this
order in the policy vocabulary using a list of template references. In
addition, the method expert can divide the instantiation of each policy
template into several smaller specification steps. To this end, the
method expert specifies a list of steps for each policy template, which
we call wizard pages. The method expert models a wizard page with
text blocks (WizardPageDescription elements) and modifiable SLPT
elements. The text blocks used in the original specification-level policy
templates cannot be reused, since they are designed to create a cloze
text with correct natural grammar together with all modifiable
elements. The method expert uses the text blocks on the wizard pages
to describe only the part of the policy template that can be configured
by the user on the current page. In addition, further explanatory text
blocks can be added so that the user can better understand the effect
of his decisions. Each wizard page has an individual title, which is
displayed on the graphical user interface.

Policy Template Model

100

Table 10: Exemplary Policy Template »Access to Financial Data in Different Situations«

ID Policy Template Name Asset Target System Policy Author

PT8 Access to financial data
in different situations

Financial data of
bank client

Mobile advisory
app

Bank administrator

Policy Template Syntax If a financial advisor is about to access financial data of clients
[inside the bank|on a business trip|in home office] and already
accessed <numberOfDataRecords:integer(1,*)> data records [this
hour|today|this week], then [allow access|allow access and inform
<recipient:string>|inhibit access|inhibit access and inform
<recipient:string>].

Description The access of financial advisors to financial data of bank clients
need to be restricted in different situations. Especially the
number of data records per period needs to be controllable.

Threat Unintended access to financial data of bank clients

Security/Privacy Goals Confidentiality

Example Instantiation If a financial advisor is about to access financial data of clients in
home office and already accessed 100 data records today, then
inhibit access and inform mrs.black@bank.de.

4.9 Example

The method expert derived the policy template »access to financial data
in different situations« shown in Table 10 with the policy template
elicitation method. The model expert uses this information to instantiate
the policy template model in order to create a policy vocabulary. Figure 28
shows an excerpt of the policy template model including the relevant
elements for the modeling of the exemplary policy template.

Policy Template Model

101

Figure 28: Excerpt of the Policy Template Model Showing the Interplay of SLP and ILP Elements and

the Relation of a Policy to Domain Elements

First, the model expert transforms the policy template syntax created
during the elicitation into an SLPT. Listing 1 shows the resulting SLPT in
XML notation. This SLPT definition contains all necessary information for
using the PAP generation framework (see Chapter 5) to generate a user
interface for policy specification in a PAP implementing the specification
paradigm »template instantiation«.

erd Policy Templates

PolicyVocabulary

language: NaturalLanguageType

ImplementationLevelPolicy

ImplementationLevelPolicyTemplate

DomainObject
Policy

PolicyLanguage

SpecificationLevelPolicy

SpecificationLevelPolicyTemplate

PolicyTemplate

description: String
exampleInstantiation: String
id: String
name: String

DomainObject
PolicySet

«enumeration»
NaturalLanguageType

GERMAN
ENGLISH

SecuritySystem Agent
SoftwareSystem

Countermeasure

PolicyLanguageElement

IlptGroup

id: String

IlptBlock

id: String

Variable

numberMaxValue: int
numberMinValue: int
type: VariableType
value: String

ElementGroup

description: String
id: String
longDescription: String
maxClones: int
selected: boolean

SelectableText

type: VariableType
value: String

«interface»
ValueSlptElement

«enumeration»
VariableType

STRING
INTEGER
FLOAT
DATETIME

SlptElement

description: String
id: String
longDescription: String

Text

value: String

Selection

conjunction: BooleanOperator
maxSelectedElements: int
minSelectedElements: int

VariableChoice

description: String
id: String
longDescription: String
value: String

«enumeration»
BooleanOperator

AND
OR Action

description: String
name: String

Threat

potentialDamage: PotentialDamage
propability: Probability

GoalSecurityDemand DomainObject
Asset

sensitivity: Sensitivity

DomainObject
Entity

0..*1

1..*
1

0..*

1

0..*
mitigates

1..*

0..*

1

1..*

1

0..*

enforcedBy

0..*

0..*

uses

1

1..*
1

0..*

referencesTo

1

1 1

1..*

1

0..*

affects

1..*

0..*

isRealizedBy

0..*

1

subActions

0..*

1
instantiatesTo

0..*

0..*

concerns

0..*

1..*

1

0..*

fulfills

0..*

1..*

1

1

1

1

describes

0..*

0..*
useIfSelected

1..*

0..*

fulfills

0..*

1..*

contains
0..*

1
instantiatesTo

0..*

1..*

1

0..*
supports

0..*

1

refinesTo

0..*

1..*

1

1..*

10..*1

0..*

IlptGroupReference

0..*

0..*

relatedActions

0..*

Policy Template Model

102

Listing 1: Exemplary SLPT

<slpt>
 <text id="pt8_t1" value="If a financial advisor is about to access
 financial data of clients "/>
 <selection id="pt8_situation" minSelectedElements="1"
 maxSelectedElements="1">
 <elementGroup id="pt8_situation_inside_bank">
 <text value="inside the bank"/>
 </elementGroup>
 <elementGroup id="pt8_situation_business_trip">
 <text value="on a business trip"/>
 </elementGroup>
 <elementGroup id="pt8_situation_home_office">
 <text value="in home office"/>
 </elementGroup>
 </selection>
 <text value=" and already accessed " id="pt8_t2"/>
 <variable id="pt8_records" type="integer" description="number of data
 records" numberMinValue="1"/>
 <text value=" data records " id="pt8_t3"/>
 <selectableText id="pt8_period" type="string">
 <variableChoice id="pt8_period_hour" description="this hour"
 value="thisHour"/>
 <variableChoice id="pt8_period_day" description="today" value="today"/>
 <variableChoice id="pt8_period_week" description="this week"
 value="thisWeek"/>
 </selectableText>
 <text value=", then " id="pt8_t4"/>
 <selection id="pt8_reaction" minSelectedElements="1"
 maxSelectedElements="1">
 <elementGroup id="pt8_reaction_allow">
 <text value="allow access"/>
 </elementGroup>
 <elementGroup id="pt8_reaction_allow_inform">
 <text value="allow access and inform "/>
 <variable id="pt8_notification_recipient_allow" type="string"
 description="email address"/>
 </elementGroup>
 <elementGroup id="pt8_reaction_inhibit">
 <text value="inhibit access"/>
 </elementGroup>
 <elementGroup id="pt8_reaction_inhibit_inform">
 <text value="inhibit access and inform "/>
 <variable id="pt8_notification_recipient_inhibit" type="string"
 description="email address"/>
 </elementGroup>
 </selection>
</slpt>

We present an exemplary generated user interface implementing the
specification paradigm »template instantiation« in Figure 29. We explain
the modelling of projection rules to support additional specification
paradigms below. In the current version of the policy template model, we
neither model direct relations between SLPT elements and actions of the
application domain nor refine these actions into more fine-grained
elements. We can add these extensions as part of future work, in order to

Policy Template Model

103

support automation regarding the creation of SLPTs, ILPTs and
transformation rules. Therefore, we can reuse existing work from the
literature such as the work of Kumari [76]. Currently, the specification of
SLPTs, ILPTs and respective transformation rules is a manual task.

Figure 29: Generated Specification Interface for Exemplary SLPT Implementing the Specification

Paradigm »Template Instantiation«

Next, the model expert specifies the ILPT in the desired policy language.
To this end, he first defines the invariable skeleton of the ILPT using policy
language elements. The ILPT (using the IND²UCE policy language) that
belongs to the exemplary SLPT is shown in Listing 2.

Listing 2: Exemplary ILPT

<ilpt>
 <ind2ucePolicy>
 <policy id="urn:policy:phdTest:access_records" description="">
 <ind2uce:mechanism event='urn:action:phdTest:access_records'>
 <ind2uce:if ilptGroupReference="pt8_ilp_reaction">
 <ind2uce:and ilptGroupReference="pt8_ilp_situation">
 <ind2uce:greater>
 <ind2uce:count>
 <ind2uce:eventOccurrence event='urn:action:phdTest:access_records'>
 <parameter:string name='user'>
 <event:string eventParameter='user' default=''/>
 </parameter:string>
 </ind2uce:eventOccurrence>
 <ind2uce:when fixedTime='$ref:pt8_period'/>
 </ind2uce:count>
 <constant:number value='$ref:pt8_records'/>
 </ind2uce:greater>
 </ind2uce:and>
 </ind2uce:if>

Policy Template Model

104

 </ind2uce:mechanism>
 </policy>
 </ind2ucePolicy>
</ilpt>

In addition, the model expert defines two types of variable parts:

 Variable values: References to variables or selectable text elements of
the SLPT can be inserted into the values of attributes of policy language
elements. During the instantiation of the ILPT, these values are
replaced by the respective values entered by the user in the
specification interface.

 ILPTGroupReferences: Variable parts of the ILPT can be inserted into
the model based on the selection of element groups during the
instantiation of an SLPT. To this end, the model experts assigns a
reference to an ILPT group to a policy language element. In addition,
he specifies these variable parts as ILPT blocks as part of an ILPT group.
Each ILPT block is linked to an element group. If an element group of
the SLPT is selected on the specification interface, the corresponding
ILPT block is inserted as a child of the policy language element that has
the reference to the ILPT group assigned. Listing 3 shows the ILPT
group for the selection of the current situation of the financial advisor
in the exemplary policy template.

Listing 3: Exemplary ILPT Group

<ilptGroup id="pt8_ilp_situation">
 <ilptBlock id="pt8_ilp_situation_inside_bank"
 use="pt8_situation_inside_bank">
 <pip:boolean method='urn:info:phdTest:insideBank' default='false'/>
 </ilptBlock>
 <ilptBlock id="pt8_ilp_situation_business_trip"
 use="pt8_situation_business_trip">
 <pip:boolean method='urn:info:phdTest:businessTrip' default='false'/>
 </ilptBlock>
 <ilptBlock id="pt8_ilp_situation_home_office"
 use="pt8_situation_home_office">
 <pip:boolean method='urn:info:phdTest:homeOffice' default='false'/>
 </ilptBlock>
</ilptGroup>

Using these two types of variable parts, the model expert can define
transformation rules for a policy template that allows the generation of
an ILP based on an SLP. We present an example of a generated ILP in
Figure 30.

Policy Template Model

105

Figure 30: Exemplary Instantiated Policy in the IND²UCE Policy Language

Finally, the model expert can define projection rules to support multiple
specification paradigms. Figure 31 shows an excerpt of the policy
template model including the relevant elements for the definition of
projection rules for different supported specification paradigms for a
policy template. Our model currently supports the specification paradigms
»template instantiation«, »default policies«, »security levels« and
»wizard«.

Policy Template Model

106

Figure 31: Excerpt of the Policy Template Model Showing the Interplay between SLPTs and the

Elements for Defining Projection Rules for Different Specification Paradigms

Figure 32: Generated Specification Interface Implementing the Specification Paradigm »Default

Policies«, which Shows the Specified Projection Rules for the Exemplary SLPT

erd Specification Paradigms

PolicyVocabulary

language: NaturalLanguageType

PolicyTemplate

description: String
exampleInstantiation: String
id: String
name: String

SpecificationLevelPolicyTemplate

SlptElement

description: String
id: String
longDescription: String

SpecificationLevelPolicy

DomainObject
Policy

DomainObject
PolicySet

Text

value: String

Variable

numberMaxValue: int
numberMinValue: int
type: VariableType
value: String

Selection

conjunction: BooleanOperator
maxSelectedElements: int
minSelectedElements: int

ElementGroup

description: String
id: String
longDescription: String
maxClones: int
selected: boolean

SelectableText

type: VariableType
value: String

VariableChoice

description: String
id: String
longDescription: String
value: String

«interface»
ReferenceableSlptElement

«interface»
ValueSlptElement

«enumeration»
BooleanOperator

AND
OR

«enumeration»
VariableType

STRING
INTEGER
FLOAT
DATETIME

SecurityLevelDefinition

WizardDefinition

DefaultPolicyDefinition

DefaultPolicy

description: String
id: String

DefaultValue

value: String

TemplateReference

description: String

SecurityLevel

description: String
id: String
name: String

DefaultPolicyReference

WizardPageDefinition

WizardPage

id: String
title: String

«interface»
WizardPageElement

SlptReference

WizardPageDescription

description: String

«enumeration»
NaturalLanguageType

GERMAN
ENGLISH

1..*

1

1..*1

1
referencesTo

1

0..*

referencesTo 1

1
1

1

1

0..*
1

1

instantiatesTo

0..*

1..*

1

1..*

1

1..*

1

0..*

referenceToDefault

1

0..*

referencesTo

1

1..*1

1..*1

1..*

10..*1

11

0..*

1

1

1

1..*

1

11

0..*

referencesToTemplate

1

1..* 1

1

1

Policy Template Model

107

To support the specification paradigm »default policies«, the model expert
specifies a set of default instantiations for each SLPT. To define a default
instantiation, he sets the values of each variable element of the SLPT. We
present an example in Listing 4. During the generation of a specification
interface that uses the specification paradigm »default policies«, the SLPT
is instantiated according to the default instantiations and these instances
are shown on the user interface. We present an exemplary specification
interface in Figure 32. The values of the specified default instantiations are
also used for the generation of ILPs.

Listing 4: Exemplary Projection Rules for the Specification Paradigm »Default Policies«

<defaultInstantiations>
 <defaultInstantiation id="pt8_default1" description="If a financial
 advisor is about to access financial data of clients in home office
 and already accessed 100 data records today, then inhibit access and
 inform mrs.black@bank.de.">
 <defaultValue ref="pt8_situation_inside_bank" value="false"/>
 <defaultValue ref="pt8_situation_business_trip" value="false"/>
 <defaultValue ref="pt8_situation_home_office" value="true"/>
 <defaultValue ref="pt8_records" value="100"/>
 <defaultValue ref="pt8_period" value="pt8_period_day"/>
 <defaultValue ref="pt8_reaction_allow" value="false"/>
 <defaultValue ref="pt8_reaction_allow_inform" value="false"/>
 <defaultValue ref="pt8_reaction_inhibit" value="false"/>
 <defaultValue ref="pt8_reaction_inhibit_inform" value="true"/>
 <defaultValue ref="pt8_notification_recipient_inhibit"
 value="mrs.black@bank.de"/>
 </defaultInstantiation>
</defaultInstantiations>

To support the specification paradigm »wizard«, the model expert
specifies for each SLPT a set of small specification steps, which we call
wizard pages. For each wizard page, he freely orchestrates text blocks
(SLPT descriptions) and references to the variable parts of the SLPT. Next,
he sets the order of the wizard pages per paradigm. Listing 5 shows
exemplary projection rules. We present a screenshot of a generated
wizard page in Figure 33.

Figure 33: Generated Specification Interface Implementing the Specification Paradigm »Wizard«,

which Shows one Wizard Page for the Exemplary SLPT

Policy Template Model

108

Listing 5: Exemplary Projection Rules for the Specification Paradigm »Wizard«

<wizardPageDetails>
 <page id="pt8_page1" title="Current Situation">
 <slptDescription description="In which situation do you want to restrict
 data access by financial advisors?"/>
 <slptReference ref="pt8_situation"/>
 </page>
 <page id="pt8_page2" title="Number of Accessed Data Records">
 <slptDescription description="How many data records are allowed?"/>
 <slptReference ref="pt8_records"/>
 <slptDescription description="In which period are the data records
 allowed?"/>
 <slptReference ref="pt8_period"/>
 </page>
 <page id="pt8_page3" title="Reaction">
 <slptDescription description="Do you want to allow or inhibit data
 record access after the threshold is reached? And do you want to
 inform somebody about the situation?"/>
 <slptReference ref="pt8_reaction"/>
 </page>
</wizardPageDetails>

To support the specification paradigm »security levels«, the method
experts defines overarching sets of default instantiations. Each set, which
represents a security level, may reference at most one default instantiation
per policy template.

4.10 Summary and Conclusion

In this chapter, we presented the policy template model. Below, we briefly
review the fulfillment of the requirements for the policy template model
(as stated in Section 4.1):

 Req_Model_Domain-Independence: The security policy template
model was designed for being applicable to different application
domains. To address this requirement, we introduced the generic
domain sub-model. It allows the method expert to describe actions and
corresponding actors in an application domain, declare malicious
actions as threats and compensating actions as countermeasures.
Threats and countermeasures are linked to basic security and privacy
principles. The method expert specifies policy templates and links them
to related threats and countermeasures.

 Req_Model_Understandable_Templates: The specification-level
template sub-model allows the specification of policies templates in
natural language. The method expert can use several template
elements for the creation of SLPTs. This sub-model is compatible with
the policy template notation format presented in Section 3.7.

 Req_ILP_Generation: The implementation-level template sub-model
and its linkage to the specification-level template sub-model facilitates

Policy Template Model

109

the specification of transformation rules for the ILP generation after
the instantiation of an SLPT by the user.

 Req_Model_Specification-Paradigm-Projection: The model does
not allow the specification of generic projection rules. Consequently,
the model must be extended for each new specification paradigm that
we want to support. We currently provide four specification
paradigms: »template instantiation«, »default policies«, »security
levels« and »wizard«.

To conclude, a policy vocabulary, which is an instance of the presented
policy template model, is capable of describing policy templates on two
abstraction levels (SLPT and ILPT). This allows the instantiation of natural
language policy specifications and their transformation into concrete,
machine-enforceable security and privacy policies. These instantiated
policies realize countermeasures against threats to the application
domain, which can be described within a model instantiation as well.

111

5 PAP Generation Framework

Our goal is to provide PAPs that suit the individual needs of the user. As
developing PAPs is effort-consuming, we aim for an automated solution.
We want to automate the user interface development for policy
specification so that these interfaces can be generated at runtime.

Supporting the use of different policy vocabularies allows the PAP
generation framework to cover different application domains. Our
framework is a modular toolkit that supports different variation points.
We provide different specification paradigms to allow the personalization
of the PAP to individual user groups. In addition, the framework realizes
the operability in different user interface frameworks (e.g., Java desktop
applications, Android apps or web applications) and the translation of
specified SLPs into ILPs using different policy languages. These variation
points provide the necessary adaptability for using PAPs in different
application domains.

In this chapter, we present a PAP generation framework, which represents
Contribution 4 of this thesis (see Section 1.4). This framework provides an
automated generation of policy specification interfaces in PAPs with
multiple supported specification paradigms based on a policy vocabulary.

The PAP generation framework presented in this work is a concept. We
describe the necessary components, their functionality and their
interrelation, and we present our reference implementation of the PAP
generation framework. With our concept, a PAP generation framework
for other system environments can be implemented with limited effort.

The remainder of this chapter is structured as follows. The research
approach is explained in Section 5.1. Section 5.2 provides the key
concepts of the PAP generation framework including an overview of the
framework in Section 5.2.1 and a concept for embedding a PAP in existing
software in Section 5.2.2. The selection of the supported specification
paradigms and their generation algorithms are presented in Section 5.3.
Section 5.4 describes our reference implementation of the PAP generation
framework and shows some exemplary PAPs. Section 5.5 concludes this
chapter.

PAP Generation Framework

112

5.1 Research Approach

We developed the PAP generation framework in an iterative process. We
developed three versions of the framework and applied each version in a
case study (see Figure 34). We used the observations and lessons learned
from the applications in the case studies for improving and extending the
framework.

Figure 34: Research Approach for the PAP Generation Framework

We first built a prototype of the PAP generation framework in the context
of the »SINNODIUM« case study (see Section 8.2). It supported the
specification paradigm »template instantiation«, the user interface (UI)
framework »Android«, the machine-understandable language »IND²UCE
policy language version 1.1« and was tested in one application domain.
The resulting Android PAP was used in a project demonstrator. It let users
specify human-understandable policies through template instantiations
and transformed these specifications into machine-understandable
policies that were enforced in the demonstrator.

Next, we conceptualized the modular character of the framework and
added more modules. The second version additionally supported the
specification paradigm »default policies« as presentation modules to
show the use of multiple paradigms in one PAP. We also added view
modules for the user interface (UI) frameworks »Swing« for Java
applications and »Web« for web applications to demonstrate the
application across multiple UI technologies and user devices. In addition,
we implemented support for multiple languages. Standardized terms that
are not defined in the policy vocabulary, such as filling words and default
description texts, were available in English and German. We applied this
version of the PAP generation framework in the »SECCRIT« case study,
where we created a PAP with generated user interfaces for policy
specification in the application domain of »Cloud systems in critical
infrastructures«. We also used this version for the case study »BeSure«.

Finally, we extended the framework with more modules and features. We
added support for the UI framework »JavaFX« and created presentation

PAP Generation
Framework (Version 1)

- Presentation module
»template instantiation«

- View module »Android«
- IND²UCE language

version 1.1

PAP Generation
Framework (Version 2)

- Presentation module
»default policies«

- View modules
»Swing« and »Web«

- Multi language
support

PAP Generation
Framework (Version 3)

- Presentation modules
»security levels« and
»wizard«

- View module »JavaFX«
- Policy languages

IND²UCE version
3.2.46 and MYDATA
version 4.0

Application in case study
»Sinnodium« in 2013-2014

Application in case studies
»SECCRIT« in 2014 and
»BeSure« in 2015

Application in case study
»Digital Villages« in 2017

PAP Generation Framework

113

modules for the specification paradigms »security levels« and »wizard«.
We supported the policy languages IND²UCE version 3.2.46 and MYDATA
policy language version 4.0. This version of the PAP generation framework
was used in the end-to-end evaluation of this thesis. The evaluation
included the case study »Digital Villages« and the policy specification
experiment.

We identified the following requirements for our PAP generation
framework from the state of the art:

 Req_Framework_UI-Generation: The framework must support the
automated generation of specification interfaces in a PAP using a
policy vocabulary as input. The resulting user interface inside a PAP can
be used by a user to specify own security or privacy demands within
the specification options provided by the specification paradigm.
Automation is mandatory as companies are not willing to spend effort
in the development of usable PAPs if no incentive exists, as stated by
Lampson [19].

 Req_Framework_Modularity: The framework needs to be
extensible. Therefore, we propose a modular architecture. A module
on an architectural layer must be replaceable by another module, e.g.,
for supporting different specification paradigms or UI frameworks. The
modularity is required as it allows the support of multiple specification
paradigms to be used in the same PAP as required by Contribution C1
as well as the limitation of development effort, which PAP vendors are
not willing to spend, as noted by Lampson [19]).

 Req_Framework_Policy-Templates: Generated policy specification
interfaces in PAPs need to provide all policy templates on the user
interface that are modeled in a policy vocabulary. This requirement
stems from Hypothesis H2, which requires completeness for elicited
policy templates.

 Req_Framework_Specification-Paradigms: To provide personali-
zation to different user groups, generated policy specification
interfaces in PAPs need to support multiple specification paradigms.
We require the specification paradigm selection at runtime. Thus, a
single PAP must support all specification paradigms so that either the
expert can configure the default paradigm for each user group or the
user itself can select his preferred specification paradigm on PAP
startup.

 Req_Framework_Multi-User-Interface-Frameworks: Because poli-
cy specification affects users of web applications in browsers as well as
users of mobile devices or traditional applications, the PAP framework
must not be limited to a single UI framework. Support of multiple UI
frameworks limits the development effort, which companies are not
willing to spend, as noted by Lampson [19].

PAP Generation Framework

114

 Req_Framework_Policy-Transformation: Kumari [76] recommends
the specification of policies on the specification level. Therefore, the
generated PAPs must be capable of transforming specified policies
(SLPs) into machine-understandable equivalents (ILPs). Regarding ILPs,
the support of multiple XML-based policy languages is required to
increase the applicability of the framework in practice.

5.2 Reference Architecture

Section 5.2.1 describes the architecture of the framework. In Section
5.2.2, we show how to embed the framework into existing software
components.

5.2.1 Architectural Overview

To achieve the required flexibility of the framework, we chose a modular
architecture. Our framework architecture is based on an adapted model-
view-controller design pattern [160], as shown in Figure 35.

Figure 35: Model-View-Controller Concept in the PAP Generation Framework

We chose this design pattern as it clearly separates data and graphical user
interface. This separation is important, as the basic requirement for our
framework is to have replaceable modules on several layers. Our
architecture comprises five layers, which reflect the variation points listed
in the previous section:

 View Layer: The view layer encapsulates typical user interface
elements of an UI framework. These include elements for user

PAP
Controller

View

View Layer
graphical platformcomponents

fromUI framework

Presentation Layer
specification paradigms

Model

Model Layer
policy template model

ControllerLayer
functionality for linking model and view

PAP Listener
functionality for PAP embedding
policy specification interface

Policy Language Layer
machine understandablepolicy language

PAP Generation Framework

115

interaction, information display, user interface styling and layout
organization. View elements are, for example, buttons or text fields.

 Presentation Layer: The presentation layer provides modules that
implement the different specification paradigms by assembling
elements from the view layer. The user interface of a specification
paradigm is described as a generation algorithm. This algorithm
assembles the available view elements in such a way that the user
interface corresponds to the specification paradigm. In addition, the
algorithm describes how the content of the policy vocabulary is
presented with corresponding view elements on the user interface so
that the user can specify policies. We provide a presentation module
for each specification paradigm.

 Policy Language Layer: The policy language layer contains modules
for the PAP output. For example, modules for machine-understandable
policy languages such as the IND²UCE policy language can be
provided.

 Model Layer: The model layer represents the policy template model.
Thus, an instance of the policy template model is a module of this layer.
It contains policy templates and all necessary information for the user
interface generation. If the PAP is expected to produce machine-
understandable policies as an output, the instance of the model must
include transformation rules from SLPTs to ILPTs for the selected policy
language module.

 Controller Layer: The controller layer initiates the user interface
creation, and it organizes the information exchange among the model
and view layers

In addition to the five layers, we defined a PAP listener as an interface
the PAP must implement that integrates the generated policy specification
interfaces. All layers and the PAP listener are described in detail in the
following subsections. We defined interfaces for each layer to facilitate
the exchangeability of framework modules.

 Relation between Layers

The elements on the different layers of the PAP generation framework
need to interact with each other in order to provide a fully functional PAP.
According to the chosen model-view-controller approach, the content
from the model layer need to be transferred to the presentation layer by
the controller layer.

The policy template model provides a structure for policy templates. A
policy template contains an SLP template for the human-understandable
representation of a policy template as well as an ILP template for the
machine-understandable representation. The SLP template itself contains

PAP Generation Framework

116

several SLPT elements for modelling the template (see Section 4.6). The
SLP templates shall be offered to the user on the user interface using a
specific specification paradigm. Accordingly, the SLPT elements need to
be provided on the presentation level in order to be used for the
implementation of specification paradigms. Thus, the structure of the
policy vocabulary model including the policy templates is the baseline for
our reference architecture. For each of these model elements, we also
provide a respective controller and presenter element. We chose an
inheritance relation between presenter, model and controller layer as
shown in Figure 36.

PresenterElement

ModelElement

ControllerElement

PAP Generation
Framework
Component

LEGEND

Extends

Element

Figure 36: Inheritance Relation between Model, Presenter and Controller Layers

The model element inherits from the presenter element and the controller
element inherits from the model element. This allows the controller to
access and control data from both other layers. On the one hand, this
access is necessary to push information from the model to the
presentation layer, for example, when showing a new policy template on
the user interface. On the other hand, when the user enters data into the
user interface, the respective controller can pull information from the
presentation module and store it in the model. This interaction is essential,
as the instantiation of the policy template inside the model is used for the
transformation from the instantiated SLP into an ILP. In case of data
modifications, the presentation elements can trigger respective controller
elements to fetch updates and push them into the model.

In addition to the elements of the policy templates, an element
representing the whole policy vocabulary is provided on the presentation,
model and controller layers. The use of this element is mandatory as it is
initialized on PAP startup. Moreover, the element provides access to
additional data from the policy vocabulary for the implementation of
specification paradigms. An example is the order in which policy templates
are shown in the »wizard« specification paradigm or which concrete
policies are provided at the different levels of the »security levels«
specification paradigm.

PAP Generation Framework

117

The developer can decide on how to use the presentation elements for
implementing a specification paradigm while creating a presentation
module. As the specification paradigms vary in their interaction process
and therefore their user interface, we chose an aggregation relation
between the presentation layer and the view layer. The developer can
freely assemble view elements in the presentation elements.

<<Android>>

EditText
<<Android>>

LinearLayout

LayoutContainerViewer

<<interface>>

ILayoutContainerViewer

VariableViewer
<<interface>>

IVariableViewer

SLPTPresenter
VariablePresenter

<<interface>>

IPresenter
<<interface>>

IPresenterListener

Variable

VariableController<<interface>>

IController

SpecificationLevelPolicyTemplate

SLPTController

Platform

View

Presentation

Model

Controller

PresentationLink

<<interface>>

Interface

PAP Generation
Framework
Element

LEGEND

Extends

Element

Implements

Contains

PAP Generation
Framework
Interface

Figure 37: Relation of Elements between Layers

The relation between elements at the different layers is summarized in an
example in Figure 37. Details about the elements and interfaces for each
specific layer are presented in the following subsections.

 View Layer

The main purpose of the view layer is to provide UI framework
independence. This layer offers a basic set of interfaces for view elements
that need to be implemented for each module. Each interface includes a
specification of necessary functionality. A view element encapsulates a UI
framework-specific graphical component and provides it as an
independent abstraction to the presentation layer. In the optimal case, the
UI framework provides a graphical component that supports all
functionality that is required by the interface. If not, missing functions
need to be implemented. Thus, developers use the view element to specify
the specification paradigm algorithms within the presentation modules.
Figure 38 shows an overview of the view elements, their interfaces and
their hierarchical relation.

The interfaces contain standardized methods for setting the look and feel
(e.g., sizes and colors) as well as the behavior (e.g., action on click or input
validation) of the view elements. In the following, the required view
elements per module are described. All these elements need to be
implemented, because they reflect the elements used in the specification

PAP Generation Framework

118

paradigms identified in the state of the art (see Section 2.5). These view
elements reflect the SLPT elements from the policy template model (see
Section 4.6).

<<interface>>

IViewer

<<interface>>

IPictureViewer

View Layer Interfaces

<<interface>>

IContainer

<<interface>>

IStaticViewer

<<interface>>

ISelectableTextViewer

<<interface>>

IVariableViewer

<<interface>>

ITextViewer

<<interface>>

ISelectionViewer

<<interface>>

IButtonViewer

<<interface>>

IControlViewer
<<interface>>

IElementViewer
<<interface>>

IDialogViewer

<<interface>>

IEditableViewer

<<interface>>

IGridContainer

<<interface>>

ILayoutContainer

<<interface>>

IListViewer

<<interface>>

IPageContainer

<<interface>>

IPageViewer

<<interface>>

Interface

<<interface>>

Interface

To be implemented
by view module as
view component

Parent interface

LEGEND

Extends

Figure 38: Interfaces for View Elements of the View Layer

The view elements can be subdivided into element viewers and containers.
Element viewers are used for displaying static information, for obtaining
user input or for providing control and notification features to the user.
Containers are used for arranging the layout of other containers and
element viewers. The mandatory elements and categories are:

 Static viewers for displaying information on the screen.

o A text viewer (interface ITextViewer) displays a text.

o A picture viewer (interface IPictureViewer) displays a picture.

 Editable viewers for input requests from the user.

PAP Generation Framework

119

o A selection viewer (interface ISelectionViewer) provides the
user different options for selection. The content of the selection
options is defined by other view elements. The number of
options a user may select at minimum and at maximum must be
configurable. Typical representations of a selection viewer in UI
frameworks are check boxes or radio buttons (e.g. in Swing and
Android).

o A selectable text viewer (interface ISelectableTextViewer)
provides the user different text options for selection. The user
may select one option. A typical representation for a selectable
text viewer in UI frameworks are a spinner in Android, a
combobox in JavaFX or a select tag in HTML.

o A variable viewer (interface IVariableViewer) provides the user
the capability to enter information in the form of text, numbers
or dates. A typical representation of a variable viewer in UI
frameworks is a text field in JavaFX or an input tag in HTML.

 Control viewers for navigation and user notification.

o A button viewer (interface IButtonViewer) represents a typical
button on the user interface for triggering an action (e.g., saving
a policy) or for navigation within the specification paradigm.

o A dialog viewer (interface IDialogViewer) shows the user a
dialog box with a notification on the user interface.

o A list viewer (interface IListViewer) displays the user a list of
selectable options on the user interface. This control viewer can,
for example, be used to show a list of policy templates for
selection.

 Containers for arranging the layout of view elements on the user
interface.

o A layout container (interface ILayoutContainer) contains and
arranges other view elements in one layout direction (on either
the horizontal or the vertical axis). The orientation in which the
contained elements appear can be specified. The position of all
contained elements is set automatically, which means that the
UI framework component must support the automatic layout or
that the developer must implement an appropriate algorithm.

o A grid container (interface IGridContainer) contains and
arranges other view elements in a grid layout. The developer can
define the number of rows and columns and place one view
elements in each cell.

o A page viewer (interface IPageViewer) is a special instance of
a layout container. The handling of content is similar. However,
a page viewer is meant to be used if parts of the user interface

PAP Generation Framework

120

are shown in sequence, for example, in the specification
paradigm »wizard«.

o A page container (interface IPageContainer) contains a list of
page viewers and navigation functionality for switching the
pages. The developer defines the order of the pages.

In addition to these components, standardized abstractions for colors,
pictures, layout orientations, viewer alignments, text styles, viewer
dimensions need to be provided for each operation platform.

 Presentation Layer

The main purpose of the presentation layer is to provide the
exchangeability of paradigms for policy specification. Therefore, the
developer can provide multiple specification paradigms as modules for the
PAP generation framework. A presentation module contains an algorithm
that defines the generation of the user interface based on a specification
paradigm. In the algorithm, the developer describes how the information
from a policy template model instance is presented on the user interface.
He uses view elements to arrange the visible information and to
implement the specification process. The generation algorithms for the
four supported specification paradigms of our reference implementation
can be found in Section 5.3.2.

<<interface>>

IPresenter

Presentation Layer Interfaces

<<interface>>

Interface To be implemented
by presentation elements

LEGEND

<<interface>>

IPolicyVocabularyPresenter

<<interface>>

IPresenterListener
<<interface>>

ISelectablePresenter

Figure 39: Interfaces for Presentation Elements of the Presentation Layer

As presentation modules are exchangeable and not hard-wired to the
controller layer, presentation elements need to implement respective
interfaces. The following interfaces exist (see Figure 39):

 Each presentation element inherited by a respective controller element
must implement the IPresenter interface. This interface covers
methods for initializing the presentation element, for retrieving values
from the model or pushing user input from view elements back into
the model. Additionally, the developer of the presentation module
must implement an input checker that validates whether the data
entered by the user is valid (e.g., with respect to type or range
according to the specification in the template) and complete (e.g.,
checking that all mandatory fields have been filled out). In case of an
invalid input, the user is notified via the PAP listener.

PAP Generation Framework

121

 The ISelectablePresenter interface extends the IPresenter interface
and adds methods for setting and getting the selection state of
presentation elements that the user can select or deselect.

 The IPolicyVocabularyPresenter interface extends the IPresenter
interface and adds functionality. There exists exactly one
implementation of this interface, the PolicyVocabularyPresenter. First,
a function for retrieving the reference to the UI framework component
that is linked to the parent view container element of the policy
specification interface must be provided. This component can be
embedded in the surrounding PAP. It contains the complete policy
specification interface. Second, in some cases it is necessary to send
information from the policy specification interface to the surrounding
PAP (e.g., for showing error dialogs or storing instantiated policies).
Therefore, a function for registering a listener at the
PolicyVocabularyPresenter is provided.

 All presentation elements that need to be informed about changes of
view elements must implement the IPresenterListener interface. This
interface provides a list of callback methods for elements that are
clicked, that gain or lose focus or whose value was changed. Thus, on
each change of the view element, the affected presentation element
can retrieve the new data and trigger a controller element to update
the model instance. Generic interfaces between the presentation layer
and the controller layer ensure the paradigm-independence.

Information about the relations between different presentation elements
can be specified via the IPresentationLink interface, which contains
methods for setting and getting parent-to-child relations.

 Model Layer

We use a policy vocabulary to configure the PAP Generation Framework.
The policy vocabulary is an instantiated policy template model. Actually,
the PolicyVocabulary is an element in the template sub-model and
includes SLPTs and corresponding ILPTs for an application domain. The
SLPTs are needed for presenting them on the user interface. The ILPTs are
used as transformation rules for generating concrete machine-
understandable policies from instantiated SLPTs.

Following the model-view-controller approach, access to the model
elements is only granted to the respective controller elements.

 Policy Language Layer

The policy language layer contains modules for the supported
implementation-level policy languages. As described in Section 4.7, the
policy template model is extensible by machine-understandable policy

PAP Generation Framework

122

languages based on XML. A policy language module consists of a model
of language elements. ILPTs are assembled from these model elements.
Thus, for creating machine-understandable policies, a PAP needs
transformation rules in the form of ILPTs and the compatible policy
language module.

 Controller Layer

The main purpose of the controller layer is to support the data exchange
between the model and presentation layers or more specifically, between
the respective elements of those layers. Therefore, for all relevant model
elements, corresponding controllers exist. Figure 40 depicts all controller
elements and their relation to the controller interfaces. The relation
between elements on the controller layer depends on the concrete
instantiation of the PAP based on the policy vocabulary being used.

<<interface>>

IController

Controller Layer Interfaces
and Elements

<<interface>>

IPolicyVocabularyController

<<interface>>

IVocabularyManager

PolicyVocabularyController

VocabularyManager

<<interface>>

Interface

PAP Generation
Framework
Element

LEGEND

Extends

Element

Implements

Contains

PAP Generation
Framework
Interface

PolicyTemplateController

SLPTController

ElementGroupController

SelectableTextController

SelectionController

TextController

VariableController

VariableChoiceController

Figure 40: Interfaces and Elements of the Controller Layer

The following interfaces exist:

 The IController interface is implemented by all controllers except the
policy vocabulary controller. It requires the following functionality.
First, the initialization of each policy template is triggered via the policy
vocabulary controller and passed through all child elements. Second, a
controller can be triggered by a presenter to update data in the model
based on user input. Third, the controller triggers the input validation.
Last, the respective values for the generation of SLPs and ILPs from the
model are provided.

PAP Generation Framework

123

 The IPolicyVocabularyController interface extends the IController
interface and mainly requests functionality for the generation of SLPs
and ILPs. In addition, a PAP listener can be registered to accept
callbacks from the surrounding software component.

 The IVocabularyManager interface requires functionality for the
selection of view and presentation modules and for the initialization of
the entire PAP based on a policy vocabulary. Additionally, the interface
requires functions for providing references to the
PolicyVocabularyController and the corresponding
PolicyVocabularyPresenter from the policy specification user interface
to the PAP.

The developer must implement exactly one PolicyManager and one
PolicyVocabularyController. Those are the main elements of the generated
policy specification interface of a PAP.

 PAP Listener

The generated policy specification interface is embedded into a PAP. This
PAP has to implement the IPAPListener interface in order to accept
callbacks from the policy specification user interface. Two functions need
to be provided:

 After policy specification, the generated SLPs and ILPs are handed over
to the PAP. These policies can then, for example, be stored or
deployed.

 On invalid user input, error messages are handed over to the PAP.

Figure 41: Concept for Embedding a Generated Policy Specification Interface into a PAP

PAP Generated Policy Specification Interface

Vi
ew

La
ye
r

Pr
es
en

ta
tio

n
La
ye
r

Co
nt
ro
lle
r

La
ye
r

View Container

PolicyVocabularyPresenter

PolicyVocabularyController

User Interface Container
on Operation Platform

VocabularyManager

User Interface Container
on OperationPlatform

LEGEND

Control Flow
Reference

PAP Listener

PAP Generation Framework

124

5.2.2 Concept for Embedding a Generated Policy Specification Interface into a
PAP

A PAP can embed a policy specification user interface that is generated
with the PAP generation framework. To adopt a generated user interface,
the developer has to perform three tasks:

 The VocabularyManager need to be initialized in the PAP. For the
initialization, a policy vocabulary need to be assigned to the
VocabularyManager. In addition, the modules for view and
presentation must be selected.

 The developer registers a PAP Listener at the VocabularyManager. This
listener provides call back functions used by the
PolicyVocabularyPresenter.

 The developer needs to embed the parent user interface container
from the view layer of the policy specification interface into a UI
container of the PAP.

An overview of the embedding concept is shown in Figure 41

5.3 Specification Paradigms

5.3.1 Selection of Specification Paradigms

In Section 2.5, we identified many different PAPs in the literature and
practice that aim to be used by different types of users (e.g., non-experts,
administrators) for the specification of security or privacy policies. We
derived eight specification paradigms from those tools. It would be
beneficial to compare all of those paradigms with respect to usability.
However, in order to generate PAPs using those specification paradigms,
we would need to implement all of them as presentation modules for our
PAP generation framework. As we only have limited resources and the
comparison of too many specification paradigms in the evaluation is
expedient (e.g., participation in experiments takes too long), we decided
to select and implement four representative presentation modules. We
identified two characteristics of PAPs in the literature that guided us in
assigning the eight specification paradigms to four classes. For each class,
we selected one specification paradigm as a representative. The two
characteristics are:

 Expressiveness: The user needs to make a series of decisions during
the specification of a policy with a PAP. We call the number of required
decisions the expressiveness of the PAP. On the one hand, a high
expressiveness lets users adapt the policies in a more fine-grained
manner to their personal security and privacy preferences. On the other

PAP Generation Framework

125

hand, a limited expressiveness lets users focus on the essential
decisions and potentially decreases the error potential. Many
paradigms with low expressiveness let the user just select from
predefined policies.

 Guidance: During the specification of policies, the user can be
supported in decision making by appropriate additional information,
hints, recommendations of the next decision to make, notifications
about potential mistakes and many other guidance mechanisms. PAPs
can massively influence the process of policy specification by providing
a high level of guidance or by leaving the user to his own devices by
offering a low level of guidance.

Our decision to differentiate the specification paradigms according to
these two characteristics is substantiated in the literature. In 2010,
Johnson et al. proposed »new guidelines for usable policy authoring« [25].
They recommend an »appropriate limitation of expressiveness« [25] to
optimize PAP usability. Note, however, that the suitability of the
expressiveness depends on the user and his skills. We reflect this guideline
in our scale »expressiveness«. There, we distinguish between specification
paradigms with low expressiveness that allow only the selection of pre-
defined policies and paradigms with high expressiveness that let users
instantiate policies within given specification boundaries.

Figure 42: Selection of Specification Paradigms

Johnson et al. also require the provision of access to metadata [25]. That
is, they argue that a PAP should provide the users all context information
that is necessary to make informed decisions. We partially reflect this
guideline in our scale »guidance«. However, we see a need for a broader
differentiation. Apart from providing comprehensive information for
decision-making, the process of transforming this information into
personal policies also needs to be considered.

expressiveness

guidance

low (selection) high (instantiation)

low

high

Security
Levels

Default
Policies Template

Instantiation

Wizard

by Design

On/off
Switches

LEGEND

Not selected
specification
paradigm

Selected
specification
paradigm

Specification
Paradigm

Specification
Paradigm

Text based
Specification

2
1

3
4

Grid based
Specification

PAP Generation Framework

126

In addition, Kuo [35] and Boyd [40] consider the user’s knowledge as an
important requirement for users to specify privacy settings. Thus, the
policy specification interface should be usable for the user with his level
of knowledge. This motivates our selection of the two characteristics:
Missing knowledge can be compensated by limiting the expressiveness
and by increasing the guidance.

We assessed the seven specification paradigms that we derived from
existing PAP designs along the scales »guidance« and »expressiveness«
(see Figure 42). We divided the data area of the diagram into four
quadrants and selected one specification paradigm per quadrant. For
every specification paradigm selected, we implemented a presentation
module for our PAP generation framework:

 Quadrant 1 – Low guidance, low expressiveness: The paradigm
with the lowest guidance and expressiveness is »security and privacy
by design«. The user has no decisions to take, as policies are
predefined and immutable. The paradigm »default policies« has very
limited expressiveness. The user can only select from a list of
predefined policies; this selection is the only choice the user can make.
The level of guidance depends on the concrete implementation of this
specification paradigm. However, we rate the guidance low compared
to other paradigms with low expressiveness.

 Quadrant 2 – High guidance, low expressiveness: We rate the
paradigms »security levels« and »on/off switches« to have limited
expressiveness, as they base on the selection of predefined policies. For
the »security levels«, the specification process is very simple: The users
just have to select their preferred level. The additional hints and
information supporting the users in their decision depend on the
concrete implementation. They are supposed to be appropriate for
meaningful decision-making.

 Quadrant 3 – High guidance, high expressiveness: We assigned
the »wizard« as the only specification paradigm to this quadrant. The
»wizard« strictly controls the sequence of decisions to be made by the
user. Moreover, decisions are split into small steps. Explanations and
hints that support the user in the decision-making process are provided
at each step. The »wizard« provides a high expressiveness due to many
fine-grained decisions in the specification steps. User can generate
their individual policy from a variety of decision options.

 Quadrant 4 – Low guidance, high expressiveness: The remaining
three specification paradigms, »template instantiation«, »grid-based
specification« and »text-based specification«, all provide high
expressiveness. The »template instantiation« is based on the
generation of policies from a policy template with a graphical user
interface. The »grid-based specification« allows the user to combine

PAP Generation Framework

127

predefined parts of the policy in a grid view. The »text-based
specification« allows the user to assemble words to a policy based on
a specific grammar, provided by, for example, a controlled language.
Compared to the other paradigms that are based on the selection of
predefined policies, the specification process of these paradigms is less
restricted and less guided.

In quadrant 1, we chose the paradigm »default policies« for
implementation in the PAP generation framework, as it provides an actual
specification option to the user. Altogether, we derived three specification
paradigms that are based on the selection of predefined policies: »default
policies«, »on/off switches« and »security levels«. Among these, we
picked those two with the highest and lowest guidance for
implementation. Thus, we selected the »security levels« in the second
quadrant. In our opinion, the »wizard« is the specification paradigm with
the strongest guidance; therefore we selected it as the third specification
paradigm for the PAP generation framework. In the fourth quadrant, we
voted for the »template instantiation«. Johnson et al. positively
evaluated the use of policy templates for the process of policy specification
for non-experts and suggested to this paradigm [10]. We followed their
suggestion and compared this specification paradigm with the others in
our evaluation.

In summary, we selected the specification paradigms »default policies«,
»security levels«, »wizard« and »template instantiation« for
implementation in the PAP generation framework and for evaluation with
respect to Hypothesis 1 (usability of specification paradigms; see
Section 1.5.1).

5.3.2 Specification Paradigm Algorithms

Based on the selection of specification paradigms in the previous section,
we developed presentation modules for our PAP generation framework.
A presentation module contains a generation algorithm for transforming
the information from the policy vocabulary into the graphical user
interface representing the specification paradigm.

Below, we describe the generation algorithms for all four selected
specification paradigms. For each paradigm, we provide simplified
pseudocode explaining the generation algorithm and a mockup showing
a simplified user interface resulting from the specification paradigm.

 Default Policies

The specification paradigm »default policies« provides the user a list of
predefined policies per policy template. The user selects a policy template
and the PAP shows the respective list of predefined policies. The user

PAP Generation Framework

128

selects the preferred policy and saves it. Figure 43 shows a mockup of a
PAP with the specification paradigm »default policies«.

Figure 43: Mockup of Specification Paradigm »Default Policies«

The PAP generates the list of default policies from the respective
information stored in the policy vocabulary (instantiated specification
paradigm projection sub-model and instantiated specification-level sub-
model). The policy vocabulary contains a definition of default policies per
policy template. Each default policy consists of a set of values for each
variable element of the policy template (ReferenceableSlptElement; i.e.
variable, selectable text or selection). Those values are used to instantiate
the respective policy template.

Listing 6 shows the pseudocode for the user interface generation for the
specification paradigm »default policies« in a simplified form. We did not
include any calls for the styling of the UI components.

Listing 6: Pseudocode of Generation Algorithm for Specification Paradigm »Default Policies«

create layout container 1 with horizontal orientation
get list of policy templates from policy template model
create list viewer containing list of policy templates
create layout container 2 with vertical orientation
add list viewer and layout container 2 to layout container 1
on click on policy template in list viewer do
··get clicked policy template from policy template model
··initialize policy template controller for policy template
····create selection viewer with vertical orientation
····get default policies for policy template from policy template model
······for each default policy do
········instantiate policy template with values from default policy

PAP Generation Framework

129

········generate SLP of default policy with policy template controller
········create text viewer
········set SLP as text in text viewer
······add text viewer to selection viewer
····add selection viewer to layout container 2
create button for saving policy
add button to layout container 2

 Security Levels

The specification paradigm »security levels« provides the user a list of
predefined policy sets (each representing a different security level)
containing instances of multiple policy templates. The user selects the set
of policies that matches his preferred security or privacy level. By choosing
a security level, all corresponding policies are selected and can be saved.
Figure 44 shows a mockup of a PAP with the specification paradigm
»security levels«.

Figure 44: Mockup of Specification Paradigm »Security Levels«

The PAP generates the security levels from the respective information
stored in the policy vocabulary (instantiated specification paradigm
projection sub-model and instantiated specification-level sub-model). The
policy vocabulary contains a definition of all security levels in the form of
a mapping of default policies to security levels. Thus, the experts decides
which of the default policies per policy template he wants to assign to a

PAP Generation Framework

130

security level. Listing 7 shows the pseudocode for the user interface
generation for the specification paradigm »security levels« in a simplified
form. We did not include any calls for the styling of the UI components.

Listing 7: Pseudocode of Generation Algorithm for Specification Paradigm »Security Levels«

create layout container with vertical orientation
create text viewer containing instruction for selection of security level
add text viewer to layout container
create selection viewer
get security levels from policy template model
for each security level do
··get default policies for security level from policy template model
··for each default policy do
····instantiate policy template with values from default policy
····generate SLP of default policy with policy template controller
····create text viewer
····set SLP as text in text viewer
··add text viewer to selection viewer
add selection viewer to layout container

 Wizard

The specification paradigm »wizard« provides the user a series of small
specification steps. On instantiating the policy template model, an expert
defines the order of these specification steps and their relation to the
policy templates. Thus, by carrying out the predefined control flow of the
specification steps, the user specifies a set of policies. Figure 45 shows a
mockup of a PAP with the specification paradigm »wizard«.

Figure 45: Mockup of Specification Paradigm »Wizard«

The PAP generates the wizard from the respective information stored in
the policy vocabulary (instantiated specification paradigm projection sub-

PAP Generation Framework

131

model and instantiated specification-level sub-model). The policy
vocabulary contains a definition of the wizard pages and their order. Each
page contains an ordered list of descriptive texts and references to the
variable elements (ReferenceableSlptElement; i.e. variable, selectable text
or selection) of the policy templates stored in the policy vocabulary. For
each wizard page, the generation algorithm creates viewer components
based on this list. Listing 8 shows the pseudocode for the user interface
generation for the specification paradigm »wizard« in a simplified form.
We did not include any calls for the styling of the UI components.

Listing 8: Pseudocode of Generation Algorithm for Specification Paradigm »Wizard«

create layout container 1 with vertical orientation
create layout container button with horizontal orientation
create button for getting to the previous step
add button for getting to the previous step to layout container button
get list of template references from wizard definition
for each template reference do
··resolve template reference and get policy template
······from policy template model
··initialize policy template controller for policy template
··get list of wizard pages from policy template
··for each wizard page do
····get list of wizard page elements of wizard page
······for each wizard page element do
········if wizard page element is wizard page description then
··········create text viewer
··········set description of wizard page description to text viewer
··········add text viewer to layout container 1
········else if wizard page element is SLPT element
··········call handleSlptElements(wizard page element, layout container 1)
····create button for getting to current step
····add button for getting to current step to layout container button
create button for getting to the next step
add button for getting to the next step to layout container button
add layout container button to layout container 1

function handleSlptElements(SLPT elements, container)
begin
··for each SLPT element do
····if SLPT element is selection then
······call handleSelection(SLPT element, container)
····else if SLPT element is text then
······call handleText(SLPT element, container)
····else if SLPT element is variable then
······call handleVariable(SLPT element, container)
end

function handleSelection(selection, container)
begin
··create selection viewer
··if only one element group of selection can be selected then
····set selection viewer to radio button mode
··else
····set selection viewer to check box mode

PAP Generation Framework

132

··get list of element groups from selection
··for each element group do
····create layout container s with horizontal orientation
····get list of SLPT elements from element group
····call handleSlptElements(SLPT elements, layout container s)
····add layout container s as item to selection viewer
··add selection viewer to container
end

function handleVariable(variable, container)
begin
··create variable viewer
··set value of variable to variable viewer
··set variable type of variable to variable viewer
··add variable viewer to container
end

function handleSelectableText(selectable text, container)
begin
··create selectable text viewer
··add variable choices of selectable text as items to selectable text viewer
··add selectable text viewer to container
end

 Template Instantiation

The specification paradigm »template instantiation« provides the user a
list of policy templates. The user selects a policy template and the PAP
shows the respective template. The user fills all forms according to his
security and privacy preferences. Finally, the user saves the policy.
Figure 46 shows a mockup of a PAP with the specification paradigm
»template instantiation«.

The generation algorithm creates and assembles viewer components
based on the policy templates in the policy vocabulary (instantiated
specification-level sub-model). In addition, more information from the
policy vocabulary is added to the respective viewers, such as descriptive
hint texts. Listing 9 shows the pseudocode for the user interface
generation for the specification paradigm »template instantiation« in a
simplified form. We did not include any calls for the styling of the UI
components.

PAP Generation Framework

133

Figure 46: Mockup of Specification Paradigm »Template Instantiation«

Listing 9: Pseudocode of Generation Algorithm for Specification Paradigm »Template Instantiation«

create layout container 1 with horizontal orientation
get list of policy templates from policy template model
create list viewer containing list of policy templates
create layout container 2 with vertical orientation
add list viewer and layout container 2 to layout container 1
on click on policy template in list viewer do
··get clicked policy template from policy template model
··initialize policy template controller for policy template
··get list of SLPT elements from policy template
··create layout container 3 with horizontal orientation
··call handleSlptElements(list of SLPT elements, layout container 3)
add layout container 3 to layout container 2
create button for saving policy
add button to layout container 2

function handleSlptElements(SLPT elements, container)
begin
··for each SLPT element do
····if SLPT element is selection then
······call handleSelection(SLPT element, container)
····else if SLPT element is text then
······call handleText(SLPT element, container)
····else if SLPT element is variable then
······call handleVariable(SLPT element, container)
····else if SLPT element is selectable text then
······call handleSelectableText(SLPT element, container)
end

PAP Generation Framework

134

function handleSelection(selection, container)
begin
··create selection viewer
··if only one element group of selection can be selected then
····set selection viewer to radio button mode
··else
····set selection viewer to check box mode
··get list of element groups from selection
··for each element group do
····create layout container s with horizontal orientation
····get list of SLPT elements from element group
····call handleSlptElements(SLPT elements, layout container s)
····add layout container s as item to selection viewer
··add selection viewer to container
end

function handleText(text, container)
begin
··create text viewer
··set value of text to text viewer
··add text viewer to container
end

function handleVariable(variable, container)
begin
··create variable viewer
··set value of variable to variable viewer
··set variable type of variable to variable viewer
··add variable viewer to container
end

function handleSelectableText(selectable text, container)
begin
··create selectable text viewer
··add variable choices of selectable text as items to selectable text viewer
··add selectable text viewer to container
end

5.4 Reference Implementation

We developed a fully functional PAP generation framework that
implements the proposed reference architecture. An overview of the
modules currently provided is given in Figure 47.

We support four UI frameworks with respective modules: »Swing« and
»JavaFX« for Java desktop clients, »Android« for mobile clients and a
»Web« user interface. For the presentation layer, we developed modules
implementing the specification paradigms »template instantiation«,
»wizard«, »default policies« and »security levels« with the generation
algorithms described in the previous section. We tested the generation of
PAPs in several application domains and provided corresponding policy
vocabularies. Examples are:

PAP Generation Framework

135

 Security and privacy demands of bank clients in the context of the case
study »SINNODIUM« (see Section 8.2)

 Security demands regarding critical cloud infrastructure solutions in the
case study »SECCRIT« (see Section 8.3)

 Security demands of employees and employers with respect to
information classification and data protection in a business context in
the case study »BeSure« (see Section 9.2)

 Privacy demands of citizens as users of apps for smart rural areas in the
context of the case study »Digital Villages« (see Section 9.3)

For further illustration, we show an exemplary PAP instantiations using the
policy vocabulary from an IND²UCE demonstrator »Construction Site 4.0
(CS4)« in the following. In this example, support the machine-
understandable IND²UCE policy language for the generation of ILPs in the
versions 1.1 and 3.0.46 as well as its productive equivalent MYDATA
policy language in version 4.0.

Figure 47: Current Modules in the Reference Implementation of the PAP Generation Framework

 View Layer

We developed four view modules. For each module, we had to implement
all required interfaces in the form of view elements. We identified the UI
framework components that best cover the functionality required by the
interfaces and embedded them in the view elements. We added missing
functionality that is not provided by the UI components. Table 11 lists
examples of UI components embedded into the view elements in the four
implemented view modules.

View layer:
Platform Components JavaFx Web Swing

Presentation layer:
Policy Specification

Paradigms

Template
Instantiation

Wizard
Default
Policies

Model layer:
Policy Template
Model Instance

Digital
Villages

BeSure SECCRIT

Policy language
layer:

Transformation Rules

IND²UCE
Language

(3.0.46)

IND²UCE
Language

(1.1)

(XML-based
Policy

Languages)

Controller layer:
Interfaces and Basic

Functionality
Generic PAP Generation Framework Controller

Security
Levels

Android

CS4

MYDATA
Language

(4.0)

PAP Generation Framework

136

Table 11: Examples for Mapping of View Elements with UI Framework Components

View Element JavaFx
(javafx.scene.*)

Web (HMTL) Swing
(javax.swing.*)

Android
(android.widget.*)

TextViewer control.Label JLabel TextView

SelectionViewer layout.VBox
with
control.RadioButton
or control.CheckBox

<fieldset><input />
</fieldset>
with
input types radio or
checkbox

ButtonGroup
with
JRadioButton or
JCheckbox

LinearLayout
with
RadioButton or
CheckBox

SelectableTextViewer control.ComboBox <select> JComboBox Spinner

VariableViewer control.TextField <input> JFormattedTextField EditText

ButtonViewer control.Button <button> JButton Button

ListViewer control.ListView <div> JList ListView

LayoutContainer layout.FlowPane or
layout.VBox

<div> JPanel LinearLayout

 Presentation Layer

We developed presentation modules for each of the four specification
paradigms »template instantiation«, »wizard«, »default policies« and
»security levels«. In each module, we implemented the respective
specification paradigm algorithms described in Section 5.3.2.

 Policy Specification Interface Generation at runtime

The PAP generation framework generates the user interface for the
specification of policies. Three aspects affect the generation: the view
module, the presentation module and the policy vocabulary.

There are two points in time at which the policy specification interface of
a PAP could be generated:

 At development time: The developer generates an instance of the
PAP with a fixed specification paradigm and with an immutable user
interface.

 At runtime: The developer creates an instance of the PAP that
supports all specification paradigms and that generates the policy
specification user interfaces at runtime.

We chose runtime generation because it offers higher flexibility for
users. The developer creates one instance of the PAP. Thus, it supports
one UI framework and all specification paradigms. The user interface of
the PAP is generated at runtime based on the selected specification
paradigm (presentation module) and the selected policy vocabulary. The
developer can decide how the selection of both modules is realized. Both

PAP Generation Framework

137

modules can be selected, for example, via a configuration file or via the
user interface. The latter allows a selection by the user itself.

We realized the UI generation at runtime with two concepts and
respective technologies:

 To achieve customization to the application domain, we load a policy
vocabulary during PAP instantiation. We realized the exchangeability
of model modules with the concept XML binding and
unmarshalling. First, class models representing the policy template
model and the policy language for ILPs need to be generated from the
respective XML schema files. We use the technology »Java Architecture
for XML Binding (JAXB)« [161] with its implementation »Eclipselink
MOXy« [162]. At runtime, we bind XML elements from the policy
vocabulary to objects in the model module using the same technology.
To this end, XML elements from the policy vocabulary are deserialized
and respective objects in the model module are instantiated during the
initialization of the PAP. Eventually, the model module contains an
object tree that represents the XML element structure of the policy
vocabulary. After the user has specified an SLP, the PAP can generate
a corresponding ILP, provided that the respective transformation rules
are defined in the policy vocabulary. These rules are applied to the part
of the object tree representing the ILP. The final generation of an ILP is
realized as a serialization of this part of the object tree with XML
unmarshalling. The output is an XML policy.

 To achieve the flexible selection of presentation modules at runtime,
we use dependency injection. Dependency injection allows a
dynamic binding of objects at runtime. According to our reference
architecture, controller, model and presenter elements have an
inheritance relation. At development time, it is unclear which concrete
presenter the corresponding model element needs to inherit from, as
it is not known which presentation modules is used. Presentation
modules may even be replaced by others at runtime. Thus, during the
initialization of the policy vocabulary, a presenter stub is instantiated
and bound to the concrete presentation element after the selection of
the presentation module. During the initialization of the selected
presentation module, the user interface is created. Therefore, the view
elements are also dynamically bound to the presenter elements. The
concept of element binding is illustrated in Figure 48. To implement
the concept, we use the Google Guice [163] dependency injection
framework.

PAP Generation Framework

138

PresenterStub

ModelElement

ControllerElement

PAP Generation
Framework
Component

LEGEND

Extends

Element
PresenterElement

Contains (bound
during runtime)

Presentation Module

ViewElement

View Module

Figure 48: Injection of Presentation Elements at runtime

 Example PAP Framework Instantiations

In the following, we show some example PAPs that are created with the
PAP generation framework based on the UI framework »JavaFX«. Other
exemplary instantiations of PAPs created with the PAP generation
framework can be found in the descriptions of the four case studies in
Section 8.2.3, Section 8.3.3, Section 9.2.3 and Section 9.3.3.

Figure 49: Policy Editor in UI Framework »JavaFX« that Embeds a PAP and Supports Policy

Management Functionality

Figure 50: Exemplary PAP Using View Module »JavaFX«, Policy Vocabulary »CS4« and Presentation

Module »Template Instantiation«

Figure 49 shows our JavaFX PAP, which imported the policy vocabulary
»CS4«. The use of the PAP with the presentation module »template
instantiation« is shown in Figure 50. A click on the »Generate Policy«
button instructs the PAP to generate an ILP from the instantiated policy

PAP Generation Framework

139

template. The resulting ILP is visible in the editor, as shown in Figure 51.
The ILP is based on the policy language »MYDATA Version 4.0«.

Figure 51: ILP in MYDATA Policy Language Version 4.0 Generated by the PAP in UI Framework

»JavaFX«

The JavaFX PAP instance also allows the user to specify policies with
different specification paradigms. The use of the »wizard« is illustrated in
Figure 52, the »default policies« in Figure 53 and the »security levels« in
Figure 54.

Figure 52: Example PAP using View Module »JavaFX«, Policy Vocabulary »CS4« and Presentation

Module »Wizard«

PAP Generation Framework

140

Figure 53: Example PAP using View Module »JavaFX«, Policy Vocabulary »CS4« and Presentation

Module »Default Policies«

Figure 54: Example PAP using View Module »JavaFX«, Policy Vocabulary »CS4« and Presentation

Module »Security Levels«

5.5 Summary and Conclusion

In this chapter, we presented our concept and reference implementation
of a PAP generation framework. We also explained the selection of
specification paradigms for our implemented presentation modules.

To conclude the discussion and to reflect on our achievements, we briefly
review the fulfillment of the requirements for the PAP generation
framework, which we defined in Section 5.1:

 Req_Framework_UI-Generation: The policy specification user
interfaces in a PAP can be generated by using the PAP generation
framework.

 Req_Framework_Modularity: We built a modular framework with
the five layers: controller, presentation, view, model and policy
language. Except for the controller layer, the developer can implement
multiple modules for each layer and choose the desired modules at
runtime.

PAP Generation Framework

141

 Req_Framework_Policy-Templates: The specification paradigm
generation algorithms take all policy templates from a policy
vocabulary and represent them on the user interface. To this end, the
different algorithms generate the user interfaces for the policy
templates or elements from the policy templates, respectively, in
different ways, depending on the specification paradigm.

 Req_Framework_Specification-Paradigms: We created generation
algorithms for four specification paradigms and extended the policy
template model accordingly (specification paradigm projection sub-
model). The user interfaces of the PAP are generated at runtime.
Therefore, users can select their preferred specification paradigm at
runtime. The PAP can also be configured to use a default specification
paradigm or to provide a limited set of specification paradigms for
selection. We implemented the four specification paradigms »default
policies«, »security levels«, »wizard« and »template instantiation«.

 Req_Framework_Multi-User-Interface-Frameworks: The PAP gen-
eration framework supports multiple UI frameworks. This is achieved
with the view layer as an abstraction of the UI frameworks being used.
We demonstrated the use of multiple UI frameworks by implementing
view modules for »Swing«, »JavaFX«, »Web« and »Android«.

 Req_Framework_Policy-Transformation: Our PAP is capable of
applying the transformation rules provided in policy vocabulary
(implementation level template sub-model) to an instantiated policy
template using the JAXB marshalling. The outcome is a machine-
understandable XML policy. Multiple policy languages can be
supported. However, the transformation rules in a policy vocabulary
can only be defined for one specific policy language.

143

6 Mapping Users to Specification Paradigms

We ascertained in the problem derivation surveys that users have
problems with existing PAPs regarding usability. In this thesis, we propose
to solve the usability issues by mapping the specification paradigm to a
user that offers him the best usability. Our mapping represents
Contribution 1 of this thesis (see Section 1.4).

We enhance policy specification effectiveness by lowering the users’
specification mistakes and by increasing the precision of the users’ self-
evaluation of mistakes made. In addition, we improve the effectiveness by
increasing the speed of specification and the satisfaction that the user
experience during the specification. In this chapter, we explain our
contribution to the mapping of specification paradigms to users.

A recent study by Zhao et al. [11] shows that existing approaches lack
understanding of the user group. Thus, we need to consider the resources
of users for the task of policy specification. Therefore, we also evaluate
the mapping of usability effects of specification paradigms on different
user groups represented by personas.

We structured the remainder of this chapter as follows. In Section 6.1, we
explain our research approach. Next, we state our assumptions regarding
the mapping of specification paradigms to users and their basis in Section
6.2. Section 6.3 describes and justifies our assumptions regarding a
mapping of specification paradigms to personas. Section 6.4 summarizes
and concludes this chapter.

6.1 Research Approach

We applied a two-step approach to our research problem:

First, we identified obstacles that a user may face with different
specification paradigms. To this end, we investigated characteristics of
users and mapped them on characteristics of the specification paradigms.
In order to identify relevant user characteristics, we needed a better
understanding of user behavior regarding PAP use. Therefore, we
surveyed psychological models describing the user behavior. We built a
user intention model aligned to existing behavior models that explains the
user behavior observed in the problem derivation surveys. We clarified
influences of characteristics of different specification paradigms on
usability. Our studies also revealed that PAP users sometimes face

Mapping Users to Specification Paradigms

144

fundamental barriers that hinder them to start the policy specification at
all. We identified potential obstacles as discrepancies between available
and expected user resources. Based on these findings, we finally derived
assumptions about the best matching specification paradigms for users.

Next, we empirically validated our assumptions in the policy specification
experiment by measuring the effect of different specification paradigms
on the specification process. We measured effectiveness, efficiency and
satisfaction for the use of all specification paradigms. We reviewed the
results and derived recommendations for specification paradigms. We also
evaluated whether the mapping of specification paradigms to different
personas differs from the mapping to the entire participant population.
For this experiment, we selected a persona model that best matched our
needs. The experiment is described in Section 9.4.

We derived the following requirements for our mapping of users to
specification paradigms from our Hypothesis 1 (see Section 1.5.1):

 Req_Mapping_User-Characteristics: We need a better under-
standing of PAP users in order to map suitable specification paradigms
to them, as we require in Hypothesis 1. Therefore, we need to
determine the relevant characteristics of users that affect the usability
of PAPs with different specification paradigms.

 Req_Mapping_Specification-Paradigms: We need to identify key
characteristics of specification paradigms in order to match them to
the identified characteristics of users, as we require in Hypothesis 1.

 Req_Mapping_Personas: We assume that the mapping of
specification paradigms to individual personas representing more
homogeneous user subgroups achieves better results with respect to
increased usability than a mapping to the entire, heterogeneous user
population. Thus, we need to find an appropriate user group or
persona model to cluster users into representative user groups. Then,
we can propose a mapping for increasing the usability of PAPs based
on the characteristics of specification paradigms and user groups.

6.2 Mapping Specification Paradigms to Users

We want to improve the usability of PAPs for users by providing the best
matching specification paradigm for each type of user. Therefore, we
need a better understanding of the user, his characteristics and his
behavior. Below, we describe a user intention model, key characteristics
of users and our mapping to specification paradigms.

Mapping Users to Specification Paradigms

145

6.2.1 User Intention Model

Our problem derivation surveys revealed that users make only moderate
efforts to specify their security and privacy policies. In many cases, this
contradicts the user’s actual need for security and privacy, which is one of
the key drivers for performing security and privacy related activities. We
consider the need for security and privacy a basic need of humans [142].
We concentrate on those users who are not able to carry out these tasks
(i.e., specifying security and privacy policies) appropriately despite their
existing needs. Thus, we ignore potential unawareness of security and
privacy issues. Lacking need for security and privacy could be
compensated by awareness measures, which are out of focus here.

Figure 55 shows our intention model, which is based on established
models of user behavior (see Section 2.6.1). Our model abstracts existing
problems (e.g., too high complexity of PAP, too much time necessary for
policy specification, privacy paradox) to a generic level. The model explains
the discrepancy between the user’s demand for security and privacy
protection (desired result) and the reality of the user ignoring his
interaction options (actual behavior).

Figure 55: User Intention Model

BehaviorUser

Security /
Privacy

Demand

Result

Intention
(Intrinsic motivation must exceed barriers)

Barrier
(Resources must meet the

user requirements)

User
Requirements

Intrinsic
Motivation

Trigger

Need for
Security /
Privacy

Resources

System

PAP

leads to

produces

initiates
formation of

instantiates

has

has

refers to

contains

implies

leads to

Mapping Users to Specification Paradigms

146

The utility of PAPs depends on the behavior of the user. If the user does
not use or does not want to use PAPs, security and privacy goals cannot
be achieved. Thus, we want to achieve a specific user behavior (i.e., usage
of PAPs) in order to obtain a result (e.g., specified policies). The actual
behavior depends on the user’s intention. In an ideal world, the user’s
intention is a direct consequence of his motivation. For example, as
personal-identifiable information in a system directly belongs or relates to
the user, he typically has in intrinsic motivation to protect it. Unfortunately,
pure motivation is not the only factor influencing the intention. Barriers
come into play as a counterpart to motivation. Intention arises when the
user’s motivation exceeds the barriers he faces. The intention leads to the
behavior of specifying policies. We will refine the barriers later and focus
on the motivational part first.

The motivation for using PAPs typically stems from situation-dependent
security and privacy demands. These concrete demands are based on a
general need for security and privacy and arise when the user experiences
a certain trigger. A privacy demand could be, for instance, the desire to
protect personal data from abuse in a social network or to gather
information about the data usage by third parties. In comparison to the
need for privacy, the privacy demand does not describe a holistic need,
but it refers to a certain system. Examples for a trigger are the use of a
new service, a change in the functionality of an existing service or new
personal data that is requested by the service.

Barriers influence the user’s intention. They emerge from the interrelation
of resources available to the user and the requirements on users by the
PAP. If the user has sufficient resources, he does not experience barriers.
However, if the user’s resources do not meet the PAP’s requirements, he
experiences barriers in using the PAP. As described above, the strength of
barriers does not directly determine the intention, but has to be exceeded
by the motivation. The instantiation of the user’s resources and the
requirements on the user and thus the identification of barriers strongly
depends on the specific PAP or the specification paradigm being used. In
our problem derivation surveys, about 30 percent of the participants
responded to the question regarding the reasons for their moderate use
of PAPs that these PAPs are too complicated and time-consuming (see
Section 1.2). Both reasons represent barriers to specifying policies.
However, even facing barriers, the user may overcome them due to his
high intrinsic motivation.

We identified multiple categories of requirements, resources and barriers
resulting from a discrepancy between user resources and requirements on
the user: Domain knowledge, security and privacy knowledge, technical
knowledge, available time, cognitive capacity and physical capacity. The
identification of those categories was based on expert discussions and our

Mapping Users to Specification Paradigms

147

expertise in this area. In Table 12, we explain the potential discrepancies
between user requirements and resources for each category.

So far, we only discussed the intention of a user to specify a policy and its
relationship to the behavior of actually doing it. We also need to consider
the quality of the specified policies and the specification process. In
Research Question 1 of this thesis, we ask for the best specification
support with respect to effectiveness, efficiency and user satisfaction,
thus, in sum to usability.

However, quality is not directly depending on intention, but the
discrepancy between requirements on the user and available user
resources can explain usability issues. Barriers caused by missing
knowledge or lack of cognitive capacity can lead to bad effectiveness.
Barriers caused by discrepancies regarding available time can also cause
bad efficiency.

Table 12: Barrier Categories as Discrepancies between User Requirements and User Resources

Barrier categories Description of potential discrepancies between user
requirements and user resources

Domain knowledge Required vs. actual knowledge regarding the application
domain including the service’s use cases for which a policy is
to be specified. This knowledge includes information about
the personal data that has to be shared with the service. The
user needs to understand the domain in order to be capable
of making privacy-related decisions.

Security & privacy
knowledge

Required vs. actual knowledge of potential and actual use of
personal data by the service and potential threats that arise
from this use are necessary in order to be capable of making
security and privacy-related decisions. This knowledge also
includes that users understand the effect of countermeasures
for improving their own security and privacy.

Technical knowledge Required vs. actual knowledge of the functionality of the
service and its PAP.

Available time Required vs. available time to specify policies in the PAP.

Cognitive capacity Amount of security and privacy related information the user
needs vs. is capable of processing simultaneously during the
specification of policies in a PAP.

Physical capacity Required vs actual accessibility of a device that allows the use
of the PAP in the respective system.

Summarizing, our intention model explains the behavior of people who
have a general need for security and privacy, but do not take appropriate
actions to enforce it. Thus, the model contributes to the research on the
so-called privacy paradox. The concept of barriers explains usability issues
that users face when specifying policies with PAPs. In addition, missing
motivation of users and low needs for security and privacy may explain

Mapping Users to Specification Paradigms

148

the disinterest in the specification of security and privacy policies, which
we determined in our problem derivation surveys (see Section 1.2).

6.2.2 Example for Barriers of a PAP

We instantiated the user intention model for the PAP (privacy settings)
provided by the social media platform Twitter. This service provides various
options that are relevant from the privacy perspective. Most tweets, likes
and shares are public by default. In addition, Twitter offers many privacy-
relevant features, for example, for connecting the user’s contact book
(e.g., from Gmail) or for getting SMS notifications on the personal phone
number. Although Twitter’s primary purpose is the interaction with other
users, and thus, the general need for privacy might be comparably low for
many Twitter users, profiling, tracking and customized advertisements can
be strong motivators for taking privacy protecting measures. Concrete
triggers for privacy demands can stem from the Twitter use itself (e.g.,
visibility of sensitive tweets), reminders by Twitter (e.g., to update your
phone number after login) and external triggers (e.g., press articles about
Twitter).

Table 13: Potential Barriers for Users of the Twitter PAP

Barrier categories Description of exemplary barriers

Domain knowledge The user does not know or does not remember the
provided personal information and does therefore not
know what to specify.

Security & privacy
knowledge

 The user does not understand well enough how the
personal data can be used by third parties in order to
decide on his individual privacy policies.

Technical knowledge The user is not aware of technical possibilities for tracking
his usage behavior, for example via sensors on
smartphones.

Available time The Twitter PAP provides many predefined policies. It can
be too time-consuming for users to read them all and to
make individual decisions.

 As it is unclear which policy should be checked how often,
the user would need to check all policies on every use,
which is time consuming.

Cognitive capacity The PAP overwhelms the user with many options for policy
selection and much textual information.

Physical capacity Privacy settings can be configured on mobile apps and
browsers and are synchronized for all devices, which could
be misleading (although explicitly stated).

 Privacy policies are hidden in the app and are not
optimized for navigation on mobile devices.

We identified potential barriers to using the Twitter PAP. The privacy
settings are distributed over 15 categories, which makes it time and effort
consuming to maintain them. About 30 percent of the participants in our

Mapping Users to Specification Paradigms

149

problem derivation surveys (see Section 1.2) responded that PAPs are too
complicated and time-consuming. Both reasons represent barriers to using
a PAP for specifying policies. In Table 13, we show examples for burdens
we identified in the Twitter PAP mapped to the barrier categories
presented in Table 12.

Of course, these potential barriers are not the result of a comprehensive
evaluation, and they lack certain details. However, they should give a first
impression of barriers that might exist.

6.2.3 Matching Specification Paradigms to Users

Discrepancies between user resources and PAP requirements on users can
lead to a barrier that impairs the policy specification or hinders the user to
specify policies at all. Nevertheless, even if the user’s resources are slightly
exceeded to resource requirements of a PAP, the experienced usability can
still be very low. We assume that the higher the resources of the user are,
the better the usability of a PAP will be experienced.

Table 14: Required user resources of the selected specification paradigms

Requirements on users Default policies Security levels Wizard Template
instantiation

Domain knowledge Medium Low Medium High

Security & privacy
knowledge

Medium Low Medium High

Technical knowledge Medium Low Medium High

Available time Medium Low High High

Cognitive capacity Medium Medium High High

Physical capacity out of focus out of focus out of focus out of focus

Different specification paradigms require different user resources. Barriers
and bad usability experiences can occur if the user’s resources are lower
than the resource level considered optimal for the specification paradigm
under consideration. We base the selection of specification paradigms on
two characteristics; »expressiveness« and »guidance« (see Section 5.3.1).
We assume that the more expressiveness a PAP provides the more
security, privacy, domain and technical knowledge as well as cognitive
capacity is needed. Moreover, we assume that strong guidance can lower
the required user resources of specification paradigms with respect to
security, privacy, domain and technical knowledge, because missing
information is provided. We rated the categories of requirements on the
user for the four specification paradigms of our PAP generation
framework, as shown in Table 14. We did not rate the required user
resources of the specification paradigms quantitatively (objectively), but
only qualitatively (subjectively). We would need metrics and value

Mapping Users to Specification Paradigms

150

thresholds for objectively measuring the barriers, which currently do not
exit. This may be a topic of future research.

In summary, we assume that users need more resources for using the
specification paradigm »template instantiation« than for the other
paradigms. We also assume that users need fewer resources for the
specification paradigm »security level« compared to the other paradigms.

We are aware that the specification paradigm is not the only aspect
influencing the requirements of a PAP on the user. The policy vocabulary
and the concrete design of the user interface are definitely other
dependent variables in this calculation. However, we assume that we can
meaningfully compare the specification paradigms according to their
requirements on user resources as long as we use the identical policy
vocabulary and consult usability experts for the user interface design. The
influence of the projection rules within the policy vocabulary on the
paradigm requirements needs to be investigated in future work.

6.3 Mapping Specification Paradigms to Personas

In the previous section, we claimed that the requirements of a PAP must
match the resources of its user. However, we know that different users
have individual levels of resources. Thus, we decided to cluster users into
groups in the form of personas with different resources. As a prerequisite
for this user classification, we first needed to select an appropriate user
model or persona model, respectively.

Figure 56: User Type and Persona Models

generic security/privacy domain concrete security/
privacy subdomain

generic

technical

te
ch

ni
ca
lf
oc

us

security/privacy focus

Big 5 (OCEAN Model)

Myers Briggs Type
Indicator

Keirsey‘s
Temperaments

Westin‘s classification

Dupree‘s Privacy
Personas

Internet Users
Information Privacy
Concern (IUIPC)

Morton‘s Information
Seeking Preferences

Concern for
Information Privacy

(CFIP)

concrete
technical
system or
domain

Mapping Users to Specification Paradigms

151

6.3.1 Selection of Persona Model

There are many models for user types and personas, which we surveyed
in Section 2.6.2. When searching for the appropriate model for our work,
we found that all relevant user group and persona models we reviewed
could be characterized by two fundamental properties. They differ in their
focus on IT security and privacy as well as in their focus on concrete
technical systems. In both cases, there are highly specialized models
developed for a specific subdomain or system, but also very generic
approaches. We rated the identified models according to those two
characteristics, as shown in Figure 56.

The specification of policies addresses the domain of security and privacy.
Thus, we need a user group or persona model that reflects these aspects.
However, we can specify policies for a multitude of application domains.
Hence, we need a model that does not only reflect the users of a specific
subdomain of security and privacy such as the »Internet Users Information
Privacy Concern Model« [150] which only reflects internet users' concerns
about collection and control of personal data in online environments.
Apart from the security and privacy aspect, we focus on the technical
implications of policy specifications and their enforcement. This
constitutes a technical focus of our work.

We identified the persona model by Dupree et al. [14] as a good match.
It focuses on the domain of security and privacy without being specialized
to a subdomain and it has a technical focus on the use of security and
privacy systems without being limited to one concrete system. This
matches to our whole approach being applicable to multiple application
domains and providing different specification paradigms to users. Thus,
we chose this model for our experiment. For brevity, we call it the »Dupree
model« in the remainder of this thesis. This model distinguishes users by
their motivation (willingness to specify policies) and their knowledge of
how to specify appropriate policies. The different personas proposed by
the Dupree model are described in Appendix C.

6.3.2 Mapping the Specification Paradigms to the Personas of Dupree

After selecting the persona model of Dupree, we need to map our
specification paradigms to its five personas. We expect an increased
usability of the specification interfaces of a PAP if the user resources of
the specification paradigm (compare Section 6.2.3) align to the user
characteristics of the personas. However, the user resource categories
(domain knowledge, security and privacy knowledge, technical
knowledge, available time, cognitive capacity and physical capacity) do
not directly match Dupree’s categories (knowledge and motivation). We
therefore map the categories of user resources to the categories of the
Dupree model like follows:

Mapping Users to Specification Paradigms

152

 Knowledge: The differentiated types of knowledge of our user
resources (domain knowledge, security and privacy knowledge,
technical knowledge) and the cognitive capacity are condensed to
Dupree’s category »knowledge«. Dupree uses this category for
defining the user’s capabilities of using and understanding security and
privacy systems.

 Motivation: The motivation of a persona is not directly considered in
the user resource categories. Moreover, our user intention model
explains that users may overcome barriers if they have a high
motivation. However, the willingness to spend a specific amount of
time for the specification of policies is an indicator for the user’s
motivation.

We neglect the user resource category physical capacity, as it does not
match to any of the categories of the Dupree model. The proposed fusion
of categories is an assumption and has not been evaluated, yet. However,
it allows us to map our specification paradigms to the personas of Dupree.
This mapping enables us to phrase assumptions that can be used as the
baseline for evaluation.

Figure 57: Assumed Matching of our Specification Paradigms to the Personas of Dupree for Best

Usability

Thus, we mapped the required user resources of the selected specification
paradigms mapping (compare Table 14) to the personas of Dupree
(compare Figure 14 in Section 2.6.2). We assume that this mapping leads
to best usability (combined results for effectiveness, efficiency and

Mapping Users to Specification Paradigms

153

satisfaction) for personas using the specific specification paradigm. We
present our proposed persona to specification paradigm mapping in
Figure 57 and evaluate it in an experiment in Section 9.4.

6.4 Summary and Conclusion

We created a user intention model to gain a better understanding of the
user behavior with respect to policy specification with PAPs. The model
explains why users have usability problems with PAPs. We extracted key
characteristics of users and specification paradigms to improve the
matching of user groups to specification paradigms regarding usability. In
addition, we identified a persona model that helps us to confirm our
assumption that different user groups, which are distinguished according
to their user resources, behave differently and perform differently with
respect to PAP usage effectiveness and efficiency.

To summarize our achievements, we review the fulfillment of the
requirements defined in Section 6.1:

 Req_Mapping_User-Characteristics: We derived six categories of
user resources. The categories stem from our user intention model.
These resources are relevant user characteristics to describe their
behavior with respect to policy specification with PAPs.

 Req_Mapping_Specification-Paradigms: We derived six categories
of PAP requirements on users, which correspond to the user resources.
With these categories, we can define the requirements that a PAP has
on users for the task of effective and efficient policy specification.

 Req_Mapping_Personas: We identified an appropriate persona
model that reflects the derived categories of user resources and
requirements provided by the user intention model. In addition, we
proposed an assumption on the optimal mapping of personas to
specification paradigms in order to increase the usability during the
specification of policies in a PAP.

Our discussion also revealed interesting future research topics. There is
demand for the quantitative measurement of user resources of
specification paradigms. In addition, further exploring the influence of
individual policy vocabularies on the required user resources for
specification paradigms in PAPs is a promising field of research into user-
friendly PAP design.

155

7 Method for Usable PAP Generation

The method for usable PAP generation combines the previous four
contributions into a comprehensive approach for generating usable PAPs,
as requested in the scientific problem statement. The method for usable
PAP generation represents Contribution 5 of this thesis, as defined in
Section 1.4.

We structured this chapter as follows. In Section 7.1, we explain the
research approach for the creation of the method for usable PAP
generation. Section 7.2 presents an overview of the method. The five
phases of the method are described in the following sections: the policy
template elicitation in Section 7.3, the instantiation of the policy template
model in Section 7.4, the instantiation of the PAP generation framework
in Section 7.5, the selection of specification paradigms in Section 7.6 and
finally the specification of policies with the usable PAP in Section 7.7.
Section 7.8 summarizes this chapter.

7.1 Research Approach

We iteratively engineered the method for usable PAP generation. In total,
we applied (various parts of) the method in four (industrial) case studies—
two aiming at the improvement and two aiming at the validation of our
method—and one experiment for evaluation. After each of the two case
studies for improvement, we enhanced the method and the containing
contributions based on our observations and lessons learned from
evaluation. After the first case study for validation, we added two more
specification paradigms to the policy template model and two
corresponding presentation modules to the PAP generation framework.
These extensions did not affect the validity of the results of the »BeSure«
case study. More details about the research approaches for the four
contributions used in this method can be found in the respective chapters.
Figure 58 provides an overview of the different versions of the four
contributions, which we devised in the different case studies and in the
experiment.

We applied the elicitation of policy templates, the instantiation of the
policy template and the PAP generation framework in all four case studies
and validated our assumptions regarding the most suitable specification
paradigms in the experiment. The combination of the case study »Digital
Villages« and the policy specification experiment yielded the validation of
the complete method for usable PAP generation.

Method for Usable PAP Generation

156

Figure 58: Research Approach for the Method for Usable PAP Generation

7.2 Method Overview

The overall goal of our work is the creation of a comprehensive method
for generating usable PAPs. Therefore, we elaborated and evaluated four
essential contributions that can be combined into this method:

 Contribution 1 (C1) – User to Specification Paradigm Mapping:
The mapping guides PAP designers to select the appropriate
specification paradigms with respect to usability for users based on
their resources (e.g., security knowledge or cognitive capacities). We
presented the details in Chapter 6.

 Contribution 2 (C2) – Policy Template Elicitation Method: The
method supports the elicitation of policy templates from an application
domain that reflect the security and privacy demands of users. We
provided the details in Chapter 3.

 Contribution 3 (C3) – Policy Template Model: The model supports
the formalization of security and privacy demands as policy templates.
In addition, rules for projecting the policy templates on different
specification paradigms as well as transformation rules for generating
ILPs from instantiated policy templates can be defined. We described
the details in Chapter 4.

 Contribution 4 (C4) – PAP Generation Framework: The PAP
generation framework automates the generation of user interfaces for
policy specification with multiple specification paradigms in a PAP. We
presented the details in Chapter 5.

Using these contributions, we can implement a PAP that can be tailored
to the user and the application domain. Hereby, the selection of the
supported UI framework is done at development time. We need to provide
a generic PAP for each UI framework. At development time, this generic
PAP does not contain user interfaces for policy specification. These are
generated at runtime in an automated manner. Thus, the selection of the

Method for Usable PAP
Generation (Version 1)

- Policy Template
Elicitation Method
(Version 1)

- Policy Template Model
(Version 1)

- PAP Generation
Framework (Version 1)

Method for Usable PAP
Generation (Version 2)

- Policy Template
Elicitation Method
(Version 2)

- Policy Template Model
(Version 2)

- PAP Generation
Framework (Version 2)

Method for Usable PAP
Generation (Version 3)

- Policy Template
Elicitation Method
(Version 3)

- Policy Template Model
(Version 2)

- PAP Generation
Framework (Version 2)

Application in case study
»Sinnodium« in 2013-2014

Application in case study
»SECCRIT« in 2014

Application in case study
»BeSure« in 2015

Method for Usable PAP
Generation (Version 4)

- Policy Template
Elicitation Method
(Version 3)

- Policy Template Model
(Version 2)

- PAP Generation
Framework (Version 2)

- User to Specification
Paradigm Mapping

Application in case study
»Digital Villages« in 2017
and policy specification
experiment in 2018

Method for Usable PAP Generation

157

policy vocabulary and the specification paradigms is done at runtime of
the PAP. The PAP loads the desired policy vocabulary on startup and then
generates the user interfaces for policy specification for all supported
specification paradigms on runtime. The imported policy vocabulary
contains the policy templates provided to the user and the corresponding
transformation rules (SLP to ILP) and projection rules (representation of
policy templates in specification paradigms). Finally, the user can choose
which specification paradigm to use. However, a preselection of
specification paradigms that suit the user’s capabilities is recommended
(compare Contribution 1). We summarize the customization decisions of
our PAPs in Figure 59.

Figure 59: Customization Decisions for a PAP at Development Time and Runtime

Figure 60 provides an overview of our entire method for usable PAP
generation. Our method consists of five process steps, which include the
four contributions (marked in Figure 60):

 Step 1 – Policy Template Elicitation: The method expert prepares
and conducts a policy template elicitation workshop with experts from
the application domain. He derives policy templates from the
workshop results and validates them together with the domain
experts.

 Step 2 – Instantiation of Policy Template Model: The method
expert uses the elicited information and instantiates the policy
template model. Additional information for creating projection and
transformation rules in the policy vocabulary must be requested by
domain experts. The resulting policy vocabulary reflects the security
and privacy demands of users of the application domain.

 Step 3 – Instantiation of PAP Generation Framework: The method
experts selects a generic PAP supporting the desired the UI framework.
Next, he assigns a complete policy vocabulary for the application
domain to be loaded by the PAP on startup. The PAP generation
framework inside the PAP is capable of generating one user interface
for policy specification for each supported specification paradigm.

PAP

UI Framework Policy TemplateModel
One specific policy vocabulary
for application domain imported

at runtime

Specification interface generation and selection at runtime

Selection of one specific
supportedUI framework
at development time

Security
Levels

Default
Policies

Template
Instantiation Wizard

Method for Usable PAP Generation

158

 Step 4 – Specification Paradigm Selection: The method expert can
preselect specification paradigms that are suitable for the users of the
PAP according to the guidelines we provide in this thesis. This decision
may also be delegated to the users themselves by providing paradigm
selection at runtime.

 Step 5 – Specification of Policy with PAP: A user can specify a
security or privacy policy according to his demands with the PAP with
the selected specification paradigm.

In the following sections, the method steps are explained in detail.

Figure 60: Overview of the Method for Usable PAP Generation

7.3 Step 1: Policy Template Elicitation

The purpose of the first method step is the elicitation of policy templates.
The step represents the application of Contribution 1 of this thesis, the
policy template elicitation method, described in Chapter 3.

 Roles Involved

 The method expert executes the entire policy template elicitation
method.

 The contact person provides information about the application
domain and relevant stakeholders to be involved in the elicitation
workshop.

 Experts from the application domain participate in the elicitation
workshop and validate the results. Experts can be domain experts,
technology experts, security experts, legal experts, asset owners and
asset users.

Method for Usable PAP Generation

159

 Input

The method expert needs a contact person for information retrieval in
order to prepare the elicitation workshop. Other information material,
such as a project offer, can provide valuable additional information for
the application of the method.

 Output

After successful application, the policy template elicitation method yields
policy templates relevant for the application domain. The contact person
might reveal additional information, such as the policy languages used for
the enforcement of policies in systems of the application domain.

 Process Description

The method expert applies the policy template elicitation method as
described in Chapter 3.

7.4 Step 2: Instantiation of Policy Template Model

The purpose of the second method step is the instantiation of the policy
template model to create an application domain specific policy vocabulary.
We describe the policy template model (Contribution 3 of this thesis) in
detail in Chapter 4.

 Roles Involved

 The method expert instantiates the policy template model to create
an application domain specific policy vocabulary.

 Experts from the application domain provide information about
projection rules for specification paradigms and transformation rules
for generating ILPs.

 Input

The elicited policy templates from the previous step are the main input.
However, the method expert might need to retrieve additional
information about projection rules and transformation rules from
experts of the application domain.

 Output

The output of this method step is an application domain specific policy
vocabulary.

Method for Usable PAP Generation

160

 Process Description

The creation of the policy vocabulary (instantiation of the policy template
model) is a manual step. Currently, we do not provide an editor for
creating policy vocabularies, which would support the method expert. This
is left to future work.

First, the method expert creates an XML file that represents the policy
vocabulary. He uses the grammar, which is provided as an XML schema in
Appendix B.1. This XML schema represents the policy template model.
The method expert defines the policy templates devised in the previous
step (compare the template sub-model in Section 4.5 and the
specification-level template sub-model in Section 4.6).

Second, the method expert creates projection rules for the generation of
user interfaces with multiple specification paradigms:

 For the specification paradigm »template instantiation«, no projection
rules are necessary.

 For the specification paradigm »default policies«, the method expert
needs to create default instantiations of the policy templates. For each
default policy, he defines the values of all variable parts of a policy
template. The PAP instantiates the policy templates according to these
default values and provides a list of default policies to the user for
selection.

 For the specification paradigm »security levels«, the method expert
defines different levels of security or privacy. Each level consists of a
set of default policies. Thus, the method expert assigns a set of default
policies, which are specified for the specification paradigm »default
policies«, to each level.

 For the specification paradigm »wizard«, the method expert first needs
to define the order in which the policy templates are processed. Next,
the method expert splits each policy template into several wizard
pages, in which a small part of the policy template shall be specified
by the user. For each page, the method expert combines variable parts
of the policy template with descriptive texts. All variable parts need to
be referenced in exactly one wizard page to allow the generation of
policies.

The method expert must retrieve missing information about the definition
of the projection rules from experts of the application domain.

Third, the method expert creates transformation rules for ILP generation.
To this end, he creates ILPTs (i.e., templates for machine-understandable
policies) in the desired policy language. Currently, our reference

Method for Usable PAP Generation

161

implementation of the PAP generation framework only supports XML-
based policy languages. The method expert creates a basic ILPT as a tree
of XML nodes. Then, the method expert can extend this ILPT by two types
of variable parts:

 Variable references: The method expert can assign variable elements
or selectable text elements from the SLPT to attributes of the ILPT.
Thus, after the user instantiated an SLPT, the values from these
elements are inserted as attribute values during the generation of the
ILP.

 ILPT Blocks: The method expert can insert variable XML blocks into an
ILPT. He defines multiple XML nodes that can be added as child
elements to an XML node of the ILPT, based on a condition. The
condition is assigned to selection elements of the SLPT. Thus, if the
user selects an assigned selection element on the specification level,
the respective XML block is inserted into the ILP.

An example of an ILPT can be found in the description of the »SECCRIT«
case study in Appendix D.1.

Finally, the policy vocabulary must be validated by experts of the
application domain with respect to correctness, completeness and
understandability of the descriptive texts in the »wizard«.

7.5 Step 3: Instantiation of PAP Generation Framework

The purpose of the third method step is the provision of a PAP that
supports multiple specification paradigms using the PAP generation
framework, described in Chapter 5 as Contribution 4 of this thesis. The
user interfaces for policy specification are generated at runtime using the
specification paradigm algorithms (see Section 5.3.2), which are applied
to the information contained in the policy vocabulary defined in the
previous method step.

 Roles Involved

 The method expert selects a PAP for the desired UI framework. Then,
he configures the PAP to load a specific policy vocabulary on startup.

 If necessary, a software developer develops a new PAP (view
modules and surrounding software component) for an additional UI
frameworks or new presentation modules for the PAP generation
framework, which implement new specification paradigms (This may
imply also changes to the policy template model).

Method for Usable PAP Generation

162

 Input

The main inputs for this method step are the policy vocabulary specified
in the previous step and a generic PAP, built for the desired UI framework,
which is capable of creating the policy specification interfaces for different
specification paradigms in an automated manner at runtime using the
built-in PAP generation framework. Please note that this generic PAP does
not yet contain any policy specification interface implemented at
development time. All policy specification interfaces are generated at
runtime.

 Output

The output of this step is a fully functional PAP for the application
domain with multiple supported specification paradigms.

 Process Description

The method expert selects a PAP for the desired UI framework (and thus
indirectly selects the supported operation platforms). Our reference
implementation of the PAP generation framework provides generic PAPs
as an Android app, as Java applications (executable on Windows or Linux
using the UI frameworks »Swing« and »JavaFx«) and as a web-service. If
a different PAP is required, it must be implemented by a software
developer using our proposed architecture. This implementation task
includes the respective view module.

Next, the method expert configures the PAP to use the policy vocabulary
created in the previous step. On start-up, the PAP loads the policy
vocabulary and creates an internal instantiation of the policy template
model. The PAP generates the user interfaces for the supported
specification paradigms at runtime.

7.6 Step 4: Specification Paradigm Selection

The purpose of the fourth method step is the selection of specification
paradigms for users. This step is optional as we may delegate the
specification paradigm selection to the user. We provide criteria for the
selection of specification paradigms for users as Contribution 1 of this
thesis, as described in Chapter 6.

 Roles Involved

 The method expert selects one or more specification paradigms for
the various user types.

Method for Usable PAP Generation

163

 Input

The PAP for the application domain with multiple supported
specification paradigms is the input for this method step.

 Output

The method experts provides a usable PAP for a user or user group as
output. He achieves improved usability by selecting the most suitable
specification paradigms for a specific user group.

 Process Description

The method expert selects one or more specification paradigms for the
users of the PAP. The method expert bases the selection on the
recommendations given in Section 6.3.2, whose evaluation is described in
Section 9.4.

7.7 Step 5: Specification of Policy with PAP

Finally, the user can specify security or privacy policies with the generated
usable PAP that provides the best-suited specification paradigm(s) for
achieving an effective, efficient and satisfying policy specification for the
user. This generated PAP with an optimal usability experience is the overall
output of the method for usable PAP generation.

 Roles Involved

 The user specifies policies with the usable PAP.

 Input

The user needs access to a usable PAP that is tailored to his specific user
resources and the application domain.

 Output

The user specifies a set of policies that reflect his security or privacy
demands.

 Process Description

The user starts the usable PAP. If required, he selects a specification
paradigm. Then, he instantiates one or more policy templates with the
predefined or selected specification paradigm. Finally, he receives a list of
SLPs and corresponding ILPs.

Method for Usable PAP Generation

164

7.8 Summary and Conclusion

In this chapter, we presented our entire process for the systematic creation
of a usable PAP for users of an application domain. In this method, we
combined the four other contributions of this thesis into one
comprehensive method.

165

8 Evaluation for Improvements

As the first part of our evaluation, we describe two case studies focusing
on our contributions presented in the previous chapters. We gained new
insights and discovered improvement potential after each case study.

We structure the remainder of this chapter as follows: In Section 8.1, we
explain our research approach. In the subsequent sections, we present the
two case studies: the case study »SINNODIUM« in Section 8.2 and the
case study »SECCRIT« in Section 8.3. Section 8.4 summarizes our findings.

8.1 Research Approach

We chose an explorative and iterative evaluation approach for improving
our contributions. We conducted two case studies with the overall goal to
gain better insights and to reveal improvement potential for our
contributions. In both case studies, we applied our method for usable PAP
generation. The two explorative and iterative case studies are:

 The »SINNODIUM« case study was an early application of our
preliminary method to demonstrate its general feasibility. The
study was conducted between 2013 and 2014 with the industrial
partner »vwd« in the application domain of a mobile app for
financial advisors that visit clients at home.

 The »SECCRIT« case study was an early application of our
preliminary method to test improvements identified in the first
case study. The study was conducted in 2014 with the 9 project
partners of the European project »SECCRIT« in the application
domain of cloud services in critical infrastructure IT.

We describe these case studies and evaluate their results according to our
research questions (see Section 1.3) and hypotheses (see Section 1.5) in
this thesis. We confirm our results in the evaluation for validation
described in the Chapter 9.

8.2 Case Study: Software Cluster Project »SINNODIUM«

We performed an initial case study in the context of the research project
»SINNODIUM« together with the industrial partner » vwd Vereinigte
Wirtschaftsdienste GmbH« (vwd for short) to explore the applicability of
our method for usable PAP generation in an actual application domain.

Evaluation for Improvements

166

8.2.1 Project Summary

The joint project SINNODIUM (Software Innovations for the Digital
Enterprise) was funded by the German Ministry of Education and Research
under grant number 01IC12S01F. The overall goal of SINNODIUM was the
development of prototypical solutions for the next generation of business
software, with a focus on the improvement of the qualities
interoperability, adaptively, user experience and security. We (as
employees of Fraunhofer IESE) worked in cooperation with vwd on the
improvement of the security and privacy of financial data in mobile
scenarios.

The vwd group develops private banking and asset management
software, such as the »vwd portfolio manager«, which is a software
solution for the management and controlling of client portfolios. Financial
advisors use this software to consult bank clients on their investment
strategy. The requirements for this domain are currently changing as the
financial advisors increasingly use mobile devices outside the bank.
Therefore, vwd developed a prototype for mobile portfolio management,
called the »vwd portfolio manager mobile«. With this tool, financial
advisors can visit clients at home and prepare meetings on their way to
the client. However, this raises concerns about security and privacy, as
many new threats occur in different mobile scenarios in comparison to the
work conducted solely inside the bank.

In cooperation with vwd, we elicited assets and threats for different use
cases of the »vwd portfolio manager mobile« app and derived
corresponding policy templates. We instantiated the policy template
model and generated a PAP with the specification paradigm »policy
templates« for the operation platform »Android«. In this project, we
focused on detecting different mobile scenarios, so-called contexts, in
which a financial advisor may use the app. Examples are »in the bank«,
»at the client’s home« and »on a business trip«. We wanted to enforce
different security policies based on the current use situation, as different
contexts imply different security and privacy demands.

Together with vwd, we developed a demonstrator that shows the
enforcement of context-dependent security policies within the »vwd
portfolio manager mobile«. The demonstrator employed the usage
control enforcement framework IND²UCE on a mobile system with the
operating system Android. The Android PAP was a core part of this
demonstrator.

8.2.2 Design and Execution

The main goal of the first case study was to test the applicability of the
early versions of our contributions of this thesis. We defined the following

Evaluation for Improvements

167

evaluation plan in order to answer our research questions and to confirm
our hypotheses.

For the policy template elicitation method, we aimed to find preliminary
answers to RQ2 (Elicitation; see Section 1.5.2). More specifically, we tested
the feasibility of using policy templates for the specification of policies in
a PAP, and we identified mandatory information to be elicited from
stakeholders in the application domain. In addition, we examined whether
the policy templates generated with our method allow the instantiation
of a correct and complete set of policies for the application domain.

In the first meeting with vwd, we identified the application domain to be
a mobile app for financial advisors that consult clients in the bank and at
the client’s home. The financial advisors take the mobile device with
access to clients’ financial data with them on business trips. Apparently,
bank clients and security experts from the bank have many security and
privacy demands that need to be enforced on the mobile device. We
identified the use cases, assets, threats and countermeasures for this
application domain together with domain and technology experts from
vwd in unstructured discussions within several consecutive meetings. At
least one domain and technology expert and one method expert
participated in each of those meetings. After each meeting with vwd, we
created and later refined the policy templates. We devised the policy
templates without a structured elicitation method. However, we tested a
first version of the policy template notation format for creating several
policy templates on the specification level (SLPTs).

Moreover, we tested the feasibility of our policy template model for the
formalization of security and privacy demands to answer RQ3
(Formalization). To this end, we instantiated a preliminary version of the
policy template model including rules for transforming policy instances on
the SLP level into ILPs.

Finally, we checked whether the creation of the user interfaces of a PAP
can be automated with respect to RQ4 (Automation) and H6 (Feasibility
of automation of PAP creation). To assess the feasibility of automated PAP
generation, we built a prototype of an Android PAP with the specification
paradigm »template instantiation«. The PAP was a core part of a
demonstrator of the »SINNODIUM« project.

Between 19.09.2013 and 12.12.2014, we held seven consecutive
meetings with vwd to determine and refine the use cases and the policy
templates and to assess usability of the PAP prototype.

Evaluation for Improvements

168

8.2.3 Results

During the elicitation of policy templates, we decided to focus on one
essential asset »financial data of client« for the »vwd portfolio manager
mobile«. This asset is described in Table 15. We added the prioritization
values after the end of the case study, as we initially did not elicit this
information.

Table 15: Documented Asset »Financial Data of Client«

Asset ID A1

Asset Financial data of client

Data Owner Client

Example Use Case The financial advisor accesses financial data of clients on a mobile
device during work. Data access can happen at the bank, at the home
of a client or on business trips.

Policy Authors Bank administrator

Prioritization
Properties

Monetary value of asset: high (€€€)
Sensitivity of asset: highly confidential (high)

Legal Regulations Regulations of BaFin

We identified the following seven use cases in which the security of the
client data is jeopardized and policies must be enforced:

 Unauthorized access to sensitive data when leaving the bank: A
financial advisor leaves the bank with the mobile device.
Previously, he had viewed or edited client-specific data in the
»vwd portfolio manager mobile« app on the device. He forgets
to close the app showing sensitive data before leaving the bank.
To prevent this threat, the app is automatically closed when the
application context changes.

 Third parties want to obtain specific information about the
financial status of a client, or they want to falsify data: Outside
the bank, the financial advisor may only access the complete
client data if the financial advisor is in a client appointment and
the client has authenticated himself using a PIN. If the financial
advisor is in a client appointment but there is no valid PIN
authentication, he can only access anonymous client data. After
a successful PIN authentication, the financial advisor has full
access to the client data of the visited client.

 Unauthorized disclosure of sensitive internal bank data: The
financial advisor is in a meeting with the client in which he holds
the tablet in his hand and can see all data, including sensitive
information. He places the tablet flat on the table in order to
show the client something on the display. In this case, only the

Evaluation for Improvements

169

data that the client is allowed to see should be displayed instead
of the entire data.

 Unauthorized execution of group evaluations: A financial advisor
may only carry out group evaluations with his mobile device inside
the bank. Outside the bank, only individual client data records are
available for analysis.

 Mass retrieval of data: Financial advisors have full access to client
data. If, however, an unusual data retrieval behavior is detected,
which indicates a mass retrieval of client data, appropriate
reactive measures will be triggered to prevent, for example, the
creation of so-called tax CDs that can be sold to the authorities..

 Unauthorized access to sensitive data due to insufficient security
settings on the mobile device: A financial advisor’s mobile device
has inadequate security settings in the field. For example, the set
period for the automatic display lock is too long, no screen lock
is enabled and sensitive data is potentially visible on the display.
Stolen tablets could be accessed by criminals.

 Loss of sensitive data due to loss or theft of a mobile device:
Financial advisors’ mobile devices contain sensitive client data.
The loss or theft of such a tablet therefore represents an immense
security risk. Thus, in such a case, the automated deletion of all
sensitive data must be ensured.

For each of these seven use cases, we iteratively identified threats. To this
end, we created and refined seven respective policy templates. We show
one of the elicited threats in Table 16.

Table 16: Documented Threat »Data Theft of Financial Data for Creation of Tax CD«

Threat ID T5

Related Asset ID A1

Related Asset Financial data of client

Attackers Internal attacker

Threat Data theft of financial data for creation of tax CD

 probability: likely (medium)

 damage: existence-threatening (high)

Existing
Documentation

not elicited

We present the related policy template in Table 17.

Evaluation for Improvements

170

Table 17: Policy Template »Mass Retrieval of Data«

ID Policy Template Name Asset Target System Policy Author

S4 Mass retrieval of data Client Data vwd portfolio
manager mobile

Bank administrator

Policy Template Syntax If the financial advisor wants to access client data and has already
accessed <number> data records from different customers within
<number> <unit of time> and is [inside the bank | outside the
bank], then [forbid access | inform the supervisor via email:
<email address> | log the misconduct]+.

Description Financial advisors have full access to their clients' data. If,
however, an unusual data retrieval behavior is detected which
points to the mass retrieval of client data, appropriate reactive
measures must be taken. Thus, for example, the creation of so-
called tax CDs can be recognized and prohibited.

Threat Mass retrieval of data

Security/Privacy Goal Confidentiality

Example Instantiation If the customer advisor wants to access client data and has
already accessed 5 data records from different customers within
30 minutes and is outside the bank, then forbid access and
inform the supervisor via email: supervisor@bank.de.

We originally elicited all information in German language and derived
German policy template. For the documentation in this thesis, we
translated the elicited information to English.

Figure 61: Exemplary PAP Using View Module »Android«, Policy Vocabulary »SINNODIUM« and

Presentation Module »Template Instantiation«

Next, we instantiated the policy template model and, thus, created a
policy vocabulary with all seven policy templates and respective ILP
transformation rules. We imported the policy vocabulary in a prototype of

Evaluation for Improvements

171

the Android PAP. Figure 61 shows the generated user interface for the
policy template presented in Table 17 (in German language).

The PAP was capable of applying the transformation rules on the
instantiated policy template in order to generate machine-understandable
representations in the form of ILPs in the IND²UCE policy language, as
depicted in Figure 62.

Figure 62: ILP in IND²UCE Policy Language Version 1.1 Generated by the Android PAP

8.2.4 Observations and Lessons Learned

Regarding RQ2 (Elicitation), we showed that we can create policy
templates with the information elicited from the stakeholders of the
application domain. This indicates that all relevant information for creating
policy templates is elicited with our method. We were also able to
demonstrate the use of these policy templates in a PAP for the
specification of policies by the targeted user group.

In addition, we observed in this case study that the unstructured
elaboration of policy templates is a time-consuming task. We needed
seven meetings with our project partners to elicit all necessary information
and to define the final versions of the policy templates. We concluded that
a more structured approach should allow a faster elicitation of information
and a faster derivation of policy templates with fewer stakeholder
workshops. In particular, a comprehensive list of relevant assets and
threats should be systematically elicited before drafting the policy
templates.

Evaluation for Improvements

172

We learned that domain and technology experts are valuable information
sources regarding security and privacy policies. However, several aspects
remained unclear. In many application domains, the relevant security and
privacy policies should or even must be affected by legal regulations. Thus,
stakeholder with legal expertise should be involved in future elicitations.
Moreover, the policies solution providers have in mind may not reflect the
actual security and privacy demands of real users. Thus, we need to further
investigate how the integration of real users affects the elicitation and its
results. We consider both stakeholders in the next case studies.

We confirmed that the provision of policy templates allows users to specify
policies that are tailored to their personal privacy and security demands
within the limits set by the application domain. A PAP can use these policy
templates to provide the instantiation of concrete policies.

Regarding RQ3 (Formalization), we found that all policy templates and
transformation rules to generate ILPs from SLPs can be modeled with our
proposed policy template model. However, we perceived the model as too
complicated and identified potential for improvement and extension.
Especially the specification of ILPTs and transformation rules was very
error-prone. We considered this first version of the policy template model
to be unsuitable for less experienced method experts. A simpler syntax for
ILPTs and transformation rules was deemed necessary.

We confirmed the fulfillment of RQ4 (Automation) and H6 (Feasibility of
automation of PAP creation) in the context of our case study by
demonstrating the generation if the PAP user interface for the
specification of policies with the specification paradigm »template
instantiation«. This proved the general feasibility to automate the PAP
creation. However, further investigations are required in order to evaluate
the revealed improvement potential and to show the generation with
multiple specification paradigms.

8.2.5 Threats to validity

Our experimental results are subject to several threats to validity. Below,
we distinguish between internal, external and conclusion validity:

 Internal validity is the extent to which conclusions about causal
relationships can be made based on the research design (e.g., used
measures, research setting).

 External validity is the extent to which the results can be generalized
(results can be held to be true for other cases, for example, with
different participants).

Evaluation for Improvements

173

 Conclusion validity is the extent to which conclusions about the
relationship among variables are correct and reasonable based on the
data.

 Internal Validity

In our case study, vwd was very interested in security and privacy for their
own product. Thus, the selections of highly motivated participants and the
application domain are threats to internal validity. However, the exemplary
assets and threats were not predefined, but jointly elicited with the project
partner. Additionally, the stepwise refinement of the policy templates by
the method expert might have affected the results.

The project partners did not know our research goals and hypotheses;
however, they knew about the project goals that centered on context-
aware policy enforcement. Hence, we cannot estimate the influence of
guessed hypotheses and expected researcher expectancies.

 External Validity

Many aspects affected the result quality in this case study. The method
expert influenced the creation of the policy templates during iterative
refinement. To guarantee the general feasibility of our approach, we need
to apply it in different application domains with different stakeholders.

 Conclusion Validity

The number of scenarios and associated contextual descriptions that we
obtained is limited. Hence, we must confirm threats with regard to low
statistical power and consequently low reliability. However, we asked the
representatives of the company whether they miss any interesting
scenarios or situations, which they denied. Hence, we can be certain in
terms of completeness of the elicited policy templates.

8.2.6 Summary

In the »SINNODIUM« case study, we positively evaluated the concept of
policy templates for specifying security and privacy policies in a PAP.
Together with experts of vwd, we elicited seven policy templates for the
instantiation of policies. We built a PAP with which users can specify
policies for the »vwd portfolio manager mobile« Android app. In
conclusion, we showed the applicability of the method for usable PAP
generation.

Evaluation for Improvements

174

8.3 Case Study: European Project »SECCRIT«

We performed a second case study in the context of the research project
»SECCRIT« for further exploring the feasibility of our method for usable
PAP generation in a different application domain. In addition, we explored
the improvements we made in the second versions of the policy template
elicitation method, the policy template model and the PAP generation
framework.

In the SECCRIT study, we elicited policy templates together with the
industrial partners »Amaris Technologies GmbH (AMARIS)«, »NEC Europe
Ltd (NEC)«, »Mirasys Ltd. (MIRASYS)«, »Hellenic Telecommunications
Organization S.A. (OTE)«, »Ayuntamiento de Valencia (VLC)« and the
research partners »AIT Austrian Institute of Technology GmbH (AIT)«,
»ETRA Investigacion Y Desarrollo SA (ETRA)«, »Karlsruher Institut für
Technologie (KIT)« and »Lancaster University (ULANC)«.

8.3.1 Project Summary

The goal of the European project SECCRIT (Secure Cloud Computing for
Critical Infrastructure IT) was the development of technologies and
methodologies to create a secure, trustworthy, and high-assurance cloud-
computing environment for critical infrastructure IT. Services for critical
infrastructures are used in domains such as transportation systems,
financial services or security services. SECCRIT was funded by the
European Union within the 7th Framework Programme (FP7-SEC-2012-1)
under grant number 312758.

In SECCRIT, we aimed to improve the policy specification for security
demands in critical cloud infrastructure IT. Therefore, our goal was to
provide a usable PAP for specifying security policies. To this end, we first
elicited security demands from the industrial partners of the project. Two
scenarios were considered: a public video surveillance system in Helsinki,
Finland, and a traffic control system in Valencia, Spain. Both systems were
supposed to run in the cloud and, thus, faced the security challenges
implied by cloud deployment.

In cooperation with the project partners, especially the industrial partners,
we elicited the assets, threats and countermeasures for the services of
critical infrastructure in the two different scenarios. A partner that acted
as a cloud provider and a research partner with legal expertise supported
the elicitation task. We derived policy templates, instantiated the policy
template model and generated a PAP with the specification paradigms
»policy templates« and »default policies« for the operation platforms
»Swing« and »Web«. We also built a demonstrator for enforcing the
policies regarding secure virtual machine management as well as data

Evaluation for Improvements

175

usage control in cloud databases, using the data usage control framework
»IND²UCE« [110].

8.3.2 Design and Execution

Our key concern in the second case study was to test the improvements
of our policy template elicitation method (RQ2), the policy template model
(RQ3) and the PAP generation framework (RQ4) in relation to the first case
study.

In RQ2, we aim to » elicit all relevant information from an application
domain«. This means that we need to know what information we need
and from where we can obtain it. We confirmed that assets, use cases,
threats, countermeasures and example policies are suitable information
types for deriving policy templates. In addition, we identified multiple
information sources from which we can retrieve assets, use cases, threats,
countermeasures and example policies. By applying the policy template
elicitation method, we tested how a method expert can elicit security
demands from various stakeholders and existing documentation in a more
structured way.

Figure 63: Second Version of the Policy Template Elicitation Method

In this case study, we acted as the method expert and involved other
partners from the project as domain, technology, legal and security
experts and especially the industrial partners as asset owners and users.
We defined the project-related application domain to be: »Cloud systems
in critical infrastructures must be protected against multiple threats on
different architectural layers of the cloud system«. We used the second
version of the policy template elicitation method to elicit all information
required to derive policy templates. We first identified information sources
by means of discussions with project partners and Internet searches. This
second version of the policy template elicitation method, as illustrated in
Figure 63, was not yet include an explicit elicitation workshop. Instead, we
had unstructured discussions with the project partners and retrieved
information by document analyses. Based on these sources, we devised a
first set of policy templates and started to create a policy catalog (i.e., a
document with all policy templates) for the application domain. We sent
this catalog to four project partners (»Amaris«, »ETRA«, »Mirasys« and
»OTE«, three of them from industry). These partners were asked to specify
their own policy templates based on instructions we attached that

Identification of
policy information

sources

Documentanalysis
of existing

documentation

Elicitation from
stakeholders

Mapping security
policy templates to

enforcement
technologies

Inserting templates
into security policy

model

List of information
sources

Security policy
templates

Security policy
templates

Security policy
model

1 2 3 4

Evaluation for Improvements

176

described how to review and extend our policy templates. We
consolidated all responses and integrated them into a preliminary policy
catalog.

Next, we conducted a review workshop with nine project partners in order
to discuss the status of the policy templates catalog. The workshop took
place on 03.04.2014 for about two hours and was part of a regular project
meeting. Sixteen persons participated including the method expert.
Together, the participants had the expertise to represent the different
stakeholder roles: domain expert, technology expert, legal expert, security
expert, asset owners and asset users. In the workshop, we first presented
the concept of policy templates to all project partners. Afterwards, we let
the four partners that contributed to the policy template catalog present
their policy templates for their own assets, use cases and threats. We
discussed the catalog in the group of all project partners. After the
workshop, we integrated the discussion results into the policy templates.
Then, we asked the remaining project partners to extend the policy
catalog. After consolidating and integrating their feedback, we finalized
the policy template catalog.

Regarding RQ3, we showed the feasibility and completeness of the
improved policy template model. In the project, we decided to select three
policy templates for being used in a project demonstrator. We instantiated
the policy templates including transformation rules for generating ILPs for
those three policy templates. The second version of the policy template
model used the simplified transformation rules. Additionally, the new
model contained elements for defining default policies for policy
templates, which are required by the specification paradigm »default
policies«.

Regarding RQ4, we explored the generation of different policy templates
in multiple PAPs based on one policy vocabulary. Therefore, we used the
PAP generation framework to provide three fully functional PAPs. One was
implemented as a Java application using the UI framework »Swing«, the
second was an Android app, and the third was based on a preliminary
version of the view module »Web«. The Android PAP is a slightly improved
version of the PAP used in the »SINNODIUM« case study. We equipped all
PAPs with the presentation modules »template instantiation« and
»default policies« and imported the policy vocabulary with the three
demonstrator policy templates of the »SECCRIT« project.

8.3.3 Results

In the »SECCRIT« case study, we identified the following information
sources for eliciting security demands, assets, threats or complete security
policies in the application domain:

Evaluation for Improvements

177

 Asset users: Users of sensitive assets typically have security demands.

 Domain experts: Domain experts should be considered within the
elicitation process to identify application domain-specific assets,
threats and countermeasures.

 Technology experts: When eliciting security policy templates,
technology experts can explain which security demands can be
enforced technically with a policy enforcement framework and which
can be enforced only organizationally, for instance, by service level
agreements.

 Company regulations: Companies usually have IT security regulations
in place that must be met. The documentation of these regulations can
be used as an information source. In addition, the responsible IT
security officer is a valuable source.

 Risk assessment documents: During risk assessment activities, assets
and respective threats are identified. A catalog of typical vulnerabilities
and threats for the domain of cloud computing for critical
infrastructure IT can, for example, be found in [57].

 Standards and guidelines: Depending on the business operation scope,
companies are obliged or encouraged to follow specific standards
provided by regulatory authorities or expert groups. These guidelines
are a source of security policies the company must enforce. For
example, a set of security threats for cloud computing for critical
infrastructure is listed in [104].

 Legal aspects: Besides the domain-specific standards, some legal
obligations may apply, such as the General Data Protection Regulation
(GDPR) [164] and its county-specific implementations.

We analyzed these information sources and elicited additional information
from the project partners (as described in the previous section). In total,
we identified thirteen assets in the application domain of cloud services
for critical infrastructure IT. They are related to different architectural
levels: cloud infrastructure level, tenant infrastructure level, service level
and user level. We elicited 35 threats for these assets considering the
individual threats for those architectural levels. The threats stem from
expert discussions in project meetings and existing documentation about
related threats and risks (e.g., [57, 104]).

Based on the threats, we defined 40 policy templates that can instantiate
policies for mitigating or preventing those threats. Next, we created the
policy vocabulary for the three selected policy templates by instantiating
the policy template model (see Appendix D.2). We present examples for
the elicited assets, threats and countermeasures in Appendix D.1.

Evaluation for Improvements

178

We created PAPs that can generate user interfaces for specifying security
policies for critical infrastructure cloud solutions using the PAP generation
framework. We used the presentation modules »template instantiation«
and »default policies« and the view modules »Swing«, »Android« and
»Web« for the PAPs. We present screenshots of the generated PAPs in
Appendix D.1.

8.3.4 Observations and Lessons Learned

Our key concern in the second case study was to test the improvements
of our policy template elicitation method, of the policy template model
and of the PAP generation framework in relation to the first case study.

With respect to RQ2 (Elicitation), we explored how a method expert can
elicit security demands from various stakeholders and existing
documentation in a more structured way. We applied the improved policy
template elicitation method on the application domain of cloud systems
in critical infrastructures. In comparison to the first case study, we
identified more categories of information sources for eliciting assets, use
cases, threats, countermeasures and example policies. We elicited several
suitable pieces of information from those sources. As it turned out, the
involvement of participants covering multiple stakeholder roles and the
analysis of existing documentation about related threats and risks were
the most helpful improvements in terms of information quantity. In terms
of result quality, the involvement of asset owners and users was
particularly beneficial, as they had the intrinsic motivation to seize the
opportunity to specify and enforce policies that met their own security
demands.

Regarding H2 (Completeness of elicited information), we observed that
the experts extended the policy template catalog by 10 policy templates
after the workshop. This led to an initial completeness rate of 75 percent.

With respect to H3 (Correctness of elicited information), we observed that
the experts found improvement potential in 3 out of 40 policy templates.
Thus, 93 percent of the policy templates were correctly elicited according
to the feedback we received from six project partners.

In addition, we learned that two unsupportive situations might occur if
the method experts provides too much information (e.g., assets, threats
or policy templates) to the participants of the elicitation method before
eliciting any information from them:

 First, the provision of information can strongly bias the method results.
The participants can easily get the wrong impression of completeness
if a lot of work has already been done by the method expert, especially
if they do not have an intrinsic motivation for eliciting policy templates.

Evaluation for Improvements

179

We assume that starting the elicitation »from scratch« with a
structured elicitation approach might produce better results. The
stakeholders will not be distracted or misled by existing information,
but concentrate first on their own major concerns.

 Second, some stakeholders prefer to discuss existing work rather than
focus on the elicitation of new information. This influences other
participants to join discussion. Of course, discussions about the quality
of the information are helpful, but need to be limited to avoid
interrupting the elicitation process. The method expert that acts as a
moderator in meetings and workshops and needs to remind
participants to focus on the elicitation.

Thus, we concluded that we need to test the elicitation »from scratch«
with an improved policy template elicitation method in the next case
study. Consequently, it was mandatory that the third version of the policy
template elicitation method contains an elicitation step for retrieving
potential countermeasures from different stakeholder roles. Based on
their wide-ranging expertise, they might know »unconventional«
countermeasures that fit well in the specific application domain, but are
not known to the method expert while creating the policy templates.

Generally, we learned that a more structured and iterative elicitation
method with multiple elicitation rounds for assets, threats and
countermeasures can improve the current method. The list of assets, use
cases, threats and countermeasures might increase rapidly during
elicitation. If the time for elicitation is limited, we need to prioritize for
which assets we want to identify threats. Only eliciting assets and their
properties in the first round facilitates such a prioritization and narrows
down the focus of the elicitation. We concluded that we need to explore
prioritization scales for assets and threats in order to put a better focus on
the relevant ones.

We also observed that a lot of information is orally presented during
discussions, but never written down by the participants of the workshop.
We need to have a minute taker to capture this information during
workshops and other meetings.

Regarding RQ3 (Formalization) and H5 (Completeness of policy template
model), we found that policy templates can be adequately formalized with
our policy template model. All elements for creating a policy vocabulary
(policy template model instance) for the »SECCRIT« demonstrator
including ILPTs for the policy language IND²UCE in version 1.1 were
available.

We observed that our improved policy template model with the simplified
transformation rules for ILPs is much easier to instantiate and less error-

Evaluation for Improvements

180

prone than the previous version in the first case study. We did not measure
the exact time required to instantiate the model or the number of errors
made during instantiation to compare the two versions, but the
improvement was clearly noticeable.

Finally, with respect to RQ4 (Automation) and H6 (Feasibility of
automation of PAP creation), we explored the user interface generation
using multiple view and presentation modules based on the same policy
vocabulary. We built three PAPs for the UI frameworks »Swing«,
»Android« and »Web« by using the respective view modules of the PAP
generation framework. In addition, we used the two presentation
modules that implement the specification paradigms »template
instantiation« and »default policies«. We were able to start the PAPs and
import the policy vocabulary for the »SECCRIT« demonstrator. All user
interfaces were correctly generated and all policy instances of policy
templates could be specified successfully. Thus we regard H6 as confirmed
because »PAPs with multiple specification paradigms can be generated
from a policy template model instance«.

8.3.5 Threats to validity

Below, we address threats to validity with respect to the policy
specification experiment. The threat categories are explained in
Section 8.2.5.

 Internal Validity

The selection of participants for the elicitation was solely based on their
willingness to contribute to the policy template catalog and their
availability for the validation workshop. We did not select the participants
according to their stakeholder roles. However, as we covered all identified
roles with participants, we do not see the participant selection as a
significant threat to internal validity.

In this case study, the creator of the method for usable PAP generation
took the role of as method expert. We decided to do this in order to collect
as much experience with the execution of the method as possible to reveal
further improvement potential. However, this role assignment poses a
threat to internal validity.

We ascertained in this case study that the improved policy template model
led to an easier and less error-prone instantiation of the model. We see
three threats to internal validity regarding this finding:

 First, we did not objectively measure the ease of use of the model.
Our claim solely bases on a subjective estimation by the method
expert. However, the efficiency of the policy template model

Evaluation for Improvements

181

instantiation is not in the focus of this thesis, and the
improvement was apparent.

 Second, the same person performed the model instantiations in
both case studies. Thus, we cannot exclude learning effects.

 Third, the policy templates of the two case studies are different.
We do not know how the complexity of policy templates
influences the instantiation of the policy template model. Further
studies are required to gain better insights.

 External Validity

We instantiated the policy template model only for three policy templates.
We doubt that those three templates cover all relevant requirements
regarding the policy template model. This poses a threat to external
validity. Further investigations must be performed to confirm the
generalizability of our findings.

We only applied the method for usable PAP generation in one application
domain in the context of this case study. Further applications are necessary
to generalize the feasibility of our method for different application
domains.

 Conclusion Validity

Regarding H6, we conclude that we can automate the PAP creation for
multiple specification paradigms. However, we do not know whether this
hypothesis applies to all possible specification paradigms. This poses a
threat to conclusion validity. We need to explore the automated PAP
creation for further specification paradigms.

8.3.6 Summary

In the »SECCRIT« case study, we confirmed that the concept of policy
templates is suitable for specifying security and privacy policies in a PAP.
We elicited 40 policy templates for the application domain of cloud
services for critical infrastructure IT. Ten of those templates were added
during the validation phase. In addition, minor errors were found in three
policy templates. We successfully demonstrated the instantiation of the
policy template model and the generation of user interfaces for policy
specification in PAPs with three policy templates. These three policy
templates were included in a »SECCRIT« demonstrator. For this
demonstrator, we provided three PAPs: one as a Java application with the
»Swing« UI framework, the second as an Android app and the last as a
web service. We included transformation rules for generating ILPs into the
policy vocabulary. Thus, a user of the demonstrator was able to specify a

Evaluation for Improvements

182

security policy on the specification level with our PAP and could then try
out the effect of the respective enforced ILP.

8.4 Summary and Conclusion

Regarding our research questions and hypotheses, the first two case
studies yielded the following findings:

 RQ2 (Elicitation): We applied two versions of the policy template
elicitation method in the two case studies. These method versions were
preliminary, thus the results may not reflect the quality of results that
the third version would have produced.

o H2 (Completeness of elicited information): According to the
experts who validated the method results in the case study
»SINNODIUM« (seven policy templates), the list of policy
templates was complete with respect to the necessary
specification options for policies in the application domain. In
the »SECCRIT« case study, the experts extended the policy
template catalog by ten additional policy templates.

 Q2.1: Is the policy template elicitation method capable of
eliciting 90% of all necessary policy templates for the
application domain?

 M2.1: We elicited 79% of all policy templates from the
application domain ((7+30)/(7+40) = 79%).

 H20 cannot be rejected as we were not able to elicit
90% of the necessary policy templates for the application
domain as we missed some policy templates during the
elicitation in the »SECCRIT« case study.

o H3 (Correctness of elicited information): According to the
experts who validated the method results in the case study
»SINNODIUM« (seven policy templates), all derived policy
templates were correct. In the »SECCRIT« case study, the
experts found improvement potential in three out of 40 policy
templates.

 Q3.1: Is the policy template elicitation method capable of
eliciting correct policy templates that cover the security
and privacy demands from the application domain?

 M3.1: The policy template elicitation method allowed us
to elicit 94% of the policy templates correctly
((7+37)/(7+40) = 94%).

 H30 can be rejected.

Evaluation for Improvements

183

o H4 (User acceptance of elicitation method): Overall, we received
positive feedback on our policy template elicitation method
from the participants of the case studies (two participants in
»SINNODIUM«, sixteen participants in »SECCRIT«). Still, we got
fruitful hints for improving the method, which we considered in
the third version of the method.

 Q4.1: Do users rate a workshop in which the policy
template elicitation method is applied as a positive
experience?

 M4.1: 100 percent of the participants (18 out of 18) that
we asked gave us positive feedback regarding the
participation in a meeting or workshop in which the
policy template elicitation method was applied.

 H40 can be rejected.

 RQ3 (Formalization): in the »SINNODIUM« case study, we were able to
instantiate a policy vocabulary with all seven derived policy templates.
In the »SECCRIT« case study, we selected three policy templates for
the demonstrator, which could all be expressed in the policy template
model:

o H5 (Completeness of policy template model)

 Q5.1: Is the policy template model capable to represent
more than 90 percent of the elicited security and privacy
demands in the form of policy templates?

 M5.1: We were able to model 100 percent of the derived
policy templates in the policy template model
((7+3)/(7+3) = 100%).

 H50 can be rejected.

 RQ4 (Automation): We successfully demonstrated the generation of
user interfaces for policy specification in both case studies. This
includes two PAPs that use different view modules and fully support
the two presentation modules that implement the specification
paradigms »template instantiation« and »default policies«. We regard
the feasibility for automated PAP creation as approved. However, we
still see a need to explore the generation of further specification
paradigms.

o H6 (Feasibility of automation of PAP creation)

 Q6.1: Is the process of user interface creation for the task
of policy specification automatable for multiple
specification paradigms and UI frameworks?

Evaluation for Improvements

184

 M6.1: The user interface creation for 100 percent (2 of
2) of the tested specification paradigms could be
automated.

 M6.2: The user interface creation of PAPs could be
automated for 100 percent (3 of 3) of the tested UI
frameworks.

 H60 can be rejected.

The »SINNODIUM« and »SECCRIT« case studies successfully
demonstrated the application of our method for usable PAP generation
(excluding the user to specification paradigm mapping) in two different
application domains. In both studies, we elicited policy templates with the
policy template elicitation method, instantiated the policy template model
to create a policy vocabulary and we used the PAP generation framework
to create PAPs for the specification of policies with generated user
interfaces. These case studies served to improve the method for usable
PAP generation, thus, different versions of our contributions were used in
the consecutive case studies.

185

9 Evaluation for Validation

In the second part of our evaluation, we focus on the validation of our
contributions. In this chapter, we describe an application of the entire
method for usable PAP generation and validate the contributions with
respect to the research goals (see Section 1.3) and hypotheses (see
Section 1.5) of this thesis.

We structure this chapter as follows: Section 9.1 explains our research
approach. In Section 9.2, the »BeSure« case study is presented, followed
by the »Digital Villages« case study in Section 9.3. We Section 9.4
describes our policy specification experiment. In Section 9.5, we
summarize our validation results.

9.1 Research Approach

In the validation of our work, we focus on all of our five contributions.
First, we conducted two case studies mainly to test Hypotheses H2 to H5
(see Section 1.5) in order to find valid answers to our research questions
RQ2 to RQ4 (see Section 1.3). We applied the method for usable PAP
generation in both case studies:

 The »BeSure« case study was the first application of our final
method for usable PAP generation (excluding user to specification
paradigm mapping). In this case study, we evaluated the usability
of a PAP with the specification paradigm »template
instantiation«. The study was conducted between 2015 and 2016
with the industrial partner »DATEV« in the application domain of
data classification and data-based security policies.

 The »Digital Villages« case study applied the method for usable
PAP generation including the mapping of users to specification
paradigms. The study was conducted in 2017 with colleagues
from »Fraunhofer IESE« in the application domain of digital
services in smart rural areas.

Second, we conducted an experiment to test our hypotheses H1.1 to H1.4
in order to answer our research question RQ1. We used the policy
vocabulary from the »Digital Villages« case study containing policy
templates for generating a realistic PAP with four different specification
paradigms. We let participants specify policies according to predefined
specification tasks and measured effectiveness, efficiency and user

Evaluation for Validation

186

satisfaction with all specification paradigms in order to confirm
hypotheses H1.1-H1.4.

9.2 Case Study: Software Campus Project »BeSure«

To explore the applicability of our method for usable PAP generation in
another actual application domain, we carried out a case study in the
context of the research project »BeSure« together with the industry
company »DATEV«. On this occasion, we assessed the usability of our
generated PAP together with »DATEV«.

9.2.1 Project Summary

The goal of the Software Campus project »BeSure« was to gain a better
understanding of the specification of security policies from an end-user
perspective. In »BeSure«, we developed a holistic methodology that
increases the usability of security and privacy PAPs for different
stakeholders while providing a reduced complexity and a vocabulary
tailored to the application domain for security policy specification. This
should enable stakeholders with different levels of knowledge to specify
security policies more easily and with fewer mistakes. The results of the
project contributed to the method for usable PAP generation. »BeSure«
was funded by the German Ministry of Education and Research under
grant number 01IS12053.

We performed the evaluation of the project together with the industrial
partner DATEV. DATEV must pay special attention to the protection of
customer-related data (e.g., financial and tax-related data), as their
business model is based on a trustworthy processing of this type of highly
sensitive data. In addition, DATEV’s business processes have to comply
with various regulations and legal obligations. New projects at DATEV
require that project-specific security policies are specified, depending to
external and internal regulations and the data classification of the project.
In the long-term, DATEV wants to provide their project managers with
tool-supported policy specification. Thus, the application domain for the
case study is the project-based specification of security policies.

We applied the policy template elicitation method in cooperation with
DATEV and elicited assets, threats and countermeasures for the
application domain. We derived policy templates, instantiated the policy
template model and generated a PAP with the specification paradigm
»policy templates« for the operation platform »Android«. In a second
workshop, we evaluated the usability of the generated PAP.

Evaluation for Validation

187

9.2.2 Design and Execution

The main goal of the case study was to verify the general applicability of
the method for usable PAP generation. Thus, the individual contributions
of this work needed to be examined. Therefore, we split the case study
into three parts:

 Policy template elicitation

 Policy template model instantiation and PAP creation

 Usability evaluation of the PAP

 Policy Template Elicitation

In the first step of our case study, we applied the policy template elicitation
method in the application domain »data classification and data-based
security policies« of the industrial partner DATEV. For the policy template
elicitation method, we first aimed to find answers to RQ2 (elicitation; see
Section 1.5.2) and to prove Hypotheses H2 (completeness of elicited
information), H3 (correctness of elicited information) and H4 (user
acceptance of elicitation method), described in Section 1.5.2. In the
context of this particular case study, we refined RQ2 into the following
research questions:

 RQ2.1 – Feasibility of RE techniques: Are the applied RE techniques
suitable to elicit an assets, threats, and countermeasures for a given
application domain?

 RQ2.2 – Stakeholders: Which stakeholders or roles need to be
involved to elicit required information when applying our policy
template elicitation method?

 RQ2.3 – Derivability of policy templates: Is the information elicited
in the elicitation workshop sufficient and suitable to derive policy
templates for the given application domain?

We planned the application of the policy template elicitation method with
all five method steps of the policy template elicitation method. Due to the
spatial distance of the method expert and the contact person, we decided
to initialize the project with phone calls and email communication with
the contact person at DATEV in the first method step. Several phone calls
and email conversations were required to gather all necessary information
for the preparation of the elicitation workshop. We received a data
classification guideline from DATEV from which we extracted exemplary
assets, threats and countermeasures. We identified the following
constraints for the workshop: There are three participants and the
workshop is limited to a duration of three hours.

Evaluation for Validation

188

We planned a workshop based on the constraints and available
stakeholders. Due to the time constraint of three hours at maximum for
the whole workshop and the availability of only three stakeholders as
participants, we prepared the workshop as follows: We chose the
»brainstorming on cards« method for the asset elicitation (i.e., a group
discussion). Data classes were collected as assets and enriched with
various information, such as asset owners, monetary value and sensitivity.
Additionally, we collected applicable laws, regulations, and typical use
cases for each asset on cards. We performed the »ranking method« for
the prioritization of assets. We had to limit the scope of the application
domain due to the time constraint. However, we did not continue with
the top ranked assets, but selected the three most relevant and diverging
ones in terms of monetary value and sensitivity in order to evaluate the
method for different asset types. Similar to the asset elicitation, we elicited
the threats with »brainstorming on cards«, enriched them with various
information (e.g., likelihood, potential damage, attackers) and clustered
them accordingly. We also chose the »ranking method« for the
prioritization of threats and selected the respective top three threats for
the elicitation of countermeasures. In order to produce many
countermeasures within a short period of time, we applied an adaptation
of the »6-3-5 method«.

We conducted the elicitation workshop on April 14, 2015 with three
participants, one method expert moderating the workshop and a minute
taker. Among the participants, one had the stakeholder role of a security
expert, one was a domain expert and one was a legal expert. All
participants were asset owners and users. One participant had to leave
the workshop directly before the countermeasure elicitation. The
elicitation and prioritization of the assets took approximately one hour;
we spent about 45 minutes on the threats and applied the »6-3-5
method« as planned for 30 minutes. The results were digitized by the
method expert, and he created example policies from the elicited
information. In the final step, the method expert derived policy templates.
For the derivation, the expert generalized the example policies. To this
end, he identified the variable parts of each policy and defined suitable
values or value ranges for instantiation. Finally, the elicited policy
templates were validated by the DATEV security expert. The post-
processing of the workshop (including digitization of elicited information,
derivation and validation of templates) required approximately two person
days.

 PAP Generation

After the elicitation phase, we instantiated the policy template model with
the information collected during the elicitation and generated a PAP. For
the policy template model and the PAP generation, we aimed to find
answers to Hypotheses H5 (completeness of policy template model) and

Evaluation for Validation

189

H6 (feasibility of automation of PAP creation). After the policy templates
had been validated, the method expert instantiated the policy template
model and, thus, created a policy vocabulary. When instantiating the
policy template model, the method expert checked whether all
information could be expressed to confirm the completeness of the model
(H5).

Next, the method expert evaluated whether the automated PAP
generation (H6) works with the instantiated policy template model and
the resulting PAP is fully functional. In order to assess the generated result,
he imported the policy vocabulary in the Android PAP that uses the
»template instantiation« paradigm. Together with DATEV, we decided not
to support the transformation into ILPs in the PAP. Thus, this part of the
policy template model was not instantiated and users were only able to
specify SLPs in the PAP.

 Usability Evaluation of the PAP

In the final step, we evaluated the usability of the generated PAP together
with DATEV. Our goal was to answer RQ1 (see Section 1.5.1). However,
we only evaluated the specification paradigm »template instantiation«.
Thus, we refined the research question as follows:

 RQ1.1 – Usability of PAP: Is the generated PAP with the specification
paradigm »template instantiation« usable for stakeholders of the
application domain?

Together with DATEV, we carried out a second workshop to evaluate the
usability of the generated PAP. We split the workshop into two phases:
exploration and discussion. During the exploration, we asked the
participants to apply the Android PAP and to fill out a questionnaire in
parallel. The task of the participants during the exploration was to answer
the questions with the following mindset: »Imagine that you need to
specify security policies for a new project as a project leader in the
company«. We did not define concrete specification tasks. The
questionnaire contained the following five questions (we used the term
»policy editor« instead of PAP):

 The specification of security policies is a challenge in the company
(1—low to 5—high)

 Name the three most positive and the three most negative aspects of
the policy editor.

 Is there any possible application for such a policy editor? If yes, which?

 What would be the benefits of introducing such a policy editor?

Evaluation for Validation

190

 Which additional features does the policy editor need to provide in
order to be acceptable?

In addition, the participants filled out a AttrakDiff word pair sheet [165]
to describe the usability of the PAP.

The second workshop phase was a discussion round, in which the
feedback of all participants was presented and discussed. We explicitly
asked for positive and negative experiences, potential extension points
(e.g., other platforms) and scenarios where such a PAP would be
beneficial. The questions were similar to the questions already asked in
the questionnaire. However, we wanted to elicit information from the
discussions between the participants.

We conducted the second workshop for the usability evaluation of the
PAP on February 17, 2016. The same three participants from the elicitation
workshop joined. They represented the security, domain and end-user
perspectives, which we consider the main stakeholder groups for security
policy specification at DATEV. The evaluation started with a short
introduction of the workshop goals. We explained the functionality of the
PAP in a slideshow with screenshots and presented the questionnaire and
the AttrakDiff method. Next, the participants tested the PAP for about 25
minutes. They answered the questionnaire and the AttrakDiff sheet in
parallel. Finally, we had a discussion for 25 minutes. During the trial phase
of the workshop, we did not track the concrete user interactions with the
PAP nor did we store the specified security policies.

Table 18: Asset »Communication Data«

Asset ID A8

Asset Communication data (e.g., emails)

Data Owner Employees and specialty department

Example Use Case Bring your own device

Prioritization
Properties

Monetary value of asset: medium (€€)
Sensitivity of asset: internal use only

Legal Regulations German laws HGB, TKG, SigG and GDPR

9.2.3 Results

We split the results section into three parts: policy template elicitation,
PAP generation and PAP evaluation.

Evaluation for Validation

191

Table 19: Threats for Asset »Communication Data«

Threat ID T4-T6

Related Asset ID A8

Related Asset Communication Data

Attackers Data theft

Top 3 Threats T4: Unintentional sending of hidden, sensitive information

 probability: permanently (high)

 damage: costly (medium)
T5: Falsifying information (e.g. manipulation of draft contracts,
obtaining financial advantages, etc.)

 probability: almost impossible (low)

 damage: costly (medium)
T6: Unintended disclosure to third parties (unencrypted sending or
wrong recipient)

 probability: permanently (high)

 damage: costly (medium)

Other threats Misdirection / open distributor

 Phishing

 Accidental disclosure of highly confidential data internally

 Generous allocation of mailbox authorizations

 E-mails with long attachments

 Use of not permitted communication methods

 Transmission of data with highest classification to unauthorized
persons

Existing
Documentation

not available

 Policy Template Elicitation

In total, we identified twelve assets: project data, employee data, supplier
data, job data, customer data, communication data, contact information,
source code, system logs, information for employees, public data and
technical configurations. We selected the assets communication data (see
Table 18), job data (see Table 42 in Appendix E.1) and public data (see
Table 44 in Appendix E.1) for the threat elicitation.

Table 20: Countermeasures for Threat »T4: Unintentional Sending of Hidden, Sensitive Information«

Countermeasures for threat:
T4: Unintentional sending of hidden, sensitive information

Reminder before sending email

Provide deletion function for removing sensitive information from email

Regular awareness raising through warning messages

Automatic removal of sensitive data (data loss prevention)

Evaluation for Validation

192

For these three assets, we elicited 27 threats in total (see Table 19 as well
as Table 43 and Table 45 in Appendix E.1). Ultimately, we identified 39
countermeasures for the elicited threats. We present examples in Table 20
as well as Table 46 and Table 47 in Appendix E.1. From these threats and
countermeasures, we finally extracted fourteen policy templates with the
elicited information (see Table 21 and Table 48 in Appendix E.1).

Table 21: Policy Template »Secure Email Sending«

ID Policy Template Name Asset Target System Security/Privacy
Goal

1 Secure email sending Communication
Data

Email client and
server

Confidentiality,
integrity

Policy Template Syntax If [any employee | <employee> | <employee role>] sends an email
[with attachments | containing sensitive information]*, then
[inform the user | enforce encryption of email | enforce digital
signature of email | delay the delivery of the email for <amount>
<time unit> in order to enable revocation | remove sensitive
information [automatically | after user confirmation]]+.

Description Employees often communicate via email with internal as well as
external recipients. This communication must be protected
because email content as well as attachments can contain
sensitive information. This template allows the control of email
sending.

Threat Information leakage or manipulation of sensitive information

Example Instantiation If service employees send an email containing sensitive
information, then inform the user, enforce encryption of email,
and delay delivery of the email for 5 minutes in order to enable
revocation.

 PAP Generation

We used the output of the policy template elicitation method to
instantiate the policy template model. We were able to model all policy
templates. We used the resulting instance of the policy template model,
the policy vocabulary, for the automated PAP creation. We used the PAP
generation framework with the view module »Android« and the
presentation module »template instantiation« to create an Android PAP.
Figure 64 shows a screenshot of the PAP, which was originally provided
in German language.

 PAP Evaluation

Regarding our questionnaire, the participants reported that specifying
security policies at DATEV is considered a rather challenging task. The
average rating was 3.7 out of 5 points, where larger values denote bigger
challenges. Thus, better guidance (e.g., by a usable PAP tailored to
stakeholders of the application domain) could be beneficial for DATEV.
The participants named the simple handling, the clarity and the structured,

Evaluation for Validation

193

unified specification process as benefits of the PAP. Regarding the
specification paradigm »template instantiation«, the restricted variety of
the templates, the unified and domain-specific diction of the policies and
the structuring of the policies were positively mentioned.

The participants also found improvement potential. The set of 14
templates was perceived as confusing, although the PAP provides search
and filter mechanisms for the policy template handling. Furthermore, the
participants experienced the policy templates linguistically speaking as not
yet »human«. Rephrasing the templates or providing a specification
paradigm with more guidance could improve usability. An example would
be a wizard with detailed explanations of individual customization options
in the policy templates.

Figure 64: Example PAP Using View Module »Android«, Policy Vocabulary »BeSure« and Presentation
Module »Template Instantiation«

The participants stated that their company could benefit from using such
a PAP because it would foster a standardized and centralized procedure
of specifying security policies. Currently, policies are specified in a more
unstructured way using checklists and documentation of security policies
in text files. Moreover, a PAP could empower data owners, especially non-
experts, to specify security policies that reflect their personal protection
needs.

The participants named the adaption of the PAP generation framework to
existing systems as the most valuable extension point. That is, policies
should be automatically transformed into ILPs that can be enforced in the
target systems. Actually, this feature is supported by the PAP generation
framework for XML-based policies. However, we excluded this aspect in

Evaluation for Validation

194

the first discussions with the contact person prior to the policy elicitation
workshop. Another concern raised by the participants was that a clear
process for the specification and maintenance of security policy templates
at the company would be necessary in practice. However, we do not
address such a process in this work.

The AttrakDiff method revealed that the user interface of the PAP was
rated as »fairly practice-oriented« regarding the pragmatic dimension; the
PAP was rated between neutral and task-oriented. This means that users
can achieve their tasks with the PAP, but there is room for improvement.
Users seemed to be stimulated by the PAP from the hedonic point of view,
but only on an average level. Thus, there is potential for improvement for
the hedonic quality as well. Regarding the hedonic quality »identity«, the
PAP’s mean value was located slightly above average level. Thus, our PAP
met ordinary standards, but a higher value would bind the user more
strongly to the PAP. With respect to the hedonic quality »stimulation«,
the mean value was rated slightly above the average level. Thus, our PAP
met ordinary standards, but improvements would motivate users more
strongly. The attractiveness was rated moderate. The AttrakDiff test
revealed that the generated PAP was accepted as a user-friendly and
attractive tool, but there are still improvement potential regarding usability
and attractiveness.

9.2.4 Observations and Lessons Learned

The elicitation part of our case study was based on the following
evaluation plan in order to answer our research questions. It was verified
whether the outcome of our elicitation matches the known assets, threats
and countermeasures in the application scenario (RQ2.1). As we did not
have a baseline, we relied on a subjective evaluation by DATEV experts
during the validation of the policy templates. We checked whether we
involved enough different stakeholders to elicit all information required by
subsequent process steps (RQ2.2). In addition, we checked whether
security policy templates could be actually derived from the information
elicited and processed in the first four method steps (RQ2.3). Furthermore,
domain experts were asked to validate the completeness (H2) and
correctness (H3) of the derived policy templates. Obviously, they needed
to consider that we only elicited threats for a limited set of assets and
collected countermeasures only for the top ranked threats. Regarding
completeness, we additionally checked whether all example policies could
be instantiated with the policy templates. Finally, we asked for feedback
regarding the policy template elicitation method and the elicitation
workshop (H4).

Regarding RQ2.1, we found that the selected elicitation techniques led to
a set of assets, threats and countermeasures that well reflect the
application domain. The results were quite homogeneous and included

Evaluation for Validation

195

technical and organizational countermeasures. Some of them have
already been implemented at DATEV and some are desired future
extensions. The experts approved the elicited information in the validation.
Thus, we rate the selected RE techniques as suitable in our setting.

With respect to RQ2.2, we assess the selection of stakeholders for our
elicitation as positive. The participants covered all relevant perspectives on
security policies for the application domain: technical and organizational
IT security perspective, legal perspective and end user perspective. The
stakeholders actively engaged in the workshop and revealed a lot of
information during the elicitation. Thus, the selection of stakeholders was
successful in our setting.

Regarding RQ2.3, we can confirm that the method provides sufficient
information for the derivation of policy templates. We were able to derive
14 policy templates from the elicited information. Variable parts were
easily identifiable in the example policies, and the information elicited
during the workshop was sufficient for the method experts to define the
concrete variables. The derivation of security policy templates worked
efficiently.

The DATEV experts confirmed that the derived policy templates were all
correct. That is, the templates correctly reflect the information elicited in
the workshop, yielding a correctness of 100 percent (H3). Obviously, the
policy template cannot completely cover the application domain, as we
only partially elicited threats and countermeasures due to the time
constraints of the workshop. We asked the experts to consider this fact in
the evaluation. The experts neither reported any missing templates nor did
they identify any desired policies that cannot be instantiated with the
derived policy templates. Thus, we achieved a completeness of
100 percent for this application domain (H2). We asked the participants
via email to validate our results. We cannot rate how diligently they
performed the validation and thus, how reliable the query results
described below are.

The participants perceived the policy template elicitation method as an
applicable process for eliciting and deriving domain-specific policy
templates for the application domain »data classification and data-based
security policies« at DATEV (H4). They also appreciated the structure of
the method and the requirements engineering techniques selected for the
workshop. In fact, we did not face any kind of resistance during the
workshop and received only positive feedback regarding the method after
the workshop.

After completing the template derivation, we instantiated the policy
template model with the output from the policy template elicitation
method. We were able to express nine of fourteen policy templates

Evaluation for Validation

196

completely in the model. The other five policy templates contained a
construct that was not yet supported by the policy template model: In
selections, each element could only be selected once (concept of radio
buttons and check boxes); however, the five policy templates would
require multiple instances of selection elements. In the specific case, a
variable inside a selection element let the user specify employees for which
the policy should be enforced. Thus, as only one instance of a selection
element could be created, the user would need to specify an individual
policy for each user. This is neither usable for the specification nor for the
management of policies. Thus, this finding indicated that the policy
template model was not yet complete (H5).

We imported the policy vocabulary into the Android PAP app with the
integrated PAP generation framework. The user interfaces for the
specification of all policy templates were generated during the runtime of
the PAP in an automated manner. Thus, we demonstrated that H6, which
claims the feasibility of automation in the PAP creation process, holds in
the context of this case study.

Finally, we evaluated the usability of the generated PAP with experts from
DATEV. They overall liked the Android PAP app with the specification
paradigm »template instantiation«, which positively answered RQ1.1.
However, they gave valuable feedback regarding improvement potential,
for example, regarding the grammar of policy templates and more
guidance during the specification.

In summary, the case study yielded the following evidence supporting our
research questions and hypotheses:

 RQ1 (Usability of Specification Paradigms): We evaluated the
usability of an Android PAP with the specification paradigm »template
instantiation«. The feedback of the participants and the results of an
AttrakDiff test were positive, but revealed improvement potential.

 H2 (Completeness of elicited information): According to the
experts who validated the method results, the derived policy templates
cover the security demands of the application domain. However, the
experts noted that not all assets and threats were investigated during
the elicitation due to time constraints.

 H3 (Correctness of elicited information): According to the experts
who validated the method results, all derived policy templates were
correct.

 H4 (User acceptance of elicitation method): Overall, we got
positive feedback on our policy template elicitation method.

 H5 (Completeness of policy template model): We were able to
instantiate a policy vocabulary with all derived policy templates.

Evaluation for Validation

197

However, the version of the policy template model used in the case
study lacked a construct of multiple instances of selection elements.
Thus, in the context of this case study, we were not able to approve
the completeness of the policy template model.

 H6 (Feasibility of automation of PAP creation): We demonstrated
the feasibility of an automated PAP creation with a PAP realized as an
Android app. At runtime, the PAP was capable of generating all user
interfaces for the specification of policy templates.

Besides the contributions to our research questions and hypotheses, we
made the following observations.

During the elicitation workshop, we found that a better alignment of the
elicitation to use cases or business processes could improve effectiveness
and efficiency of the elicitation. If assets are used in multiple use cases,
the threats and countermeasures vary greatly. The elicitation of threats
based on use cases could ease their elicitation, as the participants only
have to explore one usage scenario at a time. This could also improve the
understandability of the policy templates, as they are focusing on one use
case.

The combination of the stakeholder roles in our elicitation workshop led
to good results and fruitful discussions. Domain, security and legal
expertise was combined during the elicitation. We will further aim to have
a mixture of these stakeholder roles in elicitation workshops.

Participants in the PAP usability evaluation rated the policy templates as
not yet »human« from a linguistic perspective. This artificial appearance
is most probably caused by the concept of policy templates. It is very
challenging or on parts even impossible to define a syntax that allows the
instantiation of policies with natural English or German grammar (on the
specification level). It needs to be investigated whether better grammar in
instantiated policy templates can be obtained by rephrasing the policy
templates. Another improvement idea is to subdivide policy templates into
less complex ones. We assume that it is easier to provide a more natural
grammar a simplified policy template syntax. However, simpler policy
templates require the user to instantiate more policy templates. This
tradeoff requires further investigation.

According to their feedback, the participants required more guidance.
They stated that they would appreciate some kind of wizard with detailed
explanations of the variation points of the policy templates. This feedback
led us to develop a new specification paradigm that supports a wizard
approach for the specification of policies.

Evaluation for Validation

198

Together with the contact person, we agreed at the beginning of the case
study that we would not create transformation rules for ILPs. The main
reason was that our PAP generation framework currently only supports
XML-based policy languages. At the time of this decision, the contact
person informed us that DATEV did not have policy enforcement
technology in place with a XML-based policy language in the area of the
application domain. However, during the usability evaluation of the PAP,
the participants stated that a connection of the PAP to target systems
would be desirable. They named the Windows Group Policies as an
exemplary target system. To support this connection, we would need to
support non-XML-based policy languages, either directly with in the PAP
generation framework or with an intermediate XML-based language that
can be transformed into the policy language of the target system after the
specification in the PAP. However, adding support for other ILP languages
was not within the focus of this thesis work.

From a practical point of view, a well-defined process for the maintenance
of security policy templates at the company would be mandatory.
However, we do not address this aspect in this work.

9.2.5 Threats to validity

In this section, we address threats to validity with respect to the policy
specification experiment. The threat categories are explained in
Section 8.2.5.

 Internal Validity

We have several dependent variables in the case study. Regarding the
study design, the constellation and selection of participants is an issue. All
participants were highly experienced and stemmed from complementary
departments. They were extremely motivated, as they had an intrinsic
interest in the results. One participant knew about our goals and
hypotheses, which might have influenced his behavior during the case
study. We do not know how these factors influenced the results and
whether less motivated or less experienced participants would have
caused worse results.

The selection and application of different RE techniques is another
influencing factor. We tested »brainstorming on cards« and the »6-3-5
method« in the elicitation workshop. Both worked fine in our case study.
However, we do not know whether other techniques are more suitable
and produce even better results. We also do not know whether these
techniques perform equally well in other application domains, and how
strongly the stakeholders influence the success of the application of RE
techniques.

Evaluation for Validation

199

Finally, the creator of the method for usable PAP generation executed the
method on his own, including the moderation of both workshops. We
decided to do this in order to collect as much experience with the
application of the method. However, this poses a threat to internal
validity. Future case studies and experiments should be performed by
independent persons not related to this thesis work.

 External Validity

Many aspects affect the quality of the results of our approach. We do not
know how much the quality of the output of our policy template
elicitation method depends on the expertise of the participants regarding
the application domain, security and legal aspects. Moreover, we only
evaluated the usability of the PAP with a small, potentially biased group
of persons. We need to apply the method more often in different
application domains with different stakeholders to confirm the
generalizability of our method’s feasibility, the user experience during its
application and the completeness and correctness of its results.

 Conclusion Validity

The derived security policy templates were validated by the participants of
the case study. More meaningful validation results may have been
achieved if the validation had been applied by different, independent
security experts from the same application domain.

9.2.6 Summary

In the »BeSure« case study, we positively evaluated the policy template
elicitation method, the policy template model and the PAP generation
framework together with DATEV. We applied the policy template
elicitation method with stakeholders from DATEV. In a half-day workshop,
we elicited twelve assets. For three of these assets, we identified 27
threats. For the nine major threats, we elicited 36 countermeasures. From
this information, we derived fourteen policy templates. Overall, we
obtained valuable results and received positive feedback from the
participants. Next, we instantiated the policy template model. We
identified one construct that we were unable to model, but was required
by five policy templates. This deficiency rendered the policy specification
for users more complicated, as potentially more policies need to be
specified to compensate for the weakness of the model. Still, all policies
could be specified. Thus, we assigned this problem a low severity. We used
the resulting policy vocabulary to generate an Android PAP. We evaluated
the usability of this PAP in a second workshop with experts from DATEV.

Evaluation for Validation

200

9.3 Case Study: »Digital Villages«

Together with our colleges from Fraunhofer IESE, we performed another
case study in the context of the research project »Digital Villages«. The
goal of this study was to confirm the feasibility of our method for usable
PAP generation in a real application domain. The generated PAP was also
used for the policy specification experiment described in Section 9.4. Our
work was not funded by the project.

9.3.1 Project Summary

The goal of the »Digital Villages« is to provide novel digital solutions to
better connect rural regions, to strengthen the community and open up
new opportunities for local businesses. The new services supporting these
objectives run on a service platform. To illustrate the approach, consider
the following examples: With the »DorfFunk« service as the
communication center of the regions, citizens can offer their help,
exchange goods and services, submit applications or simply chat with each
other in a casual way. The »BestellBar« is a completely new kind of online
marketplace. It combines the advantages of online shopping with those
of local shopping. Retailers in the region present their products, which
citizens can order online. The »LieferBar« is the bring-along service for the
community. Here, citizens can see which parcels from the local online
shop »BestellBar« are still waiting for delivery and can then take them
along to their neighbors.

In all these services, citizens provide personal data. We want to enable the
citizens to control the use of their data. Therefore, citizens shall be
involved in the policy specification process so that they can express their
own security and privacy demands. To this end, a user-friendly PAP is
required.

We applied the policy template elicitation method in cooperation with
colleagues from Fraunhofer IESE, who are developing the »Digital
Villages« platform and are supporting citizens in using the platform
services. We elicited assets, use cases, threats and countermeasures for
the application domain in a workshop. We derived policy templates and
validated them with the workshop participants. We instantiated the policy
template model to create a policy vocabulary, and based on this
vocabulary, we generated a PAP with the specification paradigms »policy
templates«, »default policies«, »security levels« and »wizard« for the
operation platform »Web«.

The elicitation of policy templates is part of the integration of the data
usage control enforcement framework »IND²UCE« into the »Digital
Villages« platform. However, as we had not integrated IND²UCE into the

Evaluation for Validation

201

platform at the time of the case study, we did not yet define ILP
transformation rules for the IND²UCE policy language.

9.3.2 Design and Execution

Our main goal was to find evidence regarding Hypotheses H4 (User
acceptance of elicitation method), H5 (Completeness of policy template
model) and H6 (Feasibility of automation of PAP creation). As a by-product
of the validation study, we wanted to elicit real policy templates to be
used in the policy specification experiment, described in Section 9.4.

At the beginning of the study, we applied the policy template elicitation
method in the application domain »Digital services in smart rural areas«.
To this end, we first met with the contact person, the project leader of the
»Digital Villages« project, to clarify the constraints for the policy template
elicitation, but no specific constraints were imposed. We got access to
information material about the »Digital Villages« platform including use
case and architecture documentation. We were able to derive lists of
relevant assets, user roles and use cases for the application domain from
the provided documentation. Having this material available, we decided
to extend and confirm those lists in the beginning of the workshop in a
group discussion rather than eliciting assets, user roles and use cases from
scratch.

We prepared an introductory slide show to explain the elicitation process
and to present the initial lists of assets, user roles and use cases to the
participants. In addition, we prepared the material for the chosen RE
techniques and a catalog of exemplary threats and countermeasures in
the event that the participants need some assistance in identifying the
required information. Furthermore, we pinned exemplary results of each
method step on a pin board so that participants were able to gain a better
understanding of our expectations. As we had a positive experience with
a half-day elicitation workshop in the »BeSure« case study, we planned
the »Digital Villages« elicitation workshop to last four hours. We invited
developers of the »Digital Villages« platform and project members that
directly interact with citizens in the villages in which the »Digital Villages«
services are offered.

Before the workshop, our understanding of the mapping of assets, users
and use cases of the application domain (which user roles are actually
using which assets within which use case) was incomplete. Therefore, we
prepared a large matrix at a pin board with use cases and assets at the
two axes. Participants were asked to insert the user roles in the cells that
use the respective assets within the respective use cases.

We decided to elicit threats per use case, because we assumed it would
better fit the mindset of the participants. The well documented use cases

Evaluation for Validation

202

represent the services of the »Digital Villages« platform and were well
known to all participants. Thus, we assumed that the participants could
easier think their way into the use cases for the threat elicitation than into
assets. Due to the limited number of use cases, we decided to assess all
of them and thus skipped their prioritization.

We elicited the threats for the use cases with the »3-6-5 method«. We
chose this method to rapidly identify as many threats as possible. We
asked the participants to collect threats for one specific use case on each
of the 3-6-5 sheets. After the threat elicitation, we let each participant
rate the likelihood and severity of each threat per asset. We selected the
most relevant threats based on their severity and likelihood rating.

Last, we applied the »brainstorming on cards« method to elicit
countermeasures. We chose this method because it stimulates discussion,
as we wanted to find consensus on applicable countermeasures across the
entire group.

The workshop took place on July 7, 2017 with five participants, one
method expert moderating the workshop, a minute taker for
documenting the results and an assistant for organizing the input from
the participants (e.g., to pin moderation cards on the pin boards or to fill
information into the slides). The author of this thesis acted as the method
expert.

Five developers of the »Digital Villages« platform participated in the
workshop. To some degree, they also interact directly with citizens of the
villages where the platform is rolled out. Thus, the group of participants
represented the stakeholder roles domain expert, technology expert, asset
owner and asset user. We did not have access to legal or security experts
for this elicitation.

In the first elicitation round of the workshop, the participants refined the
lists of relevant assets, use cases and users of the application domain in a
group discussion based on our initial lists. The assistant changed the lists
on the fly. We ended after all participants approved the updated lists.
Next, we mapped assets, use cases and users on each other with the
prepared matrix. After that, we let the participants collect threats per use
case with the »3-6-5 method« and prioritize the identified threats. Finally,
we identified countermeasures and potential drawbacks of those
countermeasures for selected threats with the »brainstorming on cards
method«. At the end of the workshop, we asked all participants for
feedback about their experiences to confirm the user acceptance of our
policy template elicitation method (H4). Afterwards, we digitized and
archived all workshop results with a photo protocol of all pin boards, and
we scanned the 3-6-5 sheets. From the elicited information, we
formulated exemplary policies that represent security and privacy

Evaluation for Validation

203

demands of users of the application domain. We used these example
policies to derive policy templates.

To obtain evidence for the completeness of the policy template model
(H5), we instantiated it with derived policy templates. We added
projection rules for the different specification paradigms. We defined
default policies for the specification paradigm »default policies«, the order
of specification and smaller specification steps for the »wizard« paradigm
and the different levels including the assigned default policies for the
specification paradigm »security levels«. Due to the missing enforcement
technology for security and privacy policies in the »Digital Villages«
platform at the time of the case study, we abstained from specifying any
ILP transformation rules.

To demonstrate the automation in the PAP creation process (H6), we
generated user interfaces for policy specification with all four specification
paradigm algorithms of the PAP generation framework and provided
those in a PAP for the operation platform »Web«.

9.3.3 Results

We refined seven relevant use cases for the application domain »digital
services in smart rural areas«, and we identified eight relevant assets that
are used in these use cases. Ultimately, we agreed on nine user roles that
use the assets in the use cases. The elicited use cases, assets and user roles
are shown in Table 22.

Table 22: Lists of Elicited Use Cases, Assets and User Roles

Use Cases Assets User roles

Create account and
authentication

Person data: Ordering person
/ Consumer of Exchange

Ordering person / Exchange
Consumer (1)

Ordering via BestellBar Person data: Deliverer /
Provider of Exchange

Deliverer / Exchange provider
(2)

Delivering via LieferBar Merchant Merchant (3)

Exchanging via DorfFunk Order Data Platform operator (4)

Scientific analysis Delivery Data Care taker (5)

Debugging Chat Data Scientist (6)

Administration Trade Data Ministry (7)

Create account and
authentication

Achievements External provider (8)

 Log Data Third party operator (9)

In order to better understand the mapping of assets, user roles and use
cases, we elicited this information in a matrix, as shown in Table 23. The
user roles are represented by the numeric value assigned in Table 22.

Evaluation for Validation

204

Table 23: Mapping of Use Cases (X-Axis), Assets (Y-Axis) and User Roles (Numbers in Cells)

C
re

at
e

ac
co

un
t

an
d

au
th

en
tic

at
io

n

O
rd

er
in

g
vi

a
Be

st
el

lB
ar

D
el

iv
er

in
g

vi
a

Li
ef

er
Ba

r

Ex
ch

an
gi

ng
 v

ia
 D

or
fF

un
k

Sc
ie

nt
ifi

c
an

al
ys

is

D
eb

ug
gi

ng

A
dm

in
is

tr
at

io
n

Person data:
Ordering person /
Consumer of Trade

4,9 4, 5, 8, 9 4, 5, 8, 9 1, 2, 4 3-9 4 4, 5

Person data:
Deliverer / Provider
of Trade

4,9 4 4, 5, 8, 9 1, 2, 4 3-9 4 4, 5

Merchant 4,9 4, 5, 8, 9 4, 5, 8, 9 3-9 4 4, 5

Order Data 4, 5, 8, 9 4, 5, 8, 9 3-9 4 4, 5

Delivery Data 4, 5, 8, 9 4, 5, 8, 9 3-9 4, 5

Chat Data 1, 4 4 1, 2, 4 3-9

Trade Data 1, 2, 4,
6, 7

3-9

Achievements 4 4 4 1, 2, 4,
6, 7

3-9

Log Data 4 4 4 4 4

Using the »3-6-5 method«, we elicited 68 threats for the assets used in
the use cases. Based on their prioritization, we selected 27 of them for the
countermeasure elicitation. Table 24 shows an exemplary sheet from the
threat elicitation for the use case »Exchanging«.

For the selected 27 threats, we elicited 53 potential countermeasures from
the participants of the workshop. As an example, Table 25 shows the
countermeasures that we retrieved for the use case »exchanging«.

Evaluation for Validation

205

Table 24: 3-6-5 Sheet for Threat Elicitation of Use Case »Exchanging« (Dmg: Damage; Pb: Probability)

Use Case Exchanging

Threats

Conclusions about life
situations of a person
through collection of all
current and past offers
/ requests

Dmg: M
Pb: L

Identifying, when
person is outside the
home to provide help
to others Burglary

Dmg: L
Pb: L

Collect home addresses
of persons creating
profiles of districts /
villages

Dmg: L
Pb: L

Teaser Attack on the
exchange consumer

Dmg: H
Pb: L

Fake exchanges for
collecting DigiTaler
(currency in Digital
Villages)

Dmg: M
Pb: H

Using the DorfFunk for
advertisement (e.g.,
advertisement in
picture uploads)

Dmg: N
Pb: N

Fraud with defective,
fake or similar products

Dmg: M
Pb: L

Defamation through
bad recessions

Dmg: M
Pb: L

-

Blackmailing with a bad
rating, which everyone
then sees

Dmg: M
Pb: L

Use pictures for
collecting details about
residence, for example,
for breaking in

Dmg: M
Pb: M

Giving information
about storage location
of exchange goods
(e.g. in allotment
garden). Can be used
for burglaries.

Dmg: H
Pb: M

Fake account for
scamming items

Dmg: H
Pb: H

Health insurance
companies / authorities
check behavior or
identify property

Dmg: M
Pb: L

Employers trace what
employees do in free
time

Dmg: M
Pb: L

Commercial use Dmg: M
Pb: M

Fake accounts for
stealing

Dmg: H
Pb: H

Lent items are never
returned

Dmg: H
Pb: L

Table 25: Identified Countermeasures for Use Case »Exchanging«

Use Case Exchanging

ID Threat Countermeasure Side Effect

T1 Commercial use Report function for fraud

T2 Creation of fake account
for stealing goods or
data or for collecting
data

Report function for fraud

Identification of users with ID cards
on account creation

Effort hinders
potential users

T3 Use of exchange data for
burglary

Trust through

 Personal data

 Verified persons (post-Ident)

 Picture-based confirmation of
persons by others

Configurable trust level for seeing
offer Only friends see offer

Effort hinders
potential users

Show address coarse-grained

Do not propose date and time of
exchange

T4 Fake exchange for
collecting DigiTaler

Limit number of exchanges per
time frame

Upper limit of DigiTaler per
exchange

Evaluation for Validation

206

After the policy elicitation workshop, we documented all elicited
information. Using this information, we created 44 example policies that
represent security and privacy demands of the application domain. In our
role as security experts, we extended this list of example policies by sixteen
additional example policies, which can in our opinion support citizens in
protecting their security and privacy. For illustration, Table 26 lists all
example policies for the use case »exchanging«.

Table 26: Derived Example Policies for Use Case »Exchanging«

Example Policy Type

If citizens access exchange data, the provider's name will not be displayed
and address only be displayed roughly before the exchange is accepted
(e.g. only postal code or house number range: main street [1-50]).

IND²UCE

If citizens access exchange data, the date/time is not or only roughly
displayed before the exchange is accepted.

IND²UCE

Limit the number of exchanges per user and time period to prevent fake
exchanges.

IND²UCE

Own exchanges can only be seen by friends. IND²UCE

The number of DigiTaler per exchange is limited. Security
Requirement /
IND²UCE

Users can report fraud if the TauschBar is used commercially or data is
collected for other purposes.

Security
Requirement

In order to create accounts, a valid identity card must be presented or
postIdent must be performed.

Security
Requirement

In total, we derived fourteen policy templates from the example policies.
Table 27 shows the exemplary policy template »DorfFunk: Help requests
and Offers«, which we also used in the policy specification experiment.
We created the policy template only for help requests and offers (i.e.
services that citizens can offer and request in their community), but not
for all types of exchange data (e.g., trading of goods). Of course, another
variable could be added to the policy template for setting the type of the
exchange data. However, we did not want to make the policy templates
too complicated. The trust levels were not part of the actual elicitation,
but added by the method expert in response to a suggestion during the
workshop that was supported by the participants.

The elicitation workshop and its results were originally documented in
German. In this work, we presented English translations of the policy
templates for the policy specification experiment.

One major goal of this case study was to elicit real policy templates for the
policy specification experiment. Thus, we needed to create a policy
vocabulary for the PAP used in the experiment. Therefore, we selected six
policy templates that cover all three services. We instantiated the policy
template model with these six policy templates. Additionally, we defined

Evaluation for Validation

207

projection rules so that we could generate all four specification paradigms
supported by the PAP generation framework.

Table 27: Exemplary Policy Template »DorfFunk: Help Requests and Offers«

ID Policy Template Name Asset Target System Security/Privacy
Goal

1 DorfFunk: Help requests
and Offers

Personal Data DorfFunk Confidentiality /
necessity

Policy Template Syntax My help requests and offers can be viewed [by every citizen|only
by my friends|only by citizens with at least the trust level
[gold|silver|bronze]]. Before accepting the help request or offer,
they are allowed to look at [my complete name|not my name],
[my complete address|only street and city of my address|only zip
code and city of my address|not my address] and [not the
preferred appointment | only the date of the preferred
appointment | only date and daytime of the preferred
appointment | the date and exact time of the preferred
appointment].

Description The user of the DorfFunk service can defined the visibility of own
personal data when offering help requests.

Threat T3: Use of exchange data for burglary

 T2: Creation of fake account for stealing goods or data or for
collecting data

Example Instantiation My help requests and offers can be viewed by every citizen.
Before accepting the help request or offer, they are allowed to
look at not my name, only zip code and city of my address and
only the date of the preferred appointment.

We generated a PAP instance using the view module »Web« for the
specification of privacy demands in the context of the project »Digital
Villages«. The PAP provides the four presentation modules »template
instantiation«, »default policies«, »security levels« and »wizard«. We
present screenshots of the PAP in Appendix F.1.

9.3.4 Observations and Lessons Learned

We did not perform a proper validation of the workshop results and the
derived policy templates, thus we do not have evidence to approve H2
(completeness of elicited information) and H3 (correctness of elicited
information) for this case study.

Regarding H4 (user acceptance of elicitation method), we received positive
feedback from all participants. They commended the elicitation with
respect to use cases. In particular, they confirmed that it was good to
emphasize the use cases in order to identify threats. The participants also
stressed that they would have liked to have worked longer on the
elicitation of countermeasures. They also liked that the workshop was not
restricted to eliciting policies that are technically enforced, but that also

Evaluation for Validation

208

organizational policies were identified. However, we also received
suggestions for improving our method. The process of mapping assets,
use cases and user roles with the matrix needs to be better explained to
the participants. The users also proposed to rate the damage and
probability in teams. We agree that this discussion would be more
meaningful if performed in teams or with the entire group. However, to
save time we decided to let those values be set by individual participants.
The participants suggested to have a longer break in the middle of the
workshop, for example a lunch break. We opted against a lunch break,
because in similar workshops, we experienced a decrease in the
productivity of participants after lunch breaks.

With respect to H5 (Completeness of policy template model), we
ascertained that we were able to instantiate the policy template model
and the respective projection rules for the four specification paradigms for
all six selected policy templates. Thus, the results of this case study indicate
that the policy template model is complete.

Regarding H6 (Feasibility of automation of PAP creation), we
demonstrated the automated creation of the user interfaces for policy
specification within a web-based PAP, which implement the following
specification paradigms to the user: »template instantiation«, »default
policies«, »security levels« and »wizard«.

9.3.5 Threats to validity

In this section, we address threats to validity with respect to the policy
specification experiment. The threat categories are explained in
Section 8.2.5.

 Internal Validity

In this case study, we acted as the method experts while conducting the
policy template elicitation method. This poses a threat to internal validity.
However, we strictly adhered to the documented process instructions we
created, and we did not try to influence the results in any way.

We selected the participants for the workshop, which might have biased
the results of the case study. In addition, all participants were researchers
at Fraunhofer IESE, having a similar mindset and using similar terminology.
We cannot exclude an influence of this homogeneity of the participant
group on the results of the case study.

 External Validity

We elicited information from only five participants, all from the same
organization, and only in a single workshop session. To confirm the

Evaluation for Validation

209

generalizability of the policy template elicitation method, we would need
to apply this method with multiple participants groups for the same
application domain.

The policy template model was only instantiated with six policy templates.
We do not know whether the selected templates cover all potential
constructs that need to be expressed in an instance of the policy template
model. Thus, the small number of used policy templates poses a threat to
external validity.

 Conclusion Validity

We did not have access to legal or security experts during the elicitation.
This may have affected the workshop results. However, with our own
expertise in the areas of security, privacy and applicable privacy protection
laws (e.g., GDPR), we are convinced that we sufficiently took these aspects
into account during the post processing of the workshop results (i.e.,
during the creation of example policies and the derivation of policy
templates). Therefore, we rate this threat to conclusion validity as low.

We did not validate the final results of the policy template elicitation
method with the workshop participants or domain experts. Thus, we did
not evaluate the completeness and correctness of the elicited policy
templates. Thus, based on this case study, we cannot conclude that the
output of our elicitation method is correct or complete.

9.3.6 Summary

In the »Digital Villages« case study, we positively evaluated the user
acceptance of the policy template elicitation method, the completeness of
the policy template model and the feasibility of automating the PAP
creation process. During the half-day elicitation workshop, we were able
to elicit nine assets, which are used in eight use cases by nine user roles.
We elicited 68 threats based on these use cases. We selected the 25
threats with the highest damage potential and probability for further
assessment, for which we identified 53 countermeasures. From the
elicited information, we created 60 example policies that reflect security
and privacy demands from the application domain. Using these example
policies, we derived fourteen policy templates. Overall, we obtained
valuable results, and we received positive feedback from the participants
regarding the elicitation method. We instantiated the policy template
model for six selected policy templates, which we then used in the policy
specification experiment described in the next section. Moreover, we
generated a web-based PAP that supports four different specification
paradigms and that lets users specify policies with the six selected policy
templates. The successful realization of a versatile PAP demonstrates the
feasibility of the automated PAP generation.

Evaluation for Validation

210

9.4 Policy Specification Experiment

Users can use different specification paradigms for the specification of
security and privacy policies. Each paradigm requires the user to make a
certain number of decisions during the specification of his requirements
and guides the user differently through the specification process. We
assume that the appropriate selection of the specification paradigm for a
user can have a positive effect on the usability of the PAP. Thus, we
analyzed the PAP created in the »Digital Villages« case study with all four
specification paradigms regarding effectiveness (objective and perceived
correctness of specified policies), efficiency (necessary time span for
specification) and user satisfaction (how much users like the paradigm).

With respect to the objective effectiveness of the PAP, we want to
minimize the number of mistakes made by users during the specification
of policies. In our experiment, we define a mistake as a deviation of the
user input from the sample solution. The objective correctness of specified
policies can be improved if fewer mistakes are made. The perceived
correctness by a user can be improved if the user is better aware of his
mistakes. Ideally, a PAP should enable the user to accurately self-estimate
the objective correctness of his specified policies.

Another objective of the experiment was to find out which paradigms are
suitable for certain users in terms of satisfaction and efficiency. We define
satisfaction as the indicator of how much the users like to use the
specification paradigm. We define efficiency as the time needed to specify
policies with the given specification paradigm.

The experiment’s main objective was to confirm our Hypotheses 1.1 to 1.4
about the effect of appropriate specification paradigm selection on the
usability of a PAP for users (compare Section 1.5.1). The hypotheses are:

 H1.1: Objective effectiveness of PAP: On average, users make at least
30% fewer mistakes with a PAP when comparing the best matching
specification paradigm to the worst matching specification paradigm.

 H1.2: Perceived effectiveness of PAP: On average, the users’ self-
evaluation regarding policy correctness (perceived correctness) when
specifying policies with a PAP has at least a 30% higher accuracy when
comparing the best matching specification paradigm to the worst
matching specification paradigm.

 H1.3: Efficiency of PAP: On average, users are specifying policies at
least 30% faster when specifying policies with a PAP comparing the
best matching specification paradigm to the worst matching
specification paradigm.

Evaluation for Validation

211

 H1.4: Satisfaction with PAP: On average, the user satisfaction during a
policy specification with a PAP when using the best matching
specification paradigm is significantly higher than with the worst
matching specification paradigm.

We assume that the positive effect on usability holds for the entire group
of users. To clarify this, we clustered users into five groups according to
the persona model of Dupree [14], which differentiates users in terms of
their security and privacy knowledge as well as their motivation to interact
with PAPs. We refined RQ1 into the following research questions, which
we want to answer in this experiment as well:

 RQ1.1: Do particular types of persons (represented by a persona) differ
in terms of objective correctness when specifying policies with different
specification paradigms?

 RQ1.2: Do particular types of persons (represented by a persona) differ
in terms of correctly estimated perceived correctness (confidence
regarding objective correctness) when specifying policies with different
specification paradigms?

 RQ1.3: Do particular types of persons (represented by a persona) differ
in terms of efficiency when specifying policies with different
specification paradigms?

 RQ1.4: Do particular types of persons (represented by a persona) differ
in terms of satisfaction when specifying policies with different
specification paradigms?

In the following, we describe the design and execution of the experiment
in Section 9.4.1 including details about the user tasks, the procedures and
instruments, the technical setup and the invitation of participants. In
Section 9.4.2, we describe our data analysis and the results. We discuss
the results in Section 9.4.3 and the threats to validity in Section 9.4.4. We
summarize our findings in Section 9.4.5.

9.4.1 Design and Execution

 Scenario and Tasks

We aimed for evaluating our contributions in a realistic scenario.
Therefore, we used the PAP that was generated with the method for
usable PAP generation in the »Digital Villages« case study, which is
described in Section 9.2.

In this scenario, village citizens use digital services such as a digital village
bulletin board (called DorfFunk), an online marketplace with local
merchants (called BestellBar) and a delivery service where citizens deliver

Evaluation for Validation

212

goods from local merchants to other citizens (called LieferBar). The
participants of our experiment were asked to imagine that they use these
novel digital services and that this could potentially affect their privacy, as
their personal data is used in those services. The participants had the task
to adjust the privacy policies of these services to given privacy demands.
The presetting of the privacy requirements was necessary so that all
participants could use the PAP in a comparable way. This enabled us to
compare the observed mistakes made by the participants, their speed of
specification and their satisfaction with the different specification
paradigms of the PAP. The privacy demands were described as part of the
six tasks formulated from the ego perspective:

 »When I place an order in the BestellBar app, I do not under any
circumstances want to receive advertising from other providers that
refers to the ordered product. They may not use my data.«

 »I do not like that all the citizens in my village know where I order
goods. Therefore, only people who are considered to be as trustworthy
as possible and my friends should be able to view my delivery requests
in the LieferBar app.«

 »Before someone accepts my order in the LieferBar app, this person
may know my name, but not exactly where I live. The name of my
village with postal code would be ok. The potential deliverer may also
know the dimensions of the package. However, further information
on the address and the parcel should only be provided to the person
after acceptance of the delivery request.«

 »If I am not at home, the delivery may be deposited at my house. If a
person has accepted my delivery order, he/she is only allowed to find
out via the App as close as possible to my front door where the storage
location is.«

 »I want everyone in the DorfFunk to see my help requests and offers,
but I don't want them to know that they are from me. Therefore, the
other users should not be able to see my name or my exact address.
My place of residence with zip code and the concrete day on which I
need help should be sufficient. Further details, such as the exact
address and the proposed time of day, can be seen after accepting my
offer.«

 »I think it is important that scientists contribute to society through
research. Therefore, I am willing to provide them my data for these
purposes as long as they do not use my name.«

The requirements did not match one-to-one the wording in the policy
templates and therefore the formulation in the user interfaces of the
different specification paradigms in the PAP. The reason is that a one-to-
one match would cause the participants to compare the buzzwords of the

Evaluation for Validation

213

task descriptions with the texts in the PAPs, but not their semantic
content.

The scenario description and the tasks were provided on a digital handout,
which is shown in Appendix G.2. Participants were advised to print out
the handout. The scenario description was supplemented by a short video
that introduces the novel, digital services for citizens of a village.

Policy specification interfaces representing the four specification
paradigms »template instantiation«, »default policies«, »security levels«
and »wizard« were provided in the PAP (all these specification paradigms
are presented in Section 5.3.1). The participants had to complete the same
six tasks for each of the four specification paradigms.

The paradigms »template instantiation« and »wizard« let the participant
instantiate concrete policies from the templates. The paradigms »default
policies« and »security levels« provide a limited list of already instantiated
policies to choose from. In the paradigm »security levels«, the user can
chose from three different sets of policies. All tasks in the experiment can
be solved with all four specification paradigms. The sample solution can
be found in Appendix G.4.

During the experiment design, we had to decide whether we should
provide a perfect match with the tasks for the paradigm »security levels«.
This means that one of the levels solves all tasks of the scenario. Such a
perfect match is unlikely in real life. However, the lack of a perfect solution
could confuse the participants in the experiment cause them to abort,
which would probably severely affect the outcome of the experiment.
Thus, we decided to offer a perfect match, because we did not want to
spoil the experiment.

In this experiment, we determined the suitability of different specification
paradigms for different user types. To conduct an experiment in which
participants can actively specify policies, each specification paradigm must
be implemented. However, this mixes the findings on the concepts of the
specification paradigms and those on the corresponding implementations.
To minimize the effects of the implementation, we asked usability experts
to analyze the implementations of the specification paradigms in the PAP
in order to make them as unobtrusive as possible. After the experiment,
we also searched the free text comments by participants of the experiment
for hints regarding problems with the operation of the PAP, but did not
find any.

 Procedures and Instruments

We designed our experiment as a publically available online experiment,
which implies that it was uncontrolled to some extent. To avoid misuse,

Evaluation for Validation

214

we tried to control the experiment as closely as possible. Participants were
only able to start the experiment with an individual, unique eight-digit
participant ID. This unique ID was printed on the handout sent to each
participant prior to participation. Each participant ID could be used only
once to start the experiment. It was possible to interrupt the experiment
and to continue with the participant id at the current step of the
experiment. However, it was not possible to repeat already executed
steps.

When entering the website provided in the handout, the participant first
had to select their preferred language. The handout and the experiment
were provided in German and English. Next, the participant started the
experiment by entering their participant ID. With the start, participants
agreed to an informed consent. The minimum age for participation was
set at 18 years, as we would have needed the consent of the parents of
minors in Germany for the analysis and exploitation of the recorded data.
Thereafter, the experiment started. In the course of the experiment, each
participant had to execute 18 steps (Screenshots showing the user
interface for each step are presented in Appendix G.3):

1. The participant had to answer demographic questions about age,
gender educational level.

2. The participant had to answer questions regarding the relationship to
Fraunhofer IESE and to the research topic »IND²UCE«.

These answers were used to determine whether the participants’
characteristics and capabilities have an impact on the results of the
experiment.

3. The participant had to carry out a self-assessment regarding his
knowledge of IT security measures and his use of IT security measures
and web services.

4. The participant had to answer questions about his motivation to use
PAPs and about reasons that hinder users to use PAPs more frequently.

The information acquired in the latter two steps was used to confirm the
correct mapping of a persona to the participant.

5. The participant was asked to select one of the five personas by Dupree
[14] that fits best to the own character and behavior. All personas were
described based on nine to twelve original character traits formulated
from the ego-perspective. The participant had to choose between the
personas »marginally concerned«, »amateur«, »technician«, »lazy
expert« and »fundamentalist«. The persona descriptions were
presented to each participant in an individual, random order. A
detailed description of the personas can be found in Appendix C.

Evaluation for Validation

215

6. The participant was asked to watch a video2 describing the scenario
and to read the task descriptions on the second page of the handout.

7. The participant received instructions on how to specify privacy policies
in the following steps. More specifically, he was informed that he has
to solve all six tasks with each of the four specification paradigms and
that he has to rate each one directly after using it.

In the following steps, the participant was asked to specify privacy policies
according to the tasks assigned to him on the handout. Therefore, we
provided a PAP with four different policy specification interfaces, from
which each one implements one of the four specification paradigms
»template instantiation«, »default policies«, »security levels« and
»wizard«. After each PAP use, the participant was asked whether he
thinks that he solved all tasks correctly (perceived correctness). Next, he
was asked how he liked this specification paradigm for configuring the
given privacy policies. Finally, the participant had to rate whether he
would like to use this specification paradigm in real life and whether the
provided expressiveness is appropriate. Free text comments were
welcome. The order in which the specification paradigms were presented
to the participants was randomly determined to minimize and to
statistically cancel out learning effects.

8. The participant had to solve all six tasks with the first PAP interface
using the first specification paradigm.

9. The participant had to rate the first PAP interface.

10. The participant had to solve all six tasks with the second PAP using the
second specification paradigm.

11. The participant had to rate the second PAP interface.

12. The participant had to solve all six tasks with the third PAP interface
using the third specification paradigm.

13. The participant had to rate the third PAP interface.

14. The participant had to solve all six tasks with the fourth PAP interface
using the fourth specification paradigm.

15. The participant had to rate the fourth PAP interface.

To analyze the effectiveness of the different PAP interfaces, we captured
all specified policies in order to compare them to the sample solution.

2 The video describing the scenario is available online: https://www.youtube.com/watch?v=uNOP4R-SsxY

Evaluation for Validation

216

16. The participant had to rank the four specification types according to
his preference of using them in real life. We also requested free text
comments about the reasons of the ranks.

17. The participant were asked to rate how well he can identify with the
scenario and the chosen persona.

18. On the final screen, we thanked the participants for their participation
and showed them their achieved objective correctness for each of the
four specification paradigms.

 Technical Setup

We implemented the experiment as a web application based on the Spring
framework [166]. We used the Spring modules Boot to run the experiment
as a web service and MVC (Model-View-Controller) for request and data
handling. We used Bootstrap [167] as the front-end framework and
Thymeleaf [168] as the server-side HTML template engine to create the
user interfaces for each step of the experiment. However, the PAP
interfaces for the four specification paradigms were generated with the
PAP generation framework. We extended the code of the PAP to capture
the user input and embedded it into the web application. We ran the
Spring Boot application on a webserver during the execution of the
experiment.

For each step of the experiment, we measured the elapsed time between
the loading of the content of the current step and the confirmation of the
participant to move to the next step. We also stored all entered data.

 Participant Invitation and Execution

We acquired the participants by means of a non-binding invitation via e-
mail on Febuary 7, 2018. We invited persons in the circle of friends and
acquaintances of the author as well as in the author’s institution,
Fraunhofer IESE. The participants were asked to forward this non-binding
invitation to other persons. This initial email contained the information
that the experiment is provided in English and German. On each reply of
an interested person, we sent a specific invitation email (see Appendix
G.1) with an attached handout (see Appendix G.2) in the preferred
language. The handout contained all necessary instructions to start the
experiment, including an individual participant id and the scenario
description. We sent approximately 120 personal invitation emails.
Because we strongly respect the anonymity of our participants, we deleted
all these invitation emails from our outboxes directly after sending.
Therefore, we do not know who of the invited persons actually
participated in the experiment, and cannot establish any relation between
participant IDs and natural persons.

Evaluation for Validation

217

We informed the participants in the first non-binding invitation email that
the online experiment was accessible for 14 days. We closed the
experiment and collected the results on February 22, 2018. Participants
were also informed about the expected duration of the experiment of
about 30-40 minutes, but we did not define a time limit for completion.

9.4.2 Data Analysis and Results

 Data Analysis

We executed all statistical analyses with SPSS 19 [169] and Microsoft Excel
2016 [170].

First, we checked the plausibility of the self-selection of personas by
analyzing whether the self-reported security knowledge and motivation
match the persona classification by Dupree [14]. Moreover, we analyzed
how well participants identify with their selected persona.

To answer RQ1.1, we analyzed the number of mistakes the participants
made. The different specification paradigms provided different
expressiveness and thus required a different number of decisions being
made by the participant: one decision for the specification paradigm
»security levels«, six decisions for the »default policies«, 18 decisions for
the »template instantiation« and 18 decisions for the »wizard«. As a
consequence, the pure number of mistakes is not directly comparable.
Therefore, we compared the ratio of incorrect decisions to all decisions.
We performed Kruskal-Wallis tests (= 0.05) to investigate whether the
selection of the paradigm has an influence on the objective correctness
for the entire participant group (compare Q1.1.1 in Section 1.5.1) and for
each persona (compare Q1.1.2) as well as whether the persona has an
influence on the objective correctness (compare Q1.1.3). For calculating
the effect sizes, we used Cohen’s d value (dc: small effect: |dc|=0.2; middle
effect |dc|=0.5; large effect |dc|=0.8). The persona »fundamentalist« was
excluded from the persona analysis due to the small number of
participants that selected this persona.

To answer RQ1.2, we analyzed the self-evaluation with respect to the
objective correctness. To measure the perceived correctness, we asked the
participants after the use of each specification paradigm whether they
think that they solved all tasks correctly using this paradigm (zero
mistakes). Finally, we compared perceived correctness with the objective
correctness (zero mistakes) to obtain the self-evaluation. We performed
Fisher’s exact tests (= 0.05) to determine whether the selection of the
paradigm has an influence on the correctness of the self-evaluation for
the entire participant group (compare Q1.2.1 in Section 1.5.1) and for
each persona (compare Q1.2.3) as well as whether the persona has an
influence on the correctness of the self-evaluation (compare Q1.2.3). To

Evaluation for Validation

218

calculate the effect sizes, we used Cramer’s value (c: for df=3; small
effect: | c|=0.06; middle effect | c|=0.17; large effect | c|=0.29).

To answer RQ1.3, we measured the elapsed times to perform the policy
specification steps in our experiment with the four PAP interfaces
implementing the four specification paradigms under investigation. We
calculated averages of the measured times per paradigm and per persona.
Finally, we compared the average values. We performed Kruskal-Wallis
tests (= 0.05) to determine whether the selection of the paradigm has
an influence on the time needed for policy specification for the entire
participant group (compare Q1.3.1 in Section 1.5.1) and for each persona
(compare Q1.3.3) as well as whether the persona has an influence on the
time needed for policy specification (compare Q1.3.3). To calculate the
effect sizes, we used Cohen’s d value (dc: small effect: |dc|=0.2; middle
effect |dc|=0.5; large effect |dc|=0.8). The persona »fundamentalist« was
excluded from the persona analysis due to the small number of
participants that selected this persona. We excluded two samples from
the analysis as their elapsed time was extremely high, which indicates a
longer break during the experiment.

To answer RQ1.4, we asked the participants after each specification with
a specification paradigm to rate the satisfaction with the PAP on a scale
from 1 (»I really dislike this specification paradigm«) to 5 (»I really like this
specification paradigm«). After completion of all four specification rounds,
we asked participants to rank the four specification paradigms according
to their personal preference. We calculated mean and median values per
paradigm and per persona. We are aware that the calculation of mean
values on Likert scales is controversially discussed in the literature. We
therefore only label the extreme values of the scale and assume it to
represent an interval scale. In addition, we calculated the percentage of
participants per persona that ranked the specification paradigm on a
specific rank. Finally, we compared these values. We also performed
Kruskal-Wallis tests (= 0.05) to determine whether the selection of the
paradigm has an influence on the satisfaction (compare Q1.4.1 in
Section 1.5.1) and whether the persona has an influence on the
satisfaction (compare Q1.4.2). To calculating the effect sizes, we used
Cohen’s d value (dc: small effect: |dc|=0.2; middle effect |dc|=0.5; large
effect |dc|=0.8). The persona »fundamentalist« was excluded from the
persona analysis due to the small number of participants that selected this
persona.

 Participant Description

Of the approximately 120 invited participants, 63 started the experiment.
61 participants completely finished the experiment with complete and
valid data sets. We checked by hand whether the results are plausible to
avoid any kind of misuse. In particular, we checked whether the elapsed

Evaluation for Validation

219

time per step was plausible and whether all participants tried to solve all
six tasks with all four specification paradigms. In addition, we read all free
text comments in order to find hints for problems during the experiment.
After careful analysis, we found no reason to exclude a participant's result.
However, we ascertained that two participants had a longer break within
an experiment step. We excluded those samples from the analysis of
efficiency, because this assessment depends on correct execution times.

Table 28: Personas Chosen by Participants of the Experiment

Persona Number Ratio

Marginally Concerned 12 20%

Amateur 21 34%

Lazy Expert 11 18 %

Technician 14 23%

Fundamentalist 3 5%

Of the 61 participants, 43 percent are female. The participants’ age ranges
from 18 to 82 (M=40.54; SD=14.37). The majority of the participants (33
out of 61) hold a university degree as highest educational level, nine
participants hold a doctoral degree, seven have an entrance qualification
for higher education and eleven a secondary school leaving certificate as
highest level of education. About half of the participants (54%) were
related the authors’ institution, 20 of them being scientific and eight non-
scientific employees and five being students working with the authors’
institution. 28 participants (46%) had no relation to the authors’
institution.

Table 28 shows the distribution of the personas selected by the
participants. Most participants chose the amateur (34%). The
fundamentalist was only selected by three participants. The other
personas were chosen between 11 and 14 times (18% to 23%).

To verify the plausibility of the persona self-selection, we asked the
participants to rate their IT security knowledge and their motivation to use
IT security measures. The participants’ security knowledge fits well to their
chosen personas, except for the lazy experts (see Figure 65). Based on
Dupree’s categorization (see Figure 14 on page 56), we expected the lazy
experts to have higher self-estimated knowledge. The participants’
security motivation fits to the model of Dupree as well (see Figure 66).
Moreover, we asked the participants how well the chosen persona
matches them on a scale from 1 (»Not very well, but it matched best out
of the five options«) to 5 (»I can identify myself very well with the
persona«). On average, the participants responded with a score of 3.75.
Not a single person reported the value 1.

Evaluation for Validation

220

Figure 65: Security Knowledge to Persona Mapping

Figure 66: Security Motivation to Persona Mapping

The participants’ age ranged from 18 to 82 (M=40.54; SD=14.37).
Figure 67 shows the range and the median of the participants’ age sorted
by personas. Since the boxplots overlap, it is unlikely that the difference
in age across the personas is significant. Thus, we conclude that the
participants’ age has no significant influence on the chosen personas.
Nevertheless, there are differences in the range sizes of the age values.
The figure shows that the personas marginally concerned and amateur
have the biggest ranges in age including the oldest participants.

Evaluation for Validation

221

Figure 67: Boxplot Diagram of the Participants’ Age.

 Objective Correctness

Three different aspects were taken into account in the analysis of objective
correctness: First, we compared the cumulative number of mistakes of the
participants that occurred per specification paradigm. Secondly, we
determined how many perfect results with zero mistakes the participants
achieved with each specification paradigm. Finally, the actual number of
mistakes in relation to the possible number of mistakes per paradigm were
analyzed. In the latter two cases, the influence of the personas was also
determined.

Table 29: Mistakes per Paradigm

Paradigm
Necessary decisions
(expressiveness)

Total mistakes
made

Ratio of wrong
decisions

Default Policies 6 79 23.1%

Security Levels 1 4 7.0%

Template Instantiation 18 224 21.8%

Wizard 18 228 22.2%

Table 29 shows the cumulative number of mistakes made in total per
specification paradigm. Not surprisingly, participants made the fewest
mistakes with the »security levels«. Seven percent of participants chose
the wrong security level. In the other three paradigms, which provided
more decision options, about one in five decisions was taken incorrectly.
Thus, for the entire population of the experiment there is no significant
difference in objective correctness, except for the paradigm »security
levels«.

Evaluation for Validation

222

Table 30: Participants with 100 Percent Objective Correctness

Persona
Number of
participants with all
paradigms correct

n per
persona

% of
participants per
persona

Marginally Concerned 1 12 8.3%

Amateur 4 21 19.1%

Lazy Expert 1 11 9.1%

Technician 4 14 36.4%

Fundamentalist 0 3 0%

All participants 10 61 16.4 %

Only 10 out of 61 participants made no mistakes (see Table 30) and
achieved 100 percent objective correctness in all paradigms. Of these ten
participants, four participants chose the persona technicians (36.36% of
all technicians) and four the persona amateur (19.1% of all amateurs).
None of the three fundamentalists achieved 100 percent objective
correctness. About one third of all participants made mistakes in three out
of four paradigms. Four participants made mistakes in all paradigms. It is
interesting to mention that the personas with high motivation performed
better, especially the technicians.

Table 31: Participants per Personas Making Zero Mistakes per Paradigm

Persona

D
ef

au
lt

Po
lic

ie
s

Se
cu

rit
y

Le
ve

ls

Te
m

pl
at

e
In

st
an

tia
tio

n

W
iz

ar
d

Marginally Concerned # no mistakes 2 9 1 1

% no mistakes 16.7% 75% 8.3% 8.3%

Amateur # no mistakes 14 20 7 7

% no mistakes 66.7% 95.2% 33.3% 33.3%

Lazy Expert # no mistakes 7 11 2 1

% no mistakes 63.6% 100% 18.2% 9.1%

Technician # no mistakes 8 14 6 6

% no mistakes 57.1% 100% 42.9% 42.9%

Fundamentalist # no mistakes 3 3 1 0

% no mistakes 100% 100% 33.3% 0%

All participants # no mistakes 36 57 17 15

% no mistakes 59.0% 93.4% 27.9% 24.6%

Table 31 shows the number of participants per persona that made zero
mistakes in the specific paradigms. The »security levels« paradigm has an
acceptable success rate between 75 and 100 percent for all personas (93.4
percent on average). The »default policy« paradigm was correctly used by

Evaluation for Validation

223

the fundamentalists, but only 16.9 percent of the marginally concerned
made zero mistakes (59.0 percent on average). For the paradigms
»template instantiation« and »wizard«, the highest success rate was 42.9
percent for the technicians. On average, only 27.9 percent of the
participants achieved perfect objective correctness with the specification
paradigm »template instantiation« and only 24.6 percent with the
»wizard«. It can be mentioned that fewer expressiveness of the
specification paradigms leads to a higher objective correctness.

Table 32: Ratio of Mistakes Made by Personas per Paradigm to All Decisions

Mistakes made in relation to necessary decisions
(expressiveness)

D
ef

au
lt

Po
lic

ie
s

Se
cu

rit
y

Le
ve

ls

Te
m

pl
at

e
In

st
an

tia
tio

n

W
iz

ar
d

Necessary Decisions 6 1 18 18

Marginally Concerned
Normalized Average 0.56 0.25 0.49 0.50

Std. Deviation 0.36 0.45 0.29 0.29

Amateur
Normalized Average 0.12 0.05 0.12 0.12

Std. Deviation 0.22 0.22 0.16 0.14

Lazy Expert
Normalized Average 0.15 0.00 0.16 0.21

Std. Deviation 0.26 0.00 0.16 0.21

Technician
Normalized Average 0.17 0.00 0.15 0.11

Std. Deviation 0.27 0.00 0.25 0.16

Fundamentalist
Normalized Average 0.00 0.00 0.06 0.13

Std. Deviation 0.00 0.00 0.06 0.08

All participants
Normalized Average 0.22 0.07 0.20 0.21

Std. Deviation 0.31 0.25 0.25 0.24

Figure 68 and Table 32 present the normalized ratio of the number of
mistakes made by personas per paradigm to all decisions (i.e. deviations
from the sample solution). Since the paradigms require a different number
of decisions (mistake potential), we show the ratio of wrong decisions to
all decisions per specification paradigm. In addition, we show standard
deviation values of the absolute number of mistakes in Table 32.

There are only a few outliers (see Figure 68), for instance the participants
with the IDs 19 and 45. Both were outlier in more than one paradigm.
The outliers could be caused by a poor choice of the persona. However,
no participant reported not to identify with the chosen persona.

Evaluation for Validation

224

Figure 68: Ratio of Mistakes Made by Personas per Paradigm to All Decisions

In Hypothesis H1.1, we assume that the best matching specification
paradigm leads to 30 percent fewer mistakes than the worst matching
specification paradigm (see Section 1.5.1).

Regarding Q1.1.1, the entire group of participants made the most
mistakes with the specification paradigm »default policies« (22% of all
decisions) and the fewest mistakes with the »security levels« (7%). If we
compare the results, we find that on average, all participants made
68 percent fewer mistakes with the paradigm »security levels« than with
»default policies«. We found a significant influence with a large effect of
the used specification paradigm on the made mistakes (Kruskal-Wallis test
with Cohen’s d: =0.05, H=48.94, p<0.01, dc=0.97). This means that at
least two paradigms significantly differ in terms of mistakes made. When
we compare the paradigms pairwise, we find that users perform
significantly better with the best paradigm »security levels« compared to
»default policies« (z=4.24, p<0.01), »template instantiation« (z=5.93,
p<0.01) and »wizard« (z=-6.18, p<0.01).

Regarding Q1.1.2, we see that all personas reduced their number of
mistakes by more than 30 percent when comparing the best to the worst
matching specification paradigm (marginally concerned by 55%,
amateurs by 58%, the others by 100%). However, the influence of the
selected specification paradigm on the objective correctness is not for all
personas significant (Kruskal-Wallis test with Cohen’s d: =0.05). It is
significant for the »amateurs« (H=16.15, p<0.01, dc=0.89), for the »lazy
experts« (H=16.63, p<0.01, dc=1.44) and for the »technicians« (H=11.15,
p=0.01, dc=0.86), but not for the »marginally concerned« (H=4.98,

Evaluation for Validation

225

p=0.17, dc=0.43). Due to the small sample size, the test could not provide
meaningful significant results for the »fundamentalists«.

Regarding Q1.1.3, we found a significant influence with a large effect of
the persona selection on the mistakes made (Kruskal-Wallis test with
Cohen’s d: =0.05, H=35.23, p<0.01, dc=0.81). We explain this effect of
the persona with the significant difference regarding objective correctness
of the marginally compared to the other personas, as they perform
significantly worse. We see the influence of the persona selection in each
paradigm: »default policies« (H=13.88, p<0.01), »template instantiation«
(H=14.10, p<0.01), and »wizard« (H=17.04, p<0.01), and also for the
»security levels« (H=7.99, p <0.05), but not that strong.

Thus, we can reject the Null Hypothesis H1.10. We present detailed
diagrams of the statistical tests in Appendix G.5.

 Perceived Correctness

We measured the perceived correctness of the specification tasks per
specification paradigm. Therefore, we asked the participants after each
specification paradigm they used whether they think that they solved all
tasks correctly. As shown in Table 33, the overall perceived correctness is
very high. All participants were most skeptical about the »security levels«
(78.7%) and most confident about the »wizard« (91.8%).

Table 33: Perceived Correctness per Specification Paradigm

 Default
Policies

Security
Levels

Template
Instantiation

Wizard

Marginally Concerned 91.7% 83.3% 83.3% 100.0%

Amateur 85.7% 76.2% 90.5% 90.5%

Lazy Expert 81.8% 72.7% 90.9% 81.8%

Technician 92.9% 85.7% 85.7% 92.9%

Fundamentalist 100.0% 66.7% 100.0% 100.0%

All Participants 88.5% 78.7% 88.5% 91.8%

The results of our experiment reveal that the persona selection does not
significantly influence the perceived correctness in any paradigm (template
instantiation: p=0.96; default policies: p=0.87; security levels: p=0.85;
wizard: p=0.62). This means that there is no difference in how optimistic
or pessimistic the participants of the different personas are regarding the
specification paradigms.

Evaluation for Validation

226

 Self-evaluation regarding Objective Correctness

In our experiment, we aimed at identifying which paradigm suits best for
a correct self-evaluation (perceived correctness) regarding the objective
correctness. Participants achieved a correct positive self-evaluation if they
made zero mistakes with a specification paradigm and were confident
about the perfect solution. Participants achieved a correct negative self-
evaluation if they made at least one mistake and were confident that they
made mistakes. Table 34 shows the positive self-evaluations (P) and the
negative self-evaluations (N) as well as the ratio of correct self-evaluations
to the number of participants per persona.

Overall, the self-evaluation was best with the »security levels« (78.7%)
and worst with the »wizard« (29.5%). We ascertained that more decisions
during specification led to worse self-evaluation. Overall, 42 participants
thought that they used all paradigms correctly, however, only eight of
them actually made no mistakes in all paradigms. Only four persons had
a too pessimistic self-evaluation; that is, they achieved perfect results, but
thought they made mistakes.

The marginally concerned achieved the worst self-evaluation, which can
be explained with the significantly worse objective correctness they have.
Only 25 percent of the participants with this persona correctly self-
evaluated themselves with the specification paradigms »default policies«
and »template instantiation«, and only one participant correctly estimated
their mistakes using the »wizard« (8.3%). The technicians performed best
with the specification paradigms »template instantiation« (57.1%) and
»wizard« (50.0%).

Table 34: Accuracy of Perceived Correctness (Correct Positive (P) and Negative (N) Self-Evaluations)

 Default Policies Security Levels
Template
Instantiation

Wizard

 P/N % P/N % P/N % P/N %

Marginally
Concerned

2/1 25.0 8/1 75.0 1/2 25.0 1/0 8.3

Amateur 12/1 61.9 16/1 81.0 6/1 33.3 6/1 33.3

Lazy Expert 7/2 81.8 8/0 72.7 2/1 27.3 1/2 27.3

Technician 8/1 64.3 12/0 85.7 6/2 57.1 6/1 50.0

Fundamentalist 3/0 100 2/0 66.7 1/0 33.3 0/0 0.0

All Participants 32/5 60.7 46/2 78.7 16/6 36.1 14/4 29.5

Regarding Hypothesis H1.2, we assume that the best matching
specification paradigm leads to 30 percent higher accuracy regarding the
self-evaluation of objective correctness than the worst matching
specification paradigm (see Section 1.5.1).

Evaluation for Validation

227

Regarding Q1.2.1, the entire participant group achieved the best self-
evaluation with the »security levels« paradigm (78.7%) and the worst
with the »wizard« paradigm (29.5%). If we compare the results, we find
that on average, the accuracy of self-estimation for all participants is
167 percent higher with the »security levels« than with the »wizard«
paradigm. We found a significant influence with a large effect of the used
specification paradigm on the correct self-evaluation (Fisher’s exact test
and Cramer’s : =0.05, T=38.69, p<0.01, c=0.39).

Regarding Q1.2.2, we see that all personas increased their number of
mistakes by more than 30 percent when comparing the best to the worst
matching specification paradigm (marginally concerned by 804%,
amateurs by 143%, lazy experts by 200%, technicians by 71%; the
percentage increase for fundamentalists is infinite). However, the
influence of the selected specification paradigm on the objective
correctness is not for all personas significant (Fisher’s exact test and
Cramer’s : =0.05). It is significant for the »marginally concerned«
(T=12.49, p=0.01, c=0.53), the »amateurs« (T=13.78, p<0.01, c=0.41),
for the »lazy experts« (T=10.86, p=0.01, c=0.51), but not for the
»technicians« (T=4.44, p=0.26, c=0.28) or the »fundamentalists«
(T=6.00, p=0.24, c=0.75).

Regarding Q1.2.3, we found that the selection of the persona also has an
influence on the correct self-evaluation (T=10.08, p=0.04, c=0.20), but
not a very strong one and with only a medium effect size.

Thus, we can reject Null Hypothesis H1.20. We present detailed diagrams
of the statistical tests in Appendix G.5.

 Efficiency

We measured the time it took each participant to complete the
specification of all six tasks with each of the four specification paradigms.
We excluded the data sets of two participants from the analysis, as each
had an extreme outlier in one paradigm. This can only be explained by a
longer pause during the experiment. The other time data are reasonable
regarding the minimum time to fulfill a task properly. Thus, the total
number of participants for the analysis of efficiency is 59.

In regard to all participants, the paradigm »security levels« proved to be
the most efficient (M=1.8 minutes) method for specifying privacy settings
(see Table 35). There are smaller differences in the average time of the
other paradigms, ranging between 3.1 and 3.8 minutes. The second most
efficient paradigm is the »template instantiation«; the participants needed
the longest time for the »wizard«.

Evaluation for Validation

228

Table 35: Mean Time in Minutes of Specification with Different Specification Paradigms

Mean times in minutes Default
Security
Levels

Template
Instantiation

Wizard
All
paradigms

Marginally Concerned 4.3 2.6 3.4 4.0 14.3

Amateur 3.4 1.6 3.0 3.8 11.8

Lazy Expert 2.7 1.1 2.7 3.7 10.3

Technician 3.5 1.8 3.5 3.5 12.3

Fundamentalist 3.5 1.4 3.5 4.5 12.9

All Participants 3.5 1.8 3.1 3.8 12.2

Table 35 and Figure 69 show the time needed to complete all six tasks
with a specification paradigm per persona. The lazy experts required less
time to solve all tasks in all four paradigms than the other personas (on
average 2 minutes less than the remaining participants). On average, the
marginally concerned needed about 2.5 minutes longer than the
remaining population. The other three personas needed between 11.8
and 12.9 minutes on average for all paradigms. Lazy experts,
fundamentalists and amateurs needed longest for the »wizard« and
performed fastest with the »security levels«. For technicians and
fundamentalists, the time needed for the »template instantiation« and for
the »default policies« is almost equal. The technicians are also clearly
fastest when using the paradigm »security levels«; however, they took an
equal amount of time in all other paradigms.

Figure 69: Time Needed in Seconds to Complete all Six Tasks with a Specification Paradigm per

Persona

According to Hypothesis H1.3, we assume that the best matching
specification paradigm lets users to specify policies 30 percent faster than
the worst matching specification paradigm (see Section 1.5.1).

Evaluation for Validation

229

Regarding Q1.3.1, the entire participant group specified fastest with the
specification paradigm »security levels« (1.8 minutes on average) and
slowest with the »wizard« (3.8 minutes on average). If we compare the
results, we find that all participants increased efficiency by 53 percent with
the »security levels« compared to the »wizard«. We found a significant
influence with a large effect of the used specification paradigm on the
time needed for policy specification, that is, the users’ efficiency (Kruskal-
Wallis test with Cohen’s d: =0.05, H=46.89, p<0.01, dc=0.95). This
means that at least two paradigms significantly differ with respect to the
time needed. When we compare the paradigms pairwise, we find that
users perform significantly faster with the best paradigm »security levels«
compared to »default policies« (z=5.11, p<0.01), »template instan-
tiation« (z=4.23, p<0.01) and »wizard« (z=-6.17, p<0.01).

Regarding Q1.3.2, we found that for all personas, the selection of the best
matching specification paradigm lead to a decrease of the time needed by
more than 30 percent compared to the most inefficient choice (marginally
concerned by 40%, amateurs by 58%, lazy experts by 70%, technicians
by 49% and fundamentalists by 69%). However, the influence of the
selected specification paradigm on the efficiency is not for all personas
significant (Kruskal-Wallis test with Cohen’s d: =0.05). It is significant for
the »amateurs« (H=23.64, p<0.01, dc=1.19), for the »lazy experts«
(H=13.09, p<0.01, dc=1.16) and for the »technicians« (H=9.85, p=0.02,
dc=0.79), but not for the »marginally concerned« (H=2.57, p=0.46,
dc=0.20). Due to the small sample size, the test could not be meaningfully
applied to the »fundamentalists«.

Regarding Q1.3.3, we did not find a significant effect of the persona
selection on the time needed with the Kruskal-Wallis test (=0.05,
H=3.90, p=0.27, dc=0.13). Thus, the distribution of time needed is similar
across all personas.

In summary, we can reject Null Hypothesis H1.30. We present detailed
diagrams of the statistical tests in Appendix G.5.

 Satisfaction

We asked the participants directly after they had used a specification
paradigm to indicate how much they like it. They used a five-point scale
ranging from 1 (»I really dislike this specification paradigm« to 5 (»I really
like this specification paradigm«). After all four specification rounds had
been completed, we asked the participants to rank the four specification
paradigms according to their personal preference.

Overall, participants liked the »template instantiation« paradigm most
(see Figure 70 and Table 36). The participant rated the »wizard« slightly
worse. The »default policies« were placed third. The »security level

Evaluation for Validation

230

paradigm« was considered least satisfying. The participants also ranked
the paradigms according to their preference. In the ranking, the »security
level« paradigm was most often ranked last, regardless of the chosen
persona.

Table 36: Satisfaction with Specification Paradigms for Personas (SD: Standard Deviation)

 Mean SD Median Rank 1 Rank 2 Rank 3 Rank 4

Marginally
Concerned

Template Inst. 3.9 0.9 4 17% 58% 25% 0%

Default Policies 3.3 1.4 3.5 17% 8% 42% 33%

Security Levels 3 1.2 3 17% 25% 8% 50%

Wizard 4 1.2 4 50% 8% 25% 17%

Amateur

Template Inst. 3.8 0.9 4 43% 48% 10% 0%

Default Policies 3.3 1.2 4 24% 10% 48% 19%

Security Levels 2.1 1.2 2 0% 14% 19% 67%

Wizard 3.8 0.7 4 33% 29% 24% 14%

Lazy Expert

Template Inst. 4 1.1 4 45% 45% 0% 9%

Default Policies 3 1.1 3 0% 9% 64% 27%

Security Levels 1.9 0.8 2 9% 9% 27% 55%

Wizard 3.8 1.3 4 45% 36% 9% 9%

Technician

Template Inst. 4.1 1.1 4 43% 7% 29% 21%

Default Policies 3.4 1.3 4 14% 21% 43% 21%

Security Levels 3.2 1.5 3 29% 14% 7% 50%

Wizard 3.8 1.2 4 14% 57% 21% 7%

Fundamentalist

Template Inst. 4.3 1.2 5 67% 0% 33% 0%

Default Policies 4.3 0.6 4 0% 33% 33% 33%

Security Levels 3.3 2.1 4 0% 0% 33% 67%

Wizard 4.3 0.6 4 33% 67% 0% 0%

All Participants

Template Inst. 4 1 4 39% 38% 16% 7%

Default Policies 3.3 1.2 4 15% 13% 48% 25%

Security Levels 2.6 1.4 2 11% 15% 16% 57%

Wizard 3.9 1 4 34% 34% 20% 11%

Evaluation for Validation

231

Figure 70: Participant’s Satisfaction with Specification Paradigms

Figure 71: Participant’s Satisfaction with Specification Paradigms per Persona

Table 36 and Figure 71 show the satisfaction results broken down by
personas. They underline that the »security levels« paradigm is least
satisfying within all persona groups and that the »default policies«
paradigm is in third place for all personas except the fundamentalists. The
marginally concerned preferred the paradigms »wizard« and »template
instantiation« most. In the final ranking, 50 percent voted the »wizard«
in first place and a majority voted the »template instantiation« in second
place. Immediately after the individual specifications with each paradigm,
the amateurs almost equally liked the paradigms »template instantiation«
and »wizard«. However, in the final ranking, they clearly voted the
paradigm »template instantiation« in first place, followed by »wizard«. 67
percent ranked »security levels« in last place. The lazy experts voted similar
to the amateurs. Overall, the »template instantiation« paradigm was liked
most, followed by the »wizard« paradigm. The technicians liked the
»template instantiation« paradigm the most, followed by the »wizard«
paradigm. However, the other two paradigms also received quite high
ratings. This rather even distribution of satisfaction over the paradigms is
also evident in the rankings, where each paradigm was ranked first by at
least 14 percent of the technicians. The »template instantiation«
paradigm was ranked top by 43 percent of the participants. The
fundamentalists answered that the specification paradigms »template

Evaluation for Validation

232

instantiation«, »default policies« and »wizard« are equally satisfying. In
the final ranking, two participants voted for »template instantiation« in
the first place; the »wizard« was ranked second. However, due to the
small sample size, the results for the fundamentalists are not very
meaningful.

Regarding Hypothesis H1.4, we assume that the satisfaction during a
policy specification for users when using the best matching specification
paradigm is 30 percent better than with the worst matching specification
paradigm (see Section 1.5.1).

Regarding Q1.4.1, the entire participant group liked the paradigm
»template instantiation« most (rating of 4 out of 5 and 39% of
participants ranked it in first place, 7% in the last place). The participants
liked the paradigm »security levels« least (rating of 2.6 out of 5 and 11%
of participants ranked it in first place, 57% in the last place). If we
compare the mean and median values of the paradigms, we achieve a
higher satisfaction with the paradigm »template instantiation« than with
the »security levels« (mean: 1.4; median: 2). In addition, the rankings
indicate a significantly better satisfaction with the »template
instantiation« than with the »security levels«. We found a significant
influence with a large effect of the used specification paradigm on the
users’ satisfaction based on the rating with the 5-point scale (Kruskal-
Wallis test with Cohen’s d: =0.05, H=42.62, p<0.01, dc=0.89). This
means that at least two paradigms significantly differ with respect to
satisfaction. When we compare the paradigms pairwise, we find that users
like the specification paradigm »template instantiation« significantly more
than the »default policies« (z=2.83, p=0.03) and the »security levels«
(z=5.84, p<0.01). In addition, participants like the specification paradigm
»default policies« (z=3.02, p=0.02) and »wizard« (z=-5.33, p<0.01)
significantly more than the »security levels«.

Regarding Q1.4.2, we show that for all personas, the selection of the best
matching specification paradigm leads to an increase in satisfaction
compared to the least satisfying choice (marginally concerned: mean by 1,
median by 1; amateurs: mean by 1.7, median by 2; lazy experts: mean by
2.1, median by 2; technicians: mean by 0.9, median by 1; and
fundamentalists: mean by 1, median by 1). However, the influence of the
selected specification paradigm on satisfaction is not for all personas
significant (Kruskal-Wallis test with Cohen’s d, =0.05). It is significant for
the »amateurs« (H=24.23, p<0.01, dc=1.20), for the »lazy experts«
(H=16.50, p<0.01, dc=1.43), but not for the »marginally concerned«
(H=6.41, p=0.09, dc=0.58) or the »technicians« (H=4.06, p=0.26,
dc=0.29). Due to the small sample size, the test did not yield meaningful
results for the »fundamentalists«.

Evaluation for Validation

233

Regarding Q1.4.3, we did not find a significant influence of the persona
selection on the satisfaction (Kruskal-Wallis test with Cohen’s d, =0.05,
H=5.87, p=0.12, dc=0.23).

In summary, we can reject Null Hypothesis H1.40. We present detailed
diagrams of the statistical tests in Appendix G.5.

 Comparison of Effectiveness, Efficiency and Satisfaction

In the previous sections, we analyzed the results with respect to
effectiveness, efficiency and satisfaction separately. We show that the
selection of the appropriate specification paradigm has an effect on the
qualities effectiveness, efficiency and satisfaction. However, we need to
analyze the relation between the three qualities based on the selection of
a specification paradigm.

In our results, effectiveness and efficiency of specification paradigms are
aligned. Satisfaction behaves contrary. People do not like the »security
levels« but perform most efficiently and most effectively with this
paradigm. Vice versa, people like the specification paradigms »wizard«
and »template instantiation«, but they are less effective and less efficient
using them.

 Summary of Results regarding Personas

Using the »security levels« paradigm, the marginally concerned made
the fewest mistakes and achieved the best self-evaluation compared to
other paradigms (Average Mistakes (AM): 25%, see Table 32; Correct
Self-Evaluation (CSE): 75%, see Table 34)). In all other paradigms, this
group of people made more mistakes. This persona performed fastest
with the »security levels« (2.6 minutes on average, see Table 35) and
slowest with the »default policies« (4.3 minutes). The marginally
concerned liked the »wizard« most (Average Rating (AR): 4 out of 5; 50%
ranked in first place (FP), see Table 36) and the »security levels« least (AR:
3, 17% FP).

The amateurs also achieved the best results with the »security levels«
(AM: 5%; CSE: 81%). For the other paradigms, the AM values are equal
at 12 percent. Regarding the self-evaluation, participants assessed
themselves rather well with the »default policies« (CSE 61.9%). Amateurs
did rather few mistakes with the paradigms »template instantiation« and
»wizard«, but the self-assessment is worse than with other paradigms.
This persona performed fastest with the »security levels« (1.6 minutes)
and slowest with the »wizard« (3.8 minutes). The amateurs liked the
»template instantiation« (AR: 3.8, 43% FP) most, directly followed by the
»wizard« (AR: 3.8, 33% FP). The »security levels« are least satisfying (AR:
2.1, 0% FP).

Evaluation for Validation

234

The lazy experts are described by Dupree as people with a high level of
knowledge and low motivation in terms of security and privacy. It is
interesting to note that they performed worse than amateurs and
technicians in many direct value comparisons. The values for the »default
policies« (AM: 15%; CSE: 81.8%) and »security levels« (AM: 0%; CSE:
72.7%) are best. They performed fastest with the »security levels« (1.1
minutes) and slowest with the »wizard« (3.7 minutes). The lazy experts
liked the »template instantiation« (AR: 4, 45% FP) most, directly followed
by the »wizard« (AR: 3.8, 33% FP). The »security levels« are least
satisfying (AR: 1.9, 9% FP).

Like all other personas, technicians achieved best results in the paradigms
»security levels« (AM: 0%; CSE: 86%) and »default policies« (AM: 17%;
CSE: 64%). However, the technicians achieved best values regarding the
self-evaluation and rather low numbers of mistakes for the paradigms
»template instantiation« (AM: 15%; CSE: 57%) and »wizard« (AM: 11%;
CSE: 50%). The technicians performed fastest with the »security levels«
(1.8 minutes) and equally fast with all other specification paradigms (3.5
minutes). They liked the »template instantiation« (AR: 4.1, 43% FP) most
and the »security levels« least (AR: 3.2, 29% FP). However, surprisingly
many technicians voted the »security levels« in first place. In contrast, half
of the technicians voted them in the last place.

Since only three participants have chosen the persona fundamentalist,
no conclusions can be made about this persona. Still, our preliminary
results confirm the persona scheme of Dupree [14]. On average, the
fundamentalists made the fewest mistakes (AM values between 0% and
12%). They achieved perfect scores for the paradigms »default policies«
and »security levels«, except one participant being too pessimistic about
his success in the »security levels« paradigm. Also, the fundamentalists
made very few mistakes in the paradigms »template instantiation« (AM:
6%) and »wizard« (AM: 13%). However, they overestimated the objective
correctness in those two paradigms (CSE: 33% and 0%). Fundamentalists
performed fastest with the »security levels« (1.4 minutes) and slowest
with the »wizard« (4.5 minutes). They liked the »template instantiation«
most (AR: 4.3; 67% FP). However, the paradigms »default policies« and
»wizard« received the same average rating. The »security levels« were
least satisfying (AR: 3.3, 0% FP).

The experiment results partially confirm the mapping of personas to
specification paradigms for increasing usability that we assumed in Section
6.3.2. The marginally concerned performed best (objective correctness,
self-evaluation regarding objective correctness and efficiency) with the
»security levels«. However, they do not like this paradigm. Also all the
other personas achieved best objective correctness with the »security
levels«. This seems reasonable, as this paradigm requires less user
resources than the others do. The amateurs performed best with respect

Evaluation for Validation

235

to the correct self-estimation with the »default policies«. However, they
had similar results regarding objective correctness and efficiency with the
three specification paradigms »default policies«, »template instantiation«
and »wizard«. The lazy experts do not have a specification paradigm
directly mapped to them. It is interesting that they performed worse than
amateurs and technicians in many direct value comparisons. This indicates
that the motivation has a significant influence on the results. The
technicians also reached best results with »security levels« and »default
policies«. However, they achieved the best results of all personas with
respect to objective correctness and correctly perceived correctness with
the specification paradigms »template instantiation« and »wizard«. Due
to the small number of fundamentalists, we cannot draw conclusions
about our assumption for the best mapping to increase usability.

In summary, the experiment shows that a mapping of users to
specification paradigms can increase the objective and perceived
correctness, which users can achieve when specifying policies with a PAP.
In most cases, users perform better with specification paradigms that
require fewer resources. However, if more user resources are required, the
personas with the appropriate level of user resources performed better
than these personas not having this level. We did not identify effects of
the mapping on efficiency and satisfaction. We need to investigate the
user to specification paradigm mapping for increasing usability further in
future work.

9.4.3 Discussion

In the experiment, we investigated how the selected persona and the
specification paradigm affect objective correctness (RQ1.1), perceived
correctness (RQ1.2), efficiency (RQ1.3) and satisfaction (RQ1.4) with our
research questions.

With respect to RQ1.1, we observed that all personas made the fewest
mistakes with the specification paradigm »security levels«. The number of
mistakes differed only marginally between the other paradigms. However,
the persona marginally concerned differs significantly from the others with
respect to objective correctness, as participants belonging to this group
made more mistakes. The cumulated mistakes are higher than expected
by the author. This raises the question about the difficulty of the tasks to
be solved. Ten of 61 participants achieved the perfect objective
correctness (zero mistakes in total). Thus, it was possible to solve all tasks
without making mistakes. None of the participants complained that he
did not understand the tasks or the scenario in free text comments at the
end of the experiment. Thus, we see a relevant differentiation of the
marginally concerned in relation to the other personas with respect to
objective correctness.

Evaluation for Validation

236

Regarding RQ1.2, we found that the perceived correctness is related to
the number of decisions of a paradigm. In our experiment, more freedom
led to worse perceived correctness. However, there is no significant
difference in how personas perform regarding perceived correctness in
these paradigms. Regarding the self-evaluation, we ascertained that
marginally concerned performed worse than the other personas. In
summary, we did not expect that only few participants (8 out of 61) would
correctly perceive their objective correctness. Most participants
overestimated themselves; only four underestimated their correctness. In
practice, overestimation could frustrate a PAP user, as the system is not
reacting as expected. This could reduce trust in the PAP and its provider.
Those participants who underestimated their achieved correctness may
appreciate the correct specification and the effect by the system, but they
may also be frustrated, because they have the feeling of not having control
over the system. We see a relevant differentiation of the marginally
concerned in relation to the other personas with respect to self-evaluation
of objective correctness.

With respect to RQ1.3, we found that the different personas differ in how
fast they were able to specify policies. Lazy experts were faster than all
other personas and marginally concerned were slower than all other
personas. In summary, we do not see a relevant difference in the efficiency
of the different personas.

Regarding RQ1.4, we ascertained that the persona has no significant
influence on the satisfaction with different specification paradigms. All
participants voted similarly. This is interesting, as we had assumed that
less skilled or less motivated participants would prefer less expressive
specification paradigms. However, our experiment revealed the opposite
result. In their free text comments, participants pointed out that they like
to have options for specification. Thus, we do not see a relevant difference
in satisfaction of the different personas with the specification paradigms.

Our experiment relies on the personas developed by Dupree (see Appendix
C). We decided to select these personas since they were developed based
on empirical data, and the personas mainly differ in the user’s motivation
and security knowledge, which matches the barriers identified with the
user intention model (see Section 6.2.1). In addition, Dupree’s personas
explain other character traits that reveal more valuable information, such
as the preference for convenience over security. Moreover, they contain
concrete security behaviors, such as the use of strong passwords. We
assume that such concrete information eases the self-classification
compared to a scale with short statements, which are prone to a subjective
interpretation (i.e., expert knowledge might be interpreted differently).

Our two questions in the experiment about security knowledge and
motivation were intended to control whether the persona selection is

Evaluation for Validation

237

reasonable. However, we do not consider these to questions as sufficient
to replace the personas. In practice, it would be preferable to have a small
selection questionnaire for the user to persona mapping. To the best of
our knowledge, though, such questionnaires do not exist.

In the study by Dupree [14], the number of fundamentalists was the
smallest by far. We experienced the same in our experiment. More
fundamentalists are needed to draw conclusions about an appropriate
specification paradigm. The other personas were represented by 11, 12,
14, and 21 participants, respectively. These numbers still seem small, but
we chose statistical tests for small sample sizes to produce meaningful
results. Nevertheless, the experiment needs to be repeated with more
participants in other scenarios to improve the generalizability of our
results.

In our experiment, many participants were academics or related to an
academic work environment (69% academics, 54% employees of the
author’s institution, 93% German-speaking participants). Obviously, the
group of participants does not reflect the overall population (e.g., there
are only 15% academics in Germany). We cannot rule out that this had
an influence on the results and a negative impact on their generalizability.
It seems unlikely to us that the level of education has a direct impact, but
indirect effects seem reasonable. The level of education is related to
certain jobs and interests, which also affects knowledge about IT security.
In future experiments, questions that are more precise have to be asked
to assess the relation of education to effectiveness more deeply. Questions
could be, for example: »Is your job related to IT security or privacy?« or
»Do you spend time in your spare time to learn more about privacy?«

We showed that the selection of the specification paradigm has contrary
effects on effectiveness and efficiency than on satisfaction. Participants
performed ineffectively and made many mistakes with specification
paradigms they like. In contrast, the participants do not like the
specification paradigm with which they performed most effectively and
efficiently. This poses a dilemma for a PAP vendor that needs to select the
appropriate specification paradigm for the privacy specification interfaces
of his product. High effectiveness and efficiency are usually desired by the
users. However, low satisfaction with a PAP can prevent users from
specifying policies at all. On the other hand, a satisfactory PAP that
specifies incorrect policies can undermine trust in the vendor.

Apart from efficiency, effectiveness and user satisfaction, other
requirements may also need to be met, such as legal obligations or the
need for the vendor to collect data based on his business model.
Therefore, we cannot make general recommendations for the selection of
specification paradigms based on our current results. Vendors must
carefully weigh the pros and cons before selecting a specification

Evaluation for Validation

238

paradigm based on the personas that best represent their user
community.

9.4.4 Threats to validity

In this section, we address threats to validity with respect to the policy
specification experiment. The threat categories are explained in
Section 8.2.5.

 Internal Validity

We did not control the participants during or after the experiment, which
is a threat to internal validity.

We adequately instructed participants with a text handout, a scenario
video and instructions in various steps during the experiment, as we would
have done in a controlled setting. We did not find any hint for an
inadequate introduction (e.g., in the feedback at the end of the
experiment). Thus, we assess this threat as low.

We cannot exclude the possibility that the participants talked about the
experiment with other participants before their participation, nor that the
participants could not find the necessary information or concentration to
solve the tasks adequately. Distraction might increase the number of
mistakes. We excluded two participants when analyzing the efficiency due
to obvious large breaks.

A participant who could not identify with the scenario or the provided
privacy demands in the tasks well may have lower motivation to take effort
in correctly using the specification paradigms in the experiment. This may
negatively affect the objective correctness and is a threat to internal
validity.

The participants used a PAP (tool) for the specification of privacy policies,
which uses implementations of the specification paradigms (concepts).
This mixes findings at concept and tool level. To minimize this threat to
internal validity, usability experts supported us to make the policy
specification interfaces according to the four specification paradigms in
the PAP as unobtrusive as possible.

 External Validity

The experiment tried to simulate the use of privacy demands in real life.
In reality, participants would have their own individual demands.
However, we had to preset the privacy demands in the form of six tasks
in order to measure the correctness as the discrepancy between the
participants’ results and the sample solution. Thus, we cannot be sure

Evaluation for Validation

239

whether the same correctness values would be achieved in the real world
with personal privacy demands. This poses a threat to external validity.

The paradigm »security levels« in combination with the given tasks does
most likely not reflect the reality, since the preset tasks matched perfectly
to one of the levels. This is rarely the case in real life and therefore
jeopardizes external validity. However, we decided to propose a perfect
solution, because the lack of a perfect match may have influenced the
measured correctness and irritated the participants, which would have
been a threat to internal validity.

Furthermore, the experiment was conducted in a scenario that represents
a single use case for privacy demands (mono-operation bias). Further
experiments that confirm our results in different scenarios with different
participants would improve the generality of the results and therefore the
external validity.

In addition, a large number of participants were academics or related to
Fraunhofer IESE. This does not truly reflect the overall population. We
assess this as a threat to external validity. Moreover, we cannot guarantee
that the participants sufficiently reflect the population regarding security
knowledge and motivation.

The number of participants, especially per persona, is quite small. This
limits the generalizability. Further studies with more participants could
mitigate this threat to external validity.

 Conclusion Validity

The selection of the specification paradigms is based on our observations
of the paradigms most commonly used in practice. We cannot rule out
the possibility that there are other paradigms leading to better results in a
comparable experiment. This implies a threat to conclusion validity with
respect to our recommendations of most suitable specification paradigms.

The small number of participants per persona is also a threat to conclusion
validity, as any recommendation for personas has a low statistical power.

9.4.5 Summary and Conclusion

Regarding our hypotheses, we showed the following:

 H1.1 – Objective effectiveness of PAP: We approved that the best
matching specification paradigm leads to 30 percent fewer mistakes
than the worst matching specification paradigm. The whole of the
participants made most mistakes with the specification paradigm
»default policies« (23% of all decisions) and fewest mistakes with the

Evaluation for Validation

240

»security levels« (7%). If we compare the results, we find that all
participants made on average 68 percent fewer mistakes with the
paradigm »security levels« than with »default policies«. We showed
that the selection of the paradigm has a significant influence with a
large effect on the conducted mistakes (=0.05, H=48.94, p<0.01,
dc=0.97) as well as the selection of the persona (=0.05, H=35.23,
p<0.01, dc=0.81). We confirm that the correct mapping of users to
specification paradigms can increase objective correctness. Thus, we
can reject the null hypothesis.

 H1.2 – Perceived effectiveness of PAP: We approved that the best
matching specification paradigm leads to 30 percent higher accuracy
regarding the self-evaluation of objective correctness than the worst
matching specification paradigm. The whole of the participants
performed best with respect to the self-evaluation with the paradigm
»security levels« (78.7%) and worst with the »wizard« (29.5%). If we
compare the results, we find that the accuracy of self-estimation for all
participants is on average 167 percent higher with the paradigm
»security levels« than with the »wizard«. We showed that the selection
of the paradigm has a significant influence with a large effect on the
correct self-evaluation with respect to conducted mistakes (=0.05,
T=38.7, p<0.01, c=0.39). In addition, the selection of the persona
(=0.05, T=10.08, p=0.04, c=0.20) has a significant influence with a
medium effect. We confirm that the correct mapping of users to
specification paradigms can increase the correctness of perceived
correctness. Thus, we can reject the null hypothesis.

 H1.3 – Efficiency of PAP: We approved that the users are 30 percent
faster (efficiency) with the best matching specification paradigm than
with the worst matching specification paradigm. The whole of the
participants specified fastest with the specification paradigm »security
levels« (1.8 minutes on average) and slowest with the »wizard« (3.8
minutes on average). If we compare the results, we find that all
participants increased efficiency by 111 percent with the »security
levels« than with the »wizard«. We showed that the selection of the
paradigm has a significant influence with a large effect on the time
needed for policy specification with respect to conducted mistakes
(=0.05, H=46.89, p<0.01, dc=0.95), but not for the selection of the
persona (=0.05, H=3.90, p=0.27, dc=0.13). Nevertheless, we can
reject the null hypothesis.

 H1.4 – Satisfaction with PAP: We approved that the satisfaction
during a policy specification for users when using the best matching
specification paradigm is significantly better than with the worst
matching specification paradigm. The whole of the participants liked
the paradigm »template instantiation« most (rating of 4 out of 5) and
39 percent of participants ranked it on first place, 7 percent on the last
place. The participants liked the paradigm »security levels« least (rating

Evaluation for Validation

241

of 2.6 out of 5) and 11 percent of participants ranked it on first place,
57 percent on the last place. If we compare the mean and median
values of the paradigms, we achieve a higher satisfaction with the
paradigm »template instantiation« than with the »security levels«
(mean: 1.4; median: 2). In addition, the rankings indicate a significantly
better satisfaction with the »template instantiation« than with the
»security levels«. We showed that the selection of the paradigm has a
significant influence with a large effect on the satisfaction (=0.05,
H=42.62, p<0.01, dc=0.89). However, the selection of the personas
has no significant influence on the satisfaction (=0.05, H=5.87,
p=0.12, dc=0.23). In summary, we can reject the null hypothesis.

In summary, the selection of the specification paradigm has a significant
effect on the effectiveness, efficiency and satisfaction of the PAP (H1.1 –
H1.4). However, these effects do not significantly differ between the
personas of Dupree, except the marginally concerned, which performed
worse with respect to effectiveness and efficiency (RQ1.1 – RQ1.4). Thus,
we recommend to only use two user groups in future experiments. The
marginally concerned as one user group and all other participants as the
other group.

9.5 Summary and Conclusions

Reviewing our hypotheses and research questions, we draw the following
conclusions from our evaluation experiment:

 RQ1 (Usability of Specification Paradigms)

We evaluated the usability of the web-based PAP in the policy
specification experiment. We confirmed that the selection of the
specification paradigm has an effect on the usability. We considered the
qualities effectiveness, efficiency and satisfaction. However, we
ascertained that they behave contrary to each other: High effectiveness
and efficiency was aligned to low satisfaction and otherwise.

 H1.1 – Objective effectiveness of PAP: We measured the mistakes
made by the participants in the policy specification experiment with
each specification paradigm. We compared the results and derived the
best matching specification paradigm with respect to objective
effectiveness to be the »security levels«.

o Q1.1.1: Can the optimal mapping of specification paradigms of
PAPs to users reduce the number of specification mistakes at
least by 30%?

o M1.1.1: The participants made the most mistakes with the
specification paradigm »default policies« (23% of all decisions)

Evaluation for Validation

242

and the fewest mistakes with the »security levels« (7%). If we
compare the results, we find that all participants made on
average 68 percent fewer mistakes with the paradigm »security
levels« than with »default policies«. We found a significant
influence with a large effect of the used specification paradigm
on the conducted mistakes (=0.05, H=48.94, p<0.01,
dc=0.97). In detail, the paradigm »security levels« leads to a
significantly worse objective effectiveness compared to »default
policies« (z=4.24, p<0.01), »template instantiation« (z=5.93,
p<0.01) and »wizard« (z=-6.18, p<0.01).

o Q1.1.2: Is the optimal mapping of specification paradigms
reducing the number of specification mistakes for each persona
by at least 30%?

o M1.1.2: For 100 percent of the personas (five out of five), the
selection of the best matching specification paradigm decreased
the number of mistakes by more than 30 percent (marginally
concerned by 55%, amateurs by 58%, all other personas by
100%). However, the influence of the selected specification
paradigm on the objective correctness is only significant for the
»amateurs« (H=16.15, p<0.01, dc=0.89), for the »lazy experts«
(H=16.63, p<0.01, dc=1.44) and for the »technicians«
(H=11.15, p=0.01, dc=0.86), but not for the »marginally
concerned« (H=4.98, p=0.17, dc=0.43).

o Q1.1.3: Does the persona selection influence the objective
effectiveness when using the different specification paradigms?

o M1.1.3: we found a significant influence with a large effect of
the persona selection on the mistakes made (=0.05, H=35.23,
p<0.01, dc=0.81). We explain this effect with the significant
difference with respect to objective correctness of the
marginally concerned compared to the other personas. The
marginally concerned performed significantly worse. We see the
influence of the persona selection in each paradigm: »default
policies« (H=13.88, p<0.01), »template instantiation«
(H=14.10, p<0.01), and »wizard« (H=17.04, p<0.01), and also
for the »security levels« (H=7.99, p <0.05), but not that strong.

 In summary, we can reject the Null Hypothesis H1.10.

 H1.2 – Perceived effectiveness of PAP: We asked participants in the
policy specification experiment to self-evaluate the correctness of the
specified policies after each specification with a different specification
paradigm. We compared the self-evaluation with the actual
correctness and determined the best matching specification paradigm
regarding perceived effectiveness to be the »security levels«.

Evaluation for Validation

243

o Q1.2.1: Can the optimal mapping of specification paradigms of
PAPs to users increase the accuracy of estimations regarding
objectively correct specified policies by at least 30%?

o M1.2.1: The entire participant group performed best with
respect to the self-evaluation with the paradigm »security
levels« (78.7%) and worst with the »wizard« (29.5%). If we
compare the results, we find that the accuracy of self-estimation
for all participants is 167% higher on average with the
paradigm »security levels« than with the »wizard«. We found a
significant influence with a large effect of the used specification
paradigm on the correct self-evaluation (=0.05, T=38.69,
p<0.01, c=0.39).

o Q1.2.2: Does the optimal mapping of specification paradigms
increase the accuracy of estimations regarding objectively
correct specified policies for each persona by at least 30%?

o M1.2.2: For 100 percent of the personas (five out of five), the
selection of the best matching specification paradigm increased
the accuracy of estimations regarding objectively correct
specified policies by more than 30 percent (marginally
concerned by 838%, amateurs by 143%, lazy experts by 200%,
technicians by 71 %. The increase for the fundamentalist is
infinite as 0% of the fundamentalists made a correct estimation
with the paradigm »wizard«, but 100% estimated correctly
with the paradigm »default policies«). However, the influence
of the selected specification paradigm on the correct self-
evaluation is not for all personas significant (=0.05). It is
significant for the »marginally concerned« (T=12.49, p=0.01,

c=0.53), the »amateurs« (T=13.78, p<0.01, c=0.41), for the
»lazy experts« (T=10.86, p=0.01, c=0.51), but not for the
»technicians« (T=4.44, p=0.26, c=0.28) or the »funda-
mentalists« (T=6.00, p=0.24, c=0.75).

o Q1.2.3: Does the persona selection influence the perceived
correctness?

o M1.2.3: We found that the selection of the persona has an
influence on the correct self-evaluation (T=10.08, c=0.20), but
only with a medium effect size. This means that there is little
difference in how optimistic or pessimistic the participants of
the different personas are when using the specification
paradigms.

 In summary, we can reject the Null Hypothesis H1.20.

 H1.3 – Efficiency of PAP: We measured the time needed for solving
six tasks with four specification paradigms. We compared the results

Evaluation for Validation

244

and identified that users perform fastest with the specification
paradigm »security levels«.

o Q1.3.1: Can the optimal mapping of specification paradigms of
PAPs to users decrease the time needed to specify policies by at
least 30%?

o M1.3.1: Participants specified fastest with the specification
paradigm »security levels« (1.8 minutes on average) and slowest
with the »wizard« (3.8 minutes on average). The selection of an
appropriate specification paradigm can decrease the time
needed to specify policies by 53%. We found a significant
influence with a large effect of the used specification paradigm
on the time needed for policy specification, that is the users’
efficiency (=0.05, H=46.89, p<0.01, dc=0.95). This can be
explained by the significantly better efficiency of users with the
best paradigm »security levels« compared to »default policies«
(z=5.11, p<0.01), »template instantiation« (z=4.23, p<0.01)
and »wizard« (z=-6.17, p<0.01).

o Q1.3.2: Is the optimal mapping of specification paradigms for
decreasing the time needed to specify policies valid for all
personas?

o M1.3.2: For 100 percent of the personas (five out of five), the
selection of the best matching specification paradigm decreased
the needed time by more than 30 percent (marginally
concerned by 40%, amateurs by 58%, lazy experts by 70%,
technicians by 49% and fundamentalists by 69%). However,
the influence of the selected specification paradigm on the
efficiency is not for all personas significant (=0.05). It is
significant for the »amateurs« (H=23.64, p<0.01, dc=1.19), for
the »lazy experts« (H=13.09, p<0.01, dc=1.16) and for the
»technicians« (H=9.85, p=0.02, dc=0.79), but not for the
»marginally concerned« (H=2.57, p=0.46, dc=0.20).

o Q1.3.3: Does the persona selection influence the time needed
to specify policies?

o M1.3.3: We did not find a significant effect of the persona
selection on the time needed (=0.05, H=3.90, p=0.27,
dc=0.13). Thus, the distribution of time needed is similar for the
different personas.

 In summary, we can reject the Null Hypothesis H1.30.

 H1.4 – Satisfaction with PAP: After each specification with a
specification paradigm, we asked the participants how much they liked
the paradigm. At the end of the policy specification experiment, we
asked the participants to rank all four specification paradigms. We

Evaluation for Validation

245

compared the results and determined the best matching specification
paradigm regarding satisfaction to be the »template instantiation«.

o Q1.4.1: Can the optimal mapping of specification paradigms of
PAPs to users significantly increase the satisfaction experienced
by users during the policy specification?

o M1.4.1a: The entire participant group liked the paradigm
»template instantiation« most (rating of 4 out of 5). The
participants liked the paradigm »security levels« least (rating of
2.6 out of 5). If we compare the mean and median values of the
paradigms, we achieve a higher satisfaction with the paradigm
»template instantiation« than with the »security levels« (mean:
1.4; median: 2). We found a significant influence with a large
effect of the used specification paradigm on the users’
satisfaction (=0.05, H=42.62, p<0.01, dc=0.89). When we
compare the paradigms pairwise, we find that users like the
specification paradigm »template instantiation« significantly
more than the »default policies« (z=2.83, p=0.03) and the
»security levels« (z=5.84, p<0.01). In addition, participants like
the specification paradigm »default policies« (z=3.02, p=0.02)
and »wizard« (z=-5.33, p<0.01) significantly more than the
»security levels«.

o M1.4.1b: 39% of the participants ranked the specification
paradigm »template instantiation« in first place, 7% in the last
place. Only 11% of participants ranked the specification
paradigm »security levels« in the first place, 57% in the last
place. The rankings indicate a significantly better satisfaction
with the »template instantiation« than with the »security
levels«.

o Q1.4.2: Is the optimal mapping of specification paradigms for
increasing the satisfaction experienced by users during the
policy specification valid for all personas?

o M1.4.2: For 40 percent of the personas (two out of five), the
selection of the best matching specification paradigm increased
satisfaction significantly (=0.05). It is significant for the
»amateurs« (H=24.23, p<0.01, dc=1.20), for the »lazy experts«
(H=16.50, p<0.01, dc=1.43), but not for the »marginally
concerned« (H=6.41, p=0.09, dc=0.58) or the »technicians«
(H=4.06, p=0.26, dc=0.29).

o Q1.4.2: Does the persona selection influence the satisfaction
with specification paradigms?

o M1.4.2: We did not find a significant influence of the persona
selection on the users’ satisfaction (=0.05, H=5.87, p=0.12,
dc=0.23).

Evaluation for Validation

246

 In summary, we can reject the Null Hypothesis H1.40.

 RQ2 (Elicitation)

We applied the policy template elicitation method in the two case studies.
However, in the »Digital Villages« case study we only focused on the user
acceptance of the method with respect to RQ2.

 H2 (Completeness of elicited information): In the »BeSure« case
study, we only validated the completeness of elicited information.
According to the experts that validated the method results (14 policy
templates), the list of policy templates was complete.

o Q2.1: Is the policy template elicitation method capable of
eliciting 90 percent of all necessary policy templates for the
application domain?

o M2.1: We elicited 100 percent of all policy templates from the
application domain (14/14 = 100%).

 In summary, we can reject the Null Hypothesis H20.

 H3 (Correctness of elicited information): In the »BeSure« case
study, we did only validate the correctness of elicited information.
According to the experts that validated the method results (14 policy
templates), all derived policy templates were correct.

o Q3.1: Is the policy template elicitation method capable of
eliciting policy templates that cover more than 90% of the
security and privacy demands from the application domain?

o M3.1: The policy template elicitation method allowed us to elicit
100% of the policy templates correctly (14/14 = 100%).

 In summary, we can reject the Null Hypothesis H30.

 H4 (User acceptance of elicitation method): In both case studies,
we received positive feedback with respect to our policy template
elicitation method (3 participants in »BeSure«, 5 participants in
»Digital Villages«).

o Q4.1: Do users rate a workshop in which the policy template
elicitation method is applied as a positive experience?

o M4.1: 100% of the participants (8 out of 8) that we asked gave
us positive feedback regarding the policy template elicitation
method (participation in the elicitation workshop).

 In summary, we can reject the Null Hypothesis H40.

Evaluation for Validation

247

 RQ3 (Formalization)

In the case study »Digital Villages«, we were able to instantiate a policy
vocabulary with six derived policy templates. However, we identified a
remaining challenge for our model in the »BeSure« case study. Five out of
14 policy template could not be completely expressed in our policy
template model, as one required construct is not supported by the model.
Thus, we cannot confirm the completeness of the policy template model.
However, even without this construct, all policies can be specified by
users, but with less comfort.

 H5 (Completeness of policy template model)

o Q5.1: Is the policy template model capable to represent more
than 90 percent of the elicited security and privacy demands in
the form of policy templates?

o M5.1: We were able to model 65% of the derived policy
templates in the policy template model ((6+9)/(6+14) = 65%).

 In summary, we cannot reject the Null Hypothesis H50.
The policy template model is still incomplete and needs
to be completed in future work.

 RQ4 (Automation)

We successfully demonstrated the automated PAP creation in two case
studies. This includes the use of two different UI frameworks and four
different specification paradigms (»template instantiation«, »default
policies«, »security levels« and »wizard«). We confirmed the feasibility of
automated PAP creation. Thus, the developer does not need to implement
user interfaces for each application domain as this task is automated by
generating from the policy vocabulary.

 H6 (Feasibility of automation of PAP creation)

o Q6.1: Is the process of user interface creation for the task of
policy specification automatable for multiple specification
paradigms and UI frameworks?

o M6.1: The user interface creation for 100% (4 of 4) of the tested
specification paradigms could be automated.

o M6.2: The user interface creation of PAPs could be automated
for 100% (2 of 2) of the tested UI frameworks.

 In summary, we can reject the Null Hypothesis H60.

Evaluation for Validation

248

 Conclusion

We conclude that we successfully showed the application of the method
for usable PAP generation in two different application domains in the case
studies within the projects »BeSure« and »Digital Villages«. In each case
study, we successfully applied our contributions of this thesis. We elicited
correct and complete policy templates with the policy template elicitation
method, we instantiated the complete policy template model to create a
policy vocabulary and we used the PAP generation framework for the
automated creation of PAPs that provide up to four different specification
paradigms.

In addition, we confirmed that the mapping of users to specification
paradigms might increase the effectiveness of a PAP. We did not find a
strong relation between our proposed mapping and the qualities
efficiency and satisfaction. We need to investigate the user to specification
paradigm mapping further in future work.

249

10 Summary and Future Work

More and more data is exchanged between users and organizations, such
as personal data users are sending to online services. This data is collected,
stored, analyzed, reused and partially resold by companies. Users become
increasingly afraid of data misuse, and their need for a better protection
of their security and privacy is increasing. They want to gain more self-
determination in the form of controlling and self-expressing their security
and privacy demands for personal data they share with online services.
Therefore, they need PAPs to specify security and privacy policies. Many
online services provide a PAP. However, studies reveal that many users do
not use these tools or have usability issues when doing so. Unfortunately,
service providers are somewhat reluctant to improve usability by better
tailoring their PAPs to the users, because this required substantial
development effort as this is currently a manual process.

We identified the limited usability of existing PAPs and the huge
development effort to improve PAP usability as the two key problems. To
solve these problems, we devised the method for usable PAP generation
as the overall contribution of this thesis. The four main contributions,
which we discuss and evaluate within this thesis, are: the policy template
elicitation method, the policy template model, the PAP generation
framework and the user to specification paradigms mapping.

Overall, we demonstrated the feasibility of the method for usable PAP
generation in four case studies. More specifically, we showed that the
policy template elicitation method provides correct and complete policy
templates and that the method is accepted by the participants of
elicitation workshops. We successfully modelled most elicited security and
privacy demands as policy templates with our proposed policy template
model, even though one construct was missing in the model, which
indicates the incompleteness of the model. We showed that a PAP could
generate policy specification interfaces implementing multiple supported
specification paradigms at runtime using the PAP generation framework.
Thus, the developer does not need to implement user interfaces for each
application domain as this task is automated by generating them from the
policy vocabulary. We provided respective PAPs for all four application
domains of the case studies.

In an experiment, we achieved usability improvements by selecting the
most appropriate specification paradigm. Our empirical results reveal that
users perform differently with respect to effectiveness, efficiency and
satisfaction when using different specification paradigms. These three

Summary and Future Work

250

qualities are individually significantly increased on average (effectiveness
and efficiency by more than 30 percent) when selecting the appropriate
specification paradigm. However, the results regarding these qualities are
contrary as high effectiveness and high efficiency do not imply high
satisfaction and vice versa. We showed that these results are valid for a
heterogeneous user group as a whole. The clustering of users into
personas according to their knowledge and motivation provided similar
results.

We conclude the thesis in this chapter by summarizing our methodological
and technological contributions in Section 10.1, our empirical
contributions in Section 10.2 and our validation results in Section 10.3.
Finally, we discuss open issues and future work in Section 10.4.

10.1 Methodological and Technological Contributions

We summarize the five methodological and technological contributions of
this thesis in the following list:

 Contribution 1 (C1) – User to Specification Paradigm Mapping:
We provide guidance for selecting the appropriate specification
paradigms for users in terms of effectiveness, efficiency and
satisfaction.

 Contribution 2 (C2) – Policy Template Elicitation Method: We
elaborated a method for eliciting policy templates from an application
domain. The method consists of five steps: First, information about the
application domain is retrieved from a contact person. Next, based on
this information, an elicitation workshop is prepared and conducted.
In the workshop, the method expert elicits assets, use cases, threats
and countermeasures from participating stakeholders of the
application domain. Finally, the method expert derives policy templates
from the elicited information and validates them together with
stakeholders from the application domain. A policy template abstracts
security or privacy demands of stakeholders into a variable and
instantiable construct. The user employs a PAP to instantiate a policy
template into a concrete policy.

 Contribution 3 (C3) – Policy Template Model: We created a model
that supports the formalization of security and privacy demands as
policy templates. The formalization of these demands is a necessary
requirement for adding automation to the PAP creation process. The
model contains sub-models for describing the domain, security
aspects, policy templates on the specification level, transformation
rules for generating machine-understandable policies on the
implementation level and projection rules for representing policy
templates in multiple specification paradigms. We call the instantiation

Summary and Future Work

251

of the policy template model a policy vocabulary, which can be used
to represent security and privacy demands of an application domain.

 Contribution 4 (C4) – PAP Generation Framework (Concept and
Implementation): We designed the PAP generation framework for
the automation of the PAP creation process. This framework can be
embedded into a PAP. It enables the generation of user interfaces for
the specification of policies at runtime based on a policy vocabulary.
The framework is modular and supports the use of multiple UI
frameworks, specification paradigms and policy languages. Different
types of user interfaces can be generated according to the selected
specification paradigm. Our reference implementation of the PAP
generation framework is capable of generating a fully functional PAP
from a policy vocabulary, and it supports multiple specification
paradigms. We provide generation algorithms for four different
specification paradigms: »template instantiation«, »default policies«,
»security levels« and »wizard«.

 Contribution 5 (C5) – Method for Usable PAP Generation: We
combined the four aforementioned contributions into a
comprehensive method. The method can be used for generating
usable PAPs, as requested in the scientific problem statement.

10.2 Empirical Contributions

Our empirical contributions comprise three problem derivation surveys,
four case studies (three of them with industrial partners) and one
experiment. We conducted problem derivation surveys to substantiate our
practical problems:

 The »SECCRIT« survey was conducted with 15 company
representatives. They were asked whether to involve users in the
process of policy specification and whether this imposes security risks.
This survey revealed that companies want to provide PAPs to users;
however, some fear to jeopardize security when letting users specify
policies.

 The »MPK« survey was conducted with 1,391 visitors of a museum
exhibition. We asked them how often they check their security and
privacy settings in online services. If they do it only rarely, we asked for
their reasons. Of all respondents, about 40 percent stated that they
check their security and privacy settings too infrequently because they
face usability issues.

 In the survey in the context of the policy specification
experiment, we tried to confirm the results of the »MPK« survey with
61 participants. Here, more than 60 percent of the respondents update
security and privacy settings too infrequently due to usability issues.

Summary and Future Work

252

They stated that PAPs are too time-consuming and too complicated. In
addition, they said that they do not feel competent enough to use the
PAPs or that they just forget to do it.

We conducted the first two case studies for improving our contributions:

 In the »SINNODIUM« case study, we positively evaluated the
concept of policy templates for specifying security and privacy policies
in a PAP. We elicited policy templates together with experts of vwd
and built an Android PAP with which users can specify policies for the
»vwd portfolio manager mobile« Android app.

 In the »SECCRIT« case study, we confirmed that the concept of policy
templates is suitable for specifying security and privacy policies in a
PAP. We elicited policy templates for the application domain of cloud
services for critical infrastructure IT together with eight partners from
industry and research. We demonstrated the instantiation of the policy
template model and the generation of user interfaces for policy
specification in PAPs with three selected policy templates in a project
demonstrator. To this end, we provided two PAPs (a Java application
with the »Swing« UI framework and an Android app) that were
capable of letting users specify policies with the specification
paradigms »template instantiation« and »default policies«. Thus, we
confirmed the feasibility of the policy template elicitation method, the
policy template model and the PAP generation framework.

In the second part of our evaluation, we focused on the validation of our
contributions:

 In the »BeSure« case study, we positively evaluated the policy
template elicitation method, the policy template model and the PAP
generation framework together with the industry partner DATEV. We
applied the policy template elicitation method with stakeholders from
DATEV and elicited 14 policy templates in total. Participants enjoyed
the workshop. Next, we instantiated the policy template model. During
this process, we identified one construct that currently cannot be
modeled. The extension of the model to fix this issue is part of future
work. Finally, we created an Android PAP with the PAP generation
framework. We evaluated the usability of this PAP with the
specification paradigm »template instantiation« in a second workshop
with experts from DATEV. We got positive feedback and valuable
improvement suggestions, such as the provision of a specification
wizard. We added this idea in the form of the specification paradigm
»wizard« in the final version of the PAP generation framework.

 In the »Digital Villages« case study, we positively evaluated the user
acceptance of the policy template elicitation method, the
completeness of the policy template model and the feasibility of

Summary and Future Work

253

automation in the PAP creation process. We were able to elicit 14
policy templates. We created a policy vocabulary containing a subset
of six selected policy templates. This policy vocabulary was used in the
final policy specification experiment. Last, we generated a web-based
PAP that supports all four specification paradigms of the PAP
generation framework.

 Finally, we conducted a policy specification experiment in which
we assessed the usability improvements in terms of effectiveness,
efficiency and user satisfaction. We let users specify policies with the
four specification paradigms of our PAP generation framework and
compared the results. We demonstrated usability improvements when
selecting the appropriate specification paradigm. Our empirical results
reveal that users perform differently with respect to effectiveness,
efficiency and satisfaction when using different specification
paradigms. These three qualities are individually significantly increased
on average (effectiveness and efficiency by more than 30 percent)
when selecting the most appropriate specification paradigm compared
to the least suitable one. However, the results regarding these qualities
are contrary, as high effectiveness and high efficiency do not imply
high satisfaction and vice versa. In addition, we clustered users into
different persona groups and investigated whether different personas
perform significantly different from the participant group as a whole,
which we partially confirmed. We showed that users that are unskilled
and unmotivated behave differently from all other users. In addition,
we partially confirmed our user to specification paradigm mapping
based on the user resources that different specification paradigms
require from the user.

Overall, we showed the feasibility of the method for usable PAP
generation in the four case studies and in the evaluation experiment. More
specifically, we demonstrated that the policy template elicitation method
provides correct and complete policy templates and that the method is
accepted by the participants of elicitation workshops. We successfully
modelled security and privacy demands as policy templates with our
proposed policy template model, which indicates the completeness of the
model, except one missing construct, which we intend to add in the
future. Using the PAP generation framework, we generated PAPs with
multiple supported specification paradigms in the four different
application domains of the case studies.

10.3 Validation Results

In our four case studies and the experiment, we answered the questions
of our hypotheses from our GQM approach, which we introduced in
Section 1.5.

Summary and Future Work

254

 H1.1 (Objective effectiveness of PAP): We approved in one
experiment that the best matching specification paradigm leads to
30 percent fewer mistakes than the worst matching specification
paradigm. The whole of the participants made most mistakes with the
specification paradigm »default policies« (23% of all decisions) and
fewest mistakes with the »security levels« (7%). If we compare the
results, we find that all participants made on average 68 percent fewer
mistakes with the paradigm »security levels« than with »default
policies«. We showed that the selection of the paradigm has a
significant influence with a large effect on the conducted mistakes
(=0.05, H=48.94, p<0.01, dc=0.97) as well as the selection of the
persona (=0.05, H=35.23, p<0.01, dc=0.81).

 H1.2 (Perceived effectiveness of PAP): We approved in one
experiment that the best matching specification paradigm leads to
30 percent higher accuracy regarding the self-evaluation of objective
correctness than the worst matching specification paradigm. The
whole of the participants performed best with respect to the self-
evaluation with the paradigm »security levels« (78.7%) and worst with
the »wizard« (29.5%). If we compare the results, we find that the
accuracy of self-estimation for all participants is on average
167 percent higher with the paradigm »security levels« than with the
»wizard«. We showed that the selection of the paradigm has a
significant influence with a large effect on the correct self-evaluation
with respect to conducted mistakes (=0.05, T=38.7, p<0.01,

c=0.39). In addition, the selection of the persona (=0.05, T=10.08,
p=0.04, c=0.20) has a significant influence with a medium effect.

 H1.3 (Efficiency of PAP): We approved in one experiment that the
users is 30 percent faster (efficiency) with the best matching
specification paradigm than with the worst matching specification
paradigm. The whole of the participants specified fastest with the
specification paradigm »security levels« (1.8 minutes on average) and
slowest with the »wizard« (3.8 minutes on average). If we compare
the results, we find that all participants increased efficiency by
111 percent with the »security levels« than with the »wizard«. We
showed that the selection of the paradigm has a significant influence
with a large effect on the time needed for policy specification with
respect to conducted mistakes (=0.05, H=46.89, p<0.01, dc=0.95),
but not for the selection of the persona (=0.05, H=3.90, p=0.27,
dc=0.13).

 H1.4 (Satisfaction with PAP): We approved in one experiment that
the satisfaction during a policy specification for users when using the
best matching specification paradigm is significantly better than with
the worst matching specification paradigm. The whole of the
participants liked the paradigm »template instantiation« most (rating
of 4 out of 5) and 39 percent of participants ranked it on first place,

Summary and Future Work

255

7 percent on the last place. The participants liked the paradigm
»security levels« least (rating of 2.6 out of 5) and 11 percent of
participants ranked it on first place, 57 percent on the last place. If we
compare the mean and median values of the paradigms, we achieve a
higher satisfaction with the paradigm »template instantiation« than
with the »security levels« (mean: 1.4; median: 2). In addition, the
rankings are indicate a significantly better satisfaction with the
»template instantiation« than with the »security levels«. We showed
that the selection of the paradigm has a significant influence with a
large effect on the satisfaction (=0.05, H=42.62, p<0.01, dc=0.89).
However, the selection of the personas has no significant influence on
the satisfaction (=0.05, H=5.87, p=0.12, dc=0.23).

 H2 (Correctness of elicited information): According to the experts
that validated the method results in the case studies »SINNODIUM« (7
policy templates) and »BeSure« (14 policy templates), the list of policy
templates was complete. In the »SECCRIT« case study, the experts
extended the initial 30 policy templates by 10 additional ones during
validation. In total, we elicited 84 percent (51 out of 61) of all relevant
policy templates from the application domain.

 H3 (Correctness of elicited information): According to the experts
that validated the method results in the case studies »SINNODIUM« (7
policy templates) and »BeSure« (14 policy templates), all derived policy
templates were correct. In the »SECCRIT« case study, the experts
found improvement potential in 3 out of 40 policy templates. Thus,
the policy template elicitation method allowed us to elicit 95 percent
(58 out of 61) of the policy templates correctly.

 H4 (User acceptance of elicitation method): Overall, we received
positive feedback on our policy template elicitation method in the case
studies (2 participants in »SINNODIUM«, 16 participants in »SECCRIT«,
3 participants in »BeSure« and 5 participants in »Digital Villages«).
100 percent (26 out of 26) of the participants perceived the workshop
participation as a positive experience. Still, we obtained valuable
improvement suggestions for the method from the participants, which
we will consider in future work.

 H5 (Completeness of policy template model): We were able to
instantiate a policy vocabulary with all six derived policy templates in
the case study »SINNODIUM«. In the »SECCRIT« case study, we
selected three policy templates for the demonstrator, which could all
be expressed in the policy template model. In the »Digital Villages«
case study, we were able to model all six selected policy templates.
However, we identified a remaining challenge for our model in the
»BeSure« case study. Five out of 14 policy template could not be
completely expressed, as one required construct is currently not
supported by the model. Thus, we cannot approve the policy template
model to be complete in the context of our case studies. However,

Summary and Future Work

256

even without this construct, all policies could be instantiated from the
policy templates by users, but with less comfort. In total, we were able
to formalize 83 percent (25 out of 30) of the derived policy templates
in the policy template model.

 H6 (Feasibility of automation of PAP creation): We successfully
demonstrated the generation of user interfaces for policy specification
in all four case studies. This includes PAPs that use four different view
modules (»Swing«, »JavaFx«, »Android«, »Web«) and that support
the four presentation modules which implement the specification
paradigms »template instantiation«, »default policies«, »security
levels« and »wizard«. Our results confirm the feasibility for automated
PAP creation. We showed that the generation of user interfaces for
specifying policies works for 100 percent (4 out of 4) of the tested
specification paradigms and for 100 percent (4 out of 4) of the tested
UI frameworks.

Overall, we gained valuable insights into the processes of PAP creation
and policy specification with multiple specification paradigms. We
identified open issues and topics for future research, which we present in
the next section.

10.4 Open Issues and Future Work

In this section, we address open issues and future work with respect to
our contributions.

 Policy Template Elicitation Method

Regarding our policy template elicitation method, we identified the
following future research topics:

 RE techniques: We tested a limited number of established RE
techniques for the elicitation of assets, use cases, threats and
countermeasures in our case studies. However, further techniques exist
that may provide better results. This needs to be investigated.

 Validation of Policy Templates: Our validation is currently an
unstructured process performed by stakeholders of the application
domain. A more structured approach is desirable.

 Policy Template Complexity: The complexity and expressiveness of
a policy template depends on the judgement of the method expert. He
derives the policy templates based on the example policies. However,
we do not provide specific rules for this derivation process. As a
consequence, the resulting policy templates can be simple or complex.
This potentially influences the number of policies that a user must

Summary and Future Work

257

instantiate from the templates. Thus, we face a tradeoff between
template complexity and number of policies to be instantiated. This
tradeoff needs to be researched.

 Policy maintenance: A well-defined process for the maintenance of
policy templates was requested in one of our case studies by the
participating company. We agree on the usefulness of such a process.
However, we did not address this maintenance aspect in this work.

 Policy Template Model

The policy template model described in this thesis reflects the status of our
research in this field. Due to the immense size of the model and limited
time for research and evaluation, not all aspects of the model could be
sufficiently scientifically investigated in the context of this dissertation.
Thus, some limitations still apply:

 Multiple instances of selection elements: Specification-level policy
templates may contain multiple paths, which we call selection
elements. During the instantiation of an SLPT, at most one selection
element may be used. This constraint caused the incompleteness of
the model that we discovered in the case study »BeSure«. There are
several reasons why we currently do not support the cloning of
selection elements during the instantiation of an SLPT. First, we did not
yet investigate the effects of selection element cloning on the
generation of ILPs. If element group cloning will be allowed, the
method expert may have to consider special rules for the specification
of ILPTs. Second, the implementation of the PAP framework currently
does not support the cloning of the graphical representations of
selection elements in the user interface. We would need to provide
interface functions to the user to define the number of clones. Third,
the specification paradigm projection model currently only supports
references to one instance of a selection element. The whole concept
of the projection rules needs to be revised in order to support selection
element clones. However, selection element cloning is a valuable
extension to our approach, as it would enrich the expressiveness of
SPLTs. This needs to be further investigated.

 Boolean logic for element group references in generation rules:
When designing ILPTs, the method expert can define transformation
rules for generating ILPs from instantiated SLPTs. One design element
are references of ILPT blocks to selection elements of an SLPT. Such a
reference means that if a selection element is selected when
instantiating the SLPT, the ILPT block is also selected and integrated
into the ILP at a defined XML node. Currently we can only model the
selection of a single selection element as the condition. In the future,
it would be desirable to integrate Boolean logic so that more complex
conditions for the ILPT block selection can be specified.

Summary and Future Work

258

 Support of more specification paradigms: The concrete behavior
of a SLPT when presented on the user interface with a specific
specification paradigm is specified in projection rules. The method
expert defines these projection rules with the specification paradigm
projection sub-model. As each specification paradigm requires a
unique type of projection rules, the specification paradigm projection
sub-model must be extended to support additional specification
paradigms. Currently, only the four specification paradigms »template
instantiation«, »default policies«, »security levels« and »wizard« are
supported. The support of more specification paradigms is a
worthwhile extension of the model.

 PAP Generation Framework

We presented the concept and our reference implementation of the PAP
generation framework in this thesis. Our case studies revealed several
potential extensions:

 Specification paradigm switching: Currently, a user or the provider
of a PAP can select one specification paradigm for policy specification.
However, it would be desirable to switch specification paradigms
during the specification of policies on the fly. We would need to
investigate under which conditions such a switch is possible (e.g.,
according to different expressiveness of specification paradigms) and
implement this functionality into the PAP generation framework. This
needs to be further researched.

 More information for the user: We could use the information
provided by the domain and security and privacy sub-models of the
policy template model in order to better support the user with
information about risks and threats on the user interface, as requested
by Johnson et al. [25] (»Communicate Risk and Threats«). This remains
an open issue.

 User to Specification Paradigm Mapping

In this thesis, we described the matching of users and personas to
specification paradigms. The following open questions remain to be
addressed:

 Improved mapping: We showed in the experiment that our assumed
mapping of users to specification paradigms is partially increasing the
usability. We see positive effects on the effectiveness, but no
significant effects on the efficiency and satisfaction. Further research
might reveal a method for creating better mappings.

 User characteristics: An interesting question is whether
characteristics of users have an influence on the specification of

Summary and Future Work

259

policies other than the ones we identified with our user intention
model and their abstraction to »knowledge« and »motivation« with
the persona model of Dupree.

 Objective measurement of barriers: Metrics and value thresholds
to measure the barriers of our user intention model objectively are
urgently needed, but do not exist. This may be a direction of future
research.

 Method for Usable PAP Generation

We combined the different contributions of our work in the method for
usable PAP generation. We use the policy template model to create policy
vocabularies within our method. However, the method lacks structured
processes for the creation of projection rules for multiple specification
paradigms and for the creation of transformation rules for ILP generation.
These steps are currently manual and expert-based. Further research into
more structured approaches is required to provide better process
guidance.

Presently, we also do not provide a usable editor for creating policy
vocabularies. Currently, a policy vocabulary must be written in an ordinary
text editor. Such a tool could facilitate the method expert’s task
significantly.

 Experimental Validation

We conducted the policy specification experiment with 61 participants.
Splitting them up into five personas resulted in rather small sample sizes
per persona. To confirm the results of our policy specification experiment,
we need to perform non-exact replications of our experiment, including a
larger sample of participants from all personas and additional scenarios.
We need to find out whether optimizations in the implementations of the
paradigms can positively influence their usability. Therefore, we also need
to explore the use of additional paradigms and discuss the current look
and feel as well as the interaction process of the paradigms used.

261

References

[1] DOMO, “Data Never Sleeps 6.0,” [Online] Available: https://web-assets.domo.com/blog/wp-
content/uploads/2018/06/18_domo_data-never-sleeps-6verticals.pdf.

[2] European Commission, Special Eurobarometer 431 - Data Protection. [Online] Available:
http://ec.europa.eu/commfrontoffice/publicopinion/archives/ebs/ebs_431_en.pdf.

[3] Symantec, State of Privacy Report 2015. [Online] Available:
https://www.symantec.com/content/en/us/about/presskits/b-state-of-privacy-report-2015.pdf. Accessed
on: Dec. 20 2018.

[4] L. F. Cranor and N. Buchler, “Better together: Usability and security go hand in hand,” IEEE Security &
Privacy, vol. 12, no. 6, pp. 89–93, 2014.

[5] OASIS, eXtensible Access Control Markup Language (XACML) Version 3.0. [Online] Available:
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html. Accessed on: Jan. 16 2019.

[6] K. Strater and H. R. Lipford, “Strategies and struggles with privacy in an online social networking
community,” in Proceedings of the 22nd British HCI Group Annual Conference on People and
Computers: Culture, Creativity, Interaction-Volume 1, 2008, pp. 111–119.

[7] Y. Liu, K. P. Gummadi, B. Krishnamurthy, and A. Mislove, “Analyzing Facebook privacy settings: User
expectations vs. reality,” in Proceedings of the 2011 ACM SIGCOMM conference on Internet
measurement conference, 2011, pp. 61–70.

[8] B. Stepien, A. Felty, and S. Matwin, “A non-technical user-oriented display notation for XACML
conditions,” in International Conference on E-Technologies, 2009, pp. 53–64.

[9] K. Fu et al., Safety, Security, and Privacy Threats Posed by Accelerating Trends in the Internet of Things.
[Online] Available: https://cra.org/ccc/wp-content/uploads/sites/2/2017/02/Safety-Security-and-Privacy-
Threats-in-IoT.pdf. Accessed on: Dec. 21 2018.

[10] M. Johnson, J. Karat, C.-M. Karat, and K. Grueneberg, “Usable Policy Template Authoring for Iterative
Policy Refinement,” in IEEE International Symposium on Policies for Distributed Systems and Networks:
POLICY 2010 : 21-23 July 2010, Fairfax, Virginia, USA, Fairfax, VA, USA, 2010, pp. 18–21.

[11] J. Zhao, R. Binns, M. van Kleek, and N. Shadbolt, “Privacy Languages: Are we there yet to enable user
controls?,” in Proceedings of the 25th international conference companion on world wide web, 2016,
pp. 799–806.

[12] M. Rudolph, R. Schwarz, C. Jung, A. Mauthe, and N. u. H. Shirazi, “SECCRIT Deliverable 3.2: Policy
Specification Methodology,” 2014.

[13] ISO 9241-11:2018 Ergonomics of human-system interaction — Part 11: Usability: Definitions and
concepts, ISO 9241-11, 2018.

[14] J. L. Dupree, R. Devries, D. M. Berry, and E. Lank, “Privacy personas: clustering users via attitudes and
behaviors toward security practices,” in Proceedings of the 2016 CHI Conference on Human Factors in
Computing Systems, 2016, pp. 5228–5239.

[15] K. B. Sheehan, “Toward a typology of Internet users and online privacy concerns,” The Information
Society, vol. 18, no. 1, pp. 21–32, 2002.

[16] F. Abbattista et al., “Improving the usability of an e-commerce web site through personalization,”
Recommendation and Personalization in eCommerce, vol. 2, pp. 20–29, 2002.

[17] M. Belk, P. Germanakos, C. Fidas, and G. Samaras, “A personalization method based on human factors
for improving usability of user authentication tasks,” in International Conference on User Modeling,
Adaptation, and Personalization, 2014, pp. 13–24.

[18] H. R. Lipford, A. Besmer, and J. Watson, “Understanding Privacy Settings in Facebook with an Audience
View,” UPSEC, vol. 8, pp. 1–8, 2008.

[19] B. Lampson, “Privacy and security: Usable security: How to get it,” Commun. ACM, vol. 52, no. 11, p.
25, 2009.

[20] W. Li et al., “Service-oriented smart home applications: composition, code generation, deployment, and
execution,” Service oriented computing and applications, vol. 6, no. 1, pp. 65–79, 2012.

[21] G. Fraser and A. Gargantini, “An evaluation of specification based test generation techniques using
model checkers,” in Testing: Academic and Industrial Conference-Practice and Research Techniques,
2009. TAIC PART’09, 2009, pp. 72–81.

References

262

[22] P. Marwedel, “Code generation for embedded processors: An introduction,” in Code Generation for
Embedded Processors: Springer, 2002, pp. 14–31.

[23] A. van Lamsweerde, S. Brohez, R. Landtsheer, and D. Janssens, “From System Goals to Intruder Anti-
Goals: Attack Generation and Resolution for Security Requirements Engineering,” Proceedings of the
RE03 workshop on requirements for high assurance systems, pp. 49–56, 2003.

[24] A. Whitten, “Making Security Usable,” PhD thesis, School of Computer Science, Carnegie Mellon
University, 2004.

[25] M. Johnson, J. Karat, C.-M. Karat, and K. Grueneberg, “Optimizing a policy authoring framework for
security and privacy policies,” in Proceedings of the Sixth Symposium on Usable Privacy and Security,
Redmond, Washington, 2010, p. 1.

[26] L. Fang and K. LeFevre, “Privacy Wizards for Social Networking Sites,” in Proceedings of the 19th
International Conference on World Wide Web, 2010, pp. 351–360.

[27] A. Whitten and J. D. Tygar, Why Johnny can't encrypt: a usability evaluation of PGP 5.0: USENIX
Association.

[28] S. Cheng, L. Broderick, J. Hyland, and C. Koranda, “Why Johnny still can't encrypt: evaluating the
usability of email encryption software,” in Symposium On Usable Privacy and Security 2006.

[29] S. Ruoti, J. Andersen, D. Zappala, and K. Seamons, Why Johnny Still, Still Can't Encrypt: Evaluating the
Usability of a Modern PGP Client.

[30] L. F. Cranor and S. Garfinkel, Security and usability: Designing secure systems that people can use /
edited by Lorrie Faith Cranor & Simson Garfinkel. Beijing: Farnham : O'Reilly, 2005.

[31] M. E. Zurko, “User-Centered Security: Stepping Up to the Grand Challenge,” in 21st Annual Computer
Security Applications Conference: Proceedings : 5-9 December, 2005, Tucson, Arizona, Tucson, AZ, USA,
2005, pp. 187–202.

[32] C. Kuo, V. Goh, A. Tang, A. Perrig, and J. Walker, Empowering Ordinary Consumers to Securely
Configure their Mobile Devices and Wireless Networks: CyLab.

[33] R. W. Reeder, C.-M. Karat, J. Karat, and C. Brodie, “Usability Challenges in Security and Privacy Policy-
Authoring Interfaces,” in 2007, pp. 141–155.

[34] K. Vaniea, C.-M. Karat, J. B. Gross, J. Karat, and C. Brodie, Evaluating assistance of natural language
policy authoring: ACM. Available: http://dl.acm.org/ft_gateway.cfm?id=1408674&type=pdf.

[35] C. Kuo, Reduction of End User Errors in the Design of Scalable, Secure Communication: Carnegie Mellon
University, 2008.

[36] C. Morisset and D. Sanchez, “VisABAC: A Tool for Visualising ABAC Policies,” in ICISSP, 2018, pp. 117–
126.

[37] M. Narouei, H. Takabi, and R. Nielsen, “Automatic Extraction of Access Control Policies from Natural
Language Documents,” IEEE Transactions on Dependable and Secure Computing, 2018.

[38] A. Gerl and F. Prey, “LPL Personal Privacy Policy User Interface: Design and Evaluation,” Mensch und
Computer 2018-Workshopband, 2018.

[39] B. Shneiderman, “The eyes have it: A task by data type taxonomy for information visualizations,” in
Visual Languages, 1996. Proceedings., IEEE Symposium on, 1996, pp. 336–343.

[40] D. Boyd and E. Hargittai, “Facebook privacy settings: Who cares?,” First Monday, vol. 15, no. 8,
https://journals.uic.edu/ojs/index.php/fm/article/view/3086, 2010.

[41] M. Madejski, M. Johnson, and S. M. Bellovin, “A study of privacy settings errors in an online social
network,” in 2012 IEEE International Conference on Pervasive Computing and Communications
Workshops, Lugano, Switzerland, 2012, pp. 340–345.

[42] J. Dörr, Elicitation of a Complete Set of Non-Functional Requirements. Stuttgart: Fraunhofer Verlag,
2011.

[43] I. F. Alexander, “Misuse cases: use cases with hostile intent,” Software, IEEE, vol. 20, no. 1, pp. 58–66,
2003.

[44] J. Doerr, D. Kerkow, T. Koenig, T. Olsson, and T. Suzuki, “Non-functional requirements in industry-three
case studies adopting an experience-based NFR method,” in Requirements Engineering, 2005.
Proceedings. 13th IEEE International Conference on, 2005, pp. 373–382.

[45] T. Olzak, “A Practical Approach to Threat Modeling,” Mar. 2006. [Online] Available:
http://adventuresinsecurity.com/blog/wp-
content/uploads/2006/03/A_Practical_Approach_to_Threat_Modeling.pdf. Accessed on: Dec. 23 2014.

[46] C. B. Haley, J. D. Moffett, R. Laney, and B. Nuseibeh, “A framework for security requirements
engineering,” in Proceedings of the 2006 international workshop on Software engineering for secure
systems, 2006, pp. 35–42.

References

263

[47] M. Deng, K. Wuyts, R. Scandariato, B. Preneel, and W. Joosen, “A privacy threat analysis framework:
supporting the elicitation and fulfillment of privacy requirements,” Requirements Engineering, vol. 16,
no. 1, 2011.

[48] N. R. Mead and E. D. Hough, “Security Quality Requirements Engineering (SQUARE) Methodology,”
[49] K. K. Fletcher and X. Liu, “Security Requirements Analysis, Specification, Prioritization and Policy

Development in Cyber-Physical Systems,” in 5th International Conference on Secure Software Integration
and Reliability Improvement Companion (SSIRI-C), 2011, Jeju Island, 2011, pp. 106–113.

[50] T. Phan, J. Han, I. Mueller, M. Kapuruge, and S. Versteeg, “SOABSE: An approach to realizing business-
oriented security requirements with Web Service security policies,” in IEEE International Conference on
Service-Oriented Computing and Applications (SOCA), 2009: 14 - 15 Jan. [i.e. December] 2009, Taipei,
Taiwan ; proceedings, Taipei, Taiwan, 2009, pp. 1–10.

[51] H. Hibshi, T. D. Breaux, and S. B. Broomell, “Assessment of risk perception in security requirements
composition,” in Requirements Engineering Conference (RE), 2015 IEEE 23rd International, 2015, pp.
146–155.

[52] J. Karat, C.-M. Karat, C. Brodie, and J. Feng, “Privacy in information technology: Designing to enable
privacy policy management in organizations,” International Journal of Human-Computer Studies, vol. 63,
no. 1–2, pp. 153–174, http://www.sciencedirect.com/science/article/pii/S1071581905000649, 2005.

[53] D. Callele and K. Wnuk, “More than requirements: Applying requirements engineering techniques to the
challenge of setting corporate intellectual policy, an experience report,” in 2011 Fourth International
Workshop on Requirements Engineering and Law (RELAW), Trento, Italy, pp. 35–42.

[54] Z. Sainan and H. Yu, “Research and application of XACML-based fine-grained security policy for
distributed system,” in Proceedings / 2013 International Conference on Mechatronic Sciences, Electric
Engineering and Computer (MEC): 20 - 22 Dec. 2013, Shenyang, China, Shengyang, China, 2013, pp.
1848–1851.

[55] E. A. Oladimeji, S. Supakkul, and L. Chung, “Representing Security Goals, Policies, and Objects,” in 5th
IEEEACIS International Conference on Computer and Information Science: (ICIS 2006) in conjunction
with 1st IEEEACIS International Workshop on Component-Based Software Engineering, Software
Architecture and Reuse (COMSAR 2006) proceedings 10-12 July 2006, Honolulu, Hawaii, Honolulu, HI,
USA, 2006, pp. 160–167.

[56] A. Behnia, R. Abd Rashid, and J. Ahsenali Chaudhry, “A Survey of Information Security Risk Analysis
Methods,” Smart Computing Review, vol. 2, no. 1, 2012.

[57] J. Busby, L. Langer, M. Schöller, N. Shirazi, and P. Smith, “SECCRIT Deliverable 3.1 - Methodology for
Risk Assessment and Management,” 2013. [Online] Available: https://seccrit.eu/upload/D3-1-
Methodology-for-Risk-Assessment-and-Management.pdf. Accessed on: Sep. 12 2014.

[58] R. A. Caralli, J. F. Stevens, L. R. Young, and W. R. Wilson, Introducing OCTAVE Allegro: Improving the
Information Security Risk Assessment Process: TECHNICAL REPORT CMU/SEI-2007-TR-012. [Online]
Available: https://resources.sei.cmu.edu/asset_files/TechnicalReport/2007_005_001_14885.pdf. Accessed
on: Jan. 14 2019.

[59] F. den Braber et al., “The CORAS Methodology: Model-based Risk Assessment Using UML and UP: UML
and the Unified Process,” in L. Favre, Ed., Hershey, PA, USA: IGI Global, 2003, pp. 332–357.

[60] M. S. Lund, B. Solhaug, and K. Stølen, Model-driven risk analysis: the CORAS approach: Springer Science
& Business Media, 2010.

[61] D. Elliott Bell and Leonard J. LaPadula, “Secure Computer Systems: Mathematical Foundations,” MITRE
Technical Report 2547, Volume I, 1973.

[62] Kenneth J. Biba, “Integrity Considerations for Secure Computer Systems,” Bedford, Massachusetts,
MITRE Technical Report 3153, Revision 1, 1977.

[63] C. E. Landwehr, C. L. Heitmeyer, and J. McLean, “A security model for military message systems,” ACM
Transactions on Computer Systems (TOCS), vol. 2, no. 3, pp. 198–222, 1984.

[64] B. W. Lampson, “Protection,” ACM SIGOPS Operating Systems Review, vol. 8, no. 1, pp. 18–24, 1974.
[65] D. Ferraiolo, J. Cugini, and D. R. Kuhn, “Role-based access control (RBAC): Features and motivations,” in

Proceedings of 11th annual computer security application conference, 1995, pp. 241–248.
[66] J. Joshi, E. Bertino, U. Latif, and A. Ghafoor, “A generalized temporal role-based access control model,”

IEEE Trans. Knowl. Data Eng., vol. 17, no. 1, pp. 4–23, 2005.
[67] M. Leitner, S. Rinderle-Ma, and J. Mangler, “Responsibility-driven Design and Development of Process-

aware Security Policies,” in International Workshop on Secure Software Engineering (SecSE) on Sixth
International Conference on Availability, Reliability and Security (ARES), Vienna, Austria, 2011, pp. 334–
341.

[68] C. Choi, J. Choi, and P. Kim, “Ontology-based access control model for security policy reasoning in cloud
computing,” J Supercomput, vol. 67, no. 3, pp. 711–722, 2014.

References

264

[69] S. Haguouche and Z. Jarir, “Toward a generic access control model,” in Proceedings of 2015 IEEE World
Conference on Complex Systems, Marrakech, Morocco, 2015, pp. 1–6.

[70] M. Ed-Daibouni, A. Lebbat, S. Tallal, and H. Medromi, “A formal specification approach of Privacy-aware
Attribute Based Access Control (Pa-ABAC) model for cloud computing,” in 2016 Third International
Conference on Systems of Collaboration (SysCo), Casablanca, Morocco, 2016, pp. 1–5.

[71] J. Caramujo et al., “RSL-IL4Privacy: a domain-specific language for the rigorous specification of privacy
policies,” Requirements Engineering, pp. 1–26, 2018.

[72] J. Park and R. Sandhu, “The UCONABC Usage Control Model,” ACM Trans. Inf. Syst. Secur, vol. 7, no. 1,
pp. 128–174, 2004.

[73] J. Jürjens, “UMLsec: Extending UML for secure systems development,” in International Conference on
The Unified Modeling Language, 2002, pp. 412–425.

[74] D. Basin, M. Clavel, and M. Egea, “A decade of model-driven security,” in Proceedings of the 16th ACM
symposium on Access control models and technologies, 2011, pp. 1–10.

[75] R. Neisse and J. Doerr, “Model-based specification and refinement of usage control policies,” in 2013
Eleventh Annual Conference on Privacy, Security and Trust (PST), Tarragona, Spain, pp. 169–176.

[76] P. Kumari, “Model-Based Policy Derivation for Usage Control,” PhD Thesis, Fakultät für Informatik,
Technische Universität München, Munich, 2015.

[77] M. Rudolph, S. Polst, and J. Doerr, “Enabling Users to Specify Correct Privacy Requirements,” in REFSQ
2019, Essen, Germany, 2019.

[78] Manuel Rudolph, “User-friendly and Tailored Policy Administration Points,” 1st International Conference
on Information Systems Security and Privacy (ICISSP), Doctorial Symposium, 2015.

[79] M. Rudolph and D. Feth, “Usable Security Policy Specification,” Mensch und Computer 2016
Workshopband, 2016.

[80] M. Rudolph, D. Feth, J. Doerr, and J. Spilker, “Requirements Elicitation and Derivation of Security Policy
Templates—An Industrial Case Study,” in 24th International Requirements Engineering Conference (RE),
Beijing, China, 2016, pp. 283–292.

[81] M. Rudolph, D. Feth, and S. Polst, “Why Users Ignore Privacy Policies: A Survey and Intention Model for
Explaining User Privacy Behavior,” in 19th International Conference on Human-Computer Interaction
(HCII), Las Vegas, USA, 2018.

[82] M. Rudolph, C. Moucha, and D. Feth, “A Framework for Generating User-and Domain-Tailored Security
Policy Editors,” in 3rd Evolving Security & Privacy Requirements Engineering Workshop (ESPRE), Beijing,
China, 2016, pp. 56–61.

[83] M. Rudolph and S. Polst, “Satisfying and Efficient Privacy Settings,” Mensch und Computer, 2018.
[84] M. Rudolph, R. Schwarz, and C. Jung, “Security policy specification templates for critical infrastructure

services in the cloud,” in Workshop Cloud Applications and Security (CAS), London, United Kingdom,
2014, pp. 61–66.

[85] A. Osborn, Applied Imagination. New York, NY, USA: Charles Scribner's Sons, 1979.
[86] D. Zowghi and C. Coulin, “Requirements Elicitation: A Survey of Techniques, Approaches, and Tools,” in

Engineering and Managing Software Requirements, A. Aurum and C. Wohlin, Eds.: Springer Berlin
Heidelberg, 2005, pp. 19–46.

[87] R. Agarwal and M. Tanniru, “Knowledge acquisition using structured interviewing: an empirical
investigation,” Journal of Management Information Systems, vol. 7, no. 1, pp. 123–140, 1990.

[88] W. H. Foddy, Constructing questions for interviews and questionnaires: theory and practice in social
research: Cambridge University Press, 1994.

[89] J. Richardson, T. C. Ormerod, and A. Shepherd, “The role of task analysis in capturing requirements for
interface design,” Interacting with Computers, vol. 9, no. 4, pp. 367–384, 1998.

[90] K. Pohl, Requirements Engineering – Grundlagen, Prinzipien, Techniken, 2nd ed.: dpunkt.verlag, 2008.
[91] K. Pohl and C. Rupp, Requirements Engineering Fundamentals: A study guide for the certified

professional for requirements engineering exam-foundation level / IREB compliant: Rocky Nook, Inc,
2011.

[92] C. Rupp, Requirements Engineering und Management: Professionelle, iterative Anforderungsanalyse für
die Praxis, 5th ed.: Hanser Verlag, 2009.

[93] Z. Zhang, “Effective Requirements Development A Comparison of Requirements Elicitation techniques,”
Software Quality Management XV: Software Quality in the Knowledge Society, pp. 225–240, 2007.

[94] I. F. Alexander, “A Taxonomy of Stakeholders: Human Roles in System Development,” International
Journal of Technology and Human Interaction, vol. 1, no. 1, pp. 23–59, 2005.

[95] S. Adam, J. Doerr, M. Eisenbarth, and A. Gross, “Using Task-oriented Requirements Engineering in
Different Domains: Experiences with Application in Research and Industry,” in Requirements Engineering
Conference, 2009. RE ’09. 17th IEEE International, 2009, pp. 267–272.

References

265

[96] R. K. Mitchell, B. R. Agle, and D. J. Wood, “Toward a Theory of Stakeholder Identification and Salience:
Defining the Principle of Who and What Really Counts,” (English), The Academy of Management Review,
vol. 22, no. 4, p 853-886, http://www.jstor.org/stable/259247, 1997.

[97] B. G. Cameron, T. Seher, and E. F. Crawley, “Goals for space exploration based on stakeholder value
network considerations,” Acta Astronautica, vol. 68, no. 11–12, pp. 2088–2097, 2011.

[98] U.S. National Institute of Standards and Technology, NIST Special Publication 800-30, Revision 1: Guide
for Conducting Risk Assessments. [Online] Available: http://csrc.nist.gov/publications/nistpubs/800-30-
rev1/sp800-30-r1.pdf.

[99] U.S. National Institute of Standards and Technology, NIST Special Publication 800-37, Revision 1: Guide
for Applying the Risk Management Framework to Federal Information Systems. [Online] Available:
http://csrc.nist.gov/publications/nistpubs/800-37-rev1/sp800-37-rev1-final.pdf.

[100] U.S. National Institute of Standards and Technology, NIST Special Publication 800-53, Revision 4: Security
and Privacy Controls for Federal Information Systems and Organizations. Accessed on: Sep. 11 2014.

[101] Bundesamt für Sicherheit in der Informationstechnik, IT-Grundschutz-Kompendium: 1. Edition 2018.
[Online] Available:
https://www.bsi.bund.de/DE/Themen/ITGrundschutz/ITGrundschutzKompendium/itgrundschutzKompendi
um_node.html. Accessed on: Jan. 14 2019.

[102] Common Criteria for Information Technology Security Evaluation (Version 3.1, Revision 5). [Online]
Available: http://www.commoncriteriaportal.org/cc/. Accessed on: Jan. 14 2019.

[103] ISO/IEC 27001 Information security management systems - Requirements, ISO 27001, 2015.
[104] ETSI Industry Specification Group (ISG), Information Security Indicators (ISI); Indicators (INC); Group

Specification, Part 1: A full set of operational indicators for organizations to use to benchmark their
security posture. [Online] Available:
https://www.etsi.org/deliver/etsi_gs/ISI/001_099/00101/01.01.01_60/gs_isi00101v010101p.pdf.
Accessed on: Jan. 05 2019.

[105] S. Barker, “The next 700 access control models or a unifying meta-model?,” in SACMAT'09: Proceedings
of the 14th ACM Symposium on Access Control Models and Technologies, Stresa, Italy, 2009, p. 187.

[106] J. Park and R. Sandhu, “Towards usage control models: beyond traditional access control,” in
Proceedings of Seventh ACM Symposium on Access Control Models and Technologies: SACMAT 2002 :
June 3-4, 2002, Naval Postgraduate School, Monterey, California, USA / sponsored by ACM SIGSAC,
Monterey, California, USA, 2002, p. 57.

[107] X. Zhang, F. Parisi-Presicce, R. Sandhu, and J. Park, “Formal model and policy specification of usage
control,” ACM Trans. Inf. Syst. Secur., vol. 8, no. 4, pp. 351–387, 2005.

[108] D. Basin, M. Clavel, M. Egea, and M. Schläpfer, “Automatic generation of smart, security-aware GUI
models,” in International Symposium on Engineering Secure Software and Systems, 2010, pp. 201–217.

[109] J. L. de Coi and D. Olmedilla, “A Review of Trust Management, Security and Privacy Policy Languages,”
in SECRYPT, 2008, pp. 483–490.

[110] Fraunhofer IESE, IND²UCE. [Online] Available: www.ind2uce.de. Accessed on: Jul. 04 2018.
[111] Fraunhofer IESE, MYDATA Policy Language Documentation. [Online] Available: https://developer.mydata-

control.de/language/. Accessed on: Jan. 14 2019.
[112] M. Hilty, A. Pretschner, D. Basin, C. Schaefer, and T. Walter, “A Policy Language for Distributed Usage

Control,” in Lecture Notes in Computer Science, Computer Security – ESORICS 2007, J. Biskup and J.
López, Eds.: Springer Berlin Heidelberg, 2007, pp. 531–546.

[113] Information Systems Security Research Group, University of Kent, Permis. [Online] Available:
http://sec.cs.kent.ac.uk/permis/. Accessed on: Dec. 16 2018.

[114] A. Uszok et al., “KAoS policy and domain services: Toward a description-logic approach to policy
representation, deconfliction, and enforcement,” in Policies for Distributed Systems and Networks, 2003.
Proceedings. POLICY 2003. IEEE 4th International Workshop on, 2003, pp. 93–96.

[115] A. Uszok and J. Bradshaw, KAoS Tutorial. [Online] Available:
http://ontology.ihmc.us/KAoS/KAoS%20Tutorial.pdf.

[116] A. Uszok et al., “New Developments in Ontology-Based Policy Management: Increasing the Practicality
and Comprehensiveness of KAoS,” in IEEE Workshop on Policies for Distributed Systems and Networks,
2008, Policy 2008: 2 - 4 June 2008, Palisades, New York, USA ; proceedings, Palisades, NY, USA, 2008,
pp. 145–152.

[117] C. A. Brodie, C.-M. Karat, and J. Karat, “An empirical study of natural language parsing of privacy policy
rules using the SPARCLE policy workbench,” in Proceedings of the second symposium on Usable privacy
and security, Pittsburgh, Pennsylvania, 2006, p. 8.

References

266

[118] University of Hamburg, Hades Java Applet Permission Editor. [Online] Available: https://tams-
www.informatik.uni-hamburg.de/applets/hades/webdemos/java-policy-editor.html. Accessed on: Dec. 16
2018.

[119] P. Inglesant, M. A. Sasse, D. Chadwick, and L. L. Shi, “Expressions of expertness: the virtuous circle of
natural language for access control policy specification,” in Proceedings of the 4th symposium on Usable
privacy and security, 2008, pp. 77–88.

[120] F. Autrel, F. Cuppens, N. Cuppens-Boulahia, and C. Coma, “MotOrBAC 2: a security policy tool,” in 3rd
Conference on Security in Network Architectures and Information Systems (SAR-SSI 2008), Loctudy,
France, 2008, pp. 273–288.

[121] Telecom Bretagne, MotOrBAC: An OrBAC Security Policy Editor. [Online] Available:
http://motorbac.sourceforge.net/. Accessed on: Dec. 16 2018.

[122] University of Murcia, UMU-XACML-Editor. [Online] Available: http://umu-xacmleditor.sourceforge.net/.
Accessed on: Dec. 16 2018.

[123] C. Vollat, “Graphical User Interface Development for Usable Policy Administration Points (PAPs),”
Bachelor Thesis, TU Kaiserslautern, Kaiserslautern, Germany, 2012.

[124] K. Verlaenen, B. de Win, and W. Joosen, “Towards simplified specification of policies in different
domains,” in 2007 10th IFIP/IEEE International Symposium on Integrated Network Management, Munich,
Germany, pp. 20–29.

[125] R. W. Reeder et al., “Expandable grids for visualizing and authoring computer security policies,” in The
26th annual CHI conference on Human Factors in Computing Systems: CHI 2008 / editors: Margaret
Burnett … [et al.], Florence, Italy, 2008, p. 1473.

[126] R. Conti, I. Matteucci, P. Mori, and M. Petrocchi, “An expertise-driven authoring tool of privacy policies
for e-Health,” Computer-Based Medical Systems, Tech. Rep. IIT-CNR TR-02-2014, 2014.

[127] M. E. Villarreal, S. R. Villarreal, C. M. Westphall, and J. Werner, “Privacy Token: A Mechanism for User’s
Privacy Specification in Identity Management Systems for the Cloud,” ICN 2017, p. 64, 2017.

[128] Facebook Inc., Facebook. [Online] Available: https://www.facebook.com/. Accessed on: Dec. 16 2018.
[129] Google LLC, Google. [Online] Available: https://www.google.de. Accessed on: Dec. 16 2018.
[130] Twitter Inc., Twitter. [Online] Available: https://twitter.com/. Accessed on: Dec. 16 2018.
[131] statcounter GlobalStats, Desktop Browser Market Share Worldwide. [Online] Available:

http://gs.statcounter.com/browser-market-share/desktop/worldwide#monthly-201811-201811-bar.
Accessed on: Dec. 21 2018.

[132] Google LLC, Google Chrome. [Online] Available: https://www.google.de/chrome/. Accessed on: Dec. 16
2018.

[133] Mozilla Corporation, Mozilla Firefox. [Online] Available: https://www.mozilla.org/en-
US/firefox/new/?utm_medium=referral&utm_source=firefox-com. Accessed on: Dec. 16 2018.

[134] Microsoft Corporation, Microsoft Edge. [Online] Available: https://www.microsoft.com/de-
de/windows/microsoft-edge. Accessed on: Dec. 16 2018.

[135] Microsoft Corporation, Internet Explorer. [Online] Available: https://support.microsoft.com/de-
de/hub/4230784/internet-explorer-help. Accessed on: Dec. 16 2018.

[136] Microsoft Corporation, Windows 10. [Online] Available: https://www.microsoft.com/de-de/windows.
Accessed on: Dec. 16 2018.

[137] IBM Corporation, IBM P3P Policy Editor. [Online] Available: https://www.w3.org/P3P/imp/IBM/. Accessed
on: Dec. 16 2018.

[138] IBM Corporation, Policy Design Tool. [Online] Available:
https://www.ibm.com/developerworks/community/groups/service/html/communityview?communityUuid=
e84c047d-957c-47d9-a128-699506cdc96e. Accessed on: Dec. 16 2018.

[139] WSO2, WSO2 Identity Server- Policy Editor. [Online] Available:
https://docs.wso2.com/display/IS410/Editing+an+XACML+Policy. Accessed on: Dec. 16 2018.

[140] I. Ajzen, “The theory of planned behavior,” Organizational behavior and human decision processes, vol.
50, no. 2, pp. 179–211, 1991.

[141] B. J. Fogg, “A behavior model for persuasive design,” in Proceedings of the 4th international Conference
on Persuasive Technology, 2009, p. 40.

[142] A. H. Maslow, “A theory of human motivation,” Psychological review, vol. 50, no. 4, p. 370, 1943.
[143] S. Kokolakis, “Privacy attitudes and privacy behaviour: A review of current research on the privacy

paradox phenomenon,” Computers & Security, vol. 64, pp. 122–134, 2017.
[144] J. M. Digman, “Personality Structure: Emergence of the Five-Factor Model,” Annual Review of

Psychology, vol. 41, no. 1, pp. 417–440, 1990.
[145] D. Keirsey, Please understand me 2: Prometheus Nemesis Book Company, 1998.

References

267

[146] I. B. Myers, M. H. McCaulley, and R. Most, Manual: A guide to the development and use of the Myers-
Briggs Type Indicator: Consulting Psychologists Press Palo Alto, CA, 1985.

[147] P. Kumaraguru and L. Cranor, Privacy indexes: a survey of Westin's studies. [Online] Available:
http://repository.cmu.edu/isr/856.

[148] J. M. Urban and C. J. Hoofnagle, “The Privacy Pragmatic as Privacy Vulnerable,” in Workshop on Privacy
Personas and Segmentation, Menlo Park, CA, 2014.

[149] H. J. Smith, S. J. Milberg, and S. J. Burke, “Information privacy: measuring individuals’ concerns about
organizational practices,” MIS Quarterly, pp. 167–196, 1996.

[150] N. K. Malhotra, S. S. Kim, and J. Agarwal, “Internet users’ information privacy concerns (IUIPC): The
construct, the scale, and a causal model,” Information systems research, vol. 15, no. 4, pp. 336–355,
2004.

[151] A. Morton and M. A. Sasse, “Desperately seeking assurances: Segmenting users by their information-
seeking preferences,” in Privacy, Security and Trust (PST), 2014 Twelfth Annual International Conference
on, 2014, pp. 102–111.

[152] D. Mellado, C. Blanco, L. E. Sánchez, and E. Fernández-Medina, “A systematic review of security
requirements engineering,” Computer Standards & Interfaces, vol. 32, no. 4, pp. 153–165, 2010.

[153] B. Karabacak and I. Sogukpinar, “ISRAM: Information Security Risk Analysis Method,” Computers &
Security, vol. 24, no. 2, pp. 147–159, 2005.

[154] M. Rudolph and R. Schwarz, “A Critical Survey of Security Indicator Approaches,” in Availability,
Reliability and Security (ARES), 2012 Seventh International Conference on, 2012, pp. 291–300.

[155] ISO/IEC 27000 Information security management systems - Overview and vocabulary, ISO 27000, 2018.
[156] G. Danezis, J. Domingo-Ferrer, M. Hansen, J.-H. Hoepman, and D. Le Métayer, “Privacy and Data

Protection by Design – from policy to engineering,” ENISA, 2014. [Online] Available:
https://www.enisa.europa.eu/publications/privacy-and-data-protection-by-design/at_download/fullReport.
Accessed on: Jun. 20 2018.

[157] P. Kumari and A. Pretschner, “Deriving implementation-level policies for usage control enforcement,” in
Proceedings of the second ACM conference on Data and Application Security and Privacy, 2012, pp. 83–
94.

[158] R. Neisse, A. Pretschner, and V. Di Giacomo, “A Trustworthy Usage Control Enforcement Framework,” in
International Workshop on Secure Software Engineering (SecSE) on Sixth International Conference on
Availability, Reliability and Security (ARES), Vienna, Austria, 2011, pp. 230–235.

[159] P. Kumari and A. Pretschner, “Model-Based Usage Control Policy Derivation,” in Lecture Notes in
Computer Science, Engineering Secure Software and Systems, J. Jürjens, B. Livshits, and R. Scandariato,
Eds.: Springer Berlin Heidelberg, 2013, pp. 58–74.

[160] T. Reenskaug and J. O. Coplien, The DCI Architecture: A New Vision of Object-Oriented Programming.
[Online] Available:
https://klevas.mif.vu.lt/~donatas/Vadovavimas/Temos/DCI/2009%20The%20DCI%20Architecture%20-
%20A%20New%20Vision%20of%20OOP.pdf.

[161] JAXB project. [Online] Available: https://github.com/javaee/jaxb-v2.
[162] EclipseLink MOXy. [Online] Available: https://wiki.eclipse.org/EclipseLink/Examples/MOXy.
[163] Google Guice. [Online] Available: https://github.com/google/guice. Accessed on: Dec. 13 2018.
[164] Official Journal of the European Union, REGULATION (EU) 2016/679 OF THE EUROPEAN PARLIAMENT

AND OF THE COUNCIL of 27 April 2016 on the protection of natural persons with regard to the
processing of personal data and on the free movement of such data, and repealing Directive 95/46/EC
(General Data Protection Regulation). [Online] Available: http://eur-lex.europa.eu/legal-
content/EN/TXT/HTML/?uri=CELEX:32016R0679.

[165] M. Hassenzahl, M. Burmester, and F. Koller, “AttrakDiff: Ein Fragebogen zur Messung wahrgenommener
hedonischer und pragmatischer Qualität,” in Mensch & Computer 2003: Springer, 2003, pp. 187–196.

[166] Pivotal Software, Inc., Spring Framework. [Online] Available: https://spring.io/. Accessed on: Dec. 22
2018.

[167] Bootstrap Core Team, Bootstrap. [Online] Available: https://getbootstrap.com/. Accessed on: Dec. 22
2018.

[168] D. Fernández, Thymeleaf. [Online] Available: http://www.thymeleaf.org/. Accessed on: Dec. 22 2018.
[169] IBM Corporation, IBM SPSS Statistics 19. [Online] Available: https://www.ibm.com/analytics/spss-statistics-

software. Accessed on: Dec. 22 2018.
[170] Microsoft Corporation, Microsoft Excel 2016. [Online] Available: https://www.office.com/. Accessed on:

Dec. 22 2018.

269

Appendix A Security Policy Template Elicitation

A.1 Elicitation Techniques

In the following section, several elicitation techniques are described in
detail that could be applied within the policy template elicitation method.
The main goal of all elicitation techniques is in supporting ascertaining
knowledge and requirements of the stakeholders involved in a particular
project. How and when a certain technique can be applied depends on
individual constraints and characteristics of a given project. The most
important influencing factors when choosing an elicitation technique are
as follows:

 Distinction between conscious, unconscious and subconscious
requirements that are to be elicited

 Time, budget constraints and availability of stakeholders

 Experience of requirements engineer

 Chances and risks of the project

Thus, the first important step when choosing a suitable elicitation
technique is to identify risk factors of a project. Mostly, these result from:

Human influences: during elicitation, good communication is essential.
To assure high-quality communication between the requirements
engineer and stakeholders, it is important to investigate the following
influencing factors:

 the type of requirement and the desired level of detail

 the experience of the requirements engineer and the interviewees with
different elicitation techniques

 social, group-dynamic, and cognitive capabilities of the stakeholders

 whether the elicited knowledge is explicit (consciously known) by each
individual stakeholder or it is implicit or unconscious

Organizational influences: these risk factors comprise, among others,
factors like:

 distinction between fixed price contracts and service contracts

Appendix A – Security Policy Template Elicitation

270

 whether system to be built is a new development or an extension of a
legacy system

 spatial and temporal availability of the stakeholders

Operational influences: it is necessary to consider the content of the
requirements, i.e., if the system is very complex, it is advisable to employ
a structuring approach during elicitation

Desired level of detail: abstract requirements can be elicited rather well
using creativity techniques, survey techniques or observational techniques
can aid in eliciting requirements of a medium level of detail. Finely detailed
requirements can be elicited well by making use of document-centric
techniques.

It is advisable to combine different techniques because this minimizes
many project risks. Weaknesses and pitfalls of a particular technique can
be balanced out with another technique whose strong points lie where
the first technique may have deficits. In the following, several techniques
are described in more detail.

Survey Techniques

Survey techniques aim at eliciting as precise and unbiased statements as
possible from stakeholders regarding their requirements. These
techniques are usually driven by the requirements engineer because
he/she asks questions. This, however, might results in the fact that
stakeholder concerns are forgotten, superseded, or disregarded.

During an interview [91, 92], the requirements engineer asks
predetermined questions to one of more stakeholders and documents the
answers. Questions that arise during the conversation can be discussed
immediately. Moreover, the requirements engineer may uncover
subconscious requirements through clever questions. An experienced
interviewer individually controls the course of the conversation,
completely commits himself/herself to each stakeholder, inquires about
specific aspects, and thus ensures the completeness of the answers.

Interview questions have to be formulated neutrally without suggesting
any answers. Interviews can be structured with the help of a
questionnaire. Prior to the interview, the stakeholders should be informed
about the topic / scope and duration of the interview. It should also be
clarified (the very latest at the beginning of the interview) whether
interview results should be taken confidential. The answers given by the
stakeholder should be documented and sent to the interviewee within 48
hours after the interview for the purpose of validation (e.g. to assure
correctness).

Appendix A – Security Policy Template Elicitation

271

Advantages of interviews: the requirements engineer can individually
adapt the conversation and respond to the stakeholder. That is, the
requirements engineer can directly react and ask further questions in
case of incomplete answers or if further questions arise.

Disadvantages of interviews: interviews are time consuming and the
selection of suitable stakeholder representatives is critical to the success
of the elicitation. Effectiveness of conducting an interview strongly
depends on the experience of the requirements engineer. The
formulation of the interview questions can have a tremendous effect on
the answers given by the stakeholder as also facial expressions or
intonation of the interviewer can influence the stakeholder.

Questionnaires [91, 92] make use of open and/or closed questions (e.g.,
multiple-choice questions). If there are a large number of participants that
must be surveyed, an online questionnaire is a valuable option.
Questionnaires can elicit a magnitude of information in a short amount of
time and at low costs. As long as answers are predetermined, even
stakeholders that are not able to express their knowledge explicitly can
deliver an assessment. A disadvantage of questionnaires is that can be
only employed to gather requirements the requirements engineer already
knows or conjectures. Creating a proper questionnaire is often tricky and
time-consuming and requires thorough knowledge of the domain in
question and the psychological guidelines for creating questionnaires. In
addition, questionnaires do not provide immediate feedback between the
surveyor and the surveyed so it becomes apparent that questions were
forgotten or badly formulated only once the questionnaires have been
evaluated.

Advantages of questionnaires: this technique allows elicitation of
requirements from a large number and locally distributed stakeholders
with low budget and time effort as questionnaires can be distributed
electronically and afterwards (tool-based) analyzed.

Disadvantages of questionnaires: questionnaires are not useful to elicit
implicit knowledge. Some types of requirements such as non-functional
requirements) are difficult to elicit with a questionnaire, as they are
hardly quantifiable. As all questions are fixed in written form, it is tedious
to ask further questions that arise during analysis. Furthermore, the
formulation of the questions can influence the answers given by the
stakeholders.

Appendix A – Security Policy Template Elicitation

272

Creativity Techniques

Creativity techniques serve the purpose of developing innovative
requirements, delineating an initial vision of the system, and eliciting
excitement factors.

During brainstorming [91, 92], ideas are collected within a certain
period, usually in groups of 5 to 10 people. The ideas are documented by
a moderator without discussing, judging, or commenting on them at first.
Participants use ideas of other participants to develop new or original
ideas or to modify existing ideas. After that, collected ideas are subjected
to a thorough analysis. This technique is especially effective when a large
number of people of different stakeholder groups are involved. Among
the advantages of this techniques is that a large number of ideas can be
collected in a short amount of time and multiple people can expand on
these ideas collaboratively. Brainstorming is usually less effective when the
dynamics of the group are muddled or when participants with very varied
levels of dominance are involved. For such situations, other creativity
techniques may be better suited, such as the 6-3-5 method.

Advantages of brainstorming: Many ideas can be collected within short
amount of time. New / innovative solutions can be developed that no
one has thought of before.

Disadvantages of brainstorming: not effective in case of difficult group
dynamics or of participants have different levels of dominance. If
participants are locally distributed, it takes effort to organize a
brainstorming session.

The 6-3-5 method [91, 92] is a written variant of the brainstorming
method where six participants individually develop three ideas and write
these ideas down on cards. After 3-5 minutes, the cards are handed off
to the next participant. This participant reads the written ideas and -
inspired by those ideas - the participant adds three new ideas and hands
off the card to the next participant etc. This handoff is repeated until every
participant has received each card once (altogether fivefold handoff).

Advantages of 6-3-5 method: can be used if group dynamic is difficult as
written form avoids possible conflicts during discussion. Could also be
used in case those stakeholders are locally distributed (via email).

Disadvantages of 6-3-5 method: compared to brainstorming, the written
form of generating ideas might not be that effective, as the
collaboration between the participants is less active. The process might
also negatively influence the creativity due to the limited time of
generating and writing ideas.

Appendix A – Security Policy Template Elicitation

273

Brainstorming paradox [91, 92] is a modification of regular
brainstorming in that events that must not occur are collected.
Afterwards, the group develops measures to prevent the events collected
earlier from happening. Through this process, participants often realize
which actions may entail negative results. With this method, risks can be
identified early on and countermeasures can be developed. Advantages
and disadvantages of this technique are identical to those of classic
brainstorming.

Advantages of brainstorming paradox: participants analyze problem
from opposing viewpoint and consciously reflect on issues that might
lead to negative results. This method is very effective to identify risks and
– similar to Brainstorming – supports the identification of a large number
of ideas within a short timeframe.

Disadvantages of brainstorming paradox are the same as those of
Brainstorming (see above).

Document-centric Techniques

Document-centric Techniques reuse solutions and experiences made with
existing systems. When a legacy system is replaced, this technique ensures
that the entire functionality of the legacy system can be identified.
Document-centric techniques should be combined with other elicitation
techniques so that the validity of the elicited requirements can be
determined and new requirements for the new system can be identified.

System archaeology [91] is a technique that extracts information
required to build a new system from the documentation or
implementation (code) of a legacy system or a competitor’s system. This
technique is often applied when explicit knowledge about the system logic
has been lost partially of entirely. This method leads to a large amount of
very detailed requirements and is very laborious.

Perspective-based reading [91] is applied when documents need to be
read with a particular perspective in mind, e.g. the perspective of the
implementer or tester. Aspects that are contained in the document but
do not pertain to the current perspective are ignored.

Support Techniques

Support techniques serve as an addition to the elicitation techniques and
try to balance out the weaknesses and pitfalls of the chosen technique.

In mind mapping [91], a graphical representation of the refined
relationships and interdependencies between terms is created. Is often

Appendix A – Security Policy Template Elicitation

274

used as a supporting technique for brainstorming or brainstorming
paradox.

Complex processes that involve a large number of stakeholders require
cooperative elicitation of requirements. During a joint meeting
(workshop / focus group [91, 92]), stakeholders with required
knowledge and expertise meet to elaborate and discuss goals or details of
a certain functionality of the system collaboratively. For example,
previously elicited requirements in individual interview sessions can be
consolidated, discussed, validated, prioritized, etc., or open issues can be
clarified. Each workshop should follow a predefined agenda and rules that
should be observed and followed by the moderator.

Advantages of workshops / focus groups: direct communication
promotes common understanding and willingness to compromise to
finally achieve validated results within the team.

Disadvantages of workshops / focus groups: negative group dynamics
can negatively influence the effectiveness of this technique. In case of
limited availability and locally distributed stakeholders, the organization
of workshops / focus groups is very difficult and almost impossible to
realize.

With the CRC (Class-Responsibility Collaboration) [91] technique,
context aspects and their respective attributes and properties are denoted
on index cards. Requirements are then formulated using these cards.

Further details and references regarding elicitation techniques can be
found in [90–92]. The following Table 37 summarizes the suitability of the
introduced elicitation techniques based on different influencing factors.

Appendix A – Security Policy Template Elicitation

275

Table 37: Selection of Elicitation Techniques

Legend
»-« : not recommended
»0«: no influence (technique can be
used)
»+«: recommended
»++« strongly recommended

Su
rv

ey
 T

ec
hn

iq
ue

s

In
te

rv
ie

w

Q
ue

st
io

nn
ai

re
s

C
re

at
iv

ity
 T

ec
hn

iq
ue

s

Br
ai

ns
to

rm
in

g

Br
ai

ns
to

rm
in

g
pa

ra
do

x

6-
3-

5
M

et
ho

d

D
oc

um
en

t-
ce

nt
ric

 T
ec

hn
iq

ue
s

Sy
st

em
 a

rc
ha

eo
lo

gy

Pe
rs

pe
ct

iv
e-

ba
se

d
re

ad
in

g

Su
pp

or
tin

g
Te

ch
ni

qu
es

W
or

ks
ho

p
/ F

oc
us

 G
ro

up

Human Influences

Stakeholders have varied levels of
dominance

 0 0 - - + 0 0 -

Stakeholders are not capable of
explicitly expressing their knowledge

 - + - - - ++ ++ -

Stakeholders are not committed to
invest time and effort for elicitation

 + 0 - - - + - -

Stakeholders have less
communicative skills

 - 0 - - - + + -

Difficult group dynamics 0 0 - - + 0 0 -

Low skills of requirements engineer
in technique

 - + - - + ++ ++ -

Organizational Influences

Elicitation involves a large number
of stakeholders

 0 ++ + + - 0 0 +

Stakeholders are only spatially or
temporally available

 ++ + + + 0 ++ - +

Stakeholders are distributed over
several locations

 + + - - 0 + 0 -

Fixed and low budget available + - ++ ++ ++ - + ++

Domain / Content related Influences

Elicitation of fine-grained
requirements

 + - - - - + + 0

Elicitation of high-level requirements ++ + ++ ++ ++ - - 0

Complex system + - 0 0 0 + + 0

No domain expertise of
requirements engineer

 - - 0 0 0 + + -

A.2 Documentation Techniques

In the following section, documentation techniques are described that
could be applied within the policy template elicitation method.

Appendix A – Security Policy Template Elicitation

276

Documentation of goals [90, 91]: Goals are very well suited to refine
the vision of the system. Refining a goal is known as goal decomposition.
Goals can be documented using natural language, e.g., by using goal
description templates [90] (see Table 38) or using goal models. A widely
known and very common goal modeling technique is the use of AND/OR
trees [91] that can be used to document hierarchical decompositions (see
Figure 72 and Figure 73).

Table 38: Goal Description Template

Goal Description Template

Goal ID Unique identifier for the goal

Name of goal Unique name of the goal

Description of goal Detailed description of the goal

Rationale for goal Description of the goal’s rationale

Super-Goal(s) Name and ID of related super-goals

Sub-Goal(s) Name and ID of related sub-goals

Supported stakeholders Stakeholders can benefit from the fulfillment of the goal

Further relations Further relations to other artifacts / requirements (e.g., conflicts, relations to
use cases that address this goal, etc.)

Priority Priority of the goal

Criticality Criticality of the fulfillment of goal (e.g. for project success)

Source Stakeholder, Document or system where the goal has been identified

Author Name(s) of authors that have documented the goal

Version Current version of goal description

Change History Change history of goal description

According to [90]: A precise and understandable formulation of goals
improves the benefit of using goals in requirements engineering. The
following goal description rules can support the goal formulation:

 Rule 1: Formulate goals on a short and precise manner

 Rule 2: Formulate goals using active voice (avoid passive voice)

 Rule 3: Formulate goals so that they are verifiable

 Rule 4: In case that a goal can’t be formulated in a verifiable manner,
the goal should be refined into verifiable goals

 Rule 5: The benefit of the goal should be precisely included in the goal
description

 Rule 6: The rationale of a goal should be included in the goal
description

 Rule 7: Avoid to include solution ideas in the goal description

Appendix A – Security Policy Template Elicitation

277

Using AND/OR trees, two types of decomposition relationships can be
distinguished: OR decomposition and AND decomposition. In case of AND
decomposition, every sub-goal must be fulfilled so that the super-goal (the
root) is fulfilled. In contrast, in OR decompositions, it suffices of at least
one sub-goal is fulfilled so that the super-goal is met. Figure 72 and
Figure 73 illustrate how these two types of decomposition can be
visualized:

 Super-Goal

Sub-Goal

Sub-Goal

Sub-Goal

Sub-Goal

Figure 72: Goal Tree - OR Decomposition

Super-Goal

Sub-Goal

Sub-Goal

Sub-Goal …

Sub-Goal

Figure 73: Goal Tree - AND Decomposition

The documentation of stakeholders: According to [90], the simplest
form to document information about relevant stakeholder is the usage of
a structured stakeholder description template as illustrated in
Table 39.

Table 39: Stakeholder Description Template

Stakeholder Description Template

Stakeholder ID Unique identifier for the stakeholder

Role Description of role / function that the stakeholder has within the project

Name Name of contact person that is representative of this stakeholder group

Contact Further contact data (email, phone, address, etc.)

Availability Information about availability of stakeholder (e.g., daily via email / phone
from 9-15 o’clock, 30% involvement in project, etc.)

Knowledge /
experience

Description of knowledge / experience that the stakeholder can bring into
the project

Interests and goals Description of interests / goals that are important for the stakeholder within
the project

Priority Priority of stakeholder (e.g., decision maker, delivers information about
certain topic, etc.)

Further details and references regarding documentation techniques can
be found in [90–92].

Appendix A – Security Policy Template Elicitation

278

A.3 Validation Techniques

In the following section, several validation techniques are described in
detail that could be applied within the policy template elicitation method.

During commenting [91], the author hand his or her requirements over
to another person (co-worker, stakeholder). The goal is to receive the
other person’s opinion with regard to the quality of a requirement. The
other person reviews the requirement with the goal to identify issues that
impair requirements quality (e.g., ambiguity or errors) with respect to
predetermined quality criteria. The identified flaws are marked in the
requirements document and briefly explained.

Inspections [91] are done to systematically check artifacts for errors by
applying a strict process. An inspection is typically separated into various
phases:

 Planning: among other things, the goal of the inspection, the work
results that are to be inspected, and the roles and participants are
determined during this phase

 Overview: the author explains the requirements to be inspected to all
team members so that there is a common understanding about the
requirements among all inspectors

 Error detection: the inspectors search through the requirements for
errors. Error detection can be performed individually by each inspector
or collaboratively in the team. During the course of error detection, any
errors that are found are purposively documented.

 Error collection and consolidation: all identified errors are collected,
consolidated, and documented. During consolidation, errors that have
been identified multiple times or errors that are not really errors are
identified. Along with consolidation, the identified errors and
correcting measures are documented in an error list.

For an inspection to be performed, the following roles must be staffed:

 Organizer that plans and supervises the inspection process.

 Moderator that leads the session. It is advisable to select a neutral
moderator because the moderator could potentially balance out
opposing opinions of authors and inspectors.

 Author that explains the requirements to the inspectors in the
overview phase and later on corrects the identified errors.

Appendix A – Security Policy Template Elicitation

279

 Reader that introduces the requirements to be inspected successively
and guides the inspectors through them. The role of the reader should
be assigned to a neutral stakeholder (often it is the moderator).

 Inspectors that are responsible for finding errors and communicating
their findings.

 Minutes-taker that takes minutes of the results of the inspection.

Perspective-based reading [91] is a technique for requirements
validation in which requirements are checked by adopting different
perspectives. Typically, perspective-based reading is applied in conjunction
with other review techniques (e.g., inspections).

Focusing on particular perspectives when reading a document verifiably
leads to improved results during requirements validation. Typical
perspectives for validation include:

 User / customer perspective

 Software architect perspective

 Tester perspective

Furthermore, three quality aspects also describe three possible
perspectives for requirements validation:

 Content perspective: the auditor verifies the content of requirements
and focuses on the quality of the content of the documented
requirements

 Documentation perspective: the auditor ensures that all
documentation guidelines for requirements and requirements
documents have been met

 Agreement perspective: the auditor checks of all stakeholders agree
on a requirement, i.e., if the requirements are agreed upon and
conflicts have been resolved.

In addition, further perspective that emerge from the individual context of
the development project can be created as need be.

During perspective-based validation, each auditor is assigned a perspective
from which he/she reads and validates the requirement. For each
perspective defined, detailed instructions for performing the validation
should be laid down because the auditor might not be familiar with all
relevant details of his/her assigned perspective. It is advisable to associate
questions with each validation instruction that must be answered by the
content of the requirements or by the auditor after he/she has read the
requirement, respectively. In addition, validation instructions can be

Appendix A – Security Policy Template Elicitation

280

amended with a checklist that summarizes the most important context
aspects that ought to be addressed by a requirement with regard to the
appropriate perspective.

During the course of a follow-up to a perspective-based reading session,
the results of the chosen perspective are analyzed and consolidated.

Further details and references regarding validation techniques can be
found in [90–92].

A.4 Prioritization Techniques

In the following section, several validation techniques are described in
detail that could be applied within the policy template elicitation method.

For prioritization, multiple techniques exist that mainly differ with regard
to the time and effort needed but also with regard to the suitability of the
different prioritization criteria and project properties. Two well-established
techniques for requirements prioritization are:

 Ranking [91] in which a number of selected stakeholders arrange the
requirements to be prioritized with respect to a specific criterion and

 Top-ten technique [91] in which the n most important requirements
for a defined criterion are selected. For these requirements, a ranking
order is determined afterward. This ranking order represents the
importance of the selected requirements with regard to the defined
criterion.

Another prioritization technique that is often used in practice is the
single-criterion classification [91]. This technique is based on the
classification of requirements with respect to the importance pf the
realization of the requirements for the system’s success by assigning each
requirement to one of the following priority classes:

 A mandatory requirement is a requirement that must be
implemented at all costs or else the success of the system is threatened.

 An optional requirement is a requirement that does not necessarily
need to be implemented. Neglecting a few requirements of this class
does not threaten the success of the system

 Nice-to-have requirements are requirements that do not influence the
system’s success of they are not implemented.

In practice, differentiating between »optional« and »nice-to-have«
requirements can be very difficult. Therefore, requirements classification
demands classification criteria that are as objectively verifiable as possible.

Appendix A – Security Policy Template Elicitation

281

Further details and references regarding prioritization techniques can be
found in [90–92].

A.5 Generic Attacker Roles, Threats and Countermeasures

This section lists generic exemplary attacker roles, threats and
countermeasures.

Attacker roles:

 Script kiddie: hacker that conducts hacking to proof own skills

 Internal attacker: attacker from inside the organization

 Accidental attacker: Internal attacker that causes harm by accident due
to misoperation

 Thieve: Person stealing information for the goal to sell them

 Rival: Competitor or organization with similar business

 Activist: Person that wants to enforce any social, political, economic,
or environmental reform

 Avenger: Person hating the organization for any reason and
conducting revenge

 Terrorist: Person intentionally indiscriminating violence as a means to
create terror among masses of people

 Vandal: Person destroying stuff for fun

 Jealous partner: Person that wants to retrieve personal information of
the partner due to jealousy

Threats:

 Unauthorized access to data

o Theft of specific data (e.g., documents containing sensitive
information)

o Mass retrieval of data (high number of accesses to data
category)

o Denial of service (frequency of access to date/data memory)

 Unauthorized modification of data

o data corruption

o obfuscation of facts

 Unauthorized deletion of data

Appendix A – Security Policy Template Elicitation

282

o data destruction

o repudiation

 Unauthorized copying of data

o Reproduction of data

 Unauthorized data flow

o Entering/leaving the corporate network/security level in the
corporate network/certain computer

o Copying to external removable media device

o Copy to an externally exposed location

o Upload in the cloud/to social media network

Countermeasures:

 Data accesses

o Prohibit data access

 Prevent reading of the data

 Prevent writing or modifying of the data

 Prohibition of data access for time period

o Regulate data accesses

 <n> accesses to same data

 <n> accesses the same data category

 <n> accesses in time span to same data

 <n> accesses in time span to data category

 <n> accesses to any data in time period

o Delay data flow/access by time period

o Allow/deny context-based access

 Access only from home/working place/...

 Access only from certain computer

 Access only at certain times or dates

o Set access conditions

 4-eyes principle

 Approval of a specific role/data owner before access

 1-factor authentication (knowledge)

Appendix A – Security Policy Template Elicitation

283

 2-factor authentication (knowledge and ownership)

o Modify the data

 Anonymization of data

 Pseudonymization of data

 Aggregation of data

 Delete data after access

 Create a copy before modification (version management)

 Classical data protection

o Encryption of the data

o Digital signing of the data

o Building checksums of the data

o Performing regular data backups

o Enforcing high availability of data

 Additional actions (Information regarding data access)

o Information by e-mail

o Information by text

o Logging of accesses (accessing entity, time, duration, data,
context)

o Data flow tracking

Enforce countermeasures only in specific contexts:

 In time period (time/date/after other action)

 Triggered by previous action

 Consider current location of the data (corporate network, security level
in the corporate network, at the customer, on the Internet)

 Consider current flow of data (entering/leaving the app/ DD platform)

 Consider current location of the user (at home, at work, on business
trip, ...)

285

Appendix B PAP Generation Framework

B.1 XML Schema for Policy Vocabularies

<?xml version="1.0" encoding="utf-8"?>
<schema xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:tns="http://www.iese.fraunhofer.de/ind2uce/3.0.53/policyVocabulary"
targetNamespace=http://www.iese.fraunhofer.de/ind2uce/3.0.53/policyVocabulary
xmlns:ind2uce="http://www.iese.fraunhofer.de/ind2uce/3.2.46/ind2uceLanguage"
xmlns:llxsdInd2uce="http://www.iese.fraunhofer.de/ind2uce/3.0.53/llInd2uce"
elementFormDefault="qualified">

 <import namespace="http://www.iese.fraunhofer.de/ind2uce/3.0.53/llInd2uce"
schemaLocation="llxsd.ind2uce/llxsd_ind2uce_llbt.xsd" />
 <import namespace="http://www.iese.fraunhofer.de/ind2uce/3.2.46/ind2uceLanguage"
schemaLocation="llxsd.ind2uce/ind2uceLanguage.xsd" />

 <complexType name="IND2UCEPolicyType">
 <sequence>
 <element name="policy" type="ind2uce:PolicyType" minOccurs="1" maxOccurs="1" />
 </sequence>
 </complexType>

 <complexType name="IlptBlockType">
 <group ref="llxsdInd2uce:IlptBlockInd2uce" />
 <attribute name="id" type="ID" use="required" />
 <attribute name="use" type="string" use="required" />
 </complexType>

 <complexType name="IlptGroupType">
 <sequence>
 <element name="ilptBlock" type="tns:IlptBlockType" minOccurs="0" maxOccurs="unbounded" />
 </sequence>
 <attribute name="id" type="ID" use="required" />
 </complexType>

 <complexType name="IlptPartsType">
 <sequence>
 <element name="ilptGroup" type="tns:IlptGroupType" minOccurs="0" maxOccurs="unbounded" />
 </sequence>
 </complexType>

 <complexType name="IlptType">
 <choice>
 <element name="ind2ucePolicy" type="tns:IND2UCEPolicyType" />
 </choice>
 </complexType>

 <complexType name="SpecificationLevelPolicyDescriptionType">
 <attribute name="value" type="string" />
 </complexType>

 <complexType name="ElementGroupType">

Appendix B – PAP Generation Framework

286

 <sequence>
 <group ref="tns:SlptElements" minOccurs="1" maxOccurs="unbounded" />
 </sequence>
 <attribute name="id" type="ID" use="required" />
 <attribute name="description" type="string" use="optional" />
 <attribute name="longDescription" type="string" use="optional" />
 <attribute name="value" type="string" use="optional" />
 <attribute name="selected" type="boolean" use="optional" default="false" />
 <attribute name="cloneParent" type="string" use="optional" />
 <attribute name="page" type="string" use="optional" />
 </complexType>

 <complexType name="VariableChoiceType">
 <attribute name="id" type="ID" use="required" />
 <attribute name="description" type="string" use="required" />
 <attribute name="value" type="string" use="required" />
 </complexType>

 <simpleType name="ConjuctionTypes">
 <restriction base="string">
 <enumeration value="and" />
 <enumeration value="or" />
 </restriction>
 </simpleType>

 <simpleType name="VariableTypesType">
 <restriction base="string">
 <enumeration value="string" />
 <enumeration value="integer" />
 </restriction>
 </simpleType>

 <complexType name="SelectionType">
 <sequence>
 <element name="elementGroup" type="tns:ElementGroupType" minOccurs="1"
maxOccurs="unbounded" />
 </sequence>
 <attribute name="id" type="ID" use="required" />
 <attribute name="conjunction" type="tns:ConjuctionTypes" use="optional" default="and" />
 <attribute name="minSelectedElements" type="long" use="required" />
 <attribute name="maxSelectedElements" type="long" use="required" />
 </complexType>

 <complexType name="SelectableTextType">
 <sequence>
 <element name="variableChoice" type="tns:VariableChoiceType" minOccurs="1"
maxOccurs="unbounded" />
 </sequence>
 <attribute name="id" type="ID" use="required" />
 <attribute name="description" type="string" use="optional" />
 <attribute name="longDescription" type="string" use="optional" />
 <attribute name="value" type="string" use="optional" />
 <attribute name="type" type="tns:VariableTypesType" use="required" />
 </complexType>

 <complexType name="VariableType">
 <attribute name="id" type="ID" use="required" />
 <attribute name="description" type="string" use="optional" />
 <attribute name="longDescription" type="string" use="optional" />

Appendix B – PAP Generation Framework

287

 <attribute name="value" type="string" use="optional" />
 <attribute name="type" type="tns:VariableTypesType" use="required" />
 <attribute name="numberMinValue" type="long" use="optional" />
 <attribute name="numberMaxValue" type="long" use="optional" />
 </complexType>

 <complexType name="TextType">
 <attribute name="id" type="ID" use="optional" />
 <attribute name="description" type="string" use="optional" />
 <attribute name="longDescription" type="string" use="optional" />
 <attribute name="value" type="string" use="required" />
 </complexType>

 <group name="SlptElements">
 <choice>
 <element name="text" type="tns:TextType" />
 <element name="variable" type="tns:VariableType" />
 <element name="selectableText" type="tns:SelectableTextType" />
 <element name="selection" type="tns:SelectionType" />
 <element name="elementGroup" type="tns:ElementGroupType" />
 </choice>
 </group>

 <complexType name="SlptType">
 <group ref="tns:SlptElements" minOccurs="1" maxOccurs="unbounded" />
 </complexType>

 <complexType name="SlptReferenceType">
 <attribute name="ref" type="string" />
 </complexType>

 <complexType name="DefaultValueType">
 <attribute name="value" type="string" />
 <attribute name="ref" type="string" />
 </complexType>

 <complexType name="DefaultPolicyType">
 <sequence>
 <element name="defaultValue" type="tns:DefaultValueType" minOccurs="0" maxOccurs="unbounded"
/>
 </sequence>
 <attribute name="id" type="ID" use="required" />
 <attribute name="description" type="string" use="required" />
 </complexType>

 <complexType name="DefaultPolicyListType">
 <sequence>
 <element name="DefaultPolicy" type="tns:DefaultPolicyType" maxOccurs="unbounded" />
 </sequence>
 </complexType>

 <complexType name="FilterListType">
 <sequence>
 <element name="filter" type="tns:FilterType" minOccurs="0" maxOccurs="unbounded" />
 </sequence>
 </complexType>

 <complexType name="FilterType">
 <attribute name="typeId" type="long" use="required" />

Appendix B – PAP Generation Framework

288

 <attribute name="filterId" type="long" use="required" />
 </complexType>

 <complexType name="SlptDescriptionType">
 <attribute name="description" type="string" use="required" />
 </complexType>

<group name="PageElements">
 <choice>
 <element name="slptReference" type="tns:SlptReferenceType" />
 <element name="slptDescription" type="tns:SlptDescriptionType" />
 </choice>
</group>

 <complexType name="PageType">
 <group ref="tns:PageElements" minOccurs="1" maxOccurs="unbounded" />
 <attribute name="id" type="ID" use="required" />
 <attribute name="title" type="string" use="required" />
 </complexType>

 <complexType name="WizardPageDetailsType">
 <sequence>
 <element name="page" type="tns:PageType" minOccurs="1" maxOccurs="unbounded" />
 </sequence>
 </complexType>

 <complexType name="PolicyTemplateType">
 <all>
 <element name="description" minOccurs="1" maxOccurs="1">
 <complexType>
 <attribute name="value" type="string" use="required" />
 </complexType>
 </element>
 <element name="exemplary_instantiation" minOccurs="1" maxOccurs="1">
 <complexType>
 <attribute name="value" type="string" use="required" />
 </complexType>
 </element>
 <element name="asset" minOccurs="1" maxOccurs="1">
 <complexType>
 <attribute name="value" type="string" use="required" />
 </complexType>
 </element>
 <element name="threat" minOccurs="1" maxOccurs="1">
 <complexType>
 <attribute name="value" type="string" use="required" />
 </complexType>
 </element>
 <element name="filters" type="tns:FilterListType" minOccurs="1" maxOccurs="1" />
 <element name="wizardPageDetails" type="tns:WizardPageDetailsType" minOccurs="1"
maxOccurs="1" />
 <element name="DefaultPolicys" type="tns:DefaultPolicyListType" minOccurs="0" />
 <element name="slpt" type="tns:SlptType" minOccurs="1" maxOccurs="1" />
 <element name="ilptParts" type="tns:IlptPartsType" minOccurs="0" maxOccurs="1" />
 <element name="ilpt" type="tns:IlptType" minOccurs="1" maxOccurs="1" />
 </all>
 <attribute name="id" type="ID" use="required" />
 <attribute name="name" type="string" use="required" />
 </complexType>

Appendix B – PAP Generation Framework

289

 <complexType name="FilterTypeType">
 <sequence>
 <element name="filterValue" minOccurs="1" maxOccurs="unbounded">
 <complexType>
 <attribute name="filterId" type="long" use="required" />
 <attribute name="name" type="string" use="required" />
 </complexType>
 </element>
 </sequence>
 <attribute name="typeId" type="long" use="required" />
 <attribute name="name" type="string" use="required" />
 </complexType>

 <complexType name="filterDefinitionType">
 <sequence>
 <element name="filterType" type="tns:FilterTypeType" minOccurs="1" maxOccurs="unbounded" />
 </sequence>
 </complexType>

 <simpleType name="LanguageTypes">
 <restriction base="string">
 <enumeration value="english" />
 <enumeration value="german" />
 </restriction>
 </simpleType>

 <complexType name="DefaultPolicyReferenceType">
 <attribute name="defaultPolicyReference" type="string" use="required" />
 <attribute name="templateReference" type="string" use="required" />
 </complexType>

 <complexType name="SecurityLevelType">
 <sequence>
 <element name="defaultPolicyReference" type="tns:DefaultPolicyReferenceType" minOccurs="0"
maxOccurs="unbounded" />
 </sequence>
 <attribute name="id" type="ID" use="required" />
 <attribute name="name" type="string" use="required" />
 </complexType>

 <complexType name="SecurityLevelDefinitionType">
 <sequence>
 <element name="securityLevel" type="tns:SecurityLevelType" minOccurs="1" maxOccurs="unbounded"
/>
 </sequence>
 </complexType>

 <complexType name="TemplateReferenceType">
 <attribute name="reference" type="string" use="required" />
 <attribute name="description" type="string" use="required" />
 </complexType>

 <complexType name="WizardDefinitionType">
 <sequence>
 <element name="templateReference" type="tns:TemplateReferenceType" minOccurs="1"
maxOccurs="unbounded" />
 </sequence>
 </complexType>

Appendix B – PAP Generation Framework

290

 <element name="policyModelInstance">
 <complexType>
 <sequence>
 <element name="filterDefinition" type="tns:filterDefinitionType" minOccurs="1" maxOccurs="1" />
 <element name="securityLevelDefinition" type="tns:SecurityLevelDefinitionType" minOccurs="1"
maxOccurs="1" />
 <element name="wizardDefinition" type="tns:WizardDefinitionType" minOccurs="1" maxOccurs="1"
/>
 <element name="policyTemplate" type="tns:PolicyTemplateType" minOccurs="1"
maxOccurs="unbounded" />
 </sequence>
 <attribute name="language" type="tns:LanguageTypes" use="required" />
 </complexType>
 </element>

</schema>

291

Appendix C The Personas of the Dupree Model

In this section, the personas of the Dupree model are described and
mapped to the user resources of our user intention model. Dupree created
the five personas based on character traits she discovered from particpants
during her studies. We used those traits for describing the personas.
Therefore, we formulated those character traits in the ego-perspective. In
the following, we state our assumptions how the personas will perform
with respect to effectiveness and efficiency when using PAPs in the policy
specification experiment. We do not make any assumptions regarding the
satisfaction with PAPs as we think that more influence factors than
knowledge and motivation apply.

Fundamentalist

The »fundamentalist« has a high intrinsic motivation and many resources
(see Figure 74); he has extensive knowledge about security and privacy
technologies and measures. Thus, for a fundamentalist the barriers might
be lower than for other personas, while the motivation is high. This results
in a strong intention to use PAPs. Therefore, we assume good results in
our evaluation with respect to effectiveness and efficiency. It addition, it
is unlikely that a fundamentalist is prone to the privacy paradox.

Figure 74: Character Traits for Persona »Fundamentalist«

Amateur

The »amateur« has medium motivation to specify policies, however this
depends on the situation (see Figure 75). His motivation to protect his
bank account is higher than protecting his wireless network. The degree
of motivation is probably influenced by his awareness of security and
privacy security issues. He has only medium knowledge, which is why he

Appendix C – The Personas of the Dupree Model

292

cannot judge the quality of an advice. To sum it up, we expect medium
usability issues for the amateur. In addition, the amateur is prone to the
privacy paradox regarding some technologies or data but not regarding
all of them.

Figure 75: Character Traits for Persona »Amateur«

Marginally Concerned

The »marginally concerned« has low motivation to protect is his security
and privacy (see Figure 76). His knowledge is low, thus we assume that
his resources do not meet the user requirements of many PAPs.
Consequently, his intention is low and the probability that he performs
the desired behavior (privacy actions) is low. He is not affected by the
privacy paradox, since the paradox implies that a person has the
motivation to protect his privacy. However, we assume the marginally
concerned to have low efficiency and effectiveness when using PAPs.
Thus, he has significant usability issues.

Figure 76: Character Traits for Persona »Marginally Concerned«

Appendix C – The Personas of the Dupree Model

293

Lazy Expert

The name »lazy expert« describes the motivation and knowledge of this
persona well. He has low motivation but expert knowledge (see
Figure 77). When only considering the knowledge, his barriers could be
low. However, according to his motivation, he will hardly start the
specification of any policy unless there is an acute trigger, such as an
attack on this data. In such a case his motivation seems to increase for a
short time resulting in actions. The most of the time the barriers seem to
outrange the motivation a bit. This could be explained by resources the
lazy expert is lacking, such as available time and cognitive resources. Like
the marginally concerned, the lazy expert is not affected by the privacy
paradox. We expect that he can perform well with respect to effectiveness
and efficiency, if the trigger is acute enough.

Figure 77: Character Traits for Persona »Lazy Expert«

Technician

The »technician« has high motivation and medium knowledge (see
Figure 78). With his medium knowledge, he cannot meet high user
requirements of PAPs. Thus, he faces some barriers. However, his
motivation is high. That is why he manages to overcome several barriers.
The privacy paradox applies to some regard to him. The technician would
like to take sound security and privacy actions, however, he faces some
problems when doing so. He instead only performs easy privacy actions.
We assume that the technician performs better with respect to
effectiveness and efficiency than the marginally concerned and amateurs,
but worse than fundamentalists.

Appendix C – The Personas of the Dupree Model

294

Figure 78: Character Traits for Persona »Technician«

295

Appendix D Case Study: »SECCRIT«

D.1 Excerpt of »SECCRIT« Study Results

One asset, for example, is a »critical service« that is operated on the tenant
infrastructure level (see Table 40). One exemplary policy templates about
»Critical VM Migration« is presented in Table 41.

Table 40: Documented Asset »Critical Service«

Asset ID A1

Asset Critical service (tenant infrastructure level)

Data Owner Service owner

Example Use Case A service owner (tenant) is running a critical service in the cloud,
for example, for running the software for video surveillance on a
public place.

Policy Authors Service owner

Prioritization Properties (not elicited)

Legal Regulations (not elicited)

Listing 10: Example Specification Level Policy Template for Policy Template

<slpt>
·<text value="If a critical virtual machine is moved to a host already
running a critical VM, then" />
·<selection id="t1_countermeasure_selection" conjunction="and"
·······minSelectedElements="1" maxSelectedElements="4">
··<element id="t1_countermeasure_move_vm" description="move VM to free host"
·······longDescription="The virtual machine that was migrated to the
·······unsuitable host will be removed to a host not yet running a
·······critical VM.">
···<text value="move virtual machine to a host not yet running a
·······critical VM" />
··</element>
··<element id="t1_countermeasure_notification" description="email
·······notification" longDescription="An email notification is sent to the
·······defined recipient.">
···<text value="notify" />
···<variable id="t1_notification_email" type="string" description="email
·······address" longDescription="Enter the email address to which the
·······notification is sent." />
···<text value="via email" />
··</element>
··<element id="t1_countermeasure_log" description="logging"
·······longDescription="writes a log entry">
···<text value="write a log entry" />
··</element>
··<element id="t1_countermeasure_ui" description="UI notification"
·······longDescription="shows a notification on the user interface">

Appendix D – Case Study: »SECCRIT«

296

···<text value="show notifications on the user interface" />
··</element>
·</selection>
</slpt>

Table 41: Policy Template »Critical VM Migration«

ID Policy Template Name Asset Target System Security/Privacy
Goal

T19 Critical VM Migration Critical service Cloud system Confidentiality,
availability

Policy Template Syntax If a critical virtual machine is moved to a host already running a
critical VM, then [move VM to a host not yet running a critical
VM | notify <email> via email | write a log entry | show
notifications on the user interface]+.

Description A tenant has a VM running a critical infrastructure IT service on a
virtual datacenter. The service VM is not allowed to run on a host
with another critical infrastructure IT service. The colocation of
two critical services can endanger their confidentiality and
availability. The colocation increases the attack surface and the
hack of one service threatens both services. The templates
provides policies for preventing this situation and for notification
if such a situation occurs.

Threats Unintended access from one service to another critical
infrastructure IT cloud service

 Single point of failure for services intended to run
independently

Example Instantiation If a critical virtual machine is moved to a host already running a
critical VM, then move VM to a host not yet running a critical VM
and notify manuel.rudolph@iese.fraunhofer.de via email.

Listing 10 presents the specification level representation of the policy
template presented in Table 41 in XML. The corresponding
implementation level policy template is listed in Listing 11. The complete
policy vocabulary is printed in Appendix D.1.

Listing 11: Example Implementation Level Policy Template for Policy Template

<ilpt>
·<ind2ucePolicy>
··<policy name="Critical_VM_Migration">
···<ind2uce:detectiveMechanism name="Migrate1"
·······ilptGroupReference="t1_countermeasure_blocks">
····<ind2uce:description>...</ind2uce:description>
····<ind2uce:timestep amount="30" unit="SECONDS" />
····<ind2uce:trigger action="urn:event:ind2uce:vmware:VmMigratedEvent"
·······isTry="false" />
····<ind2uce:condition>
·····<pip:boolean name="urn:ind2uce:vmware:criticalService" default="false">
······<param:string name="method" value="criticalServiceOnHost" />
······<param:event name="host" value="host.morValue" />
······<param:event name="ignoreVM" value="vm.morValue" />
·····</pip:boolean>

Appendix D – Case Study: »SECCRIT«

297

····</ind2uce:condition>
···</ind2uce:detectiveMechanism>
··</policy>
·</ind2ucePolicy>
</ilpt>

<ilptParts>
·<ilptGroup id="t1_countermeasure_blocks">
··<ilptBlock id="t1_countermeasure_blocks_move_vm"
·······use="t1_countermeasure_move_vm">
···<llxsdInd2uce:executeAction name="urn:action:ind2uce:vmware:MigrateVM">
····<param:string name="priority" value="highPriority" />
····<param:event name="vm.morType" value="vm.morType" />
····<param:event name="vm.morValue" value="vm.morValue" />
····<param:string name="host.morType" value="HostSystem" />
····<pip:string name="urn:ind2uce:vmware:getFreeHost"
·······paramName="host.morValue" default="host-38439">
·····<param:string name="method" value="getFreeHost" />
····</pip:string>
···</llxsdInd2uce:executeAction>
··</ilptBlock>
··<ilptBlock id="t1_countermeasure_blocks_notification"
·······use="t1_countermeasure_notification">
···<llxsdInd2uce:executeAction name="urn:action:ind2uce:vmware:sendMail">
····<param:string name="msgPlain"
·······value="Dear Customer, \n\nwe detected a policy violation that
·······critical services were migrated to the same physical host!
·······\nCompensating actions have been performed. \n\nBest Regards,
·······\nIND2UCE" />
····<param:string name="msgHTML"
····<param:boolean name="ind2uceLogo" value="true" />
····<param:string name="subject" value="Policy Violation" />
····<param:string name="recipient" value="$ref:t1_notification_email" />
···</llxsdInd2uce:executeAction>
··</ilptBlock>
··<ilptBlock id="t1_countermeasure_blocks_log" use="t1_countermeasure_log">
···<llxsdInd2uce:executeAction name="urn:action:ind2uce:vmware:log">
····<param:string name="msg" value="Two cricitcal services have been
·······migrated to the same physical host. Compensating actions are
·······running." />
···</llxsdInd2uce:executeAction>
··</ilptBlock>
··<ilptBlock id="t1_countermeasure_blocks_ui" use="t1_countermeasure_ui">
···<llxsdInd2uce:executeAction name="urn:action:ind2uce:http_get">
····<param:string name="paramName" value="msg" />
····<param:string name="paramValue" value="Two cricitcal services have been
·······migrated to the same physical host. Compensating actions are
·······running." />
····<param:string name="urlPrefix" value="http://212.9.140.33:8081" />
···</llxsdInd2uce:executeAction>
··</ilptBlock>
·</ilptGroup>
</ilptParts>

We generated multiple PAPs with the PAP generation framework. The use
if the specification paradigm »template instantiations« using the view
module »Swing« is demonstrated in Figure 79. We integrated

Appendix D – Case Study: »SECCRIT«

298

transformation rules for generating ILPs. A click on the »Generate
Machine-understandable Policy« button instructs the PAP to generate an
ILP out of the instantiated policy template. The resulting ILP is based on
the policy language »IND²UCE Version 1.1« (see Figure 80). As an
alternative, the users is able to specify policies using the specification
paradigm »default policies« as it can be seen in Figure 81.

Figure 79: Example PAP Using View Module »Swing«, Policy Vocabulary »SECCRIT« and Presentation

Module »Template Instantiations«

Figure 80: ILP in IND²UCE Policy Language Version 1.1 Generated by PAP in UI Framework »Swing«

Appendix D – Case Study: »SECCRIT«

299

Figure 81: Example PAP Using View Module »Swing«, Policy Vocabulary »SECCRIT« and Presentation

Module »Default Policies«

We used the policy vocabulary from the study and the two presentation
modules for creating an Android PAP. The »template instantiations« can
be seen in Figure 82 and the »default policies« in Figure 84. The Android
PAP is able to generate ILPs as depicted in Figure 83.

Figure 82: Example PAP Using View Module »Android«, Policy Vocabulary »SECCRIT« and
Presentation Module »Template Instantiations«

Appendix D – Case Study: »SECCRIT«

300

Figure 83: ILP in IND²UCE Policy Language Version 1.1 Generated by PAP in UI Framework »Android«

Figure 84: Example PAP Using View Module »Android«, Policy Vocabulary »SECCRIT« and
Presentation Module »Default Policies«

In addition, we provided a PAP with the same policy vocabulary and the
identical presentation modules for creating a web-based PAP (see
Figure 85).

Appendix D – Case Study: »SECCRIT«

301

Figure 85: Example PAP Using a Preliminary Version of the View Module »Web«, the Policy

Vocabulary »SECCRIT« and the Presentation Module »Default Policies«

D.2 Example of Policy Template in Policy Vocabulary

 <policyTemplate id="1" name="Critical VM Migration">
 <description
 value="Tenant A has a VM running a critical infrastructure IT service on a virtual datacenter. The service
is not allowed to leave a given geolocation or jurisdiction. In case of stored person-related data, different laws
may apply on this data depending on the geolocation or jurisdiction." />
 <exemplary_instantiation
 value="If VM1 running a critical service of tenant A is about to be moved to a jurisdiction outside the
EU, then inhibit the movement and notify the tenant infrastructure provider." />
 <asset value="Critical Service" />
 <threat value="Unintended movement of critical infrastructure IT service to another geolocation or
jurisdiction in which other laws may apply." />
 <filters>
 <filter typeId="1" filterId="1" />
 <filter typeId="2" filterId="1" />
 <filter typeId="3" filterId="1" />
 <filter typeId="4" filterId="1" />
 </filters>

 <defaultInstantiations>
 <defaultInstantiation description="default 1" id="t1_default1">
 <defaultValue ref="t1_countermeasure_move_vm" value="false" />
 <defaultValue ref="t1_countermeasure_notification" value="true" />
 <defaultValue ref="t1_countermeasure_log" value="false" />
 <defaultValue ref="t1_countermeasure_ui" value="true" />
 <defaultValue ref="t1_notification_email" value="manuel.rudolph@iese.fraunhofer.de" />

Appendix D – Case Study: »SECCRIT«

302

 </defaultInstantiation>
 <defaultInstantiation description="default 1" id="t1_default2">
 <defaultValue ref="t1_countermeasure_move_vm" value="true" />
 <defaultValue ref="t1_countermeasure_notification" value="false" />
 <defaultValue ref="t1_countermeasure_log" value="true" />
 <defaultValue ref="t1_countermeasure_ui" value="false" />
 </defaultInstantiation>
 </defaultInstantiations>

 <slpt>
 <text value="If a critical virtual machine is moved to a host already running a critical VM, then" />
 <selection id="t1_countermeasure_selection" conjunction="and" minSelectedElements="1"
maxSelectedElements="4">
 <elementGroup id="t1_countermeasure_move_vm" description="move VM to free host"
 longDescription="The virtual machine that was migrated to the unsuitable host will be removed to
a host not yet running a critical VM.">
 <text value="move virtual machine to a host not yet running a critical VM" />
 </elementGroup>
 <elementGroup id="t1_countermeasure_notification" description="email notification"
longDescription="An email notification is sent to the defined recipient.">
 <text value="notify" />
 <variable id="t1_notification_email" type="string" description="email address"
longDescription="Enter the email address to which the notification is sent." />
 <text value="via email" />
 </elementGroup>
 <elementGroup id="t1_countermeasure_log" description="logging" longDescription="writes a log
entry">
 <text value="write a log entry" />
 </elementGroup>
 <elementGroup id="t1_countermeasure_ui" description="UI notification" longDescription="shows a
notification on the user interface">
 <text value="show notifications on the user interface" />
 </elementGroup>
 </selection>
 </slpt>

 <ilptParts>
 <ilptGroup id="t1_countermeasure_blocks">
 <ilptBlock id="t1_countermeasure_blocks_move_vm" use="t1_countermeasure_move_vm">
 <llxsdInd2uce:executeAction name="urn:action:ind2uce:vmware:MigrateVM">
 <param:string name="priority" value="highPriority" />
 <param:event name="vm.morType" value="vm.morType" />
 <param:event name="vm.morValue" value="vm.morValue" />
 <param:string name="host.morType" value="HostSystem" />
 <pip:string name="urn:ind2uce:vmware:getFreeHost" paramName="host.morValue"
default="host-38439">
 <param:string name="method" value="getFreeHost" />
 </pip:string>
 </llxsdInd2uce:executeAction>
 </ilptBlock>
 <ilptBlock id="t1_countermeasure_blocks_notification" use="t1_countermeasure_notification">
 <llxsdInd2uce:executeAction name="urn:action:ind2uce:vmware:sendMail">
 <param:string name="msgPlain"
 value="Dear Customer, \n\nwe detected a policy violation that critical services were migrated
to the same physical host! \nCompensating actions have been performed. \n\nBest Regards, \nIND2UCE" />
 <param:string name="msgHTML"
 value="<html><head><title>IND2UCE Policy Violation
Mail</title></head><body>Dear Customer,

we detected a policy violation that two critical

Appendix D – Case Study: »SECCRIT«

303

services were migrated to the same physical host!

Compensating actions have been performed.

Best Regards,

IND2UCE

<hr/>Powered by
ind2uce
<img width="200" height="50"
id="Picture_x0020_1"
src="cid:image001.jpg@01D04148.7350F2C0"></body></html>" />
 <param:boolean name="ind2uceLogo" value="true" />
 <param:string name="subject" value="Policy Violation" />
 <param:string name="recipient" value="$ref:t1_notification_email" />
 </llxsdInd2uce:executeAction>
 </ilptBlock>
 <ilptBlock id="t1_countermeasure_blocks_log" use="t1_countermeasure_log">
 <llxsdInd2uce:executeAction name="urn:action:ind2uce:vmware:log">
 <param:string name="msg" value="Two cricitcal services have been migrated to the same
physical host. Compensating actions are running." />
 </llxsdInd2uce:executeAction>
 </ilptBlock>
 <ilptBlock id="t1_countermeasure_blocks_ui" use="t1_countermeasure_ui">
 <llxsdInd2uce:executeAction name="urn:action:ind2uce:http_get">
 <param:string name="paramName" value="msg" />
 <param:string name="paramValue" value="Two cricitcal services have been migrated to the
same physical host. Compensating actions are running." />
 <param:string name="urlPrefix" value="http://212.9.140.33:8081" />
 </llxsdInd2uce:executeAction>
 </ilptBlock>
 </ilptGroup>
 </ilptParts>

 <ilpt>
 <ind2ucePolicy>
 <policy name="Critical_VM_Migration">
 <ind2uce:detectiveMechanism name="Migrate1"
ilptGroupReference="t1_countermeasure_blocks">
 <ind2uce:description>...</ind2uce:description>
 <ind2uce:timestep amount="30" unit="SECONDS" />
 <ind2uce:trigger action="urn:event:ind2uce:vmware:VmMigratedEvent" isTry="false" />
 <ind2uce:condition>
 <pip:boolean name="urn:ind2uce:vmware:criticalService" default="false">
 <param:string name="method" value="criticalServiceOnHost" />
 <param:event name="host" value="host.morValue" />
 <param:event name="ignoreVM" value="vm.morValue" />
 </pip:boolean>
 </ind2uce:condition>
 </ind2uce:detectiveMechanism>
 </policy>
 </ind2ucePolicy>
 </ilpt>
 </policyTemplate>

305

Appendix E Case Study: »BeSure«

E.1 Excerpt of »BeSure« Study Results

Table 42: Asset »Job Data«

Asset ID A1

Asset Job data (e.g., professional data and client data)

Data Owner Clients

Example Use Case Printing and dispatch of payroll invoices in the production area

 Clarification of error situations by service employees

Prioritization
Properties

Monetary value of asset: high (€€€)
Sensitivity of asset: highly confidential

Legal Regulations Professional law of tax consultants, StGB $203 (violation of private
secrets) and BaFin (confidentiality regulations)

Table 43: Threats for Asset »Job Data«

Threat ID T1-T3

Related Asset ID A1

Related Asset Job Data

Attackers Data theft

Top 3 Threats T1: Data theft

 probability: likely (medium)

 damage: costly (medium)
T2: Insufficient deletion

 probability: likely (medium)

 damage: costly (medium)
T3: Manipulation of payment flows

 probability: almost impossible (low)

 damage: existence-threatening (high)

Other threats Use of not permitted communication methods

 External attackers gain access to job data for blackmailing

 Software bugs

 Misdirection / misdelivery

 External technician copies data (e.g. remote support)

 Industrial espionage to obtain internal information from clients
(e.g. stock market speculation)

Existing
Documentation

not available

Appendix E – Case Study: »BeSure«

306

Table 44: Asset »Public Data«

Asset ID A9

Asset Public data (e.g., marketing material, website, product descriptions)

Data Owner Marketing and press departments

Example Use Case The editor creates new advertising materials

Prioritization
Properties

Monetary value of asset: low (€)
Sensitivity of asset: public

Legal Regulations German law TMG and GDPR

Table 45: Threats for Asset »Public Data«

Threat ID T7-T9

Related Asset ID A9

Related Asset Public Data

Attackers Script kiddie, Accidental attacker, Rival

Top 3 Threats T7: Non-compliance with legal regulations

 probability: likely (medium)

 damage: costly (medium)
T8: Falsification of information

 probability: likely (medium)

 damage: costly (medium)
T9: Distributed Denial of Service

 probability: likely to permanently (medium-high)

 damage: costly (medium)

Other threats Unintentional publication of internal information

 Blackmailing through DDoS

 Reputation gain through in hacker community through
information falsification

 Missing/inadequate data protection declaration

 Release of internal data

Existing
Documentation

 Risk management at company level
o Information security risks
o HighLevel

 Threat Modelling in individual projects
o Without a fixed schema
o Rapid Risk Analysis

Appendix E – Case Study: »BeSure«

307

Table 46: Countermeasures for Threat »T5: Intentional Tampering«

Countermeasures for threat:
T5: Intentional tampering

Sign emails by default

Documented, analyzed process

Warning message on unsigned emails (inbox and outbox)

Protective mechanisms at email client (no authorized usage)

Table 47: Countermeasures for Threat »T6: Unencrypted Sending of Confidential Emails«

Countermeasures for threat:
T6: Unintended disclosure to third parties (unencrypted sending or wrong recipient)

Encrypt emails by default

Delayed sending of emails (possibility to revoke emails)

Recurring sensitization of employees (intranet, training, …)

Prevention of sending with data loss prevention mechanism

Table 48: Policy Template »Secure Email Receiving«

ID Policy Template Name Asset Target System Security/Privacy
Goal

2 Secure email receiving Communication
Data

Email client and
server

Confidentiality,
integrity

Policy Template Syntax If [any employee | <employee> | <employee role>] receives an
email, which [is not encrypted | is not digitally signed | contains
attachments | contains sensitive information | was not scanned
for viruses | was sent by an unknown sender]*, then warn the
user.

Description Employees often communicate via email with internal as well as
external recipients. This communication must be protected
because email content as well as attachments can contain
sensitive information. This template facilitates the control of
email receipt.

Threat Information leakage or manipulation of sensitive information

Example Instantiation If service employees receive an email, which is not digitally
signed, contains attachments, and was not scanned for viruses,
then warn the user.

309

Appendix F Case Study: »Digital Villages«

F.1 Excerpt of »Digital Villages« Study Results

A screenshot of a policy specification with the specification paradigm
»template instantiation« is presented in Figure 86. The specification with
the »default policies« is depicted in Figure 87. The use if the specification
paradigm »wizard« is demonstrated in Figure 88. Figure 89 shows the
specification paradigm »security levels« based on the same policy
vocabulary.

Figure 86: Example PAP Using View Module »Web«, Policy Vocabulary »Digital Villages« and
Presentation Module »Template Instantiation«

Figure 87: Example PAP Using View Module »Web«, Policy Vocabulary »Digital Villages« and
Presentation Module »Default Policies«

Appendix F – Case Study: »Digital Villages«

310

Figure 88: Example PAP Using View Module »Web«, Policy Vocabulary »Digital Villages« and

Presentation Module »Wizard«

Figure 89: Example PAP Using View Module »Web«, Policy Vocabulary »Digital Villages« and
Presentation Module »Security Levels«

311

Appendix G Policy Specification Experiment

G.1 Invitation Email

Hello,

Thank you for participating in our experiment!

You will find instructions attached to this mail. Please print them out, as
you will need them several times.

On the first page you will find the link to the experiment website and
your participation number.

You can use all standard browsers to open the link (Google Chrome,
Firefox, Microsoft Edge, Internet Explorer).

Please open the link from a computer connected to a keyboard. (The
website is not suitable for tablets and smartphones).

Please make sure your speakers are turned on.

Let's start the experiment now!

If you think after the experiment that you know someone else who
would like to participate, I will gladly send you further invitations :)

Best Regards

Appendix G – Policy Specification Experiment

312

G.2 Experiment Handout

Figure 90: Policy Specification Experiment - Handout Page 1

Appendix G – Policy Specification Experiment

313

Figure 91: Policy Specification Experiment - Handout Page 2

Appendix G – Policy Specification Experiment

314

G.3 Screenshots of Experiment

This section shows screenshots of all steps in the policy specification
experiment.

Figure 92: Screenshot - Language Selection

Figure 93: Screenshot - Login Page

Appendix G – Policy Specification Experiment

315

Figure 94: Screenshot - Demographic Questions

Figure 95: Screenshot - Relation to Fraunhofer IESE

Appendix G – Policy Specification Experiment

316

Figure 96: Screenshot - Relation to Fraunhofer IESE

Figure 97: Screenshot - Motivation Question

Appendix G – Policy Specification Experiment

317

Figure 98: Screenshot - Persona Fundamentalist

Figure 99: Screenshot - Persona Amateur

Appendix G – Policy Specification Experiment

318

Figure 100: Screenshot - Persona Marginally Concerned

Figure 101: Screenshot - Persona Lazy Expert

Appendix G – Policy Specification Experiment

319

Figure 102: Screenshot - Persona Technician

Figure 103: Screenshot - Persona Confirmation

Appendix G – Policy Specification Experiment

320

Figure 104: Screenshot - Scenario

Figure 105: Screenshot - Specification Explanation

Appendix G – Policy Specification Experiment

321

Figure 106: Screenshot - Specification Type: Template 1

Figure 107: Screenshot - Specification Type: Template 2

Appendix G – Policy Specification Experiment

322

Figure 108: Screenshot - Specification Type: Template 3

Figure 109: Screenshot - Specification Type: Template 4

Appendix G – Policy Specification Experiment

323

Figure 110: Screenshot - Specification Type: Template 5

Figure 111: Screenshot - Specification Type: Template 6

Appendix G – Policy Specification Experiment

324

Figure 112: Screenshot - Specification Type: Template Confirmation

Figure 113: Screenshot - Specification Type Rating

Appendix G – Policy Specification Experiment

325

Figure 114: Screenshot - Specification Type: Default Policies 1

Figure 115: Screenshot - Specification Type: Default Policies 2

Appendix G – Policy Specification Experiment

326

Figure 116: Screenshot - Specification Type: Default Policies 3

Figure 117: Screenshot - Specification Type: Default Policies 4

Appendix G – Policy Specification Experiment

327

Figure 118: Screenshot - Specification Type: Default Policies 5

Figure 119: Screenshot - Specification Type: Default Policies 6

Appendix G – Policy Specification Experiment

328

Figure 120: Screenshot - Specification Type: Wizard 1

Figure 121: Screenshot - Specification Type: Wizard 2

Appendix G – Policy Specification Experiment

329

Figure 122: Screenshot - Specification Type: Wizard 3

Figure 123: Screenshot - Specification Type: Wizard 4

Appendix G – Policy Specification Experiment

330

Figure 124: Screenshot - Specification Type: Wizard 5

Figure 125: Screenshot - Specification Type: Wizard 6

Appendix G – Policy Specification Experiment

331

Figure 126: Screenshot - Specification Type: Wizard 7

Figure 127: Screenshot - Specification Type: Wizard 8

Appendix G – Policy Specification Experiment

332

Figure 128: Screenshot - Specification Type: Privacy Levels

Appendix G – Policy Specification Experiment

333

Figure 129: Screenshot - Specification Type Preference Ordering

Figure 130: Screenshot - Identification with Scenario and Persona

Appendix G – Policy Specification Experiment

334

Figure 131: Screenshot - Final Page and Scores

G.4 Sample Solution

Template Instantiation and Wizard

The correct instantiations are:

 Template »Forwarding of order data«: »When a merchant forwards
my order data to an advertisement company, I forbid that.”

 Template »Acceptance of a delivery«: »Only my friends and deliverer
with a trust level of at least gold may see and accept my delivery
requests.«

 Template »Information prior to acceptance of the delivery request«:
»Before accepting the delivery request, the deliverer does obtain my
name and does only obtain the following parts of my address: zip code
and city. Furthermore, he will only be informed about the parcel size.«

 Template »Displaying the storage location for packages«: »After
acceptance of the delivery order, the supplier shall be notified of the
secret storage location 100 meters from the place of delivery.«

Appendix G – Policy Specification Experiment

335

 Template »Help requests and offers«: »My help requests and offers
can be viewed by every citizen. Before accepting the help request or
offer, they are allowed to look at not my name, only zip code and city
of my address and only the date of the preferred appointment.«

 Template »Scientific evaluation«: »My data will be permitted for
scientific evaluation if my name has been made anonymous.”

Wizard

The correct options on the wizard pages are:

 Page 1: »I forbid that«

 Page 2: »Only my friends and deliverer with a trust level of at least
gold«

 Page 3: »does obtain my name« and »does only obtain the following
parts of my address: zip code and city«

 Page 4: »only be informed about the parcel size«

 Page 5: »only within a radius of 100m«

 Page 6: »by every citizen«

 Page 7: »not my name« and »only zip code and city of my address«
and »only the date of the preferred appointment«

 Page 8: »permitted for scientific evaluation if my name has been made
anonymous«

Default Policies

The correct default policies are:

 Category »Forwarding of order data« – Correct Option 3: »When a
merchant forwards my order data to an advertisement company, I
forbid that.«

 Category »Acceptance of a delivery« – Correct Option 4: »Only my
friends and deliverer with a trust level of at least gold may see and
accept my delivery requests.«

 Category »Information prior to acceptance of the delivery request« –
Correct Option 2: »Before accepting the delivery request, the deliverer
does obtain my name and does only obtain the following parts of my
address: zip code and city. Furthermore, he will only be informed about
the parcel size.«

 Category »Displaying the storage location for packages« – Correct
Option 2: »After acceptance of the delivery order, the supplier shall be

Appendix G – Policy Specification Experiment

336

notified of the secret storage location 100 meters from the place of
delivery.«

 Category »Help requests and offers« – Correct Option 1: »My help
requests and offers can be viewed by every citizen. Before accepting
the help request or offer, they are allowed to look at not my name,
only zip code and city of my address and only the date of the preferred
appointment.«

 Category »Scientific evaluation« – Correct Option 3: »My data will be
permitted for scientific evaluation if my name has been made
anonymous.«

Security Levels

The correct security level is: yellow

 »When a merchant forwards my order data to an advertisement
company, I forbid that.«

 »Only my friends and deliverer with a trust level of at least gold may
see and accept my delivery requests.«

 »Before accepting the delivery request, the deliverer does obtain my
name and does only obtain the following parts of my address: zip code
and city. Furthermore, he will only be informed about the parcel size.«

 »After acceptance of the delivery order, the supplier shall be notified
of the secret storage location 100 meters from the place of delivery.«

 »My help requests and offers can be viewed by every citizen. Before
accepting the help request or offer, they are allowed to look at not my
name, only zip code and city of my address and only the date of the
preferred appointment.«

 »My data will be permitted for scientific evaluation if my name has
been made anonymous.«

Appendix G – Policy Specification Experiment

337

G.5 Detailed Results of Statistical Analyses

Objective Correctness

Figure 132: Kruskal-Wallis-Test on Influence of Specification Paradigms on Conducted Mistakes with

Pairwise Comparison of Specification Paradigms (Q1.1.1)

Figure 133: Kruskal-Wallis-Test on Influence of Specification Paradigms on Conducted Mistakes for

Marginally Concerned (Q1.1.2)

Appendix G – Policy Specification Experiment

338

Figure 134: Kruskal-Wallis-Test on Influence of Specification Paradigms on Conducted Mistakes for

Amateurs with Pairwise Comparison of Specification Paradigms (Q1.1.2)

Figure 135: Kruskal-Wallis-Test on Influence of Specification Paradigms on Conducted Mistakes for

Lazy Experts with Pairwise Comparison of Specification Paradigms (Q1.1.2)

Appendix G – Policy Specification Experiment

339

Figure 136: Kruskal-Wallis-Test on Influence of Specification Paradigms on Conducted Mistakes for

Technician with Pairwise Comparison of Specification Paradigms (Q1.1.2)

Figure 137: Kruskal-Wallis-Test on Influence of Specification Paradigms on Conducted Mistakes for

Fundamentalists with Pairwise Comparison of Specification Paradigms (Q1.1.2)

Appendix G – Policy Specification Experiment

340

Figure 138: Kruskal-Wallis-Test on Influence of Persona Selection on Conducted Mistakes with Pairwise

Comparison of Specification Paradigms (Q1.1.3)

Self-evaluation regarding Objective Correctness

Figure 139: Cross Tables including Fisher’s Exact-Test on Influence of Specification Paradigms on

Correct Self-Evaluation regarding Objective Correctness (Q1.2.1)

Appendix G – Policy Specification Experiment

341

Figure 140: Cross Tables including Fisher’s Exact-Test on Influence of Specification Paradigms on

Correct Self-Evaluation regarding Objective Correctness for Marginally Concerned (Q1.2.2)

Figure 141: Cross Tables including Fisher’s Exact-Test on Influence of Specification Paradigms on

Correct Self-Evaluation regarding Objective Correctness for Amateurs (Q1.2.2)

Appendix G – Policy Specification Experiment

342

Figure 142: Cross Tables including Fisher’s Exact-Test on Influence of Specification Paradigms on

Correct Self-Evaluation regarding Objective Correctness for Lazy Experts (Q1.2.2)

Figure 143: Cross Tables including Fisher’s Exact-Test on Influence of Specification Paradigms on

Correct Self-Evaluation regarding Objective Correctness for Technicians (Q1.2.2)

Appendix G – Policy Specification Experiment

343

Figure 144: Cross Tables including Fisher’s Exact-Test on Influence of Specification Paradigms on

Correct Self-Evaluation regarding Objective Correctness for Fundamentalists (Q1.2.2)

Figure 145: Cross Tables including Fisher’s Exact-Test on Influence of Persona on Correct Self-

Evaluation regarding Objective Correctness (Q1.2.3)

Appendix G – Policy Specification Experiment

344

Efficiency

Figure 146: Kruskal-Wallis-Test on Influence of Specification Paradigms on Needed Time with Pairwise

Comparison of Specification Paradigms (Q1.3.1)

Figure 147: Kruskal-Wallis-Test on Influence of Specification Paradigms on Needed Time for Marginally

Concerned (Q1.3.2)

Appendix G – Policy Specification Experiment

345

Figure 148: Kruskal-Wallis-Test on Influence of Specification Paradigms on Needed Time for Amateurs

with Pairwise Comparison of Specification Paradigms (Q1.3.2)

Figure 149: Kruskal-Wallis-Test on Influence of Specification Paradigms on Needed Time for Lazy

Experts with Pairwise Comparison of Specification Paradigms (Q1.3.2)

Appendix G – Policy Specification Experiment

346

Figure 150: Kruskal-Wallis-Test on Influence of Specification Paradigms on Needed Time for

Technicians with Pairwise Comparison of Specification Paradigms (Q1.3.2)

Figure 151: Kruskal-Wallis-Test on Influence of Specification Paradigms on Needed Time for

Fundamentalists (Q1.3.2)

Appendix G – Policy Specification Experiment

347

Figure 152: Kruskal-Wallis-Test on Influence of Personas on Needed Time (Q1.3.3)

Satisfaction

Figure 153: Kruskal-Wallis-Test on Influence of Specification Paradigms on Satisfaction with Pairwise

Comparison of Specification Paradigms (Q1.4.1)

Appendix G – Policy Specification Experiment

348

Figure 154: Kruskal-Wallis-Test on Influence of Specification Paradigms on Satisfaction for Marginally

Concerned (Q1.4.2)

Figure 155: Kruskal-Wallis-Test on Influence of Specification Paradigms on Satisfaction for Amateurs

with Pairwise Comparison of Specification Paradigms (Q1.4.2)

Appendix G – Policy Specification Experiment

349

Figure 156: Kruskal-Wallis-Test on Influence of Specification Paradigms on Satisfaction for Lazy Experts

with Pairwise Comparison of Specification Paradigms (Q1.4.2)

Figure 157: Kruskal-Wallis-Test on Influence of Specification Paradigms on Satisfaction for Technicians

(Q1.4.2)

Appendix G – Policy Specification Experiment

350

Figure 158: Kruskal-Wallis-Test on Influence of Specification Paradigms on Satisfaction for

Fundamentalists (Q1.4.2)

Figure 159: Kruskal-Wallis-Test on Influence of Personas on Satisfaction (Q1.4.3)

Appendix G – Policy Specification Experiment

351

G.6 Raw Data

Access to raw data of the policy specification experiment can be requested
under https://fordatis.fraunhofer.de/handle/fordatis/96 or via email
(primaerdaten@iese.fraunhofer.de). The email must contain full contact
details of the requesting person, its institution, the reason for the request
and the desired use of the data as well as the primary data identifier for
the experiment data (PDI 53020).

353

Lebenslauf

Name Manuel Rudolph

Wohnort Wallstadter Straße 18
 68549 Ilvesheim

Geburtsdatum 16.11.1984

Geburtsort Heidelberg

Familienstand Verheiratet, 1 Kind

Staatsangehörigkeit Deutsch

Schulbildung 1991-1995 Graf-von-Oberndorff Grundschule in Edingen-

Neckarhausen
 1995-2004 Elisabeth-von Thadden Gymnasium in

Heidelberg
 Abschluss: Abitur

Studium 2004-2008 Bachelor Informatik - Hochschule Mannheim
 2008-2009 Master Informatik - Hochschule Mannheim

Berufstätigkeit 2009-heute Wissenschaftlicher Mitarbeiter am Fraunhofer

Institut für Experimentelles Software Engineering
IESE, Kaiserslautern

Kaiserslautern, den 11. Dezember 2019

PhD Theses in Experimental Software Engineering

Volume 1 Oliver Laitenberger (2000), Cost-Effective Detection of Software Defects
Through Perspective-based Inspections

Volume 2 Christian Bunse (2000), Pattern-Based Refinement and Translation of

Object-Oriented Models to Code

Volume 3 Andreas Birk (2000), A Knowledge Management Infrastructure for
Systematic Improvement in Software Engineering

Volume 4 Carsten Tautz (2000), Customizing Software Engineering Experience

Management Systems to Organizational Needs

Volume 5 Erik Kamsties (2001), Surfacing Ambiguity in Natural Language
Requirements

Volume 6 Christiane Differding (2001), Adaptive Measurement Plans for Software

Development

Volume 7 Isabella Wieczorek (2001), Improved Software Cost Estimation
A Robust and Interpretable Modeling Method and a Comprehensive
Empirical Investigation

Volume 8 Dietmar Pfahl (2001), An Integrated Approach to Simulation-Based

Learning in Support of Strategic and Project Management in Software
Organisations

Volume 9 Antje von Knethen (2001), Change-Oriented Requirements Traceability

Support for Evolution of Embedded Systems

Volume 10 Jürgen Münch (2001), Muster-basierte Erstellung von Software-
Projektplänen

Volume 11 Dirk Muthig (2002), A Light-weight Approach Facilitating an Evolutionary

Transition Towards Software Product Lines

Volume 12 Klaus Schmid (2003), Planning Software Reuse – A Disciplined Scoping
Approach for Software Product Lines

Volume 13 Jörg Zettel (2003), Anpassbare Methodenassistenz in CASE-Werkzeugen

Volume 14 Ulrike Becker-Kornstaedt (2004), Prospect: a Method for Systematic

Elicitation of Software Processes

Volume 15 Joachim Bayer (2004), View-Based Software Documentation

Volume 16 Markus Nick (2005), Experience Maintenance through Closed-Loop
Feedback

Volume 17 Jean-François Girard (2005), ADORE-AR: Software Architecture
Reconstruction with Partitioning and Clustering

Volume 18 Ramin Tavakoli Kolagari (2006), Requirements Engineering für Software-

Produktlinien eingebetteter, technischer Systeme

Volume 19 Dirk Hamann (2006), Towards an Integrated Approach for Software
Process Improvement: Combining Software Process Assessment and
Software Process Modeling

Volume 20 Bernd Freimut (2006), MAGIC: A Hybrid Modeling Approach for

Optimizing Inspection Cost-Effectiveness

Volume 21 Mark Müller (2006), Analyzing Software Quality Assurance Strategies
through Simulation. Development and Empirical Validation of a Simulation
Model in an Industrial Software Product Line Organization

Volume 22 Holger Diekmann (2008), Software Resource Consumption Engineering for

Mass Produced Embedded System Families

Volume 23 Adam Trendowicz (2008), Software Effort Estimation with Well-Founded
Causal Models

Volume 24 Jens Heidrich (2008), Goal-oriented Quantitative Software Project Control

Volume 25 Alexis Ocampo (2008), The REMIS Approach to Rationale-based Support

for Process Model Evolution

Volume 26 Marcus Trapp (2008), Generating User Interfaces for Ambient Intelligence
Systems; Introducing Client Types as Adaptation Factor

Volume 27 Christian Denger (2009), SafeSpection – A Framework for Systematization

and Customization of Software Hazard Identification by Applying Inspection
Concepts

Volume 28 Andreas Jedlitschka (2009), An Empirical Model of Software Managers’

Information Needs for Software Engineering Technology Selection
A Framework to Support Experimentally-based Software Engineering
Technology Selection

Volume 29 Eric Ras (2009), Learning Spaces: Automatic Context-Aware Enrichment of
Software Engineering Experience

Volume 30 Isabel John (2009), Pattern-based Documentation Analysis for Software

Product Lines

Volume 31 Martín Soto (2009), The DeltaProcess Approach to Systematic Software
Process Change Management

Volume 32 Ove Armbrust (2010), The SCOPE Approach for Scoping Software

Processes

Volume 33 Thorsten Keuler (2010), An Aspect-Oriented Approach for Improving
Architecture Design Efficiency

Volume 34 Jörg Dörr (2010), Elicitation of a Complete Set of Non-Functional

Requirements

Volume 35 Jens Knodel (2010), Sustainable Structures in Software Implementations by
Live Compliance Checking

Volume 36 Thomas Patzke (2011), Sustainable Evolution of Product Line Infrastructure

Code

Volume 37 Ansgar Lamersdorf (2011), Model-based Decision Support of Task
Allocation in Global Software Development

Volume 38 Ralf Carbon (2011), Architecture-Centric Software Producibility Analysis

Volume 39 Florian Schmidt (2012), Funktionale Absicherung kamerabasierter Aktiver

Fahrerassistenzsysteme durch Hardware-in the-Loop-Tests

Volume 40 Frank Elberzhager (2012), A Systematic Integration of Inspection and
Testing Processes for Focusing Testing Activities

Volume 41 Matthias Naab (2012), Enhancing Architecture Design Methods for

Improved Flexibility in Long-Living Information Systems

Volume 42 Marcus Ciolkowski (2012), An Approach for Quantitative Aggregation of
Evidence from Controlled Experiments in Software Engineering

Volume 43 Igor Menzel (2012), Optimizing the Completeness of Textual Requirements

Documents in Practice

Volume 44 Sebastian Adam (2012), Incorporating Software Product Line Knowledge
into Requirements Processes

Volume 45 Kai Höfig (2012), Failure-Dependent Timing Analysis – A New Methodology

for Probabilistic Worst-Case Execution Time Analysis

Volume 46 Kai Breiner (2013), AssistU – A framework for user interaction forensics

Volume 47 Rasmus Adler (2013), A model-based approach for exploring the space of
adaptation behaviors of safety-related embedded systems

Volume 48 Daniel Schneider (2014), Conditional Safety Certification for Open

Adaptive Systems

Volume 49 Michail Anastasopoulos (2013), Evolution Control for Software Product
Lines: An Automation Layer over Configuration Management

Volume 50 Bastian Zimmer (2014), Efficiently Deploying Safety-Critical Applications

onto Open Integrated Architectures

Volume 51 Slawomir Duszynski (2015), Analyzing Similarity of Cloned Software
Variants using Hierarchical Set Models

Volume 52 Zhensheng Guo (2015), Safe Requirements Engineering: A Scenario-based

Approach for Identifying Complete Safety-oriented Requirements

Volume 53 Bo Zhang (2015), VITAL – Reengineering Variability Specifications and
Realizations in Software Product Lines

Volume 54 Norman Riegel (2016), Prioritization in Incremental Requirements

Engineering

Volume 55 Pablo Oliveira Antonino de Assis (2016), Improving the Consistency and
Completeness of Safety Requirements Specifications

Volume 56 Thomas Bauer (2016), Enabling Functional Integration Testing by Using

Heterogeneous Models

Volume 57 Michael Kläss (2016), HyDEEP: Transparent Combination of Measurement
and Expert Data for Defect Prediction

Volume 58 Liliana Katherine Guzmán Rehbein (2017), Empirically-based Method for

Performing Qualitative Synthesis in Software Engineering

Volume 59 Michael Roth (2017), Qualitative Reliability Analysis of Software-Controlled
Systems using State/Event Fault Trees

Volume 60 Hadil Abukwaik (2017), Proactive Support for Conceptual Interoperability

Analysis of Software Units

Volume 61 Konstantin Holl (2018), Quality Assurance for Mobile Business
Applications

Volume 62 Dominik Rost (2019), Task-Specific Architecture Documentation for

Developers

Volume 63 Christian Jung (2019), Context-aware Security

Volume 64 Andreas Maier (2019), Identification and Specification of Hedonic Quality

in User Requirements

Volume 65 Philipp Diebold (2019), Agile Practice Experience Repository for Process

Improvement

Volume 66 Binish Tanveer (2019), Utilizing Change Impact Analysis for Improving

Effort Estimation in Agile Software Development

Volume 67 Patrik Feth (2019), Dynamic Behavior Risk Assessment for Autonomous

Systems

Volume 68 Manuel Rudolph (2019), Generation of Usable Policy Administration

Points for Security and Privacy

Ph
D

 T
h

es
es

 in
 E

xp
er

im
en

ta
l S

o
ft

w
ar

e
En

g
in

ee
ri

n
gSoftware Engineering has become one of the major foci of Computer

Science research in Kaiserslautern, Germany. Both the University of
Kaiserslautern‘s Computer Science Department and the Fraunhofer
Institute for Experimental Software Engineering (IESE) conduct re-
search that subscribes to the development of complex software ap-
plications based on engineering principles. This requires system and
process models for managing complexity, methods and techniques
for ensuring product and process quality, and scalable formal meth-
ods for modeling and simulating system behavior. To understand the
potential and limitations of these technologies, experiments need to
be conducted for quantitative and qualitative evaluation and improve-
ment. This line of software engineering research, which is based on

Software Engineering‘.
In this series, we publish PhD theses from the Fraunhofer Institute for
Experimental Software Engineering (IESE) and from the Software En-
gineering Research Groups of the Computer Science Department at
the University of Kaiserslautern. PhD theses that originate elsewhere
can be included, if accepted by the Editorial Board.

Editor-in-Chief: Prof. Dr. Dieter Rombach
Executive Consultant & Founding Director of Fraunhofer IESE and
Head of the AGSE Group of the Computer Science Department,
University of Kaiserslautern

Editorial Board Member: Prof. Dr. Peter Liggesmeyer
Director of Fraunhofer IESE and Head of the SEDA Group of the
Computer Science Department, University of Kaiserslautern

Editorial Board Member: Prof. Dr. Frank Bomarius
Deputy Director of Fraunhofer IESE and Professor for Computer
Science at the Department of Engineering, University of Applied
Sciences, Kaiserslautern

9 783839 615799

ISBN 978-3-8396-1579-9

