
�������

��������	
�

	
�������
������
��������
��
�
���������	������

���
������������ ��
���������������
�	���
���
������
���� ��
��������������
�������

��
��������������������� ���
��
���������������
�	���

��������	�
�	���

��
�
���

������
� !"

�
#
��

������
���

�
�� �
$
�
��
�

$

�����������	
�����	��
��������������
�	
���	
�
�������	

��������������� �����������������������

��������������� ���������������������� �
����������������!""� ��#���
������������������������

�������	
�����
������������������������

���������
��������������������
��
������� ����!
�����"����!�#
�!�����$
�� #$��%�����
���

����������
&������
���&����������'�
&���(
(��

)���������������*����(
�����������(�'��&
�����!
+�'���
���
�����(����&������������
�
�����
���+��!�������
��!��������
�+����!����'+�
�+�!
�����&�����&��!&�
��&
���
(����&�(+������&���������������,����,����������,������(�!�������������(�'������

�
�+������������
����������'+�!
���
&������
�����������������������������(����&���

��&�
�!��
����
�!
�-���.��/���
������������������
���������,�
����,
+���������
�!(�+����&��&���������
���������������������
�����������
��,����������&������������
�,�����������
�!
�-���

0�'+�����������������"$�����
 %$1�234�5�4526��53��3
��
������� ����!
�����"����!�#
�!�����$
�� #$
�����
&��4��762��3�8�7�%�����
��
1�'����
9�����3�862�%�����
��
.����� :72�3���2�3�����8���
.��
;� :72�3���2�3�����8��4
<��
��� ���
�=��
��������
�#>� ���(�??���
����
���������

 i

Architecture-Centric Software Producibility
Analysis

Vom Fachbereich Informatik
der Technischen Universität Kaiserslautern
zur Verleihung des akademischen Grades

Doktor der Ingenieurwissenschaften (Dr.-Ing.)

genehmigte Dissertation
von

Dipl.-Inform. Ralf Carbon

Fraunhofer Institut für Experimentelles Software Engineering (IESE)
Kaiserslautern

Berichterstatter: Prof. Dr. Dr. h.c. H. Dieter Rombach
 Prof. Dr. Ralf H. Reussner

Dekan: Prof. Dr. Arnd Poetzsch-Heffter

Tag der wissenschaftlichen Aussprache: 16.11.2011

D 386

 iii

Acknowledgement

Since October 2002, I have the chance to work as a full researcher under
the direction of Prof. Dieter Rombach in the Software Engineering com-
munity of Fraunhofer IESE and the AG Software Engineering at the Uni-
versity of Kaiserslautern. Thank you Dieter for this great opportunity and
for your advice that enabled me to retrieve this doctoral degree. My fur-
ther thanks go to Prof. Ralf Reussner for the great discussions on soft-
ware architecture, especially related to producibility, and for taking over
the role of my second supervisor. Thank you also to Prof. Berns for tak-
ing over the lead of my dissertation committee.

The completion of this thesis required enormous effort and motivation in
the last years that I was only able to spent because of the support of
many people. First of all, I want to thank my family. My wife Katrin has
supported me since we know each other and especially in the last year,
she and our newborn son Fabian spent many evenings and weekends
without me to give me the time to write my thesis. Thank you to my
parents, which supported me all the time and laid the foundation for my
professional career by means of their education and by enabling me to
study computer science.

Furthermore, I want to thank my friends and colleagues that accompa-
nied me from my studies until now, namely Christian Denger, Jörg Dörr,
Michael Eisenbarth, Tom König, and Marcus Trapp (in alphabetical or-
der). Especially Marcus Trapp never got tired in motivating me to finish
my thesis and his and Jörg Dörr’s advice as my final internal supervisor
helped me significantly. Thanks a lot also to Matthias Naab and Thorsten
Keuler for the helpful discussions on software architecture and their
feedback on my final presentation, and to Dirk Muthig who supported
me in defining and defending the proposal of my thesis.

 v

Abstract

Software Engineering significantly matured in the last decades, but still
many projects suffer from delays, exceed their budget, do not reach their
quality goals, or even fail. We experienced that many industrial projects
suffer from a misalignment of software architecture and software project
plan. Work activities refer to the same architectural elements causing
conflicts and delays. Architectural elements are modified repeatedly in
many iterations of a project causing effort overhead. Dependencies be-
tween architectural elements imply dependencies between resources
causing communication overhead and delays. Other engineering disci-
plines like manufacturing put specific focus on aligning product design
and production plan to prevent problems as mentioned above. Software
Engineering so far did not specifically consider the relationship of soft-
ware architecture and software project plans and did not deal with a po-
tential misalignment of them.

In this thesis, we introduce the alignment of software architecture and
software project plan as a new quality property of software called pro-
ducibility and propose a method to analyze the producibility of a soft-
ware product. The producibility analysis method semi-automatically de-
tects critical architectural elements and project planning elements like
work activities, iterations, or assigned resources that are supposed to
cause delays or effort overhead during realization of a software product.
The producibility analysis method provides recommendations to archi-
tects and project planners on how to deal with the critical elements.

The following technical contributions enable a producibility analysis: A
meta-model of software production defines the relationship of software
architecture and software project plans. A quality model defines produc-
ibility in a measurable way. Producibility views provide the possibility to
model the relationships of architectural elements and project planning
elements like work activities, iterations, or available resources explicitly in
a certain project. An algorithm detects critical elements based on the
producibility views and the metrics provided by the quality model of pro-
ducibility. A prototype tool supports modeling the producibility views
and determining the producibility metrics. Checklists support in analyz-
ing critical elements in detail and deriving recommendations.

In an industrial case study, we identified more than 90% of critical ele-
ments up-front. We determined based on estimates of the project team
that we could have saved 29% of time in the first of two iterations. This
would have provided the chance to spend the saved time and effort in
the second iteration, which has not been finished as planned.

 Table of Contents

 vii

Table of Contents

Abstract ... v
Table of Contents ... vii
List of Figures .. xi
List of Tables .. xiii

1 Introduction ..1
1.1 Practical Problem ..1
1.2 Example ...4
1.3 Scientific Problem ...6
1.4 Solution ...10
1.5 Benefits and Research Hypotheses ...13
1.6 Research Approach ..15
1.7 Summary ...17
1.8 Outline ...19

2 Foundations and Meta-Models ...21
2.1 Software Architecture ..21

2.1.1 Definition and Role of Software Architecture21
2.1.2 Architectural Elements ...24
2.1.3 Architectural Element Types ...29
2.1.4 Architecture Documentation ..32

2.2 Software Project Plans ..34
2.2.1 Definition and Role of Software Project Plans34
2.2.2 Work Breakdown Structure ..36
2.2.3 Project Schedule ..38
2.2.4 Development Process ...40
2.2.5 Software Project Organization42
2.2.6 Resource Plan ..44
2.2.7 Project Plan Documentation ...46

3 Software Production ..47
3.1 Definition of Software Production ..47
3.2 Software Production Life-Cycle ..49
3.3 Software Production Scenarios ...50

3.3.1 Single Systems with repeating Production Sequences50
3.3.2 Producing similar Systems in a specific Domain51
3.3.3 Product Line Engineering with a pre-defined Scope51

3.4 Software Production Meta-Model ..52
3.4.1 Software Production Plans ...52
3.4.2 Software Production Processes54
3.4.3 Integrated Software Production Meta-Model56

3.5 Software Production Example ..58

Table of Contents

viii

3.5.1 Reference Architecture for Mobile Business Apps 58
3.5.2 Development Process vs. Production Process 59

3.6 Related Work .. 62

4 Quality Model of Producibility ... 67
4.1 Definition of Producibility .. 67
4.2 Alignment of Architecture and Production WBS 70

4.2.1 Architect’s Perspective .. 71
4.2.2 Production Planner’s Perspective 75

4.3 Alignment of Architecture and Production Schedule 80
4.3.1 Architect’s Perspective .. 81
4.3.2 Production Planner’s Perspective 84

4.4 Alignment of Architecture and Resource Assignments 88
4.4.1 Architect’s Perspective .. 88
4.4.2 Production Planner’s Perspective 90

4.5 Context Factors ... 92
4.5.1 Architecture-related Context Factors 93
4.5.2 Production Process-related Context Factors 97
4.5.3 Organization-related Context-Factors 100

4.6 Related Work .. 102

5 Producibility Analysis Method ... 105
5.1 Method Overview .. 105
5.2 Preparation Phase .. 108

5.2.1 Elicitation of Producibility Scenarios 109
5.2.2 Modeling of Producibility Views 113
5.2.3 Mapping of Producibility Scenarios 115

5.3 Execution Phase .. 115
5.3.1 Identification of Critical Elements 116
5.3.2 Analysis of Producibility Scenarios 121

5.4 Consolidation Phase .. 123
5.4.1 Completeness Check of List of Critical Elements 124
5.4.2 Application of Context Factors 126
5.4.3 Derivation of Recommendations 128

5.5 Tool Support ... 132

6 Validation ... 135
6.1 Projects Accompanying this Thesis ... 135

6.1.1 Project “Virtual Office of the Future” 135
6.1.2 Projects in the Airline Management Domain 136
6.1.3 Project “ProKMU” .. 137

6.2 Case Study: Mobile Configuration Assistant 138
6.2.1 Goals .. 138
6.2.2 Context ... 138
6.2.3 Approach .. 140
6.2.4 Results .. 141
6.2.5 Threats to Validity ... 145

6.3 Summary and Future Validation Steps 147

 Table of Contents

 ix

7 Summary and Future Work .. 151
7.1 Summary of Contributions .. 151
7.2 Outlook on Future Work ... 155
7.3 Concluding Remarks ... 159

References ... 161

Appendix A: Producibility Metrics and Conditions 169

Appendix B: Algorithm to identify Critical Elements 171

Appendix C: Checklists for Context Factors 175

Appendix D: Method Example – Additional Materials 181

Appendix E: Case Study Results ... 183

 List of Figures

 xi

List of Figures

Figure 1: Practical Problem 3
Figure 2: Functional Decomposition - Alternative 1 5
Figure 3: Functional Decomposition - Alternative 2 5
Figure 4: Scientific Problem 10
Figure 5: Overview Solution Ideas 12
Figure 6: Overview Research Approach 16
Figure 7: PhD V-Model - Relationship of Problems and Hypotheses 17
Figure 8: Overview Problems and Contributions 18
Figure 9: Architecture as a Mediator 22
Figure 10: Core of Architecture Meta-Model 27
Figure 11: Architectural Element Relationships 28
Figure 12: Pipes and Filters 29
Figure 13: Architectural Element Types 32
Figure 14: Architecture Documentation Meta-Model 34
Figure 15: Project Plan Meta-Model Overview 36
Figure 16: Meta-Model Work Breakdown Structure 37
Figure 17: Example Work Breakdown Structures 38
Figure 18: Meta-Model WBS and Project Schedule 40
Figure 19: Meta-Model Development Process 42
Figure 20: Organization Meta-Model 44
Figure 21: Resource-Plan Meta Model 45
Figure 22: Software Production Life-Cycle 49
Figure 23: Production Plan Meta-Model 54
Figure 24: Production Process Meta-Model 55
Figure 25: Software Production Meta-Model 57
Figure 26: Example Reference Architecture 59
Figure 27: Product Line Life-Cycle 65
Figure 28: Three Dimensions of Producibility 67
Figure 29: Producibility in the Software Production Meta-Model 68
Figure 30: Different Perspectives on Producibility 69
Figure 31: Focus of Alignment of Architecture and Production WBS 70
Figure 32: Example Metrics AE and PWAs 72
Figure 33: Example 1 - Number of PWAs producing Set of AEs 74
Figure 34: Example 2 - Number of PWAs producing Set of AEs 75
Figure 35: Example Metrics Production Work Activities 77
Figure 36: Relationships between PWAs 77
Figure 37: Coupling between PWAs 78
Figure 38: Example sharing of AEs between PWAs 79
Figure 39: Alignment of Architecture and Production Schedule 81
Figure 40: Number of PI involving AE 82
Figure 41: Example - Set of AEs in different PIs 83
Figure 42: Example - Coupling between Iterations 85

List of Figures

xii

Figure 43: Example - Iterations sharing AEs 87
Figure 44: AEs and Resources in Meta-Model 88
Figure 45: Example - Architectural Elements and Resources 89
Figure 46: Example - Coupling between Resources 90
Figure 47: Example - Sharing between Resources 92
Figure 48: Classes of Producibility Context Factors 93
Figure 49: Overview Architecture-related Context Factors 93
Figure 50: Overview Production Process-related Context Factors 98
Figure 51: Overview Organization-related Context Factors 100
Figure 52: Overview Producibility Analysis Method 106
Figure 53: Phases of the Producibility Analysis Method 107
Figure 54: Steps of the Preparation Phase 109
Figure 55: Overview Identification Algorithm 117
Figure 56: Example - Production Iteration View 119
Figure 57: Example - Resource Assignment View 119
Figure 58: Steps of the Consolidation Phase 123
Figure 59: Improved Production Iteration View 131
Figure 60: Improved Resource Assignment View 131
Figure 61: Modeling Producibility Views in EA 133
Figure 62: SQL Model Query in EA 134

 List of Tables

 xiii

List of Tables

Table 1: Example - Development Process vs. Production Process 62
Table 2: Examples of Producibility Concerns 110
Table 3: Producibility Scenario Template 111
Table 4: Conditions for identifying critical Elements 118
Table 5: Example - List of Critical Architectural Elements 120
Table 6: Example - List of Critical Production Work Activities 120
Table 7: Example - List of Critical Production Iterations 120
Table 8: Example - List of Critical Resources 121
Table 9: Example for extended Producibility Scenario Template 123
Table 10: Potentially Critical Architectural Elements 125
Table 11: Potentially Critical Production Iterations 125
Table 12: Potentially Critical Resources 126
Table 13: Checklist for Architectural Elements 127
Table 14: Recommendations regarding Architectural Elements 129
Table 15: Recommendations regarding Production Iterations 129
Table 16: Recommendations regarding Resources 130
Table 17: Recommendations regarding Production Work Activities 130
Table 18: Overview Case Study Results 142

 Introduction

 1

1 Introduction

This chapter introduces the practical and scientific problems addressed in
this thesis. An overview on the solution approach is presented highlight-
ing the main contributions of this thesis. The expected benefits are
pointed out and the research hypotheses underlying this thesis are pre-
sented. The chapter ends with a summary and an outlook on the re-
mainder of this thesis.

1.1 Practical Problem

Today, software is omnipresent in our life. We use software on our desk-
top computers and mobile devices many times a day. Embedded soft-
ware is controlling systems and devices we regularly utilize like cars,
home appliances, etc. In [BJN+06], software is called a basic material of
today’s innovative products. Consequently, the software industry needs
to produce software on a large-scale to fulfill the huge demand for it.
Thereby, production of software means to create software systems effi-
ciently based on a well-defined software architecture and a well-defined
production or project plan. Only the combination of a software architec-
ture with a corresponding production or project plan enables software
production as the combination describes what to build and how.

In hard goods manufacturing, the term production refers to a process
that is highly optimized to come up efficiently with high numbers of a
specific product and runs through without unplanned delays, effort
overhead, and quality issues occurring. The term production is used in
this thesis for software, because many software organizations specialize
to certain markets and create similar products in large numbers for their
customers although each product somehow appears to be individual.
Even if they develop a single system from scratch for a certain customer,
the project typically runs through many iterations that each should fol-
low the same planned production process and add increment by incre-
ment to the system according to the architecture to be successful.

The rise of Software Engineering [Rom09] [Jal10] [Som10] in the last
decades has led to an industrialization of software development. Large
and complex systems can be developed more systematically and with less
risk involved by using software architecture as a conceptual tool to struc-
ture software and control complexity, by applying well-defined software
engineering processes, and by planning and managing software projects.
Reuse approaches like, for instance, Product Line Engineering (PLE)
[BFK+99] [CN02] enable organizations in many cases to increase the

Introduction

2

quality of their software products, to reduce effort and time to market,
and to deliver solutions customized to the individual needs of customers
at a reasonable price [HOF11]. Software is developed in huge consortia
of specialized suppliers and solution providers or integrators. Hence,
software is developed similar to other industrial products. Nevertheless,
still many software projects exceed their budget, deliver too late, do not
completely fulfill their requirements, or even fail [Sta09].

One of the major reasons for this situation we observed in many archi-
tecture assessments in industry is a misalignment of the architecture of a
software system with the project plan, the development process, and the
overall project organization. Hence, software is not really produced. The
development process is too often bothered by delays, effort overhead,
and quality problems originating from design flaws or inappropriate de-
cisions in the earlier phases architectural design and project planning.

The software architecture of a software system and the project plan are
two key artifacts for the production of software.

According to [BCK03], software architecture is defined as follows:

Definition Software Architecture: “The architecture of a software-
intensive system is the structure or structures of the system, which com-
prise software elements, the externally visible properties of these ele-
ments, and the relationships among them.”

The architectural design of a software system conveys the key technical
decisions taken to satisfy the requirements in a software system. In that
sense it describes what to produce. It enables prediction of the quality of
the resulting product, serves as a means for communication in the pro-
ject, and constrains the production of the software product. Implemen-
tation and design are constrained in their creativity and are not allowed
to violate the architecture. Architectural decisions, for instance, on tech-
nologies to be used, affect the processes and tools to be used to pro-
duce the product. Functional decomposition influences, for instance, re-
lease planning as it can facilitate but also hamper adding increments to a
system over time (see Example in Section 1.2). According to Conway’s
Law [Con68], the structure of the system should match the structure of
the project organization to minimize communication overhead.

According to the IEEE Standard for Software Project Management Plans
[IEEE98], a software project management plan (project plan) is defined as
follows.

Definition Software Project Plan: “A Software Project (Management)
Plan is the controlling document for managing a software project; it de-
fines the technical and managerial processes necessary to develop soft-
ware work products that satisfy the product requirements.”

Software is
not pro-
duced to-
day.

 Introduction

 3

A project plan describes how to build a software system. It contains deci-
sions on releases, resource assignments, or schedules. It constrains the
production of a software system in a sense that each organizational unit
in a project knows which tasks to perform, how to perform them, and
which deadlines exist. Production tasks can only be precisely defined, as-
signed to organizational units, and scheduled based on the architecture.
The architecture defines the elements that make up the system and need
to be assigned to resources. The properties of such architectural ele-
ments influence the resource assignments as not each organizational
unit is equipped with the required skills to produce an architectural ele-
ment. The dependencies of architectural elements dictate the required
communication channels between organizational units. Size and com-
plexity of architectural elements influence schedule and effort estimates.

Unfortunately, architectural design is often conducted without sufficient-
ly considering, for instance, release plans, the structure of the project or-
ganization, the skills of the assigned resources, or the processes and
tools adopted in an organization. Project planning is often performed
without considering the architecture of a system, many times project
plans are largely fixed before a first version of the architecture exists
[Pau02]. Hence, architectural design and project planning are typically
conducted largely independent of each other although the decisions
made in each activity are heavily related.

The problem is illustrated in Figure 1. Architectural design and project
planning are not sufficiently interwoven if at all. Project plans are set-up
before the architecture has been designed or without considering it
[Pau02]. As a result, architectures and project plans are misaligned. Prob-
lems originating from the misalignment of architecture and project plan
appear during production leading to project delays, effort overhead, and

Figure 1: Practical Problem

Introduction

4

poor quality of the final product, i.e. the requirements in the product
and the business goals of a project are not fulfilled in the end.

Therefore, this thesis aims at preventing such problems in practice by as-
suring a better alignment of architecture and project plan before produc-
tion by an increased communication between architects and project
managers during architectural design and project planning.

The following example illustrates the problem of misaligned architectures
and project plans by considering functional decomposition as part of ar-
chitectural design and release planning as part of project planning and
their interrelation.

1.2 Example

During functional decomposition, architects decide on how to assign the
system’s functionality to architectural elements. Thereby, they apply
general design principles like information hiding, try to reduce coupling
between architectural elements, and increase cohesion. Project manag-
ers plan releases based on the system’s functionality and constraints de-
fined by various stakeholders involved in the project. The customer, for
instance, can provide a prioritization of the system’s functionality that af-
fects release planning, i.e. the order of realizing certain features.

The functional decomposition chosen by the architect and the release
plan of the project manager can be in conflict. Conflict means in this
case, that a chosen functional decomposition can bear the risk of delays,
effort overhead, or quality issues if the system’s functionality is realized
in the order defined in the release plan.

Figure 2 and Figure 3 show two alternative functional decompositions of
the system. In both cases the features F1, …,F9 are assigned to architec-
tural elements. In the first case the features are assigned to the architec-
tural elements A1,…,A9, in the second case to the architectural ele-
ments B1,…,B9. Several architectural elements contribute to the realiza-
tion of a certain feature in the given example, which is marked by a cross
(X). In both alternatives of functional decomposition, three architectural
elements contribute to each of the features. A 1:1 mapping between
features and architectural elements is theoretically desirable but typically
not realizable for all features of a system in practice. Hence, the example
reflects a realistic setting in practice.

The release plan foresees to realize the system’s functionality in three in-
crements. In Increment 1, the features F1, F2, and F3 are realized, in In-
crement 2 F4, F5, and F6, and in Increment 3 F7, F8, and F9. Increment 1
is supposed to be finished until t1, Increment 2 until t2, and Increment 3
until t3.

 Introduction

 5

Figure 2: Functional Decomposition - Alternative 1

Figure 3: Functional Decomposition - Alternative 2

Introduction

6

If the functional decomposition shown in Figure 2 is chosen, three archi-
tectural elements need to be realized in each increment. In Increment 1,
for instance, the architectural elements A1, A2, and A3 need to be real-
ized. After Increment 1, A1, A2, and A3 are completed, i.e. they do not
need to be touched in later increments. As a consequence, they can also
be completely tested in Increment 1 and no effort for regression testing
in later increments needs to be spent, for instance.

The situation is different in the case of the functional decomposition
chosen in Figure 3. In Increment 1, a first version of all architectural ele-
ments of the system needs to be realized. In Increment 2 and Increment
3 all architectural elements need to be touched again. This leads to the
situation that no architectural element is finished before the end of the
project. Touching all architectural elements in each increment requires
effort for regression testing. Changing an architectural element often
bears the risk of introducing defects, especially if different developers are
responsible for the changes over time. Changes to architectural elements
typically get more complex over time as the internal structure of the ar-
chitectural elements deteriorates.

We can conclude from the example that the functional decomposition
shown in Figure 2 should be preferred over the one shown in Figure 3
with respect to the chosen release plan. The example shows, that archi-
tectural decisions (in this case decisions on functional decomposition)
should not be taken without considering project planning decisions (in
this case decisions on release planning).

1.3 Scientific Problem

As mentioned above, the relationship of the architecture with the project
plan is not sufficiently considered if at all during architectural design and
project planning in practice. Several reasons for this situation can be
identified which originate in shortcomings in the current state of the art
regarding architectural design and project planning. Five closely related
scientific problems (SP) that are addressed in this thesis are discussed in
the following.

SP1: Missing enforcement of communication between architects
and project planners during (initial) architectural design and pro-
ject planning

Both, architectural design and project planning approaches do not suffi-
ciently force or even guide architects and project planners to communi-
cate with each other and align the architecture with the project plan.

 Introduction

 7

Most architectural design approaches like Attribute-Driven Design
[WBB+06] or Fraunhofer DSSA [DFK98] distinguish between the two
basic activities of functional decomposition and quality-driven design.
Functional decomposition leads to a basic overall structure of the system
that is then revised (e.g., architectural elements are added, removed or
modified) based on the quality requirements addressed during quality-
driven design. Release planning is not explicitly considered during func-
tional decomposition according to one of the architectural design ap-
proaches mentioned above. While it is up to an experienced architect to
include information on release planning in architectural decision making,
architects are neither explicitly forced by existing approaches to request
information on release planning from project planners nor guided on
how to use such information. It remains unclear, how a functional de-
composition facilitating the realization of a certain release plan should
look like.

Quality-driven design considers quality and business requirements as in-
put. Typically, such requirements are specified in form of architectural
scenarios. Quality requirements are related to run-time (e.g., availability,
performance) and development-time properties (e.g., modifiability, test-
ability) of the system. Business requirements, for instance, can be related
to time to market, cost, or specifics of the targeted market like providing
interfaces to certain systems, supporting certain communication proto-
cols, etc. Especially addressing business requirements needs a close in-
teraction of architects and project planners as both architectural and
project planning decisions directly affect the fulfillment of such business
requirements.

Most project planning approaches do not explicitly consider the architec-
ture in early phases. Often, project plans are already fixed to a large de-
gree including effort estimations before architectural design has started.
Effort is typically estimated based on cost models like CoCoMo II
[BAB+00] or by using Function Point Analysis [ISO09]. The Architecture-
Centered Software Project Planning (ACSPP) Approach proposed by
Paulish [Pau02] enforces to conduct high-level (architectural) design and
project planning in parallel. Release planning is performed under consid-
eration of the architecture. As a basic strategy, ACSPP proposes, for in-
stance, to first produce a vertical slice of the system in a first release and
then to incrementally add additional functionality in further releases.
ACSPP also proposes to consider, for instance, the effect of global dis-
tributed development on the architecture. Effort estimates are based on
the current version of the architecture and are input to scheduling a pro-
ject. Furthermore, ACSPP uses the results of a global analysis [HND99] or
architecture evaluation to identify project risks. However, ACSPP does
not provide guidance on how to integrate architectural design and pro-
ject planning activities. According to ACSPP, the project manager re-
quests information on the architecture from the architecture team, but
the flow of information back to the architecture team to challenge and
potentially revise the architecture with respect to the project plan is not

Introduction

8

specified in detail. Project management and architectural design deci-
sions are still taken largely independent and do not explicitly mutually
challenge each other early on.

SP2: No support for the identification and analysis of critical archi-
tectural or project planning elements

The identification of critical architectural and project planning elements
can be seen as a first step towards a better alignment of architecture
and project plans. Architectural elements can be modules, subsystems,
or components. Project planning elements can be releases, milestones,
or resource assignments. Thereby, an architectural or project planning
element is supposed to be critical, if significant risks are related to it that
can lead to production problems later on.

Critical architectural elements today can be identified by evaluating the
adoption of general design principles like coupling, cohesion, or infor-
mation hiding in an architecture. If an architectural element AE is highly
coupled with other architectural elements, for instance, several risks are
related to it that can lead to delays in completing the architectural ele-
ment or in effort overhead [BCK03]. Architectural elements using AE re-
quire a working version of it before they can be completed. Such archi-
tectural elements can start working with the interface of AE specified
up-front, before AE is finished. But practical experience shows, that in-
terfaces change during production or architectural elements in the end
to not behave as specified in their interface. Hence, AE is potentially crit-
ical for production as there is the risk that it gets a bottleneck during
production. If AE itself depends on many other architectural elements,
there is the risk that it cannot be completed in time.

But the fact that an architectural element is highly coupled does not
necessarily lead to a production problem. In fact, additional context fac-
tors like, for instance, who produces the architectural element, which
technology is used, how is the architectural element internally struc-
tured, etc. must be considered to decide if an architectural element is
critical and if appropriate countermeasures need to be taken. Approach-
es explicitly supporting such a detailed analysis do not exist today.

SP3: No integrated meta-model of architectures and project plans

The basis for communication is a common language. Architects and pro-
ject planners today cannot build their communication on a better align-
ment of architectures and project plans on a common language or meta-
model. While various meta-models for software architecture or project
plans exist, an integration of such meta-models is missing today. Conse-
quently, a better alignment of architecture and project plans is compli-

 Introduction

 9

cated or even prevented by the missing definition of architecture and
project planning concepts in a common meta-model.

SP4: No quality model for the alignment of architecture and pro-
ject plan

The alignment of the architecture with a project plan can be seen as a
quality attribute of a software system because it is essential for the suc-
cess of a software project. Existing software quality models like ISO 9126
[ISO01] do not include the alignment of software architectures and re-
lated project plans as a quality attribute and consequently also do not
provide any guidance on how to achieve higher alignment of an archi-
tecture and a related project plan.

SP5: No integrated documentation models of architectures and
project plans

Activities towards a better alignment of architecture and project plans
must be based on a common documentation model of architects and
project planners. According to the state of the art software architectures
are documented by means of architectural viewpoints and views as well
as textual descriptions documenting architectural decisions and ration-
ales [CBB+03]. According to the general principle separation of concerns
architectural views contain information on the architecture relevant for
the point of view of specific stakeholders and leave out all information
not relevant to the respective stakeholders and their related concerns.

Various architectural views are relevant for project planners. Structural
views, for instance, support in understanding the system structure and
assigning resources to architectural elements. Deployment views can be
used to identify the required hardware resources and operators involved
in the project. But architectural views explicitly combining architectural
and project planning information are scarce. In the literature, a resource
assignment view is often referenced showing the assignment of re-
sources to architectural elements. Other architectural views combining
architectural and project planning information are missing today.

Project plans are typically documented by a combination of textual de-
scriptions, tables, and diagrams like Gantt-Charts. Visualizations combin-
ing architectural and project planning information are not existing today.

Figure 4 shows how the scientific problems are related to the overall
problem context introduced in Figure 4.

Introduction

10

1.4 Solution

This section introduces the general solution proposed in this thesis. As
the solution idea is partially adopted from the current state of the
art/state of the practice in the manufacturing industry, the situation in
the manufacturing industry is shortly described as background infor-
mation.

The manufacturing industry also suffered from problems similar to the
misalignment of software architecture and project plans [GRD+97].
Products can be badly manufacturable if not designed properly. Bad
manufacturability is typically measured in terms of time to market, effort,
and cost. One of the identified reasons for that is a more or less strict
separation of design and production planning teams [UE95]. After de-
signers had finished their work, they handed over the design of the
product to the production planning team. Typically, production planners
detected problems in the design that made it hard or even impossible to
manufacture in time or within budget. The detected problems were re-
lated, for instance, to the assemblability of products, the chosen materi-
als, the available production technology, or the involved suppliers. Con-
sequently, production planners had to ask designers to rework their solu-
tion in additional design iterations, which caused additional effort and
delays already in early phases. Luckily, they at least did a thorough pro-
duction planning including a check of the design with respect to its
manufacturability before they started manufacturing it in large numbers.

The general solution to reduce the rework effort of designs in manufac-
turing is the integration of a manufacturability analysis in the design pro-
cess [GRD+97]. Manufacturability analysis enables designers to detect

Figure 4: Scientific Problem

Situation in
the manu-
facturing
industry

 Introduction

 11

production problems early in the design phase and change their design
appropriately, before they finally hand it over to production planners.
The analysis is based on information on the capabilities of the production
unit and the constraints defined in production plans. Manufacturability
analysis is in the meantime a well-known best practice in the manufac-
turing industry. Manufacturability is a well-recognized quality attribute of
product designs.

C1: Architecture-Centric Producibility Analysis

In Software Engineering, architectures are not systematically analyzed
with respect to a potential misalignment with the project plan. Hence,
the key solution idea in this thesis is to introduce a so-called architecture-
centric producibility analysis as a mediator between architectural design
and project planning. The architecture-centric producibility analysis trans-
fers the best practice of manufacturability analysis known from the
manufacturing industry to software. The producibility analysis is called
architecture-centric because it uses the architecture to investigate the
alignment with the current version of the project plan and tries to detect
problems potentially arising during production early on. The producibility
analysis detects, for instance, if the structure of the system causes prob-
lems with respect to the release plan, the resource assignments, etc. The
results give architects and project planners the chance to modify the ar-
chitecture and/or the project plan accordingly before any time or effort is
wasted.

Producibility is the quality attribute characterizing the alignment or misa-
lignment of architectures and project plans. It is introduced in detail in
Chapter 4 when a quality model of producibility is presented.

The architecture-centric producibility analysis is based on the assumption
that architectural design and project planning are and will be two sepa-
rate activities in projects as architects and project planners in general
have different backgrounds and concerns. Nevertheless, they need to
collaborate closely in software production, which is supposed to be ena-
bled by explicitly establishing producibility analysis as common activity.

Figure 5 illustrates the envisioned approach of an architecture-centric
producibility analysis. Architectural design and project planning are typi-
cally conducted in an iterative way. Between two architectural design re-
spectively project planning iterations, the producibility analysis can be in-
tegrated. The producibility analysis takes the current version of the archi-
tecture and evaluates the producibility the current version of the project
plan. The producibility analysis identifies critical architectural and project
planning elements and provides guidance for a detailed analysis of them
based on checklists. The result of the producibility analysis is a list of crit-
ical elements of the architecture and the project plan potentially causing
production problems and recommendations how to deal with such criti-

Key Contri-
bution

Introduction

12

cal elements. The recommendations are fed back to architectural design
and project planning to revise the architecture or the project plan in an
up-coming iteration.

The method for an architecture-centric producibility analysis is the key
methodological contribution of this thesis. Several technical contribu-
tions are required to enable an architecture-centric producibility analysis.

C2: Meta-Model of Software Production

The meta-model of software production forms the basis for a better in-
tegration of architectural design and project planning and hence a pro-
ducibility analysis. It defines the key concepts of architecture and project
plans and their interrelationships.

C3: Quality Model of Producibility

The quality model of producibility defines producibility as a quality at-
tribute characterizing the alignment of architectures and project plans.
Based on the meta-model of software production it describes how archi-
tectures and project plans need to be aligned to increase producibility.

Figure 5: Overview Solution Ideas

Technical
Contribu-
tions

 Introduction

 13

Hence, it forms the basis to identify production problems and provide
recommendations in the producibility analysis.

C4: Producibility Views

Producibility views document the relationship of architecture and project
plans. They are the basis to perform the producibility analysis and deter-
mine the producibility according to the quality model of producibility.

C5: Element Identification Algorithms

An algorithm that systematically identifies potential critical elements in
the architecture and the project plan supports the producibility analysis.
The algorithm captures the part of the producibility analysis that will be
automated in a first step.

1.5 Benefits and Research Hypotheses

Several major benefits are expected from conducting an architecture-
centric producibility analysis. In this section, the benefits are discussed
and research hypotheses capturing the expected relationships of the
contributions of this thesis and the practical and scientific problems are
presented.

One major expected benefit is the early detection of potential production
problems. The architecture-centric producibility analysis can detect pro-
duction problems before production has started. Already during initial
architectural design activities in a project, a producibility analysis can be
conducted as long as the respective information from project planning is
available. Early detection enables architects and project planners to elab-
orate solutions before lots of time and effort are wasted in detailed de-
sign or detailed planning. Production risks can be identified and mitigat-
ed early on. Architects get the chance to compare architecture alterna-
tives with respect to their alignment with the project plan and take archi-
tectural decisions under consideration of producibility requirements.

An architecture-centric producibility analysis is essentially based on the
architecture and the existing documentation. While identifying potential
production problems, the architecture respectively its documentation is
inspected from different perspectives of roles involved in production, for
instance, implementers or testers. Production problems can only be de-
tected, if the information relevant for production is already contained in
sufficient detail in the current architectural design. From the perspective
of implementers or testers, this means that it is implicitly checked if all
the information required to implement or test architectural elements are

Early detec-
tion of po-
tential pro-
duction
problems

Check of
the archi-
tecture for
“complete-
ness”

Introduction

14

contained in the architectural design. Such information includes, for in-
stance, interfaces of architectural elements, technology decisions, con-
straints for detailed design of architectural elements, etc. Hence, the ar-
chitecture is checked for completeness with respect to the information
required by implementers or testers. This fact could also be called pro-
duction readiness of the architecture.

The following hypotheses are the basis for the validation of the thesis
described in Chapter 6.

H1 – Effectiveness of the Producibility Analysis Method with re-
spect to Time and Effort: The producibility analysis method reduces
time and effort spent on production (i.e., in this case the set of all activi-
ties conducted after architectural design and project or production plan-
ning) by at least 25%.

H1 is the basic hypothesis of this thesis with respect to the practical
problem identified in Section 1.1. It is assumed that architecture-centric
producibility analysis has a positive effect on the practical problem and
reduces project delays and effort overhead caused during production by
the misalignment of architecture and project plan. It is assumed, that ar-
chitects and production planners are able to identify solutions to reduce
the misalignment of architecture and project or production plan by
means of the guidance provided by the producibility analysis method.

The following hypotheses H2 and H3 are more related to the scientific
problems identified in Section 1.3.

H2 – Completeness of the Identification of critical Elements: The
producibility analysis method detects at least 75% of critical elements
(including architectural and project or production planning elements).

Thereby, elements are called critical if they bear the risk of causing de-
lays, effort overhead, or quality issues during production.

H2 relates to the completeness of the producibility analysis with respect
to the critical elements. The producibility analysis aims at identifying as
many critical elements as possible. However, a certain number of critical
elements are not expected to be detected up-front as the related prob-
lems are caused by unforeseen events occurring during production.

H3 – Correctness of the Identification of critical Elements: At least
90% of the elements identified by the producibility analysis as critical are
critical in the end, i.e. less than 10% of the identified elements are false
positives and not causing any production problems.

H3 is related to the correctness of the results of the producibility analysis.
There is a certain likelihood that architectural elements are classified as

 Introduction

 15

critical although they do not cause problems during production. Poten-
tial reasons for not causing production problems could be project team
members performing better than expected or changes in the project
context that compensate certain problems. The following section pro-
vides an overview of the research approach chosen in this thesis.

1.6 Research Approach

The research approach illustrated in Figure 6 has been applied to come
up with the results of this thesis.

State of the Practice Observations

The practical problem underlying this thesis has been observed in a series
of industry projects at Fraunhofer IESE, in this case architecture assess-
ments. Since several years, we conduct architecture assessments for in-
dustrial customers. Thereby, the motivation of our customers to conduct
an architecture evaluation are typically urgent problems compromising
the success of running projects, for instance, doubts on the appropriate-
ness of the architecture, quality issues regarding the final product, tech-
nical issues, or huge delays in delivery. Based on the results of our archi-
tecture assessments, management decisions concerning the continuation
of the respective projects have been taken. We experienced that prob-
lems often can only be explained by combining observations made re-
garding the architecture with observations made regarding project plans
and processes in an organization. Hence, we concluded that the archi-
tecture needs to be evaluated more thoroughly under consideration of
project plans, processes, and organizational aspects.

State of the Art Literature Survey

Based on the experiences made in industry projects a literature survey
has been conducted. The survey focused on research results regarding
the relationship of software architecture, project plan, processes, and
organizational aspects and in general on approaches aiming at aligning
architecture, project plans, processes, and organization to make soft-
ware development more productive. As Software Engineering adopted
practices from other engineering disciplines already before, the survey al-
so considered related literature from other engineering fields, i.e. the
manufacturing industry. The survey inspired us to come up with the no-
tion of software production as defined in this thesis and to elaborate the
general solution idea to conduct a producibility analysis of software ar-
chitectures.

Introduction

16

Elaboration of Contributions

Based on the results of the state of the practice observations and the
state of the art survey the core contributions of the thesis have been
elaborated. First, the meta-model and the quality model have been de-
rived and the idea of the producibility analysis method has been elabo-
rated in detail. Based on the meta-model and the quality model, the
producibility views and the element identification algorithm have been
derived.

Perform Case Studies

According to the approach of Experimental Software Engineering
[Bas93] we follow at Fraunhofer IESE, the producibility analysis method
has been initially evaluated in a case study. The project to conduct the
case study has been selected in this case based on its suitability but also
availability when this research has been evaluated. Unfortunately, only
one suitable project has been available for evaluation in this case.

The following section summarizes this introduction chapter before Sec-
tion 1.8 gives an outlook on the following chapters.

Figure 6: Overview Research Approach

 Introduction

 17

1.7 Summary

This chapter introduced the practical and scientific problems addressed
in this thesis as well as the contributions and research hypotheses. Figure
8 provides an overview of the practical and scientific problems, the con-
tributions and the overall relationships. The practical problem identified
in various architecture assessment projects in industry is caused by five
scientific problems SP1,…,SP5 elaborated based on the current state of
the art reported in literature. The scientific problems are addressed by
five contributions C1,…,C5. As it can be seen in Figure 8, the contribu-
tions especially focus on the scientific problem SP2 as SP2 has been fig-
ured out as the key technical problem to be addressed.

The relationship of the research hypotheses to the practical and scientific
problem is shown in Figure 7. H1 relates to the practical problem of this
thesis whereas H2 and H3 refer to the scientific problems identified. The
especially refer to the scientific problem SP2, but implicitly also to the
other scientific problems as they are all closely related.

Figure 7: PhD V-Model - Relationship of Problems and Hypotheses

Introduction

18

Figure 8: Overview Problems and Contributions

 Introduction

 19

1.8 Outline

The remainder of this thesis is structured as follows:

Chapter 2 introduces the foundations of software architecture and soft-
ware project plans including respective meta-models. Such meta-models
are the basis for the meta-model of software production.

Chapter 3 defines and discusses software production. The meta-model
of software production integrating the meta-models of software archi-
tecture and software project plans is introduced.

Chapter 4 defines producibility as the quality property characterizing the
alignment of software architecture and software project plan. The quali-
ty model of producibility defines producibility metrics based on the quali-
ty model of software production and introduces a set of context factors
influencing producibility.

Chapter 5 describes the producibility analysis method in detail. Produci-
bility views are introduced and the algorithm identifying critical elements
based on the producibility views is presented. All phases of the produci-
bility analysis method and the provided guidance are explained. The
main features of the existing tool prototype are presented.

Chapter 6 documents the validation activities that have been conducted
in the course of this dissertation research and gives an outlook on future
validation activities.

Chapter 7 summarizes this thesis and gives an outlook on future work.

 Foundations and Meta-Models

 21

2 Foundations and Meta-Models

This thesis addresses the alignment of software architecture and soft-
ware project plans. As a basis for the introduction of the idea of soft-
ware production (Chapter 3) and the quality attribute producibility
(Chapter 4), this chapter presents foundations of software architecture
and software project planning. Key terms and concepts of software ar-
chitecture and software project plans are related to each other in meta-
models of software architecture and software project plans. . These me-
ta-models are specifically required as a basis for the meta-model of soft-
ware production (Section 3.4).

2.1 Software Architecture

Software architecture plays a central role in every software project. Every
software system has an architecture, no matter if it is explicitly docu-
mented and understood [RW05]. Architecture can serve various purposes
if it is explicitly used in a software project as a conceptual tool. In this
section, software architecture is defined and its role in software projects
is discussed in more detail in Section 2.1.1. Architectural elements as the
major building blocks of a software architecture respectively software
system are introduced in Section 2.1.2. Section 2.1.3 generalizes archi-
tectural elements into architectural element types that are present in ar-
chitectural styles, reference architectures, and product line architectures.
Finally, Section 2.1.4 provides an overview on architecture documenta-
tion. The concepts introduced as part of our underlying meta-model are
selected for the context of this thesis and provide exactly the concepts
required for its contributions. Another meta-model developed with dif-
ferent quality properties in mind is, for instance, the Palladio Component
Model (PCM) for component-based software architectures [RBH+07]
[BKR09].

2.1.1 Definition and Role of Software Architecture

We mainly refer to the definition by Bass et al. as already mentioned in
Chapter 1:

Definition Software Architecture: “Software architecture is the struc-
ture or structures of the system, which comprise software elements, the
externally visible properties of these elements, and the relationships
among them.” [BCK03]

Foundations and Meta-Models

22

The tangible result of designing a software architecture is an architecture
document. But software architecture is neither only an artifact derived at
some point in time in a software project nor only a phase in a software
project that is conducted between requirements engineering and con-
struction. Software architecture is an ongoing activity that impacts all
other activities in a software project. Typically, a whole architecture team
takes care of the architecture for a specific system throughout a project.
But there should always be one responsible software architect for the ar-
chitecture of a certain system.

By defining the structure of the system and the properties of the soft-
ware elements based on the requirements in a system, a software archi-
tect performs a transition from the problem to the solution space. The
architect decides how solutions to customers’ problems can be technical-
ly realized. But architecture still abstracts from technical details that can
be decided by designers or implementers if they are not highly relevant
for the overall system quality or project success [CBB+03]. Hence, soft-
ware architecture addresses a higher level of abstraction than, for in-
stance, object-oriented design.

Architecture can be seen as a mediator between customers or other
business-related stakeholders like project or product managers and the
developers responsible for the implementation (see Figure 9).

In that sense, software architecture facilitates communication in the
development team and between the various stakeholders involved in a
software project that are interested in the software architecture. There-
by, “a stakeholder in a software architecture is a person, group, or enti-
ty, with an interest in or concerns about the realization of the architec-
ture” [ISO07].

Transition
from Prob-
lem to So-
lution
Space

Architec-
ture as a
Mediator

Figure 9: Architecture as a Mediator

Architec-
ture facili-
tates
Communi-
cation

 Foundations and Meta-Models

 23

Architects collect the concerns of the stakeholders interested in a soft-
ware system. Thereby, a concern is “a requirement, an objective, an in-
tention, or an aspiration a stakeholder has for that architecture” [ISO07].

Based on the stakeholder’s concerns architects can derive an architectur-
al design from it under consideration of certain trade-offs, where a
trade-off is “a situation that involves losing one quality or aspect of
something in return for gaining another quality or aspect. It implies a de-
cision to be made with full comprehension of both the upside and
downside of a particular choice” [Wiki11].

Trade-offs are required to balance eventually conflicting concerns of the
stakeholders. The resulting architecture is then a means for discussion
between stakeholders, but also to communicate the technical decisions
to the development team. In the case of software production, architec-
ture specifically has to enable communication between architects, pro-
ject planners, suppliers and all other roles involved in production like im-
plementers, testers, operators, etc. In that sense, it plays a vital role to
discuss production requirements and their potential impact on the archi-
tecture and exchange knowledge related to production between the re-
spective stakeholders.

Based on the stakeholders concerns the system has to fulfill certain quali-
ty requirements related to run-time quality properties like performance,
security, availability, or development-time quality properties like main-
tainability, flexibility, or testability [ISO01]. Unsatisfied quality require-
ments are a major source of project failure. The decisions taken by the
architect either explicitly or implicitly affect the fulfillment of the quality
requirements. Consequently, the architecture is also a means to reason
about and predict the fulfillment of certain quality requirements. Note,
that architecture cannot guarantee the fulfillment of quality require-
ments as during production many mistakes can be done by developers,
but without a solid architecture, the required quality cannot be achieved
in today’s large and complex systems.

The architecture constrains the production of a product. According to
[JRL00], “architecture is a set of concepts and design decisions about
structure and texture of software that must be made prior to concurrent
engineering to enable effective satisfaction of architecturally significant,
explicit functional and quality requirements and implicit requirements of
the product family, the problem, and the solution domains”. Production
in this case is referred to as concurrent engineering.

By defining the structure of the system, the architect defines which ar-
chitectural elements need to be produced to come up with a running
system. Hence, concrete work activities can be derived from the architec-
ture during project planning.

Architec-
ture ena-
bles Rea-
soning and
Prediction

Architec-
ture con-
strains and
guides Pro-
duction

Foundations and Meta-Models

24

Ran’s definition of software architecture introduces the concept of tex-
ture. Texture defines the recurring micro-structure that is inherent to ar-
chitectural elements defined by the architect [JRL00], i.e., texture refers
to the internal structure of architectural elements. Although defining the
internal structure of architectural elements is typically supposed to be left
to the respective designer, textures are important to constrain produc-
tion, in this case internal design and implementation of architectural el-
ements. By constraining production via textures, the architect can make
sure that architectural elements are realized uniformly and that certain
cross-cutting features, i.e. features that typically cannot be realized with-
in one architectural element, are realized consistently in each architec-
tural element, for instance, logging or exception handling.

The structure defined by an architect and other architectural decisions
like choosing technologies to implement certain architectural elements
influence project planning. Structural decisions affect, for instance, the
work-breakdown structure (see Section 2.2.2). Technological decisions
influence, for instance, the selection of developers, i.e., resource assign-
ment (see Section 2.2.6). Each element foreseen in the architecture
needs to be assigned to a developer with appropriate skills regarding the
chosen technologies.

The following section introduces architectural elements, i.e. the major
buildings blocks of architectures respectively software systems.

2.1.2 Architectural Elements

We call the software elements mentioned by Bass et al. that make up a
software architecture architectural elements in this thesis. Thereby, archi-
tectural elements are defined as follows:

Definition Architectural Element: “An architectural element is a fun-
damental piece from which a system can be considered to be construct-
ed.” [RW05]

Architectural elements can be, for instance, modules, components, con-
nectors, or deployment units.

Architectural elements can be recursively refined to enable a hierarchical
decomposition of a system to be able to deal with the overall complexity.
Furthermore, they can be related in various ways that will be discussed
later in more detail.

All architectural elements have various properties. Properties of architec-
tural elements are defined as follows:

Architec-
ture con-
strains and
guides Pro-
ject Plan-
ning

 Foundations and Meta-Models

 25

Definition Architectural Element Property: Architectural element
properties are characteristics of architectural elements that need to be
considered while dealing with them in a software project.

Examples for architectural element properties can be the technologies
selected by the architect to realize the architectural element, the esti-
mated size or complexity, etc.

Most of the time, we can abstract from the differences between certain
architectural elements in this thesis, for instance, between modules and
components. Nevertheless, definitions of module, component, connect-
or, and deployment unit are provided in the following to point out the
differences and provide examples for architectural elements.

For a definition of modules, we refer to the definition given [CBB+03]:

Definition Module: “A module is an implementation unit of software
that provides a coherent unit of functionality”

Each module has an interface that specifies its responsibilities. Modules
are the units assigned to developers for implementation. Production
properties of modules can be, for instance, a selected programming lan-
guage, coupling with other modules, cohesion, but also their potential
to reuse parts of other modules for their realization. Such properties can
influence, for instance, the selection of developers responsible for the
module or the order of realizing certain modules.

Components are often called run-time entities as they make up the exe-
cutable software system by interacting in a predefined way via clearly de-
fined interfaces. Various definitions of the term component have been
given. One that we specifically want to mention here as it states several
properties of a component that are relevant for production is given by
Szyperski [Szy02]:

Definition Component: “A software component is a unit of composi-
tion with contractually specified interfaces and context dependencies on-
ly. A software component can be deployed independently and is subject
to composition by third parties.”

Contractually specified interfaces of components are an important prop-
erty as contracts can be leveraged to specify a component’s behavior
quite formal and involve, for instance, third parties in the production
process easier. Hence, organizations are enabled to set up supply chains
of components, which is an important factor also for production in other
engineering disciplines like manufacturing. Besides contractually specify-
ing the interfaces additional production properties of components could
be specified like, for instance, maximal lead time, i.e. the time it may
take to deliver a component, etc.

Foundations and Meta-Models

26

Components are in general made up of modules, but the modules and
the way the component has been built out of them is no longer visible as
they are typically delivered as binaries that come out of a compile respec-
tively build process.

Connectors are interaction mechanisms for components. They realize the
communication between components according to certain protocols and
make sure that data is transferred between them appropriately. In
[TMD10], connectors are defined as follows:

Definition Connector: “A software connector is an architectural ele-
ment tasked with effecting and regulating interactions among compo-
nents.”

Hence, connectors are first class entities at runtime together with the
components. They are extremely important to assure run-time properties
of the system like performance, reliability, availability, or security and can
get quite complex. Connectors should specifically be considered during
software production because of their importance regarding the quality
of the software product, but also because of their potential complexity.
Their complexity is a potential source of production problems. Hence, ar-
chitectural decisions regarding connectors, for instance, to build con-
nectors on top of certain middleware technologies should be well con-
sidered.

Deployment Units are defined as follows in this thesis:

Definition Deployment Unit: Deployment units are the architectural
elements of a software system packaged to be shipped and installed.

Hence, deployment units are the architectural elements that are handed
over to customers or operators of a system. They are mainly made up of
components and connectors as run-time entities, but can also contain,
for instance, configuration files in addition. Deployment units are in-
stalled in the selected runtime environment on hardware components
hosting such runtime environments. The ability to create deployment
units at fixed points in time can be critical during software production as
sometimes operators can only install deployment units at specific points
in time during operation.

Besides such atomic architectural elements like modules, components,
connectors, and deployment units, higher level architectural elements
like layers, clusters, or subsystems exist to structure today’s large and
complex systems. A layer, for instance, is “a collection of code that
forms a virtual machine and that interacts with other layers only accord-
ing got predefined rules” [CBB+03]. Layers, clusters, or subsystems can
be interpreted as aggregations of finer grained architectural elements.
Layers are used to define horizontal structures in an architecture. Upper
layers are allowed to access lower layers but not vice versa. Layers ab-

Layers and
Clusters

 Foundations and Meta-Models

 27

stract from technical details of underlying architectural elements. Clus-
ters are a way to vertically structure an architecture. They can be used,
for instance, to encapsulate cohesive sets of functionality that each can
span all layers of a system or architecture. For a detailed discussion of
layers and clusters (also called slices), we refer to [CBB+03].

Figure 10 visualizes the concepts of the overall architecture meta-model
that have been introduced so far.

As mentioned above, architectural elements can be related to each other
in various ways. Besides the part of relationship and a general relation-
ship that have been defined above on architectural elements, the specific
architectural elements can have specific relationships as shown Figure
11. A specific relationship defined on modules is inheritance. Further-
more, modules can use each other which enables reuse. Components
can call each other to realize the overall behavior expected from the sys-
tem. Per definition, connectors are related to components. Each con-
nector relates at least to two components. Components and connectors
are realized by modules. Components are manifested in deployment
units. Note that potentially one component can be part of several de-
ployment units of a software system.

Architectural element relationships are of particular interest for software
production. It has already been mentioned before that modules are units
of work which can be assigned to developers during production. Conse-
quently, the relationships between modules, for instance, impact the
communication paths in the team and thus the production process. The

Figure 10: Core of Architecture Meta-Model

Architec-
tural Ele-
ment Rela-
tionships

Foundations and Meta-Models

28

relationships between modules and components, for instance, impact
building and testing. If many modules are required to build a certain
component the build process itself can get complex. This is also a poten-
tial source of delays during production because many modules have to
be realized before the component can be built and tested. As soon as
one module is not finished yet the upcoming production work activity
potentially has to wait. Components can be part of many deployment
units as mentioned above. Such components are candidates for early
completion and thorough quality assurance as they can cause damage at
different places in the software system.

In the following section, architectural element types are introduced as a
generalization of architectural elements present in architectural styles,
reference architectures, and product line architectures.

Figure 11: Architectural Element Relationships

 Foundations and Meta-Models

 29

2.1.3 Architectural Element Types

This section introduces architectural element types. Architectural element
types are defined as follows:

Definition Architectural Element Type: An architectural element type
is general type of architectural element recurring in single system archi-
tectures following a certain architectural style as well as in architectures
conforming to the same reference or product line architecture

Before we discuss architectural element types in more detail, we define
the architectural style, single system architecture, reference architecture,
and product line architecture as referred to in the definition of architec-
tural element type.

An architectural style (also called architectural pattern) according to
[BCK03] is defined as follows:

Definition Architectural Style: An architectural style “is defined by:

– a set of element types (…)
– a topological layout of the elements indicating their interrelationships

– a set of semantic constraints (…)
– a set of interaction mechanisms (…) that determine how the ele-

ments coordinate through the allowed topology.”

Prominent examples for architectural styles are client server style, pipe-
and-filter style, or peer-to-peer style.

The definition of architectural style is shortly illustrated using the pipe-
and-filter style. The (architectural) element types defined by the pipe-
and-filter style are pipes and filters. More precisely speaking, pipes are
connectors and filters are components connected via pipes. The topolog-
ical layout mentioned in the definition is shown in Figure 12.

Filters receive data via pipes, transform such data in some form, and
send the data to the next pipe. Filters are stateless and not aware of the
next filters that will process their output, which is a semantic constraint

Architec-
tural Style

Figure 12: Pipes and Filters

Foundations and Meta-Models

30

in this case. An interaction mechanism has to be selected in a concrete
case to specify how pipes and filters exchange data.

Architectural styles capture architectural knowledge that can be reused
by architects across various systems. Architectural styles have been pub-
lished in several architecture handbooks, for instance, in [BMR+96].

A single system architecture is defined as follows in this thesis:

Definition Single System Architecture: A single system (or product)
architecture (SSA) is a software architecture designed based on the re-
quirements in one single software system or product.

A SSA is a special purpose architecture in a sense that there is no guar-
antee that it can be reused for another software system without further
ado. SSAs can be designed using common architectural styles, patterns,
and tactics, but their combination is somehow unique. The definition of
software architecture of Bass et. al. [BCK03] cited before first of all refers
to SSAs.

Reference architectures are blueprints or templates for software systems
of a specific domain. In [HND99], the following definition of reference
architecture is given:

Definition Reference Architecture: “A reference architecture defines
element types, allowed interactions, and how the domain functionality is
mapped to architectural elements.”

A reference architecture is designed based on typical domain require-
ments and domain knowledge and sketch architectures of products in a
specific domain on a higher level of abstraction. Hence, they are often
also called domain specific architectures [JRL00]. Reference architectures
can have different shapes. They can be described, for instance, as an ar-
chitectural style or sketch conceptual architectural elements for systems
in a specific domain. Examples are the Open Group Service-oriented Ref-
erence Architecture [OpenGr09] or the Quasar reference architecture
[Sie04].

SSAs can be based on reference architectures, but refinements are typi-
cally necessary in the concrete case to derive a SSA from a reference ar-
chitecture that fulfills the concrete requirements in a product of the re-
spective domain.

A software product line architecture (PLA) is an architecture for a prod-
uct line of software systems. Thereby, a software product line is “a set of
software-intensive systems that share a common, managed set of fea-
tures satisfying the specific needs of a particular market segment or mis-
sion and that are developed from a common set of core assets in a pre-
scribed way” [CN02].

Single Sys-
tem Archi-
tecture

Reference
Architecture

Product Line
Architecture

 Foundations and Meta-Models

 31

Definition Product Line Architecture: A product line architecture is a
“core asset that is the software architecture for all the products in a
software product line. A product line architecture explicitly provides vari-
ation mechanisms that support the diversity among the products in the
software product line”. [NC07]

All members of a software product line share the same PLA. This is
achieved by explicit variation points in the PLA, which allow architects to
instantiate the PLA for specific members of a product line.

A PLA is different from a reference architecture in a sense that it is built
based on a concrete set of requirements in a concrete set of products
whereas a reference architecture is designed based on rather fuzzy do-
main requirements. The difference of a PLA to a SSA is the variability
that is contained in the architecture and that needs to be resolved in the
concrete case. In [Perry98], different ways of capturing variability in PLAs
are described. One way of capturing variability that is mentioned there is
to use an architectural style defining architectural element types, con-
straints, etc.

The definitions of architectural style, reference architecture, and product
line architecture all refer to architectural element types and vice versa.
Architectural element types play an important role in software produc-
tion, as we will see later in Chapter 3. Production processes contain
procedures called production work activities that guide developers in
producing certain architectural element types.

Figure 13 shows an excerpt of the architecture meta-model including ar-
chitectural element types and their relationship to architectural elements,
architectural styles, reference architectures, and product line architec-
tures.

The following section gives an overview on architecture documentation.

Architectural
Element
Types

Foundations and Meta-Models

32

2.1.4 Architecture Documentation

A recommended best practice to document architectures is using archi-
tectural views [CBB+03]. Architectural views are defined as follows:

Definition Architectural View: “An architectural view is a representa-
tion of a set of system elements and the relationships associated with
them.” [CBB+03]

The rationale for using views is the inherent complexity of software sys-
tems and their architectures. Views handle the complexity by focusing on
a specific perspective on the system and the respective elements in each
view. Each view is typically relevant for a subset of the overall set of
stakeholders.

Several view models have been published, one prominent one being
Kruchten’s 4+1 viewmodel [Kru95]. In [CBB+03], three types of views
are introduced, namely module, component and connector, and alloca-
tion. We refer to this classification in this thesis and define the respective
views as follows:

Figure 13: Architectural Element Types

 Foundations and Meta-Models

 33

Definition Module View: A module view “enumerates the principal
implementation units, or modules, of a system, together with the rela-
tionships among these units” [CBR+03].

A module view show the module structure of a system, which could be a
view showing inheritance relations as well as a view showing the func-
tional decomposition into modules.

Definition Component and Connector View: “A Component and
connector view provides a picture of runtime entities and potential inter-
action.” [CBR+03]

Definition Allocation View: An allocation view “presents a mapping
from the elements of either a module or a component and connector
style onto the elements of the environment”. [CBR+03]

One example for an allocation view is a deployment view showing the
mapping or allocation of deployment units to hardware components.
Another example is a resource allocation view visualizing how resources
of the development organization are assigned to modules.

The documentation of views is one important part of architecture docu-
mentation. Furthermore, architecture documentation should contain ad-
ditional documentation including, for instance, architectural scenarios
and architectural decisions.

Definition Architectural Scenario: An architectural scenario is a pre-
cise description of an anticipated situation of usage, operation, or devel-
opment that a system respectively its architecture is likely to face, along
with a precise description of the desired response to the situation.

Architectural scenarios are a means to formulate the requirements in the
architecture. Besides architectural design, architectural scenarios are
used by many architecture analysis methods like the Software Engineer-
ing Institute’s Architecture Trade-Off Analysis Method (ATAM) [KKC00]
or the Software Architecture Analysis Method (SAAM) [KAB+96].

Definition Architectural Decision: An architectural decision is a deci-
sion on the structure of a software system or properties of specific archi-
tectural elements.

By documenting architectural decisions, rationales are given making the
architecture more understandable.

Figure 14 shows an excerpt of the architecture meta-model including the
concepts related to architecture documentation.

Foundations and Meta-Models

34

2.2 Software Project Plans

Besides software architecture, software project plans are key artifacts in
software production, as we will see later. This section introduces the
foundations of software project plans and incrementally introduces the
underlying meta-model used in this thesis. After defining project plans
and discussing their role in software projects in Section 2.2.1, the major
parts of software project plans are introduced, namely work breakdown
structures (Section 2.2.2), project schedules (Section 2.2.3), development
processes (Section 2.2.4), and resource plans (Section 2.2.6). Finally, we
refer to how software project plans are typically documented in Section
2.2.7.

2.2.1 Definition and Role of Software Project Plans

Software project planning is the activity to come up with and maintain a
software project management plan (project plan) to coordinate all the

Figure 14: Architecture Documentation Meta-Model

 Foundations and Meta-Models

 35

activities in a project to achieve the project goals. As already mentioned
in Chapter 1, we refer to the following definition of project plans.

Definition Software Project Plan: “A Software Project (Management)
Plan is the controlling document for managing a software project; it de-
fines the technical and managerial processes necessary to develop soft-
ware work products that satisfy the product requirements.” [IEEE98]

Based on the product requirements and the overall project objectives,
project planners have to decide on project scope, project schedule, pro-
ject organization and resource allocation, and development processes.

Planning is one of the key activities in every software project. Today’s
software projects are often large and complex, span long periods of
time, and involve many project team members from different organiza-
tional units and even organizations. Hence, project planning is critical for
project success as it can significantly reduce the risks in a project. Ac-
cording to [Sta09], insufficient project planning is one of the major rea-
sons for delays, budget overruns, or failure in software projects. Project
planning is an ongoing activity throughout a project as project plans are
typically a matter of constant change.

Project planning requires communication and collaboration between
many project stakeholders. A project planner needs to elicit the concerns
of various project stakeholders and try to fulfill them by making certain
trade-off decisions. Thereby, a lot of communication is required which is
beneficial for the overall project success. Stakeholders get to know each
other, their concerns, and establish communication paths between them
that can be used later on during project execution.

Planning constrains the work of the project team members. First of all,
work activities are defined and assigned to project members. But fur-
thermore, work activities are constrained by effort, cost, and time con-
straints and technical processes are prescribed that must be followed
during work. Individual project team members can plan their personal
work, but only within the constraints defined in the project plan.

Project managers should make use of existing knowledge and experience
from previous projects when planning a project. The Experience Factory
Approach [BCR94] supports organizations in setting up an appropriate
environment. Knowledge and experience is packaged and stored in an
experience base. Based on the characteristics of an up-coming project
various artifacts like project plans, process descriptions, architectures,
etc. can be selected and retrieved from the experience base to be
adapted to the project context and reused.

Figure 15 shows the general parts of a software project plan: work
breakdown structure, project schedule, resource plan, and development

Planning
reduces risk

Planning
facilitates
communi-
cation

Planning
constrains
the work in
a project

Reuse of
Experience

Foundations and Meta-Models

36

process. In the following sections, each of such parts of a software pro-
ject plan will be introduced in more detail.

2.2.2 Work Breakdown Structure

Work breakdown structures are related to the scope of a project. The
project scope defines the work to be performed in a project: “The pro-
ject scope is the work that must be performed to deliver a product, ser-
vice, or result with the specified features and functions.” [PMBOK04]

The huge amount of work that needs to be done in a software project
needs to be structured. The overall work is typically decomposed into
smaller units of work that are less complex and can be accomplished by
certain resources. The result of such a decomposition of work is called
work breakdown structure (WBS). We refer to the following definition of
work breakdown structure:

Definition Work Breakdown Structure: “A work breakdown structure
is a deliverable-oriented hierarchical decomposition of the work to be
executed by the project team to accomplish the project objectives and
create the required deliverables. It organizes and defines the overall
scope of the project…” [PMBOK04]

A work breakdown structure consists of work activities that are defined
as follows:

Definition Work Activity: A work activity is a fixed unit of work with
defined inputs and outputs.

Definition Work Activity Property: A work activity property is a char-
acteristic of a work activity that needs to be considered while performing
the respective work.

Figure 15: Project Plan Meta-Model Overview

 Foundations and Meta-Models

 37

Figure 16 shows how work breakdown structure, work activities, and
work activity properties are related in the project plan meta-model.

A WBS can be derived based on various strategies, two prominent ones
being phase-oriented and product-oriented. If the work is organized
along phases, the phases of the underlying software development pro-
cess can be used for structuring on top-level, for instance, requirements
engineering, design, implementation, and testing. Using a product-
oriented strategy would mean to use the product to be built to organize
the work in the WBS. This could either mean to use the requirements in
the product for structuring and defining chunks of requirements to be
realized as work units. Alternatively, the architecture of the system can
be used to define work units [Fair09], i.e., architectural elements define
the work units in this case. Figure 17 shows simple examples of WBS.

The selection of an appropriate decomposition strategy depends on the
project context. If the waterfall model is used, organizing the project in
phases according to the waterfall model on top level seems appropriate.
If an iterative and incremental process model is used, the work should
rather be organized product-oriented, i.e. based on product require-
ments or architectural elements that are realized in a certain iteration or
increment. Combinations of phase- and product-oriented strategies are
also feasible. After decomposing the work into phases according to the
waterfall model, for instance, the implementation can be decomposed
into smaller units of work along the architecture.

As we will see later, software production is always based on a product-
oriented WBS. Hence, in the following we will only consider product-
oriented decompositions of the work to be performed in a project.

Figure 16: Meta-Model Work Breakdown Structure

Phase-
orientation
vs. Product-
orientation

Foundations and Meta-Models

38

The WBS introduced in this sub-section is the basis for all further project
planning activities like project scheduling and resource. The following
section introduces project schedules.

2.2.3 Project Schedule

A project is schedule is derived based on the WBS defined during project
scoping. A project schedule is defined as follows:

Definition Project Schedule: A project schedule defines the order of
performing the work activities specified in the WBS and assigns effort
and time to the work activities.

As many projects today follow an incremental and iterative approach
(and also software production is incremental and iterative as it will be in-
troduced in Chapter 3), project scheduling includes the definition of iter-
ations and assigning work activities to them. Iterations are defined as fol-
lows:

Definition Iteration: An iteration is a fixed period of time wherein cer-
tain work activities are performed.

At the end of certain iterations, releases of a product can be delivered.

During iteration or release planning work activities are assigned to itera-
tions or releases. As iterations are performed sequentially, assigning
work activities to iterations leads to a certain ordering of work activities
and consequently a first version of the project schedule. According to
[RM05], release planning is defined as the activity of assigning require-
ments to releases. Assigning requirements to releases means the archi-
tectural elements required to fulfill the respective requirements are sup-
posed to be produced in the respective release.

Figure 17: Example Work Breakdown Structures

Iteration
and Release
Planning

 Foundations and Meta-Models

 39

Iterations or releases can have fixed or variable durations. In agile soft-
ware development, time-boxing is often used and all iterations in a pro-
ject have a fixed duration, for instance, 2 weeks. Consequently, work
units at least need to be decomposed until they fit into iterations of the
respective duration.

Iterations or releases are typically planned based on the concerns of vari-
ous stakeholders, the most important one typically being the customer.
Especially in agile software development [Hun06], iteration or release
planning heavily involves customers. But also a more technical perspec-
tive should be considered by, for instance, involving the architect into re-
lease planning as architectural decisions on the structure of the system
influence release planning, as we have seen in the example in Section
1.2.

Various approaches to release planning have been proposed [SGF+10].
They can be distinguished by the factors they use to identify the re-
quirements for certain releases. Beyond such factors are, for instance,
technical, budget and cost, resource, and time constraints. Thereby,
technical constraints mainly refer to requirements dependencies and po-
tential technical problems in realizing certain requirements. Technical
problems can be analyzed in detail based on the planned architecture, as
the architecture specifies the technical solution. Unfortunately, the exist-
ing release planning approaches do not clarify the influence of the archi-
tecture on release planning in detail, i.e. which characteristics of an ar-
chitecture influence release planning in which way. They especially pro-
vide no guidelines for architects how they should align their designs with
a release plan.

Besides iterations, project schedules consist of milestones. Milestones are
defined as follows:

Definition Milestone: “A milestone is a scheduled event to measure
progress.” [IEEE98]

During project scheduling, milestones are defined. Examples of mile-
stones can be the completion of iterations or releases, but also, for in-
stance, the completion of certain subsystems.

Figure 18 shows the excerpt of the project plan meta-model including
project schedule and the relationship to the work breakdown structure
and work activities.

Foundations and Meta-Models

40

Besides ordering the work units by assigning them to iterations or re-
leases, effort, cost, and time have to be assigned to them. Hence, typical
properties of work activities are effort, cost, and time. The project plan-
ner has to come up with estimates for effort, cost, and time of certain
work units.

Various approaches exist to estimate effort, cost, and time to be allocat-
ed to the work units. As mentioned in Chapter 1, prominent approaches
are CoCoMo (II) [BAB+00] or Function Point Analysis [ISO09]. Another
prominent approach that is based on expert opinion is the Delphi Meth-
od [LT75]. According to the Delphi Method, several experts are asked to
estimate the effort of the work units in the WBS. The estimates are used
to come up with an average effort estimation to be used in the project
schedule.

2.2.4 Development Process

A project planner or manager has to define respectively to select a de-
velopment process to be used in the project. The development process
defines how the work in a project has to be performed. It defines, for in-
stance, how requirements are elicited, how an architecture is designed,
and how implementation, test, and deployment of a system have to be
performed in general.

We define a development process as follows:

Figure 18: Meta-Model WBS and Project Schedule

Estimation
approaches

 Foundations and Meta-Models

 41

Definition Development Process: A development process is a set of
development activity types, work products, roles, and tools that can be
applied to develop a software system.

The definition of development process refers to development activity
types and work product types that will be defined in the following:

Definition Development Activity Type: A development activity type is
a procedure to perform a certain development activity aiming at creating
a certain work product type.

Examples for development activity types are use case analysis during re-
quirements engineering, writing test cases to prepare testing, etc.

Definition Work Product Type: A work product type is a type of arti-
fact created by certain development activity types during a project.

Examples for work product types are use case descriptions, test case
specifications, etc.

Figure 19 shows development processes and related concepts in the me-
ta-model underlying this thesis.

The project manager can make use of various development process
frameworks and select development activity types to define the devel-
opment process. Popular process frameworks are, for instance, the Ra-
tional Unified Process [Kru03] or its open source version OpenUP
[OpenUp], the V-Model XT [VModellXT], or agile processes like Scrum
[SB01] or Extreme Programming [BA04]. Such process frameworks are
built around development activity types for all phases of software devel-
opment like, for instance, requirements engineering, object-oriented de-
sign, or testing.

Defining the development process for a project includes the selection of
tools to be used during development. If, for instance, model-driven de-
velopment is supposed to be used in a project, an appropriate tool envi-
ronment including model editors, generators, etc., needs to be selected.

Process
frameworks
and best
practices

Tools

Foundations and Meta-Models

42

2.2.5 Software Project Organization

Project organization is concerned with the internal structure of projects.
Each project consists of a project team. We define a project team as fol-
lows:

Definition Project Team: A project team is the collection of all human
resources actively involved in work activities in a project.

Project teams can be made up of project sub-teams.

Most software project teams are organized in a hierarchy. The team
members on higher levels of the hierarchy are mainly concerned with
management activities as they have to manage the team members on
the lower levels in the hierarchy. Most of the technical activities are per-
formed on leaf nodes.

We want to distinguish two general strategies for organizing projects in
a hierarchy: role-orientation and product orientation.

In the case of a role-oriented organization, the project team is organized
according to the roles being part of the development process. Team
members are assigned to roles, for instance, requirements engineer,
designer, implementer, or tester. Then, all team members assigned to
the same role form a sub-team team in the project. Hence, the overall
project team is divided into a requirements engineering sub-team, an ar-
chitectural design sub-team, an implementation sub-team, and a testing
sub-team with respective managers organizing the work in the sub-
team.

Figure 19: Meta-Model Development Process

Hierarchical
Organiza-
tion

Role-
orientation

 Foundations and Meta-Models

 43

Alternatively, the project organization can be product-oriented and fol-
low the structure of the overall product to be built. If the product would
be structured into three functional clusters A, B, and C, for instance, the
project team could be subdivided into three teams, each of them re-
sponsible to realize one functional cluster. In [Lar10], such teams are also
called component teams, as they are assigned to develop and maintain a
certain component or subsystem. Alternatively, feature teams can be
built that are responsible to realize certain features which can involve
various components.

Project teams have certain properties. Thereby, project team properties
are defined as follows:

Definition Project Team Property: A project team property is a char-
acteristic of a project team that needs to be considered when assigning
work activities to the project team.

Various project team properties are relevant in software projects, beyond
them the internal organization of the project team, the geographic dis-
tribution of the project team, and the classification as internal or external
team or sub-team. These properties will be shortly discussed in the fol-
lowing.

Various models for organizing decision making and work distribution
inside project teams have been published, for instance, the chief pro-
grammer model [Bak72]. In the case of the chief programmer model,
one experienced architect or programmer takes all design decisions and
implements the key parts of a system or sub-system. The chief pro-
grammer can have one assistant replacing him if required and a librarian
taking care of documentation and administrative tasks. Additional team
members can be assigned to “easy” programming tasks. Another model
that is more based on collaboration and consensus regarding decision
making is the structured open team [Con93]. In such a team, there is a
technical leader representing the team to the outside, but decisions are
taken together by all team members in a democratic way. The tasks are
distributed among team members by majority vote.

Today, project planners or managers should always consider the geo-
graphic distribution of a project team. Geographic distribution means
that certain sub-teams or single human resources can be distributed
worldwide. Such distribution brings several factors like different time
zones, different cultures, etc. into play that influence the overall project.

Teams as well as human resources can be classified as internal or exter-
nal. Internal teams or human resources are full members of the overall
organization responsible for the project. Teams of externals can be in-
cluded in a project team to take over certain work activities, but they are
not employed by the organization responsible for the project.

Product-
orientation

Project
Team Or-
ganization

Geographic
distribution

Foundations and Meta-Models

44

Figure 20 shows the excerpt of our meta-model dealing with project
teams and related concepts.

2.2.6 Resource Plan

The resource plan is the part of the overall project plan dealing with the
allocation or assignment of resources to work activities.

In the following, we define the concepts resource plan and resource as-
signment:

Definition Resource Plan: A resource plan is a plan made up of re-
source assignments.

Definition Resource Assignment: A resource assignment is a decision
on assigning a team or single human resources to work activities of a
work breakdown structure.

Each work activity needs an assigned resource to make sure that some-
one takes responsibility for a work activity and the respective work is

Figure 20: Organization Meta-Model

 Foundations and Meta-Models

 45

performed. Several resources or whole teams can be assigned to a work
activity to perform the work in collaboration. But it depends on the type
of work if this is reasonable. If the work cannot be split appropriately,
only one resource can be assigned to the work activity.

Figure 21 shows another excerpt of the project plan meta-model under-
lying this thesis. The resource plan respectively resource assignment con-
nect organizational elements to work activities.

According to [AJM06], project managers base their decisions regarding
resource allocation mainly on their personal experience and subjective
perception. This can be a source of productivity problems if not the best-
suited resources are selected based on objective measures and if the per-
sonality of the resources is not considered.

Several objective factors influencing the allocation of resources to work
activities should be considered, beyond them skills and availability of re-
sources as well as, for instance, their geographical location. All of these
factors are critical to the successful completion of certain work activities.
If an assigned resource does not bring in the required skills, the quality
of the result may be reduced or more time and effort may be consumed.
Availability of resources is crucial for the timely completion of activities. If
related activities are performed by members of different organizational
units, potentially at different geographical locations, communication
problems can appear and delay the project.

Figure 21: Resource-Plan Meta Model

Foundations and Meta-Models

46

The following section provides an overview on project plan documenta-
tion.

2.2.7 Project Plan Documentation

Project plans must be documented to be able to serve as a means for
communication in a project. A structure for documenting a software
project plan is included, for instance, in [IEEE98]. Similar to architecture
descriptions, project plan documentations consist of various diagrams
and textual descriptions.

WBS as a hierarchical decomposition of the overall work to be per-
formed are often represented in a tree-structure.

One of the most prominent representations of project schedules are
Gantt Charts. They are used in various project planning tools like Mi-
crosoft Project [MSProj10]. Gantt-charts are defined as follows:

Definition Gantt-Chart: “Gantt charts are a graphic display of sched-
ule-related information. In the typical Gantt chart, schedule activities or
work breakdown structure components are listed down the left side of
the chart, dates are shown across the top, and activity durations are
shown as date-placed horizontal bars.” [PMBOK04]

The resource allocation defined by a project manager can be visualized
within a Gantt chart.

Gantt charts can be used for different types of analyzes, one of the most
prominent ones being a critical path analysis [Kel61]. In general, the
critical path of a project is “the sequence of schedule activities that de-
termines the duration of the project” [PMBOK04], which is the longest
path through the whole project. All activities or work units that are on
this path are critical because if problems occur while realizing such work
units this has a direct effect on the project duration. Problems in work
units outside the critical path can potentially be compensated.

Gantt
Charts

Critical Path
Analysis

 Software Production

 47

3 Software Production

Now that the foundations of software architecture and software project
planning have been introduced, software production will be defined. The
definition in Section 3.1 is followed by a short explanation of the soft-
ware production life-cycle in Section 3.2. Section 3.3 introduces software
production scenarios. Software production scenarios illustrate how the
idea of software production can be adopted in single system engineer-
ing, domain engineering, and product line engineering. Section 3.4 in-
troduces a meta-model of software production. The meta-model of
software production connects the software architecture meta-model and
the software project planning meta-model introduced in Chapter 2. It is
the basis to define and measure producibility as it will be introduced in
Chapter 4. The introduction of the software production meta-model is
followed by an example of software production in Section 3.5 and relat-
ed work in Section 3.6.

3.1 Definition of Software Production

This thesis is based on the following definition of software production:

Definition Software Production: Software production is the realiza-
tion of a software system by creating and assembling the architectural
elements defined in the software architecture according to a software
production plan. Thereby, software architecture and software production
plan have been aligned to each other up-front to be able to meet the
production goals and mitigate risks potentially causing project failure.

Software production per definition addresses the practical problem in-
troduced in Section 1.1.

The idea of software production is based on approaches to produce or
manufacture hard goods. As already mentioned in Section 1.4, in the
manufacturing industry production is planned thoroughly based on the
product design and the available production capability of an organiza-
tion. Thereby, the production capability is made up of the production
processes that can be executed in the organizations facilities and the
human resources with their skills. It has been experienced in the manu-
facturing industry that production planning is not possible without a
thorough understanding of the product design and vice versa [Bra98]. In
terms of Software Engineering, this means that the software architecture
representing the product design and the project plan need to be aligned

Software
production
mimics the
production
of hard
goods.

Software Production

48

to each other early on. Alignment means, for instance, that the structure
of a system defined in the architecture somehow supports the realization
of the features in the order requested by the customer (see example in
Section 1.2). If such an alignment has been accomplished, we can talk of
software production. For a precise definition of the alignment of soft-
ware architecture and production plan we refer to Chapter 4.

The key characteristic of software production is its strong product-
orientation. Creation and assembly of architectural elements are the
dominating activities in software production. Typical work activities in
software production of information systems could be, for instance,
“Create an architectural element of the type service with the following
specification…” or “Assemble service A and service B”. Development
activities like implementation, generation, or testing are then performed
in the context of such production work activities. Alternatively, produc-
tion work activities can first refer to elements of the requirements, for in-
stance, features of a product or workflows in the case of workflow-
based information systems, and define work activities like “Realize fea-
ture F” or “Realize workflow W”. Defining production work activities to
produce features or referring to other concepts in requirements engi-
neering is sometimes closer to the customers’ point of view as customers
typically request certain features. In this case, a mapping to architectural
elements is required to derive production work activities on architectural
elements and evaluate the alignment of architecture and production
plan.

Because of the product-orientation of software production, organiza-
tions have the chance to set-up supply chains providing architectural
elements to be integrated into the product as it is done in other engi-
neering disciplines. Experts with respect to certain architectural elements
can be involved easily and their expertise can be used. Hence, suppliers
in software production are selected to deliver parts of the product (not
to take over activities).

Software projects can largely benefit from the idea of planning produc-
tion based on the product’s design, i.e. planning the realization of a
software system based on the software architecture. By taking this pro-
duction perspective, potential problems in the construction phase of a
project caused by characteristics of the architecture can be identified.
Hence, risks during production which are not covered by a typical pro-
cess-oriented perspective can be mitigated and improvement potentials
can be systematically detected and addressed. If an architectural element
is supposed to be changed often during construction and does not pro-
vide appropriate extension mechanisms, for instance, this potential pro-
duction problem is not detected without considering the architecture in
combination with the production plan. Too often, software projects are
planned without thorough consideration of the product to be built, i.e.
without considering the architecture and the characteristics of architec-
tural elements, as already mentioned in Section 1.1. Instead, project

Software
Production
is strongly
product-
oriented

Set-up sup-
ply chains

Production
Perspective
supports in
detecting
additional
project risks

 Software Production

 49

managers heavily rely on the best practices they have selected from pro-
cess frameworks or other sources that typically do not provide specific
guidance for the product at hand.

3.2 Software Production Life-Cycle

Figure 22 provides a high level perspective on the software production
life-cycle. Requirements Engineering provides requirements to produc-
tion planning and architectural design. Production planning and architec-
tural design are performed in close collaboration to achieve the envi-
sioned alignment of architecture and production plan. Architecture and
production plan are then handed over to production to create and as-
semble the architectural elements accordingly. While we call the overall
approach software production, production in a closer sense is the phase
after production planning and architectural design have been performed.
The activities do not necessarily need to be performed strictly sequential.
Production planning and architectural design can start as soon as an ini-
tial set of requirements is available. Production itself is supposed to be
performed in an iterative and incremental way anyway which allows to
evolve production plan and architecture over time if required.

An interesting aspect is that requirements engineering does not need to
be performed completely up-front but can be delayed to a certain de-
gree after architectural design and production planning have been initial-
ly done. We know, for instance, that not all requirements are relevant
for architectural design. Architectural design and production planning
could be performed based on the set of requirements that is relevant for
architectural design and production planning.

Figure 22: Software Production Life-Cycle

Require-
ments En-
gineering in
Software
Production

Software Production

50

Detailed requirements analysis of further requirements could be per-
formed on demand while production is running and input for creating
respective architectural elements is required. Consequently, time could
be saved by stronger overlapping requirements engineering, architectural
design, production planning, and production. This thesis does not elabo-
rate this idea further. Instead we refer to the work of Adam on tailoring
the requirements engineering process for software production [Ada10].

3.3 Software Production Scenarios

Software production requires additional investments in early phases of a
software project. Alignment of software architecture and production
plan does not happen automatically but requires time and effort that is
assumed to be saved later on as production problems are prevented.
Nevertheless, organizations might be reluctant regarding the investment
in an initial alignment of software architecture and production plan. In
this section, we discuss three scenarios where an investment into soft-
ware production has the highest return on investment.

3.3.1 Single Systems with repeating Production Sequences

Software production can pay off already while developing a single sys-
tem, especially if certain production sequences are repeated several
times throughout the project.

Let’s consider a workflow-based information system, for instance, to
support certain office workflows. Typically, such workflow-based infor-
mation systems are constructed workflow by workflow in several itera-
tions for several reasons. First of all, by introducing support for selected
workflows quickly organizations can get a positive return on investment
earlier. Furthermore, feedback from introducing first workflows can be
leveraged in later iterations by all involved stakeholders including users,
members of IT departments, etc.

Each iteration follows the same production sequence to realize the se-
lected workflows. Workflows are realized by certain types of architectur-
al elements and certain development activities have to be repeated per
architectural element in each iteration. Consequently, aligning the archi-
tecture defining how workflows are technically realized and the produc-
tion plan for single iterations once enables organizations to benefit from
this initial investment in ach iteration. One can also think of providing
specific guidance and tool support for producing workflows.

 Software Production

 51

3.3.2 Producing similar Systems in a specific Domain

A potentially even higher return on investment than in the scenario de-
scribed above can be gained if organizations produce similar systems in a
specific domain. We assume in this case, that a reference architecture
for systems in the respective domain exists.

As mentioned in Section 2.1, “a reference architecture defines element
types, allowed interactions, and how the domain functionality is mapped
to architectural elements” [HND99]. If systems in a specific domain are
based on the respective reference architecture, certain architectural ele-
ment types need to be produced again and again and an overall ap-
proach to produce such a system can be planned and manifested in a
kind of domain specific reference production plan. If the reference archi-
tecture and the reference production plan have been aligned once, an
organization can benefit from this alignment several times.

The example of producing mobile business applications that will be in-
troduced in Section 3.5 refers to this scenario.

3.3.3 Product Line Engineering with a pre-defined Scope

Finally, software production can be adopted in the context of software
product line engineering. As mentioned in Section 2.1, product line en-
gineering aims at constructing several products sharing commonalities
but also well-defined variabilities based on reuse. Therefore, all product
line members share the same product line architecture.

During scoping product candidates to be built are elicited. Based on the
scope and the identified commonalities and variabilities a product line in-
frastructure containing reusable artifacts is developed during family en-
gineering. Here, a production plan for members of the product family
can be derived and an alignment with the product line architecture can
be established. Consequently, all application engineering projects, i.e.
the projects building the concrete products for customers, could benefit
from the alignment of product line architecture and production plan that
has been initially established during family engineering.

The term production is already used in the product line community. But
production in their sense does not yet consequently consider the rela-
tionship of architecture and production plan [Car08].

In the following section, software production and the related concepts
are subsumed in a software production meta-model.

Software Production

52

3.4 Software Production Meta-Model

The software production meta-model connects the meta-models of
software architecture, software project plan, organization, and develop-
ment processes describe in Chapter 2. It provides the basis for a deeper
understanding of software production and is the basis to define and
measure producibility, as introduced in Chapter 4. Before the integrated
meta-model is presented, software production plans as a specialization
of project plans are introduced.

3.4.1 Software Production Plans

Software production plans are defined as follows:

Definition Production Plan: A production plan is a project plan consist-
ing of

– a production work breakdown structure,

– a production schedule defining production iterations,
– an assignment of resources to elements of the production work

breakdown structure, and

– a description of the production process.

The definition of a production plan introduces several new concepts that
will be defined in the following:

Definition Production Work Breakdown Structure: A production
work breakdown structure (production WBS) is a product-oriented work
breakdown structure consisting of production work activities.

Definition Production Work Activity: A production work-activity is a
product-oriented work activity.

As already discussed in Section 2.2.2, a product-oriented work break-
down defines work units by referring to elements of the requirements or
to architectural elements to structure the work. If elements of the re-
quirements are used, they need to be mapped to architectural elements
before the alignment of software architecture and production plan can
be evaluated and software production can really start.

The production schedule being part of a production plan defines produc-
tion iterations. Thereby, production iterations are defined as follows:

Definition Production Iteration: A production iteration is an iteration
adding a well-defined increment to the product in production.

 Software Production

 53

An increment is defined as follows in this thesis:

Definition Increment: An increment is a set of new architectural ele-
ments or extensions/modifications to architectural elements that are
produced and added to a product in one production iteration.

A production iteration is in that sense a product-oriented iteration as it
explicitly adds to the final product. Iterations that would not be product-
oriented are requirements or design iterations extending or modifying
the respective requirements or design artifacts. A production iteration
has a 1:1 mapping to an increment as each production iteration contrib-
utes a well-defined set of architectural elements or exten-
sions/modifications to architectural elements.

Assigning work activities to production iterations leads to an overall pro-
duction schedule. As production iterations are performed sequentially,
they introduce a certain order to work activities assigned to different
production iterations. A more detailed planning of the order of work ac-
tivities is then performed inside iterations. It depends on the duration
and complexity of production iterations, how much internal planning is
required in each case. In general, production planning can be performed
in the same way again inside each iteration. In that sense, production
planning is a recursive approach.

The assignment of work activities to production iterations should be ac-
companied by an estimation of effort and duration.

Production plans can include production milestones. A production mile-
stone is defined as follows:

Definition Production Milestone: A production milestone is a mile-
stone referring to the completion of a certain architectural element.

Production milestones often refer to aggregated architectural elements
like layers, clusters, or sub-systems. Consequently, production milestones
would be “Layer L completed” or “Sub-System S completed”.

Software production plans refer to production processes. As described in
2.2.4, project planners are responsible for selecting/defining develop-
ment processes. Consequently, in the case of software production the
need to select/define production processes.

In Figure 23, the production plan meta-model is shown.

In the following section, software production processes are introduced.

Software Production

54

3.4.2 Software Production Processes

Software production processes guide in how to perform the work activi-
ties in software production. They have to be product-oriented processes
as they are supposed to be applied in the context of a certain architec-
ture, reference architecture, or product line architecture.

Software production processes are defined as follows:

Definition Software Production Process: A software production pro-
cess consists of production work activity types describing how to pro-
duce architectural element types defined in corresponding architectural
styles used in a products architecture, a reference architecture, or a
product line architecture.

Definition Production Work Activity Type: A production work activi-
ty type is a description of a procedure that should be followed to pro-
duce a certain architectural element type. A production work activity
type can refer to development activity types of a corresponding devel-
opment process.

The product-orientation of software production processes becomes ap-
parent in the relationship of production work activity types and architec-
tural element types. Architectural element types are the work products
consumed and produced by the production work activities. Hence, a

Figure 23: Production Plan Meta-Model

 Software Production

 55

production work activity type describes how to produce a certain part of
a product.

The following examples illustrate the product-orientation of production
processes. Let us assume a system uses a pipe and filter style to process a
certain stream of data. Respective production work activity types would
be in this case “Create Architectural Element of Type Pipe” and “Create
Architectural Element of Type Filter”. The production work activity types
would describe a procedure on how to produce pipes and filters. This
could include, for instance, a description how to internally design a pipe
or a filter, how to implement them by means of a certain technology,
how to test them, etc.

This example also illustrates the relationship of a production work activity
types and development activity types. A production work activity types
refers to development activity types generally describing how to design,
implement, or test. While production work activity types and develop-
ment activity types are both describing parts of processes, there are cer-
tain major differences:

Production activity types are applied to architectural element types of a
specific architectural style, reference architecture, or product line archi-
tecture, i.e., they are not generally applicable to any system with any ar-
chitecture. Development activity types are much more general and can
be applied to a huge number of different system with different architec-
tures. This means that production work activity types provide more spe-
cific guidance on how to produce a certain system than development ac-
tivity types.

Figure 24: Production Process Meta-Model

Software Production

56

3.4.3 Integrated Software Production Meta-Model

The integrated meta-model of software production connects the meta-
models of architecture, production plan, production process, and organi-
zation introduced above. As we will see later, the production meta-
model is the basis for the quality model of producibility introduced in
Chapter 4.

With respect to the alignment of software architecture and software
project plans that is envisioned in this thesis, the connection of the soft-
ware architecture meta-model to the production plan meta-model is an
essential part of the integrated production meta-model. Figure 25 shows
the Software Production Meta Model.

The key connection between the production plan meta-model and the
architecture meta-model is established between production work activi-
ties and architectural elements. Production work activities consume and
produce architectural elements. Production of architectural elements can
mean in this case creation, extension, or modification. Production work
activities do not necessarily need to consume other architectural ele-
ments, they can create architectural elements from scratch. The relation-
ship of production work activities and architectural elements represents
the key characteristic of software production of being architecture-
centric. Production work activities always refer to architectural elements
that are produced by them. Hence, each production work activity directly
contributes to the product and adds at least a small part to it.

Production work activities are assigned to production iterations similar to
how work activities are assigned to iterations in the project plan meta-
model. We call the concept production iteration in this case to again
emphasize the product orientation in this case. A production iteration
produces an increment of the product which is a concrete extension of
the overall product, i.e. architectural elements are added, extended, or
modified. Iterations of a project do not necessarily need to add to the
final product, they could also be iterations to refine the requirements or
refine the design of certain architectural elements, but no direct effect
on the product would exist in this case as no code is produced. By as-
signing production work activities to production iterations a link be-
tween architectural elements and production iterations is established
that is made explicit in the meta-model by the “involved in” relationship
between them.

Connecting
Production
Work Activ-
ities and
Architec-
tural Ele-
ments

Connecting
Production
Work Activ-
ities, Incre-
ments, and
Architec-
tural Ele-
ments

 Software Production

 57

A specific aspect of interest is the question how aggregated architectural
elements like layers, clusters, or subsystems are related to production
work activities and production iterations. Aggregated architectural ele-
ments can be used to define higher level production work activities like
“Produce Layer L” or “Produce Cluster C” and structure the work ac-
cordingly. Even if this is not the case, aggregated architectural elements
are related to production iterations as architectural elements being part
of them are produced in certain production iterations.

Figure 25: Software Production Meta-Model

Aggregated
architectur-
al elements
and Pro-
duction
Iterations

Software Production

58

A similar relationship than between production work activities and archi-
tectural elements exists between production work activity types and
architectural element types. Production work activity types are part of
the production process and consume as well as produce architectural
element types. Via production work activity types and architectural ele-
ment types the production process thus is related to a software refer-
ence architecture, software product line architecture, or architectural
style. This represents one of the key characteristics of production pro-
cesses to be product-specific.

Resources are assigned to production work activities. In an ideal case,
resources are experts with respect to certain architectural element types
and can be assigned to production work activities that create architec-
tural elements of such types. As a consequence of adopting a software
production approach, organizations should train their staff in producing
certain architectural elements types. They could even set up departments
which combine people that are experts with respect to the same archi-
tectural element types to give them the chance to evolve their compe-
tences together.

The following section discusses an example of software production.

3.5 Software Production Example

The following example aims at further clarification of the ideas of soft-
ware production and the software production meta-model. The domain
we selected are mobile business applications. Organizations can use mo-
bile business apps to offer their business services via mobile devices like
smartphones or tablets or to provide mobile services supporting the
workflows of their employees. We introduce a simple reference architec-
ture for mobile business applications and sketch an excerpt of a related
production process.

3.5.1 Reference Architecture for Mobile Business Apps

Mobile business apps are software products deployed on mobile devices
like smartphones or tablets that are typically put on top of an existing IT
infrastructure consisting of several backend systems. A travel manage-
ment app as mentioned above must be connected to the backend sys-
tems of potentially different organizations offering flights, hotels, and
rental cars.

Different architectural alternatives can be selected for mobile business
applications from so-called native applications, via hybrid applications to
web-applications. In our example, we aim at producing a native applica-
tion for the iOS platform [iOS], i.e. an application for iPhone or iPad.

Production
Work Activ-
ity Types
and Archi-
tectural
Element
Types

Resource
Assignment
in Software
Production

 Software Production

 59

Mobile business apps typically leverage the Model-View-Controller
(MVC) pattern [GFJ+94]. Most mobile development platforms like iOS,
Android [And], or Windows Phone 7 [WP7] provide a specific implemen-
tation of the MVC pattern.

Based on the characteristics mentioned above the following simple ref-
erence architecture shown in Figure 26 is chosen for mobile business
apps in this example.

The core of the mobile business app is realized according to the MVC
pattern. The connection to backend systems is realized via so-called back
end adapters. The role of the backend adapters is to abstract from tech-
nical details of the respective backend systems from the point of view of
the mobile business app and map the data model of the mobile business
app to the data model of the backend systems.

Based on our existing experience in producing mobile business applica-
tions we can make additional assumptions regarding the reference archi-
tecture. We assume that backends offer their service via web services
[W3C04] and that data objects are transferred by means of JSON [JSON].

The reference architecture is simplified as certain important aspects for
mobile business apps are not considered in the example.

If we apply our software production meta-model to the reference archi-
tecture, we can identify a certain set of architectural elements types,
namely: Model, View, Controller, Backend Adapter, and Backend Ser-
vice.

3.5.2 Development Process vs. Production Process

The production process must provide support to produce the architec-
tural element types defined in the reference architecture, i.e. production
work activity types. We select the architectural element type “Backend

Figure 26: Example Reference Architecture

Software Production

60

Adapter” in this case and define a production work activity type “Pro-
duce Backend Adapter”. The production work activity type “Produce
Backend adapter” is supposed to provide specific guidance on how to
produce backend adapters for mobile business applications.

As a basis for defining the production work activity types we decide to
use a development process based on the Open Unified Process (OpenUp)
[OpenUp], an open source version of the Rational Unified Process (RUP)
[Kru03]. This means in terms of our software production meta-model
that development activity types are selected from the OpenUp.

Table 1 shows the selected development activity types and the produc-
tion work activity type “Produce Backend Adapter” as one example. The
production work activity type is based on the development activity types
as it follows the general sequence of development activity types specified
in OpenUp. The major difference is that each step in the production
work activity type is product-oriented as it provides concrete guidance
on how to perform the respective steps for backend adapters and not
for any kind of architectural element.

The production work activity type “Produce Backend Adapter” contains
one additional step “Deploy and simulate integrated mobile business
app” due to the specific product respectively the mobile development
platform to be used. Such product specific steps cannot be derived by
selecting development activity types from existing process frameworks.
The mobile business app is deployed on the iPhone or iPad simulator that
is available in this case to test the app before deploying it to the physical
mobile device. This gives the developers the chance, for instance, to
check for memory leaks which is a known problem in iOS applications
and that can be detected by means of the Instruments tool.

 Software Production

 61

OpenUp based Development

Activity Types
Production Work Activity Type

“Produce Backend Adapter”

1 Design the Solution: Identify the
elements and devise the interactions,
behavior, relations, and data neces-
sary to realize some functionality.

Design Backend Adapter: Model the
relations between the backend data
model and the data model of the mo-
bile business app.

Model the relationship of the backend
adapter to the backend services.

Model the behavior of the backend
adapter. Consider minimizing the
number of calls of backend services to
eventually save cost.

…

2 Implement Developer Test: Imple-
ment one or more tests that enable
the validation of the individual im-
plementation elements through
execution.

Implement Backend Adapter Test:
Implement one test per public method
and equivalence class of the backend
adapter.

…

4 Implement Solution: Implement
source code to provide new func-
tionality or fix defects.

Implement the backend adapter: Im-
plement the mapping of the mobile
business app data model to the
backend data model.

Implement the behavior as specified in
the backend adapter design.

Implement the communication with
the backend services using restful web
services.

 Use JSON to exchange data between
backend adapter and backend services.

…

5 Run Developer Test: Run tests against
the individual implementation ele-

Run Developer Tests: Run the develop-
er tests of the backend adapter using

Software Production

62

ments to verify that their internal
structures work as specified.

OC Unit

…

6 Integrate and Create Build: This task
describes how to integrate all chang-
es made by developers into the code
base and perform the minimal testing
to validate the build.

Integrate and Create Build: Integrate
the backend adapter with the other
architectural elements already created.

…

 Deploy and simulate integrated mobile
business app:

Run integrated mobile business app on
the iPhone Simulator

Use the instruments tool to detect
potential memory leaks

…

Table 1: Example - Development Process vs. Production Process

Table 1 shows only an excerpt of the overall production process. For
each architectural element type of the related reference architecture as
production work activity type would need to be defined that provides
specific guidance.

3.6 Related Work

In this section, an overview on related work on software production is
provided.

Agile Software Engineering

Agile Software Engineering is an approach claiming to be essentially
product-oriented. The Agile Manifesto [AM01], for instance, argues for
product-orientation especially by mentioning the following three (out of
twelve) principles:

– “Our highest priority is to satisfy the customer through early and con-
tinuous delivery of valuable software.”

 Software Production

 63

– “Deliver working software frequently, from a couple of weeks to a
couple of months, with a preference to the shorter timescale.”

– “Working software is the primary measure of progress.”

Agile projects are largely driven by the customer as the customer decides
on the scope of the project and the next releases and iterations [Hun06].

Although agile approaches to Software Engineering are essentially prod-
uct-oriented, software architecture does not explicitly play a central role
in an agile project. Big-design up-front is supposed to be to heavy-
weight and causes overhead effort if architects plan for scenarios that
will potentially never get relevant during the project as requirements
continuously change anyway. Hence, agile Software Engineering argues
for lightweight and emergent design [BA04] [Amb02] [CLM+06]. Be-
cause of the continuous change, agile software engineering also does
not perform detailed planning for a whole project but only for upcoming
iterations or releases with an almost fixed scope. In Scrum [Coh09], re-
quirements or tasks to be performed are collected in a so-called backlog
an pulled from there over time. From a design and planning perspective,
agile Software Engineering differs from software production. Software
production requires more architectural design and production planning
up-front to be able to align architecture and production plans to each
other and reduce risks related to a potential misalignment.

Combining agile principles and software production might be an inter-
esting combination to be considered. While agile thinking could force
organizations adopting a software production approach to carefully
think about the architectural decisions and production planning deci-
sions that really need to be taken up-front, agile approaches could more
explicitly consider the role of the architecture in general and specifically
during planning.

Lean Software Engineering

Lean Software Engineering [PP03] is an approach that is often referred to
as an agile approach. We mention it here separately, because it explicitly
refers to the principles of lean production in other engineering disci-
plines. The most prominent example on lean production is the Toyota
Production System (TPS) [OB88]. The TPS adopts principles of Kanban,
one of the most prominent ones being “Eliminate Waste”.

Hence, they adopted, for instance, lean principles to software develop-
ment. While lean Software Engineering also takes a production perspec-
tive and try to remove inefficiencies, etc. it does not explicitly consider
the role of the architecture. It rather focuses on the development pro-
cesses and how to optimize them which could be complementary to the
architecture-centric approach chosen in this thesis.

Software Production

64

Software Factories

Software factories [GSC+04] envision an industrialization of software
engineering increasing productivity and achieving similar maturity levels
than manufacturing industries. Development by assembly is one of the
key ideas of software factories similar to software production. Software
supply chains involving suppliers in the development process are set-up
and managed. Development by assembly and introduction of supply
chains move software development closer to the state of the practice in
other industries. Products are developed based on reuse according to a
product line approach. Software factory schemas describe the artifacts
that must be developed to produce a product of a product family. Fur-
thermore, the relationships between such artifacts and transformation
rules to derive certain artifacts from others are part of the software fac-
tory schema. Software factory templates are implementations of soft-
ware factory schemas that can be loaded into tools to support the de-
velopers in building products. Recurring, menial development tasks are
automated to focus more on the creative tasks.

Software Product Line Engineering

As mentioned above, software product line engineering is concerned
with the construction of products sharing commonalities and well-
defined variabilities based on reuse from a product line infrastructure.
The so-called product line life-cycle shown in Figure 27 illustrates this.
Family Engineering (FE) creates reusable artifacts based on a pre-defined
scope. Application Engineering (AE) produces products for the customers
of a product line organization based on reuse. The construction of
members of the product line during AE is called production in certain
cases [CN02] [McG04].

Krueger talks of so-called software production lines [Krue01] [Krue02].
Thereby, a production line is a specific type of product line. In a produc-
tion line, the reusable artifacts are under configuration management in
the product line infrastructure. Products are produced by means of a tool
infrastructure based on the reusable artifacts. This leads to a high degree
of automation of the application engineering process. The individual
products for the customers are not under configuration management,
but are produced on demand. Changes are always applied to the reusa-
ble artifacts and products are reproduced if required based on the
changed reusable artifacts.

 Software Production

 65

Production planning is mentioned as an important activity in software
product line engineering [MC08]. Thereby, “a production plan is a de-
scription of how core assets are to be used to develop a product in a
product line” [CM02]. It provides guidelines on how to perform certain
work activities during AE or production. In [McG04], McGregor argues
for setting-up a production system for a software product line similar to
production environments in manufacturing that enable the production
of members of a product line according to the production plan.

The architecture is often referred to as the key artifact in software prod-
uct line engineering enabling reuse, as all members of the product line
share the same architecture. Nevertheless, production planning in soft-
ware product line engineering does not systematically consider the
product line architecture or even provide feedback to architects to
change the architecture to be better aligned with the production plan
[Car08].

The Term Production in the Context of Software

The term production is used by software developers for several other
purposes in combination with software that should not be mixed up
with our definition.

The process of creating an executable piece of software out of source
code is sometimes called production. This process is typically highly au-
tomated by means of build scripts.

Figure 27: Product Line Life-Cycle

Product Line InfrastructureProduct Line Infrastructure

DomainDomain

Family Engineering

Product
Line

Artifact Base

Feedback
Application EngineeringApplication Engineering

ProductProductProduct
Requirements

Product
Requirements

Requirements C
Requirements B

Product
Requirements A

Requirements C
Requirements B

Product
Requirements A

Scoping

Software Production

66

The distribution of software after it has been developed is sometimes
called production. Software is copied in this case to be distributed to
many customers. But in contrast to hard goods manufacturing copying
of software causes almost no costs.

The operation of software, for instance, in a data center, or the execu-
tion of software are sometimes also called production.

 Quality Model of Producibility

 67

4 Quality Model of Producibility

This chapter introduces producibility as the quality attribute in the focus
of this thesis. The definition is based on the software production meta-
model introduced in the previous chapter. Section 4.1 gives the general
definition of producibility. The following sections then introduce produc-
ibility metrics that can be applied by architects and production planners.
The producibility metrics are complemented by a set of context factors
that must be carefully considered while interpreting the values of the
producibility metrics.

4.1 Definition of Producibility

In this thesis, producibility is defined as follows:

Definition Producibility: Producibility of a software system is the de-
gree of alignment of a system’s architecture with the production plan in
a given context.

Thereby, producibility, i.e. the alignment of architecture and production
plan, is measured on three dimensions:

– Alignment of architecture and production work breakdown structure

– Alignment of architecture and production schedule

– Alignment of architecture and resource assignments

Figure 28 illustrates the three dimensions of producibility.

Figure 28: Three Dimensions of Producibility

Quality Model of Producibility

68

By means of the software production meta-model introduced in Section
3.4, it is possible to concretize the definition of producibility in each di-
mension and systematically derive producibility metrics. Figure 29 shows
the excerpt of the software production meta-model relevant in this case
and the relationship to the three dimensions mentioned above. The ar-
chitecture is represented by architectural elements, the production work
breakdown structure by production work activities. Consequently, the
alignment of architecture and production work breakdown structure can
be determined based on the relationship of architecture elements and
production work activities in a concrete case. In a similar way, the align-
ment of architecture and production schedule is determined based on
the relationships of architectural elements and production iterations. The
alignment of architecture and resource assignments is based on the rela-
tionship of architectural elements and resources assigned to production
work activities respectively architectural elements. Hence, based on the
meta-model of software production introduced in 3.4, alignment or mis-
alignment of architecture and project plan can be defined precisely, i.e.
in a measurable form.

During measurement, the perspective of the observer is always relevant
[BCR94b]. In the case of producibility, the perspectives of architects and
production planners are specifically supported by respective metrics. As
shown in Figure 30, architects have a specific perspective as their starting
point for any considerations are architectural elements. Hence, they are
interested in measures relating architectural elements to production
work activities, iterations, and resources. The other way round, produc-
tion planners are primarily interested in measures relating production
work activities, iterations and resources to architectural elements.

Figure 29: Producibility in the Software Production Meta-Model

 Quality Model of Producibility

 69

The definition of producibility is oriented at the definition of software
production given in Section 3.1. We assume that an organization or
project team aims at executing a project conform to the ideas of soft-
ware production. Producibility is then a quality attribute measuring if
software production is adopted and the expected effects of software
production can be achieved. As mentioned in Chapter 1, the misalign-
ment of architecture and project plan is a major problem in today’s pro-
jects that is addressed in software production by definition. If positive
values of producibility are achieved, it is assumed that projects are more
successful, i.e. less budget and time overruns, higher quality of the re-
sulting products, etc. can be achieved. One could also argue that pro-
ducibility aims at reducing production risks.

In the following section, the alignment of architecture and production
work breakdown structure as one sub-attribute of producibility is dis-
cussed in detail and concrete metrics are introduced. Before the concrete
metrics are defined, we define the following sets of elements:

Figure 30: Different Perspectives on Producibility

Producibil-
ity and
Software
Production

Quality Model of Producibility

70

Definition Set of all Architectural Elements AEall: AEall is the set of all
architectural elements that have been designed into the architecture of a
system.

Definition Power Set of all Architectural Elements P(AEall): P(AEall) is
the power set of the set of all architectural elements AEall.

Definition Set of all Production Work Activities PWAall: PWAall is the
set of all production work activities that have been planned in the pro-
duction WBS of a project.

Definition Set of Production Iterations PIall: PIall is the set of all pro-
duction iterations defined into the production schedule of a project.

Definition Set of assigned Resources RESall: RESall is the set of all re-
sources that have been assigned to production work activities in a pro-
duction plan.

4.2 Alignment of Architecture and Production WBS

This section introduces how to determine and measure the alignment of
architecture and production work breakdown structure via the relation-
ship of architectural elements (AE) and production work activities (PWA).
Hence, we focus on the excerpt of the software production meta-model
shown in Figure 31.

The measurement of the alignment of architecture and production work

Figure 31: Focus of Alignment of Architecture and Production WBS

Required
Artifacts

 Quality Model of Producibility

 71

breakdown structure is based on several artifacts that need to be availa-
ble as a prerequisite. A production work breakdown structure is re-
quired, i.e. it either defines work activities based on features or directly
refers to architectural elements (see Section 2.2.2). If the production
WBS is based on features, an artifact containing traceability information
from features to architectural elements is required. If such an artifact is
not available, the traceability information must be derived, for instance,
based on interviews with requirements engineers, architects and devel-
opers, which can be a time consuming and effort intensive task. Fur-
thermore, a structural view of the architecture is required, i.e. a view
showing architectural elements and their relationships. Typical architec-
tural views visualizing structural information are a module or a compo-
nent and connector view. Both are appropriate in this case, as both are
architectural elements according to our architecture meta-model pre-
sented in Section 2.1. We do not consider the differences between
modules and components to be relevant at this point.

In the following, measures directly characterizing the relationship of ar-
chitectural elements and production work activities are introduced. As
mentioned above, we distinguish the two perspectives of architect and
production planner as each measure is of specific interest to one of these
two roles.

4.2.1 Architect’s Perspective

The architect is primarily interested in the relationship of architectural el-
ements and production work activities. For each single architectural ele-
ment defined in the architecture, the relationship to production work ac-
tivities needs to be considered. Hence, the following metrics are defined
per architectural element.

Metric Definition: AEall->N: #PWA_producing(AE) = n, where n is the
number of production work activities involved in producing the architec-
tural element AE.

The notation used for describing the metric must be interpreted as fol-
lows: The metric #PWA_producing is a function assigning each architec-
tural element AE of the set AEall a natural number n out N, i.e. the set of
all natural numbers.

Metric Definition: AEall->N: #PWA_consuming(AE) = n, where n is the
number of production work activities that are consuming the architec-
tural element AE.

From an architectural perspective, a production work activity PWA1 is
consuming an architectural element AE2 that is produced by PWA2, if an
architectural element AE1 produced by PWA1 has an architectural rela-
tionship to AE2.

Quality Model of Producibility

72

The two metrics are illustrated in Figure 32. AE1 is in this case produced
by one production work activity PWA1, AE2 by one production work ac-
tivity PWA2. AE2 is consumed by one PWA. Hence, the resulting values
are:

#PWA_producing(AE1) = 1

#PWA_producing(AE2) = 1

#PWA_consuming(AE2) = 1

Many PWAs modifying an AE lead to a huge number of changes applied
to the AE over time. Hence, the AE can get a so-called hot spot. Hot-
spots are a potential source of entering defects, as potentially various
developers change it, conflicts arise, etc. In that sense, an AE that is pro-
duced by many AEs is critical with respect to quality but also delays, and
exceeding of planned effort. In an ideal case, an AE is only modified by
one PWA, i.e. #PWA_producing(AE) would have a value of 1 as in the
example above.

A high number of PWAs consuming an AE points out the relevance of
the AE with respect to the overall product. If production problems arise
during production of the AE being it delays or defects the success of all
the PWAs consuming the AE is jeopardized. If the AE is not finished in
time, consuming PWAs can also be delayed. If the AE has poor quality
and is used in many follow-up PWAs the quality of their results is poten-
tially also harmed. Hence, an AE with a high value for
#PWA_consuming(AE) should be marked as critical. In an ideal case,
#PWA_consuming(AE) = 0. But this cannot be a goal to be achieved for
all architectural elements. If all AEs would have a value of zero for
#PWA_consuming(AE), this would mean that either the whole product
would be produced in one big step, i.e. one PWA, or the architectural
elements produced are not connected in any way, which would mean
that they do no longer form a system.

So far, single architectural elements and their relationships to production
work activities have been considered. But architectural elements are al-
ways related to other architectural elements, as it is modeled in the ar-

Figure 32: Example Metrics AE and PWAs

 Quality Model of Producibility

 73

chitecture meta-model. It is important to have a look on how cohesive
sets of architectural elements, i.e. architectural elements being part of an
aggregated architectural element like a layer, cluster, or subsystem, or
architectural elements that are coupled for other reasons, and produc-
tion work activities are related. This is important for several reasons:

– The overall behavior of a system is realized by the interaction of archi-
tectural elements, for instance, a set of components communicating
with each other. Let us consider the example introduced in Section
3.5 again. A backend adapter in combination with a cache compo-
nent could together be the basis to realize offline working with the
travel management app. If offline work is supposed to be a critical
behavior of the system, the question is if these two architectural ele-
ments should be realized in the same production work activity to
make sure that they function together as supposed and the offline
functionality can be tested as part of one production work activity.

– Certain architectural elements are supposed to be realized in a uni-
form way. Using the example of the travel management app again,
all backend adapters should be realized uniformly. Furthermore, they
are assigned to the same layer. If the uniform realization of the over-
all layer is supposed to be critical and not easy to achieve in the given
project context, the backend adapters maybe should be realized in
one or at least closely related production work activities.

Figure 33 and Figure 34 illustrate the problem. A system consists of three
layers and the architectural elements AE1, AE2,… AE11. The bottom
layer is supposed to be critical for several reasons. Each architectural el-
ement, i.e. A8, A9, A10, and A11, is supposed to be realized in a uni-
form way. If we assume this layer to be a backend integration layer as
mentioned above, an architectural requirement could be that each archi-
tectural element minimizes the number of transactions to the backend to
save cost as each transaction is billed. This requires a certain expert
knowledge that should be shared across all the production work activi-
ties involved in producing the architectural elements of the backend in-
tegration layer. In Figure 33, four production work activities produce the
architectural elements of the bottom layer. If the knowledge on how to
uniformly produce the architectural elements is not shared appropriately
among the four production work activities, there is a certain risk that the
requirement will not be fulfilled.

Quality Model of Producibility

74

Figure 34 provides an alternative solution. The architectural elements of
the bottom layer are produced in one production work activity which re-
duces the risk of not fulfilling the requirement of uniform production in
this case. Another reason for preferring the solution shown in Figure 34
could be that an organization wants to outsource the production of the
bottom layer to an external supplier. In this case, it would be better to
outsource one production work activity instead of involving an external
supplier into four production work activities.

Figure 33: Example 1 - Number of PWAs producing Set of AEs

 Quality Model of Producibility

 75

The following metric is capable of expressing the fact discussed in the
example above:

Metric Definition: P(AEall)->N: #PWA_producing({AE}) =n, where n is
the number of production work activities producing the set {AE} of archi-
tectural elements.

The metric expresses the fact that the production of a set of architectural
elements that is cohesive for some reason should not be spread over
many production work activities. If the production work activities split
the set of cohesive architectural elements, the correct realization of the
requirement causing the cohesion might be jeopardized.

In the following sub-section, the production planner’s perspective on the
relationship of architectural elements and production work activities is
presented.

4.2.2 Production Planner’s Perspective

The production planner is primarily interested in the relationship of pro-
duction work activities and architectural elements. For each single pro-
duction work activity defined in the production work breakdown struc-
ture, the relationship to architectural elements needs to be considered.

Figure 34: Example 2 - Number of PWAs producing Set of AEs

Quality Model of Producibility

76

Hence, the following metrics are defined per production work activity.

Metric Definition: PWAall->N: #AE_produced_by(PWA) = n, where n is
the number of architectural elements that are produced by the produc-
tion work activity PWA.

Metric Definition: PWAall->N: #AE_consumed_by(PWA) = n, where n is
the number of architectural elements that are consumed by the produc-
tion work activity PWA.

A high number of AEs modified by a PWA is a first indicator for criticality
of the PWA with respect to producibility. Modifying various AEs requires
knowledge on a potentially large part of the architecture. The modifica-
tions made by the PWA are in that sense not necessarily local. Hence,
the WA is a potential source of delays, increased effort, or defects. In an
ideal case, #AE_produced_by(PWA) is one.

A large number of AEs consumed by a PWA indicates that a large num-
ber of prerequisites needs to be fulfilled to start the PWA, i.e. a large
number of AEs must have been produced before. Hence, a high value
for #AE_consumed_by(PWA) indicates that a PWA is critical in the sense
that its start can be delayed because of missing inputs and that potential
follow-up PWAs will also be delayed. One could argue that it is enough
if the specifications of consumed AEs are known to be able to start a
PWA. But experience shows that various details of specifications of AEs
can change during production which suggests to produce them in a cer-
tain order. In an optimal case, #AE_consumed_by(PWA) is 0 for a pro-
duction work activity as this means that it can be performed independ-
ent of other PWAs.

The two metrics are illustrated in Figure 35. The production work activity
PWA1 produces two architectural elements AE1 and AE2. Furthermore,
it consumes two architectural elements AE3 and AE4. Consequently, the
resulting values for the two metrics are:

 #AE_produced_by(PWA1) = 2

#AE_consumed_by(PWA1) = 2

 Quality Model of Producibility

 77

Production work activities are related to each other as architectural ele-
ments are. Hence, similar to the situation described in Section 4.2.1 in
the case of architectural elements, we have to consider such relation-
ships with respect to producibility. Thereby, we specifically consider the
relationships between production work activities that are caused by the
architectural elements involved.

Relationships between architectural elements cause relationships be-
tween production work activities. This fact is illustrated in Figure 36. Fig-
ure 36 shows three production work activities PWA1, PWA2, and PWA3.
Their relationship becomes visible as soon as we add information on the
architectural elements involved in the PWAs. Three relations can be iden-
tified between PWA1 and PWA2, and two between PWA2 and PWA3,
because the involved architectural elements are related respectively. Such
relationships influence the producibility, i.e. in this case the alignment of
architecture and production work breakdown structure. Architectural el-

Figure 35: Example Metrics Production Work Activities

Figure 36: Relationships between PWAs

Quality Model of Producibility

78

ements of PWA1 rely on architectural elements of PWA2 and vice versa.
Hence, PWA1 and PWA2 cannot easily be produced independent of
each other.

One could argue, that the interfaces of AE1, AE2, AE3, and AE4 must be
specified up-front, then PWA1 and PWA2 can be performed independ-
ent of each other. But experience has shown that even if interfaces have
been specified up-front carefully, they most likely change to a certain
degree during production. This requires communication between the
teams performing PWA1 and PWA2 to maintain consistency, which
needs to be considered during production planning.

The fact that PWAs can be coupled via the architectural elements they
produce and consume can be measured by means of the following met-
ric:

Metric Definition: PWAall->N: Coupling(PWA) = n where n is the cou-
pling between the production work activity PWA with any other PWA in
PWAall determined based on coupling of architectural elements produced
and consumed by PWA.

In the example shown in Figure 37, we can determine:

Coupling(PWA1) = 2

Coupling(PWA2) = 2

Coupling(PWA3) = 2.

Figure 37: Coupling between PWAs

 Quality Model of Producibility

 79

This means that each PWA is related to each other PWA in this example,
which is not a good situation.

Besides coupling between production work activities overlapping can be
measured. Overlapping between production work activities means that
the sets of architectural elements produced by the production work ac-
tivities intersect. We also call this sharing of architectural elements in this
thesis. The following metric expresses this fact:

Metric Definition: PWAall->N: #Shared_AE(PWA) = n, where n is the
number of architectural elements shared by PWA with any other PWA
out of PWAall.

In the example in Figure 38, we can determine:

#Shared_AE(PWA1) = 2

#Shared_AE(PWA2) = 4

#Shared_AE(PWA3) = 2

If production work activities share a large number of architectural ele-
ments, this can be a source of production problems that should be fur-
ther considered. If the production work activities modify the same parts
of the shared architectural elements, for instance, this can lead to con-
flicts. Sharing of production work activities can be an indicator to better
split architectural elements or to change the production work activities
and let architectural elements be produced by only one of them. As

Figure 38: Example sharing of AEs between PWAs

Quality Model of Producibility

80

#Shared_AE(PWA) does not take into account the overall number of ar-
chitectural elements produced by a production work activity, the follow-
ing metric is introduced in addition:

Metric Definition: PWAall->R0
+: %Shared_AE(PWA) = n where n is the

percentage of the overall number of AEs produced by PWA that is
shared with any other PWA in PWAall.

If we also consider the overall number of AEs produced by each PWA in
the example in Figure 38, we can determine:

%Shared_AE_PWA (PWA2) = 40

%Shared_AE_PWA (PWA2) = 80

%Shared_AE_PWA (PWA2) = 40

This section introduced metrics to characterize the relationship of AEs
and PWAs. Such metrics are the basis for all further considerations on
producibility as they measure the alignment of architecture and the pro-
duction work activity, which is fundamental for all further production
planning activities. They can be used already in an early phase of produc-
tion planning and architectural design as they only require first versions
of the structure of the system and a production work breakdown struc-
ture.

In the next section, the production schedule will be considered with re-
spect to producibility. Hence, in addition to architectural elements and
production work activities, iterations are taken into account. Scheduling
decisions, i.e., for instance, assigning production work activities to itera-
tions, can compensate potential problems indicated by the values of the
metrics introduced in this section.

4.3 Alignment of Architecture and Production Schedule

In the previous section, the relationship of AEs and PWAs has been dis-
cussed without taking into consideration the project schedule. In this
section, we add the production schedule as an additional factor influenc-
ing the producibility of a system.

Today, many organizations apply an iterative and incremental develop-
ment approach. Consequently, during project scheduling, iterations are
defined and PWAs are assigned to them. Iterations can have fixed dura-
tions, which is called time-boxing, or can have individual durations. By
defining iterations and assigning PWAs to them, a basic order is defined

 Quality Model of Producibility

 81

on the PWAs. As iterations are performed sequentially, also the PWAs
assigned to different iterations are assigned sequentially.

In this section, we assume that a production planner has initially as-
signed production work activities to production iterations. Hence, rela-
tionships of architectural elements to production iterations have implicit-
ly be established.

Figure 39provides an overview on the general relationship of architectur-
al elements, production work activities, and production iterations accord-
ing to the software production meta-model introduced in Section 3.4.
This section covers the excerpt of the software production meta-model
shown in Figure 39 with respective metrics.

Similar to the previous section, we introduce respective metrics from an
architect’s and a production planner’s perspective.

4.3.1 Architect’s Perspective

The architect is first of all interested in how single architectural elements
are related to iterations based on the assignment of production work ac-
tivities to iterations. This fact can be measured by means of the metrics
introduced in the following sub-section.

Architectural elements get involved in several iterations if they are pro-
duced by several production work activities that are assigned to different
iterations. This is an interesting fact from an architect’s point of view, as
this means that architectural elements over time undergo several chang-
es.

Figure 39: Alignment of Architecture and Production Schedule

Quality Model of Producibility

82

Metric Definition: AEall->N: #PI_involving(AE) = n, where n is the num-
ber of production iterations involving the architectural element AE, i.e.
contributing to the production of the architectural element AE.

Figure 40 shows an example. The architectural element AE1 is involved
in 3 iterations: #PI_involving(AE1) = 3.

It is interesting to consider the values of #PI_involving(AE) and, for in-
stance, #PWA_producing(AE) for a specific architectural element AE in
combination. A high value of #PWA_producing(AE) can be an indicator
for potential production problems as the AE is modified several times.
But if the value of #PI_involving(AE) is low, for instance, one, this means
that all the PWAs producing a specific architectural element have been
assigned to the same production iteration which could reduce the risk of
production problems if, for instance, the resources assigned to the PWAs
are co-located and can easily communicate. This example shows that the
metrics introduced in this chapter always need to be interpreted in com-
bination in the respective project context.

We assume that iterations are ordered sequentially and also that they are
numbered accordingly from 1,…,n.

Consequently, we can add a numbers to each architectural element for
the production iteration creating as well as the production iteration fin-
ishing it.

Metric Definition: AEall->N: PI_ creating(AE) = n, where n is the number
of the production iteration creating the architectural element AE.

Metric Definition: AEall->N: PI_finishing(AE) = n, where n is the number
of the production iteration finishing the architectural element AE.

In the example shown in Figure 40, the architectural element AE1 is cre-
ated in production iteration PI1 and finished in production iteration PI3.

PI_ creating(AE1) = 1

Figure 40: Number of PI involving AE

 Quality Model of Producibility

 83

PI_finishing(AE1) = 3

Based on the values of PI_ creating(AE) and PI_finishing(AE) the produc-
tion duration in number of iterations can be determined.

Metric Definition: AEall->N: ProductionDuration(AE) = PI_finishing(AE) -
PI_ creating(AE) + 1

In the example shown in Figure 40, ProductionDuration(AE1) = 3.

Again, we also consider the relationship of sets of architectural elements
to in this case production iterations. Architectural elements can be relat-
ed to each other and in combination, for instance, realize a certain be-
havior. Architectural elements related to each other should ideally be re-
alized in combination to assure that they together fulfill their responsibil-
ity. The following metrics help in evaluating situations where related ar-
chitectural elements are produced in different iterations.

Metric Definition: P(AEall)->N: #PI_involving({AE}) = n, where n is the
number of iterations involving members of the specified set of architec-
tural elements.

Metric Definition: P(AEall)->N: PI_finishing({AE}) = n, where n is the iter-
ation number when all elements of the specified set of architectural ele-
ments are finished.

Figure 41 illustrates the two metrics. The architectural elements AE1,
AE2, and AE3 are related to each other but the production is spread over
three production iterations PI1, PI2, and PI3. The set of architectural ele-
ments is completely produced after three production iterations. This
leads to the following values for the metrics just introduced:

#PI_involving({AE1,AE2,AE3}) = 3

PI_finishing({AE1,AE2,AE3}) = 3

Figure 41: Example - Set of AEs in different PIs

Quality Model of Producibility

84

The following section introduces metrics characterizing the alignment of
architecture and production schedule from a production planner’s per-
spective.

4.3.2 Production Planner’s Perspective

Production planners are interested in how the production iterations they
have planned relate to architectural elements.

If we take one single production iteration into account, the main ques-
tion is how many architectural elements are involved in the respective
production iteration. If many architectural elements are involved in a
production iteration, this means that a huge part of the overall system is
modified in a single production iteration. This can be a problem as it re-
quires much knowledge about the overall system and potentially many
experts covering the architectural elements with their knowledge need
to be involved. Consequently, the following metric is determined per it-
eration:

Metric Definition: PIall->N: #AE_involved_in(PI) = n, where n is the
number of architectural elements involved in the production iteration PI.

In Figure 42, the production iteration PI1 contains three architectural el-
ements, i.e. #AE_involved_in(PI1) = 3.

Another interesting aspect related to production iterations and architec-
tural elements is the coverage of the overall system by a certain produc-
tion iteration. Each production iteration potentially creates new architec-
tural elements and/or modifies them. In that sense, it is important to
know how many architectural elements are involved in a production iter-
ation as well as how this number relates to the overall number of archi-
tectural elements making up the system. The following metric is used to
express this relationship:

Metric Definition: PIall-> R0
+: %System_Coverage(PI) = r, where r is

#AE_involved_in(PI) / |AEall|.

In Figure 42, we can determine %System_Coverage(PI1) = 3/7.

As mentioned above, this metric expresses how a production iteration PI
covers the architecture of the system. A high value of %Sys-
tem_Coverage(PI) means that a huge portion of the overall system is
modified in a production iteration. Consequently, the risk of corrupting
the overall system quality is high in such a production iteration. Much
knowledge of the overall system is required in the respective production

 Quality Model of Producibility

 85

iteration as many AEs are involved. If the value of %System_Coverage(PI)
remains stable within certain boundaries during performing software
production, this characterizes a constant growth of the system. In the
first production iterations of a project, the value of %Sys-
tem_Coverage(PI) is potentially higher, because many AEs need to be
newly created.

Production iterations contribute to producing the system over time. Re-
lating sets of production iterations and architectural elements means to
characterize how architectural elements are produced over time and
how their relationships influence the iterations that follow each other. If,
for instance, production iterations are coupled because the architectural
elements involved into them are coupled, or if production iterations
share architectural elements as they are modified in both production it-
erations, this can be a source of potential production problems. The fol-
lowing metrics help in detecting respective situations.

Metric Definition: PIall->N: Coupling(PIi) = n, where n is the number of
relations from architectural elements produced in PIi and every architec-
tural element produced in PIj, j≠i.

Figure 42 shows an example for production iterations that are coupled.
PI1 and PI2, PI2 and PI3, and PI1 and PI3 are coupled.

The respective coupling values are as follows:

Coupling(PI1) = 4

Coupling(PI2) = 6

Coupling(PI3) = 4

Figure 42: Example - Coupling between Iterations

Quality Model of Producibility

86

Production iterations are typically not only coupled, they also share archi-
tectural elements. Two production iterations share an architectural ele-
ment if they both contribute to the production of the architectural ele-
ments. Figure 43 provides an example. The production iterations PI1 and
PI2 share the architectural elements AE2, AE3, and AE4. PI2 and PI3
share AE4 and AE5. PI1 and PI3 share AE4.

Sharing architectural elements between production iterations can be an
indicator for production problems. On the one hand, it is good that
PWAs modifying the same AEs are assigned to different production itera-
tions as otherwise this would be a potential source of conflicts if the
PWAs would modify the AEs in parallel in the same iteration. But on the
other hand, sharing indicates a certain risk that results of production it-
eration PIi get corrupted in production iteration PIi+1 if the same areas of
the AEs are modified again. This also has an effect on the testing per-
spective of the project. If a huge number of AEs modified in an iteration
are modified again in later iterations, retesting several features again and
again is required. Hence, regression testing as a best practice and setting
up a regression test suite that can automatically be executed by respec-
tive tools should be considered, for example.

The following metrics express if production iterations share architectural
elements and characterize the degree of overlapping between the pro-
duction iterations.

Metric Definition: PIall->N: #Shared_AE(PIi): The number of architectural
elements shared by PIi with PIi+1 and Pi-1. In case i = 1 only the elements
shared with PIi+1 can be considered.

Example in Figure 43:

#Shared_AE(PI1) = 3

#Shared_AE(PI2) = 4

#Shared_AE(PI3) = 2

 Quality Model of Producibility

 87

Metric Definition: PIall->R0
+: %Shared_AE(PI) = r, where r =

#Shared_AE(PI) / #AE_involved_in(PI).

The metric measures the percentage of shared architectural elements for
a given production iteration.

Example in Figure 43:

%Shared_AE_PI1 (PI1) = 3/4

%Shared_AE_PI1 (PI2) = 2/3

%Shared_AE_PI1 (PI3) = 2/5

After a certain set of production iterations has been performed, it is im-
portant to know how much of the overall system has already been pro-
duced. The progress of production can be measured relative to the archi-
tectural elements that already have been completely produced, i.e. they
are not modified again. This can be expressed by the following metric:

Metric Definition: PIall->R0
+: %Completed_AE_after(PI) = r, where r is

the percentage of architectural elements that have been completely pro-
duced after production iteration PI has been finished.

This metric can be complemented by another metric that tells us about
the number of architectural elements that at least have been initially cre-
ated after production iteration PI.

Figure 43: Example - Iterations sharing AEs

Quality Model of Producibility

88

Metric Definition: PIall->R0
+: %Created_AE_after(PI) = r, where r is the

percentage of architectural elements that have been initially produced
after production iteration PI has been finished.

If an architectural element has been initially produced successfully, this is
a first indicator that its production is technically feasible and the risk of
production problems related to the architectural element is reduced from
that point in time.

4.4 Alignment of Architecture and Resource Assignments

The third dimension of producibility considered in this thesis is the
alignment of architecture and resource assignments. During resource as-
signment, architectural elements are related to teams or single persons
both representing resources by assigning respective production work ac-
tivities to them. Figure 44 shows the excerpt of the software production
meta-model that is in the focus of this section.

Similar to the previous sections, we structure this section into the archi-
tect’s and the production planner’s perspective.

4.4.1 Architect’s Perspective

Architects are interested in who is taking care of the architectural ele-
ments they have designed in their architecture. In general, it is not desir-
able that many different resources are involved in producing an architec-
tural elements as this requires increased communication and can lead to

Figure 44: AEs and Resources in Meta-Model

 Quality Model of Producibility

 89

conflicts. Some agile methods, for instance, advocate common code
ownership, which allows everyone to perform changes on each architec-
tural element. But the assignment of resources to production work activ-
ities in software production limits the resources working on certain archi-
tectural elements. It can make sense to assign production work activities
involving the same architectural elements to the same resource to reduce
the required knowledge transfer related to architectural elements be-
tween resources. Resources get the chance to specialize themselves with
respect to certain architectural element types.

The following two metrics characterize the relation of single architectural
elements and sets of architectural elements to resources. Resources can
be either teams or single persons, as already mentioned above.

Metric Definition: AEall->N: #Resources_working_on(AE) = n, where n
is the number of resources working on an architectural element AE dur-
ing a software production project.

In an ideal case, only one resource is working on an architectural ele-
ment to prevent conflicts and required knowledge transfer.

Metric Definition: P(AEall)->N: #Resources_working_on({AE}) = n, where
n is the number of resources working on a specified set of architectural
elements {AE} during a software production project.

As in the case before, in an ideal case only one resource is working on a
set of architectural elements if such architectural elements together are
responsible to realize a certain behavior of a system. Typically, this can-
not be achieved for the overall system. Certain architectural elements
contribute to various behaviors of the system that are realized by differ-
ent resources.

Figure 45 shows an example. The architectural element AE1 has been as-
signed to the resource Team1, AE2 to Team3, and AE3 to Team 3. This
results in the following values of the metrics introduced above:

#Resources_working_on(AE1) = 1

#Resources_working_on(AE2) = 1

Figure 45: Example - Architectural Elements and Resources

Quality Model of Producibility

90

#Resources_working_on(AE3) = 1

#Resources_working_on({AE1,AE2,AE3}) = 3

The following section introduces metrics related to the production plan-
ner’s perspective.

4.4.2 Production Planner’s Perspective

Production planners are interested in the relationship of architectural el-
ements and resources from their specific perspective. They are responsi-
ble for resource assignments and need to validate their decisions with re-
spect to the architecture. The following metrics can help in doing so.

Metric Definition: RESall->N: #AE_worked_on_by(RES) = n, where n is
the number of architectural elements the resource RES is working on.

If a resource is working on many architectural elements, it needs to be
capable of doing so regarding skills and availability. A high value of
#AE_worked_on_by(RES) can be an indicator of an overloaded resource.

Metric Definition: Resall->N: Coupling(RES) = n, where n is the coupling
of RES with any other RES in Resall determined based on the coupling of
the architectural elements produced by RES with any other AE in AEall
that is not produced by RES.

Figure 46: Example - Coupling between Resources

 Quality Model of Producibility

 91

Coupling between resources is illustrated in Figure 46.

The four architectural elements AE1, AE2, AE3, and AE4 have been as-
signed to Team1, AE5, AE6, and AE7 have been assigned to Team2, and
AE8, AE9, and AE10 have been assigned to Team3. Based on the rela-
tionships between the architectural elements, relationships between the
teams are established. Basically, each team has to communicate with all
other teams in this example based on the relationships between architec-
tural elements. If we determine the coupling between teams according
to the metric introduced above, we get the following values:

Coupling(Team1) = 2

Coupling(Team2) = 2

Coupling(Team3) = 2

Metric Definition: RESall->N: #Shared_AE(RES) = n, where n is the
number of architectural elements shared by the resources RES with any
other RES in RESall.

Metric Definition: RESall->R0
+:%Shared_AE_Resource(RES) = r, where r

= #Shared_AE(RES) / #AE_worked_on_by(RES).

Hence, %Shared_AE_Resource(RES) is the percentage of the number of
AEs shared by RES and the overall number of AEs produced by RES.

Sharing an architectural element between two resources means that
both resources contribute to the production of the respective architec-
tural element.

Figure 47 illustrates sharing of architectural elements between resources.
The architectural elements AE3 and AE4 are shared between Team 1 and
Team 2, i.e. both modify them.

Quality Model of Producibility

92

Coupling between resources and sharing of architectural elements be-
tween resources means that communication is required between the re-
spective resources. Hence, resource assignments should be performed
based on architectural knowledge to prevent communication overhead.

4.5 Context Factors

The metrics presented in Section 4.2, 4.3, and 4.4 can be used to meas-
ure the producibility of a system based on a given architecture and pro-
duction plan. However, the interpretation of the values provided by the
metrics needs to be done under consideration of various context factors.
The context factors can compensate bad values of certain metrics or
even increase the risks related to a bad value. An architectural element
AE might be modified often during the course of a project, i.e. for in-
stance, #PI_involving(AE) = 5 while the overall number of production it-
erations is 6. If the architect is able to explain that AE has an internal
structure that facilitates incremental extension of AE, the risks related to
multiple modifications of AE is lower than the value #PI_involving(AE) =
5 might indicate.

In this section, context factors that need to be considered while inter-
preting the producibility metrics introduced before are presented. The
context factors are classified into architecture, production process, and
organization-related context factors. This means they originate from one
of these areas, but can potentially influence all metrics presented before.

Figure 47: Example - Sharing between Resources

 Quality Model of Producibility

 93

Figure 48 shows the three classes of context factors considered in this
thesis.

The context factors described in this section are not considered to be
complete. In each class of context factors, i.e. architecture related, pro-
duction process-related, and organization-related, additional factors
might be required in a specific project context. The context factors pre-
sented in this section are based on our experience in projects in the area
of information system development.

4.5.1 Architecture-related Context Factors

This section introduces the context factors related to architecture that
should be considered based on our experience. These context factors
specifically should be considered if bad values of metrics related to the
architect’s perspective appear. They can help architects to decide, if po-
tential production problems are related to certain architectural elements
and which countermeasures they should take. Figure 49 shows the con-
text factors considered related to architecture.

Figure 48: Classes of Producibility Context Factors

Figure 49: Overview Architecture-related Context Factors

Quality Model of Producibility

94

4.5.1.1 Types of Architectural Elements

Architectural elements can be classified into different types. This thesis is
based on project experience from the information system domain. One
can distinguish infrastructure architectural elements and business archi-
tectural elements. Infrastructure architectural elements make up the
technical infrastructure where business architectural elements can be
embedded. Infrastructure architectural elements are, for instance, work-
flow engines, enterprise service buses, or rule engines. Business architec-
tural elements are, for instance, services or workflows capturing business
specific functionality.

Typically, infrastructure architectural elements are touched more often
during a project than business architectural elements. An enterprise ser-
vice bus, for instance, must be modified several times in a sense that
new services must be connected to them. This leads, for instance, to a
high value of #PI_involving(Enterprise Service Bus) which might not be a
problem here as enterprise service buses are prepared for such kind of
changes (maybe only configuration files need to be changed).

4.5.1.2 Internal Design of Architectural Elements

According to Section 2.1, architects are not responsible for designing
architectural elements completely. Internal design decisions are left open
to designers. But for several reasons, architects can constrain the internal
design of architectural elements, i.e. they prescribe the internal structure
of an architectural element at least partially. If they put similar con-
straints to several architectural elements, they define a texture (see Sec-
tion 2.1).

In software production, constraints put on the internal design of an ar-
chitectural element can help to reduce certain production risks. Let us
consider an architectural element that is changed often during a project.
If an architect prescribes an internal structure that makes an architectural
element easily extensible, for instance, by a kind of plug-in mechanism,
the risk of production problems related to the high number of changes
can be reduced. In each production iteration where the architectural el-
ement is modified, a separate plug-in could be developed that is largely
independent of the rest of the architectural elements, for instance.

Object-oriented metrics like complexity or cohesion [Hen95] can be used
in addition to characterize the internal design of architectural elements.
They can be used to decide if architectural elements are critical for pro-
duction. If an architectural elements with a high estimated complexity is
modified often, more production risks are related to it than in the case
of an architectural element with low complexity. High cohesion of an ar-
chitectural element would be an argument to not split an architectural
element, which could be a decision taken during producibility analysis, as

Design con-
straints and
texture

Object-
oriented
Metrics

 Quality Model of Producibility

 95

it will be explained in Chapter 5. A high estimated size of an architectur-
al element could be a reason to split it.

4.5.1.3 Technology Mix

Technology decisions heavily influence production and should be thor-
oughly considered. The resources supposed to perform production must
be able to cope with the selected technologies, i.e. they need to be
equipped with the required skills. Technologies need to be compatible
with the selected tool infrastructure, i.e. appropriate tools need to exist
and they need to be integrated into the production environment.

Especially the mix of technologies in a production project is essential for
several reasons. A huge number of technologies increases the skills re-
quired by the production team, especially if each member must deal with
several technologies. Technologies provided by different vendors or or-
ganizations might lead to unexpected incompatibilities or at least in-
creased effort to make them work together. When a new web-based in-
formation system is planned to be produced, for instance, a general de-
cision to be taken might be to decide to select Microsoft’s .NET platform
[MSNet11] or JAVA EE as it is supported by Oracle [Java11]. Both provide
the required technology required to build a web-based information sys-
tem. The respective technology platforms come along with comprehen-
sive tool sets. The production team should be used to them to prevent
long training periods in the project. The combination of .NET and JAVA
EE solutions can prevent the production team to use the respective tech-
nologies as planned by the respective vendors.

An architect should evaluate the mix of technologies carefully with re-
spect to production and plan together with the production planner
when the respective technology enters the project. If the first production
iteration, for instance, is bothered by the introduction of several tech-
nologies new to the production team, this can lead to delays, quality is-
sues, etc. in the beginning of the project.

4.5.1.4 Quality of architecture documentation

The architecture documentation is a main point of reference for the pro-
duction team. The architecture specifies the architectural elements they
are supposed to produce. It should contain all architectural information
relevant to start producing the architectural element including interfaces,
design constraints, selected implementation technologies, etc.

Quality Model of Producibility

96

The meta-model of software architecture introduced in Section 2.1 refers
to best practices in architecture documentation. Architecture documen-
tation should contain different architectural views as well as descriptions
of the main architectural decisions. From a production point of view, it is
specifically important that the architecture documentation contains for
each architectural element including interfaces, design constraints, se-
lected implementation technologies, as already mentioned above. Espe-
cially, the elements that are supposed to be critical for any reason, for in-
stance, because they are modified often or need to be finished early, the
architecture documentation must contain such information, otherwise
production problems can be the consequence.

Besides architecture documentation, documentation of designs for each
architectural element is important. Hence, production risks can be re-
duced if for each (critical) architectural element design documentation is
available, for instance, according to the KoBrA approach [ABB+01]. In
the KoBrA approach, each architectural element is documented by
means of different models, for instance, structural model, behavioral
model, or functional model.

4.5.1.5 Reuse of Architectural Knowledge

The maturity of software architecture as a Software Engineering disci-
pline becomes visible in many handbooks of software architecture
[BCK03] [TMD10] [RH08]. Similar to other engineering disciplines, such
handbooks capture the existing knowledge on software architecture.

Architectural knowledge can be captured in various ways, beyond the
most prominent ones being architectural styles, tactics, patterns, refer-
ence architectures, or product line architectures. As producibility is not
yet explicitly addressed in software architecture research, architecture
handbooks do not capture knowledge on producibility of architecture
systematically. Nevertheless, they should be used as a reference by archi-
tects also from a producibility point of view. Using architectural styles,
tactics, patterns, etc. from the existing software architecture literature
can help to reduce production problems. The reuse of proven solutions
in general helps not to repeat mistakes done in the past again and re-
duce production problems. Furthermore, a common vocabulary between
architects but also between architects and the production team is estab-
lished that helps to ease communication, prevent misunderstandings and
resulting production problems.

Architects should check with respect to producibility, if they can refer to
existing architectural solutions instead of inventing everything from
scratch or using existing solutions under different names. In the software
production meta-model, for instance, an optional relationship of an ar-
chitectural element to an architectural element type is modeled. In an
ideal case, each architectural element is of a known type, i.e. of a type

View-based
architecture
documen-
tation

Design
documen-
tation

 Quality Model of Producibility

 97

that is referenced somewhere in the organizations or overall architecture
body of knowledge.

4.5.1.6 Reuse of Architectural Elements

Besides reuse of architectural knowledge, reuse of concrete architectural
elements should be considered with respect to software production and
producibility. In many cases, reuse approaches like product line engineer-
ing or component-based development have proven to be successful in
reducing time to market and effort or increasing quality [HOF11]. Hence,
from a producibility perspective, it should be analyzed how an architec-
ture makes use of already existing architectural elements. These can be
code libraries, executable components, or specific frameworks that are
available in an organization, from other vendors, or open source.

Building architectural elements based on reuse can have positive as well
as negative effects on the producibility of a system. If an architectural el-
ement has been used before and can be reused without modifications,
for instance, the risk of production problems is lower than in the case of
developing an architectural elements newly from scratch. But if an archi-
tectural elements is supposed to be reused but has to undergo many
modifications during the project this can increase the risk of production
problems. The documented knowledge on the reused architectural ele-
ment might be limited and its reconstruction might cause additional ef-
fort and time.

In the case of each architectural element, reuse needs to be considered
carefully from a producibility perspective.

In the following section, context factors related to the production pro-
cess are introduced.

4.5.2 Production Process-related Context Factors

This section introduces the context factors related to the selected pro-
duction process that should be considered based on our experience.
These context factors specifically should be considered if bad values of
metrics related to the production planner’s perspective appear. Figure 50
shows the context factors considered related to the production process.

Quality Model of Producibility

98

4.5.2.1 Support by Production Work Activity Types

As introduced in Chapter 3, production is essentially product-oriented
and a production process provides product-specific guidance. Production
work activity types guide the production team in producing certain types
of architectural elements (s59ee Section 3.5.2 for an example).

From a producibility perspective, it is important that the majority of ar-
chitectural element types that are used in a system are supported by
production work activity types, i.e. the optional relationship between ar-
chitectural element types and production work activity types in the pro-
duction meta-model exists in a specific instance. Especially architectural
elements or element types that are supposed to be critical because of
some other producibility metric should be supported by a defined pro-
duction work activity type. If workflows or services, for instance, are
supposed to be built many times as part of a software production pro-
ject, a detailed process how to create a workflow or service, i.e., produc-
tion work activity types for workflows and services, are required.

Production planners should check, how well the production work activi-
ties of a software production project are covered by production work ac-
tivity types. The higher the coverage especially of architectural elements
with bad values for certain producibility metrics, the more likely certain
production problems still can be prevented.

4.5.2.2 Support by Development Activity Types

Production work activity types involve development activity types as de-
fined in the software production meta-model (see Section 3.4). Devel-
opment activity types refer, for instance, to design, implementation, or

Figure 50: Overview Production Process-related Context Factors

 Quality Model of Producibility

 99

testing best practices to adopted in the context of a production work ac-
tivity.

Development activity types can provide specific support for software
production and should be considered from a producibility perspective.
Based on our experience, production problems can be caused, for in-
stance, by missing architecture compliance. Reuse can be increased by
higher architecture compliance [KMH+08]. During production, architec-
ture violations are introduced by, for instance, introducing unplanned
dependencies between architectural elements, that can cause unex-
pected problems in later production iterations as side effects can occur.
If compliance checking is foreseen as a development activity type to be
performed in certain production work activity types, architecture viola-
tions can be detected early before they cause further production prob-
lems. Compliance checking can be performed during production, for in-
stance, by means of the approach proposed in [Kno09].

It should be considered by production planners, which development ac-
tivity types specifically support production.

4.5.2.3 Support by Tool Infrastructure

Tools have a high potential to increase the producibility of a system.
They can support production work activities or even completely auto-
mate them. Software production does not aim at maximizing the auto-
mation of the production process. Automation requires investment and
not each production work activity or development activity type is a good
candidate for automation, as the initial investment potentially never pays
off. Approaches like Software Factories [GSC+04] or software produc-
tion lines [Kru06] heavily rely on tool support. McGregor provides guide-
lines on how to set-up production environments for software product
lines [McG05] as one software production scenario (see Section 3.3).

Production work activity types that are recurring often in a project are
good candidates for tool support. They could be supported by a tool in-
frastructure that is aware of the process [Rom03]. In general, production
planners should evaluate especially for each critical production work ac-
tivity in a project, for instance, because it has a high value of a related
producibility metric (see Section 4.2.2), if appropriate tool support is
available or can be set-up easily.

4.5.2.4 Support for Distributed Development

More and more, software is produced in a distributed fashion. Internal
and external units (see Section 2.2.5) can be involved in a software pro-
duction project. Hence, software organizations set-up supply chains simi-
lar to other engineering disciplines. Specialized suppliers take over pro-

Quality Model of Producibility

100

duction work activities and deliver architectural elements to be integrat-
ed into the overall system.

Distributed development should be well supported to prevent related
production problems. Communication between distributed teams, for in-
stance, needs to be enabled by means of adequate processes and tools.
It is important, for instance, to agree on a specific format how produc-
tion work activity specifications are exchanged with suppliers. Bug and
issue tracking tools can be used to report on production problems.
Common repositories should be used to exchange the results of produc-
tion work activities. Furthermore, task assignment in distributed settings
can be supported by empirical models [LM10].

For each external unit respectively for each set of teams that are sup-
posed to work together but are geographically distributed it should be
checked, if adequate support for collaboration is available. Otherwise,
there is a certain risk of production problems because of communication
problems. Such communication problems can be further intensified be-
cause of cultural differences.

4.5.3 Organization-related Context-Factors

Finally, the organizational context needs to be considered while analyz-
ing producibility based on the producibility metrics introduced before.
Figure 51 shows the context factors that are considered in this section.

4.5.3.1 Capabilities of Resources

Single resources or teams must be capable of performing the production
work activities that are assigned to them. Several skills are desirable. If
the production work activity relates to a certain production work activity
type or architectural element types, the resource should be familiar with
the respective types. If a resource is supposed to build a service, for in-

Figure 51: Overview Organization-related Context Factors

 Quality Model of Producibility

 101

stance, in an ideal case, the resource has performed similar production
work activities before.

Familiarity with the selected technologies is another important context
factor related to the assigned resources. Production planners and archi-
tects should consider selecting different technologies if they can be easily
substituted comparably and the skill profile of the resources fit better af-
terwards.

4.5.3.2 Team organization

Project (sub-) teams need to be organized in a certain way. Section 2.2.5
introduced different models of team organization, for instance, the chief
programmer model or structured open teams.

The team organization can influence producibility in different ways. In
the case of architectural elements that are modified often it might be
helpful to have a chief programmer as a coordinator. The same holds
true for complex architectural elements where a chief programmer could
bring in his or her experience to produce the key parts.

In the case of different teams with close coupling or even shared archi-
tectural elements (see Section 4.4), it also might be helpful to have chief
programmers that can perform the major part of the required communi-
cation between teams to canalize the flow of information.

Production planners should check the team organization and relating
communication structures between teams to identify potential produc-
tion problems.

4.5.3.3 Relations between Organizational Units

Production project teams often have to interact with other organization-
al units. In the case where a project team uses, for instance, a certain
framework that is developed in another organizational unit, a depend-
ency between the respective units is established. The project team has to
consider, for instance, that the framework team might not be able to
answer requests quickly as they have to cope with many requests of var-
ious project teams. This can result in production problems if delays oc-
cur.

It could also be the case that certain development activities as part of
production work activities are performed in different organizational
units. Testing is a prominent example that often is performed in a sepa-
rate test department to assure independence of implementers and test-
ers. The coordination of production work activities with a test team is
important to prevent production problems up-front.

Quality Model of Producibility

102

Production planners should consider the relationships of the project
team to other organizational units and check, if the collaboration is well
supported by the production process.

As already mentioned, context factors are important to be considered
while interpreting the producibility metrics introduced above. The values
of the context factors can compensate significant values of producibility
metrics or even make the situation worse.

As we will describe in Chapter 5 in more detail, expert judgment is re-
quired to finally decide if a significant value of a producibility metric will
lead to production problems in a given context.

4.6 Related Work

This section provides an overview on related work regarding the quality
property producibility.

The term producibility of software systems has been mentioned in the
literature before. In [Cam07], producibility is defined as follows:

Producibility is “the ability to deliver needed capability in a timely, cost
effective, and predictable manner.”

Another definition of producibility is given in [NRC10]:

Software producibility is “the capacity to design, produce, assure, and
evolve software-intensive systems in a predictable manner while effec-
tively managing risk, cost, schedule, quality, and complexity.”

Such definitions of producibility have a broader scope than the one given
in this thesis. They refer to the general capability of an organization to
produce software, i.e. it refers to the general software engineering ca-
pabilities of an organization. In [NRC10], for instance, besides project
planning/management or software architecture various other disciplines
of software engineering like requirements engineering or process man-
agement are mentioned and their role for the overall production capabil-
ity of an organization (in that case of the US Department of Defense
(DoD)) is discussed. While not underestimating the importance of other
disciplines of software engineering for the overall production capability
of an organization, this thesis uses the term producibility in a closer
sense to narrow the scope and be able to make an in-depth contribution
related to the alignment of architecture and project plans.

Producibil-
ity in the
literature

 Quality Model of Producibility

 103

A quality attribute related to producibility as defined in this thesis is
buildability. In [BCK03], buildability is introduced as a property of a soft-
ware architecture. Buildability is defined as “the ease of constructing a
desired system based on the architecture by the available team in a time-
ly manner”. Hence, buildability establishes a general link between archi-
tecture and project planning aspects like time to market. The system,
i.e., in this case the architecture, should also be open to certain changes
as development progresses. The decomposition of the system into mod-
ules, the assignment of modules to development teams and limiting the
dependencies between modules, i.e., reducing coupling, are mentioned
as important influencing factors of buildability. But more detailed guide-
lines to decide if an architectural element is critical with respect to pro-
duction are not given.

In this thesis using the term producibility is preferred over using builda-
bility for several reasons:

– Producibility per definition establishes a link between the architecture
and a project plan and addresses the misalignment of architecture
and project plan as motivated in Chapter 1.

– Producibility refers to the notion of software production as it has
been introduced before, i.e. producibility assumes the adoption of
the ideas of software production.

– Producibility suggests a link to other disciplines like manufacturing
where the term production is more common and refers to a process
that is optimized to be run efficiently (eventually many times) to
come up with goods fulfilling their requirements. This thesis wants to
emphasize the importance of optimizing the alignment between pro-
duction plans and the design similar to other engineering disciplines.

– Buildability can be misinterpreted as referring only to the technical
build process typically conducted as part of software production but
not to the whole production process.

Object-oriented metrics like coupling [Hen95] [SMC74] inspired the defi-
nition of the producibility metrics introduced in this chapter. In general,
coupling between architectural elements, for instance, can be used as an
indicator for producibility. High coupling between architectural elements,
for instance, bears the risk that teams assigned to such architectural el-
ements cannot independently realize them or that dependencies to earli-
er production iterations cause production problems.

However, the producibility metrics defined in this chapter based on the
idea of coupling like, for instance, Coupling(PWA), Coupling(PI), or Cou-
pling(Res) are more precise in measuring the producibility of a system.
First, they take into account architectural elements and project planning
elements. Furthermore, they filter out values of coupling between archi-
tectural elements that are not necessarily relevant for the overall produc-
ibility. If, for instance, architectural elements that are highly coupled are

Buildability
as related
quality at-
tribute

Related
Metrics

Quality Model of Producibility

104

assigned to the same team, the value of Coupling(Res) is not increased,
as the team can often deal with the “internal” coupling of architectural
elements. By relying on values for coupling between architectural ele-
ments to measure producibility, “internal” coupling would be indicated
as critical and potential production problems would be pointed out.

In the following chapter, the producibility analysis method is described in
detail.

 Producibility Analysis Method

 105

5 Producibility Analysis Method

This chapter introduces the producibility analysis method. The chapter is
structured as follows. First, an overview of the producibility analysis
method is provided. In the following, each phase of the method is intro-
duced and discussed in detail and an overview on the available tool sup-
port is provided.

5.1 Method Overview

The goal of the producibility analysis method is to identify critical archi-
tectural elements, critical project planning elements that are supposed to
cause production problems like delays or effort overhead. The concrete
outputs of the producibility analysis method are the identified critical el-
ements and recommendations on how to prevent production problems
eventually caused by such critical elements. In that sense, the producibil-
ity analysis method addresses the practical problem introduced in Section
1.1 as it aims at reducing the misalignment of software architecture and
project plans.

The foundation of the producibility analysis method is the integrated me-
ta-model of software production presented in Section 3.4.3 and the
quality model of producibility presented in Chapter 4.

The producibility analysis method addresses the practical problem by
contributing to solve the scientific problems of missing enforcement of
communication between architects and project or production planners
(SP1) and missing support for the identification and analysis of critical
architectural and project or production planning elements (SP2) dis-
cussed in Section 1.3. Thereby, it adopts the idea of a manufacturability
analysis known from other engineering disciplines.

As shown in Figure 52, the producibility analysis method requires as an
input the current version of the planned architecture of the product to
be produced and the current version of the production plan of the prod-
uct. The following assumptions are underlying such input products:

– The architecture at least must contain a structural view of the system,
i.e., for instance, a Module View or a Component and Connector
View.

– The production plan at least must contain a sequence of planned
production iterations, an assignment of production work activities to

Goals of
the method

Scientific
Contribu-
tions of the
method

Prerequi-
sites of the
method

Producibility Analysis Method

106

production iterations, and an assignment of resources to such pro-
duction work activities.

– The level of granularity of architecture and production plan used for
the producibility analysis must be aligned to each other. If, for in-
stance, the architecture is specified on a level of layers, clusters, and
subsystems, the production work activities defined in the production
plan must be on the level of layers, clusters, and subsystems or func-
tional domains covered by such architectural elements, too. Produc-
tion work activities specified on the level of single features require a
more detailed view of the architecture to enable a solid producibility
analysis.

– Additional architectural views are required as input to the producibil-
ity analysis, if specific producibility scenarios are supposed to be ana-
lyzed. If, for instance, the architect wants to assure, that a certain
behavior of the system is available at a certain point in time, such be-
havior and the related architectural elements need to be specified in
a behavioral view of the architecture.

Producibility scenarios have already been mentioned before. They de-
scribe requirements into production from the point of view of different
stakeholders like architects, production planners, customers, product
managers, etc. and are an optional input to the producibility analysis
method. In contrast to a first version of the architecture and the produc-
tion plan as specified above, we do not expect that the producibility sce-

Figure 52: Overview Producibility Analysis Method

 Producibility Analysis Method

 107

narios are available from the beginning of a producibility analysis. Ra-
ther, we elicit the producibility scenarios in the preparation phase of the
producibility analysis if required.

The producibility analysis method consists of the three phases prepara-
tion, execution, and consolidation (see Figure 53).

The preparation phase creates the inputs for the execution phase. Pro-
ducibility scenarios are elicited as a first step. The method provides guid-
ance in this step by providing lists of typical producibility-related con-
cerns of different stakeholders that then can be used in interviews with
such stakeholders to elicit producibility scenarios. Furthermore, the prep-
aration phase comes up with producibility views that are the basis for
determining the producibility metrics introduced in Chapter 4 and for
the overall producibility analysis. Three producibility views relating to the
three dimensions of producibility are used in this thesis. The producibility
views can be modeled by means of the tool Enterprise Architect (EA)
[EA11], that has been extended with the capability to model producibility
views. The producibility scenarios and the producibility views for a specif-
ic production project are the major outcome of the preparation phase of
the producibility analysis method.

Figure 53: Phases of the Producibility Analysis Method

Preparation
Phase

Producibility Analysis Method

108

The execution phase takes the input of the preparation phase and de-
termines critical architectural and production planning elements based
on the producibility metrics introduced in Chapter 4. Architectural ele-
ments and production planning elements are supposed to be critical as
soon as the respective producibility metrics exceed a certain threshold.
All producibility metrics referring to single architectural or production
planning elements can be determined automatically based on the pro-
ducibility views.

In the consolidation phase, the results of the execution phase are ana-
lyzed and recommendations are derived. Architects and production
planners use checklists that are based on the producibility context factors
to decide if an architectural or production planning element marked as
critical in the execution phase is really supposed to be critical in the given
context. Based on the consolidated list of critical elements they derive
recommendations on how to prevent the occurrence production prob-
lems caused by the critical elements. Recommendations can be, for in-
stance, to split an architectural element, to change the assignment of
production work activities to production iterations, or to assign produc-
tion work activities differently to the available resources.

In the following section, the different phases of the producibility analysis
method are discussed in more detail.

5.2 Preparation Phase

In the preparation phase of the producibility analysis method, the input
required for the execution phase is prepared. The preparation phase is
made up of several steps as shown in Figure 54. Producibility scenarios
are elicited and the producibility views are modeled. Such two steps can
be performed in parallel. After producibility scenarios are elicited and
documented and producibility views are modeled, the producibility sce-
narios can be mapped to the producibility views. Architectural and pro-
duction planning elements modeled in the producibility views and in-
volved in a producibility scenario are added to the documentation of the
respective producibility scenario.

Execution
Phase

Consolida-
tion Phase

 Producibility Analysis Method

 109

The concrete outputs of the preparation phase are:

– Producibility scenarios including mapped architectural and production
planning elements

– Producibility views

In the following sub-sections, each step of the preparation phase is ex-
plained in detail.

5.2.1 Elicitation of Producibility Scenarios

5.2.1.1 Producibility Stakeholders and their Concerns

Various stakeholders with specific concerns regarding producibility exist.
Architects, production planners, and customers are the main stakehold-
ers. Architects and production planners are concerned with software
production by definition. Customers (or also product managers) are im-
portant stakeholders as they typically request certain features to be de-
livered in specific releases. Hence, customers or product managers heavi-
ly influence the production schedule.

As further stakeholders, the production team executing the production
work activities and its concerns like familiarity with the selected technol-
ogies or appropriate tool support should be considered. Operators re-
quire adherence to their deployment rules and cycles. Certification units
require receiving releases long enough before deployment by the opera-
tors is planned, etc.

Figure 54: Steps of the Preparation Phase

Producibil-
ity Stake-
holders

Producibility Analysis Method

110

Each stakeholder has certain typical concerns regarding producibility. For
two of the main stakeholders, namely architects and production plan-
ners, Table 2shows examples of typical concerns. As we can see, archi-
tects mainly aim at early feedback on their architectural decisions. With
such typical concerns in mind, architects, production planners can be in-
terviewed and producibility scenarios can be elicited.

Typical Concerns Architect
Typical Concerns Production

Planner
Early fulfillment of quality re-
quirements

Project stays within time and
budget

Early feedback on the appropri-
ateness of technologies

Release plan can be met

Early feedback on reuse decisions

Teams can work independent of
each other

Early feedback that integration
works as planned

Suppliers are integrated properly

Early feedback that developers
are able to adhere to the archi-
tecture

Project team is used to capacity

… …

Table 2: Examples of Producibility Concerns

The next section introduces producibility scenarios in more detail.

5.2.1.2 Producibility Scenarios

In general, producibility scenarios precisely describe requirements of dif-
ferent stakeholders related to the quality aspect producibility. In that
sense, the idea behind producibility scenarios is similar to architectural
scenarios that are used to precisely describe quality requirements in the
architecture [CKK01]. The main difference is that they do not only affect
the architecture but also the production plan.

Producibility scenarios explicitly or implicitly draw links between instances
of elements of the architecture meta-model and instances of elements of
the production planning meta-model. They specify, for instance, how ar-
chitectural elements are supposed to be related to production iterations
or to resources in a concrete case. This would be an explicit relationship
between architectural elements and production planning elements. In-
stead of directly referring to architectural elements, producibility scenari-
os can, for instance, also refer to certain features or feature groups. In
this case, the relationship of architectural elements and production plan-
ning elements is specified implicitly. The following two examples illus-
trate this:

Producibil-
ity Con-
cerns

 Producibility Analysis Method

 111

Producibility Scenario 1: All architectural elements contributing to system
monitoring must be delivered within the first release to enable continu-
ous checks of system health (by the operator).

Producibility Scenario 2: Three (aggregated) architectural elements that
are loosely coupled should be foreseen in the architecture to ease the as-
signment to the three teams and reduce communication overhead.

Producibility Scenario 3: The functionality to support applying for busi-
ness trips and supporting accounting of business trips must be complete-
ly available after two releases.

Producibility Scenario 1 and 2 explicitly refer to architectural elements.
Producibility Scenario 3 implicitly refers to architectural elements. The
functionality to support applying for business trips is realized in certain
architectural elements but the mapping of the functionality to architec-
tural elements needs to be figured out before the producibility scenario
can be analyzed. Section 5.2.3 refers to this mapping.

Furthermore, the examples show that a producibility scenario can be
driven rather from the architect’s, the production planner’s, or the cus-
tomer’s perspective. Producibility Scenario 1 will rather be driven by an
architect because one of the architect’s producibility concerns is to as-
sure the fulfillment of certain quality requirements early. Producibility
Scenario 2 will rather be mentioned by a production planner that wants
to use the available resources most effectively. Producibility Scenario 3
first of all addresses a concern of a customer.

Producibility scenarios can be documented according to the template
shown in Table 3.

Name Name of the scenario

Stakeholder
The main stakeholder interested in this scenar-
io.

Producibility
Dimension

Dimension selected from the quality model of
producibility (alignment of architecture and
production WBS, alignment of architecture and
production schedule, alignment of architecture
and resource assignments)

Description Description of the scenario

Involved AE
The instances of architectural elements refer-
enced in the scenario

Involved PPE
The instances of production planning elements
(e.g. production work activities, production
iterations, resources) referenced in the scenario

Table 3: Producibility Scenario Template

Example
Producibil-
ity Scenario

Producibil-
ity Scenario
Template

Producibility Analysis Method

112

As already discussed before, a producibility scenario is always based on a
concern of a specific stakeholder. Hence, the stakeholder is part of the
producibility scenario template.

Each producibility scenario is related to one of the producibility dimen-
sions of the quality model of producibility. This gives each producibility
scenario a clear focus and does not mix up different aspects of produci-
bility.

The core of the producibility scenario is the description. Here, the rela-
tionship of instances of elements of the architecture meta-model and in-
stances of elements of the production planning meta-model is described
as precise as possible. After that, the involved architectural and produc-
tion planning elements are made explicit in the rows “Involved AE” and
“Involved PPE”. If the involved architectural and production planning el-
ements are not yet precisely known they can be added in the mapping
step of producibility scenarios (Section 5.2.3).

5.2.1.3 Elicitation Process

The elicitation process for producibility scenarios consists of three major
steps. First of all, producibility stakeholders are identified. Then, inter-
views with the identified stakeholders are conducted. Finally, the produc-
ibility scenarios are documented.

The first step of the elicitation process is the identification of producibil-
ity stakeholders. Concrete persons that are good candidates to represent
the stakeholder role need to be selected in an organization, for instance,
by the production planner.

After stakeholders have been identified, they are interviewed. Interviews
with stakeholders are the main source of information to formulate pro-
ducibility scenarios. Requirements documents, for instance, can also be a
source of information, but as producibility is not systematically consid-
ered in software projects today, we do not rely on information inside the
existing documentation.

Communication between architects and production planners can already
be established in this initial step of the producibility analysis method. Ar-
chitects and production planners as typical producibility stakeholders can
interview each other to elicit producibility scenarios, for instance.

During and after performing the interviews producibility scenarios are
documented. The template introduced in Section 5.2.1.2 can be used in
this case.

While in the description part of the scenario, for instance, architectural
elements or production planning elements might be summarized in for-

Identifica-
tion of
Stakehold-
ers

Interview-
ing Stake-
holders

Documen-
tation of
Producibil-
ity Scenari-
os

 Producibility Analysis Method

 113

mulations like “all architectural elements contributing to system monitor-
ing” or “three teams” and not listing them one by one, this is done in
the rows “Involved AE” and “Involved PPE” in the producibility scenario
template. These two rows are essential for modeling the producibility
scenario and determining producibility metrics. In first versions of a pro-
ducibility scenario documentation, involved AE and involved PPE do not
necessarily need to be listed. This might disturb the process of initial elici-
tation and documentation of producibility scenarios as it requires addi-
tional effort to be spent by the architect to map the description part of
the scenario precisely to architectural elements and production planning
elements. But later on in the step “Mapping of Producibility Scenarios”
(Section 5.2.3) they need to be added based on the architecture docu-
mentation or by interviewing architects and production planners.

5.2.2 Modeling of Producibility Views

The determination of producibility metrics in the execution phase of a
producibility analysis is based on producibility views. Such producibility
views are used to specify the relationships of architectural elements and
production planning elements. Each producibility view focuses on one
dimension of producibility and can be used to determine a specific set of
producibility metrics.

Three producibility views are used in this thesis:

– Production Work Activity View

– Production Iteration View

– Resource Assignment View

Each of the views shows the relationship of architectural elements and
the production planning element referenced in the name of the produci-
bility view, i.e. production work activities, production iterations, and re-
source assignments. Hence, the three views also relate to the three di-
mensions of producibility introduced in Chapter 4. In principle, the three
producibility views have already been introduced in Chapter 4. The visu-
alizations of examples of the producibility metrics use the ideas behind
the producibility views. Figure 37 shows a production work activity view,
Figure 43 a production iteration view, and Figure 47 a resource assign-
ment view.

The modeling of the producibility views starts with the production work
activity view. Afterwards, the production iteration view and the resource
assignment view can be modeled.

Producibility Analysis Method

114

As a prerequisite for conducting a producibility analysis, the production
plan must contain a production work breakdown structure (see Section
5.1) and a structural view of the architecture. Based on these inputs, the
production work activity view can be modeled.

If we assume production work activities referring to elements of the
requirements like features (see Section 2.2.2), we need to map such a
feature-based specification of work onto architectural elements as a first
step. In this case, traceability is essential.

Traceability from the requirements to architectural elements is required
to facilitate this initial mapping step. In an ideal case, a traceability matrix
similar to the one shown in Figure 2 allows the identification of architec-
tural elements based on features that are referenced in production work
activities. If such traceability information is not made explicit in any form,
it can be an effort-intensive task to derive the mapping between features
and architectural elements based on, for instance, interview with archi-
tects and requirements engineers. If we assume a software project that is
performed based on state-of-the-art Software Engineering methods, we
can assume that the traceability information is made explicit. Unfortu-
nately, the state-of-the-practice is that in many cases such traceability in-
formation at least partially needs to be elicited.

Based on the mapping of production work activities and architectural el-
ements the production wok activity view can be documented. The mod-
eling of production work activity views is supported by extensions made
to the tool Enterprise Architect. An overview on available tool support is
given in Section 5.4.2.

The production iteration view can be modeled based on the production
work activity view and the production schedule. The production work
activity view provides the information on which architectural elements
are related to production work activities. The production schedule con-
tains the information on the assignment of production work activities to
production iteration. Consequently, the relationships of architectural
elements and production iterations can be derived and modeled.

Besides the production iteration view, the resource assignment view can
be modeled after the production work activity view is available. The
assignment of resources to production work activities is part of the pro-
duction plan. The mapping of production work activities and architectur-
al elements is known from the production work activity view. Conse-
quently, the relations of resources and architectural elements can be
modeled.

Modeling
the Produc-
tion Work
Activity
View

Traceability

Modeling
of the Pro-
duction
Iteration
View

Modeling
of the Re-
source As-
signment
View

 Producibility Analysis Method

 115

5.2.3 Mapping of Producibility Scenarios

Producibility scenarios describe desired relationships between architec-
tural elements and production planning elements, as mentioned in Sec-
tion 5.2.1.2. However, the architectural and production planning ele-
ments sometimes are not referenced explicitly. In the example Producibil-
ity Scenario 1, for instance, all architectural elements contributing to sys-
tem monitoring and the first release are referenced. The architectural el-
ements contributing to system monitoring and the iterations making up
the first release need to be identified to analyze the fulfillment of the
producibility scenario. Hence, the producibility scenarios need to be
mapped to architectural and production planning elements to enable
their analysis.

Each producibility scenario is potentially related to a set of architectural
elements and a set of production planning elements. Such elements are
added to the documentation of producibility scenarios according to the
template presented in Section 5.2.1.2. These sets are input to the pro-
ducibility metrics related to sets of architectural elements and production
planning elements determined in the execution phase.

If the general description of a production scenario cannot be mapped to
architectural elements and production planning elements, this is an indi-
cator that the architectural design and/or the production plan have not
yet been worked out in enough detail. In an ideal case, based on the de-
scription part of a producibility scenario it should be possible to identify
all relevant elements based on the documentation of the architecture,
the production plan. If this is not possible, at least the architect and the
production planner should be able to list the respective elements verbal-
ly. Unfortunately, based on our experience in many cases the documen-
tation is not sufficient and architects and production planners need to be
interviewed to identify the respective elements. The architecture docu-
mentation and the production plan should be extended with additional
producibility related information if required.

5.3 Execution Phase

In the execution phase, potentially critical architectural and production
planning elements are identified. The producibility views modeled in the
preparation phase serve as input. All producibility metrics introduced in
Chapter 4 can be determined based on the three producibility views.
Therefore, the producibility views are processed by an analysis algorithm
that detects critical architectural and production planning elements
based on certain thresholds that are defined per producibility metric. Fur-
thermore, the metrics relevant for eventually specified producibility sce-
narios are determined.

Producibility Analysis Method

116

The concrete outputs of the execution phase are:

– List of critical architectural elements including the values of the pro-
ducibility metrics that caused the classification as critical

– List of production planning elements including the values of the pro-
ducibility metrics that caused the classification as critical

– Results regarding Producibility scenarios

The list of critical production planning elements is separated into a list of
critical production work activities, production iterations, and resources.

The results of the execution phase are used by architects and production
planners in the consolidation phase to consolidate the lists and derive
recommendations.

In the following sub-section, the identification of critical elements based
on the analysis algorithm is described.

5.3.1 Identification of Critical Elements

As mentioned above, the identification of potentially critical elements is
based on the producibility views. Each producibility view refers to archi-
tectural elements and a certain type of production planning element,
i.e., a production wok activity, a production iteration, or a resource.
Consequently, a certain subset of the overall set of producibility metrics
can be determined from each producibility view. Based on an evaluation
of the values of the producibility metrics with respect to certain thresh-
olds, architectural and production planning elements can be assigned to
the lists of critical architectural and production planning elements while
processing a certain producibility view.

The identification of potentially critical elements follows a specific analy-
sis algorithm. One producibility view after the other is analyzed. The or-
der of analyzing the producibility views in general is arbitrary. Typically,
the production work activity view is available before the production iter-
ation view, and the resource assignment view. Hence, we decided to
process the production work activity view first, followed by the produc-
tion iteration view, and the resource assignment view. In each analysis
step, certain critical elements are identified and added to the respective
lists of critical production work activities (PWA), critical production itera-
tions (PI), critical resources (RES), and critical architectural elements (AE)
Figure 55 provides an overview of the algorithm. The complete algorithm
in pseudo-code notation can be found in Appendix B.

 Producibility Analysis Method

 117

Table 4 shows the conditions/thresholds that are used by default to
check, if an elements is supposed to be critical. If the condition in Table
4 is evaluated to true, the respective element is classified as critical. The
definition of the conditions followed a rather pessimistic strategy. The
thresholds when an element is classified as critical are rather low. If we
take as an example #PWA_producing(AE) > 1, this condition is evaluated
to true as soon as #PWA_producing(AE) does not have its optimal value.
But there are cases where already a value of #PWA_producing(AE) = 2 is
critical, for instance, if two different teams that are geographically dis-
tributed work on the AE. Hence, it is important to use the context fac-
tors and the checklists presented in Section 5.4.2 to consolidate if the el-
ement is really critical.

Producibility Metric Condition checked

#PWA_producing(AE) >1
#PWA_consuming(AE) >0
#AE_produced_by(PWA) >1
#AE_consumed_by(PWA) >1
Coupling(PWA) >0

Figure 55: Overview Identification Algorithm

Producibility Analysis Method

118

#Shared_AE(PWA) >0
#PI_producing(AE) >1
ProductionDuration(AE) >1
#AE_involved_in(PI) > round(|AEall| / |PIall|)
Coupling (PI) >0
#Shared_AE(PI) >0
%Shared_AE (PI) >0
%Completed_AE_after(PI) < IterationNumber(PI) / |PIall|
%Created_AE_after(PI) < IterationNumber(PI) / |PIall|
#Resources_working_on
(AE)

>1

#AE_worked_on_by(Res) > round(|AEall| / |RESall|)
Coupling(Res) >0
#Shared_AE(Res) >0

Table 4: Conditions for identifying critical Elements

The following functions are used in Table 4 and need further explana-
tion:

- round() determines the next larger integer number based on a real
number provided as input

- |{AE}| is the number of elements in the set {AE}

- IterationNumber(PI) is an integer number representing the produc-
tion iteration PI. The production iterations are numbered sequential-
ly, i.e. 1,2,3…

Table 4 can be found again in Appendix A.

In the following, an example for performing the identification of critical
elements based on a given set of producibility views is presented.

The system is supposed to be built in three production iterations with
three teams involved overall. The modeling of producibility views has
been performed based on inputs from architects and production plan-
ners. The resulting production iteration view is shown in Figure 56. The
resource assignment views is shown in Figure 56. The inputs of architects
and production planners the example is based on can be found in Ap-
pendix D.

Example

 Producibility Analysis Method

 119

If we apply the analysis algorithm to the producibility views modeled in
Section 5.2.2, we get the lists of critical elements shown in Table 5, Ta-
ble 6, Table 7, and Table 8 as a result.

Figure 56: Example - Production Iteration View

Figure 57: Example - Resource Assignment View

Producibility Analysis Method

120

Critical AE

#P
W

A
_p

ro
du

ci
ng

#P
W

A
_c

on
su

m
in

g

#P
I_

pr
od

uc
in

g

Pr
od

uc
tio

nD
ur

at
io

n

#R
es

ou
rc

es
_w

or
ki

ng
_o

n

C
rit

ic
al

D
im

en
si

on
s

AE2 2 5 2 2 1 2
AE3 3 1 2 2 1 2
AE4 3 3 3 3 3 3
AE5 2 1 2 2 2 3

Table 5: Example - List of Critical Architectural Elements

Critical
PWA

#A
E_

pr
od

uc
ed

_b
y

#A
E_

co
ns

um
ed

_b
y

C
ou

pl
in

g

#S
ha

re
d_

A
E

%
Sh

ar
ed

_A
E

PWA1 1 2 4 0 0
PWA2 2 0 6 2 100
PWA3 3 2 8 3 100
PWA4 1 3 7 1 100
PWA5 1 1 4 1 100
PWA8 2 2 2 1 50
PWA9 2 1 5 2 100

Table 6: Example - List of Critical Production Work Activities

Critical PI

#A
E_

in
vo

lv
ed

_i
n

C
ou

pl
in

g

#S
ha

re
d_

A
E

%
Sh

ar
ed

_A
E

%
C

om
pl

et
ed

_A
E_

af
te

r

%
C

re
at

ed
_A

E_
af

te
r

PI1 4 0 3 75 10 40
PI2 6 0 4 2/3 50 70
PI3 5 0 2 40 100 100

Table 7: Example - List of Critical Production Iterations

 Producibility Analysis Method

 121

Critical
RES

#A
E_

w
or

ke
d_

on
_b

y

C
ou

pl
in

g

#S
ha

re
d_

A
E

%
Sh

ar
ed

_A
E

Team1 4 2 1 25
Team2 4 2 2 50
Team3 5 2 2 40

Table 8: Example - List of Critical Resources

In each table, the cells representing a value that makes the related condi-
tion in Table 4 to be true is marked in grey. This is helpful for architects
and production planners to start the interpretation of the results of the
execution phase in the consolidation phase.

Besides information on single architectural and production planning el-
ements, the execution phase comes up with results regarding the pro-
ducibility scenarios eventually modeled in the preparation phase. The fol-
lowing sub-section describes the execution phase deals with the produc-
ibility scenarios.

5.3.2 Analysis of Producibility Scenarios

As mentioned in Section 5.2.1, producibility scenarios are used to specify
requirements into production from different stakeholders. The produci-
bility analysis evaluates, if the producibility scenarios are likely to be ful-
filled. In the mapping step of producibility scenarios described in Section
5.2.3, relationships from a producibility scenario to producibility views
are established. Hence, architectural elements and production planning
elements involved in the respective producibility scenarios are identified.

The execution phase of the producibility analysis makes two contribu-
tions towards analyzing producibility scenarios.

The execution phase provides results regarding the producibility metrics
related to producibility scenarios defined in Chapter 4. These producibil-
ity metrics are:

– #PWA_producing{AE}

– #PI_involving({AE})

– PI_finishing({AE})

– #Resources_working_on({AE})

Producibility Analysis Method

122

The producibility metrics that are relevant for a specific producibility sce-
nario depend on the producibility dimension that is addressed by the
scenario. #PWA_producing({AE}) is relevant for the alignment of archi-
tecture and production work breakdown structure. #PI_involving({AE})
and PI_finishing({AE}) are relevant for the alignment of architecture and
production schedule. #Resources_working_on({AE}) is relevant for the
alignment of architecture and resource assignments.

Besides determining producibility metrics related to producibility scenari-
os, the execution phase makes a second contribution regarding produci-
bility scenarios. Information from the identification of critical elements
described in Section 5.3.1 that is relevant for a specific producibility sce-
nario is attached to it. If, for instance, an architectural element that is in-
volved in a producibility scenario is classified as critical, this information is
attached to the producibility scenario.

Table 9 shows an example of an extended version of the template for
documenting producibility scenarios. Additional rows have been added
with producibility metrics relevant in the context of the producibility sce-
nario. The information in the table is the starting point to analyze the
producibility scenario in the consolidation phase.

Name Name of the scenario
Stakeholder The main stakeholder interested in this sce-

nario.
Producibility Dimension Dimension selected from the quality model

of producibility (alignment of architecture
and production WBS, alignment of architec-
ture and production schedule, alignment of
architecture and resource assignments)

Description Description of the scenario
Involved AE The instances of architectural elements

referenced in the scenario
Involved PPE The instances of production planning ele-

ments (e.g. production work activities, pro-
duction iterations, resources) referenced in
the scenario

#PWA_producing({AE})
The number of PWAs involved in producing
the set of AEs involved in the producibility
scenario

#PI_involving({Involved
AE})

The number of PI involved in producing the
set of AEs involved in the producibility sce-
nario

PI_finishing({Involved
AE})

The ID of the PI where all AEs involved in
the producibility scenario are completed.

#Re-
sources_working_on({I
nvolved AE})

The number of resources involved in pro-
ducing the AEs involved in the producibility
scenario.

 Producibility Analysis Method

 123

#Critical AE involved
The number of critical AE involved in the
producibility scenario.

#Critical PWA involved
The number of critical PWA involved in the
producibility scenario.

#Critical PI involved
The number of critical PI involved in the
producibility scenario.

#Critical RES involved
The number of critical RES involved in the
producibility scenario.

Table 9: Example for extended Producibility Scenario Template

5.4 Consolidation Phase

In the consolidation phase of the producibility analysis, the results of the
execution phase are analyzed by architects and production planners, and
recommendations on how to change the architecture or the production
plan are derived to increase the producibility of the system. As men-
tioned above, the input to the consolidation phase for architects and
production planners are the lists of critical elements derived in the execu-
tion phase.

The consolidation phase is conducted in three steps as shown in Figure
58.

In a first step, architects and production planners check the received lists
for completeness and extend them if required. The reason for eventually

Figure 58: Steps of the Consolidation Phase

Producibility Analysis Method

124

required extensions is, that the algorithm used in the execution phase
detects critical architectural and production planning elements based on
their relationships and not based on properties of single architectural or
production planning elements. If an architectural elements is supposed
to be quite complex because of the algorithms to be implemented in-
side, for instance, this might be a reason to classify the architectural el-
ement as critical. Architects and production planners can add elements
based on their personal experience in this step.

In a second step, the context factors of the quality model of producibility
(see Section 4.5) are applied to the lists of critical elements. Therefore,
the context factors have been used to create checklists with questions
regarding such context factors. All questions of the checklist can be an-
swered with yes or no. Each question that is answered with yes reduces
the risk that the related element causes production problems.

In a third step, recommendations are derived by architects and produc-
tion planners that reduce the risk of production problems caused by the
critical elements identified. This step is conducted jointly by architects
and production planners. The reason for the get together is that changes
made to the architecture or the production plan influence each other
and need to be aligned to each other. Furthermore, this step again en-
forces the communication between architects and production planners.
This final step of the consolidation phase is supported by a list of typical
options for recommendations.

The concrete outputs of the consolidation phase are:

– Consolidated lists of critical elements

– List of recommendations

The following section discusses the steps of the consolidation phase in
more detail.

5.4.1 Completeness Check of List of Critical Elements

Architects and production planners check the lists of critical elements for
completeness in this step based on their experience. The reason for the
check for completeness is that the algorithm used to identify critical ele-
ments can only consider the information modeled in the producibility
views. Properties of, for instance, architectural elements like internal
complexity or experiences made with similar architectural elements in the
past are not included in the model but should lead to the decision to
classify an architectural element as critical.

Table 10 shows examples of architectural elements that should be con-
sidered as critical and that cannot be detected by the algorithm used in
the execution phase.

 Producibility Analysis Method

 125

Potentially Critical Architectural Elements
AEs that are complex because of algorithms,
data structures, etc.
AEs with high quality requirements regarding
security, performance, availability, flexibility,
etc.
AEs using legacy technology or any technology
where little expertise is available in the organi-
zation
AEs involved in realizing complex connectors
AEs that are provided by external suppliers
…

Table 10: Potentially Critical Architectural Elements

Complex architectural elements bear the risk of causing delays, effort
overhead, or low quality. Realization and testing of complex algorithms,
for instance, might cause delays or effort overhead. The same holds true
for architectural elements with high quality requirements. Technologies
might cause production problems, especially if little experience on the
technologies are available in the organization or if only few experts are
available at all like in the case of legacy technologies. Connectors are of-
ten a source of production problems because of their inherent complexi-
ty. Architectural elements of external suppliers should be considered crit-
ical, for instance, if the supplier is not yet well known to an organization.

Potentially Critical Production Iterations
First PI in a project
Last PI in a project
PI involving complex AE
PI involving external resources for the first time
PI performed during special season
…

Table 11: Potentially Critical Production Iterations

Table 11 shows potentially critical production iterations. The first and the
last production iteration are often critical. The first one because the
teams need to get started and the last one because the project needs to
get finished and all issues remaining from previous production iterations
need to be addressed in addition. Production iterations involving com-
plex architectural elements might be a problem, as well as production it-
erations involving external suppliers or teams for the first time. There can
even be seasonal reasons for classifying a production iteration as critical,
for instance, if it is supposed to be performed during the holiday season
or during flu season.

Producibility Analysis Method

126

Potentially Critical Resources
Resources located far abroad from core team
External suppliers
International teams with cultural differences
…

Table 12: Potentially Critical Resources

Table 12 shows potentially critical resources. Resources might be sup-
posed critical if they are located far abroad the core team. External sup-
pliers need to be handled with specific care especially if they are not yet
well known. International teams involving different cultures can be a
source of issues as well.

After architects and production planners have considered additional criti-
cal elements, the lists are consolidated with respect to the context fac-
tors defined in the quality model of producibility.

5.4.2 Application of Context Factors

In this step, context factors are applied to the lists of critical elements. As
mentioned above, checklists containing questions derived from the con-
text factors are used in this case. All questions can be answered with yes
or no. The questions are formulated in a way that each question that is
answered with yes reduced the risk of production problems caused by
the respective element. After the context factors have been applied to
the respective critical elements, architects and production planners have
to decide if they still consider an element as critical or if the context fac-
tors mitigate the production risks from their point of view. This decision
is not taken automatically but requires human judgment.

Table 13 shows as an example the checklist for critical architectural ele-
ments. The checklist consists of a section with general questions that
should be asked in the case of each critical architectural element. In ad-
dition, it contains questions that should be asked in case the respective
producibility metric exceeded the defined threshold.

General questions for each AE:
� Is the quality of the architecture documentation with respect to the AE high?
� Is a production work activity type, i.e. a guideline describing how to produce

the AE available?
� Are certain development activity types supporting the production of the AE, for

instance, continuous integration, regression testing, generation of parts of the
AE, etc.?

� Are tools providing specific support for the production of the AE?
� Can the AE be built based on reuse and is a process how to reuse attached to

the reusable artifacts?
� Are the resources providing and potentially adapting the reusable artifacts

available when the AE is supposed to be produced?

 Producibility Analysis Method

 127

� Is the available team experienced with the technologies used to realize the AE?
� Is the AE produced by internal resources and are they co-located?
� If the AE is produced by external resources or internal resources that are not

co-located, is an appropriate communication infrastructure in place, and an in-
frastructure that facilitates the exchange of artifacts?

� Are contact persons for the AE under analysis and for all related AE in place
that can help in solving issues?

#PWA_producing(AE)
� Is a certain order defined for performing the PWAs?
� Are the PWAs performed by the same team (or by co-located teams)?
� Is the internal design of the AE prepared for parallel work and/or incremental

extension?
� Are integration and test processes defined for the AE?
� Are deployment processes defined for the AE?
� Are coding guidelines defined for the AE?
� Does the tool infrastructure support parallel production well?

#PWA_consuming(AE)
� Are the PWAs consuming the AE produced later on?
� Are the consuming PWAs performed by co-located resources?
� If the resources producing consuming PWAs are not co-located, are appropri-

ate communication infrastructures and infrastructures to exchange artifacts es-
tablished between the involved resources?

� Do the involved resources know each other personally?
� Is the quality of the architecture documentation high, especially the documen-

tation of the interfaces of the AE?

#PI_producing(AE)
� Are the same resources producing the AE throughout all iterations?
� Is the internal design of the AE prepared for incremental extension?
� Are integration and test processes defined for the AE?
� Are deployment processes defined for the AE?
� Are coding guidelines defined for the AE?

#Resources_working_on(AE)
� Are the resources producing the AE co-located?
� Are appropriate communication infrastructures and infrastructures to exchange

artifacts established between the involved resources?
� Do the involved resources know each other personally?
� Does each involved team have one single point of contact, for instance, a chief

programmer?
� Do the resources work on parts of the AE separated in the design of the AE?
� Is one resource responsible for integration, final test, and deployment of the

overall AE?

Table 13: Checklist for Architectural Elements

Similar checklists for production work activities, production iterations,
and resource assignments exist and that can be used by production
planners can be found in Appendix C.

Producibility Analysis Method

128

The application of context factors to the lists of critical elements also
affects the producibility scenarios. If certain elements are removed from
the lists of critical elements, this affects the producibility scenario as po-
tentially less critical elements are involved. The documentation of the
producibility scenario has to be adapted in this case.

The application of the checklists are a good preparation for deriving rec-
ommendations in the next step. If certain answers related to critical ele-
ments are answered with no, for instance, if no test and deployment
processes are defined for an architectural elements that is often modi-
fied, architects could recommend to invest in the definition of test and
deployment processes. In the following section, it is described how rec-
ommendations can be derived to mitigate the risk of production prob-
lems caused by the critical elements.

5.4.3 Derivation of Recommendations

The final step of the consolidation phase is the derivation of recommen-
dations. After the lists of critical elements that came out of the execution
phase has been checked for completeness and the producibility context
factors have been applied, architects and production planners have to
decide which measures to take to prevent potential production prob-
lems.

Architects and production planners have certain options for recommen-
dations they can realize in their respective area of responsibility. Archi-
tects can change, for instance, the overall functional decomposition of
the system or perform local changes by, for instance, splitting single ar-
chitectural elements. Production planners can change the production
work breakdown structure, the assignment of production work activities
to production iterations, the assignments of resources, etc. Furthermore,
both, architects and production planners can try to influence the context
factors of the quality model of producibility to prevent production prob-
lems caused by critical elements. From an overall project perspective, ar-
chitects and production planners jointly should identify the measures
that lead to an improvement of producibility which often are a combina-
tion of actions to be performed on the architecture and actions to be
performed on the production plan. Hence, architects and production
planners conduct this last step of the consolidation phase together.

Nevertheless, it is beneficial to provide a general overview of potential
recommendations from an architect’s and a production planner’s point
of view to show the available options to them as a starting point for
their joint discussion.

The following tables provide an overview of possible recommendations.
They are not complete in a sense that no other options can be imagined.

Context
Factors and
Producibil-
ity Scenari-
os

 Producibility Analysis Method

 129

But they provide a good starting point for the derivation of recommen-
dations or measures to increase the producibility in a concrete case.

Table 14 shows potential recommendations for critical architectural ele-
ments.

Recommendations regarding Architectural Elements
Split AE
Improve internal design of the AE to support parallel work and/or
incremental extension
Try to produce AE based on reuse
Ask production planner to reduce number of involved resources pro-
ducing the AE by changing resource assignments
Ask production planner to reduce number of PWAs producing the AE
Ask production planner to reduce number of production iterations
producing the AE
Improve tool support to produce the AE
Define production work activity type to support production of the AE
Define development activities specifically supporting the production of
the AE
Improve the documentation of the AE
…

Table 14: Recommendations regarding Architectural Elements

Table 15 shows potential recommendations regarding production itera-
tions.

Recommendations regarding Production Iterations
Move AEs or PWAs to other PIs
Extend duration of PI, plan time buffer at the end of the iteration
Involve different resources in the PI
Reduce number of involved resources to save communication effort
Improve support for producing involved AE, e.g. define production
work activity types, improve tool support, etc.
Ask architect for splitting shared AE if possible
Ask architect for reducing coupling between AEs
…

Table 15: Recommendations regarding Production Iterations

Table 16 shows potential recommendations regarding resources.

Recommendations regarding Resources
Reduce AEs produced by resource
Clearly assign AEs to resources, prevent sharing of AEs
Improve communication between resources

Producibility Analysis Method

130

Change team composition
Ask architect for splitting shared AE if possible
Ask architect for reducing coupling between AEs
Teach resources in used technologies
…

Table 16: Recommendations regarding Resources

Table 17 shows potential recommendations regarding production work
activities.

Recommendations regarding Production Work Activities
Change work breakdown structure
Reduce number of involved resources to save communication effort
Improve support for producing involved AE, e.g. define production
work activity types, improve tool support, etc.
Ask architect for splitting shared AE if possible
Ask architect for reducing coupling between AEs
Ask architect to change functional decomposition with respect to the
PWAs
…

Table 17: Recommendations regarding Production Work Activities

In the example used in Section 5.3.1, the following recommendations
could help to prevent potential production problems. The solutions cho-
sen here directly influence the respective producibility metrics:

- Split AE4: The architectural element AE4 is split into three parts. One
of the three parts is assigned to each production iteration.

- Move AE2: AE2 is moved completely to PI1, i.e. the functionality
supposed to be added in PI2 in the original plan is already complete-
ly realized in PI1.

- Move AE3: AE3 is moved completely to PI1 with the same argumen-
tation than in the case of AE2.

- Move AE5 and change resource assignment: AE5 is completely
moved to PI2 and assigned to Team 2.

The recommendations have several positive effects. The overlapping be-
tween the production iterations is eliminated (see Figure 59), i.e. no ar-
chitectural elements are shared anymore between production iterations.
Furthermore, no architectural elements are shared between teams.

Example

 Producibility Analysis Method

 131

The architectural element AE4 is no longer modified in each production
iteration and by different teams. The splitting might lead to a certain
amount of redundancy in the resulting three architectural elements
AE4.1, AE4.2 and AE4.3. As an alternative to splitting, it eventually
would have been possible to try to improve the internal structure of AE4
in a way that the modification performed over time mainly affect sepa-
rate parts. This measure could have been supported in addition by defin-
ing regression tests in each production iteration to make sure functional-
ity is not broken later on, and to take specific care of documenting the
architectural element. The architectural elements AE2, AE3, and AE5
have been moved in addition and AE5 has been completely assigned to

Figure 59: Improved Production Iteration View

Figure 60: Improved Resource Assignment View

Producibility Analysis Method

132

Team 2. Figure 60 shows the improved resource assignment view.

In the end, each production iteration produces four architectural ele-
ments completely, which leads to a sustainable growth of the system
over time. The risk of breaking functionality as architectural elements are
modified several times has been reduced. Especially, production iteration
PI2 benefits from the recommendations. Less architectural elements are
involved and architectural elements are no longer shared with other pro-
duction iterations. The risk of not finishing PI2 in time or the risk of ef-
fort overhead in PI2 has been reduced.

Architects and production planners finally have to make conclusions
regarding the producibility scenarios. The recommendations to address
the criticality of architectural and production planning elements influ-
ence the producibility scenarios as the number of critical elements in-
volved in a producibility scenario might be reduced. Nevertheless, it must
be decided to which degree a producibility scenario is fulfilled and if
additional recommendations need to be formulated.

Similar to architecture evaluations, the decision if and to which degree a
scenario is fulfilled needs to be taken by an expert and can hardly be au-
tomated. The documentation of a producibility scenario as shown in Ta-
ble 9 provides facts that can be used by architects and production plan-
ners to take a decision. If architects and production planners decide that
a producibility scenario is not fulfilled, they have again the options for
recommendations introduced in Table 14, Table 15, Table 16, and Table
17 as a guideline.

The current support for deriving recommendations is limited. The focus
of this work is to support the analysis of producibility, i.e., the identifica-
tion of critical architectural and production planning elements. The lists
of recommendations are not meant to be complete and they are not yet
validated. A more comprehensive support for deriving recommendations
requires a better understanding of the process of design for producibil-
ity, i.e., how to guarantee producibility by construction. This process is
not considered in detail in this dissertation but left open for future work.

In the following section, the available tool support is presented.

5.5 Tool Support

The producibility analysis is supported by a tool prototype. The tool pro-
totype is realized as an extension of Enterprise Architect [EA11]. Enter-
prise Architect (EA) is a professional modeling tool broadly used in indus-
trial practice. The two main features of the tool prototype supporting the
producibility analysis are:

Recom-
mendations
regarding
Producibil-
ity Scenari-
os

Limited
Support for
Derivation
of Recom-
mendations

 Producibility Analysis Method

 133

– Support for modeling producibility views: All elements required to
model producibility views have been integrated into Enterprise Archi-
tect. Hence, models of an architecture can now be complemented by
production work activity views, production iteration views, and re-
source assignment views.

– Determination of producibility metrics: The producibility metrics that
have been defined in the quality model of producibility can be de-
termined based on the modeled producibility views.

In the following, the two main features that have been realized are de-
scribed in more detail.

Figure 61 shows how the elements required to model producibility views
have been integrated into Enterprise Architect. The so-called toolbox of
the Enterprise Architect has been extended by a software production
tool. The software production tool contains the elements used in soft-
ware production like architectural elements, production iteration, etc.
The can be added via drag & drop to the main working area in the mid-
dle of the screen to model the respective producibility views. Thereby,
producibility views can be added to the overall model via the project
browser shown on the right.

Technically, the software production tool to model producibility views is
realized by means of a UML profile. The meta model of software produc-
tion that contains all required modeling elements has been partially

Modeling
Producibil-
ity Views

Figure 61: Modeling Producibility Views in EA

Producibility Analysis Method

134

modeled in Enterprise Architect as a UML profile that now can be im-
ported to each project that wants to model producibility views.

The producibility metrics of the quality model of producibility can be au-
tomatically determined based on the producibility views modeled in EA.
Technically, the metric determination uses the feature of EA to formulate
SQL queries [SQL] on the underlying model. EA stores the models in an
underlying SQL database. By means of an EA internal SQL model editor,
the SQL queries are formulated. Queries can be stored, which enables us
to formulate queries for each producibility metric, store them, and reuse
them later on. Figure 62 shows, how metrics can be formulated in the
SQL editor of EA.

The tool prototype shows the technical feasibility of modeling producibil-
ity views and determining producibility metrics based on such models.
However, the tool support for the producibility analysis method should
be extended in the future, for instance, to enable the modeling of con-
text factors as properties of the modeling elements in the software pro-
duction tool in EA.

Determina-
tion of Pro-
ducibility
Metrics

Figure 62: SQL Model Query in EA

 Validation

 135

6 Validation

In this chapter, we present the existing validation results of this thesis
and give an outlook on future validation activities. The documentation of
the validation results is twofold. First, we present the results of a series
of industry and applied research projects that have been conducted
throughout the course of this thesis. These projects supported in elabo-
rating the contributions of this thesis, i.e. mainly the meta-model of
software production, the quality model of producibility, and the produc-
ibility analysis method, and in many cases contributed to their initial vali-
dation. Second, we present a case study that has been conducted on the
final version of the producibility analysis method.

6.1 Projects Accompanying this Thesis

In this section, we describe the results of a series of industry and applied
research projects that accompanied this thesis, contributed to elaborate
the results and served as initial validation.

6.1.1 Project “Virtual Office of the Future”

The probably most influencing project for this thesis is called “Virtual Of-
fice of the Future” (VOF). It has been conducted from 2003-2008 to-
gether with RICOH Co. Ltd., a Japanese manufacturer of office devices
like so-called Multi-Functional Office Peripherals (MFP). The general pro-
ject setting was that Fraunhofer IESE conducted research on Software
Engineering for so-called virtual office environments inspired by the prac-
tical problems of Ricoh, and transfers the research results to Ricoh’s MFP
business unit.

RICOH’s goal for the near future is to sell integrated office environments,
i.e. not only office devices, but overall office infrastructures supporting
the office workflows of their customers with Ricoh devices well integrat-
ed. Hence, they required a Software Engineering methodology that ena-
bles them to develop such systems. The key solution idea in the begin-
ning of the project was to adopt product line technology to build office
environments based on reuse. Hence, we analyzed typical workflows of
RICOH customers and created a reference architecture for virtual office
environments [CJK+08]. The major issue has been the processes that en-
able RICOH to build office environments based on the reference archi-
tecture. They wanted to get concrete guidance on how to build office
environments. Hence, we developed the idea to provide them with pro-

Validation

136

cesses similar to the ones they know from producing their MFPs, which
was the initial idea for software production processes. We defined the
general strategy to set-up office environments with a customer, which is
to adopt and iterative approach and realize a set of workflow or work-
flow variants in each iteration [CJM+08]. We provided guidance on how
to produce workflows and related architectural elements like services,
backend adapters, etc. In other words, we defined production work ac-
tivities and high level production plans guiding engineers in building
workflows and related architectural elements. Hence, the VOF project
provided us with initial experience on software production as we defined
an architecture and production plans and processes tailored to it.

The VOF project also provided input to the definition of the quality mod-
el of producibility. We learned about the importance to set-up the archi-
tecture according to the iterations defined in the production plan. The
idea of software production will not work well if each iteration again
modifies parts of the system that have already been created and deliv-
ered. As the production of office environments was planned to be con-
ducted in a distributed setting by Ricoh, it was important to assign the
available resources to different parts of the architecture and define the
architecture in a way to enable this.

Overall, the feedback by Ricoh was very positive. Ricoh expects to be
able to deliver integrated office environments with short time to market
which is enabled by the concepts of software production [CAU+09].
They planned to build a production environment with tools supporting
the defined production processes and development frameworks that en-
able them to easily create the architectural elements being part of the
reference architecture.

6.1.2 Projects in the Airline Management Domain

In 2008 and 2009, we were involved in a series of projects with a cus-
tomer in the airline management domain. Our tasks were to assess archi-
tectures of large workflow-based information systems supporting, for in-
stance, booking or check-in. Based on our assessments, we also were in-
volved in designing new architectures for the next generation of such
systems and supported in developing strategies for migration.

Especially, when we were involved in designing future architectures and
planning their realization respectively migration, the idea of software
production again came into play. Similar to the office environments in
the VOF project, the production or migration of workflows has been a
recurring pattern and it seemed promising to set-up production process-
es for workflows and related architectural elements and design the archi-
tecture in a way to support the iterative production and deployment of
workflows. Based on our argumentation on the relationship of architec-
ture, production plan, and production processes we got involved not on-

 Validation

 137

ly into architectural design, but also into production planning and pro-
duction process design. Unfortunately, the overall project on the cus-
tomer side was cancelled and consequently our involvement, too.

Nevertheless, we were able to collect several important lessons learned.
The idea of software production is applicable in the context of single but
large workflow-based information systems. We were involved in plan-
ning production and defining production processes. Unfortunately, the
results have not been used in this case.

The projects again provided input for the quality model of producibility.
We learned about the importance of considering the technology mix
used in a project, especially if legacy systems are involved. Several exter-
nal providers have been involved in the project, which helped us to un-
derstand the importance of understanding their capabilities in the con-
text of software production.

6.1.3 Project “ProKMU”

In the applied research project ProKMU (“Produktlebenszyklusmanage-
ment in KMU (ProKMU): Methodische Unterstützung für die kostengüns-
tige Implementierung und Anpassung interdisziplinärer, kooperativer,
flexibler, PLM-Lösungen”), funded by „Bundesministeriums für Wirt-
schaft und Technologie (BMWi) - Zentrales Innovationsprogramm Mittel-
stand" (ZIM), we developed a method to customize product data ma-
nagement systems. Product data management systems are used by
manufacturers, for instance, in the automotive industry, to manage bills
of materials for their products, tracking exactly which parts have been
used in which product, etc. The systems are characterized by complex
data structures. Workflows play a minor role. Such systems typically need
to be customized to the data formats used in organizations, they need to
be integrated with other systems supporting the manufacturing process,
etc.

The project gave us the chance to apply the idea of software production
to information systems that are less workflow-oriented than the ones
described in Section 6.1.1 and Section 6.1.2. The major architectural el-
ements that need to be produced in this case are data structures, ser-
vices accessing such data structures, and editors that enable the users of
the system to view and manipulate data. We defined a customization
process and reference plans for certain types of customizations together
with an industrial partner in the project that are inspired by the idea of
software production. Typical steps of the process are the creation and
customization of data structures, services, and editors. The industrial
partner even has built tools to support the production of data structures,
services, and editors by means of generative approaches.

Validation

138

The project showed that the idea of software production is also applica-
ble in the context of data-centric information systems. We received fur-
ther input for the quality model of producibility. Compared to the pro-
jects introduced in the previous sections, we specifically learned about
the potential of tools to support production.

6.2 Case Study: Mobile Configuration Assistant

The producibility analysis method has been evaluated in an industrial
case study. This section describes the goals of the case study, the con-
text, the approach that has been chosen to conduct the case study, the
results, and the threats to validity in detail.

6.2.1 Goals

The goals of the evaluation conducted in the context of the case study
are to validate the hypothesis stated in Section 1.5:

H1 – Effectiveness of the Producibility Analysis Method with re-
spect to Time and Effort: The producibility analysis method reduces
time and effort spent on production (i.e., in this case the set of all activi-
ties conducted after architectural design and project or production plan-
ning) by at least 25%.

H2 – Completeness of the Identification of Critical Elements: The
producibility analysis method detects at least 75% of critical elements
(including architectural and project or production planning elements).

H3 – Correctness of the Identification of Critical Elements: At least
90% of the elements identified by the producibility analysis method as
critical are really critical in the end, i.e. less than 10% of the identified
elements are false positives and not causing any production problems.

The case study was supposed to deliver initial empirical evidence to ac-
cept such hypotheses.

6.2.2 Context

The case study has been performed in the context of an industrial project
conducted by Fraunhofer IESE, the University of Kaiserslautern, and John
Deere. John Deere is a manufacturer of systems for the agricultural do-
main consisting of machines like tractors or combines but also software
and services sold with such machines.

Industrial
Project

 Validation

 139

The project were the case study was conducted is called “Mobile Con-
figuration Assistant” (MCA). The MCA is a mobile application running
on a tablet device that is used by drivers of machines to configure their
equipment. Machines like tractors and attached implements need to be
configured for a specific task to be performed on the field like planting,
spraying, or harvesting to deliver optimal performance. Today, the exist-
ing configuration solutions running on a display on the machine are not
as usable as expected by the drivers, they are hard wired with the ma-
chine and cannot be used with other machines, and the software on the
display is not easily extendible, for instance, if new configuration options
are available. The goal of the project therefore was to develop a new
configuration software on a mobile device that is highly usable also for
novice users and easily maintainable by John Deere engineers. John
Deere selected the iPad as the platform to realize the MCA. The goal
was to develop a native iOS application. Other technologies required to
realize the MCA were not prescribed by John Deere.

The project team consisted of a team of twelve master students of the
University of Kaiserslautern. For them, the project was a so-called Master
Project in Software Engineering. They have to conduct one of such mas-
ter projects if they focus on Software Engineering during their Master of
Computer Science. The master project is a special one in the sense that a
real customer provides the requirements for the system to be developed
and is involved throughout the project until the results are delivered. The
student team was an international team. Six of the twelve students are
participating in the ERASMUS Mundus Program and strive for a Europe-
an Master in Software Engineering. They spend the second year of their
master program in Kaiserslautern. A team of University and Fraunhofer
IESE employees that manage the overall project and provide support in
all Software Engineering topics supervises the student team. Supervisors
for requirements engineering, architecture and design, implementation,
and quality assurance were available to them.

The project has been conducted in a period of three month from Octo-
ber 4 – December 20, 2010. The students have acquired the required
skills to perform the projects in Software Engineering lectures before the
project. Nevertheless, as a kind of refresher they were taught the re-
quirements, the UI and interaction design, and the architectural design
approach to be used in the project in the beginning of the master pro-
ject in half day short tutorials. Furthermore, they got a tutorial in iOS de-
velopment as none of the students had previous experience in iOS de-
velopment. As Fraunhofer IESE conducted iOS development project with
students before, a tailored tutorial enabling newbies with programming
skills in other programming languages to develop iOS applications.

The students started with eliciting and analyzing John Deere’s require-
ments based on an initial problem statement and video-conferences with
US employees of John Deere and employees of the John Deere site in
Kaiserslautern. After that they designed a user interface and interaction

John Deere
Mobile
Configura-
tion Assis-
tant

Project
Team

Project Ap-
proach

Validation

140

concept and an architecture. Requirements engineering, UI and interac-
tion design, as well as architectural design were conducted by means of
Fraunhofer IESE’s state of the art methods Task-oriented Requirements
Engineering (TORE) and Fraunhofer Domain-Specific Architecture (DSSA).
Project planning was conducted by the supervisors based on state of the
art project planning approaches and their experience in various industry
projects. The supervisors provided a work breakdown structure and a
production schedule and assigned the students in a joint meeting to the
production work activities. After architectural design has been conduct-
ed, production has been performed according to the architecture and
the production plan.

6.2.3 Approach

The general idea of the case study approach is to perform a producibility
analysis after architecture and production plan of the project are availa-
ble. The producibility analysis is performed by a researcher that is not a
member of the project team. The results of the producibility analysis are
not fed back to the project before it has ended. After the end of the pro-
ject, critical architectural and production planning elements and related
production problems are identified in a retrospective with the project
team. The results of the retrospective are compared with the results of
the producibility analysis and the effect that the producibility analysis
would have had on the project is estimated and discussed with the pro-
ject team. Hence, the project without producibility analysis is able to
serve as a baseline that can be compared against a fictitious project with
producibility analysis.

In more detail, the case study followed the following procedure. A re-
searcher, in this case the author of this thesis, received the materials
required to conduct the producibility analysis after architectural design
and production planning had been finished, i.e. mid of November. The
researcher was involved in acquiring the project and knew the general
problem to be solved, but was not involved in any more activities, espe-
cially not after the project had officially started on October 4, 2010.

The producibility analysis has been conducted, but as mentioned above,
no results were fed back to the project team. No communication with
the project team occurred before the end of the project. After the end of
the project, each member of the student team as well as the supervisors
for project planning and architecture have been interviewed individually
for approximately 30 minutes by the researcher. Thereby, the researcher
asked the student interviewee about his or her role in the project, espe-
cially during production. All interviewees were asked to report on critical
architectural and production planning elements and related problems
that occurred during the project. The identification of critical elements
has been supported by a walkthrough of the architecture documentation
and the production plan to increase the completeness of the results. Es-

Idea

Procedure

 Validation

 141

pecially the critical elements the interviewee was in touch with were dis-
cussed in detail.

After the interviewees had provided their input on critical elements and
production problems, the results of the producibility analysis were pre-
sented to them including recommendations on how to solve the predict-
ed problems. The interviewees were asked to provide their opinions re-
garding the proposed recommendations. In addition, the interviewees
were provided with information on the producibility views and were
asked for feedback regarding the potential usefulness of such views dur-
ing the project.

Based on the results of the producibility analysis and the project retro-
spective conducted via interviews the case study results presented in
6.2.4 have been prepared. In addition, the researcher was provided with
the effort data that have been collected during the project and the real
timeline of the project, i.e., for instance, when the planned production
iterations really ended.

6.2.4 Results

6.2.4.1 Overview of Results

The adoption of the producibility analysis method in the case study was
feasible. It was possible to apply the method to the artifacts provided as
input, i.e. the architecture documentation of the system and the produc-
tion plan. The producibility views required to conduct the producibility
analysis have been derived successfully in the preparation phase. The
producibility metrics have been determined and critical architectural and
production planning elements have been derived, as well as potential
production problems and recommendations. Overall, the application of
the producibility analysis method took ~8 hours including reading the
input documents, deriving the producibility views, determining the criti-
cal elements, and deriving potential problems and recommendations.

The case study shows that a high completeness of identified critical ele-
ments can be achieved. Table 18 provides an overview per element type.
All architectural elements that turned out to be critical during the project
have been identified by the producibility analysis. Also all critical produc-
tion work activities and production iterations have been predicted up-
front. In the case of resources, 2/3 of the resources that turned out to be
critical have been identified up-front. Hence, overall 91,67% of critical
elements have been identified, which is beyond the value of 75% that
has been mentioned in H2. This means, that the case study provides
some evidence that a completeness of more than 75% can be achieved,
and the hypothesis H2 might be accepted.

Feasibility
of the
Method

H2 - Com-
pleteness

Validation

142

The results regarding the correctness of the identification of critical ele-
ments are also very promising. As shown in Table 18, overall a correct-
ness of 95% has been achieved. Only in the case of architectural ele-
ments, a false positive occurred. In all other cases, 100% of results were
correct. Hence, the goal of achieving at least 90% correctness as stated
in H3 has been achieved in the case study, which provides some evi-
dence that H3 can be accepted.

 Completeness (H2) Correctness (H3)
Architectural Elements 100% 80%
Production Work Activities 100% 100%
Production Iterations 100% 100%
Resources 66,67% 100%

Overall 91,67% 95%

Table 18: Overview Case Study Results

The critical elements that have been identified by the producibility analy-
sis method caused several production problems in the project. This has
been detected based on the interviews performed with the project team.
Production iteration 1, for instance, has been finished with a delay of 4
days. The students stated that without having the production problems
they would have been able to finish production iteration 1 in time.
Hence, if the predicted critical elements and the related production prob-
lems would have been addressed successfully up-front, there would have
been the potential to save up to 4 days in production iteration 1. Thus,
the overall duration of production iteration 1 would have been reduced
from 14 to almost 10 days, which is a reduction by ~29%. The students
reported in the interviews, that there would have been even more delays
if experienced supervisors from Fraunhofer IESE would not have actively
participated in the implementation activities during the last days of pro-
duction iteration 1.

Unfortunately, the work on production iteration 2 could not start before
production iteration 1 has been finished because all resources still have
been involved in production iteration 1. Hence, an overall delay of the
project of 4 days occurred which lead to the fact that the planned scope
of the project could not be realized in the end as there was a hard dead-
line. Thus, we can conclude that there is some evidence that the produc-
ibility analysis method bears the potential to save more than 25% of
time as it has been stated in H1.

H1 also refers to effort. The effort spent by the resources has been
tracked throughout the project. Overall, 944 hours have been spent on
production in the case study. 743 hours have been spent on production
iteration 1, 201 hours on production iteration 2. The reason that only
201 hours have been spent on production iteration 2 is on the one hand
the delay in production iteration 1, and on the other hand the overall

H3 - Cor-
rectness

H1 - Effec-
tiveness

 Validation

 143

project deadline. By means of the producibility analysis results, it would
have been possible to reduce the effort overhead caused by the delay in
production iteration 1 and shift the saved effort spent to production it-
eration 2. We can assume based on the collected effort data, that the 4
additional days spent on production iteration 1 caused 241 hours of ef-
fort. If we save this effort in production iteration 1, which means a sav-
ing of ~32%, we can shift 201 hours into production iteration 2 (we do
not shift the effort of the supervisors into production iteration 2).

Although we do not save effort overall as described above, we free up
32% of effort in one production iteration to spent them in another one.
This gives us some evidence, that there is potential to save overall project
effort by means of the producibility analysis method and that H1 even-
tually can be accepted from an effort point of view.

6.2.4.2 Identified Critical Architectural Elements

The structural view of the architecture of the system contains 10 archi-
tectural elements, in this case these are 10 components existing at
runtime. All 10 architectural elements have been included in the produc-
ibility analysis. Overall, 5 out of 10 architectural elements have been
identified as critical.

2 out of 10 architectural elements have been classified as critical as a re-
sult of adopting the algorithm for the identification of critical elements.
Both architectural elements continuously undergo changes during the
project, both are produced by two production work activities. One of
them has an increased coupling in addition.

3 out of 10 architectural elements have been identified as critical based
on the guidelines provided to identify critical architectural elements. One
architectural element because it is the foundation to realize one of the
highest prioritized features requested by the customer. Two other ones
because they realize the communication between client and server and it
was known up-front that different technologies have to be integrated
that furthermore are not well-known to the team.

4 of the 5 architectural elements that have been identified as critical
turned out to be critical during the project. They caused effort overhead
and delays. No additional architectural elements caused problems in the
project. Hence, in this case 100% of critical architectural elements have
been identified up-front by the producibility analysis method, whereas
one architectural element turned out to be not critical, although it has
been classified as critical. Hence, one false positive occurred, which
means that 80% of the results have been correct in this case.

Validation

144

6.2.4.3 Identified Critical Production Planning Elements

The production work breakdown structure in the case study contains 12
production work activities. The production work activities oriented at the
architecture (not at features to be realized) and always refer to exactly
one architectural element. 4 of the 12 production work activities have
been identified as critical. The reasons are sharing architectural elements
and high coupling. Context factors like the internal design of the shared
architectural elements do not help to compensate the problem in this
case.

All the identified production work activities turned out be critical in the
project. They refer to architectural elements that have already been iden-
tified as critical before. Hence, 100% of the production work activities
identified as critical turned out to be critical, which means that no false
positives occurred in this case. Unfortunately, four production work ac-
tivities that have not been identified by the producibility analysis method
as critical turned out to be critical and were not finished during the pro-
ject as a consequence of the delays caused by the other production work
activities. The students reported that they would have been able to finish
the production work activities if they would have had more time. Hence,
we can somehow assume that they would not have been critical, if the
problems with the previous production work activities would have been
solved. Thus, we somehow can argue that the producibility analysis iden-
tified all critical production work activities.

The production phase of the project was planned for four weeks. The
customer required an intermediate presentation of project results show-
ing that certain key features are already realized for the third week.
Hence, two production iterations have been planned, the first one end-
ing after two weeks delivering the system to be presented at the inter-
mediate presentation. The second one ending after four weeks deliver-
ing the final version of the system. The first of the planned production
iterations has been identified as critical. It creates more than 50% of the
overall number of architectural elements. 5 of the 6 architectural ele-
ments produced in the iteration have been classified as critical before.

The students have been organized in three teams involved throughout
the two production iterations. Each team takes care of one layer of the
system, i.e. one team realizes the graphical user interface (GUI), one the
business logic on the client side, and one the server side. Two of the
teams have been classified as critical by the producibility analysis meth-
od, the team responsible for the business logic on the client and the
server team. The business logic team has an increased communication
effort with the other teams because of the coupling between the archi-
tectural elements assigned to them. The server team has to cope with 6
out of 10 architectural elements of the system but is not larger than the
other teams. In the project, all three teams contributed to the production
problems that occurred. All teams delivered their results too late in the

 Validation

 145

first production iteration. This means the producibility analysis method
determined 2/3 of the overall number of critical resources and there
were no false positives in this case.

Appendix E contains the values of the producibility metrics for all archi-
tectural elements, production work activities, production iterations, and
resources considered in the case study.

In the following section, threats to validity that need to be considered
while interpreting the results are discussed.

6.2.5 Threats to Validity

In this section, we discuss threats to validity according to the classifica-
tion referred to in [WRH+00].

The MCA case study provides only one data point as a basis to draw
conclusions on accepting the hypotheses H1, H2, and H3, which is a
serious threat to conclusion validity. Therefore, we tried to make sure
that the collected effort data are highly reliable and that the interviews
are conducted in a structured way to guarantee high quality of the inter-
view results. The quality of the effort data was addressed by providing a
standardized effort collection sheet to all project members and to con-
tinuously motivate them to add precise effort data into the respective
sheet. For the interviews, an interview guideline was used by the inter-
viewer and the interview was accompanied by a walkthrough of relevant
project documentation to assure the completeness of the interview re-
sults.

The recommendations that were provided as a result of the producibility
analysis have not been applied to the project. They have been discussed
during the project retrospective and the project team consisting of su-
pervisors and students estimated, if the recommendations would have
solved the problems experienced in the project with the critical elements.
Hence, the conclusion that the recommendations are able to solve the
experienced problems is based on expert opinion (in the case of the su-
pervisors), but also on the opinion of students that are less experienced
in general.

The group of students was well representing a typical team of master
students. As the curriculum of the master students from the University of
Kaiserslautern and from the international students are aligned to each
other, we can assume that they have a similar knowledge on Software
Engineering foundations. Nevertheless, we conducted short tutorials on
the main Software Engineering topics relevant for the project like re-
quirements engineering, UI and interaction design, architectural design,
and quality assurance in the beginning of the project.

Conclusion
Validity

Internal
Validity

Validation

146

Some of the students started into the project with more programming
experience than others, but none of them had any experience in iOS de-
velopment, which was the programming language used by most of the
students in the team. We taught them development for iOS in another
tutorial in the beginning of the project. Java and C# have been used in
the project in addition. Each student had previous experience in at least
one of these two programming languages.

The students were not bothered in any form during the project by the
experiment. Hence, we do not expect maturation effects. They knew
that we collect effort data anyway to measure the overall project per-
formance, which is also interesting to them. Furthermore, they knew
that the effort data are not used to measure their individual performance
or to determine their grade in the end. Only not reporting effort data
would have an effect on their grade as this would mean that they violate
the project rules.

We were able to motivate them for the project retrospective as this was
a good preparation for the final exam with the responsible professor. In
the exam, they should be able to report on their role in the project, on
problems and lessons learned, which we also discussed in the project ret-
rospective.

As mentioned above, we provided them with an effort collection sheet
and performed the interviews in the retrospective in a structured way to
prevent threats caused by instrumentation.

A thread to construct validity is the fact that the method owner himself
performed the producibility analysis in the case study. The identification
of the critical elements based on the quality model of producibility is only
slightly affected by this. The producibility metrics are objective and addi-
tional critical elements have been identified by means of checklists. The
method owner stuck to such checklists as far as possible.

The case study investigates the effect of a producibility analysis on a pro-
ject that has been completely conducted without performing a produci-
bility analysis. This setting is valid as there is no similar approach than the
producibility analysis method described in this thesis that would allow a
reasonable comparison.

The input documents provided to the producibility analysis method have
been of appropriate quality. It can be assumed that the supervisors of
the project performed project planning according to the state of the art
based on their existing experience in industry and research projects. The
students designed an architecture according to a state of the art archi-
tectural design approach. To assure the quality of the architecture de-
signed by the students, one supervisor was actively involved into the de-
sign process and another one performed the quality assurance of the re-
sults.

Construct
Validity

 Validation

 147

The students did not know that there is a case study going on unless
they have participated in the interviews and were confronted with the
results of the producibility analysis.

The case study is based on an industrial problem in the domain of mobile
assistant systems. Projects developing similar mobile systems with similar
architectures can directly benefit from the results of the case study. As
the project covered certain typical problems of distributed information
systems, there is also a certain benefit for distributed information system
in general.

The size of the overall system is still small, i.e. the number of architectur-
al elements and production planning elements. There was no distributed
production team, as it is common in many large projects today. Hence,
the scalability of the producibility analysis method to large, distributed
projects has not been covered in the case study and the applicability to
larger problems remains unclear. In general, we expect an even larger ef-
fect of a producibility analysis in larger systems, as the dependencies be-
tween architectural elements and production planning elements get
more complex and cause even more problems than in smaller systems.

The project was conducted by a team of master students. We have to
consider this as a threat to validity as they are close to finishing their
studies but less experienced as Software Engineers from industry. Hence,
certain doubts remain if the problems that have been detected in the
project would also have occurred in a purely industrial setting. We ad-
dressed this threat by providing the students all the support they need.
The students were located in the same building than the supervisors and
the supervisors regularly were present in the team room of the students
to be able to address evolving problems as soon as possible.

6.3 Summary and Future Validation Steps

The work on thesis was accompanied by a series of industrial and ap-
plied research projects that contributed to the problem statement, the
solution ideas, and to initial validation of the ideas. Two projects have
been specifically relevant.

In the project “Virtual Office of the Future” (VOF) conducted with the
Japanese manufacturer of Multi-Functional Office Peripherals (MFP) the
idea of software production came up and has been initially validated. In
the VOF project, we identified the need to produce workflows and vari-
ants of workflows on a large scale as part of office environments inte-
grating MFPs but also various office services. Together with Ricoh, we
were able to define a reference architecture for office environments
complemented by production processes tailored to the reference archi-
tecture. The production process describes, how workflows of a customer

External
Validity

Summary

Validation

148

can be realized in the context of the reference architecture and how ex-
isting and new office devices and services can be easily integrated. Ricoh
expects to be able to deliver customized office environments with short
time to market based on the ideas of software production. The project
provided valuable input to the quality model of producibility.

In a series of industry projects with a large airline manufacturer, the idea
of software production could be adopted in the context of the migration
of a large workflow-based information system. The idea of migrating
workflow by workflow can be supported with production processes and
production. Unfortunately, the project was canceled on the customer’s
side before we could gather more results. But the project again showed
the potential of the idea of software production and provided input to
the definition of the quality model of producibility.

The VOF project, the projects in the airline management domain, and
several other industrial projects provided valuable feedback on the idea
of software production, we had the chance to adopt the ideas to indus-
trial examples, and input for building the quality model of producibility
has been gathered.

The producibility analysis method and the hypothesis stated in Section
1.5 have been evaluated by means of a case study conducted in an in-
dustrial context with a project team mainly consisting of master stu-
dents. As described in detail in Section 6.2, a mobile configuration assis-
tant has been developed in cooperation with John Deere. The case study
delivered promising results with respect to all three hypothesis H1, H2,
and H3. The producibility analysis method has been effective in the case
study as it detected 91,6% of the critical elements, which is more than
the 75% mentioned in H2. The results have also been almost completely
correct as 95% of the identified critical elements have been really critical
in the project which is beyond the 90% stated in H3. It has been detect-
ed, that 29% of time could have been saved in production iteration 1 if
the problems related to the critical elements would have been solved
and that also a significant amount of effort could have been saved for
later phases of the project which eventually would have made it possible
to complete the project as planned. Hence, initial empirical evidence that
H1 can be accepted has been delivered.

However, a series of threats to validity must be considered in the context
of the case study. The case study provides only one data point. Hence,
the results cannot be considered to be highly significant. The producibil-
ity analysis method has been adopted by the method owner. The team
mainly consisted of master students that are less experienced than Soft-
ware Engineers in industry. The problem to be solved by the students
was a real industrial problem, but relatively small.

Nevertheless, the case study provides indications that the expected ef-
fects of the producibility analysis method can be achieved in practice.

 Validation

 149

We expect an even larger effect of the producibility analysis method if
applied to a larger scale industrial problem. The larger the problem is,
the more dependencies between architectural and production planning
elements occur that cannot easily be foreseen and lead to production
problems.

The last argument is a good starting point for discussing potential future
validation activities.

The producibility analysis method should be adopted in a large-scale
industrial case study. Unfortunately, this was not possible in the valida-
tion phase of this thesis as appropriate projects were not available at
that time. In a large project, more architectural and production planning
elements are involved and their relationships are expected to be more
complex and can no longer be easily overseen. Hence, it gets more and
more important to get support in identifying critical architectural and
production planning elements. We also assume that in large scale project
with a longer duration and more resources involved, the potential to
save time and effort by improving the producibility is higher than in
smaller projects.

Experiments to validate the hypothesis H1, H2, and H3 are not consid-
ered with high priority. Experiments typically refer to small examples and
as argued above the producibility analysis method should be adopted to
large industrial systems to unfold its full potential. Experiments could be
conducted to validate specific aspects or parts of the producibility analy-
sis method, for instance, to validate the appropriateness of the produci-
bility views to detect production problems or to evaluate the usability of
the provided checklists. Such experiments could provide useful input to
improve certain aspects of the method and in the end contribute to im-
prove the overall performance of the method.

Controlled experiments should be considered to validate the quality
model of producibility and test the validity of the producibility metrics.
Various experiment settings are possible depending on the concrete
goals regarding the validation of the quality model of producibility. One
goal could be, for instance, to validate if certain producibility metrics cor-
relate with the appearance of certain production problems. Critical val-
ues of metrics regarding the alignment of architecture and production
schedule, for instance, are supposed to correlate to production problems
like delays. Variants of an architecture and a corresponding production
plan could be derived that cause different values regarding metrics char-
acterizing the alignment of architecture and production plan. The vari-
ants could then be produced by different groups of participants of the
experiment and production problems could be tracked. The basic hy-
pothesis of such an experiment would be that variants of architecture
and production plan with critical values of the respective producibility
metrics cause more or more severe production problems than variants
with less critical values.

Future Vali-
dation Ac-
tivities

 Summary and Future Work

 151

7 Summary and Future Work

This chapter summarizes the contributions of this thesis and gives an
outlook on future work.

7.1 Summary of Contributions

This thesis defined software production as a process “creating and as-
sembling the architectural elements defined in the software architecture
according to a software production plan” (see definition of software
production in Section 3.1.). Software production is inspired by the manu-
facturing of hard goods, where product designers and production plan-
ners thoroughly plan production based on the product design and try to
identify potential production problems up-front, i.e., before production
starts. Therefore, the definition of software production in Section 3.1
claims, that “software architecture and software production plan have
been aligned to each other”. Alignment means in this case, that the rela-
tionships between architectural elements and production planning ele-
ments are explicitly considered and eventual misalignments are proac-
tively resolved. If the same architectural element is planned to be modi-
fied by different resources according, for instance, there is a certain risk
that conflicts and unexpected side effects arise that lead to production
problems like delays or effort overhead. If adopted consequently, the
idea of software production leads to a very product-oriented thinking,
which we experienced to be very helpful in several industrial projects.

The definition of software production has been formalized in a meta-
model of software production (see Section 3.4). As a prerequisite, meta-
models of software architecture and software project plans have been
derived as part of this thesis (see Chapter 2). The meta-model of soft-
ware production integrates these meta-models of software architecture
(see Section 2.1) and software project plans (see Section 2.2) by intro-
ducing relationships between conceptual elements of software architec-
ture like architectural elements and conceptual elements of project plans
like work activities, iterations, or resources. By relating architectural ele-
ments with work activities, iterations, and resources, the relationship of
software architecture and project or production plans becomes as con-
crete as required to define the alignment of architecture and project or
production plans in a measurable way, which is done in the quality mod-
el of producibility (see Chapter 4).

Definition
of Software
Production

Meta-
Model of
Software
Production

Summary and Future Work

152

Producibility is introduced in this thesis as a quality attribute of a system
characterizing the alignment of its architecture and the production plan
set-up to produce it. In Section 4.1, producibility is defined as “the de-
gree of alignment of a system’s architecture with the production plan”.
Producibility is considered on three dimensions, namely alignment of ar-
chitecture and production work breakdown structure, architecture and
production schedule, and architecture and resource assignments. The ra-
tionale for having these three dimensions is that according to the state
of the practice and the state of the art software project planning mainly
deals with project scope manifested in a work breakdown structure, with
project schedule, and resource assignments. Hence, the alignment of ar-
chitecture and production plans is covered comprehensively in the defini-
tion of producibility.

The quality model of producibility defines producibility in a measurable
form by providing metrics characterizing the alignment of architecture
and production plan. Producibility metrics are introduced for all three
dimensions of the alignment of architecture and production plan men-
tioned before. Thereby, we distinguish metrics that are rather relevant
from the architect’s point of view (see Section 4.2.1, 4.3.1, and 4.4.1)
and the production planner’s point of view (see Section 4.2.2, 4.3.2, and
4.4.2).

The metrics from an architect’s point of view primarily are supposed to
help architects in deciding if the architecture could be changed to in-
crease producibility. Production planners are supported by the metrics
for the production planner’s point of view in considering changes of the
production plan to eventually improve the producibility. Examples for ar-
chitecture related metrics are the number of production work activities
producing an architectural element, the number of production iterations
involving a certain architectural element, the duration for producing an
architectural element, or the number of resources producing an architec-
tural element. Examples for production plan related metrics are the
number of architectural elements involved in a certain production itera-
tion, the degree of coverage of the overall system by one iteration, the
overlapping between two sequential iterations in terms of architectural
elements, or the coupling between resources caused by the coupling be-
tween architectural elements.

The producibility metrics have been derived systematically from the me-
ta-model of software production and consequently cover all relations be-
tween architectural and production planning elements specified there.
Metrics of different producibility dimensions are largely independent of
each other, i.e., they cover different aspects of producibility and typically
do not correlate. A high value of Coupling(PI), for instance, does not im-
ply a high value of Coupling (Res).

Each producibility metric is complemented by a threshold, that indicates
if a value of the producibility metric must be considered critical. Howev-

Definition
of Produci-
bility

Quality
Model of
Producibil-
ity

 Summary and Future Work

 153

er, based on our experience the values and the respective thresholds al-
ways need to be considered in the respective context. Hence, besides in-
troducing producibility metrics, the quality model of producibility con-
tains a set of context factors that are supposed to be considered while
interpreting the values of producibility metrics as they have the potential
to compensate values classified as critical before.

It is important to mention, that the producibility of a system cannot be
characterized by one single metric. It depends on the context of a project
and the specific production requirements that might exist which metrics
are specifically relevant and how conclusions are drawn. We introduced
the concept of producibility scenarios in this thesis. They are similar to
architectural scenarios as they are often used to refine quality require-
ments in the architecture. They can be used to specify production re-
quirements and the overall producibility can be evaluated relative to such
producibility scenarios.

Producibility views have been defined to model the relationships of archi-
tectural and production planning elements in concrete projects and de-
termine the producibility metrics of the quality model of producibility
based on such views. Three producibility views have been defined, one
for each dimension of producibility (see Section 5.2.2). The production
work activity view is used to model relationships of architectural ele-
ments and production work activities. The production iteration view
shows how architectural elements are related to production iterations.
The resource assignment view relates architectural elements and re-
sources. Producibility views should be part of the architecture and the
production plan documentation as they are the artifacts manifesting the
relationship between architecture and production plans and should be
considered by architects as well as production planners.

The thesis describes an algorithm that identifies critical architectural and
production planning elements. The algorithm takes as input the infor-
mation modeled in producibility views and adds critical architectural
elements, critical production work activities, critical production iterations,
and critical resources to respective lists of critical elements that form the
output of the algorithm. To identify elements as critical, the algorithm
determines values for the producibility metrics specified in the quality
model of producibility and compares such values to the thresholds pro-
posed for each metric. If the value for a certain element indicates critical-
ity, the element is placed on the respective output lists, i.e., the list of
critical architectural elements, the list of critical production work activi-
ties, the list of critical production iterations, or the list of critical re-
sources.

Producibil-
ity Views

Identifica-
tion of Crit-
ical Ele-
ments

Summary and Future Work

154

Initial prototypical tool support has been implemented for the identifica-
tion of critical elements. The producibility views can be modeled by
means of the industrial modeling tool Enterprise Architect that has been
extended for this purpose. Based on the modeled producibility views,
most of the producibility metrics being part of the quality model of pro-
ducibility can be determined automatically.

The producibility views, the identification of the critical elements based
on the quality model of producibility, and the initial tool support are the
core technical contributions of this thesis.

The producibility analysis method is the methodological contribution of
this thesis (see Chapter 5). Based on an existing software architecture
and a software production plan, the producibility analysis method identi-
fies critical architectural and production planning elements based on the
algorithm mentioned above and guides the method users in deriving
recommendations on how to prevent production problems like delays,
and effort overhead. The producibility analysis method can be focused
on certain aspects if required by using producibility scenarios that de-
scribe production requirements from different stakeholders.

In the preparation phase of the method (see Section 5.2), producibility
scenarios are elicited from stakeholders like architects, production plan-
ners, customers, or developers. A template for documenting producibility
scenarios is provided. A further step in the preparation phase is the
modeling of the producibility views required to perform the identification
of critical elements. The producibility views can be modeled by means of
the tool Enterprise Architect that has been extended with modeling ca-
pabilities for producibility views as mentioned above.

In the execution phase of the producibility analysis method (see Section
5.3), critical architectural and production planning elements are identi-
fied based on the algorithm mentioned before and based on expert
judgment. The algorithm has certain limitations. Sometimes, architectur-
al elements, for instance, turn out to be critical although no metrics
showed critical values. Architectural elements could have a high inherent
complexity, for instance, which cannot be detected by the algorithm.
Hence, architects and production planners are provided with examples of
critical elements not detected by the algorithm that help them in identi-
fying additional critical elements, which is the initial step of the consoli-
dation phase.

In the consolidation phase of the method (see Section 5.4), architects
and production planners first consolidate the critical elements that are
reported to them from the execution phase. They take decisions if such
elements appear really critical to them in the respective project context.
Checklists containing questions derived from the context factors of pro-
ducibility (see Section 4.5) that help them to take their decisions support
this step. After the consolidated lists of critical elements exist, architects

Initial Pro-
totypical
Tool Sup-
port

Producibil-
ity Analysis
Method

 Summary and Future Work

 155

and production planners derive appropriate recommendations on how to
prevent problems that can potentially be caused by the critical elements.
They are supported in this step by lists of typical options for recommen-
dations. Recommendations are derived jointly by architects and produc-
tion planners. This is required, because preventing production problems
might be possible in various ways, i.e., for instance, by changing the ar-
chitecture or by changing the production plan or a combination of both.
Therefore, decisions on recommendations need to be taken jointly from
an overall project perspective.

The producibility analysis method has been initially validated in this thesis
(see Chapter 6). In an industrial case study conducted with a team of
master students of the University of Kaiserslautern (see Section 6.2), ini-
tial empirical evidence for the research hypotheses stated in Section 1.5
has been gathered. In the case study, 91,67% percent of critical ele-
ments have been identified by the method and a correctness of 95%
has been achieved. It has been estimated, that delays caused by the criti-
cal elements could have been prevented which would have reduced the
time for the initial iteration of the project by 29%. We also found indica-
tions that the effort spent on certain production iterations in the project
could have been reduced by means of the producibility analysis method
which would potentially have enabled the project to realize the complete
functionality that was initially planned. Actually, the project without us-
ing the results of the producibility analysis was successful overall, but did
not realize the functionality that was originally planned due to delays
and effort overhead caused by the identified critical elements.

7.2 Outlook on Future Work

The combination of the ideas of software production and agile methods
to an approach that could be called agile software production seems to
be very promising.

Software production is essentially product-oriented, as it puts the archi-
tecture in the center of the production process. Per definition, it takes
care that each production work activity contributes to the product as
certain architectural elements are produced, i.e., either newly created or
modified. But it can be the case, that certain production iterations do
not significantly increase the business value of the current version of the
product. If a production iteration produces and integrates certain infra-
structure architectural elements but no architectural elements realizing
business functionality using such infrastructure components, the busi-
ness value of such a production iteration might be low also it makes
sense to have such an iteration from a producibility point of view.

According to the Agile Manifesto [AM01], agile methods aim at “satisfy-
ing the customer through early and continuous delivery of valuable

Validation

Agile Soft-
ware pro-
duction

Summary and Future Work

156

software”. Agile methods are iterative and incremental and aim at
providing new features to a customer in each iteration or release. Hence,
agile methods are also essentially product-oriented. Agile methods dis-
approve huge up-front investments into software architecture. They
promote a more evolutionary approach to software architecture and
propose refactoring to solve eventual design issues. They justify their ap-
proach by continuous changes of requirements that bear the risk that
up-front investments never pay off. The risk of agile methods is that a
feature required by the customer at a certain point in time somehow
breaks the architecture. Breaking the architecture could mean in this
case, that the feature requires the majority of architectural elements of
the system to be changed.

Software production and agile methods could be complementary and
potential weaknesses of one or the other approach eventually could be
compensated. The alignment of software architecture and production
plan takes care that realizing a certain feature at a certain point in time
does not break the architecture in the sense that the majority of archi-
tectural elements would need to be changed. Such a situation could be
detected by, for instance, a producibility analysis. This would require ar-
chitectural design up-front to a certain degree to enable a “lightweight”
producibility analysis, for instance. Agile methods could force software
production to more explicitly make sure that each production iteration
provides a certain business value and a positive return on investment can
be achieved potentially earlier.

Future research in the direction of agile software production is required
and seems to be promising. A concrete idea could be, for instance, to in-
vestigate how architecture could be used in the iteration and release
planning performed in agile projects to influence the scope of up-
coming iterations and releases.

The quality model of producibility defines producibility metrics and relat-
ed optimal values. The algorithm to detect critical elements uses such
optimal values and classifies elements as critical as soon as the optimal
value is not achieved. This is a rather pessimistic strategy, as each devia-
tion from the optimal value is supposed to cause production problems.
But there are cases where already the smallest deviation causes a pro-
duction problem. As soon as an architectural elements is modified in
parallel by two resources, conflicts and related problems can occur, but
not necessarily need to. In future work on the producibility model, it
should be investigated in which situations certain deviations of the opti-
mal value are acceptable and the respective elements do not need to be
classified as critical. This investigation should consider context factors
and should be based on empirical data collected in software production
projects.

Tailoring
Quality
Model of
Producibil-
ity

 Summary and Future Work

 157

Three producibility views have been introduced in this thesis. So far, the
producibility views contain all information relevant to determine the
producibility metrics and identify critical elements in the execution phase
of the producibility analysis method. So far, the context factors being
part of the quality model of producibility are not modeled in the produc-
ibility views and therefore cannot be used for the identification of critical
elements. In the future, context factors should be considered to be mod-
eled in the producibility views. Some context factors can be modeled as
properties of the elements used in the producibility views. Technologies
could be modeled as properties of architectural elements. For production
iteration, the respective technology mix could then be automatically de-
termined and visualized.

Context information modeled in the producibility views could be used in
the algorithm to identify critical elements. The context factors could ex-
tend the automatic identification of critical elements and reduce the
manual effort required to identify additional critical elements based on
context factors.

Additional producibility views can be imagined. One promising example
could be an architecture evolution view consisting of a sequence of
structural views of the architecture. It is similar to a manual to assemble
a piece of furniture. The architecture evolution view shows a structural
view of the architecture showing a snapshot of the system at the end of
each production iteration. The structural views are ordered according to
the sequence of the production iterations. The delta to the structural
view of the previous production iteration can be visualized in each struc-
tural view. The architecture evolution view visualizes the progress made
in each production iteration in terms of architectural elements. It pro-
vides a view of the system that is reduced to the scope planned for the
end of the current production iteration, leaves out future extensions, and
simplifies the current view on the system for the production team. It
helps to visually detect complex production iterations and potential pro-
duction problems.

Various enhancements of the producibility analysis method can be imag-
ined that could further improve the methods effectiveness and efficien-
cy.

In the preparation phase, the modeling of producibility views could be
better supported. If the production plan refers, for instance, to features
but traceability information would be modeled, this could be used as a
basis to at least partially generate producibility views. This would reduce
the effort of modeling producibility views.

For the execution phase, an extended version of the algorithm to identify
critical elements could be developed that considers context factors. The
assumption for this extension would be that context information is mod-
eled in the producibility views, as mentioned above. This would increase

Modeling
of Context
Factors in
Producibil-
ity Views

Additional
Producibil-
ity Views

Enhance-
ments of
the Produc-
ibility Anal-
ysis Method

Summary and Future Work

158

the degree of automation in detecting critical architectural elements. The
quality of the results of the algorithm could be further improved by using
tailored quality models of producibility as mentioned above.

With respect to the consolidation phase, the derivation of recommenda-
tions could be better supported in the future. Currently, lists of recom-
mendations showing the general options available guide the method us-
ers. The selection of one of the options today is completely human
based. In the future, it should be considered to semi-automate the selec-
tion of recommendations. Certain recommendations could be pre-
selected automatically based on certain rules derived from the quality
model of producibility maybe under further consideration of empirical
data. A human could then take the final decision.

The approach could be easily extended to be able to deal with customi-
zation and deployment projects of, for instance, standard software solu-
tions. Deplyoment units have already been specified as a type of archi-
tectural elements in Chapter 2.1. Deployment views could be added to
the set of producibility views, and customization and deployment work
activities could be added to the production plan. Then, the method spec-
ified in Chapter 5 in general could be adopted to such a customization
and deployment project.

The producibility analysis method is an analytic approach to improve the
producibility of a system. In the future, constructive approaches should
be considered that, for instance, support architects in designing for pro-
ducibility. This is an approach that again can be adopted from other
engineering disciplines that consider the whole product lifecycle already
during design, from manufacturability [Bra98] to recyclability [Fik09]. This
design process is even tool-supported by Computer Aided Design (CAD)
and Computer Aided Manufacturing (CAM) tools.

As already mentioned in Section 6.3, further validation of the producibil-
ity analysis method is required to gather empirical evidence that the
research hypotheses of this thesis can be accepted. The overall produci-
bility analysis method should validated in a large industrial case study.
Unfortunately, this was not possible so far during the course of this the-
sis. We expect the full power of the producibility analysis method to be
unrolled in larger projects where the number of relationships between
architectural elements and production planning elements and their com-
plexity further increases. Such industrial case studies would be preferred
over experiments. Nevertheless, experiments are the right approach to
validate specific aspects of the producibility analysis method like the ap-
plicability of producibility views or the checklists provided to adopt the
context factors of producibility. Hence, by means of experiments, specific
aspects of the producibility analysis method could be improved and the
overall effectiveness, as it has been mentioned in hypothesis H1 of this
thesis, could be enhanced. Furthermore, experiments should be con-

Design for
Producibil-
ity

Future Vali-
dation

 Summary and Future Work

 159

ducted to validate the quality model of producibility and its metrics re-
garding their explanatory power.

7.3 Concluding Remarks

This thesis enters a new field of Software Engineering research by sys-
tematically investigating the relationship of software architecture and
software project or production plans. It introduces producibility as a new
quality attribute characterizing the alignment of software architecture
and project or production plans. In several projects, we experienced the
huge potential of systematically addressing producibility to reduce de-
lays, effort overhead, and quality issues of the final product. The contri-
butions of this thesis enable practitioners to exploit this potential. How-
ever, as this is the first dissertation thesis in this direction, it should be
seen as a starting point for further research.

References

 161

References

[ABB+01] C. Atkinson, J. Bayer, C. Bunse, E. Kamsties, O. Laitenberger, R.
Laqua, D. Muthig, B. Peach, J. Wust, J. Zettel. Component-Based
Product Line Engineering with UML. Addison-Wesley Professional,
2001.

[Ada10] S. Adam. Improving SPL-based Information System Development
Through Tailored Requirements Processes. 18th International Re-
quirements Engineering Conference, Doctoral Symposium, Syd-
ney, 2010.

[AJM06] S. T. Acuna, N. Juristo, A.M. Moreno. Emphasizing Human Capa-
bilities in Software Development, IEEE Software, Volume 23, Issue
2, pp. 94-101, 2006.

[AM01] Agile Manifesto
http://agilemanifesto.org/
- last visited 31.03.2011 –

[Amb02] S. Ambler. Agile Modeling: Effective Practices for eXtreme Pro-
gramming and the Unified Process. Wiley, 2002.

[And] Android Development Platform
http://www.android.com/
- last visited 31.03.2011 –

[BA04] K. Beck, C. Andres. Extreme Programming Explained: Embrace
Change. Pearson, 2nd Edition, 2004.

[BAB+00] B. Boehm, C. Abts, A. Brown, S. Chulani, B. Clark, E. Horowitz, R.
Madachy, D. Reifer, B. Steece. Software Cost Estimation with Co-
como II, Prentice Hall International, 2000.

[Bak72] F. T. Baker. Chief programmer team management of production
programming. IBM Systems Journal, Volume: 11 Issue:1, pp. 56 –
73, 1972.

[Bas93] V. Basili. The Experimental Paradigm in Software Engineering, Pro-
ceedings of the International Workshop on Experimental Software
Engineering Issues: Critical Assessment and Future Directions,
1993.

[BCR94] V.R. Basili, C. Caldiera and H.D. Rombach. Experience Factory,
Encyclopediaof Software Engineering, 1, J. J. Marciniak, ed., John
Wiley & Sons, 1994, pp. 469-476.

[BCR94b] V. Basili, G. Caldiera and H.D. Rombach, The Goal Question Met-
ric Approach, Encyclopedia of Software Engineering, John Wiley &
Sons, 1994, pp. 528–532.

[BCK03] L. Bass, P. Clements, R. Kazman. Software Architecture in Practice,
Second Edition, SEI Series in Software Engineering, Addison-
Wesley, 2003.

References

162

[BA04] K. Beck, C, Andres. Extreme Programming Explained: Embrace
Change (2nd Edition). Addison-Wesley Professional, 2004.

[BFK+99] J. Bayer, O. Flege, P. Knauber, R. Laqua, D. Muthig, K. Schmid, T.
Widen, J.-M. DeBaud. PuLSE: A Methodology to Develop Software
Product Lines, Proceedings of the Fifth ACM SIGSOFT Symposium
on Software Reusability (SSR'99), pp. 122–131, 1999.

[BJN+06] M. Broy, M. Jarke, M. Nagel, D. Rombach. Manifest: Strategische
Bedeutung des Software Engineering in Deutschland. Informatik-
Spektrum, Volume 29, Number 3, pp. 210-221, 2006.

[BKR09] S. Becker, H. Koziolek, R. Reussner. The Palladio component mod-
el for model-driven performance prediction. Journal of Systems
and Software, Volume 82, Issue 1, January 2009, pp. 3-22.

[BMR+96] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad. A System
of Patterns: Pattern-Oriented Software Architecture. John Wiley &
Sons, 1996.

[Bra98] J. Bralla. Design for Manufacturability Handbook. McGraw-Hill
Professional, 2nd edition, 1998.

[Cam07] G. Campbell. Software-Intensive Systems Producibility: A Vision
and Roadmap (v 0.1). Technical Note, CMU/SEI-2007-TN-017,
2007.
http://www.sei.cmu.edu/library/abstracts/reports/07tn017.cfm
- last visited 31.03.2011 –

[Car08] R. Carbon. Improving the Production Capability of Product Line
Organizations. SPLC 2008, 12th International Software Product
Line Conference. Proceedings. Second Volume : Limerick, Ireland,
8-12 Sept 2008.

[CAU+09] R. Carbon, S. Adam, T. Uchida. Towards a product line approach
for office devices - facilitating customization of office devices at
Ricoh Co Ltd. In Proceedings of the 13th International Software
Product Line Conference, SPLC 2009. Vol.1, pp. 151-160, San
Francisco, USA, 2009.

[CBB+03] P. Clements, F. Bachmann, L. Bass, D. Garlan, J. Ivers, R. Little, R.
Nord, J. Stafford. Documenting Software Architectures. Views and
Beyond, SEI Series in Software Engineering, Addison-Wesley,
2003.

[CJK+08] R. Carbon, G. Johann, T. Keuler, D. Muthig, M. Naab, S. Zilch.
Mobility in the virtual office: a document-centric workflow ap-
proach. In Proceedings of the 1st international workshop on
Software architectures and mobility, SAM '08,Leipzig, Germany,
2008.

[CJM+08] R. Carbon, G. Johann, D. Muthig, M. Naab. A method for collabo-
rative development of systems of systems in the office domain. In
Proceedings of the 12th IEEE International Enterprise Distributed
Object Computing Conference, pp. 339-345, Munich, Germany,
2008.

References

 163

[CKK01] P. Clements, R. Kazman, M. Klein. Evaluating software architec-
tures: methods and case studies. Addison-Wesley Professional,
2001.

[CLM+06] R. Carbon, M. Lindvall, D. Muthig, P. Costa. Integrating Product
Line Engineering and Agile Methods: Flexible Design Up-front vs.
Incremental Design. In Proceedings of the 1st International Work-
shop on Agile Product Line Engineering, APLE06, Baltimore, USA,
2006.

[CM02] G. Chastek, J. D. McGregor. Guidelines for Developing a Product
Line Production Plan. Technical Report, CMU/SEI-2002-TR-006,
2002.

[CN02] P. Clements, L. Northrop. Software Product Lines – Practices and
Patterns, SEI Series in Software Engineering, Addison Wesley,
2002.

[Coh09] M. Cohn. Succeeding with Agile: Software Development Using
Scrum. Addison-Wesley Professional, 2009.

[Con68] M. E. Conway. How do Committees Invent? Datamation 14 (5):
28–31, http://www.melconway.com/research/committees.html
- last visited 31.03.2011 –

[Con93] L.L. Constantine. Work Organization: Paradigms for Project Man-
agement and Organization. Communications of the ACM, 36(10),
pp. 34-43, 1993.

[DFK98] J. DeBaud, O. Flege, P. Knauber. PuLSE-DSSA—a method for the
development of software reference architectures, in Proceedings
of the third international workshop on Software architecture
(ISAW '98), pp. 25-28, 1998.

[EA11] Sparx Enterprise Architect
http://www.sparxsystems.de/
- last visited 31.03.2011 –

[Fair09] R.E. Fairley. Managing and Leading Software Projects. IEEE Com-
puter Society. John Wiley and Sons Inc., 2009.

[Fik09] J. Fiskel. Design for Environment, Second Edition: A Guide to Sus-
tainable Product Development: Eco-Efficient Product Develop-
ment. McGraw-Hill Professional, 2nd edition. 2009.

[GHJ+94] E. Gamma, R. Helm, R. Johnson, J.M. Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley
Professional,1994.

[GRD+97] S. Gupta, W. Regli, D. Das, D. Nau, Automated Manufacturability
Analysis: A Survey, Research in Engineering Design, (1997) 9, pp.
168-190, Springer London, 1997.

[GSC+04] J. Greenfield, K. Short, S. Cook, S. Kent, J. Crupi. Software Facto-
ries: Assembling Applications with Patterns, Models, Frameworks,
and Tools. Wiley, 2004.

[Hen95] B. Brian Henderson-Sellers. Object-Oriented Metrics: Measures of
Complexity (Object-Oriented Series). Addison Wesley, 1995.

References

164

[HND99] C. Hofmeister, R. Nord, S. Dilip. Applied Software Architecture,
Addison-Wesley Object Technology Series, 1999.

[HOF11] The Produt Line Hall of Fame
http://www.splc.net/fame.html
- last visited 31.03.2011 –

[Hun06] J. Hunt. Agile Software Construction. Springer London, 2006.

[IEEE98] IEEE Standard 1058-1998 for Software Project Management Plans
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=741937
- last visited 31.03.2011 –

[iOS] iOS Development Platform
http://developer.apple.com/devcenter/ios/index.action
- last visited 31.03.2011 –

[ISO01] ISO/IEC 9126-1:2001, Software engineering -- Product quality --
Part 1: Quality model
http://www.iso.org/iso/catalogue_detail.htm?csnumber=22749
- last visited 31.03.2011 –

[ISO07] ISO/IEC 42010:2007, Recommended Practice for Architectural
Description of Software-intensive Systems
http://www.iso.org/iso/catalogue_detail.htm?csnumber=45991
- last visited 31.03.2011 -

[ISO09] ISO/IEC 20926:2009, IFPUG functional size measurement method
2009
http://www.iso.org/iso/catalogue_detail.htm?csnumber=51717
- last visited 31.03.2011 –

[Jal10] P. Jalote. A Concise Introduction to Software Engineering. Spring-
er London, 2010.

[Java11] Java EE Development Platform
http://download.oracle.com/javaee/
- last visited 31.03.2011 –

[JSON] Java Script Object Notation
http://www.json.org/
- last visited 31.03.2011 –

[JRL00] M. Jazayeri, A. Ran, F. van der Linden. Software Architecture for
Product Families – Principles and Practice. Addison Wesley, Pear-
son Education, 2000.

[KAB+96] R. Kazman, G. Abowd, L. Bass, P. Clements. Scenario-based anal-
ysis of software architecture. IEEE Software 13 (6), pp. 47 – 55,
1996.

[Kel61] J. Kelley. Critical Path Planning and Scheduling: Mathematical Ba-
sis. Operations Research, Vol. 9, No. 3, pp. 296-320, May-June,
1961.

[KKC00] R. Kazman, M. Klein, P. Clements. ATAM: Method for Architec-
ture Evaluation. Technical Report, CMU/SEI-2000-TR-004, ESC-TR-
2000-004, 2000.

References

 165

[KMH+08] J. Knodel, D. Muthig, U. Haury, G. Meier. Architecture Compli-
ance Checking - Experiences from Successful Technology Transfer
to Industry. In Proceedings of the 12th European Conference on
Software Maintenance and Reengineering. CSMR, pp. 43-52,
2008.

[Kno09] J. Knodel. From architecture to source code - how to ensure archi-
tecture compliance in the implemented system. Softwaretechnik-
Trends 29 (2009), No.2, pp.13-14, 2009.

[Kru95] P. Kruchten. Architectural Blueprints — The “4+1” View Model of
Software Architecture. IEEE Software 12 (6), pp. 42-50, 1995.

[Krue01] C. W. Krueger. Easing the Transition to Software Mass Customiza-
tion. In: Proceedings of the 4th International Workshop on Soft-
ware Product-Family Engineering (PFE '01), Springer, London,
2002.

[Krue02] C. W. Krueger. Variation Management for Software Production
Lines. In: Proceedings of the Second International Conference on
Software Product Lines (SPLC 2), Springer, London, 2002.

[Kru03] P. Kruchten. The Rational Unified Process: an Introduction. Addi-
son-Wesley Professional, 2003.

[Kru06] C.W. Krueger. New methods in software product line develop-
ment .In Proceedings of the 10th Software Product Line Confer-
ence, SPLC 2006, pp. 95 – 99, Baltimore, USA, 2006.

[Lar10] C. Larman. Practices for Scaling Lean & Agile Development: Large,
Multisite, and Offshore Product Development with Large-Scale
Scrum. Addison-Wesley Professional, 2010.

[LM10] A. Lamersdorf, J. Münch. Model-based Task Allocation in Distrib-
uted Software Development. In Proceedings of the Fourth Interna-
tional Conference on Software Engineering Approaches For Off-
shore and Outsourced Development, SEAFOOD 2010, pp. 37-53,
St. Petersburg, 2010.

[LT75] H. A. Linstone, M. Turoff. The Delphi Method: Techniques and
Applications, Reading, Mass.: Addison-Wesley,1975.

[MC08] J. D. McGregor, G. Chastek. Production Planning in a Software
Product Line Organization. In Proceedings of the 12th Internation-
al Software Product Line Conference, Limerick, Ireland, 2008.

[McG04] J. D. McGregor. Product Production. In Journal of Object Technol-
ogy, Vol. 3, No. 10, November-December 2004, pp. 89-98.
http://www.jot.fm/issues/issue_2004_11/column7
- last visited 31.03.2011 –

[McG05] J. D. McGregor. Preparing for Automated Derivation of Products
in a Software Product Line. Technical Report, CMU/SEI-2005-TR-
017, 2005.
http://www.sei.cmu.edu/library/abstracts/reports/05tr017.cfm
- last visited 31.03.2011 –

References

166

[MSNet11] Microsoft .Net Platform
http://www.microsoft.com/net/
- last visited 31.03.2011 –

[MSProj10] Microsoft Project
http://www.microsoft.com/project/
- last visited 31.03.2011 –

[NC07] L.M. Northrop, P.C. Clements. A Framework for Software Product
Line Practice, Version 5.0, Software Engineering Institute, 2007.

[NRC10] National Research Council, Committee for Advancing Software-
Intensive Systems Producibility. Critical Code: Software Producibil-
ity for Defense. The National Academies Press, USA, 2010.
http://www.nap.edu/catalog/12979.html
- last visited 31.03.2011 –

[OB88] T. Ohno, N, Bodek. Toyota Production System: Beyond Large-Scale
Production. Productivity Press, 1988.

[OpenGr09] The Open Group SOA Reference Architecture
http://www.opengroup.org/projects/soa-ref-arch/
- last visited 31.03.2011 –

[OpenUp] Open Unified Process
http://epf.eclipse.org/wikis/openup/
- last visited 31.03.2011 –

[Pau02] D. Paulish, Architecture-Centric Software Project Management: A
Practical Guide, Addison-Wesley Professional, 2002.

[Perry98] D.E. Perry. Generic Architecture Descriptions for Product Lines.
Development and Evolution of Software Architectures for Product
Families, LNCS, Volume 1429/1998, pp. 51-56, 1998.

[PMBOK04] Project Management Institute. A Guide to the Project Manage-
ment Body of Knowledge (PMBOK Guide) – Third Edition. Project
Management Institute, 2004.

[PP03] M. Poppendieck, T. Poppendieck. Lean Software Development: An
Agile Toolkit. Addison-Wesley Professional, 2003.

[RBH+07] R. Reussner, S. Becker, J. Happe, H. Koziolek, K. Krogmann, M.
Kuperberg. The Palladio Component Model. Technical Report,
Chair for Software Design & Quality (SDQ), Karlsruhe Institute of
Technology, Germany, 2007.

[RH08] R. Reussner, W. Hasselbring. Handbuch der Software-Architektur.
2nd Edition. dpunkt Verlag, 2008.

[RM05] G. Ruhe, J. Momoh. Strategic Release Planning and Evaluation of
Operational Feasibility. In: Proceedings of the 38th Annual Hawaii
International Conference on System Sciences (HICSS'05).

[Rom03] H. D. Rombach. A Process Platform for Experience-Based Software
Development. In Proceedings of the International Colloquium of
the Sonderforschungsbereich 501, University of Kaiserslautern,
pp. 47-57, 2003.

References

 167

[Rom10] H. D. Rombach. Lecture "Grundlagen des Software Engineering",
2010, http://wwwagse.informatik.uni-kl.de/teaching/gse/ws2010
- last visited 31.03.2011 -

[RW05] N. Rozanski, E. Woods. Software Systems Architecture – Working
With Stakeholders Using Viewpoints and Perspectives. Pearson
Education Inc., 2005.

[SB01] K. Schwaber, M. Beedle. Agile Software Development with Scrum.
Prentice Hall, 2001.

[SGF+10] M. Svahnberg, T. Gorschek, R. Feldt, R. Torkar, S. B. Saleem, M.
U. Shafique. A systematic review on strategic release planning
models. JpurnalInformation and Software Technology, Volume 52
Issue 3, March, 2010.

[Sie04] J. Siedersleben. Moderne Softwarearchitektur – Umsichtig planen,
robust bauen mit Quasar. dpunkt.verlag, 2004.

[SMC74] W. Stevens, G. Myers, L. Constantine. Structured Design, IBM Sys-
tems Journal, 13 (2), 115-139, 1974.

[Som10] I. Sommerville. Software Engineering. 9th Edition, Addison Wes-
ley, 2010.

[SQL] Structured Query Language
http://en.wikipedia.org/wiki/SQL
- last visited 31.03.2011 –

[Sta09] The Standish Group Chaos Report
http://www.standishgroup.com/newsroom/chaos_2009.php
- last visited 31.03.2011 –

[Szy02] C. Szyperski, Component Software: Beyond Object-Oriented Pro-
gramming (Component Software Series), Addison-Wesley Long-
man, 2002.

[TMD10] R.N. Taylor, N. Medvidovic, E.M. Dashofy. Software Architecture -
Foundations, Theory, and Practice. John Wiley and Sons Inc.,
2010.

[UE95] K. Ulrich, S. Eppinger. Product Design and Development.
McGraw-Hill, Inc., 1995.

[VModellXT] V-Modell XT
http://www.v-modell-xt.de/
- last visited 31.03.2011 –

[WBB+06] R. Wojcik, F. Bachmann, L. Bass, P. Clements, P. Merson, R. Nord,
W. Wood. Attribute-Driven Design (ADD) , Version 2.0, Technical
Report Software Engineering Institute, CMU/SEI-2006-TR-023,
2006.

[Wiki11] Wikipedia Definition Trade-Off
- last visited 31.03.2011 –

[WP7] Windows Phone 7 Development Platform
http://www.microsoft.com/windowsphone/en-us/default.aspx
- last visited 31.03.2011 –

References

168

[WRH+00] C. Wohlin, P. Runeson, M. Höst, M.Ohlsson, B. Regnell and A.
Wesslén, Experimentation in Software Engineering – An Introduc-
tion, Kluwer Academic Publisher, 2000.

[W3C04] W3C Web Service Glossary
http://www.w3.org/TR/ws-gloss/
- last visited 31.03.2011 –

Appendix

 169

Appendix A: Producibility Metrics and Conditions

Producibility Metric Condition checked

#PWA_producing(AE) >1
#PWA_consuming(AE) >0
#AE_produced_by(PWA) >1
#AE_consumed_by(PWA) >1
Coupling(PWA) >0
#Shared_AE(PWA) >0
#PI_producing(AE) >1
ProductionDuration(AE) >1
#AE_involved_in(PI) > round(|AEall| / |PIall|)
Coupling (PI) >0
#Shared_AE(PI) >0
%Shared_AE (PI) >0
%Completed_AE_after(PI) < IterationNumber(PI) / |PIall|
%Created_AE_after(PI) < IterationNumber(PI) / |PIall|
#Resources_working_on
(AE)

>1

#AE_worked_on_by(Res) > round(|AEall| / |RESall|)
Coupling(Res) >0
#Shared_AE(Res) >0

Appendix

 171

Appendix B: Algorithm to identify Critical Elements

The algorithm takes as an input one instance of the producibility views:

Production Work Activity View PWAView

Production Iteration View PIView

Resource Assignment View RAView

The output of the algorithm are lists of critical architectural and produc-
tion planning elements:

List ListOfCriticalAE

List ListOfCriticalPI

List ListOfCriticalPWA

List ListOfCriticalRes

The processing of the production work activity view PWAView works as
follows:

//Processing the Production Work Activity View

For each AE in PWAView

AE.CriticalDimensions = 0

AE.#PWA_producing_AE = #PWA_producing_AE(AE)

AE.#PWA_consuming_AE = #PWA_consuming_AE(AE)

If AE.#PWA_producing_AE > 1

or AE.#PWA_consuming_AE > 1

Then AE.CriticalDimensions=1

ListOfCriticalAE.add(AE)

For each PWA in PWAView

Appendix

172

PWA.#AE_produced_by_PWA = #AE_produced_by_PWA(PWA)

PWA.#AE_consumed_by_PWA = #AE_consumed_by_PWA(PWA)

PWA.Coupling = Coupling(PWA)

PWA.#Shared_AE_PWA = #Shared_AE_PWA(PWA)

PWA.%Shared_AE_PWA = %Shared_AE_PWA(PWA)

If PWA.#AE_produced_by_PWA > 1

or PWA.#AE_consumed_by_PWA > 0

or PWA.Coupling > 0

or PWA.#Shared_AE_PWA > 0

Then ListOfCriticalPWA.add(PWA)

The processing of the production iteration view PIView works as follows:

//Processing the Production Iteration View

For each AE in PIView

AE.#PI_involving_AE = #PI_involving_AE(AE)

AE.PI_creating = PI_creating(AE)

AE.PI_finishing = PI_finishing(AE)

AE.ProductionDuration = AE.PI_finishing -
AE.PI.creating + 1

If AE. #PI_involving_AE > 1

Then AE.CriticalDimensions++

If !ListOfCriticalAE.contains(AE)

Then ListOfCriticalAE.add(AE)

For each PI in PIView

PI.#AE_involved_in = #AE_involved_in(PI)

PI.%System_Coverage = %System_Coverage(PI)

Appendix

 173

PI.Coupling = Coupling(PI)

PI.#Shared_AE = #Shared_AE(PI1)

PI.%Shared_AE = %Shared_AE(PI)

PI.%Completed_AE = %Completed_AE(PI)

PI.%Created_AE = %Created_AE(PI)

If PI.#AE_involved_in > |AEall| / |PIall|

or PI.Coupling > 0

or PI.Shared_AE > 0

or PI.%Completed_AE < IterationNumber(PI) /
|PIall|

or PI.%Created_AE < IterationNumber(PI) /
|PIall|

Then ListOfCriticalPI.add(PI)

The processing of the resource assignment view works as follows:

//Processing the Resource Assignment View

For each AE in RAView

AE.#Resources_working_on = #Resources_working_on
(AE)

If AE.#Resources_working_on > 1

Then AE.CriticalDimensions++

If !ListOfCriticalAE.contains(AE)

Then ListOfCriticalAE.add(AE)

For each RES in RAView

RES.#AE_worked_on = #AE_worked_on(RES)

RES.Coupling = Coupling(RES)

RES.#Shared_AE = #Shared_AE(RES)

Appendix

174

RES.%Shared_AE = %Shared_AE(RES)

If RES.#AE_worked_on > |AEall| / |Resall|

or RES.Coupling > 0

or RES.#Shared_AE > 0

Then ListOfCriticalRes.add(RES)

Appendix

 175

Appendix C: Checklists for Context Factors

Checklist for the Application of Context Factors to AE

General questions for each AE:
� Is the quality of the architecture documentation with respect to the AE high?
� Is a production work activity type, i.e. a guideline describing how to produce the AE

available?
� Are certain development activity types supporting the production of the AE, for

instance, continuous integration, regression testing, generation of parts of the AE,
etc.?

� Are tools providing specific support for the production of the AE?
� Can the AE be built based on reuse and is a process how to reuse attached to the

reusable artifacts?
� Are the resources providing and potentially adapting the reusable artifacts available

when the AE is supposed to be produced?
� Is the available team experienced with the technologies used to realize the AE?
� Is the AE produced by internal resources and are they co-located?
� If the AE is produced by external resources or internal resources that are not co-

located, is an appropriate communication infrastructure in place, and an infrastruc-
ture that facilitates the exchange of artifacts?

� Are contact persons for the AE under analysis and for all related AE in place that can
help in solving issues?

#PWA_producing(AE)
� Is a certain order defined for performing the PWAs?
� Are the PWAs performed by the same team (or by co-located teams)?
� Is the internal design of the AE prepared for parallel work and/or incremental exten-

sion?
� Are integration and test processes defined for the AE?
� Are deployment processes defined for the AE?
� Are coding guidelines defined for the AE?
� Does the tool infrastructure support parallel production well?

#PWA_consuming(AE)
� Are the PWAs consuming the AE produced later on?
� Are the consuming PWAs performed by co-located resources?
� If the resources producing consuming PWAs are not co-located, are appropriate

communication infrastructures and infrastructures to exchange artifacts established
between the involved resources?

� Do the involved resources know each other personally?
� Is the quality of the architecture documentation high, especially the documentation

of the interfaces of the AE?

#PI_producing(AE)
� Are the same resources producing the AE throughout all iterations?
� Is the internal design of the AE prepared for incremental extension?
� Are integration and test processes defined for the AE?
� Are deployment processes defined for the AE?
� Are coding guidelines defined for the AE?

#Resources_working_on(AE)
� Are the resources producing the AE co-located?

Appendix

176

� Are appropriate communication infrastructures and infrastructures to exchange
artifacts established between the involved resources?

� Do the involved resources know each other personally?
� Does each involved team have one single point of contact, for instance, a chief

programmer?
� Do the resources work on parts of the AE separated in the design of the AE?
� Is one resource responsible for integration, final test, and deployment of the AE?

Appendix

 177

Checklist for the Application of Context Factors to PWA

General questions for each PWA:
� Are all AEs involved in the PWA well described in the architecture documentation?
� Are the involved AEs following well-known architectural styles, patterns, etc.?
� Are production work activity types available describing how to produce the involved

AEs?
� Do development activity types specifically support the production of the involved

AEs?
� Are tools available to specifically support the production of the involved AEs?
� Are the resources experienced and familiar with the used technologies and tools?
� Is sufficient effort and time planned for the PWA?

#AE_produced_by

� Is the PWA realizing a cross-cutting feature?
� If the PWA is realizing a cross-cutting feature, does the architecture prescribe suffi-

ciently how the cross-cutting feature is supposed to be realized in each AE?
� Is the complexity of the AEs produced by the PWA low?
� Are only well known technologies used to produce the AEs?
� Are the involved AEs initially created by the PWA?
� Can some of the AEs be produced based on reuse?
� If AEs are produced based on reuse, are the reusable artifacts available in time and

are contact persons “owning” the reusable artifacts available?
� Is the team size sufficient to perform the PWA?

#AE_consumed_by

� Are the AEs consumed by the PWA finished in earlier production iterations?
� Are the AEs consumed by the PWA produced by the same resource?
� Are the consumed PWAs mostly infrastructure AEs?
� Are the consumed PWA using the same technologies, especially to communicate

with them?
� Are the consumed AEs well documented, especially their interfaces?
� Do the consumed AE and the communication mechanisms follow well-known

architectural patterns?
� Are appropriate quality assurance activities performed for the consumed PWAs?

Coupling

� Are PWAs causing ingoing relations to the PWA assigned to later production itera-
tions?

� Are PWAs referenced by the PWA assigned to previous iterations?
� Are related PWAs produced by the same resources?
� Does the PWA produce mostly infrastructure AEs?
� Are the related PWA respectively the AEs involved into them well-described in the

architecture documentation, especially their interfaces?

#Shared_AE

� Are the resources producing the shared AEs co-located?
� If the resources producing shared AEs are not co-located, are appropriate communi-

cation infrastructures and infrastructures to exchange artifacts established between
the involved resources?

� Is the internal design of the AE prepared for parallel work or incremental extension?
� Are integration and test processes defined for the AE?
� Are deployment processes defined for the AE?
� Are coding guidelines defined for the AE?
� Does the tool infrastructure support parallel production well?

Appendix

178

Checklist for the Application of Context Factors to PI

General Questions on PIs:

� Are all AEs involved in the PI well described in the architecture documentation?
� Are the involved AEs following well-known architectural styles, patterns, etc.?
� Are production work activity types available describing how to produce the involved

AEs?
� Do development activity types specifically support the production of the involved

AEs?
� Are tools available to specifically support the production of the involved AEs?
� Are the resources experienced and familiar with the used technologies and tools?
� Can a large number of AEs in the PI be built produced based on reuse?
� If AEs produced by the PI are based on reuse, are the reusable artifacts required

available in time and are contact persons “owning” the reusable artifacts available?
� Is parallel work during the PI possible to a large degree?
� Is some buffer time planned in the end of the PI?

#AE_involved_in or %System_Coverage

� Is the PI realizing cross-cutting features?
� If the PI is realizing cross-cutting features, does the architecture prescribe sufficiently

how the cross-cutting feature is supposed to be realized in each AE?
� Is the complexity of the AEs produced by the PI low?
� Are only well known technologies used to produce the AEs of the PI?
� Are the involved AEs initially created by the PI?
� Can some of the AEs be produced based on reuse?
� If AEs are produced based on reuse, are the reusable artifacts available in time and

are contact persons “owning” the reusable artifacts available?

Coupling

� Are AEs referenced by the PI classified as uncritical?
� Is the previous PI classified as uncritical?
� Are the AEs referenced by the PI in previous PI well-described in the architecture

documentation, especially their interfaces?
� Do previous PI contain buffer time at the end?

%Shared_AE

� Are the resources producing the shared AEs co-located?
� If the resources producing shared AEs are not co-located, are appropriate communi-

cation infrastructures and infrastructures to exchange artifacts established between
the involved resources?

� Is the internal design of the shared AE prepared for incremental extension?
� Are integration and test processes defined for the AE, especially regression tests in

this case?
� Are deployment processes defined for the AE?
� Are coding guidelines defined for the AE?
� Does the tool infrastructure specifically support the production of the shared AEs?

Appendix

 179

Checklist for the Application of Context Factors to Res

General Questions on Res:

� Is the resource experienced and familiar with the used technologies and tools?
� Is the resource well connected to the outside via communication and data sharing

infrastructures?
� Is the capacity of the resource large enough to deal with the assigned AEs and

PWAs?
� Is the resource internally well-organized, i.e. are appropriate processes to make

decisions in place?
� Is a single point of contact available from the outside?
� Is the resource experienced in project management?
� Can the resource work provide required capacities even if unforeseen events occur

like illness?

#AE_worked_on_by

� Is the resource realizing cross-cutting features?
� If the Res is realizing cross-cutting features, does the architecture prescribe suffi-

ciently how the cross-cutting feature is supposed to be realized in each AE?
� Is the complexity of the AEs worked on low?
� Are all AEs worked on produced by means of the same technology?
� Are all AEs worked on by the resource of architectural element types known by the

team or even of one architectural element type?
� Are production work activity types available for the AEs worked on?
� Is specific tool support provided for the AEs worked on?
� Are the AEs clearly assigned internally in case of a team?
� Can some of the AEs be produced based on reuse?
� If AEs are produced based on reuse, are the reusable artifacts available in time and

are contact persons “owning” the reusable artifacts available?

Coupling

� Are AEs referenced by the resource classified as uncritical?
� Are related resources not classified as critical?
� Are the AEs referenced by the Res well-described in the architecture documentation,

especially their interfaces?

#Shared_AE

� Are the resources producing the shared AEs co-located?
� If the resources producing shared AEs are not co-located, are appropriate communi-

cation infrastructures and infrastructures to exchange artifacts established between
the involved resources?

� Is the internal design of the shared AE prepared for incremental extension and
parallel work?

� Are integration and test processes defined for the AE, especially regression tests in
this case?

� Are deployment processes defined for the AE?
� Are coding guidelines defined for the AE?
� Does the tool infrastructure specifically support the production of the shared AEs?

Appendix

 181

Appendix D: Method Example – Additional Materials

Appendix 1: Structural View

Appendix 2: Assignment of PWAs to PIs

Appendix

182

Appendix 3: Resource Assignments

Appendix

 183

Appendix E: Case Study Results

The following tables show the values of all producibility metrics deter-
mined in the case study. The lists contain all elements, not only the criti-
cal ones.

AE
#P

W
A

_p
ro

du
ci

ng

#P
W

A
_c

on
su

m
in

g

#P
I_

pr
od

uc
in

g

Pr
od

uc
tio

nD
ur

at
io

n

#R
es

ou
rc

es
_w

or
ki

ng
_o

n

C
rit

ic
al

D
im

en
si

on
s

UI Manager 2 0 2 2 1 2
Control Unit 2 2 2 2 1 2

Model Manager 1 2 1 1 1 1
Distribution Manager 1 1 1 1 1 0
Domain Model Editor 1 0 1 1 1 0
Domain Model Base 1 2 1 1 1 1

Configuration Manager 1 2 1 1 1 1
Tractor Configuration Interface 1 1 1 1 1 0

Tractor Simulator 1 2 1 1 1 1
Tractor Simulator Configurator 1 0 1 1 1 0

Appendix

184

PWA

#A
E_

pr
od

uc
ed

_b
y

#A
E_

co
ns

um
ed

_b
y

C
ou

pl
in

g

#S
ha

re
d_

A
E

%
Sh

ar
ed

_A
E

Create UI Manager 1 1 2 1 100
Extend UI Manager 1 1 2 1 100
Create Control Unit 1 2 3 1 100
Extend Control Unit 1 2 3 1 100

Produce Model Manager 1 1 3 0 0
Produce Distribution Manager 1 1 2 0 0
Produce Domain Model Editor 1 1 1 0 0
Produce Domain Model Base 1 0 2 0 0

Produce Configuration Manager 1 1 3 0 0
Produce Tractor Configuration Interface 1 1 2 0 0

Produce Tractor Simulator 1 0 2 0 0
Produce Tractor Simulator Configurator 1 0 1 0 0

PI

#A
E_

in
vo

lv
ed

_i
n

%
Sy

st
em

_C
ov

er
ag

e

C
ou

pl
in

g

#S
ha

re
d_

A
E

%
Sh

ar
ed

_A
E

%
C

om
pl

et
ed

_A
E_

af
te

r

%
C

re
at

ed
_A

E_
af

te
r

PI1 6 60 0 2 1/3 40 60
PI2 6 60 0 2 1/3 100 100

Appendix

 185

RES

#A
E_

w
or

ke
d_

on
_b

y

C
ou

pl
in

g

#S
ha

re
d_

A
E

%
Sh

ar
ed

_A
E

Team1 1 1 0 0
Team2 3 2 0 0
Team3 6 1 0 0

 187

Lebenslauf

Persönliche Daten

 Name Ralf Carbon

 Anschrift Marie-Juchacz-Str. 16
 67663 Kaiserslautern

 Geburtsdatum und -ort 13.05.1977 in Zweibrücken

 Familienstand Verheiratet, 1 Kind

Werdegang

 1983 - 1987 Thomas-Mann Grundschule, Zweibrücken

 1987 - 1996 Helmholtz-Gymnasium, Zweibrücken

(Abitur)

 1996 - 2002 Studium der Informatik, Universität Kaiserslautern

(Diplom)

 2002 - 2005 Wissenschaftlicher Mitarbeiter in der Arbeitsgruppe

Software Engineering (AGSE), Technische Universität
Kaiserslautern

 seit Juli 2005 Wissenschaftlicher Mitarbeiter am Fraunhofer Institut

für Experimentelles Software Engineering (IESE),
Kaiserslautern

Kaiserslautern, den 16.11.2011

PhD Theses in Experimental Software Engineering

Volume 1 Oliver Laitenberger (2000), Cost-Effective Detection of Software Defects
Through Perspective-based Inspections

Volume 2 Christian Bunse (2000), Pattern-Based Refinement and Translation of
Object-Oriented Models to Code

Volume 3 Andreas Birk (2000), A Knowledge Management Infrastructure for
Systematic Improvement in Software Engineering

Volume 4 Carsten Tautz (2000), Customizing Software Engineering Experience
Management Systems to Organizational Needs

Volume 5 Erik Kamsties (2001), Surfacing Ambiguity in Natural Language
Requirements

Volume 6 Christiane Differding (2001), Adaptive Measurement Plans for Software
Development

Volume 7 Isabella Wieczorek (2001), Improved Software Cost Estimation
A Robust and Interpretable Modeling Method and a Comprehensive
Empirical Investigation

Volume 8 Dietmar Pfahl (2001), An Integrated Approach to Simulation-Based
Learning in Support of Strategic and Project Management in Software
Organisations

Volume 9 Antje von Knethen (2001), Change-Oriented Requirements Traceability
Support for Evolution of Embedded Systems

Volume 10 Jürgen Münch (2001), Muster-basierte Erstellung von Software-
Projektplänen

Volume 11 Dirk Muthig (2002), A Light-weight Approach Facilitating an Evolutionary
Transition Towards Software Product Lines

Volume 12 Klaus Schmid (2003), Planning Software Reuse – A Disciplined Scoping
Approach for Software Product Lines

Volume 13 Jörg Zettel (2003), Anpassbare Methodenassistenz in CASE-Werkzeugen

Volume 14 Ulrike Becker-Kornstaedt (2004), Prospect: a Method for Systematic
Elicitation of Software Processes

Volume 15 Joachim Bayer (2004), View-Based Software Documentation

Volume 16 Markus Nick (2005), Experience Maintenance through Closed-Loop
Feedback

Volume 17 Jean-François Girard (2005), ADORE-AR: Software Architecture
Reconstruction with Partitioning and Clustering

Volume 18 Ramin Tavakoli Kolagari (2006), Requirements Engineering für Software-
Produktlinien eingebetteter, technischer Systeme

Volume 19 Dirk Hamann (2006), Towards an Integrated Approach for Software
Process Improvement: Combining Software Process Assessment and
Software Process Modeling

Volume 20 Bernd Freimut (2006), MAGIC: A Hybrid Modeling Approach for
Optimizing Inspection Cost-Effectiveness

Volume 21 Mark Müller (2006), Analyzing Software Quality Assurance Strategies
through Simulation. Development and Empirical Validation of a Simulation
Model in an Industrial Software Product Line Organization

Volume 22 Holger Diekmann (2008), Software Resource Consumption Engineering for
Mass Produced Embedded System Families

Volume 23 Adam Trendowicz (2008), Software Effort Estimation with Well-Founded
Causal Models

Volume 24 Jens Heidrich (2008), Goal-oriented Quantitative Software Project Control

Volume 25 Alexis Ocampo (2008), The REMIS Approach to Rationale-based Support
for Process Model Evolution

Volume 26 Marcus Trapp (2008), Generating User Interfaces for Ambient Intelligence
Systems; Introducing Client Types as Adaptation Factor

Volume 27 Christian Denger (2009), SafeSpection – A Framework for Systematization
and Customization of Software Hazard Identification by Applying Inspection
Concepts

Volume 28 Andreas Jedlitschka (2009), An Empirical Model of Software Managers’
Information Needs for Software Engineering Technology Selection
A Framework to Support Experimentally-based Software Engineering
Technology Selection

Volume 29 Eric Ras (2009), Learning Spaces: Automatic Context-Aware Enrichment of
Software Engineering Experience

Volume 30 Isabel John (2009), Pattern-based Documentation Analysis for Software
Product Lines

Volume 31 Martín Soto (2009), The DeltaProcess Approach to Systematic Software
Process Change Management

Volume 32 Ove Armbrust (2010), The SCOPE Approach for Scoping Software
Processes

Volume 33 Thorsten Keuler (2010), An Aspect-Oriented Approach for Improving
Architecture Design Efficiency

Volume 34 Jörg Dörr (2010), Elicitation of a Complete Set of Non-Functional
Requirements

Volume 35 Jens Knodel (2010), Sustainable Structures in Software Implementations by
Live Compliance Checking

Volume 36 Thomas Patzke (2011), Sustainable Evolution of Product Line Infrastructure
Code

Volume 37 Ansgar Lamersdorf (2011), Model-based Decision Support of Task
Allocation in Global Software Development

Volume 38 Ralf Carbon (2011), Architecture-Centric Software Producibility Analysis

�

!
��"��������������������	��
���
���
��������#
���
���
���
�$�����
!�������������������%�������������&�'����� ���
�������(��)����� �
��
%�������������*���
�$�����!���������$���������������������
����
+��������� �
�� �,$���������� !
��"���� ������������ -+�!�.� �
����� ���
��������������	����	����
������)��
$�����
���
�$��,��
��"�����$�
$������
���	����
��������������$�����$�����/������0������� ��������
$�
������
�����
������������
�$��,�� &�����
�����������0����
�
�����������$�
�������$�
�����0����� &���������	����
����������

���
���
��������������������� �����	���)�
���/
��������������
$
�������������������
���
�������������
�
����&��,$��������������
�
	���
�������
��0���������)�����0��������)���)������
�������$�
)��
������/���������
���
��"������������������������&�"��������	����
��
�����,$�����������������1��$������&�������������
����*�,$����������
!
��"���������������*��
+�������������&�"��$�	������������������
������������
����+����������
��
�,$����������!
��"����������������-+�!�.������
������!
��"�������
�������������������'�
�$��
�������
�$�����!���������$�����������
����(��)����� �
��%�������������������������������
�������������"�����
����	��������&��������$���	 ��������
������
����

���
��������������
���������������
�	���
�,�����)��������
��
��������
����+�!�����2���
������3'!��'�
�$�

�������
�$�����!���������$�������&�(��)����� �
��%�������������

���
������
���4��	������
��������������������� ��
!������1��������
��
��������
����+�!�����2���
������3'���'�
�$�

�������
�$�����!���������$�������&�(��)����� �
��%�������������

���
������
���4��	������
��������������
������
��$�� �������
��
��������
����+�!�������
����
���
���
�$������
!����������������$��������
�������������&�(��)����� �
��3$$�����
!�������&�%�������������

�
��������
	���������� ��
�
��
�
��
��
��

�
!"

�

#

��
��
���

�
��
�
�

��
 �

$
�
��

�
$

ISBN 978-3-8396-0372-7

9 7 8 3 8 3 9 6 0 3 7 2 7

