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Abstract 

Software Engineering significantly matured in the last decades, but still 
many projects suffer from delays, exceed their budget, do not reach their 
quality goals, or even fail. We experienced that many industrial projects 
suffer from a misalignment of software architecture and software project 
plan. Work activities refer to the same architectural elements causing 
conflicts and delays. Architectural elements are modified repeatedly in 
many iterations of a project causing effort overhead. Dependencies be-
tween architectural elements imply dependencies between resources 
causing communication overhead and delays. Other engineering disci-
plines like manufacturing put specific focus on aligning product design 
and production plan to prevent problems as mentioned above. Software 
Engineering so far did not specifically consider the relationship of soft-
ware architecture and software project plans and did not deal with a po-
tential misalignment of them. 

In this thesis, we introduce the alignment of software architecture and 
software project plan as a new quality property of software called pro-
ducibility and propose a method to analyze the producibility of a soft-
ware product. The producibility analysis method semi-automatically de-
tects critical architectural elements and project planning elements like 
work activities, iterations, or assigned resources that are supposed to 
cause delays or effort overhead during realization of a software product. 
The producibility analysis method provides recommendations to archi-
tects and project planners on how to deal with the critical elements. 

The following technical contributions enable a producibility analysis: A 
meta-model of software production defines the relationship of software 
architecture and software project plans. A quality model defines produc-
ibility in a measurable way. Producibility views provide the possibility to 
model the relationships of architectural elements and project planning 
elements like work activities, iterations, or available resources explicitly in 
a certain project. An algorithm detects critical elements based on the 
producibility views and the metrics provided by the quality model of pro-
ducibility. A prototype tool supports modeling the producibility views 
and determining the producibility metrics. Checklists support in analyz-
ing critical elements in detail and deriving recommendations. 

In an industrial case study, we identified more than 90% of critical ele-
ments up-front. We determined based on estimates of the project team 
that we could have saved 29% of time in the first of two iterations. This 
would have provided the chance to spend the saved time and effort in 
the second iteration, which has not been finished as planned. 





 Table of Contents 
 

 vii 

Table of Contents 

Abstract ................................................................................................. v 
Table of Contents ................................................................................. vii 
List of Figures ........................................................................................ xi 
List of Tables ........................................................................................ xiii 

1 Introduction ....................................................................................1 
1.1 Practical Problem ........................................................................1 
1.2 Example .....................................................................................4 
1.3 Scientific Problem .......................................................................6 
1.4 Solution ...................................................................................10 
1.5 Benefits and Research Hypotheses ...........................................13 
1.6 Research Approach ..................................................................15 
1.7 Summary .................................................................................17 
1.8 Outline .....................................................................................19 

2 Foundations and Meta-Models ...................................................21 
2.1 Software Architecture ..............................................................21 

2.1.1 Definition and Role of Software Architecture .................21 
2.1.2 Architectural Elements ...................................................24 
2.1.3 Architectural Element Types ...........................................29 
2.1.4 Architecture Documentation ..........................................32 

2.2 Software Project Plans ..............................................................34 
2.2.1 Definition and Role of Software Project Plans .................34 
2.2.2 Work Breakdown Structure ............................................36 
2.2.3 Project Schedule ............................................................38 
2.2.4 Development Process .....................................................40 
2.2.5 Software Project Organization .......................................42 
2.2.6 Resource Plan ................................................................44 
2.2.7 Project Plan Documentation ...........................................46 

3 Software Production ....................................................................47 
3.1 Definition of Software Production ............................................47 
3.2 Software Production Life-Cycle ................................................49 
3.3 Software Production Scenarios .................................................50 

3.3.1 Single Systems with repeating Production Sequences .....50 
3.3.2 Producing similar Systems in a specific Domain ..............51 
3.3.3 Product Line Engineering with a pre-defined Scope .......51 

3.4 Software Production Meta-Model ............................................52 
3.4.1 Software Production Plans .............................................52 
3.4.2 Software Production Processes .......................................54 
3.4.3 Integrated Software Production Meta-Model .................56 

3.5 Software Production Example ..................................................58 



Table of Contents 
 

viii 

3.5.1 Reference Architecture for Mobile Business Apps .......... 58 
3.5.2 Development Process vs. Production Process ................. 59 

3.6 Related Work .......................................................................... 62 

4 Quality Model of Producibility ................................................... 67 
4.1 Definition of Producibility ........................................................ 67 
4.2 Alignment of Architecture and Production WBS ...................... 70 

4.2.1 Architect’s Perspective .................................................. 71 
4.2.2 Production Planner’s Perspective ................................... 75 

4.3 Alignment of Architecture and Production Schedule ............... 80 
4.3.1 Architect’s Perspective .................................................. 81 
4.3.2 Production Planner’s Perspective ................................... 84 

4.4 Alignment of Architecture and Resource Assignments ............. 88 
4.4.1 Architect’s Perspective .................................................. 88 
4.4.2 Production Planner’s Perspective ................................... 90 

4.5 Context Factors ....................................................................... 92 
4.5.1 Architecture-related Context Factors ............................. 93 
4.5.2 Production Process-related Context Factors ................... 97 
4.5.3 Organization-related Context-Factors .......................... 100 

4.6 Related Work ........................................................................ 102 

5 Producibility Analysis Method ................................................. 105 
5.1 Method Overview .................................................................. 105 
5.2 Preparation Phase .................................................................. 108 

5.2.1 Elicitation of Producibility Scenarios ............................ 109 
5.2.2 Modeling of Producibility Views .................................. 113 
5.2.3 Mapping of Producibility Scenarios ............................. 115 

5.3 Execution Phase .................................................................... 115 
5.3.1 Identification of Critical Elements ................................ 116 
5.3.2 Analysis of Producibility Scenarios ............................... 121 

5.4 Consolidation Phase .............................................................. 123 
5.4.1 Completeness Check of List of Critical Elements ......... 124 
5.4.2 Application of Context Factors .................................... 126 
5.4.3 Derivation of Recommendations ................................. 128 

5.5 Tool Support ......................................................................... 132 

6 Validation   ................................................................................. 135 
6.1 Projects Accompanying this Thesis ......................................... 135 

6.1.1 Project “Virtual Office of the Future” .......................... 135 
6.1.2 Projects in the Airline Management Domain ............... 136 
6.1.3 Project “ProKMU” ...................................................... 137 

6.2 Case Study: Mobile Configuration Assistant .......................... 138 
6.2.1 Goals .......................................................................... 138 
6.2.2 Context ....................................................................... 138 
6.2.3 Approach .................................................................... 140 
6.2.4 Results ........................................................................ 141 
6.2.5 Threats to Validity ....................................................... 145 

6.3 Summary and Future Validation Steps ................................... 147 



 Table of Contents 
 

 ix 

7 Summary and Future Work ...................................................... 151 
7.1 Summary of Contributions .................................................... 151 
7.2 Outlook on Future Work ....................................................... 155 
7.3 Concluding Remarks ............................................................. 159 

References   ................................................................................. 161 

Appendix A: Producibility Metrics and Conditions ................... 169 

Appendix B: Algorithm to identify Critical Elements ............... 171 

Appendix C: Checklists for Context Factors .............................. 175 

Appendix D: Method Example – Additional Materials ............. 181 

Appendix E: Case Study Results ................................................. 183 
 





 List of Figures 
 

 xi 

List of Figures 

Figure 1: Practical Problem 3 
Figure 2: Functional Decomposition - Alternative 1 5 
Figure 3: Functional Decomposition - Alternative 2 5 
Figure 4: Scientific Problem 10 
Figure 5: Overview Solution Ideas 12 
Figure 6: Overview Research Approach 16 
Figure 7: PhD V-Model - Relationship of Problems and Hypotheses 17 
Figure 8: Overview Problems and Contributions 18 
Figure 9: Architecture as a Mediator 22 
Figure 10: Core of Architecture Meta-Model 27 
Figure 11: Architectural Element Relationships 28 
Figure 12: Pipes and Filters 29 
Figure 13: Architectural Element Types 32 
Figure 14: Architecture Documentation Meta-Model 34 
Figure 15: Project Plan Meta-Model Overview 36 
Figure 16: Meta-Model Work Breakdown Structure 37 
Figure 17: Example Work Breakdown Structures 38 
Figure 18: Meta-Model WBS and Project Schedule 40 
Figure 19: Meta-Model Development Process 42 
Figure 20: Organization Meta-Model 44 
Figure 21: Resource-Plan Meta Model 45 
Figure 22: Software Production Life-Cycle 49 
Figure 23: Production Plan Meta-Model 54 
Figure 24: Production Process Meta-Model 55 
Figure 25: Software Production Meta-Model 57 
Figure 26: Example Reference Architecture 59 
Figure 27: Product Line Life-Cycle 65 
Figure 28: Three Dimensions of Producibility 67 
Figure 29: Producibility in the Software Production Meta-Model 68 
Figure 30: Different Perspectives on Producibility 69 
Figure 31: Focus of Alignment of Architecture and Production WBS 70 
Figure 32: Example Metrics AE and PWAs 72 
Figure 33: Example 1 - Number of PWAs producing Set of AEs 74 
Figure 34: Example 2 - Number of PWAs producing Set of AEs 75 
Figure 35: Example Metrics Production Work Activities 77 
Figure 36: Relationships between PWAs 77 
Figure 37: Coupling between PWAs 78 
Figure 38: Example sharing of AEs between PWAs 79 
Figure 39: Alignment of Architecture and Production Schedule 81 
Figure 40: Number of PI involving AE 82 
Figure 41: Example - Set of AEs in different PIs 83 
Figure 42: Example - Coupling between Iterations 85 



List of Figures 
 

xii 

Figure 43: Example - Iterations sharing AEs 87 
Figure 44: AEs and Resources in Meta-Model 88 
Figure 45: Example - Architectural Elements and Resources 89 
Figure 46: Example - Coupling between Resources 90 
Figure 47: Example - Sharing between Resources 92 
Figure 48: Classes of Producibility Context Factors 93 
Figure 49: Overview Architecture-related Context Factors 93 
Figure 50: Overview Production Process-related Context Factors 98 
Figure 51: Overview Organization-related Context Factors 100 
Figure 52: Overview Producibility Analysis Method 106 
Figure 53: Phases of the Producibility Analysis Method 107 
Figure 54: Steps of the Preparation Phase 109 
Figure 55: Overview Identification Algorithm 117 
Figure 56: Example - Production Iteration View 119 
Figure 57: Example - Resource Assignment View 119 
Figure 58: Steps of the Consolidation Phase 123 
Figure 59: Improved Production Iteration View 131 
Figure 60: Improved Resource Assignment View 131 
Figure 61: Modeling Producibility Views in EA 133 
Figure 62: SQL Model Query in EA 134 



 List of Tables 

 xiii 

List of Tables 

Table 1: Example -  Development Process vs. Production Process 62 
Table 2: Examples of Producibility Concerns 110 
Table 3: Producibility Scenario Template 111 
Table 4: Conditions for identifying critical Elements 118 
Table 5: Example - List of Critical Architectural Elements 120 
Table 6: Example - List of Critical Production Work Activities 120 
Table 7: Example - List of Critical Production Iterations 120 
Table 8: Example - List of Critical Resources 121 
Table 9: Example for extended Producibility Scenario Template 123 
Table 10: Potentially Critical Architectural Elements 125 
Table 11: Potentially Critical Production Iterations 125 
Table 12: Potentially Critical Resources 126 
Table 13: Checklist for Architectural Elements 127 
Table 14: Recommendations regarding Architectural Elements 129 
Table 15: Recommendations regarding Production Iterations 129 
Table 16: Recommendations regarding Resources 130 
Table 17: Recommendations regarding Production Work Activities 130 
Table 18: Overview Case Study Results 142 

 





 Introduction 

  1 

1 Introduction 

This chapter introduces the practical and scientific problems addressed in 
this thesis. An overview on the solution approach is presented highlight-
ing the main contributions of this thesis. The expected benefits are 
pointed out and the research hypotheses underlying this thesis are pre-
sented. The chapter ends with a summary and an outlook on the re-
mainder of this thesis. 

1.1 Practical Problem 

Today, software is omnipresent in our life. We use software on our desk-
top computers and mobile devices many times a day. Embedded soft-
ware is controlling systems and devices we regularly utilize like cars, 
home appliances, etc. In [BJN+06], software is called a basic material of 
today’s innovative products. Consequently, the software industry needs 
to produce software on a large-scale to fulfill the huge demand for it. 
Thereby, production of software means to create software systems effi-
ciently based on a well-defined software architecture and a well-defined 
production or project plan. Only the combination of a software architec-
ture with a corresponding production or project plan enables software 
production as the combination describes what to build and how.  

In hard goods manufacturing, the term production refers to a process 
that is highly optimized to come up efficiently with high numbers of a 
specific product and runs through without unplanned delays, effort 
overhead, and quality issues occurring. The term production is used in 
this thesis for software, because many software organizations specialize 
to certain markets and create similar products in large numbers for their 
customers although each product somehow appears to be individual. 
Even if they develop a single system from scratch for a certain customer, 
the project typically runs through many iterations that each should fol-
low the same planned production process and add increment by incre-
ment to the system according to the architecture to be successful. 

The rise of Software Engineering [Rom09] [Jal10] [Som10] in the last 
decades has led to an industrialization of software development. Large 
and complex systems can be developed more systematically and with less 
risk involved by using software architecture as a conceptual tool to struc-
ture software and control complexity, by applying well-defined software 
engineering processes, and by planning and managing software projects. 
Reuse approaches like, for instance, Product Line Engineering (PLE) 
[BFK+99] [CN02] enable organizations in many cases to increase the 
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quality of their software products, to reduce effort and time to market, 
and to deliver solutions customized to the individual needs of customers 
at a reasonable price [HOF11]. Software is developed in huge consortia 
of specialized suppliers and solution providers or integrators. Hence, 
software is developed similar to other industrial products. Nevertheless, 
still many software projects exceed their budget, deliver too late, do not 
completely fulfill their requirements, or even fail [Sta09]. 

One of the major reasons for this situation we observed in many archi-
tecture assessments in industry is a misalignment of the architecture of a 
software system with the project plan, the development process, and the 
overall project organization. Hence, software is not really produced. The 
development process is too often bothered by delays, effort overhead, 
and quality problems originating from design flaws or inappropriate de-
cisions in the earlier phases architectural design and project planning. 

The software architecture of a software system and the project plan are 
two key artifacts for the production of software.  

According to [BCK03], software architecture is defined as follows: 

Definition Software Architecture: “The architecture of a software-
intensive system is the structure or structures of the system, which com-
prise software elements, the externally visible properties of these ele-
ments, and the relationships among them.” 

The architectural design of a software system conveys the key technical 
decisions taken to satisfy the requirements in a software system. In that 
sense it describes what to produce. It enables prediction of the quality of 
the resulting product, serves as a means for communication in the pro-
ject, and constrains the production of the software product. Implemen-
tation and design are constrained in their creativity and are not allowed 
to violate the architecture. Architectural decisions, for instance, on tech-
nologies to be used, affect the processes and tools to be used to pro-
duce the product. Functional decomposition influences, for instance, re-
lease planning as it can facilitate but also hamper adding increments to a 
system over time (see Example in Section 1.2). According to Conway’s 
Law [Con68], the structure of the system should match the structure of 
the project organization to minimize communication overhead. 

According to the IEEE Standard for Software Project Management Plans 
[IEEE98], a software project management plan (project plan) is defined as 
follows. 

Definition Software Project Plan: “A Software Project (Management) 
Plan  is the controlling document for managing a software project; it de-
fines the technical and managerial processes necessary to develop soft-
ware work products that satisfy the product requirements.” 

Software is 
not pro-
duced to-
day. 
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A project plan describes how to build a software system. It contains deci-
sions on releases, resource assignments, or schedules. It constrains the 
production of a software system in a sense that each organizational unit 
in a project knows which tasks to perform, how to perform them, and 
which deadlines exist. Production tasks can only be precisely defined, as-
signed to organizational units, and scheduled based on the architecture. 
The architecture defines the elements that make up the system and need 
to be assigned to resources. The properties of such architectural ele-
ments influence the resource assignments as not each organizational 
unit is equipped with the required skills to produce an architectural ele-
ment. The dependencies of architectural elements dictate the required 
communication channels between organizational units. Size and com-
plexity of architectural elements influence schedule and effort estimates.  

Unfortunately, architectural design is often conducted without sufficient-
ly considering, for instance, release plans, the structure of the project or-
ganization, the skills of the assigned resources, or the processes and 
tools adopted in an organization. Project planning is often performed 
without considering the architecture of a system, many times project 
plans are largely fixed before a first version of the architecture exists 
[Pau02]. Hence, architectural design and project planning are typically 
conducted largely independent of each other although the decisions 
made in each activity are heavily related. 

The problem is illustrated in Figure 1. Architectural design and project 
planning are not sufficiently interwoven if at all. Project plans are set-up 
before the architecture has been designed or without considering it 
[Pau02]. As a result, architectures and project plans are misaligned. Prob-
lems originating from the misalignment of architecture and project plan 
appear during production leading to project delays, effort overhead, and 

 

Figure 1: Practical Problem 
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poor quality of the final product, i.e. the requirements in the product 
and the business goals of a project are not fulfilled in the end.  

Therefore, this thesis aims at preventing such problems in practice by as-
suring a better alignment of architecture and project plan before produc-
tion by an increased communication between architects and project 
managers during architectural design and project planning. 

The following example illustrates the problem of misaligned architectures 
and project plans by considering functional decomposition as part of ar-
chitectural design and release planning as part of project planning and 
their interrelation. 

1.2 Example 

During functional decomposition, architects decide on how to assign the 
system’s functionality to architectural elements. Thereby, they apply 
general design principles like information hiding, try to reduce coupling 
between architectural elements, and increase cohesion. Project manag-
ers plan releases based on the system’s functionality and constraints de-
fined by various stakeholders involved in the project. The customer, for 
instance, can provide a prioritization of the system’s functionality that af-
fects release planning, i.e. the order of realizing certain features. 

The functional decomposition chosen by the architect and the release 
plan of the project manager can be in conflict. Conflict means in this 
case, that a chosen functional decomposition can bear the risk of delays, 
effort overhead, or quality issues if the system’s functionality is realized 
in the order defined in the release plan. 

Figure 2 and Figure 3 show two alternative functional decompositions of 
the system. In both cases the features F1, …,F9 are assigned to architec-
tural elements. In the first case the features are assigned to the architec-
tural elements A1,…,A9, in the second case to the architectural ele-
ments B1,…,B9. Several architectural elements contribute to the realiza-
tion of a certain feature in the given example, which is marked by a cross 
(X). In both alternatives of functional decomposition, three architectural 
elements contribute to each of the features. A 1:1 mapping between 
features and architectural elements is theoretically desirable but typically 
not realizable for all features of a system in practice. Hence, the example 
reflects a realistic setting in practice. 

The release plan foresees to realize the system’s functionality in three in-
crements. In Increment 1, the features F1, F2, and F3 are realized, in In-
crement 2 F4, F5, and F6, and in Increment 3 F7, F8, and F9. Increment 1 
is supposed to be finished until t1, Increment 2 until t2, and Increment 3 
until t3. 
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Figure 2: Functional Decomposition - Alternative 1 

 

Figure 3: Functional Decomposition - Alternative 2 
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If the functional decomposition shown in Figure 2 is chosen, three archi-
tectural elements need to be realized in each increment. In Increment 1, 
for instance, the architectural elements A1, A2, and A3 need to be real-
ized. After Increment 1, A1, A2, and A3 are completed, i.e. they do not 
need to be touched in later increments. As a consequence, they can also 
be completely tested in Increment 1 and no effort for regression testing 
in later increments needs to be spent, for instance.  

The situation is different in the case of the functional decomposition 
chosen in Figure 3. In Increment 1, a first version of all architectural ele-
ments of the system needs to be realized. In Increment 2 and Increment 
3 all architectural elements need to be touched again. This leads to the 
situation that no architectural element is finished before the end of the 
project. Touching all architectural elements in each increment requires 
effort for regression testing. Changing an architectural element often 
bears the risk of introducing defects, especially if different developers are 
responsible for the changes over time. Changes to architectural elements 
typically get more complex over time as the internal structure of the ar-
chitectural elements deteriorates. 

We can conclude from the example that the functional decomposition 
shown in Figure 2 should be preferred over the one shown in Figure 3 
with respect to the chosen release plan. The example shows, that archi-
tectural decisions (in this case decisions on functional decomposition) 
should not be taken without considering project planning decisions (in 
this case decisions on release planning). 

1.3 Scientific Problem 

As mentioned above, the relationship of the architecture with the project 
plan is not sufficiently considered if at all during architectural design and 
project planning in practice. Several reasons for this situation can be 
identified which originate in shortcomings in the current state of the art 
regarding architectural design and project planning. Five closely related 
scientific problems (SP) that are addressed in this thesis are discussed in 
the following. 

SP1: Missing enforcement of communication between architects 
and project planners during (initial) architectural design and pro-
ject planning 

Both, architectural design and project planning approaches do not suffi-
ciently force or even guide architects and project planners to communi-
cate with each other and align the architecture with the project plan. 
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Most architectural design approaches like Attribute-Driven Design 
[WBB+06] or Fraunhofer DSSA [DFK98] distinguish between the two 
basic activities of functional decomposition and quality-driven design. 
Functional decomposition leads to a basic overall structure of the system 
that is then revised (e.g., architectural elements are added, removed or 
modified) based on the quality requirements addressed during quality-
driven design. Release planning is not explicitly considered during func-
tional decomposition according to one of the architectural design ap-
proaches mentioned above. While it is up to an experienced architect to 
include information on release planning in architectural decision making, 
architects are neither explicitly forced by existing approaches to request 
information on release planning from project planners nor guided on 
how to use such information. It remains unclear, how a functional de-
composition facilitating the realization of a certain release plan should 
look like. 

Quality-driven design considers quality and business requirements as in-
put. Typically, such requirements are specified in form of architectural 
scenarios. Quality requirements are related to run-time (e.g., availability, 
performance) and development-time properties (e.g., modifiability, test-
ability) of the system. Business requirements, for instance, can be related 
to time to market, cost, or specifics of the targeted market like providing 
interfaces to certain systems, supporting certain communication proto-
cols, etc. Especially addressing business requirements needs a close in-
teraction of architects and project planners as both architectural and 
project planning decisions directly affect the fulfillment of such business 
requirements. 

Most project planning approaches do not explicitly consider the architec-
ture in early phases. Often, project plans are already fixed to a large de-
gree including effort estimations before architectural design has started. 
Effort is typically estimated based on cost models like CoCoMo II 
[BAB+00] or by using Function Point Analysis [ISO09]. The Architecture-
Centered Software Project Planning (ACSPP) Approach proposed by 
Paulish [Pau02] enforces to conduct high-level (architectural) design and 
project planning in parallel. Release planning is performed under consid-
eration of the architecture. As a basic strategy, ACSPP proposes, for in-
stance, to first produce a vertical slice of the system in a first release and 
then to incrementally add additional functionality in further releases. 
ACSPP also proposes to consider, for instance, the effect of global dis-
tributed development on the architecture. Effort estimates are based on 
the current version of the architecture and are input to scheduling a pro-
ject. Furthermore, ACSPP uses the results of a global analysis [HND99] or 
architecture evaluation to identify project risks. However, ACSPP does 
not provide guidance on how to integrate architectural design and pro-
ject planning activities. According to ACSPP, the project manager re-
quests information on the architecture from the architecture team, but 
the flow of information back to the architecture team to challenge and 
potentially revise the architecture with respect to the project plan is not 
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specified in detail. Project management and architectural design deci-
sions are still taken largely independent and do not explicitly mutually 
challenge each other early on. 

SP2: No support for the identification and analysis of critical archi-
tectural or project planning elements 

The identification of critical architectural and project planning elements 
can be seen as a first step towards a better alignment of architecture 
and project plans. Architectural elements can be modules, subsystems, 
or components. Project planning elements can be releases, milestones, 
or resource assignments. Thereby, an architectural or project planning 
element is supposed to be critical, if significant risks are related to it that 
can lead to production problems later on. 

Critical architectural elements today can be identified by evaluating the 
adoption of general design principles like coupling, cohesion, or infor-
mation hiding in an architecture. If an architectural element AE is highly 
coupled with other architectural elements, for instance, several risks are 
related to it that can lead to delays in completing the architectural ele-
ment or in effort overhead [BCK03]. Architectural elements using AE re-
quire a working version of it before they can be completed. Such archi-
tectural elements can start working with the interface of AE specified 
up-front, before AE is finished. But practical experience shows, that in-
terfaces change during production or architectural elements in the end 
to not behave as specified in their interface. Hence, AE is potentially crit-
ical for production as there is the risk that it gets a bottleneck during 
production. If AE itself depends on many other architectural elements, 
there is the risk that it cannot be completed in time. 

But the fact that an architectural element is highly coupled does not 
necessarily lead to a production problem. In fact, additional context fac-
tors like, for instance, who produces the architectural element, which 
technology is used, how is the architectural element internally struc-
tured, etc. must be considered to decide if an architectural element is 
critical and if appropriate countermeasures need to be taken. Approach-
es explicitly supporting such a detailed analysis do not exist today. 

SP3: No integrated meta-model of architectures and project plans 

The basis for communication is a common language. Architects and pro-
ject planners today cannot build their communication on a better align-
ment of architectures and project plans on a common language or meta- 
model. While various meta-models for software architecture or project 
plans exist, an integration of such meta-models is missing today. Conse-
quently, a better alignment of architecture and project plans is compli-
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cated or even prevented by the missing definition of architecture and 
project planning concepts in a common meta-model. 

SP4: No quality model for the alignment of architecture and pro-
ject plan 

The alignment of the architecture with a project plan can be seen as a 
quality attribute of a software system because it is essential for the suc-
cess of a software project. Existing software quality models like ISO 9126 
[ISO01] do not include the alignment of software architectures and re-
lated project plans as a quality attribute and consequently also do not 
provide any guidance on how to achieve higher alignment of an archi-
tecture and a related project plan. 

SP5: No integrated documentation models of architectures and 
project plans 

Activities towards a better alignment of architecture and project plans 
must be based on a common documentation model of architects and 
project planners. According to the state of the art software architectures 
are documented by means of architectural viewpoints and views as well 
as textual descriptions documenting architectural decisions and ration-
ales [CBB+03]. According to the general principle separation of concerns 
architectural views contain information on the architecture relevant for 
the point of view of specific stakeholders and leave out all information 
not relevant to the respective stakeholders and their related concerns. 

Various architectural views are relevant for project planners. Structural 
views, for instance, support in understanding the system structure and 
assigning resources to architectural elements. Deployment views can be 
used to identify the required hardware resources and operators involved 
in the project. But architectural views explicitly combining architectural 
and project planning information are scarce. In the literature, a resource 
assignment view is often referenced showing the assignment of re-
sources to architectural elements. Other architectural views combining 
architectural and project planning information are missing today. 

Project plans are typically documented by a combination of textual de-
scriptions, tables, and diagrams like Gantt-Charts. Visualizations combin-
ing architectural and project planning information are not existing today.  

Figure 4 shows how the scientific problems are related to the overall 
problem context introduced in Figure 4. 
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1.4 Solution 

This section introduces the general solution proposed in this thesis. As 
the solution idea is partially adopted from the current state of the 
art/state of the practice in the manufacturing industry, the situation in 
the manufacturing industry is shortly described as background infor-
mation. 

The manufacturing industry also suffered from problems similar to the 
misalignment of software architecture and project plans [GRD+97]. 
Products can be badly manufacturable if not designed properly. Bad 
manufacturability is typically measured in terms of time to market, effort, 
and cost. One of the identified reasons for that is a more or less strict 
separation of design and production planning teams [UE95]. After de-
signers had finished their work, they handed over the design of the 
product to the production planning team. Typically, production planners 
detected problems in the design that made it hard or even impossible to 
manufacture in time or within budget. The detected problems were re-
lated, for instance, to the assemblability of products, the chosen materi-
als, the available production technology, or the involved suppliers. Con-
sequently, production planners had to ask designers to rework their solu-
tion in additional design iterations, which caused additional effort and 
delays already in early phases. Luckily, they at least did a thorough pro-
duction planning including a check of the design with respect to its 
manufacturability before they started manufacturing it in large numbers.  

The general solution to reduce the rework effort of designs in manufac-
turing is the integration of a manufacturability analysis in the design pro-
cess [GRD+97]. Manufacturability analysis enables designers to detect 
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production problems early in the design phase and change their design 
appropriately, before they finally hand it over to production planners. 
The analysis is based on information on the capabilities of the production 
unit and the constraints defined in production plans. Manufacturability 
analysis is in the meantime a well-known best practice in the manufac-
turing industry. Manufacturability is a well-recognized quality attribute of 
product designs. 

C1: Architecture-Centric Producibility Analysis 

In Software Engineering, architectures are not systematically analyzed 
with respect to a potential misalignment with the project plan. Hence, 
the key solution idea in this thesis is to introduce a so-called architecture-
centric producibility analysis as a mediator between architectural design 
and project planning. The architecture-centric producibility analysis trans-
fers the best practice of manufacturability analysis known from the 
manufacturing industry to software. The producibility analysis is called 
architecture-centric because it uses the architecture to investigate the 
alignment with the current version of the project plan and tries to detect 
problems potentially arising during production early on. The producibility 
analysis detects, for instance, if the structure of the system causes prob-
lems with respect to the release plan, the resource assignments, etc. The 
results give architects and project planners the chance to modify the ar-
chitecture and/or the project plan accordingly before any time or effort is 
wasted.  

Producibility is the quality attribute characterizing the alignment or misa-
lignment of architectures and project plans. It is introduced in detail in 
Chapter 4 when a quality model of producibility is presented. 

The architecture-centric producibility analysis is based on the assumption 
that architectural design and project planning are and will be two sepa-
rate activities in projects as architects and project planners in general 
have different backgrounds and concerns. Nevertheless, they need to 
collaborate closely in software production, which is supposed to be ena-
bled by explicitly establishing producibility analysis as common activity. 

Figure 5 illustrates the envisioned approach of an architecture-centric 
producibility analysis. Architectural design and project planning are typi-
cally conducted in an iterative way. Between two architectural design re-
spectively project planning iterations, the producibility analysis can be in-
tegrated. The producibility analysis takes the current version of the archi-
tecture and evaluates the producibility the current version of the project 
plan. The producibility analysis identifies critical architectural and project 
planning elements and provides guidance for a detailed analysis of them 
based on checklists. The result of the producibility analysis is a list of crit-
ical elements of the architecture and the project plan potentially causing 
production problems and recommendations how to deal with such criti-
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cal elements. The recommendations are fed back to architectural design 
and project planning to revise the architecture or the project plan in an 
up-coming iteration. 

The method for an architecture-centric producibility analysis is the key 
methodological contribution of this thesis. Several technical contribu-
tions are required to enable an architecture-centric producibility analysis. 

C2: Meta-Model of Software Production 

The meta-model of software production forms the basis for a better in-
tegration of architectural design and project planning and hence a pro-
ducibility analysis. It defines the key concepts of architecture and project 
plans and their interrelationships. 

C3: Quality Model of Producibility 

The quality model of producibility defines producibility as a quality at-
tribute characterizing the alignment of architectures and project plans. 
Based on the meta-model of software production it describes how archi-
tectures and project plans need to be aligned to increase producibility. 

 

Figure 5: Overview Solution Ideas 
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Hence, it forms the basis to identify production problems and provide 
recommendations in the producibility analysis. 

C4: Producibility Views 

Producibility views document the relationship of architecture and project 
plans. They are the basis to perform the producibility analysis and deter-
mine the producibility according to the quality model of producibility. 

C5: Element Identification Algorithms 

An algorithm that systematically identifies potential critical elements in 
the architecture and the project plan supports the producibility analysis. 
The algorithm captures the part of the producibility analysis that will be 
automated in a first step. 

1.5 Benefits and Research Hypotheses 

Several major benefits are expected from conducting an architecture-
centric producibility analysis. In this section, the benefits are discussed 
and research hypotheses capturing the expected relationships of the 
contributions of this thesis and the practical and scientific problems are 
presented. 

One major expected benefit is the early detection of potential production 
problems. The architecture-centric producibility analysis can detect pro-
duction problems before production has started. Already during initial 
architectural design activities in a project, a producibility analysis can be 
conducted as long as the respective information from project planning is 
available. Early detection enables architects and project planners to elab-
orate solutions before lots of time and effort are wasted in detailed de-
sign or detailed planning. Production risks can be identified and mitigat-
ed early on. Architects get the chance to compare architecture alterna-
tives with respect to their alignment with the project plan and take archi-
tectural decisions under consideration of producibility requirements. 

An architecture-centric producibility analysis is essentially based on the 
architecture and the existing documentation. While identifying potential 
production problems, the architecture respectively its documentation is 
inspected from different perspectives of roles involved in production, for 
instance, implementers or testers. Production problems can only be de-
tected, if the information relevant for production is already contained in 
sufficient detail in the current architectural design. From the perspective 
of implementers or testers, this means that it is implicitly checked if all 
the information required to implement or test architectural elements are 
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contained in the architectural design. Such information includes, for in-
stance, interfaces of architectural elements, technology decisions, con-
straints for detailed design of architectural elements, etc. Hence, the ar-
chitecture is checked for completeness with respect to the information 
required by implementers or testers. This fact could also be called pro-
duction readiness of the architecture. 

The following hypotheses are the basis for the validation of the thesis 
described in Chapter 6. 

H1 – Effectiveness of the Producibility Analysis Method with re-
spect to Time and Effort: The producibility analysis method reduces 
time and effort spent on production (i.e., in this case the set of all activi-
ties conducted after architectural design and project or production plan-
ning) by at least 25%. 

H1 is the basic hypothesis of this thesis with respect to the practical 
problem identified in Section 1.1. It is assumed that architecture-centric 
producibility analysis has a positive effect on the practical problem and 
reduces project delays and effort overhead caused during production by 
the misalignment of architecture and project plan. It is assumed, that ar-
chitects and production planners are able to identify solutions to reduce 
the misalignment of architecture and project or production plan by 
means of the guidance provided by the producibility analysis method.  

The following hypotheses H2 and H3 are more related to the scientific 
problems identified in Section 1.3. 

H2 – Completeness of the Identification of critical Elements: The 
producibility analysis method detects at least 75% of critical elements 
(including architectural and project or production planning elements). 

Thereby, elements are called critical if they bear the risk of causing de-
lays, effort overhead, or quality issues during production. 

H2 relates to the completeness of the producibility analysis with respect 
to the critical elements. The producibility analysis aims at identifying as 
many critical elements as possible. However, a certain number of critical 
elements are not expected to be detected up-front as the related prob-
lems are caused by unforeseen events occurring during production. 

H3 – Correctness of the Identification of critical Elements: At least 
90% of the elements identified by the producibility analysis as critical are 
critical in the end, i.e. less than 10% of the identified elements are false 
positives and not causing any production problems. 

H3 is related to the correctness of the results of the producibility analysis. 
There is a certain likelihood that architectural elements are classified as 
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critical although they do not cause problems during production. Poten-
tial reasons for not causing production problems could be project team 
members performing better than expected or changes in the project 
context that compensate certain problems. The following section pro-
vides an overview of the research approach chosen in this thesis. 

1.6 Research Approach 

The research approach illustrated in Figure 6 has been applied to come 
up with the results of this thesis.  

State of the Practice Observations 

The practical problem underlying this thesis has been observed in a series 
of industry projects at Fraunhofer IESE, in this case architecture assess-
ments. Since several years, we conduct architecture assessments for in-
dustrial customers. Thereby, the motivation of our customers to conduct 
an architecture evaluation are typically urgent problems compromising 
the success of running projects, for instance, doubts on the appropriate-
ness of the architecture, quality issues regarding the final product, tech-
nical issues, or huge delays in delivery. Based on the results of our archi-
tecture assessments, management decisions concerning the continuation 
of the respective projects have been taken. We experienced that prob-
lems often can only be explained by combining observations made re-
garding the architecture with observations made regarding project plans 
and processes in an organization. Hence, we concluded that the archi-
tecture needs to be evaluated more thoroughly under consideration of 
project plans, processes, and organizational aspects. 

State of the Art Literature Survey 

Based on the experiences made in industry projects a literature survey 
has been conducted. The survey focused on research results regarding 
the relationship of software architecture, project plan, processes, and 
organizational aspects and in general on approaches aiming at aligning 
architecture, project plans, processes, and organization to make soft-
ware development more productive. As Software Engineering adopted 
practices from other engineering disciplines already before, the survey al-
so considered related literature from other engineering fields, i.e. the 
manufacturing industry. The survey inspired us to come up with the no-
tion of software production as defined in this thesis and to elaborate the 
general solution idea to conduct a producibility analysis of software ar-
chitectures. 
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Elaboration of Contributions 

Based on the results of the state of the practice observations and the 
state of the art survey the core contributions of the thesis have been 
elaborated. First, the meta-model and the quality model have been de-
rived and the idea of the producibility analysis method has been elabo-
rated in detail. Based on the meta-model and the quality model, the 
producibility views and the element identification algorithm have been 
derived. 

Perform Case Studies 

According to the approach of Experimental Software Engineering 
[Bas93] we follow at Fraunhofer IESE, the producibility analysis method 
has been initially evaluated in a case study. The project to conduct the 
case study has been selected in this case based on its suitability but also 
availability when this research has been evaluated. Unfortunately, only 
one suitable project has been available for evaluation in this case. 

The following section summarizes this introduction chapter before Sec-
tion 1.8 gives an outlook on the following chapters. 

 

Figure 6: Overview Research Approach 
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1.7 Summary 

This chapter introduced the practical and scientific problems addressed 
in this thesis as well as the contributions and research hypotheses. Figure 
8 provides an overview of the practical and scientific problems, the con-
tributions and the overall relationships. The practical problem identified 
in various architecture assessment projects in industry is caused by five 
scientific problems SP1,…,SP5 elaborated based on the current state of 
the art reported in literature. The scientific problems are addressed by 
five contributions C1,…,C5. As it can be seen in Figure 8, the contribu-
tions especially focus on the scientific problem SP2 as SP2 has been fig-
ured out as the key technical problem to be addressed. 

The relationship of the research hypotheses to the practical and scientific 
problem is shown in Figure 7. H1 relates to the practical problem of this 
thesis whereas H2 and H3 refer to the scientific problems identified. The 
especially refer to the scientific problem SP2, but implicitly also to the 
other scientific problems as they are all closely related. 

 

 

 

 

Figure 7: PhD V-Model - Relationship of Problems and Hypotheses 
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Figure 8: Overview Problems and Contributions 



 Introduction 

  19 

1.8 Outline 

The remainder of this thesis is structured as follows: 

Chapter 2 introduces the foundations of software architecture and soft-
ware project plans including respective meta-models. Such meta-models 
are the basis for the meta-model of software production. 

Chapter 3 defines and discusses software production. The meta-model 
of software production integrating the meta-models of software archi-
tecture and software project plans is introduced. 

Chapter 4 defines producibility as the quality property characterizing the 
alignment of software architecture and software project plan. The quali-
ty model of producibility defines producibility metrics based on the quali-
ty model of software production and introduces a set of context factors 
influencing producibility. 

Chapter 5 describes the producibility analysis method in detail. Produci-
bility views are introduced and the algorithm identifying critical elements 
based on the producibility views is presented. All phases of the produci-
bility analysis method and the provided guidance are explained. The 
main features of the existing tool prototype are presented. 

Chapter 6 documents the validation activities that have been conducted 
in the course of this dissertation research and gives an outlook on future 
validation activities. 

Chapter 7 summarizes this thesis and gives an outlook on future work. 
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2 Foundations and Meta-Models 

This thesis addresses the alignment of software architecture and soft-
ware project plans. As a basis for the introduction of the idea of soft-
ware production (Chapter 3) and the quality attribute producibility 
(Chapter 4), this chapter  presents foundations of software architecture 
and software project planning.  Key terms and concepts of software ar-
chitecture and software project plans are related to each other in meta-
models of software architecture and software project plans. . These me-
ta-models are specifically required as a basis for the meta-model of soft-
ware production (Section 3.4). 

2.1 Software Architecture 

Software architecture plays a central role in every software project. Every 
software system has an architecture, no matter if it is explicitly docu-
mented and understood [RW05]. Architecture can serve various purposes 
if it is explicitly used in a software project as a conceptual tool. In this 
section, software architecture is defined and its role in software projects 
is discussed in more detail in Section 2.1.1. Architectural elements as the 
major building blocks of a software architecture respectively software 
system are introduced in Section 2.1.2. Section 2.1.3 generalizes archi-
tectural elements into architectural element types that are present in ar-
chitectural styles, reference architectures, and product line architectures. 
Finally, Section 2.1.4 provides an overview on architecture documenta-
tion. The concepts introduced as part of our underlying meta-model are 
selected for the context of this thesis and provide exactly the concepts 
required for its contributions. Another meta-model developed with dif-
ferent quality properties in mind is, for instance, the Palladio Component 
Model (PCM) for component-based software architectures [RBH+07] 
[BKR09]. 

2.1.1 Definition and Role of Software Architecture 

We mainly refer to the definition by Bass et al. as already mentioned in 
Chapter 1: 

Definition Software Architecture: “Software architecture is the struc-
ture or structures of the system, which comprise software elements, the 
externally visible properties of these elements, and the relationships 
among them.” [BCK03] 
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The tangible result of designing a software architecture is an architecture 
document. But software architecture is neither only an artifact derived at 
some point in time in a software project nor only a phase in a software 
project that is conducted between requirements engineering and con-
struction. Software architecture is an ongoing activity that impacts all 
other activities in a software project. Typically, a whole architecture team 
takes care of the architecture for a specific system throughout a project. 
But there should always be one responsible software architect for the ar-
chitecture of a certain system. 

By defining the structure of the system and the properties of the soft-
ware elements based on the requirements in a system, a software archi-
tect performs a transition from the problem to the solution space. The 
architect decides how solutions to customers’ problems can be technical-
ly realized. But architecture still abstracts from technical details that can 
be decided by designers or implementers if they are not highly relevant 
for the overall system quality or project success [CBB+03]. Hence, soft-
ware architecture addresses a higher level of abstraction than, for in-
stance, object-oriented design.  

Architecture can be seen as a mediator between customers or other 
business-related stakeholders like project or product managers and the 
developers responsible for the implementation (see Figure 9). 

In that sense, software architecture facilitates communication in the 
development team and between the various stakeholders involved in a 
software project that are interested in the software architecture. There-
by, “a stakeholder in a software architecture is a person, group, or enti-
ty, with an interest in or concerns about the realization of the architec-
ture” [ISO07].  
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Figure 9: Architecture as a Mediator 
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Architects collect the concerns of the stakeholders interested in a soft-
ware system. Thereby, a concern is “a requirement, an objective, an in-
tention, or an aspiration a stakeholder has for that architecture” [ISO07].  

Based on the stakeholder’s concerns architects can derive an architectur-
al design from it under consideration of certain trade-offs, where a 
trade-off is “a situation that involves losing one quality or aspect of 
something in return for gaining another quality or aspect. It implies a de-
cision to be made with full comprehension of both the upside and 
downside of a particular choice” [Wiki11]. 

Trade-offs are required to balance eventually conflicting concerns of the 
stakeholders. The resulting architecture is then a means for discussion 
between stakeholders, but also to communicate the technical decisions 
to the development team. In the case of software production, architec-
ture specifically has to enable communication between architects, pro-
ject planners, suppliers and all other roles involved in production like im-
plementers, testers, operators, etc. In that sense, it plays a vital role to 
discuss production requirements and their potential impact on the archi-
tecture and exchange knowledge related to production between the re-
spective stakeholders. 

Based on the stakeholders concerns the system has to fulfill certain quali-
ty requirements related to run-time quality properties like performance, 
security, availability, or development-time quality properties like main-
tainability, flexibility, or testability [ISO01]. Unsatisfied quality require-
ments are a major source of project failure. The decisions taken by the 
architect either explicitly or implicitly affect the fulfillment of the quality 
requirements. Consequently, the architecture is also a means to reason 
about and predict the fulfillment of certain quality requirements. Note, 
that architecture cannot guarantee the fulfillment of quality require-
ments as during production many mistakes can be done by developers, 
but without a solid architecture, the required quality cannot be achieved 
in today’s large and complex systems. 

The architecture constrains the production of a product. According to 
[JRL00], “architecture is a set of concepts and design decisions about 
structure and texture of software that must be made prior to concurrent 
engineering to enable effective satisfaction of architecturally significant, 
explicit functional and quality requirements and implicit requirements of 
the product family, the problem, and the solution domains”. Production 
in this case is referred to as concurrent engineering.  

By defining the structure of the system, the architect defines which ar-
chitectural elements need to be produced to come up with a running 
system. Hence, concrete work activities can be derived from the architec-
ture during project planning. 
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Ran’s definition of software architecture introduces the concept of tex-
ture. Texture defines the recurring micro-structure that is inherent to ar-
chitectural elements defined by the architect [JRL00], i.e., texture refers 
to the internal structure of architectural elements. Although defining the 
internal structure of architectural elements is typically supposed to be left 
to the respective designer, textures are important to constrain produc-
tion, in this case internal design and implementation of architectural el-
ements. By constraining production via textures, the architect can make 
sure that architectural elements are realized uniformly and that certain 
cross-cutting features, i.e. features that typically cannot be realized with-
in one architectural element, are realized consistently in each architec-
tural element, for instance, logging or exception handling. 

The structure defined by an architect and other architectural decisions 
like choosing technologies to implement certain architectural elements 
influence project planning. Structural decisions affect, for instance, the 
work-breakdown structure (see Section 2.2.2). Technological decisions 
influence, for instance, the selection of developers, i.e., resource assign-
ment (see Section 2.2.6). Each element foreseen in the architecture 
needs to be assigned to a developer with appropriate skills regarding the 
chosen technologies. 

The following section introduces architectural elements, i.e. the major 
buildings blocks of architectures respectively software systems. 

2.1.2 Architectural Elements 

We call the software elements mentioned by Bass et al. that make up a 
software architecture architectural elements in this thesis. Thereby, archi-
tectural elements are defined as follows: 

Definition Architectural Element: “An architectural element is a fun-
damental piece from which a system can be considered to be construct-
ed.” [RW05] 

Architectural elements can be, for instance, modules, components, con-
nectors, or deployment units. 

Architectural elements can be recursively refined to enable a hierarchical 
decomposition of a system to be able to deal with the overall complexity. 
Furthermore, they can be related in various ways that will be discussed 
later in more detail. 

All architectural elements have various properties. Properties of architec-
tural elements are defined as follows: 
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Definition Architectural Element Property: Architectural element 
properties are characteristics of architectural elements that need to be 
considered while dealing with them in a software project. 

Examples for architectural element properties can be the technologies 
selected by the architect to realize the architectural element, the esti-
mated size or complexity, etc. 

Most of the time, we can abstract from the differences between certain 
architectural elements in this thesis, for instance, between modules and 
components. Nevertheless, definitions of module, component, connect-
or, and deployment unit are provided in the following to point out the 
differences and provide examples for architectural elements. 

For a definition of modules, we refer to the definition given [CBB+03]:  

Definition Module: “A module is an implementation unit of software 
that provides a coherent unit of functionality”  

Each module has an interface that specifies its responsibilities. Modules 
are the units assigned to developers for implementation. Production 
properties of modules can be, for instance, a selected programming lan-
guage, coupling with other modules, cohesion, but also their potential 
to reuse parts of other modules for their realization. Such properties can 
influence, for instance, the selection of developers responsible for the 
module or the order of realizing certain modules. 

Components are often called run-time entities as they make up the exe-
cutable software system by interacting in a predefined way via clearly de-
fined interfaces. Various definitions of the term component have been 
given. One that we specifically want to mention here as it states several 
properties of a component that are relevant for production is given by 
Szyperski [Szy02]:  

Definition Component: “A software component is a unit of composi-
tion with contractually specified interfaces and context dependencies on-
ly. A software component can be deployed independently and is subject 
to composition by third parties.”  

Contractually specified interfaces of components are an important prop-
erty as contracts can be leveraged to specify a component’s behavior 
quite formal and involve, for instance, third parties in the production 
process easier. Hence, organizations are enabled to set up supply chains 
of components, which is an important factor also for production in other 
engineering disciplines like manufacturing. Besides contractually specify-
ing the interfaces additional production properties of components could 
be specified like, for instance, maximal lead time, i.e. the time it may 
take to deliver a component, etc. 
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Components are in general made up of modules, but the modules and 
the way the component has been built out of them is no longer visible as 
they are typically delivered as binaries that come out of a compile respec-
tively build process. 

Connectors are interaction mechanisms for components. They realize the 
communication between components according to certain protocols and 
make sure that data is transferred between them appropriately. In 
[TMD10], connectors are defined as follows:  

Definition Connector: “A software connector is an architectural ele-
ment tasked with effecting and regulating interactions among compo-
nents.”  

Hence, connectors are first class entities at runtime together with the 
components. They are extremely important to assure run-time properties 
of the system like performance, reliability, availability, or security and can 
get quite complex. Connectors should specifically be considered during 
software production because of their importance regarding the quality 
of the software product, but also because of their potential complexity. 
Their complexity is a potential source of production problems. Hence, ar-
chitectural decisions regarding connectors, for instance, to build con-
nectors on top of certain middleware technologies should be well con-
sidered. 

Deployment Units are defined as follows in this thesis: 

Definition Deployment Unit: Deployment units are the architectural 
elements of a software system packaged to be shipped and installed.  

Hence, deployment units are the architectural elements that are handed 
over to customers or operators of a system. They are mainly made up of 
components and connectors as run-time entities, but can also contain, 
for instance, configuration files in addition. Deployment units are in-
stalled in the selected runtime environment on hardware components 
hosting such runtime environments. The ability to create deployment 
units at fixed points in time can be critical during software production as 
sometimes operators can only install deployment units at specific points 
in time during operation. 

Besides such atomic architectural elements like modules, components, 
connectors, and deployment units, higher level architectural elements 
like layers, clusters, or subsystems exist to structure today’s large and 
complex systems. A layer, for instance, is “a collection of code that 
forms a virtual machine and that interacts with other layers only accord-
ing got predefined rules” [CBB+03]. Layers, clusters, or subsystems can 
be interpreted as aggregations of finer grained architectural elements. 
Layers are used to define horizontal structures in an architecture. Upper 
layers are allowed to access lower layers but not vice versa. Layers ab-
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stract from technical details of underlying architectural elements. Clus-
ters are a way to vertically structure an architecture. They can be used, 
for instance, to encapsulate cohesive sets of functionality that each can 
span all layers of a system or architecture. For a detailed discussion of 
layers and clusters (also called slices), we refer to [CBB+03]. 

Figure 10 visualizes the concepts of the overall architecture meta-model 
that have been introduced so far.

As mentioned above, architectural elements can be related to each other 
in various ways. Besides the part of relationship and a general relation-
ship that have been defined above on architectural elements, the specific 
architectural elements can have specific relationships as shown Figure 
11. A specific relationship defined on modules is inheritance. Further-
more, modules can use each other which enables reuse. Components 
can call each other to realize the overall behavior expected from the sys-
tem. Per definition, connectors are related to components. Each con-
nector relates at least to two components. Components and connectors 
are realized by modules. Components are manifested in deployment 
units. Note that potentially one component can be part of several de-
ployment units of a software system. 

Architectural element relationships are of particular interest for software 
production. It has already been mentioned before that modules are units 
of work which can be assigned to developers during production. Conse-
quently, the relationships between modules, for instance, impact the 
communication paths in the team and thus the production process. The 

 

Figure 10: Core of Architecture Meta-Model 
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relationships between modules and components, for instance, impact 
building and testing. If many modules are required to build a certain 
component the build process itself can get complex. This is also a poten-
tial source of delays during production because many modules have to 
be realized before the component can be built and tested. As soon as 
one module is not finished yet the upcoming production work activity 
potentially has to wait. Components can be part of many deployment 
units as mentioned above. Such components are candidates for early 
completion and thorough quality assurance as they can cause damage at 
different places in the software system. 

In the following section, architectural element types are introduced as a 
generalization of architectural elements present in architectural styles, 
reference architectures, and product line architectures. 

 

Figure 11: Architectural Element Relationships 
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2.1.3 Architectural Element Types

This section introduces architectural element types. Architectural element 
types are defined as follows: 

Definition Architectural Element Type: An architectural element type 
is general type of architectural element recurring in single system archi-
tectures following a certain architectural style as well as in architectures 
conforming to the same reference or product line architecture 

Before we discuss architectural element types in more detail, we define 
the architectural style, single system architecture, reference architecture, 
and product line architecture as referred to in the definition of architec-
tural element type. 

An architectural style (also called architectural pattern) according to 
[BCK03] is defined as follows: 

Definition Architectural Style: An architectural style “is defined by: 

– a set of element types (…) 
– a topological layout of the elements indicating their interrelationships 

– a set of semantic constraints (…) 
– a set of interaction mechanisms (…) that determine how the ele-

ments coordinate through the allowed topology.” 

Prominent examples for architectural styles are client server style, pipe-
and-filter style, or peer-to-peer style. 

The definition of architectural style is shortly illustrated using the pipe-
and-filter style. The (architectural) element types defined by the pipe-
and-filter style are pipes and filters. More precisely speaking, pipes are 
connectors and filters are components connected via pipes. The topolog-
ical layout mentioned in the definition is shown in Figure 12.  

Filters receive data via pipes, transform such data in some form, and 
send the data to the next pipe. Filters are stateless and not aware of the 
next filters that will process their output, which is a semantic constraint 
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in this case. An interaction mechanism has to be selected in a concrete 
case to specify how pipes and filters exchange data. 

Architectural styles capture architectural knowledge that can be reused 
by architects across various systems. Architectural styles have been pub-
lished in several architecture handbooks, for instance, in [BMR+96]. 

A single system architecture is defined as follows in this thesis: 

Definition Single System Architecture: A single system (or product) 
architecture (SSA) is a software architecture designed based on the re-
quirements in one single software system or product.  

A SSA is a special purpose architecture in a sense that there is no guar-
antee that it can be reused for another software system without further 
ado. SSAs can be designed using common architectural styles, patterns, 
and tactics, but their combination is somehow unique. The definition of 
software architecture of Bass et. al. [BCK03] cited before first of all refers 
to SSAs. 

Reference architectures are blueprints or templates for software systems 
of a specific domain. In [HND99], the following definition of reference 
architecture is given: 

Definition Reference Architecture: “A reference architecture defines 
element types, allowed interactions, and how the domain functionality is 
mapped to architectural elements.” 

A reference architecture is designed based on typical domain require-
ments and domain knowledge and sketch architectures of products in a 
specific domain on a higher level of abstraction. Hence, they are often 
also called domain specific architectures [JRL00]. Reference architectures 
can have different shapes. They can be described, for instance, as an ar-
chitectural style or sketch conceptual architectural elements for systems 
in a specific domain. Examples are the Open Group Service-oriented Ref-
erence Architecture [OpenGr09] or the Quasar reference architecture 
[Sie04]. 

SSAs can be based on reference architectures, but refinements are typi-
cally necessary in the concrete case to derive a SSA from a reference ar-
chitecture that fulfills the concrete requirements in a product of the re-
spective domain. 

A software product line architecture (PLA) is an architecture for a prod-
uct line of software systems. Thereby, a software product line is “a set of 
software-intensive systems that share a common, managed set of fea-
tures satisfying the specific needs of a particular market segment or mis-
sion and that are developed from a common set of core assets in a pre-
scribed way” [CN02]. 
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Definition Product Line Architecture: A product line architecture is a 
“core asset that is the software architecture for all the products in a 
software product line. A product line architecture explicitly provides vari-
ation mechanisms that support the diversity among the products in the 
software product line”. [NC07] 

All members of a software product line share the same PLA. This is 
achieved by explicit variation points in the PLA, which allow architects to 
instantiate the PLA for specific members of a product line. 

A PLA is different from a reference architecture in a sense that it is built 
based on a concrete set of requirements in a concrete set of products 
whereas a reference architecture is designed based on rather fuzzy do-
main requirements. The difference of a PLA to a SSA is the variability 
that is contained in the architecture and that needs to be resolved in the 
concrete case. In [Perry98], different ways of capturing variability in PLAs 
are described. One way of capturing variability that is mentioned there is 
to use an architectural style defining architectural element types, con-
straints, etc. 

The definitions of architectural style, reference architecture, and product 
line architecture all refer to architectural element types and vice versa. 
Architectural element types play an important role in software produc-
tion, as we will see later in Chapter 3. Production processes contain 
procedures called production work activities that guide developers in 
producing certain architectural element types. 

Figure 13 shows an excerpt of the architecture meta-model including ar-
chitectural element types and their relationship to architectural elements, 
architectural styles, reference architectures, and product line architec-
tures. 

The following section gives an overview on architecture documentation. 
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2.1.4 Architecture Documentation 

A recommended best practice to document architectures is using archi-
tectural views [CBB+03]. Architectural views are defined as follows: 

Definition Architectural View: “An architectural view is a representa-
tion of a set of system elements and the relationships associated with 
them.” [CBB+03] 

The rationale for using views is the inherent complexity of software sys-
tems and their architectures. Views handle the complexity by focusing on 
a specific perspective on the system and the respective elements in each 
view. Each view is typically relevant for a subset of the overall set of 
stakeholders. 

Several view models have been published, one prominent one being 
Kruchten’s 4+1 viewmodel [Kru95]. In [CBB+03], three types of views 
are introduced, namely module, component and connector, and alloca-
tion. We refer to this classification in this thesis and define the respective 
views as follows:  

 

Figure 13: Architectural Element Types 
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Definition Module View: A module view “enumerates the principal 
implementation units, or modules, of a system, together with the rela-
tionships among these units” [CBR+03]. 

A module view show the module structure of a system, which could be a 
view showing inheritance relations as well as a view showing the func-
tional decomposition into modules. 

Definition Component and Connector View: “A Component and 
connector view provides a picture of runtime entities and potential inter-
action.” [CBR+03] 

Definition Allocation View: An allocation view “presents a mapping 
from the elements of either a module or a component and connector 
style onto the elements of the environment”. [CBR+03] 

One example for an allocation view is a deployment view showing the 
mapping or allocation of deployment units to hardware components. 
Another example is a resource allocation view visualizing how resources 
of the development organization are assigned to modules.  

The documentation of views is one important part of architecture docu-
mentation. Furthermore, architecture documentation should contain ad-
ditional documentation including, for instance, architectural scenarios 
and architectural decisions. 

Definition Architectural Scenario: An architectural scenario is a pre-
cise description of an anticipated situation of usage, operation, or devel-
opment that a system respectively its architecture is likely to face, along 
with a precise description of the desired response to the situation. 

Architectural scenarios are a means to formulate the requirements in the 
architecture. Besides architectural design, architectural scenarios are 
used by many architecture analysis methods like the Software Engineer-
ing Institute’s Architecture Trade-Off Analysis Method (ATAM) [KKC00] 
or the Software Architecture Analysis Method  (SAAM) [KAB+96].  

Definition Architectural Decision: An architectural decision is a deci-
sion on the structure of a software system or properties of specific archi-
tectural elements. 

By documenting architectural decisions, rationales are given making the 
architecture more understandable. 

Figure 14 shows an excerpt of the architecture meta-model including the 
concepts related to architecture documentation. 
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2.2  Software Project Plans 

Besides software architecture, software project plans are key artifacts in 
software production, as we will see later. This section introduces the 
foundations of software project plans and incrementally introduces the 
underlying meta-model used in this thesis. After defining project plans 
and discussing their role in software projects in Section 2.2.1, the major 
parts of software project plans are introduced, namely work breakdown 
structures (Section 2.2.2), project schedules (Section 2.2.3), development 
processes (Section 2.2.4), and resource plans (Section 2.2.6). Finally, we 
refer to how software project plans are typically documented in Section 
2.2.7.  

2.2.1 Definition and Role of Software Project Plans 

Software project planning is the activity to come up with and maintain a 
software project management plan (project plan) to coordinate all the 

 

Figure 14: Architecture Documentation Meta-Model 
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activities in a project to achieve the project goals. As already mentioned 
in Chapter 1, we refer to the following definition of project plans. 

Definition Software Project Plan: “A Software Project (Management) 
Plan is the controlling document for managing a software project; it de-
fines the technical and managerial processes necessary to develop soft-
ware work products that satisfy the product requirements.” [IEEE98] 

Based on the product requirements and the overall project objectives, 
project planners have to decide on project scope, project schedule, pro-
ject organization and resource allocation, and development processes.  

Planning is one of the key activities in every software project. Today’s 
software projects are often large and complex, span long periods of 
time, and involve many project team members from different organiza-
tional units and even organizations. Hence, project planning is critical for 
project success as it can significantly reduce the risks in a project. Ac-
cording to [Sta09], insufficient project planning is one of the major rea-
sons for delays, budget overruns, or failure in software projects. Project 
planning is an ongoing activity throughout a project as project plans are 
typically a matter of constant change. 

Project planning requires communication and collaboration between 
many project stakeholders. A project planner needs to elicit the concerns 
of various project stakeholders and try to fulfill them by making certain 
trade-off decisions. Thereby, a lot of communication is required which is 
beneficial for the overall project success. Stakeholders get to know each 
other, their concerns, and establish communication paths between them 
that can be used later on during project execution.  

Planning constrains the work of the project team members. First of all, 
work activities are defined and assigned to project members. But fur-
thermore, work activities are constrained by effort, cost, and time con-
straints and technical processes are prescribed that must be followed 
during work. Individual project team members can plan their personal 
work, but only within the constraints defined in the project plan. 

Project managers should make use of existing knowledge and experience 
from previous projects when planning a project. The Experience Factory 
Approach [BCR94] supports organizations in setting up an appropriate 
environment. Knowledge and experience is packaged and stored in an 
experience base. Based on the characteristics of an up-coming project 
various artifacts like project plans, process descriptions, architectures, 
etc. can be selected and retrieved from the experience base to be 
adapted to the project context and reused. 

Figure 15 shows the general parts of a software project plan: work 
breakdown structure, project schedule, resource plan, and development 
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process. In the following sections, each of such parts of a software pro-
ject plan will be introduced in more detail. 

2.2.2 Work Breakdown Structure 

Work breakdown structures are related to the scope of a project. The 
project scope defines the work to be performed in a project: “The pro-
ject scope is the work that must be performed to deliver a product, ser-
vice, or result with the specified features and functions.” [PMBOK04] 

The huge amount of work that needs to be done in a software project 
needs to be structured. The overall work is typically decomposed into 
smaller units of work that are less complex and can be accomplished by 
certain resources. The result of such a decomposition of work is called 
work breakdown structure (WBS). We refer to the following definition of 
work breakdown structure: 

Definition Work Breakdown Structure: “A work breakdown structure 
is a deliverable-oriented hierarchical decomposition of the work to be 
executed by the project team to accomplish the project objectives and 
create the required deliverables. It organizes and defines the overall 
scope of the project…” [PMBOK04] 

A work breakdown structure consists of work activities that are defined 
as follows: 

Definition Work Activity: A work activity is a fixed unit of work with 
defined inputs and outputs. 

Definition Work Activity Property: A work activity property is a char-
acteristic of a work activity that needs to be considered while performing 
the respective work. 

 

Figure 15: Project Plan Meta-Model Overview 
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Figure 16 shows how work breakdown structure, work activities, and 
work activity properties are related in the project plan meta-model. 

A WBS can be derived based on various strategies, two prominent ones 
being phase-oriented and product-oriented. If the work is organized 
along phases, the phases of the underlying software development pro-
cess can be used for structuring on top-level, for instance, requirements 
engineering, design, implementation, and testing. Using a product-
oriented strategy would mean to use the product to be built to organize 
the work in the WBS. This could either mean to use the requirements in 
the product for structuring and defining chunks of requirements to be 
realized as work units. Alternatively, the architecture of the system can 
be used to define work units [Fair09], i.e., architectural elements define 
the work units in this case. Figure 17 shows simple examples of WBS. 

The selection of an appropriate decomposition strategy depends on the 
project context. If the waterfall model is used, organizing the project in 
phases according to the waterfall model on top level seems appropriate. 
If an iterative and incremental process model is used, the work should 
rather be organized product-oriented, i.e. based on product require-
ments or architectural elements that are realized in a certain iteration or 
increment. Combinations of phase- and product-oriented strategies are 
also feasible. After decomposing the work into phases according to the 
waterfall model, for instance, the implementation can be decomposed 
into smaller units of work along the architecture.  

As we will see later, software production is always based on a product-
oriented WBS. Hence, in the following we will only consider product-
oriented decompositions of the work to be performed in a project. 

 

Figure 16: Meta-Model Work Breakdown Structure 
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The WBS introduced in this sub-section is the basis for all further project 
planning activities like project scheduling and resource. The following 
section introduces project schedules.  

2.2.3 Project Schedule 

A project is schedule is derived based on the WBS defined during project 
scoping. A project schedule is defined as follows:  

Definition Project Schedule: A project schedule defines the order of 
performing the work activities specified in the WBS and assigns effort 
and time to the work activities. 

As many projects today follow an incremental and iterative approach 
(and also software production is incremental and iterative as it will be in-
troduced in Chapter 3), project scheduling includes the definition of iter-
ations and assigning work activities to them. Iterations are defined as fol-
lows: 

Definition Iteration: An iteration is a fixed period of time wherein cer-
tain work activities are performed. 

At the end of certain iterations, releases of a product can be delivered. 

During iteration or release planning work activities are assigned to itera-
tions or releases. As iterations are performed sequentially, assigning 
work activities to iterations leads to a certain ordering of work activities 
and consequently a first version of the project schedule. According to 
[RM05], release planning is defined as the activity of assigning require-
ments to releases. Assigning requirements to releases means the archi-
tectural elements required to fulfill the respective requirements are sup-
posed to be produced in the respective release. 

 

Figure 17: Example Work Breakdown Structures 
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Iterations or releases can have fixed or variable durations. In agile soft-
ware development, time-boxing is often used and all iterations in a pro-
ject have a fixed duration, for instance, 2 weeks. Consequently, work 
units at least need to be decomposed until they fit into iterations of the 
respective duration. 

Iterations or releases are typically planned based on the concerns of vari-
ous stakeholders, the most important one typically being the customer. 
Especially in agile software development [Hun06], iteration or release 
planning heavily involves customers. But also a more technical perspec-
tive should be considered by, for instance, involving the architect into re-
lease planning as architectural decisions on the structure of the system 
influence release planning, as we have seen in the example in Section 
1.2.  

Various approaches to release planning have been proposed [SGF+10]. 
They can be distinguished by the factors they use to identify the re-
quirements for certain releases. Beyond such factors are, for instance, 
technical, budget and cost, resource, and time constraints. Thereby, 
technical constraints mainly refer to requirements dependencies and po-
tential technical problems in realizing certain requirements. Technical 
problems can be analyzed in detail based on the planned architecture, as 
the architecture specifies the technical solution. Unfortunately, the exist-
ing release planning approaches do not clarify the influence of the archi-
tecture on release planning in detail, i.e. which characteristics of an ar-
chitecture influence release planning in which way. They especially pro-
vide no guidelines for architects how they should align their designs with 
a release plan. 

Besides iterations, project schedules consist of milestones. Milestones are 
defined as follows: 

Definition Milestone: “A milestone is a scheduled event to measure 
progress.” [IEEE98] 

During project scheduling, milestones are defined. Examples of mile-
stones can be the completion of iterations or releases, but also, for in-
stance, the completion of certain subsystems. 

Figure 18 shows the excerpt of the project plan meta-model including 
project schedule and the relationship to the work breakdown structure 
and work activities. 
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Besides ordering the work units by assigning them to iterations or re-
leases, effort, cost, and time have to be assigned to them. Hence, typical 
properties of work activities are effort, cost, and time. The project plan-
ner has to come up with estimates for effort, cost, and time of certain 
work units. 

Various approaches exist to estimate effort, cost, and time to be allocat-
ed to the work units. As mentioned in Chapter 1, prominent approaches 
are CoCoMo (II) [BAB+00] or Function Point Analysis [ISO09]. Another 
prominent approach that is based on expert opinion is the Delphi Meth-
od [LT75]. According to the Delphi Method, several experts are asked to 
estimate the effort of the work units in the WBS. The estimates are used 
to come up with an average effort estimation to be used in the project 
schedule. 

2.2.4 Development Process 

A project planner or manager has to define respectively to select a de-
velopment process to be used in the project. The development process 
defines how the work in a project has to be performed. It defines, for in-
stance, how requirements are elicited, how an architecture is designed, 
and how implementation, test, and deployment of a system have to be 
performed in general. 

We define a development process as follows: 

 

Figure 18: Meta-Model WBS and Project Schedule 
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Definition Development Process: A development process is a set of 
development activity types, work products, roles, and tools that can be 
applied to develop a software system. 

The definition of development process refers to development activity 
types and work product types that will be defined in the following: 

Definition Development Activity Type: A development activity type is 
a procedure to perform a certain development activity aiming at creating 
a certain work product type. 

Examples for development activity types are use case analysis during re-
quirements engineering, writing test cases to prepare testing, etc.  

Definition Work Product Type: A work product type is a type of arti-
fact created by certain development activity types during a project. 

Examples for work product types are use case descriptions, test case 
specifications, etc. 

Figure 19 shows development processes and related concepts in the me-
ta-model underlying this thesis. 

The project manager can make use of various development process 
frameworks and select development activity types to define the devel-
opment process. Popular process frameworks are, for instance, the Ra-
tional Unified Process [Kru03] or its open source version OpenUP 
[OpenUp], the V-Model XT [VModellXT], or agile processes like Scrum 
[SB01] or Extreme Programming [BA04]. Such process frameworks are 
built around development activity types for all phases of software devel-
opment like, for instance, requirements engineering, object-oriented de-
sign, or testing.  

Defining the development process for a project includes the selection of 
tools to be used during development. If, for instance, model-driven de-
velopment is supposed to be used in a project, an appropriate tool envi-
ronment including model editors, generators, etc., needs to be selected. 
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2.2.5 Software Project Organization 

Project organization is concerned with the internal structure of projects. 
Each project consists of a project team. We define a project team as fol-
lows: 

Definition Project Team: A project team is the collection of all human 
resources actively involved in work activities in a project. 

Project teams can be made up of project sub-teams.  

Most software project teams are organized in a hierarchy. The team 
members on higher levels of the hierarchy are mainly concerned with 
management activities as they have to manage the team members on 
the lower levels in the hierarchy. Most of the technical activities are per-
formed on leaf nodes.  

We want to distinguish two general strategies for organizing projects in 
a hierarchy: role-orientation and product orientation. 

In the case of a role-oriented organization, the project team is organized 
according to the roles being part of the development process. Team 
members are assigned to roles, for instance, requirements engineer, 
designer, implementer, or tester. Then, all team members assigned to 
the same role form a sub-team team in the project.  Hence, the overall 
project team is divided into a requirements engineering sub-team, an ar-
chitectural design sub-team, an implementation sub-team, and a testing 
sub-team with respective managers organizing the work in the sub-
team. 

 

Figure 19: Meta-Model Development Process 
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Alternatively, the project organization can be product-oriented and fol-
low the structure of the overall product to be built. If the product would 
be structured into three functional clusters A, B, and C, for instance, the 
project team could be subdivided into three teams, each of them re-
sponsible to realize one functional cluster. In [Lar10], such teams are also 
called component teams, as they are assigned to develop and maintain a 
certain component or subsystem. Alternatively, feature teams can be 
built that are responsible to realize certain features which can involve 
various components. 

Project teams have certain properties. Thereby, project team properties 
are defined as follows: 

Definition Project Team Property: A project team property is a char-
acteristic of a project team that needs to be considered when assigning 
work activities to the project team. 

Various project team properties are relevant in software projects, beyond 
them the internal organization of the project team, the geographic dis-
tribution of the project team, and the classification as internal or external 
team or sub-team. These properties will be shortly discussed in the fol-
lowing.  

Various models for organizing decision making and work distribution 
inside project teams have been published, for instance, the chief pro-
grammer model [Bak72]. In the case of the chief programmer model, 
one experienced architect or programmer takes all design decisions and 
implements the key parts of a system or sub-system. The chief pro-
grammer can have one assistant replacing him if required and a librarian 
taking care of documentation and administrative tasks. Additional team 
members can be assigned to “easy” programming tasks. Another model 
that is more based on collaboration and consensus regarding decision 
making is the structured open team [Con93]. In such a team, there is a 
technical leader representing the team to the outside, but decisions are 
taken together by all team members in a democratic way. The tasks are 
distributed among team members by majority vote. 

Today, project planners or managers should always consider the geo-
graphic distribution of a project team. Geographic distribution means 
that certain sub-teams or single human resources can be distributed 
worldwide. Such distribution brings several factors like different time 
zones, different cultures, etc. into play that influence the overall project. 

Teams as well as human resources can be classified as internal or exter-
nal. Internal teams or human resources are full members of the overall 
organization responsible for the project. Teams of externals can be in-
cluded in a project team to take over certain work activities, but they are 
not employed by the organization responsible for the project. 
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Figure 20 shows the excerpt of our meta-model dealing with project 
teams and related concepts. 

2.2.6 Resource Plan 

The resource plan is the part of the overall project plan dealing with the 
allocation or assignment of resources to work activities.  

In the following, we define the concepts resource plan and resource as-
signment: 

Definition Resource Plan: A resource plan is a plan made up of re-
source assignments.

Definition Resource Assignment: A resource assignment is a decision 
on assigning a team or single human resources to work activities of a 
work breakdown structure. 

Each work activity needs an assigned resource to make sure that some-
one takes responsibility for a work activity and the respective work is 

 

Figure 20: Organization Meta-Model 
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performed. Several resources or whole teams can be assigned to a work 
activity to perform the work in collaboration. But it depends on the type 
of work if this is reasonable. If the work cannot be split appropriately, 
only one resource can be assigned to the work activity. 

Figure 21 shows another excerpt of the project plan meta-model under-
lying this thesis. The resource plan respectively resource assignment con-
nect organizational elements to work activities.

According to [AJM06], project managers base their decisions regarding 
resource allocation mainly on their personal experience and subjective 
perception. This can be a source of productivity problems if not the best-
suited resources are selected based on objective measures and if the per-
sonality of the resources is not considered. 

Several objective factors influencing the allocation of resources to work 
activities should be considered, beyond them skills and availability of re-
sources as well as, for instance, their geographical location. All of these 
factors are critical to the successful completion of certain work activities. 
If an assigned resource does not bring in the required skills, the quality 
of the result may be reduced or more time and effort may be consumed. 
Availability of resources is crucial for the timely completion of activities. If 
related activities are performed by members of different organizational 
units, potentially at different geographical locations, communication 
problems can appear and delay the project. 

 

Figure 21: Resource-Plan Meta Model 
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The following section provides an overview on project plan documenta-
tion. 

2.2.7 Project Plan Documentation 

Project plans must be documented to be able to serve as a means for 
communication in a project. A structure for documenting a software 
project plan is included, for instance, in [IEEE98]. Similar to architecture 
descriptions, project plan documentations consist of various diagrams 
and textual descriptions. 

WBS as a hierarchical decomposition of the overall work to be per-
formed are often represented in a tree-structure.  

One of the most prominent representations of project schedules are 
Gantt Charts. They are used in various project planning tools like Mi-
crosoft Project [MSProj10]. Gantt-charts are defined as follows: 

Definition Gantt-Chart: “Gantt charts are a graphic display of sched-
ule-related information. In the typical Gantt chart, schedule activities or 
work breakdown structure components are listed down the left side of 
the chart, dates are shown across the top, and activity durations are 
shown as date-placed horizontal bars.” [PMBOK04] 

The resource allocation defined by a project manager can be visualized 
within a Gantt chart. 

Gantt charts can be used for different types of analyzes, one of the most 
prominent ones being a critical path analysis [Kel61]. In general, the 
critical path of a project is “the sequence of schedule activities that de-
termines the duration of the project” [PMBOK04], which is the longest 
path through the whole project. All activities or work units that are on 
this path are critical because if problems occur while realizing such work 
units this has a direct effect on the project duration. Problems in work 
units outside the critical path can potentially be compensated. 

Gantt 
Charts 

Critical Path 
Analysis 
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3 Software Production 

Now that the foundations of software architecture and software project 
planning have been introduced, software production will be defined. The 
definition in Section 3.1 is followed by a short explanation of the soft-
ware production life-cycle in Section 3.2. Section 3.3 introduces software 
production scenarios. Software production scenarios illustrate how the 
idea of software production can be adopted in single system engineer-
ing, domain engineering, and product line engineering. Section 3.4 in-
troduces a meta-model of software production. The meta-model of 
software production connects the software architecture meta-model and 
the software project planning meta-model introduced in Chapter 2. It is 
the basis to define and measure producibility as it will be introduced in 
Chapter 4. The introduction of the software production meta-model is 
followed by an example of software production in Section 3.5 and relat-
ed work in Section 3.6. 

3.1 Definition of Software Production 

This thesis is based on the following definition of software production: 

Definition Software Production: Software production is the realiza-
tion of a software system by creating and assembling the architectural 
elements defined in the software architecture according to a software 
production plan. Thereby, software architecture and software production 
plan have been aligned to each other up-front to be able to meet the 
production goals and mitigate risks potentially causing project failure. 

Software production per definition addresses the practical problem in-
troduced in Section 1.1. 

The idea of software production is based on approaches to produce or 
manufacture hard goods. As already mentioned in Section 1.4, in the 
manufacturing industry production is planned thoroughly based on the 
product design and the available production capability of an organiza-
tion. Thereby, the production capability is made up of the production 
processes that can be executed in the organizations facilities and the 
human resources with their skills. It has been experienced in the manu-
facturing industry that production planning is not possible without a 
thorough understanding of the product design and vice versa [Bra98]. In 
terms of Software Engineering, this means that the software architecture 
representing the product design and the project plan need to be aligned 

Software 
production 
mimics the 
production 
of hard 
goods. 



Software Production 

48   

to each other early on. Alignment means, for instance, that the structure 
of a system defined in the architecture somehow supports the realization 
of the features in the order requested by the customer (see example in 
Section 1.2). If such an alignment has been accomplished, we can talk of 
software production. For a precise definition of the alignment of soft-
ware architecture and production plan we refer to Chapter 4. 

The key characteristic of software production is its strong product-
orientation. Creation and assembly of architectural elements are the 
dominating activities in software production. Typical work activities in 
software production of information systems could be, for instance, 
“Create an architectural element of the type service with the following 
specification…” or “Assemble service A and service B”. Development 
activities like implementation, generation, or testing are then performed 
in the context of such production work activities. Alternatively, produc-
tion work activities can first refer to elements of the requirements, for in-
stance, features of a product or workflows in the case of workflow-
based information systems, and define work activities like “Realize fea-
ture F” or “Realize workflow W”. Defining production work activities to 
produce features or referring to other concepts in requirements engi-
neering is sometimes closer to the customers’ point of view as customers 
typically request certain features. In this case, a mapping to architectural 
elements is required to derive production work activities on architectural 
elements and evaluate the alignment of architecture and production 
plan. 

Because of the product-orientation of software production, organiza-
tions have the chance to set-up supply chains providing architectural 
elements to be integrated into the product as it is done in other engi-
neering disciplines. Experts with respect to certain architectural elements 
can be involved easily and their expertise can be used. Hence, suppliers 
in software production are selected to deliver parts of the product (not 
to take over activities). 

Software projects can largely benefit from the idea of planning produc-
tion based on the product’s design, i.e. planning the realization of a 
software system based on the software architecture. By taking this pro-
duction perspective, potential problems in the construction phase of a 
project caused by characteristics of the architecture can be identified. 
Hence, risks during production which are not covered by a typical pro-
cess-oriented perspective can be mitigated and improvement potentials 
can be systematically detected and addressed. If an architectural element 
is supposed to be changed often during construction and does not pro-
vide appropriate extension mechanisms, for instance, this potential pro-
duction problem is not detected without considering the architecture in 
combination with the production plan. Too often, software projects are 
planned without thorough consideration of the product to be built, i.e. 
without considering the architecture and the characteristics of architec-
tural elements, as already mentioned in Section 1.1. Instead, project 
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managers heavily rely on the best practices they have selected from pro-
cess frameworks or other sources that typically do not provide specific 
guidance for the product at hand. 

3.2 Software Production Life-Cycle 

Figure 22 provides a high level perspective on the software production 
life-cycle. Requirements Engineering provides requirements to produc-
tion planning and architectural design. Production planning and architec-
tural design are performed in close collaboration to achieve the envi-
sioned alignment of architecture and production plan. Architecture and 
production plan are then handed over to production to create and as-
semble the architectural elements accordingly. While we call the overall 
approach software production, production in a closer sense is the phase 
after production planning and architectural design have been performed. 
The activities do not necessarily need to be performed strictly sequential. 
Production planning and architectural design can start as soon as an ini-
tial set of requirements is available. Production itself is supposed to be 
performed in an iterative and incremental way anyway which allows to 
evolve production plan and architecture over time if required.  

An interesting aspect is that requirements engineering does not need to 
be performed completely up-front but can be delayed to a certain de-
gree after architectural design and production planning have been initial-
ly done. We know, for instance, that not all requirements are relevant 
for architectural design. Architectural design and production planning 
could be performed based on the set of requirements that is relevant for 
architectural design and production planning.  

 

Figure 22: Software Production Life-Cycle 
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Detailed requirements analysis of further requirements could be per-
formed on demand while production is running and input for creating 
respective architectural elements is required. Consequently, time could 
be saved by stronger overlapping requirements engineering, architectural 
design, production planning, and production. This thesis does not elabo-
rate this idea further. Instead we refer to the work of Adam on tailoring 
the requirements engineering process for software production [Ada10]. 

3.3 Software Production Scenarios 

Software production requires additional investments in early phases of a 
software project. Alignment of software architecture and production 
plan does not happen automatically but requires time and effort that is 
assumed to be saved later on as production problems are prevented. 
Nevertheless, organizations might be reluctant regarding the investment 
in an initial alignment of software architecture and production plan. In 
this section, we discuss three scenarios where an investment into soft-
ware production has the highest return on investment. 

3.3.1 Single Systems with repeating Production Sequences 

Software production can pay off already while developing a single sys-
tem, especially if certain production sequences are repeated several 
times throughout the project. 

Let’s consider a workflow-based information system, for instance, to 
support certain office workflows. Typically, such workflow-based infor-
mation systems are constructed workflow by workflow in several itera-
tions for several reasons. First of all, by introducing support for selected 
workflows quickly organizations can get a positive return on investment 
earlier. Furthermore, feedback from introducing first workflows can be 
leveraged in later iterations by all involved stakeholders including users, 
members of IT departments, etc. 

Each iteration follows the same production sequence to realize the se-
lected workflows. Workflows are realized by certain types of architectur-
al elements and certain development activities have to be repeated per 
architectural element in each iteration. Consequently, aligning the archi-
tecture defining how workflows are technically realized and the produc-
tion plan for single iterations once enables organizations to benefit from 
this initial investment in ach iteration. One can also think of providing 
specific guidance and tool support for producing workflows.   
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3.3.2 Producing similar Systems in a specific Domain 

A potentially even higher return on investment than in the scenario de-
scribed above can be gained if organizations produce similar systems in a 
specific domain. We assume in this case, that a reference architecture  
for systems in the respective domain exists. 

As mentioned in Section 2.1, “a reference architecture defines element 
types, allowed interactions, and how the domain functionality is mapped 
to architectural elements” [HND99]. If systems in a specific domain are 
based on the respective reference architecture, certain architectural ele-
ment types need to be produced again and again and an overall ap-
proach to produce such a system can be planned and manifested in a 
kind of domain specific reference production plan. If the reference archi-
tecture and the reference production plan have been aligned once, an 
organization can benefit from this alignment several times. 

The example of producing mobile business applications that will be in-
troduced in Section 3.5 refers to this scenario. 

3.3.3 Product Line Engineering with a pre-defined Scope 

Finally, software production can be adopted in the context of software 
product line engineering. As mentioned in Section 2.1, product line en-
gineering aims at constructing several products sharing commonalities 
but also well-defined variabilities based on reuse. Therefore, all product 
line members share the same product line architecture. 

During scoping product candidates to be built are elicited. Based on the 
scope and the identified commonalities and variabilities a product line in-
frastructure containing reusable artifacts is developed during family en-
gineering. Here, a production plan for members of the product family 
can be derived and an alignment with the product line architecture can 
be established. Consequently, all application engineering projects, i.e. 
the projects building the concrete products for customers, could benefit 
from the alignment of product line architecture and production plan that 
has been initially established during family engineering. 

The term production is already used in the product line community. But 
production in their sense does not yet consequently consider the rela-
tionship of architecture and production plan [Car08]. 

In the following section, software production and the related concepts 
are subsumed in a software production meta-model.  
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3.4 Software Production Meta-Model 

The software production meta-model connects the meta-models of 
software architecture, software project plan, organization, and develop-
ment processes describe in Chapter 2. It provides the basis for a deeper 
understanding of software production and is the basis to define and 
measure producibility, as introduced in Chapter 4. Before the integrated 
meta-model is presented, software production plans as a specialization 
of project plans are introduced. 

3.4.1 Software Production Plans 

Software production plans are defined as follows: 

Definition Production Plan: A production plan is a project plan consist-
ing of  

– a production work breakdown structure,  

– a production schedule defining production iterations,  
– an assignment of resources to elements of the production work 

breakdown structure, and 

– a description of the production process. 

The definition of a production plan introduces several new concepts that 
will be defined in the following: 

Definition Production Work Breakdown Structure: A production 
work breakdown structure (production WBS) is a product-oriented work 
breakdown structure consisting of production work activities. 

Definition Production Work Activity: A production work-activity is a 
product-oriented work activity. 

As already discussed in Section 2.2.2, a product-oriented work break-
down defines work units by referring to elements of the requirements or 
to architectural elements to structure the work. If elements of the re-
quirements are used, they need to be mapped to architectural elements 
before the alignment of software architecture and production plan can 
be evaluated and software production can really start. 

The production schedule being part of a production plan defines produc-
tion iterations. Thereby, production iterations are defined as follows: 

Definition Production Iteration: A production iteration is an iteration 
adding a well-defined increment to the product in production. 
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An increment is defined as follows in this thesis: 

Definition Increment: An increment is a set of new architectural ele-
ments or extensions/modifications to architectural elements that are 
produced and added to a product in one production iteration. 

A production iteration is in that sense a product-oriented iteration as it 
explicitly adds to the final product. Iterations that would not be product-
oriented are requirements or design iterations extending or modifying 
the respective requirements or design artifacts. A production iteration 
has a 1:1 mapping to an increment as each production iteration contrib-
utes a well-defined set of architectural elements or exten-
sions/modifications to architectural elements. 

Assigning work activities to production iterations leads to an overall pro-
duction schedule. As production iterations are performed sequentially, 
they introduce a certain order to work activities assigned to different 
production iterations. A more detailed planning of the order of work ac-
tivities is then performed inside iterations. It depends on the duration 
and complexity of production iterations, how much internal planning is 
required in each case. In general, production planning can be performed 
in the same way again inside each iteration. In that sense, production 
planning is a recursive approach. 

The assignment of work activities to production iterations should be ac-
companied by an estimation of effort and duration. 

Production plans can include production milestones. A production mile-
stone is defined as follows: 

Definition Production Milestone: A production milestone is a mile-
stone referring to the completion of a certain architectural element. 

Production milestones often refer to aggregated architectural elements 
like layers, clusters, or sub-systems. Consequently, production milestones 
would be “Layer L completed” or “Sub-System S completed”. 

Software production plans refer to production processes. As described in 
2.2.4, project planners are responsible for selecting/defining develop-
ment processes. Consequently, in the case of software production the 
need to select/define production processes.  

In Figure 23, the production plan meta-model is shown. 

In the following section, software production processes are introduced. 
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3.4.2 Software Production Processes 

Software production processes guide in how to perform the work activi-
ties in software production. They have to be product-oriented processes 
as they are supposed to be applied in the context of a certain architec-
ture, reference architecture, or product line architecture. 

Software production processes are defined as follows: 

Definition Software Production Process: A software production pro-
cess consists of production work activity types describing how to pro-
duce architectural element types defined in corresponding architectural 
styles used in a products architecture, a reference architecture, or a 
product line architecture. 

Definition Production Work Activity Type: A production work activi-
ty type is a description of a procedure that should be followed to pro-
duce a certain architectural element type. A production work activity 
type can refer to development activity types of a corresponding devel-
opment process. 

The product-orientation of software production processes becomes ap-
parent in the relationship of production work activity types and architec-
tural element types. Architectural element types are the work products 
consumed and produced by the production work activities. Hence, a 

Figure 23: Production Plan Meta-Model 
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production work activity type describes how to produce a certain part of 
a product.  

The following examples illustrate the product-orientation of production 
processes. Let us assume a system uses a pipe and filter style to process a 
certain stream of data. Respective production work activity types would 
be in this case “Create Architectural Element of Type Pipe” and “Create 
Architectural Element of Type Filter”. The production work activity types 
would describe a procedure on how to produce pipes and filters. This 
could include, for instance, a description how to internally design a pipe 
or a filter, how to implement them by means of a certain technology, 
how to test them, etc.  

This example also illustrates the relationship of a production work activity 
types and development activity types. A production work activity types 
refers to development activity types generally describing how to design, 
implement, or test. While production work activity types and develop-
ment activity types are both describing parts of processes, there are cer-
tain major differences: 

Production activity types are applied to architectural element types of a 
specific architectural style, reference architecture, or product line archi-
tecture, i.e., they are not generally applicable to any system with any ar-
chitecture. Development activity types are much more general and can 
be applied to a huge number of different system with different architec-
tures. This means that production work activity types provide more spe-
cific guidance on how to produce a certain system than development ac-
tivity types. 

 

Figure 24: Production Process Meta-Model 
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3.4.3 Integrated Software Production Meta-Model 

The integrated meta-model of software production connects the meta-
models of architecture, production plan, production process, and organi-
zation introduced above. As we will see later, the production meta-
model is the basis for the quality model of producibility introduced in 
Chapter 4. 

With respect to the alignment of software architecture and software 
project plans that is envisioned in this thesis, the connection of the soft-
ware architecture meta-model to the production plan meta-model is an 
essential part of the integrated production meta-model. Figure 25 shows 
the Software Production Meta Model. 

The key connection between the production plan meta-model and the 
architecture meta-model is established between production work activi-
ties and architectural elements. Production work activities consume and 
produce architectural elements. Production of architectural elements can 
mean in this case creation, extension, or modification. Production work 
activities do not necessarily need to consume other architectural ele-
ments, they can create architectural elements from scratch. The relation-
ship of production work activities and architectural elements represents 
the key characteristic of software production of being architecture-
centric. Production work activities always refer to architectural elements 
that are produced by them. Hence, each production work activity directly 
contributes to the product and adds at least a small part to it. 

Production work activities are assigned to production iterations similar to 
how work activities are assigned to iterations in the project plan meta-
model. We call the concept production iteration in this case to again 
emphasize the product orientation in this case. A production iteration 
produces an increment of the product which is a concrete extension of 
the overall product, i.e. architectural elements are added, extended, or 
modified. Iterations of a project do not necessarily need to add to the 
final product, they could also be iterations to refine the requirements or 
refine the design of certain architectural elements, but no direct effect 
on the product would exist in this case as no code is produced. By as-
signing production work activities to production iterations a link be-
tween architectural elements and production iterations is established 
that is made explicit in the meta-model by the “involved in” relationship 
between them. 
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A specific aspect of interest is the question how aggregated architectural 
elements like layers, clusters, or subsystems are related to production 
work activities and production iterations. Aggregated architectural ele-
ments can be used to define higher level production work activities like 
“Produce Layer L” or “Produce Cluster C” and structure the work ac-
cordingly. Even if this is not the case, aggregated architectural elements 
are related to production iterations as architectural elements being part 
of them are produced in certain production iterations. 

 

Figure 25: Software Production Meta-Model 
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A similar relationship than between production work activities and archi-
tectural elements exists between production work activity types and 
architectural element types. Production work activity types are part of 
the production process and consume as well as produce architectural 
element types. Via production work activity types and architectural ele-
ment types the production process thus is related to a software refer-
ence architecture, software product line architecture, or architectural 
style. This represents one of the key characteristics of production pro-
cesses to be product-specific. 

Resources are assigned to production work activities. In an ideal case, 
resources are experts with respect to certain architectural element types 
and can be assigned to production work activities that create architec-
tural elements of such types. As a consequence of adopting a software 
production approach, organizations should train their staff in producing 
certain architectural elements types. They could even set up departments 
which combine people that are experts with respect to the same archi-
tectural element types to give them the chance to evolve their compe-
tences together. 

The following section discusses an example of software production. 

3.5 Software Production Example 

The following example aims at further clarification of the ideas of soft-
ware production and the software production meta-model. The domain 
we selected are mobile business applications. Organizations can use mo-
bile business apps to offer their business services via mobile devices like 
smartphones or tablets or to provide mobile services supporting the 
workflows of their employees. We introduce a simple reference architec-
ture for mobile business applications and sketch an excerpt of a related 
production process. 

3.5.1 Reference Architecture for Mobile Business Apps 

Mobile business apps are software products deployed on mobile devices 
like smartphones or tablets that are typically put on top of an existing IT 
infrastructure consisting of several backend systems. A travel manage-
ment app as mentioned above must be connected to the backend sys-
tems of potentially different organizations offering flights, hotels, and 
rental cars. 

Different architectural alternatives can be selected for mobile business 
applications from so-called native applications, via hybrid applications to 
web-applications. In our example, we aim at producing a native applica-
tion for the iOS platform [iOS], i.e. an application for iPhone or iPad. 

Production 
Work Activ-
ity Types 
and Archi-
tectural 
Element 
Types 

Resource 
Assignment 
in Software 
Production  



 Software Production 

  59 

Mobile business apps typically leverage the Model-View-Controller 
(MVC) pattern [GFJ+94]. Most mobile development platforms like iOS, 
Android [And], or Windows Phone 7 [WP7] provide a specific implemen-
tation of the MVC pattern. 

Based on the characteristics mentioned above the following simple ref-
erence architecture shown in Figure 26 is chosen for mobile business 
apps in this example. 

The core of the mobile business app is realized according to the MVC 
pattern. The connection to backend systems is realized via so-called back 
end adapters. The role of the backend adapters is to abstract from tech-
nical details of the respective backend systems from the point of view of 
the mobile business app and map the data model of the mobile business 
app to the data model of the backend systems. 

Based on our existing experience in producing mobile business applica-
tions we can make additional assumptions regarding the reference archi-
tecture. We assume that backends offer their service via web services 
[W3C04] and that data objects are transferred by means of JSON [JSON]. 

The reference architecture is simplified as certain important aspects for 
mobile business apps are not considered in the example. 

If we apply our software production meta-model to the reference archi-
tecture, we can identify a certain set of architectural elements types, 
namely: Model, View, Controller, Backend Adapter, and Backend Ser-
vice. 

3.5.2 Development Process vs. Production Process 

The production process must provide support to produce the architec-
tural element types defined in the reference architecture, i.e. production 
work activity types. We select the architectural element type “Backend 

 

Figure 26: Example Reference Architecture 
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Adapter” in this case and define a production work activity type “Pro-
duce Backend Adapter”. The production work activity type “Produce 
Backend adapter” is supposed to provide specific guidance on how to 
produce backend adapters for mobile business applications. 

As a basis for defining the production work activity types we decide to 
use a development process based on the Open Unified Process (OpenUp) 
[OpenUp], an open source version of the Rational Unified Process (RUP) 
[Kru03]. This means in terms of our software production meta-model 
that development activity types are selected from the OpenUp.  

Table 1 shows the selected development activity types and the produc-
tion work activity type “Produce Backend Adapter” as one example. The 
production work activity type is based on the development activity types 
as it follows the general sequence of development activity types specified 
in OpenUp. The major difference is that each step in the production 
work activity type is product-oriented as it provides concrete guidance 
on how to perform the respective steps for backend adapters and not 
for any kind of architectural element.  

The production work activity type “Produce Backend Adapter” contains 
one additional step “Deploy and simulate integrated mobile business 
app” due to the specific product respectively the mobile development 
platform to be used. Such product specific steps cannot be derived by 
selecting development activity types from existing process frameworks. 
The mobile business app is deployed on the iPhone or iPad simulator that 
is available in this case to test the app before deploying it to the physical 
mobile device. This gives the developers the chance, for instance, to 
check for memory leaks which is a known problem in iOS applications 
and that can be detected by means of the Instruments tool. 
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# 
OpenUp based Development 

Activity Types 
Production  Work Activity Type 

“Produce Backend Adapter” 

1 Design the Solution: Identify the 
elements and devise the interactions, 
behavior, relations, and data neces-
sary to realize some functionality. 

Design Backend Adapter: Model the 
relations between the backend data 
model and the data model of the mo-
bile business app.  

Model the relationship of the backend 
adapter to the backend services. 

Model the behavior of the backend 
adapter. Consider minimizing the 
number of calls of backend services to 
eventually save cost. 

… 

2 Implement Developer Test: Imple-
ment one or more tests that enable 
the validation of the individual im-
plementation elements through 
execution. 

Implement Backend Adapter Test: 
Implement one test per public method 
and equivalence class of the backend 
adapter.  

…  

4 Implement Solution: Implement 
source code to provide new func-
tionality or fix defects. 

Implement the backend adapter: Im-
plement the mapping of the mobile 
business app data model to the 
backend data model. 

Implement the behavior as specified in 
the backend adapter design. 

Implement the communication with 
the backend services using restful web 
services. 

 Use JSON to exchange data between 
backend adapter and backend services. 

… 

5 Run Developer Test: Run tests against 
the individual implementation ele-

Run Developer Tests: Run the develop-
er tests of the backend adapter using 
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ments to verify that their internal 
structures work as specified. 

OC Unit 

… 

6 Integrate and Create Build: This task 
describes how to integrate all chang-
es made by developers into the code 
base and perform the minimal testing 
to validate the build. 

Integrate and Create Build: Integrate 
the backend adapter with the other 
architectural elements already created. 

… 

  Deploy and simulate integrated mobile 
business app: 

Run integrated mobile business app on 
the  iPhone Simulator 

Use the instruments tool to detect 
potential memory leaks 

… 

Table 1:  Example -  Development Process vs. Production Process 

Table 1 shows only an excerpt of the overall production process. For 
each architectural element type of the related reference architecture as 
production work activity type would need to be defined that provides 
specific guidance. 

3.6 Related Work 

In this section, an overview on related work on software production is 
provided.  

Agile Software Engineering 

Agile Software Engineering is an approach claiming to be essentially 
product-oriented. The Agile Manifesto [AM01], for instance, argues for 
product-orientation especially by mentioning the following three (out of 
twelve) principles: 

– “Our highest priority is to satisfy the customer through early and con-
tinuous delivery of valuable software.” 
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– “Deliver working software frequently, from a couple of weeks to a 
couple of months, with a preference to the shorter timescale.” 

– “Working software is the primary measure of progress.” 

Agile projects are largely driven by the customer as the customer decides 
on the scope of the project and the next releases and iterations [Hun06].  

Although agile approaches to Software Engineering are essentially prod-
uct-oriented, software architecture does not explicitly play a central role 
in an agile project. Big-design up-front is supposed to be to heavy-
weight and causes overhead effort if architects plan for scenarios that 
will potentially never get relevant during the project as requirements 
continuously change anyway. Hence, agile Software Engineering argues 
for lightweight and emergent design [BA04] [Amb02] [CLM+06]. Be-
cause of the continuous change, agile software engineering also does 
not perform detailed planning for a whole project but only for upcoming 
iterations or releases with an almost fixed scope. In Scrum [Coh09], re-
quirements or tasks to be performed are collected in a so-called backlog 
an pulled from there over time. From a design and planning perspective, 
agile Software Engineering differs from software production. Software 
production requires more architectural design and production planning 
up-front to be able to align architecture and production plans to each 
other and reduce risks related to a potential misalignment.  

Combining agile principles and software production might be an inter-
esting combination to be considered. While agile thinking could force 
organizations adopting a software production approach to carefully 
think about the architectural decisions and production planning deci-
sions that really need to be taken up-front, agile approaches could more 
explicitly consider the role of the architecture in general and specifically 
during planning. 

Lean Software Engineering 

Lean Software Engineering [PP03] is an approach that is often referred to 
as an agile approach. We mention it here separately, because it explicitly 
refers to the principles of lean production in other engineering disci-
plines. The most prominent example on lean production is the Toyota 
Production System (TPS) [OB88]. The TPS adopts principles of Kanban, 
one of the most prominent ones being “Eliminate Waste”. 

Hence, they adopted, for instance, lean principles to software develop-
ment. While lean Software Engineering also takes a production perspec-
tive and try to remove inefficiencies, etc. it does not explicitly consider 
the role of the architecture. It rather focuses on the development pro-
cesses and how to optimize them which could be complementary to the 
architecture-centric approach chosen in this thesis. 



Software Production 

64   

Software Factories 

Software factories [GSC+04] envision an industrialization of software 
engineering increasing productivity and achieving similar maturity levels 
than manufacturing industries. Development by assembly is one of the 
key ideas of software factories similar to software production. Software 
supply chains involving suppliers in the development process are set-up 
and managed. Development by assembly and introduction of supply 
chains move software development closer to the state of the practice in 
other industries. Products are developed based on reuse according to a 
product line approach. Software factory schemas describe the artifacts 
that must be developed to produce a product of a product family. Fur-
thermore, the relationships between such artifacts and transformation 
rules to derive certain artifacts from others are part of the software fac-
tory schema. Software factory templates are implementations of soft-
ware factory schemas that can be loaded into tools to support the de-
velopers in building products. Recurring, menial development tasks are 
automated to focus more on the creative tasks. 

Software Product Line Engineering 

As mentioned above, software product line engineering is concerned 
with the construction of products sharing commonalities and well-
defined variabilities based on reuse from a product line infrastructure. 
The so-called product line life-cycle shown in Figure 27 illustrates this. 
Family Engineering (FE) creates reusable artifacts based on a pre-defined 
scope. Application Engineering (AE) produces products for the customers 
of a product line organization based on reuse. The construction of 
members of the product line during AE is called production in certain 
cases [CN02] [McG04]. 

Krueger talks of so-called software production lines [Krue01] [Krue02]. 
Thereby, a production line is a specific type of product line. In a produc-
tion line, the reusable artifacts are under configuration management in 
the product line infrastructure. Products are produced by means of a tool 
infrastructure based on the reusable artifacts. This leads to a high degree 
of automation of the application engineering process. The individual 
products for the customers are not under configuration management, 
but are produced on demand. Changes are always applied to the reusa-
ble artifacts and products are reproduced if required based on the 
changed reusable artifacts. 
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Production planning is mentioned as an important activity in software 
product line engineering [MC08]. Thereby, “a production plan is a de-
scription of how core assets are to be used to develop a product in a 
product line” [CM02]. It provides guidelines on how to perform certain 
work activities during AE or production. In [McG04], McGregor argues 
for setting-up a production system for a software product line similar to 
production environments in manufacturing that enable the production 
of members of a product line according to the production plan. 

The architecture is often referred to as the key artifact in software prod-
uct line engineering enabling reuse, as all members of the product line 
share the same architecture. Nevertheless, production planning in soft-
ware product line engineering does not systematically consider the 
product line architecture or even provide feedback to architects to 
change the architecture to be better aligned with the production plan 
[Car08]. 

The Term Production in the Context of Software 

The term production is used by software developers for several other 
purposes in combination with software that should not be mixed up 
with our definition.  

The process of creating an executable piece of software out of source 
code is sometimes called production. This process is typically highly au-
tomated by means of build scripts.  

 

Figure 27: Product Line Life-Cycle 
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The distribution of software after it has been developed is sometimes 
called production. Software is copied in this case to be distributed to 
many customers. But in contrast to hard goods manufacturing copying 
of software causes almost no costs. 

The operation of software, for instance, in a data center, or the execu-
tion of software are sometimes also called production. 
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4 Quality Model of Producibility 

This chapter introduces producibility as the quality attribute in the focus 
of this thesis. The definition is based on the software production meta-
model introduced in the previous chapter. Section 4.1 gives the general 
definition of producibility. The following sections then introduce produc-
ibility metrics that can be applied by architects and production planners. 
The producibility metrics are complemented by a set of context factors 
that must be carefully considered while interpreting the values of the 
producibility metrics. 

4.1 Definition of Producibility 

In this thesis, producibility is defined as follows: 

Definition Producibility: Producibility of a software system is the de-
gree of alignment of a system’s architecture with the production plan in 
a given context. 

Thereby, producibility, i.e. the alignment of architecture and production 
plan, is measured on three dimensions: 

– Alignment of architecture and production work breakdown structure 

– Alignment of architecture and production schedule 

– Alignment of architecture and resource assignments 

Figure 28 illustrates the three dimensions of producibility. 

Figure 28: Three Dimensions of Producibility 



Quality Model of Producibility 

68   

By means of the software production meta-model introduced in Section 
3.4, it is possible to concretize the definition of producibility in each di-
mension and systematically derive producibility metrics. Figure 29 shows 
the excerpt of the software production meta-model relevant in this case 
and the relationship to the three dimensions mentioned above. The ar-
chitecture is represented by architectural elements, the production work 
breakdown structure by production work activities. Consequently, the 
alignment of architecture and production work breakdown structure can 
be determined based on the relationship of architecture elements and 
production work activities in a concrete case. In a similar way, the align-
ment of architecture and production schedule is determined based on 
the relationships of architectural elements and production iterations. The 
alignment of architecture and resource assignments is based on the rela-
tionship of architectural elements and resources assigned to production 
work activities respectively architectural elements. Hence, based on the 
meta-model of software production introduced in 3.4, alignment or mis-
alignment of architecture and project plan can be defined precisely, i.e. 
in a measurable form. 

During measurement, the perspective of the observer is always relevant 
[BCR94b]. In the case of producibility, the perspectives of architects and 
production planners are specifically supported by respective metrics. As 
shown in Figure 30, architects have a specific perspective as their starting 
point for any considerations are architectural elements. Hence, they are 
interested in measures relating architectural elements to production 
work activities, iterations, and resources. The other way round, produc-
tion planners are primarily interested in measures relating production 
work activities, iterations and resources to architectural elements. 

 

Figure 29: Producibility in the Software Production Meta-Model 
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The definition of producibility is oriented at the definition of software 
production given in Section 3.1. We assume that an organization or 
project team aims at executing a project conform to the ideas of soft-
ware production. Producibility is then a quality attribute measuring if 
software production is adopted and the expected effects of software 
production can be achieved. As mentioned in Chapter 1, the misalign-
ment of architecture and project plan is a major problem in today’s pro-
jects that is addressed in software production by definition. If positive 
values of producibility are achieved, it is assumed that projects are more 
successful, i.e. less budget and time overruns, higher quality of the re-
sulting products, etc. can be achieved. One could also argue that pro-
ducibility aims at reducing production risks. 

In the following section, the alignment of architecture and production 
work breakdown structure as one sub-attribute of producibility is dis-
cussed in detail and concrete metrics are introduced. Before the concrete 
metrics are defined, we define the following sets of elements: 

 

Figure 30: Different Perspectives on Producibility 
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Definition Set of all Architectural Elements AEall: AEall is the set of all 
architectural elements that have been designed into the architecture of a 
system. 

Definition Power Set of all Architectural Elements P(AEall): P(AEall) is 
the power set of the set of all architectural elements AEall. 

Definition Set of all Production Work Activities PWAall: PWAall is the 
set of all production work activities that have been planned in the pro-
duction WBS of a project. 

Definition Set of Production Iterations PIall: PIall is the set of all pro-
duction iterations defined into the production schedule of a project. 

Definition Set of assigned Resources RESall: RESall is the set of all re-
sources that have been assigned to production work activities in a pro-
duction plan. 

4.2 Alignment of Architecture and Production WBS                         

This section introduces how to determine and measure the alignment of 
architecture and production work breakdown structure via the relation-
ship of architectural elements (AE) and production work activities (PWA). 
Hence, we focus on the excerpt of the software production meta-model 
shown in Figure 31. 

The measurement of the alignment of architecture and production work 

 

Figure 31: Focus of Alignment of Architecture and Production WBS 
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breakdown structure is based on several artifacts that need to be availa-
ble as a prerequisite. A production work breakdown structure is re-
quired, i.e. it either defines work activities based on features or directly 
refers to architectural elements (see Section 2.2.2). If the production 
WBS is based on features, an artifact containing traceability information 
from features to architectural elements is required. If such an artifact is 
not available, the traceability information must be derived, for instance, 
based on interviews with requirements engineers, architects and devel-
opers, which can be a time consuming and effort intensive task. Fur-
thermore, a structural view of the architecture is required, i.e. a view 
showing architectural elements and their relationships. Typical architec-
tural views visualizing structural information are a module or a compo-
nent and connector view. Both are appropriate in this case, as both are 
architectural elements according to our architecture meta-model pre-
sented in Section 2.1. We do not consider the differences between 
modules and components to be relevant at this point. 

In the following, measures directly characterizing the relationship of ar-
chitectural elements and production work activities are introduced. As 
mentioned above, we distinguish the two perspectives of architect and 
production planner as each measure is of specific interest to one of these 
two roles. 

4.2.1 Architect’s Perspective 

The architect is primarily interested in the relationship of architectural el-
ements and production work activities. For each single architectural ele-
ment defined in the architecture, the relationship to production work ac-
tivities needs to be considered. Hence, the following metrics are defined 
per architectural element. 

Metric Definition: AEall->N: #PWA_producing(AE) = n, where n is the 
number of production work activities involved in producing the architec-
tural element AE. 

The notation used for describing the metric must be interpreted as fol-
lows:  The metric #PWA_producing is a function assigning each architec-
tural element AE of the set AEall a natural number n out N, i.e. the set of 
all natural numbers. 

Metric Definition: AEall->N: #PWA_consuming(AE) = n, where n is the 
number of production work activities that are consuming the architec-
tural element AE. 

From an architectural perspective, a production work activity PWA1 is 
consuming an architectural element AE2 that is produced by PWA2, if an 
architectural element AE1 produced by PWA1 has an architectural rela-
tionship to AE2. 
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The two metrics are illustrated in Figure 32. AE1 is in this case produced 
by one production work activity PWA1, AE2 by one production work ac-
tivity PWA2. AE2 is consumed by one PWA. Hence, the resulting values 
are: 

#PWA_producing(AE1) = 1 

#PWA_producing(AE2) = 1 

#PWA_consuming(AE2) = 1 

Many PWAs modifying an AE lead to a huge number of changes applied 
to the AE over time. Hence, the AE can get a so-called hot spot. Hot-
spots are a potential source of entering defects, as potentially various 
developers change it, conflicts arise, etc. In that sense, an AE that is pro-
duced by many AEs is critical with respect to quality but also delays, and 
exceeding of planned effort. In an ideal case, an AE is only modified by 
one PWA, i.e. #PWA_producing(AE) would have a value of 1 as in the 
example above. 

A high number of PWAs consuming an AE points out the relevance of 
the AE with respect to the overall product. If production problems arise 
during production of the AE being it delays or defects the success of all 
the PWAs consuming the AE is jeopardized. If the AE is not finished in 
time, consuming PWAs can also be delayed. If the AE has poor quality 
and is used in many follow-up PWAs the quality of their results is poten-
tially also harmed. Hence, an AE with a high value for 
#PWA_consuming(AE) should be marked as critical. In an ideal case, 
#PWA_consuming(AE) = 0. But this cannot be a goal to be achieved for 
all architectural elements. If all AEs would have a value of zero for 
#PWA_consuming(AE), this would mean that either the whole product 
would be produced in one big step, i.e. one PWA, or the architectural 
elements produced are not connected in any way, which would mean 
that they do no longer form a system. 

So far, single architectural elements and their relationships to production 
work activities have been considered. But architectural elements are al-
ways related to other architectural elements, as it is modeled in the ar-

 

Figure 32: Example Metrics AE and PWAs 
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chitecture meta-model. It is important to have a look on how cohesive 
sets of architectural elements, i.e. architectural elements being part of an 
aggregated architectural element like a layer, cluster, or subsystem, or 
architectural elements that are coupled for other reasons, and produc-
tion work activities are related. This is important for several reasons: 

– The overall behavior of a system is realized by the interaction of archi-
tectural elements, for instance, a set of components communicating 
with each other. Let us consider the example introduced in Section 
3.5 again. A backend adapter in combination with a cache compo-
nent could together be the basis to realize offline working with the 
travel management app. If offline work is supposed to be a critical 
behavior of the system, the question is if these two architectural ele-
ments should be realized in the same production work activity to 
make sure that they function together as supposed and the offline 
functionality can be tested as part of one production work activity. 

– Certain architectural elements are supposed to be realized in a uni-
form way. Using the example of the travel management app again, 
all backend adapters should be realized uniformly. Furthermore, they 
are assigned to the same layer. If the uniform realization of the over-
all layer is supposed to be critical and not easy to achieve in the given 
project context, the backend adapters maybe should be realized in 
one or at least closely related production work activities. 

Figure 33 and Figure 34 illustrate the problem. A system consists of three 
layers and the architectural elements AE1, AE2,… AE11. The bottom 
layer is supposed to be critical for several reasons. Each architectural el-
ement, i.e. A8, A9, A10, and A11, is supposed to be realized in a uni-
form way. If we assume this layer to be a backend integration layer as 
mentioned above, an architectural requirement could be that each archi-
tectural element minimizes the number of transactions to the backend to 
save cost as each transaction is billed. This requires a certain expert 
knowledge that should be shared across all the production work activi-
ties involved in producing the architectural elements of the backend in-
tegration layer. In Figure 33, four production work activities produce the 
architectural elements of the bottom layer. If the knowledge on how to 
uniformly produce the architectural elements is not shared appropriately 
among the four production work activities, there is a certain risk that the 
requirement will not be fulfilled. 
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Figure 34 provides an alternative solution. The architectural elements of 
the bottom layer are produced in one production work activity which re-
duces the risk of not fulfilling the requirement of uniform production in 
this case. Another reason for preferring the solution shown in Figure 34 
could be that an organization wants to outsource the production of the 
bottom layer to an external supplier. In this case, it would be better to 
outsource one production work activity instead of involving an external 
supplier into four production work activities.  

 

Figure 33: Example 1 - Number of PWAs producing Set of AEs 
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The following metric is capable of expressing the fact discussed in the 
example above: 

Metric Definition: P(AEall)->N: #PWA_producing({AE}) =n, where n is 
the number of production work activities producing the set {AE} of archi-
tectural elements. 

The metric expresses the fact that the production of a set of architectural 
elements that is cohesive for some reason should not be spread over 
many production work activities. If the production work activities split 
the set of cohesive architectural elements, the correct realization of the 
requirement causing the cohesion might be jeopardized. 

In the following sub-section, the production planner’s perspective on the 
relationship of architectural elements and production work activities is 
presented. 

4.2.2 Production Planner’s Perspective 

The production planner is primarily interested in the relationship of pro-
duction work activities and architectural elements. For each single pro-
duction work activity defined in the production work breakdown struc-
ture, the relationship to architectural elements needs to be considered. 

 

Figure 34: Example 2 - Number of PWAs producing Set of AEs 
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Hence, the following metrics are defined per production work activity. 

Metric Definition: PWAall->N: #AE_produced_by(PWA) = n, where n is 
the number of architectural elements that are produced by the produc-
tion work activity PWA. 

Metric Definition: PWAall->N: #AE_consumed_by(PWA) = n, where n is 
the number of architectural elements that are consumed by the produc-
tion work activity PWA. 

A high number of AEs modified by a PWA is a first indicator for criticality 
of the PWA with respect to producibility. Modifying various AEs requires 
knowledge on a potentially large part of the architecture. The modifica-
tions made by the PWA are in that sense not necessarily local. Hence, 
the WA is a potential source of delays, increased effort, or defects. In an 
ideal case, #AE_produced_by(PWA) is one.  

A large number of AEs consumed by a PWA indicates that a large num-
ber of prerequisites needs to be fulfilled to start the PWA, i.e. a large 
number of AEs must have been produced before. Hence, a high value 
for #AE_consumed_by(PWA) indicates that a PWA is critical in the sense 
that its start can be delayed because of missing inputs and that potential 
follow-up PWAs will also be delayed. One could argue that it is enough 
if the specifications of consumed AEs are known to be able to start a 
PWA. But experience shows that various details of specifications of AEs 
can change during production which suggests to produce them in a cer-
tain order. In an optimal case, #AE_consumed_by(PWA) is 0 for a pro-
duction work activity as this means that it can be performed independ-
ent of other PWAs. 

The two metrics are illustrated in Figure 35. The production work activity 
PWA1 produces two architectural elements AE1 and AE2. Furthermore, 
it consumes two architectural elements AE3 and AE4. Consequently, the 
resulting values for the two metrics are: 

 #AE_produced_by(PWA1) = 2 

#AE_consumed_by(PWA1) = 2 
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Production work activities are related to each other as architectural ele-
ments are. Hence, similar to the situation described in Section 4.2.1 in 
the case of architectural elements, we have to consider such relation-
ships with respect to producibility. Thereby, we specifically consider the 
relationships between production work activities that are caused by the 
architectural elements involved.  

Relationships between architectural elements cause relationships be-
tween production work activities. This fact is illustrated in Figure 36. Fig-
ure 36 shows three production work activities PWA1, PWA2, and PWA3. 
Their relationship becomes visible as soon as we add information on the 
architectural elements involved in the PWAs. Three relations can be iden-
tified between PWA1 and PWA2, and two between PWA2 and PWA3, 
because the involved architectural elements are related respectively. Such 
relationships influence the producibility, i.e. in this case the alignment of 
architecture and production work breakdown structure. Architectural el-

 

Figure 35: Example Metrics Production Work Activities 

 

Figure 36: Relationships between PWAs 
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ements of PWA1 rely on architectural elements of PWA2 and vice versa. 
Hence, PWA1 and PWA2 cannot easily be produced independent of 
each other.  

One could argue, that the interfaces of AE1, AE2, AE3, and AE4 must be 
specified up-front, then PWA1 and PWA2 can be performed independ-
ent of each other. But experience has shown that even if interfaces have 
been specified up-front carefully, they most likely change to a certain 
degree during production. This requires communication between the 
teams performing PWA1 and PWA2 to maintain consistency, which 
needs to be considered during production planning. 

The fact that PWAs can be coupled via the architectural elements they 
produce and consume can be measured by means of the following met-
ric: 

Metric Definition: PWAall->N: Coupling(PWA) = n where n is the cou-
pling between the production work activity PWA with any other PWA in 
PWAall determined based on coupling of architectural elements produced 
and consumed by PWA. 

In the example shown in Figure 37, we can determine: 

Coupling(PWA1) = 2 

Coupling(PWA2) = 2 

Coupling(PWA3) = 2. 

 

Figure 37: Coupling between PWAs 
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This means that each PWA is related to each other PWA in this example, 
which is not a good situation. 

Besides coupling between production work activities overlapping can be 
measured. Overlapping between production work activities means that 
the sets of architectural elements produced by the production work ac-
tivities intersect. We also call this sharing of architectural elements in this 
thesis. The following metric expresses this fact:

Metric Definition: PWAall->N: #Shared_AE(PWA) = n, where n is the 
number of architectural elements shared by PWA with any other PWA 
out of PWAall. 

In the example in Figure 38, we can determine: 

#Shared_AE(PWA1) = 2 

#Shared_AE(PWA2) = 4 

#Shared_AE(PWA3) = 2 

If production work activities share a large number of architectural ele-
ments, this can be a source of production problems that should be fur-
ther considered. If the production work activities modify the same parts 
of the shared architectural elements, for instance, this can lead to con-
flicts. Sharing of production work activities can be an indicator to better 
split architectural elements or to change the production work activities 
and let architectural elements be produced by only one of them. As 

 

Figure 38: Example sharing of AEs between PWAs 
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#Shared_AE(PWA) does not take into account the overall number of ar-
chitectural elements produced by a production work activity, the follow-
ing metric is introduced in addition: 

Metric Definition: PWAall->R0
+: %Shared_AE(PWA) = n where n is the 

percentage of the overall number of AEs produced by PWA that is 
shared with any other PWA in PWAall. 

If we also consider the overall number of AEs produced by each PWA in 
the example in Figure 38, we can determine: 

%Shared_AE_PWA (PWA2) = 40 

%Shared_AE_PWA (PWA2) = 80 

%Shared_AE_PWA (PWA2) = 40 

This section introduced metrics to characterize the relationship of AEs 
and PWAs. Such metrics are the basis for all further considerations on 
producibility as they measure the alignment of architecture and the pro-
duction work activity, which is fundamental for all further production 
planning activities. They can be used already in an early phase of produc-
tion planning and architectural design as they only require first versions 
of the structure of the system and a production work breakdown struc-
ture. 

In the next section, the production schedule will be considered with re-
spect to producibility. Hence, in addition to architectural elements and 
production work activities, iterations are taken into account. Scheduling 
decisions, i.e., for instance, assigning production work activities to itera-
tions, can compensate potential problems indicated by the values of the 
metrics introduced in this section.  

4.3 Alignment of Architecture and Production Schedule 

In the previous section, the relationship of AEs and PWAs has been dis-
cussed without taking into consideration the project schedule. In this 
section, we add the production schedule as an additional factor influenc-
ing the producibility of a system.  

Today, many organizations apply an iterative and incremental develop-
ment approach. Consequently, during project scheduling, iterations are 
defined and PWAs are assigned to them. Iterations can have fixed dura-
tions, which is called time-boxing, or can have individual durations. By 
defining iterations and assigning PWAs to them, a basic order is defined 
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on the PWAs. As iterations are performed sequentially, also the PWAs 
assigned to different iterations are assigned sequentially. 

In this section, we assume that a production planner has initially as-
signed production work activities to production iterations. Hence, rela-
tionships of architectural elements to production iterations have implicit-
ly be established. 

Figure 39provides an overview on the general relationship of architectur-
al elements, production work activities, and production iterations accord-
ing to the software production meta-model introduced in Section 3.4. 
This section covers the excerpt of the software production meta-model 
shown in Figure 39 with respective metrics. 

Similar to the previous section, we introduce respective metrics from an 
architect’s and a production planner’s perspective. 

4.3.1 Architect’s Perspective 

The architect is first of all interested in how single architectural elements 
are related to iterations based on the assignment of production work ac-
tivities to iterations. This fact can be measured by means of the metrics 
introduced in the following sub-section. 

Architectural elements get involved in several iterations if they are pro-
duced by several production work activities that are assigned to different 
iterations. This is an interesting fact from an architect’s point of view, as 
this means that architectural elements over time undergo several chang-
es.  

 

Figure 39: Alignment of Architecture and Production Schedule 
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Metric Definition: AEall->N: #PI_involving(AE) = n, where n is the num-
ber of production iterations involving the architectural element AE, i.e. 
contributing to the production of the architectural element AE. 

Figure 40 shows an example. The architectural element AE1 is involved 
in 3 iterations: #PI_involving(AE1) = 3. 

It is interesting to consider the values of #PI_involving(AE) and, for in-
stance, #PWA_producing(AE) for a specific architectural element AE in 
combination. A high value of #PWA_producing(AE) can be an indicator 
for potential production problems as the AE is modified several times. 
But if the value of #PI_involving(AE) is low, for instance, one, this means 
that all the PWAs producing a specific architectural element have been 
assigned to the same production iteration which could reduce the risk of 
production problems if, for instance, the resources assigned to the PWAs 
are co-located and can easily communicate. This example shows that the 
metrics introduced in this chapter always need to be interpreted in com-
bination in the respective project context.  

We assume that iterations are ordered sequentially and also that they are 
numbered accordingly from 1,…,n. 

Consequently, we can add a numbers to each architectural element for 
the production iteration creating as well as the production iteration fin-
ishing it. 

Metric Definition: AEall->N: PI_ creating(AE) = n, where n is the number 
of the production iteration creating the architectural element AE. 

Metric Definition: AEall->N: PI_finishing(AE) = n, where n is the number 
of the production iteration finishing the architectural element AE. 

In the example shown in Figure 40, the architectural element AE1 is cre-
ated in production iteration PI1 and finished in production iteration PI3. 

PI_ creating(AE1) = 1 

 

Figure 40: Number of PI involving AE 
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PI_finishing(AE1) = 3 

Based on the values of PI_ creating(AE) and PI_finishing(AE) the produc-
tion duration in number of iterations can be determined. 

Metric Definition: AEall->N: ProductionDuration(AE) = PI_finishing(AE) - 
PI_ creating(AE) + 1 

In the example shown in Figure 40, ProductionDuration(AE1) = 3. 

Again, we also consider the relationship of sets of architectural elements 
to in this case production iterations. Architectural elements can be relat-
ed to each other and in combination, for instance, realize a certain be-
havior. Architectural elements related to each other should ideally be re-
alized in combination to assure that they together fulfill their responsibil-
ity. The following metrics help in evaluating situations where related ar-
chitectural elements are produced in different iterations. 

Metric Definition: P(AEall)->N: #PI_involving({AE}) = n, where n is the 
number of iterations involving members of the specified set of architec-
tural elements. 

Metric Definition: P(AEall)->N: PI_finishing({AE}) = n, where n is the iter-
ation number when all elements of the specified set of architectural ele-
ments are finished. 

Figure 41 illustrates the two metrics. The architectural elements AE1, 
AE2, and AE3 are related to each other but the production is spread over 
three production iterations PI1, PI2, and PI3. The set of architectural ele-
ments is completely produced after three production iterations. This 
leads to the following values for the metrics just introduced: 

#PI_involving({AE1,AE2,AE3}) = 3 

PI_finishing({AE1,AE2,AE3}) = 3 

 

Figure 41: Example - Set of AEs in different PIs 



Quality Model of Producibility 

84   

The following section introduces metrics characterizing the alignment of 
architecture and production schedule from a production planner’s per-
spective. 

4.3.2 Production Planner’s Perspective 

Production planners are interested in how the production iterations they 
have planned relate to architectural elements. 

If we take one single production iteration into account, the main ques-
tion is how many architectural elements are involved in the respective 
production iteration. If many architectural elements are involved in a 
production iteration, this means that a huge part of the overall system is 
modified in a single production iteration. This can be a problem as it re-
quires much knowledge about the overall system and potentially many 
experts covering the architectural elements with their knowledge need 
to be involved. Consequently, the following metric is determined per it-
eration: 

Metric Definition: PIall->N: #AE_involved_in(PI) = n, where n is the 
number of architectural elements involved in the production iteration PI. 

In Figure 42, the production iteration PI1 contains three architectural el-
ements, i.e. #AE_involved_in(PI1) = 3. 

Another interesting aspect related to production iterations and architec-
tural elements is the coverage of the overall system by a certain produc-
tion iteration. Each production iteration potentially creates new architec-
tural elements and/or modifies them. In that sense, it is important to 
know how many architectural elements are involved in a production iter-
ation as well as how this number relates to the overall number of archi-
tectural elements making up the system. The following metric is used to 
express this relationship: 

Metric Definition: PIall-> R0
+: %System_Coverage(PI) = r, where r is 

#AE_involved_in(PI) / |AEall|. 

In Figure 42, we can determine %System_Coverage(PI1) = 3/7. 

As mentioned above, this metric expresses how a production iteration PI 
covers the architecture of the system. A high value of %Sys-
tem_Coverage(PI) means that a huge portion of the overall system is 
modified in a production iteration. Consequently, the risk of corrupting 
the overall system quality is high in such a production iteration. Much 
knowledge of the overall system is required in the respective production 
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iteration as many AEs are involved. If the value of %System_Coverage(PI) 
remains stable within certain boundaries during performing software 
production, this characterizes a constant growth of the system. In the 
first production iterations of a project, the value of %Sys-
tem_Coverage(PI) is potentially higher, because many AEs need to be 
newly created. 

Production iterations contribute to producing the system over time. Re-
lating sets of production iterations and architectural elements means to 
characterize how architectural elements are produced over time and 
how their relationships influence the iterations that follow each other. If, 
for instance, production iterations are coupled because the architectural 
elements involved into them are coupled, or if production iterations 
share architectural elements as they are modified in both production it-
erations, this can be a source of potential production problems. The fol-
lowing metrics help in detecting respective situations. 

Metric Definition: PIall->N: Coupling(PIi) = n, where n is the number of 
relations from architectural elements produced in PIi and every architec-
tural element produced in PIj, j≠i. 

Figure 42 shows an example for production iterations that are coupled. 
PI1 and PI2, PI2 and PI3, and PI1 and PI3 are coupled.

The respective coupling values are as follows: 

Coupling(PI1) = 4 

Coupling(PI2) = 6 

Coupling(PI3) = 4 

Figure 42: Example - Coupling between Iterations 
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Production iterations are typically not only coupled, they also share archi-
tectural elements. Two production iterations share an architectural ele-
ment if they both contribute to the production of the architectural ele-
ments. Figure 43 provides an example. The production iterations PI1 and 
PI2 share the architectural elements AE2, AE3, and AE4. PI2 and PI3 
share AE4 and AE5. PI1 and PI3 share AE4. 

Sharing architectural elements between production iterations can be an 
indicator for production problems. On the one hand, it is good that 
PWAs modifying the same AEs are assigned to different production itera-
tions as otherwise this would be a potential source of conflicts if the 
PWAs would modify the AEs in parallel in the same iteration. But on the 
other hand, sharing indicates a certain risk that results of production it-
eration PIi get corrupted in production iteration PIi+1 if the same areas of 
the AEs are modified again. This also has an effect on the testing per-
spective of the project. If a huge number of AEs modified in an iteration 
are modified again in later iterations, retesting several features again and 
again is required. Hence, regression testing as a best practice and setting 
up a regression test suite that can automatically be executed by respec-
tive tools should be considered, for example. 

The following metrics express if production iterations share architectural 
elements and characterize the degree of overlapping between the pro-
duction iterations. 

Metric Definition: PIall->N: #Shared_AE(PIi): The number of architectural 
elements shared by PIi with PIi+1 and Pi-1. In case i = 1 only the elements 
shared with PIi+1 can be considered. 

Example in Figure 43: 

#Shared_AE(PI1) = 3 

#Shared_AE(PI2) = 4 

#Shared_AE(PI3) = 2 
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Metric Definition: PIall->R0
+: %Shared_AE(PI) = r, where r = 

#Shared_AE(PI) / #AE_involved_in(PI).

The metric measures the percentage of shared architectural elements for 
a given production iteration. 

Example in Figure 43: 

%Shared_AE_PI1 (PI1) = 3/4 

%Shared_AE_PI1 (PI2) = 2/3 

%Shared_AE_PI1 (PI3) = 2/5 

After a certain set of production iterations has been performed, it is im-
portant to know how much of the overall system has already been pro-
duced. The progress of production can be measured relative to the archi-
tectural elements that already have been completely produced, i.e. they 
are not modified again. This can be expressed by the following metric: 

Metric Definition: PIall->R0
+: %Completed_AE_after(PI) = r, where r is 

the percentage of architectural elements that have been completely pro-
duced after production iteration PI has been finished. 

This metric can be complemented by another metric that tells us about 
the number of architectural elements that at least have been initially cre-
ated after production iteration PI. 

 

Figure 43: Example - Iterations sharing AEs 
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Metric Definition: PIall->R0
+: %Created_AE_after(PI) = r, where r is the 

percentage of architectural elements that have been initially produced 
after production iteration PI has been finished. 

If an architectural element has been initially produced successfully, this is 
a first indicator that its production is technically feasible and the risk of 
production problems related to the architectural element is reduced from 
that point in time. 

4.4 Alignment of Architecture and Resource Assignments 

The third dimension of producibility considered in this thesis is the 
alignment of architecture and resource assignments. During resource as-
signment, architectural elements are related to teams or single persons 
both representing resources by assigning respective production work ac-
tivities to them. Figure 44 shows the excerpt of the software production 
meta-model that is in the focus of this section. 

Similar to the previous sections, we structure this section into the archi-
tect’s and the production planner’s perspective. 

4.4.1 Architect’s Perspective 

Architects are interested in who is taking care of the architectural ele-
ments they have designed in their architecture. In general, it is not desir-
able that many different resources are involved in producing an architec-
tural elements as this requires increased communication and can lead to 

 

Figure 44: AEs and Resources in Meta-Model 
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conflicts. Some agile methods, for instance, advocate common code 
ownership, which allows everyone to perform changes on each architec-
tural element. But the assignment of resources to production work activ-
ities in software production limits the resources working on certain archi-
tectural elements. It can make sense to assign production work activities 
involving the same architectural elements to the same resource to reduce 
the required knowledge transfer related to architectural elements be-
tween resources. Resources get the chance to specialize themselves with 
respect to certain architectural element types.

The following two metrics characterize the relation of single architectural 
elements and sets of architectural elements to resources. Resources can 
be either teams or single persons, as already mentioned above.

Metric Definition: AEall->N: #Resources_working_on(AE) = n, where n 
is the number of resources working on an architectural element AE dur-
ing a software production project. 

In an ideal case, only one resource is working on an architectural ele-
ment to prevent conflicts and required knowledge transfer. 

Metric Definition: P(AEall)->N: #Resources_working_on({AE}) = n, where 
n is the number of resources working on a specified set of architectural 
elements {AE} during a software production project. 

As in the case before, in an ideal case only one resource is working on a 
set of architectural elements if such architectural elements together are 
responsible to realize a certain behavior of a system. Typically, this can-
not be achieved for the overall system. Certain architectural elements 
contribute to various behaviors of the system that are realized by differ-
ent resources. 

Figure 45 shows an example. The architectural element AE1 has been as-
signed to the resource Team1, AE2 to Team3, and AE3 to Team 3. This 
results in the following values of the metrics introduced above: 

#Resources_working_on(AE1) = 1 

#Resources_working_on(AE2) = 1 

 

Figure 45: Example - Architectural Elements and Resources 
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#Resources_working_on(AE3) = 1 

#Resources_working_on({AE1,AE2,AE3}) = 3 

The following section introduces metrics related to the production plan-
ner’s perspective. 

4.4.2 Production Planner’s Perspective

Production planners are interested in the relationship of architectural el-
ements and resources from their specific perspective. They are responsi-
ble for resource assignments and need to validate their decisions with re-
spect to the architecture. The following metrics can help in doing so. 

Metric Definition: RESall->N: #AE_worked_on_by(RES) = n, where n is 
the number of architectural elements the resource RES is working on. 

If a resource is working on many architectural elements, it needs to be 
capable of doing so regarding skills and availability. A high value of 
#AE_worked_on_by(RES) can be an indicator of an overloaded resource. 

Metric Definition: Resall->N: Coupling(RES) = n, where n is the coupling 
of RES with any other RES in Resall determined based on the coupling of 
the architectural elements produced by RES with any other AE in AEall 
that is not produced by RES. 

 

Figure 46: Example - Coupling between Resources 
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Coupling between resources is illustrated in Figure 46.  

The four architectural elements AE1, AE2, AE3, and AE4 have been as-
signed to Team1, AE5, AE6, and AE7 have been assigned to Team2, and 
AE8, AE9, and AE10 have been assigned to Team3. Based on the rela-
tionships between the architectural elements, relationships between the 
teams are established. Basically, each team has to communicate with all 
other teams in this example based on the relationships between architec-
tural elements. If we determine the coupling between teams according 
to the metric introduced above, we get the following values: 

Coupling(Team1) = 2 

Coupling(Team2) = 2 

Coupling(Team3) = 2 

Metric Definition: RESall->N: #Shared_AE(RES) = n, where n is the 
number of architectural elements shared by the resources RES with any 
other RES in RESall. 

Metric Definition: RESall->R0
+:%Shared_AE_Resource(RES) = r, where r 

= #Shared_AE(RES) / #AE_worked_on_by(RES). 

Hence, %Shared_AE_Resource(RES) is the percentage of the number of 
AEs shared by RES and the overall number of AEs produced by RES. 

Sharing an architectural element between two resources means that 
both resources contribute to the production of the respective architec-
tural element. 

Figure 47 illustrates sharing of architectural elements between resources. 
The architectural elements AE3 and AE4 are shared between Team 1 and 
Team 2, i.e. both modify them. 
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Coupling between resources and sharing of architectural elements be-
tween resources means that communication is required between the re-
spective resources. Hence, resource assignments should be performed 
based on architectural knowledge to prevent communication overhead. 

4.5 Context Factors 

The metrics presented in Section 4.2, 4.3, and 4.4 can be used to meas-
ure the producibility of a system based on a given architecture and pro-
duction plan. However, the interpretation of the values provided by the 
metrics needs to be done under consideration of various context factors. 
The context factors can compensate bad values of certain metrics or 
even increase the risks related to a bad value. An architectural element 
AE might be modified often during the course of a project, i.e. for in-
stance, #PI_involving(AE) = 5 while the overall number of production it-
erations is 6. If the architect is able to explain that AE has an internal 
structure that facilitates incremental extension of AE,  the risks related to 
multiple modifications of AE is lower than the value #PI_involving(AE) = 
5 might indicate. 

In this section, context factors that need to be considered while inter-
preting the producibility metrics introduced before are presented. The 
context factors are classified into architecture, production process, and 
organization-related context factors. This means they originate from one 
of these areas, but can potentially influence all metrics presented before. 

 

Figure 47: Example - Sharing between Resources 
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Figure 48 shows the three classes of context factors considered in this 
thesis. 

The context factors described in this section are not considered to be 
complete. In each class of context factors, i.e. architecture related, pro-
duction process-related, and organization-related, additional factors 
might be required in a specific project context. The context factors pre-
sented in this section are based on our experience in projects in the area 
of information system development. 

4.5.1 Architecture-related Context Factors 

This section introduces the context factors related to architecture that 
should be considered based on our experience. These context factors 
specifically should be considered if bad values of metrics related to the 
architect’s perspective appear. They can help architects to decide, if po-
tential production problems are related to certain architectural elements 
and which countermeasures they should take. Figure 49 shows the con-
text factors considered related to architecture. 

 

Figure 48: Classes of Producibility Context Factors 

 

Figure 49: Overview Architecture-related Context Factors 
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4.5.1.1 Types of Architectural Elements 

Architectural elements can be classified into different types. This thesis is 
based on project experience from the information system domain. One 
can distinguish infrastructure architectural elements and business archi-
tectural elements. Infrastructure architectural elements make up the 
technical infrastructure where business architectural elements can be 
embedded. Infrastructure architectural elements are, for instance, work-
flow engines, enterprise service buses, or rule engines. Business architec-
tural elements are, for instance, services or workflows capturing business 
specific functionality. 

Typically, infrastructure architectural elements are touched more often 
during a project than business architectural elements. An enterprise ser-
vice bus, for instance, must be modified several times in a sense that 
new services must be connected to them. This leads, for instance, to a 
high value of #PI_involving(Enterprise Service Bus) which might not be a 
problem here as enterprise service buses are prepared for such kind of 
changes (maybe only configuration files need to be changed). 

4.5.1.2 Internal Design of Architectural Elements 

According to Section 2.1, architects are not responsible for designing 
architectural elements completely. Internal design decisions are left open 
to designers. But for several reasons, architects can constrain the internal 
design of architectural elements, i.e. they prescribe the internal structure 
of an architectural element at least partially. If they put similar con-
straints to several architectural elements, they define a texture (see Sec-
tion 2.1). 

In software production, constraints put on the internal design of an ar-
chitectural element can help to reduce certain production risks. Let us 
consider an architectural element that is changed often during a project. 
If an architect prescribes an internal structure that makes an architectural 
element easily extensible, for instance, by a kind of plug-in mechanism, 
the risk of production problems related to the high number of changes 
can be reduced. In each production iteration where the architectural el-
ement is modified, a separate plug-in could be developed that is largely 
independent of the rest of the architectural elements, for instance. 

Object-oriented metrics like complexity or cohesion [Hen95] can be used 
in addition to characterize the internal design of architectural elements. 
They can be used to decide if architectural elements are critical for pro-
duction. If an architectural elements with a high estimated complexity is 
modified often, more production risks are related to it than in the case 
of an architectural element with low complexity. High cohesion of an ar-
chitectural element would be an argument to not split an architectural 
element, which could be a decision taken during producibility analysis, as 
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it will be explained in Chapter 5. A high estimated size of an architectur-
al element could be a reason to split it. 

4.5.1.3 Technology Mix 

Technology decisions heavily influence production and should be thor-
oughly considered. The resources supposed to perform production must 
be able to cope with the selected technologies, i.e. they need to be 
equipped with the required skills. Technologies need to be compatible 
with the selected tool infrastructure, i.e. appropriate tools need to exist 
and they need to be integrated into the production environment. 

Especially the mix of technologies in a production project is essential for 
several reasons. A huge number of technologies increases the skills re-
quired by the production team, especially if each member must deal with 
several technologies. Technologies provided by different vendors or or-
ganizations might lead to unexpected incompatibilities or at least in-
creased effort to make them work together. When a new web-based in-
formation system is planned to be produced, for instance, a general de-
cision to be taken might be to decide to select Microsoft’s .NET platform 
[MSNet11] or JAVA EE as it is supported by Oracle [Java11]. Both provide 
the required technology required to build a web-based information sys-
tem. The respective technology platforms come along with comprehen-
sive tool sets. The production team should be used to them to prevent 
long training periods in the project. The combination of .NET and JAVA 
EE solutions can prevent the production team to use the respective tech-
nologies as planned by the respective vendors. 

An architect should evaluate the mix of technologies carefully with re-
spect to production and plan together with the production planner 
when the respective technology enters the project. If the first production 
iteration, for instance, is bothered by the introduction of several tech-
nologies new to the production team, this can lead to delays, quality is-
sues, etc. in the beginning of the project. 

4.5.1.4 Quality of architecture documentation 

The architecture documentation is a main point of reference for the pro-
duction team. The architecture specifies the architectural elements they 
are supposed to produce. It should contain all architectural information 
relevant to start producing the architectural element including interfaces, 
design constraints, selected implementation technologies, etc.  
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The meta-model of software architecture introduced in Section 2.1 refers 
to best practices in architecture documentation. Architecture documen-
tation should contain different architectural views as well as descriptions 
of the main architectural decisions. From a production point of view, it is 
specifically important that the architecture documentation contains for 
each architectural element including interfaces, design constraints, se-
lected implementation technologies, as already mentioned above. Espe-
cially, the elements that are supposed to be critical for any reason, for in-
stance, because they are modified often or need to be finished early, the 
architecture documentation must contain such information, otherwise 
production problems can be the consequence. 

Besides architecture documentation, documentation of designs for each 
architectural element is important. Hence, production risks can be re-
duced if for each (critical) architectural element design documentation is 
available, for instance, according to the KoBrA approach [ABB+01]. In 
the KoBrA approach, each architectural element is documented by 
means of different models, for instance, structural model, behavioral 
model, or functional model. 

4.5.1.5 Reuse of Architectural Knowledge 

The maturity of software architecture as a Software Engineering disci-
pline becomes visible in many handbooks of software architecture 
[BCK03] [TMD10] [RH08]. Similar to other engineering disciplines, such 
handbooks capture the existing knowledge on software architecture. 

Architectural knowledge can be captured in various ways, beyond the 
most prominent ones being architectural styles, tactics, patterns, refer-
ence architectures, or product line architectures. As producibility is not 
yet explicitly addressed in software architecture research, architecture 
handbooks do not capture knowledge on producibility of architecture 
systematically. Nevertheless, they should be used as a reference by archi-
tects also from a producibility point of view. Using architectural styles, 
tactics, patterns, etc. from the existing software architecture literature 
can help to reduce production problems. The reuse of proven solutions 
in general helps not to repeat mistakes done in the past again and re-
duce production problems. Furthermore, a common vocabulary between 
architects but also between architects and the production team is estab-
lished that helps to ease communication, prevent misunderstandings and 
resulting production problems. 

Architects should check with respect to producibility, if they can refer to 
existing architectural solutions instead of inventing everything from 
scratch or using existing solutions under different names. In the software 
production meta-model, for instance, an optional relationship of an ar-
chitectural element to an architectural element type is modeled. In an 
ideal case, each architectural element is of a known type, i.e. of a type 
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that is referenced somewhere in the organizations or overall architecture 
body of knowledge. 

4.5.1.6 Reuse of Architectural Elements 

Besides reuse of architectural knowledge, reuse of concrete architectural 
elements should be considered with respect to software production and 
producibility. In many cases, reuse approaches like product line engineer-
ing or component-based development have proven to be successful in 
reducing time to market and effort or increasing quality [HOF11]. Hence, 
from a producibility perspective, it should be analyzed how an architec-
ture makes use of already existing architectural elements. These can be 
code libraries, executable components, or specific frameworks that are 
available in an organization, from other vendors, or open source. 

Building architectural elements based on reuse can have positive as well 
as negative effects on the producibility of a system. If an architectural el-
ement has been used before and can be reused without modifications, 
for instance, the risk of production problems is lower than in the case of 
developing an architectural elements newly from scratch. But if an archi-
tectural elements is supposed to be reused but has to undergo many 
modifications during the project this can increase the risk of production 
problems. The documented knowledge on the reused architectural ele-
ment might be limited and its reconstruction might cause additional ef-
fort and time. 

In the case of each architectural element, reuse needs to be considered 
carefully from a producibility perspective.  

In the following section, context factors related to the production pro-
cess are introduced. 

4.5.2 Production Process-related Context Factors 

This section introduces the context factors related to the selected pro-
duction process that should be considered based on our experience. 
These context factors specifically should be considered if bad values of 
metrics related to the production planner’s perspective appear. Figure 50 
shows the context factors considered related to the production process. 
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4.5.2.1 Support by Production Work Activity Types

As introduced in Chapter 3, production is essentially product-oriented 
and a production process provides product-specific guidance. Production 
work activity types guide the production team in producing certain types 
of architectural elements (s59ee Section 3.5.2 for an example). 

From a producibility perspective, it is important that the majority of ar-
chitectural element types that are used in a system are supported by 
production work activity types, i.e. the optional relationship between ar-
chitectural element types and production work activity types in the pro-
duction meta-model exists in a specific instance. Especially architectural 
elements or element types that are supposed to be critical because of 
some other producibility metric should be supported by a defined pro-
duction work activity type. If workflows or services, for instance, are 
supposed to be built many times as part of a software production pro-
ject, a detailed process how to create a workflow or service, i.e., produc-
tion work activity types for workflows and services, are required. 

Production planners should check, how well the production work activi-
ties of a software production project are covered by production work ac-
tivity types. The higher the coverage especially of architectural elements 
with bad values for certain producibility metrics, the more likely certain 
production problems still can be prevented.  

4.5.2.2 Support by Development Activity Types 

Production work activity types involve development activity types as de-
fined in the software production meta-model (see Section 3.4). Devel-
opment activity types refer, for instance, to design, implementation, or 

 

Figure 50: Overview Production Process-related Context Factors 
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testing best practices to adopted in the context of a production work ac-
tivity. 

Development activity types can provide specific support for software 
production and should be considered from a producibility perspective. 
Based on our experience, production problems can be caused, for in-
stance, by missing architecture compliance. Reuse can be increased by 
higher architecture compliance [KMH+08]. During production, architec-
ture violations are introduced by, for instance, introducing unplanned 
dependencies between architectural elements, that can cause unex-
pected problems in later production iterations as side effects can occur. 
If compliance checking is foreseen as a development activity type to be 
performed in certain production work activity types, architecture viola-
tions can be detected early before they cause further production prob-
lems. Compliance checking can be performed during production, for in-
stance, by means of the approach proposed in [Kno09]. 

It should be considered by production planners, which development ac-
tivity types specifically support production. 

4.5.2.3 Support by Tool Infrastructure  

Tools have a high potential to increase the producibility of a system. 
They can support production work activities or even completely auto-
mate them. Software production does not aim at maximizing the auto-
mation of the production process. Automation requires investment and 
not each production work activity or development activity type is a good 
candidate for automation, as the initial investment potentially never pays 
off. Approaches like Software Factories [GSC+04] or software produc-
tion lines [Kru06] heavily rely on tool support. McGregor provides guide-
lines on how to set-up production environments for software product 
lines [McG05] as one software production scenario (see Section 3.3). 

Production work activity types that are recurring often in a project are 
good candidates for tool support. They could be supported by a tool in-
frastructure that is aware of the process [Rom03]. In general, production 
planners should evaluate especially for each critical production work ac-
tivity in a project, for instance, because it has a high value of a related 
producibility metric (see Section 4.2.2), if appropriate tool support is 
available or can be set-up easily. 

4.5.2.4 Support for Distributed Development 

More and more, software is produced in a distributed fashion. Internal 
and external units (see Section 2.2.5) can be involved in a software pro-
duction project. Hence, software organizations set-up supply chains simi-
lar to other engineering disciplines. Specialized suppliers take over pro-
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duction work activities and deliver architectural elements to be integrat-
ed into the overall system. 

Distributed development should be well supported to prevent related 
production problems. Communication between distributed teams, for in-
stance, needs to be enabled by means of adequate processes and tools. 
It is important, for instance, to agree on a specific format how produc-
tion work activity specifications are exchanged with suppliers. Bug and 
issue tracking tools can be used to report on production problems. 
Common repositories should be used to exchange the results of produc-
tion work activities. Furthermore, task assignment in distributed settings 
can be supported by empirical models [LM10]. 

For each external unit respectively for each set of teams that are sup-
posed to work together but are geographically distributed it should be 
checked, if adequate support for collaboration is available. Otherwise, 
there is a certain risk of production problems because of communication 
problems. Such communication problems can be further intensified be-
cause of cultural differences. 

4.5.3 Organization-related Context-Factors 

Finally, the organizational context needs to be considered while analyz-
ing producibility based on the producibility metrics introduced before. 
Figure 51 shows the context factors that are considered in this section. 

4.5.3.1 Capabilities of Resources 

Single resources or teams must be capable of performing the production 
work activities that are assigned to them. Several skills are desirable. If 
the production work activity relates to a certain production work activity 
type or architectural element types, the resource should be familiar with 
the respective types. If a resource is supposed to build a service, for in-

 

Figure 51: Overview Organization-related Context Factors 
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stance, in an ideal case, the resource has performed similar production 
work activities before. 

Familiarity with the selected technologies is another important context 
factor related to the assigned resources. Production planners and archi-
tects should consider selecting different technologies if they can be easily 
substituted comparably and the skill profile of the resources fit better af-
terwards. 

4.5.3.2 Team organization 

Project (sub-) teams need to be organized in a certain way. Section 2.2.5 
introduced different models of team organization, for instance, the chief 
programmer model or structured open teams. 

The team organization can influence producibility in different ways. In 
the case of architectural elements that are modified often it might be 
helpful to have a chief programmer as a coordinator. The same holds 
true for complex architectural elements where a chief programmer could 
bring in his or her experience to produce the key parts. 

In the case of different teams with close coupling or even shared archi-
tectural elements (see Section 4.4), it also might be helpful to have chief 
programmers that can perform the major part of the required communi-
cation between teams to canalize the flow of information. 

Production planners should check the team organization and relating 
communication structures between teams to identify potential produc-
tion problems. 

4.5.3.3 Relations between Organizational Units 

Production project teams often have to interact with other organization-
al units. In the case where a project team uses, for instance, a certain 
framework that is developed in another organizational unit, a depend-
ency between the respective units is established. The project team has to 
consider, for instance, that the framework team might not be able to 
answer requests quickly as they have to cope with many requests of var-
ious project teams. This can result in production problems if delays oc-
cur. 

It could also be the case that certain development activities as part of 
production work activities are performed in different organizational 
units. Testing is a prominent example that often is performed in a sepa-
rate test department to assure independence of implementers and test-
ers. The coordination of production work activities with a test team is 
important to prevent production problems up-front. 
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Production planners should consider the relationships of the project 
team to other organizational units and check, if the collaboration is well 
supported by the production process. 

As already mentioned, context factors are important to be considered 
while interpreting the producibility metrics introduced above. The values 
of the context factors can compensate significant values of producibility 
metrics or even make the situation worse. 

As we will describe in Chapter 5 in more detail, expert judgment is re-
quired to finally decide if a significant value of a producibility metric will 
lead to production problems in a given context. 

4.6 Related Work 

This section provides an overview on related work regarding the quality 
property producibility. 

The term producibility of software systems has been mentioned in the 
literature before. In [Cam07], producibility is defined as follows: 

Producibility is “the ability to deliver needed capability in a timely, cost 
effective, and predictable manner.” 

Another definition of producibility is given in [NRC10]: 

Software producibility is “the capacity to design, produce, assure, and 
evolve software-intensive systems in a predictable manner while effec-
tively managing risk, cost, schedule, quality, and complexity.” 

Such definitions of producibility have a broader scope than the one given 
in this thesis. They refer to the general capability of an organization to 
produce software, i.e. it refers to the general software engineering ca-
pabilities of an organization. In [NRC10], for instance, besides project 
planning/management or software architecture various other disciplines 
of software engineering like requirements engineering or process man-
agement are mentioned and their role for the overall production capabil-
ity of an organization (in that case of the US Department of Defense 
(DoD)) is discussed. While not underestimating the importance of other 
disciplines of software engineering for the overall production capability 
of an organization, this thesis uses the term producibility in a closer 
sense to narrow the scope and be able to make an in-depth contribution 
related to the alignment of architecture and project plans. 

Producibil-
ity in the 
literature 



 Quality Model of Producibility 

  103 

A quality attribute related to producibility as defined in this thesis is 
buildability. In [BCK03], buildability is introduced as a property of a soft-
ware architecture. Buildability is defined as “the ease of constructing a 
desired system based on the architecture by the available team in a time-
ly manner”. Hence, buildability establishes a general link between archi-
tecture and project planning aspects like time to market. The system, 
i.e., in this case the architecture, should also be open to certain changes 
as development progresses. The decomposition of the system into mod-
ules, the assignment of modules to development teams and limiting the 
dependencies between modules, i.e., reducing coupling, are mentioned 
as important influencing factors of buildability. But more detailed guide-
lines to decide if an architectural element is critical with respect to pro-
duction are not given. 

In this thesis using the term producibility is preferred over using builda-
bility for several reasons: 

– Producibility per definition establishes a link between the architecture 
and a project plan and addresses the misalignment of architecture 
and project plan as motivated in Chapter 1. 

– Producibility refers to the notion of software production as it has 
been introduced before, i.e. producibility assumes the adoption of 
the ideas of software production. 

– Producibility suggests a link to other disciplines like manufacturing 
where the term production is more common and refers to a process 
that is optimized to be run efficiently (eventually many times) to 
come up with goods fulfilling their requirements. This thesis wants to 
emphasize the importance of optimizing the alignment between pro-
duction plans and the design similar to other engineering disciplines. 

– Buildability can be misinterpreted as referring only to the technical 
build process typically conducted as part of software production but 
not to the whole production process. 

Object-oriented metrics like coupling [Hen95] [SMC74] inspired the defi-
nition of the producibility metrics introduced in this chapter. In general, 
coupling between architectural elements, for instance, can be used as an 
indicator for producibility. High coupling between architectural elements, 
for instance, bears the risk that teams assigned to such architectural el-
ements cannot independently realize them or that dependencies to earli-
er production iterations cause production problems.  

However, the producibility metrics defined in this chapter based on the 
idea of coupling like, for instance, Coupling(PWA), Coupling(PI), or Cou-
pling(Res) are more precise in measuring the producibility of a system. 
First, they take into account architectural elements and project planning 
elements. Furthermore, they filter out values of coupling between archi-
tectural elements that are not necessarily relevant for the overall produc-
ibility. If, for instance, architectural elements that are highly coupled are 

Buildability 
as related 
quality at-
tribute 

Related 
Metrics 
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assigned to the same team, the value of Coupling(Res) is not increased, 
as the team can often deal with the “internal” coupling of architectural 
elements. By relying on values for coupling between architectural ele-
ments to measure producibility, “internal” coupling would be indicated 
as critical and potential production problems would be pointed out. 

In the following chapter, the producibility analysis method is described in 
detail. 
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5 Producibility Analysis Method 

This chapter introduces the producibility analysis method. The chapter is 
structured as follows. First, an overview of the producibility analysis 
method is provided. In the following, each phase of the method is intro-
duced and discussed in detail and an overview on the available tool sup-
port is provided. 

5.1 Method Overview 

The goal of the producibility analysis method is to identify critical archi-
tectural elements, critical project planning elements that are supposed to 
cause production problems like delays or effort overhead. The concrete 
outputs of the producibility analysis method are the identified critical el-
ements and recommendations on how to prevent production problems 
eventually caused by such critical elements. In that sense, the producibil-
ity analysis method addresses the practical problem introduced in Section 
1.1 as it aims at reducing the misalignment of software architecture and 
project plans. 

The foundation of the producibility analysis method is the integrated me-
ta-model of software production presented in Section 3.4.3 and the 
quality model of producibility presented in Chapter 4. 

The producibility analysis method addresses the practical problem by 
contributing to solve the scientific problems of missing enforcement of 
communication between architects and project or production planners 
(SP1) and missing support for the identification and analysis of critical 
architectural and project or production planning elements (SP2) dis-
cussed in Section 1.3. Thereby, it adopts the idea of a manufacturability 
analysis known from other engineering disciplines. 

As shown in Figure 52, the producibility analysis method requires as an 
input the current version of the planned architecture of the product to 
be produced and the current version of the production plan of the prod-
uct. The following assumptions are underlying such input products: 

– The architecture at least must contain a structural view of the system, 
i.e., for instance, a Module View or a Component and Connector 
View. 

– The production plan at least must contain a sequence of planned 
production iterations, an assignment of production work activities to 

Goals of 
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production iterations, and an assignment of resources to such pro-
duction work activities.

– The level of granularity of architecture and production plan used for 
the producibility analysis must be aligned to each other. If, for in-
stance, the architecture is specified on a level of layers, clusters, and 
subsystems, the production work activities defined in the production 
plan must be on the level of layers, clusters, and subsystems or func-
tional domains covered by such architectural elements, too. Produc-
tion work activities specified on the level of single features require a 
more detailed view of the architecture to enable a solid producibility 
analysis. 

– Additional architectural views are required as input to the producibil-
ity analysis, if specific producibility scenarios are supposed to be ana-
lyzed. If, for instance, the architect wants to assure, that a certain 
behavior of the system is available at a certain point in time, such be-
havior and the related architectural elements need to be specified in 
a behavioral view of the architecture. 

Producibility scenarios have already been mentioned before. They de-
scribe requirements into production from the point of view of different 
stakeholders like architects, production planners, customers, product 
managers, etc. and are an optional input to the producibility analysis 
method. In contrast to a first version of the architecture and the produc-
tion plan as specified above, we do not expect that the producibility sce-

 

Figure 52: Overview Producibility Analysis Method 
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narios are available from the beginning of a producibility analysis. Ra-
ther, we elicit the producibility scenarios in the preparation phase of the 
producibility analysis if required. 

The producibility analysis method consists of the three phases prepara-
tion, execution, and consolidation (see Figure 53). 

The preparation phase creates the inputs for the execution phase. Pro-
ducibility scenarios are elicited as a first step. The method provides guid-
ance in this step by providing lists of typical producibility-related con-
cerns of different stakeholders that then can be used in interviews with 
such stakeholders to elicit producibility scenarios. Furthermore, the prep-
aration phase comes up with producibility views that are the basis for 
determining the producibility metrics introduced in Chapter 4 and for 
the overall producibility analysis. Three producibility views relating to the 
three dimensions of producibility are used in this thesis. The producibility 
views can be modeled by means of the tool Enterprise Architect (EA) 
[EA11], that has been extended with the capability to model producibility 
views. The producibility scenarios and the producibility views for a specif-
ic production project are the major outcome of the preparation phase of 
the producibility analysis method. 

 

Figure 53: Phases of the Producibility Analysis Method 
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The execution phase takes the input of the preparation phase and de-
termines critical architectural and production planning elements based 
on the producibility metrics introduced in Chapter 4. Architectural ele-
ments and production planning elements are supposed to be critical as 
soon as the respective producibility metrics exceed a certain threshold. 
All producibility metrics referring to single architectural or production 
planning elements can be determined automatically based on the pro-
ducibility views. 

In the consolidation phase, the results of the execution phase are ana-
lyzed and recommendations are derived. Architects and production 
planners use checklists that are based on the producibility context factors 
to decide if an architectural or production planning element marked as 
critical in the execution phase is really supposed to be critical in the given 
context. Based on the consolidated list of critical elements they derive 
recommendations on how to prevent the occurrence production prob-
lems caused by the critical elements. Recommendations can be, for in-
stance, to split an architectural element, to change the assignment of 
production work activities to production iterations, or to assign produc-
tion work activities differently to the available resources. 

In the following section, the different phases of the producibility analysis 
method are discussed in more detail. 

5.2 Preparation Phase 

In the preparation phase of the producibility analysis method, the input 
required for the execution phase is prepared. The preparation phase is 
made up of several steps as shown in Figure 54. Producibility scenarios 
are elicited and the producibility views are modeled. Such two steps can 
be performed in parallel. After producibility scenarios are elicited and 
documented and producibility views are modeled, the producibility sce-
narios can be mapped to the producibility views. Architectural and pro-
duction planning elements modeled in the producibility views and in-
volved in a producibility scenario are added to the documentation of the 
respective producibility scenario. 

Execution 
Phase 

Consolida-
tion Phase 
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The concrete outputs of the preparation phase are: 

– Producibility scenarios including mapped architectural and production 
planning elements 

– Producibility views 

In the following sub-sections, each step of the preparation phase is ex-
plained in detail. 

5.2.1 Elicitation of Producibility Scenarios 

5.2.1.1 Producibility Stakeholders and their Concerns 

Various stakeholders with specific concerns regarding producibility exist. 
Architects, production planners, and customers are the main stakehold-
ers. Architects and production planners are concerned with software 
production by definition. Customers (or also product managers) are im-
portant stakeholders as they typically request certain features to be de-
livered in specific releases. Hence, customers or product managers heavi-
ly influence the production schedule.  

As further stakeholders, the production team executing the production 
work activities and its concerns like familiarity with the selected technol-
ogies or appropriate tool support should be considered. Operators re-
quire adherence to their deployment rules and cycles. Certification units 
require receiving releases long enough before deployment by the opera-
tors is planned, etc. 

 

Figure 54: Steps of the Preparation Phase 

Producibil-
ity Stake-
holders 



Producibility Analysis Method 

110   

Each stakeholder has certain typical concerns regarding producibility. For 
two of the main stakeholders, namely architects and production plan-
ners, Table 2shows examples of typical concerns. As we can see, archi-
tects mainly aim at early feedback on their architectural decisions. With 
such typical concerns in mind, architects, production planners can be in-
terviewed and producibility scenarios can be elicited. 

Typical Concerns Architect 
Typical Concerns Production 

Planner 
Early fulfillment of quality re-
quirements 

Project stays within time and 
budget 

Early feedback on the appropri-
ateness of technologies 

Release plan can be met 

Early feedback on reuse decisions 
 

Teams can work independent of 
each other 

Early feedback that integration 
works as planned 

Suppliers are integrated properly 

Early feedback that developers 
are able to adhere to the archi-
tecture 

Project team is used to capacity 

… … 

Table 2:  Examples of Producibility Concerns 

The next section introduces producibility scenarios in more detail. 

5.2.1.2 Producibility Scenarios 

In general, producibility scenarios precisely describe requirements of dif-
ferent stakeholders related to the quality aspect producibility. In that 
sense, the idea behind producibility scenarios is similar to architectural 
scenarios that are used to precisely describe quality requirements in the 
architecture [CKK01]. The main difference is that they do not only affect 
the architecture but also the production plan. 

Producibility scenarios explicitly or implicitly draw links between instances 
of elements of the architecture meta-model and instances of elements of 
the production planning meta-model. They specify, for instance, how ar-
chitectural elements are supposed to be related to production iterations 
or to resources in a concrete case. This would be an explicit relationship 
between architectural elements and production planning elements. In-
stead of directly referring to architectural elements, producibility scenari-
os can, for instance, also refer to certain features or feature groups. In 
this case, the relationship of architectural elements and production plan-
ning elements is specified implicitly. The following two examples illus-
trate this: 

Producibil-
ity Con-
cerns 
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Producibility Scenario 1: All architectural elements contributing to system 
monitoring must be delivered within the first release to enable continu-
ous checks of system health (by the operator). 

Producibility Scenario 2: Three (aggregated) architectural elements that 
are loosely coupled should be foreseen in the architecture to ease the as-
signment to the three teams and reduce communication overhead. 

Producibility Scenario 3: The functionality to support applying for busi-
ness trips and supporting accounting of business trips must be complete-
ly available after two releases. 

Producibility Scenario 1 and 2 explicitly refer to architectural elements. 
Producibility Scenario 3 implicitly refers to architectural elements. The 
functionality to support applying for business trips is realized in certain 
architectural elements but the mapping of the functionality to architec-
tural elements needs to be figured out before the producibility scenario 
can be analyzed. Section 5.2.3 refers to this mapping. 

Furthermore, the examples show that a producibility scenario can be 
driven rather from the architect’s, the production planner’s, or the cus-
tomer’s perspective. Producibility Scenario 1 will rather be driven by an 
architect because one of the architect’s producibility concerns is to as-
sure the fulfillment of certain quality requirements early. Producibility 
Scenario 2 will rather be mentioned by a production planner that wants 
to use the available resources most effectively. Producibility Scenario 3 
first of all addresses a concern of a customer. 

Producibility scenarios can be documented according to the template 
shown in Table 3. 

Name Name of the scenario 

Stakeholder 
The main stakeholder interested in this scenar-
io. 

Producibility 
Dimension 

Dimension selected from the quality model of 
producibility (alignment of architecture and 
production WBS, alignment of architecture and 
production schedule, alignment of architecture 
and resource assignments) 

Description Description of the scenario 

Involved AE 
The instances of architectural elements refer-
enced in the scenario 

Involved PPE 
The instances of production planning elements 
(e.g. production work activities, production 
iterations, resources) referenced in the scenario 

Table 3:  Producibility Scenario Template 

Example 
Producibil-
ity Scenario 

Producibil-
ity Scenario 
Template  
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As already discussed before, a producibility scenario is always based on a 
concern of a specific stakeholder. Hence, the stakeholder is part of the 
producibility scenario template. 

Each producibility scenario is related to one of the producibility dimen-
sions of the quality model of producibility. This gives each producibility 
scenario a clear focus and does not mix up different aspects of produci-
bility. 

The core of the producibility scenario is the description. Here, the rela-
tionship of instances of elements of the architecture meta-model and in-
stances of elements of the production planning meta-model is described 
as precise as possible. After that, the involved architectural and produc-
tion planning elements are made explicit in the rows “Involved AE” and 
“Involved PPE”. If the involved architectural and production planning el-
ements are not yet precisely known they can be added in the mapping 
step of producibility scenarios (Section 5.2.3). 

5.2.1.3 Elicitation Process 

The elicitation process for producibility scenarios consists of three major 
steps. First of all, producibility stakeholders are identified. Then, inter-
views with the identified stakeholders are conducted. Finally, the produc-
ibility scenarios are documented. 

The first step of the elicitation process is the identification of producibil-
ity stakeholders. Concrete persons that are good candidates to represent 
the stakeholder role need to be selected in an organization, for instance, 
by the production planner. 

After stakeholders have been identified, they are interviewed. Interviews 
with stakeholders are the main source of information to formulate pro-
ducibility scenarios. Requirements documents, for instance, can also be a 
source of information, but as producibility is not systematically consid-
ered in software projects today, we do not rely on information inside the 
existing documentation. 

Communication between architects and production planners can already 
be established in this initial step of the producibility analysis method. Ar-
chitects and production planners as typical producibility stakeholders can 
interview each other to elicit producibility scenarios, for instance. 

During and after performing the interviews producibility scenarios are 
documented. The template introduced in Section 5.2.1.2 can be used in 
this case. 

While in the description part of the scenario, for instance, architectural 
elements or production planning elements might be summarized in for-
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mulations like “all architectural elements contributing to system monitor-
ing” or “three teams” and not listing them one by one, this is done in 
the rows “Involved AE” and “Involved PPE” in the producibility scenario 
template. These two rows are essential for modeling the producibility 
scenario and determining producibility metrics. In first versions of a pro-
ducibility scenario documentation, involved AE and involved PPE do not 
necessarily need to be listed. This might disturb the process of initial elici-
tation and documentation of producibility scenarios as it requires addi-
tional effort to be spent by the architect to map the description part of 
the scenario precisely to architectural elements and production planning 
elements. But later on in the step “Mapping of Producibility Scenarios” 
(Section 5.2.3) they need to be added based on the architecture docu-
mentation or by interviewing architects and production planners. 

5.2.2 Modeling of Producibility Views 

The determination of producibility metrics in the execution phase of a 
producibility analysis is based on producibility views. Such producibility 
views are used to specify the relationships of architectural elements and 
production planning elements. Each producibility view focuses on one 
dimension of producibility and can be used to determine a specific set of 
producibility metrics. 

Three producibility views are used in this thesis: 

– Production Work Activity View 

– Production Iteration View 

– Resource Assignment View 

Each of the views shows the relationship of architectural elements and 
the production planning element referenced in the name of the produci-
bility view, i.e. production work activities, production iterations, and re-
source assignments. Hence, the three views also relate to the three di-
mensions of producibility introduced in Chapter 4. In principle, the three 
producibility views have already been introduced in Chapter 4. The visu-
alizations of examples of the producibility metrics use the ideas behind 
the producibility views. Figure 37 shows a production work activity view, 
Figure 43 a production iteration view, and Figure 47 a resource assign-
ment view. 

The modeling of the producibility views starts with the production work 
activity view. Afterwards, the production iteration view and the resource 
assignment view can be modeled.  
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As a prerequisite for conducting a producibility analysis, the production 
plan must contain a production work breakdown structure (see Section 
5.1) and a structural view of the architecture. Based on these inputs, the 
production work activity view can be modeled.  

If we assume production work activities referring to elements of the 
requirements like features (see Section 2.2.2), we need to map such a 
feature-based specification of work onto architectural elements as a first 
step. In this case, traceability is essential. 

Traceability from the requirements to architectural elements is required 
to facilitate this initial mapping step. In an ideal case, a traceability matrix  
similar to the one shown in Figure 2 allows the identification of architec-
tural elements based on features that are referenced in production work 
activities. If such traceability information is not made explicit in any form, 
it can be an effort-intensive task to derive the mapping between features 
and architectural elements based on, for instance, interview with archi-
tects and requirements engineers. If we assume a software project that is 
performed based on state-of-the-art Software Engineering methods, we 
can assume that the traceability information is made explicit. Unfortu-
nately, the state-of-the-practice is that in many cases such traceability in-
formation at least partially needs to be elicited. 

Based on the mapping of production work activities and architectural el-
ements the production wok activity view can be documented. The mod-
eling of production work activity views is supported by extensions made 
to the tool Enterprise Architect. An overview on available tool support is 
given in Section 5.4.2. 

The production iteration view can be modeled based on the production 
work activity view and the production schedule. The production work 
activity view provides the information on which architectural elements 
are related to production work activities. The production schedule con-
tains the information on the assignment of production work activities to 
production iteration. Consequently, the relationships of architectural 
elements and production iterations can be derived and modeled. 

Besides the production iteration view, the resource assignment view can 
be modeled after the production work activity view is available. The 
assignment of resources to production work activities is part of the pro-
duction plan. The mapping of production work activities and architectur-
al elements is known from the production work activity view. Conse-
quently, the relations of resources and architectural elements can be 
modeled. 
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5.2.3 Mapping of Producibility Scenarios 

Producibility scenarios describe desired relationships between architec-
tural elements and production planning elements, as mentioned in Sec-
tion 5.2.1.2. However, the architectural and production planning ele-
ments sometimes are not referenced explicitly. In the example Producibil-
ity Scenario 1, for instance, all architectural elements contributing to sys-
tem monitoring and the first release are referenced. The architectural el-
ements contributing to system monitoring and the iterations making up 
the first release need to be identified to analyze the fulfillment of the 
producibility scenario. Hence, the producibility scenarios need to be 
mapped to architectural and production planning elements to enable 
their analysis. 

Each producibility scenario is potentially related to a set of architectural 
elements and a set of production planning elements. Such elements are 
added to the documentation of producibility scenarios according to the 
template presented in Section 5.2.1.2. These sets are input to the pro-
ducibility metrics related to sets of architectural elements and production 
planning elements determined in the execution phase. 

If the general description of a production scenario cannot be mapped to 
architectural elements and production planning elements, this is an indi-
cator that the architectural design and/or the production plan have not 
yet been worked out in enough detail. In an ideal case, based on the de-
scription part of a producibility scenario it should be possible to identify 
all relevant elements based on the documentation of the architecture, 
the production plan. If this is not possible, at least the architect and the 
production planner should be able to list the respective elements verbal-
ly. Unfortunately, based on our experience in many cases the documen-
tation is not sufficient and architects and production planners need to be 
interviewed to identify the respective elements. The architecture docu-
mentation and the production plan should be extended with additional 
producibility related information if required. 

5.3 Execution Phase 

In the execution phase, potentially critical architectural and production 
planning elements are identified. The producibility views modeled in the 
preparation phase serve as input. All producibility metrics introduced in 
Chapter 4 can be determined based on the three producibility views. 
Therefore, the producibility views are processed by an analysis algorithm 
that detects critical architectural and production planning elements 
based on certain thresholds that are defined per producibility metric. Fur-
thermore, the metrics relevant for eventually specified producibility sce-
narios are determined. 
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The concrete outputs of the execution phase are: 

– List of critical architectural elements including the values of the pro-
ducibility metrics that caused the classification as critical 

– List of production planning elements including the values of the pro-
ducibility metrics that caused the classification as critical 

– Results regarding Producibility scenarios 

The list of critical production planning elements is separated into a list of 
critical production work activities, production iterations, and resources. 

The results of the execution phase are used by architects and production 
planners in the consolidation phase to consolidate the lists and derive 
recommendations. 

In the following sub-section, the identification of critical elements based 
on the analysis algorithm is described. 

5.3.1 Identification of Critical Elements 

As mentioned above, the identification of potentially critical elements is 
based on the producibility views. Each producibility view refers to archi-
tectural elements and a certain type of production planning element, 
i.e., a production wok activity, a production iteration, or a resource. 
Consequently, a certain subset of the overall set of producibility metrics 
can be determined from each producibility view. Based on an evaluation 
of the values of the producibility metrics with respect to certain thresh-
olds, architectural and production planning elements can be assigned to 
the lists of critical architectural and production planning elements while 
processing a certain producibility view. 

The identification of potentially critical elements follows a specific analy-
sis algorithm. One producibility view after the other is analyzed. The or-
der of analyzing the producibility views in general is arbitrary. Typically, 
the production work activity view is available before the production iter-
ation view, and the resource assignment view. Hence, we decided to 
process the production work activity view first, followed by the produc-
tion iteration view, and the resource assignment view. In each analysis 
step, certain critical elements are identified and added to the respective 
lists of critical production work activities (PWA), critical production itera-
tions (PI), critical resources (RES), and critical architectural elements (AE)  
Figure 55 provides an overview of the algorithm. The complete algorithm 
in pseudo-code notation can be found in Appendix B. 
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Table 4 shows the conditions/thresholds that are used by default to 
check, if an elements is supposed to be critical. If the condition in Table 
4 is evaluated to true, the respective element is classified as critical. The 
definition of the conditions followed a rather pessimistic strategy. The 
thresholds when an element is classified as critical are rather low. If we 
take as an example #PWA_producing(AE) > 1, this condition is evaluated 
to true as soon as #PWA_producing(AE) does not have its optimal value. 
But there are cases where already a value of #PWA_producing(AE) = 2 is 
critical, for instance, if two different teams that are geographically dis-
tributed work on the AE. Hence, it is important to use the context fac-
tors and the checklists presented in Section 5.4.2 to consolidate if the el-
ement is really critical. 

Producibility Metric Condition checked 

#PWA_producing(AE) >1 
#PWA_consuming(AE) >0 
#AE_produced_by(PWA) >1 
#AE_consumed_by(PWA) >1 
Coupling(PWA) >0 

 

Figure 55: Overview Identification Algorithm
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#Shared_AE(PWA) >0 
#PI_producing(AE) >1 
ProductionDuration(AE) >1 
#AE_involved_in(PI) > round(|AEall| / |PIall|) 
Coupling (PI) >0 
#Shared_AE(PI) >0 
%Shared_AE (PI) >0 
%Completed_AE_after(PI) < IterationNumber(PI) / |PIall|  
%Created_AE_after(PI) < IterationNumber(PI) / |PIall| 
#Resources_working_on 
(AE) 

>1 

#AE_worked_on_by(Res) > round(|AEall| / |RESall|) 
Coupling(Res) >0 
#Shared_AE(Res) >0 

Table 4:  Conditions for identifying critical Elements 

The following functions are used in Table 4 and need further explana-
tion: 

- round() determines the next larger integer number  based on a real 
number provided as input 

- |{AE}| is the number of elements in the set {AE} 

- IterationNumber(PI) is an integer number representing the produc-
tion iteration PI. The production iterations are numbered sequential-
ly, i.e. 1,2,3… 

Table 4 can be found again in Appendix A. 

In the following, an example for performing the identification of critical 
elements based on a given set of producibility views is presented. 

The system is supposed to be built in three production iterations with 
three teams involved overall. The modeling of producibility views has 
been performed based on inputs from architects and production plan-
ners. The resulting production iteration view is shown in Figure 56. The 
resource assignment views is shown in Figure 56. The inputs of architects 
and production planners the example is based on can be found in Ap-
pendix D. 

Example 
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If we apply the analysis algorithm to the producibility views modeled in 
Section 5.2.2, we get the lists of critical elements shown in Table 5, Ta-
ble 6, Table 7, and Table 8 as a result. 

 

Figure 56: Example - Production Iteration View 

 

Figure 57: Example - Resource Assignment View 



Producibility Analysis Method 

120   

Critical AE 

#P
W

A
_p

ro
du

ci
ng

 

#P
W

A
_c

on
su

m
in

g 

#P
I_

pr
od

uc
in

g 

Pr
od

uc
tio

nD
ur

at
io

n 

#R
es

ou
rc

es
_w

or
ki

ng
_o

n 
 

C
rit

ic
al

D
im

en
si

on
s 

AE2 2 5 2 2 1 2 
AE3 3 1 2 2 1 2 
AE4 3 3 3 3 3 3 
AE5 2 1 2 2 2 3 

Table 5:  Example - List of Critical Architectural Elements 
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PWA1 1 2 4 0 0 
PWA2 2 0 6 2 100 
PWA3 3 2 8 3 100 
PWA4 1 3 7 1 100 
PWA5 1 1 4 1 100 
PWA8 2 2 2 1 50 
PWA9 2 1 5 2 100 

Table 6:  Example - List of Critical Production Work Activities 
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PI1 4 0 3 75 10 40 
PI2 6 0 4 2/3 50 70 
PI3 5 0 2 40 100 100 

Table 7:  Example - List of Critical Production Iterations 
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Team1 4 2 1 25 
Team2 4 2 2 50 
Team3 5 2 2 40 

Table 8:  Example - List of Critical Resources 

In each table, the cells representing a value that makes the related condi-
tion in Table 4 to be true is marked in grey. This is helpful for architects 
and production planners to start the interpretation of the results of the 
execution phase in the consolidation phase. 

Besides information on single architectural and production planning el-
ements, the execution phase comes up with results regarding the pro-
ducibility scenarios eventually modeled in the preparation phase. The fol-
lowing sub-section describes the execution phase deals with the produc-
ibility scenarios. 

5.3.2 Analysis of Producibility Scenarios 

As mentioned in Section 5.2.1, producibility scenarios are used to specify 
requirements into production from different stakeholders. The produci-
bility analysis evaluates, if the producibility scenarios are likely to be ful-
filled. In the mapping step of producibility scenarios described in Section 
5.2.3, relationships from a producibility scenario to producibility views 
are established. Hence, architectural elements and production planning 
elements involved in the respective producibility scenarios are identified. 

The execution phase of the producibility analysis makes two contribu-
tions towards analyzing producibility scenarios.  

The execution phase provides results regarding the producibility metrics 
related to producibility scenarios defined in Chapter 4. These producibil-
ity metrics are: 

– #PWA_producing{AE} 

– #PI_involving({AE}) 

– PI_finishing({AE}) 

– #Resources_working_on({AE}) 
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The producibility metrics that are relevant for a specific producibility sce-
nario depend on the producibility dimension that is addressed by the 
scenario. #PWA_producing({AE}) is relevant for the alignment of archi-
tecture and production work breakdown structure. #PI_involving({AE}) 
and PI_finishing({AE}) are relevant for the alignment of architecture and 
production schedule. #Resources_working_on({AE}) is relevant for the 
alignment of architecture and resource assignments. 

Besides determining producibility metrics related to producibility scenari-
os, the execution phase makes a second contribution regarding produci-
bility scenarios. Information from the identification of critical elements 
described in Section 5.3.1 that is relevant for a specific producibility sce-
nario is attached to it. If, for instance, an architectural element that is in-
volved in a producibility scenario is classified as critical, this information is 
attached to the producibility scenario. 

Table 9 shows an example of an extended version of the template for 
documenting producibility scenarios. Additional rows have been added 
with producibility metrics relevant in the context of the producibility sce-
nario. The information in the table is the starting point to analyze the 
producibility scenario in the consolidation phase. 

Name Name of the scenario 
Stakeholder The main stakeholder interested in this sce-

nario. 
Producibility Dimension Dimension selected from the quality model 

of producibility (alignment of architecture 
and production WBS, alignment of architec-
ture and production schedule, alignment of 
architecture and resource assignments) 

Description Description of the scenario 
Involved AE The instances of architectural elements 

referenced in the scenario 
Involved PPE The instances of production planning ele-

ments (e.g. production work activities, pro-
duction iterations, resources) referenced in 
the scenario 

#PWA_producing({AE}) 
The number of PWAs involved in producing 
the set of AEs involved in the producibility 
scenario 

#PI_involving({Involved 
AE}) 

The number of PI involved in producing the 
set of AEs involved in the producibility sce-
nario  

PI_finishing({Involved 
AE}) 

The ID of the PI where all AEs involved in 
the producibility scenario are completed. 

#Re-
sources_working_on({I
nvolved AE}) 

The number of resources involved in pro-
ducing the AEs involved in the producibility 
scenario. 
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#Critical AE involved 
The number of critical AE involved in the 
producibility scenario. 

#Critical PWA involved 
The number of critical PWA involved in the 
producibility scenario. 

#Critical PI involved 
The number of critical PI involved in the 
producibility scenario. 

#Critical RES involved 
The number of critical RES involved in the 
producibility scenario. 

Table 9:  Example for extended Producibility Scenario Template 

5.4 Consolidation Phase 

In the consolidation phase of the producibility analysis, the results of the 
execution phase are analyzed by architects and production planners, and 
recommendations on how to change the architecture or the production 
plan are derived to increase the producibility of the system. As men-
tioned above, the input to the consolidation phase for architects and 
production planners are the lists of critical elements derived in the execu-
tion phase.  

The consolidation phase is conducted in three steps as shown in Figure 
58. 

In a first step, architects and production planners check the received lists 
for completeness and extend them if required. The reason for eventually 

 

Figure 58: Steps of the Consolidation Phase 
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required extensions is, that the algorithm used in the execution phase 
detects critical architectural and production planning elements based on 
their relationships and not based on properties of single architectural or 
production planning elements. If an architectural elements is supposed 
to be quite complex because of the algorithms to be implemented in-
side, for instance, this might be a reason to classify the architectural el-
ement as critical. Architects and production planners can add elements 
based on their personal experience in this step. 

In a second step, the context factors of the quality model of producibility 
(see Section 4.5) are applied to the lists of critical elements. Therefore, 
the context factors have been used to create checklists with questions 
regarding such context factors. All questions of the checklist can be an-
swered with yes or no. Each question that is answered with yes reduces 
the risk that the related element causes production problems. 

In a third step, recommendations are derived by architects and produc-
tion planners that reduce the risk of production problems caused by the 
critical elements identified. This step is conducted jointly by architects 
and production planners. The reason for the get together is that changes 
made to the architecture or the production plan influence each other 
and need to be aligned to each other. Furthermore, this step again en-
forces the communication between architects and production planners. 
This final step of the consolidation phase is supported by a list of typical 
options for recommendations. 

The concrete outputs of the consolidation phase are: 

– Consolidated lists of critical elements 

– List of recommendations 

The following section discusses the steps of the consolidation phase in 
more detail. 

5.4.1 Completeness Check of List of Critical Elements 

Architects and production planners check the lists of critical elements for 
completeness in this step based on their experience. The reason for the 
check for completeness is that the algorithm used to identify critical ele-
ments can only consider the information modeled in the producibility 
views. Properties of, for instance, architectural elements like internal 
complexity or experiences made with similar architectural elements in the 
past are not included in the model but should lead to the decision to 
classify an architectural element as critical. 

Table 10 shows examples of architectural elements that should be con-
sidered as critical and that cannot be detected by the algorithm used in 
the execution phase. 
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Potentially Critical Architectural Elements 
AEs that are complex because of algorithms, 
data structures, etc. 
AEs with high quality requirements regarding 
security, performance, availability, flexibility, 
etc. 
AEs using legacy technology or any technology 
where little expertise is available in the organi-
zation 
AEs involved in realizing complex connectors 
AEs that are provided by external suppliers 
… 

Table 10:  Potentially Critical Architectural Elements 

Complex architectural elements bear the risk of causing delays, effort 
overhead, or low quality. Realization and testing of complex algorithms, 
for instance, might cause delays or effort overhead. The same holds true 
for architectural elements with high quality requirements. Technologies 
might cause production problems, especially if little experience on the 
technologies are available in the organization or if only few experts are 
available at all like in the case of legacy technologies. Connectors are of-
ten a source of production problems because of their inherent complexi-
ty. Architectural elements of external suppliers should be considered crit-
ical, for instance, if the supplier is not yet well known to an organization. 

Potentially Critical Production Iterations 
First PI in a project 
Last PI in a project 
PI involving complex AE 
PI involving external resources for the first time 
PI performed during special season 
… 

Table 11:  Potentially Critical Production Iterations 

Table 11 shows potentially critical production iterations. The first and the 
last production iteration are often critical. The first one because the 
teams need to get started and the last one because the project needs to 
get finished and all issues remaining from previous production iterations 
need to be addressed in addition. Production iterations involving com-
plex architectural elements might be a problem, as well as production it-
erations involving external suppliers or teams for the first time. There can 
even be seasonal reasons for classifying a production iteration as critical, 
for instance, if it is supposed to be performed during the holiday season 
or during flu season. 
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Potentially Critical Resources 
Resources located far abroad from core team 
External suppliers 
International teams with cultural differences 
… 

Table 12:  Potentially Critical Resources 

Table 12 shows potentially critical resources. Resources might be sup-
posed critical if they are located far abroad the core team. External sup-
pliers need to be handled with specific care especially if they are not yet 
well known. International teams involving different cultures can be a 
source of issues as well. 

After architects and production planners have considered additional criti-
cal elements, the lists are consolidated with respect to the context fac-
tors defined in the quality model of producibility. 

5.4.2 Application of Context Factors 

In this step, context factors are applied to the lists of critical elements. As 
mentioned above, checklists containing questions derived from the con-
text factors are used in this case. All questions can be answered with yes 
or no. The questions are formulated in a way that each question that is 
answered with yes reduced the risk of production problems caused by 
the respective element. After the context factors have been applied to 
the respective critical elements, architects and production planners have 
to decide if they still consider an element as critical or if the context fac-
tors mitigate the production risks from their point of view. This decision 
is not taken automatically but requires human judgment. 

Table 13 shows as an example the checklist for critical architectural ele-
ments. The checklist consists of a section with general questions that 
should be asked in the case of each critical architectural element. In ad-
dition, it contains questions that should be asked in case the respective 
producibility metric exceeded the defined threshold. 

General questions for each AE: 
� Is the quality of the architecture documentation with respect to the AE high? 
� Is a production work activity type, i.e. a guideline describing how to produce 

the AE available? 
� Are certain development activity types supporting the production of the AE, for 

instance, continuous integration, regression testing, generation of parts of the 
AE, etc.? 

� Are tools providing specific support for the production of the AE? 
� Can the AE be built based on reuse and is a process how to reuse attached to 

the reusable artifacts? 
� Are the resources providing and potentially adapting the reusable artifacts 

available when the AE is supposed to be produced? 



 Producibility Analysis Method 

  127 

� Is the available team experienced with the technologies used to realize the AE? 
� Is the AE produced by internal resources and are they co-located? 
� If the AE is produced by external resources or internal resources that are not 

co-located, is an appropriate communication infrastructure in place, and an in-
frastructure that facilitates the exchange of artifacts? 

� Are contact persons for the AE under analysis and for all related AE in place 
that can help in solving issues? 

 
#PWA_producing(AE) 
� Is a certain order defined for performing the PWAs? 
� Are the PWAs performed by the same team (or by co-located teams)? 
� Is the internal design of the AE prepared for parallel work and/or incremental 

extension? 
� Are integration and test processes defined for the AE? 
� Are deployment processes defined for the AE? 
� Are coding guidelines defined for the AE? 
� Does the tool infrastructure support parallel production well? 
 
#PWA_consuming(AE) 
� Are the PWAs consuming the AE produced later on? 
� Are the consuming PWAs performed by co-located resources? 
� If the resources producing consuming PWAs are not co-located, are appropri-

ate communication infrastructures and infrastructures to exchange artifacts es-
tablished between the involved resources? 

� Do the involved resources know each other personally? 
� Is the quality of the architecture documentation high, especially the documen-

tation of the interfaces of the AE? 
 
#PI_producing(AE) 
� Are the same resources producing the AE throughout all iterations? 
� Is the internal design of the AE prepared for incremental extension? 
� Are integration and test processes defined for the AE? 
� Are deployment processes defined for the AE? 
� Are coding guidelines defined for the AE? 
 
#Resources_working_on(AE) 
� Are the resources producing the AE co-located? 
� Are appropriate communication infrastructures and infrastructures to exchange 

artifacts established between the involved resources? 
� Do the involved resources know each other personally? 
� Does each involved team have one single point of contact, for instance, a chief 

programmer? 
� Do the resources work on parts of the AE separated in the design of the AE? 
� Is one resource responsible for integration, final test, and deployment of the 

overall AE? 

Table 13:  Checklist for Architectural Elements 

Similar checklists for production work activities, production iterations, 
and resource assignments exist and that can be used by production 
planners can be found in Appendix C.  
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The application of context factors to the lists of critical elements also 
affects the producibility scenarios. If certain elements are removed from 
the lists of critical elements, this affects the producibility scenario as po-
tentially less critical elements are involved. The documentation of the 
producibility scenario has to be adapted in this case. 

The application of the checklists are a good preparation for deriving rec-
ommendations in the next step. If certain answers related to critical ele-
ments are answered with no, for instance, if no test and deployment 
processes are defined for an architectural elements that is often modi-
fied, architects could recommend to invest in the definition of test and 
deployment processes. In the following section, it is described how rec-
ommendations can be derived to mitigate the risk of production prob-
lems caused by the critical elements. 

5.4.3 Derivation of Recommendations 

The final step of the consolidation phase is the derivation of recommen-
dations. After the lists of critical elements that came out of the execution 
phase has been checked for completeness and the producibility context 
factors have been applied, architects and production planners have to 
decide which measures to take to prevent potential production prob-
lems. 

Architects and production planners have certain options for recommen-
dations they can realize in their respective area of responsibility. Archi-
tects can change, for instance, the overall functional decomposition of 
the system or perform local changes by, for instance, splitting single ar-
chitectural elements. Production planners can change the production 
work breakdown structure, the assignment of production work activities 
to production iterations, the assignments of resources, etc. Furthermore, 
both, architects and production planners can try to influence the context 
factors of the quality model of producibility to prevent production prob-
lems caused by critical elements. From an overall project perspective, ar-
chitects and production planners jointly should identify the measures 
that lead to an improvement of producibility which often are a combina-
tion of actions to be performed on the architecture and actions to be 
performed on the production plan. Hence, architects and production 
planners conduct this last step of the consolidation phase together. 

Nevertheless, it is beneficial to provide a general overview of potential 
recommendations from an architect’s and a production planner’s point 
of view to show the available options to them as a starting point for 
their joint discussion.  

The following tables provide an overview of possible recommendations. 
They are not complete in a sense that no other options can be imagined. 

Context 
Factors and 
Producibil-
ity Scenari-
os 
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But they provide a good starting point for the derivation of recommen-
dations or measures to increase the producibility in a concrete case. 

Table 14 shows potential recommendations for critical architectural ele-
ments. 

Recommendations regarding Architectural Elements 
Split AE 
Improve internal design of the AE to support parallel work and/or 
incremental extension 
Try to produce AE based on reuse 
Ask production planner to reduce number of involved resources pro-
ducing the AE by changing resource assignments 
Ask production planner to reduce number of PWAs producing the AE 
Ask production planner to reduce number of production iterations 
producing the AE 
Improve tool support to produce the AE 
Define production work activity type to support production of the AE 
Define development activities specifically supporting the production of 
the AE 
Improve the documentation of the AE 
… 

Table 14:  Recommendations regarding Architectural Elements 

Table 15 shows potential recommendations regarding production itera-
tions. 

Recommendations regarding Production Iterations 
Move AEs or PWAs to other PIs 
Extend duration of PI, plan time buffer at the end of the iteration 
Involve different resources in the PI 
Reduce number of involved resources to save communication effort 
Improve support for producing involved AE, e.g. define production 
work activity types, improve tool support, etc. 
Ask architect for splitting shared AE if possible 
Ask architect for reducing coupling between AEs 
… 

Table 15:  Recommendations regarding Production Iterations 

Table 16 shows potential recommendations regarding resources. 

Recommendations regarding Resources 
Reduce AEs produced by resource 
Clearly assign AEs to resources, prevent sharing of AEs 
Improve communication between resources 
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Change team composition 
Ask architect for splitting shared AE if possible 
Ask architect for reducing coupling between AEs 
Teach resources in used technologies 
… 

Table 16:  Recommendations regarding Resources 

Table 17 shows potential recommendations regarding production work 
activities. 

Recommendations regarding Production Work Activities 
Change work breakdown structure 
Reduce number of involved resources to save communication effort 
Improve support for producing involved AE, e.g. define production 
work activity types, improve tool support, etc. 
Ask architect for splitting shared AE if possible 
Ask architect for reducing coupling between AEs 
Ask architect to change functional decomposition with respect to the 
PWAs 
… 

Table 17:  Recommendations regarding Production Work Activities 

In the example used in Section 5.3.1, the following recommendations 
could help to prevent potential production problems. The solutions cho-
sen here directly influence the respective producibility metrics: 

- Split AE4: The architectural element AE4 is split into three parts. One 
of the three parts is assigned to each production iteration. 

- Move AE2: AE2 is moved completely to PI1, i.e. the functionality 
supposed to be added in PI2 in the original plan is already complete-
ly realized in PI1. 

- Move AE3: AE3 is moved completely to PI1 with the same argumen-
tation than in the case of AE2. 

- Move AE5 and change resource assignment: AE5 is completely 
moved to PI2 and assigned to Team 2. 

The recommendations have several positive effects. The overlapping be-
tween the production iterations is eliminated (see Figure 59), i.e. no ar-
chitectural elements are shared anymore between production iterations. 
Furthermore, no architectural elements are shared between teams. 

 

Example 
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The architectural element AE4 is no longer modified in each production 
iteration and by different teams. The splitting might lead to a certain 
amount of redundancy in the resulting three architectural elements 
AE4.1, AE4.2 and AE4.3. As an alternative to splitting, it eventually 
would have been possible to try to improve the internal structure of AE4 
in a way that the modification performed over time mainly affect sepa-
rate parts. This measure could have been supported in addition by defin-
ing regression tests in each production iteration to make sure functional-
ity is not broken later on, and to take specific care of documenting the 
architectural element. The architectural elements AE2, AE3, and AE5 
have been moved in addition and AE5 has been completely assigned to 

 

Figure 59: Improved Production Iteration View 

 

Figure 60: Improved Resource Assignment View 
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Team 2. Figure 60 shows the improved resource assignment view. 

In the end, each production iteration produces four architectural ele-
ments completely, which leads to a sustainable growth of the system 
over time. The risk of breaking functionality as architectural elements are 
modified several times has been reduced. Especially, production iteration 
PI2 benefits from the recommendations. Less architectural elements are 
involved and architectural elements are no longer shared with other pro-
duction iterations. The risk of not finishing PI2 in time or the risk of ef-
fort overhead in PI2 has been reduced. 

Architects and production planners finally have to make conclusions 
regarding the producibility scenarios. The recommendations to address 
the criticality of architectural and production planning elements influ-
ence the producibility scenarios as the number of critical elements in-
volved in a producibility scenario might be reduced. Nevertheless, it must 
be decided to which degree a producibility scenario is fulfilled and if 
additional recommendations need to be formulated. 

Similar to architecture evaluations, the decision if and to which degree a 
scenario is fulfilled needs to be taken by an expert and can hardly be au-
tomated. The documentation of a producibility scenario as shown in Ta-
ble 9 provides facts that can be used by architects and production plan-
ners to take a decision. If architects and production planners decide that 
a producibility scenario is not fulfilled, they have again the options for 
recommendations introduced in Table 14, Table 15, Table 16, and Table 
17 as a guideline. 

The current support for deriving recommendations is limited. The focus 
of this work is to support the analysis of producibility, i.e., the identifica-
tion of critical architectural and production planning elements. The lists 
of recommendations are not meant to be complete and they are not yet 
validated. A more comprehensive support for deriving recommendations 
requires a better understanding of the process of design for producibil-
ity, i.e., how to guarantee producibility by construction. This process is 
not considered in detail in this dissertation but left open for future work. 

In the following section, the available tool support is presented. 

5.5 Tool Support 

The producibility analysis is supported by a tool prototype. The tool pro-
totype is realized as an extension of Enterprise Architect [EA11].  Enter-
prise Architect (EA) is a professional modeling tool broadly used in indus-
trial practice. The two main features of the tool prototype supporting the 
producibility analysis are: 

Recom-
mendations 
regarding 
Producibil-
ity Scenari-
os 

Limited 
Support for 
Derivation 
of Recom-
mendations 
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– Support for modeling producibility views: All elements required to 
model producibility views have been integrated into Enterprise Archi-
tect. Hence, models of an architecture can now be complemented by 
production work activity views, production iteration views, and re-
source assignment views. 

– Determination of producibility metrics: The producibility metrics that 
have been defined in the quality model of producibility can be de-
termined based on the modeled producibility views. 

In the following, the two main features that have been realized are de-
scribed in more detail. 

Figure 61 shows how the elements required to model producibility views 
have been integrated into Enterprise Architect. The so-called toolbox of 
the Enterprise Architect has been extended by a software production 
tool. The software production tool contains the elements used in soft-
ware production like architectural elements, production iteration, etc. 
The can be added via drag & drop to the main working area in the mid-
dle of the screen to model the respective producibility views. Thereby, 
producibility views can be added to the overall model via the project 
browser shown on the right. 

Technically, the software production tool to model producibility views is 
realized by means of a UML profile. The meta model of software produc-
tion that contains all required modeling elements has been partially 

Modeling 
Producibil-
ity Views 

Figure 61: Modeling Producibility Views in EA 
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modeled in Enterprise Architect as a UML profile that now can be im-
ported to each project that wants to model producibility views. 

The producibility metrics of the quality model of producibility can be au-
tomatically determined based on the producibility views modeled in EA. 
Technically, the metric determination uses the feature of EA to formulate 
SQL queries [SQL] on the underlying model. EA stores the models in an 
underlying SQL database. By means of an EA internal SQL model editor, 
the SQL queries are formulated. Queries can be stored, which enables us 
to formulate queries for each producibility metric, store them, and reuse 
them later on. Figure 62 shows, how metrics can be formulated in the 
SQL editor of EA. 

The tool prototype shows the technical feasibility of modeling producibil-
ity views and determining producibility metrics based on such models. 
However, the tool support for the producibility analysis method should 
be extended in the future, for instance, to enable the modeling of con-
text factors as properties of the modeling elements in the software pro-
duction tool in EA. 

 

Determina-
tion of Pro-
ducibility 
Metrics 

Figure 62: SQL Model Query in EA 
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6 Validation 

In this chapter, we present the existing validation results of this thesis 
and give an outlook on future validation activities. The documentation of 
the validation results is twofold. First, we present the results of a series 
of industry and applied research projects that have been conducted 
throughout the course of this thesis. These projects supported in elabo-
rating the contributions of this thesis, i.e. mainly the meta-model of 
software production, the quality model of producibility, and the produc-
ibility analysis method, and in many cases contributed to their initial vali-
dation. Second, we present a case study that has been conducted on the 
final version of the producibility analysis method. 

6.1 Projects Accompanying this Thesis 

In this section, we describe the results of a series of industry and applied 
research projects that accompanied this thesis, contributed to elaborate 
the results and served as initial validation. 

6.1.1 Project “Virtual Office of the Future” 

The probably most influencing project for this thesis is called “Virtual Of-
fice of the Future” (VOF). It has been conducted from 2003-2008 to-
gether with RICOH Co. Ltd., a Japanese manufacturer of office devices 
like so-called Multi-Functional Office Peripherals (MFP). The general pro-
ject setting was that Fraunhofer IESE conducted research on Software 
Engineering for so-called virtual office environments inspired by the prac-
tical problems of Ricoh, and transfers the research results to Ricoh’s MFP 
business unit. 

RICOH’s goal for the near future is to sell integrated office environments, 
i.e. not only office devices, but overall office infrastructures supporting 
the office workflows of their customers with Ricoh devices well integrat-
ed. Hence, they required a Software Engineering methodology that ena-
bles them to develop such systems. The key solution idea in the begin-
ning of the project was to adopt product line technology to build office 
environments based on reuse. Hence, we analyzed typical workflows of 
RICOH customers and created a reference architecture for virtual office 
environments [CJK+08]. The major issue has been the processes that en-
able RICOH to build office environments based on the reference archi-
tecture. They wanted to get concrete guidance on how to build office 
environments. Hence, we developed the idea to provide them with pro-
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cesses similar to the ones they know from producing their MFPs, which 
was the initial idea for software production processes. We defined the 
general strategy to set-up office environments with a customer, which is 
to adopt and iterative approach and realize a set of workflow or work-
flow variants in each iteration [CJM+08]. We provided guidance on how 
to produce workflows and related architectural elements like services, 
backend adapters, etc. In other words, we defined production work ac-
tivities and high level production plans guiding engineers in building 
workflows and related architectural elements. Hence, the VOF project 
provided us with initial experience on software production as we defined 
an architecture and production plans and processes tailored to it. 

The VOF project also provided input to the definition of the quality mod-
el of producibility. We learned about the importance to set-up the archi-
tecture according to the iterations defined in the production plan. The 
idea of software production will not work well if each iteration again 
modifies parts of the system that have already been created and deliv-
ered. As the production of office environments was planned to be con-
ducted in a distributed setting by Ricoh, it was important to assign the 
available resources to different parts of the architecture and define the 
architecture in a way to enable this. 

Overall, the feedback by Ricoh was very positive. Ricoh expects to be 
able to deliver integrated office environments with short time to market 
which is enabled by the concepts of software production [CAU+09]. 
They planned to build a production environment with tools supporting 
the defined production processes and development frameworks that en-
able them to easily create the architectural elements being part of the 
reference architecture. 

6.1.2 Projects in the Airline Management Domain 

In 2008 and 2009, we were involved in a series of projects with a cus-
tomer in the airline management domain. Our tasks were to assess archi-
tectures of large workflow-based information systems supporting, for in-
stance, booking or check-in. Based on our assessments, we also were in-
volved in designing new architectures for the next generation of such 
systems and supported in developing strategies for migration. 

Especially, when we were involved in designing future architectures and 
planning their realization respectively migration, the idea of software 
production again came into play. Similar to the office environments in 
the VOF project, the production or migration of workflows has been a 
recurring pattern and it seemed promising to set-up production process-
es for workflows and related architectural elements and design the archi-
tecture in a way to support the iterative production and deployment of 
workflows. Based on our argumentation on the relationship of architec-
ture, production plan, and production processes we got involved not on-
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ly into architectural design, but also into production planning and pro-
duction process design. Unfortunately, the overall project on the cus-
tomer side was cancelled and consequently our involvement, too. 

Nevertheless, we were able to collect several important lessons learned. 
The idea of software production is applicable in the context of single but 
large workflow-based information systems. We were involved in plan-
ning production and defining production processes. Unfortunately, the 
results have not been used in this case. 

The projects again provided input for the quality model of producibility. 
We learned about the importance of considering the technology mix 
used in a project, especially if legacy systems are involved. Several exter-
nal providers have been involved in the project, which helped us to un-
derstand the importance of understanding their capabilities in the con-
text of software production. 

6.1.3 Project “ProKMU” 

In the applied research project ProKMU (“Produktlebenszyklusmanage-
ment in KMU (ProKMU): Methodische Unterstützung für die kostengüns-
tige Implementierung und Anpassung interdisziplinärer, kooperativer, 
flexibler, PLM-Lösungen”), funded by „Bundesministeriums für Wirt-
schaft und Technologie (BMWi) - Zentrales Innovationsprogramm Mittel-
stand" (ZIM), we developed a method to customize product data ma-
nagement systems. Product data management systems are used by 
manufacturers, for instance, in the automotive industry, to manage bills 
of materials for their products, tracking exactly which parts have been 
used in which product, etc. The systems are characterized by complex 
data structures. Workflows play a minor role. Such systems typically need 
to be customized to the data formats used in organizations, they need to 
be integrated with other systems supporting the manufacturing process, 
etc. 

The project gave us the chance to apply the idea of software production 
to information systems that are less workflow-oriented than the ones 
described in Section 6.1.1 and Section 6.1.2. The major architectural el-
ements that need to be produced in this case are data structures, ser-
vices accessing such data structures, and editors that enable the users of 
the system to view and manipulate data. We defined a customization 
process and reference plans for certain types of customizations together 
with an industrial partner in the project that are inspired by the idea of 
software production. Typical steps of the process are the creation and 
customization of data structures, services, and editors. The industrial 
partner even has built tools to support the production of data structures, 
services, and editors by means of generative approaches. 
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The project showed that the idea of software production is also applica-
ble in the context of data-centric information systems. We received fur-
ther input for the quality model of producibility. Compared to the pro-
jects introduced in the previous sections, we specifically learned about 
the potential of tools to support production. 

6.2 Case Study: Mobile Configuration Assistant 

The producibility analysis method has been evaluated in an industrial 
case study. This section describes the goals of the case study, the con-
text, the approach that has been chosen to conduct the case study, the 
results, and the threats to validity in detail. 

6.2.1 Goals 

The goals of the evaluation conducted in the context of the case study 
are to validate the hypothesis stated in Section 1.5: 

H1 – Effectiveness of the Producibility Analysis Method with re-
spect to Time and Effort: The producibility analysis method reduces 
time and effort spent on production (i.e., in this case the set of all activi-
ties conducted after architectural design and project or production plan-
ning) by at least 25%. 

H2 – Completeness of the Identification of Critical Elements: The 
producibility analysis method detects at least 75% of critical elements 
(including architectural and project or production planning elements). 

H3 – Correctness of the Identification of Critical Elements: At least 
90% of the elements identified by the producibility analysis method as 
critical are really critical in the end, i.e. less than 10% of the identified 
elements are false positives and not causing any production problems. 

The case study was supposed to deliver initial empirical evidence to ac-
cept such hypotheses. 

6.2.2 Context 

The case study has been performed in the context of an industrial project 
conducted by Fraunhofer IESE, the University of Kaiserslautern, and John 
Deere. John Deere is a manufacturer of systems for the agricultural do-
main consisting of machines like tractors or combines but also software 
and services sold with such machines. 

Industrial 
Project 



 Validation 

  139 

The project were the case study was conducted is called “Mobile Con-
figuration Assistant” (MCA). The MCA is a mobile application running 
on a tablet device that is used by drivers of machines to configure their 
equipment. Machines like tractors and attached implements need to be 
configured for a specific task to be performed on the field like planting, 
spraying, or harvesting to deliver optimal performance. Today, the exist-
ing configuration solutions running on a display on the machine are not 
as usable as expected by the drivers, they are hard wired with the ma-
chine and cannot be used with other machines, and the software on the 
display is not easily extendible, for instance, if new configuration options 
are available. The goal of the project therefore was to develop a new 
configuration software on a mobile device that is highly usable also for 
novice users and easily maintainable by John Deere engineers. John 
Deere selected the iPad as the platform to realize the MCA. The goal 
was to develop a native iOS application. Other technologies required to 
realize the MCA were not prescribed by John Deere. 

The project team consisted of a team of twelve master students of the 
University of Kaiserslautern. For them, the project was a so-called Master 
Project in Software Engineering. They have to conduct one of such mas-
ter projects if they focus on Software Engineering during their Master of 
Computer Science. The master project is a special one in the sense that a 
real customer provides the requirements for the system to be developed 
and is involved throughout the project until the results are delivered. The 
student team was an international team. Six of the twelve students are 
participating in the ERASMUS Mundus Program and strive for a Europe-
an Master in Software Engineering. They spend the second year of their 
master program in Kaiserslautern. A team of University and Fraunhofer 
IESE employees that manage the overall project and provide support in 
all Software Engineering topics supervises the student team. Supervisors 
for requirements engineering, architecture and design, implementation, 
and quality assurance were available to them. 

The project has been conducted in a period of three month from Octo-
ber 4 – December 20, 2010. The students have acquired the required 
skills to perform the projects in Software Engineering lectures before the 
project. Nevertheless, as a kind of refresher they were taught the re-
quirements, the UI and interaction design, and the architectural design 
approach to be used in the project in the beginning of the master pro-
ject in half day short tutorials. Furthermore, they got a tutorial in iOS de-
velopment as none of the students had previous experience in iOS de-
velopment. As Fraunhofer IESE conducted iOS development project with 
students before, a tailored tutorial enabling newbies with programming 
skills in other programming languages to develop iOS applications.  

The students started with eliciting and analyzing John Deere’s require-
ments based on an initial problem statement and video-conferences with 
US employees of John Deere and employees of the John Deere site in 
Kaiserslautern. After that they designed a user interface and interaction 
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concept and an architecture. Requirements engineering, UI and interac-
tion design, as well as architectural design were conducted by means of 
Fraunhofer IESE’s state of the art methods Task-oriented Requirements 
Engineering (TORE) and Fraunhofer Domain-Specific Architecture (DSSA). 
Project planning was conducted by the supervisors based on state of the 
art project planning approaches and their experience in various industry 
projects. The supervisors provided a work breakdown structure and a 
production schedule and assigned the students in a joint meeting to the 
production work activities. After architectural design has been conduct-
ed, production has been performed according to the architecture and 
the production plan. 

6.2.3 Approach 

The general idea of the case study approach is to perform a producibility 
analysis after architecture and production plan of the project are availa-
ble. The producibility analysis is performed by a researcher that is not a 
member of the project team. The results of the producibility analysis are 
not fed back to the project before it has ended. After the end of the pro-
ject, critical architectural and production planning elements and related 
production problems are identified in a retrospective with the project 
team. The results of the retrospective are compared with the results of 
the producibility analysis and the effect that the producibility analysis 
would have had on the project is estimated and discussed with the pro-
ject team. Hence, the project without producibility analysis is able to 
serve as a baseline that can be compared against a fictitious project with 
producibility analysis. 

In more detail, the case study followed the following procedure. A re-
searcher, in this case the author of this thesis, received the materials 
required to conduct the producibility analysis after architectural design 
and production planning had been finished, i.e. mid of November. The 
researcher was involved in acquiring the project and knew the general 
problem to be solved, but was not involved in any more activities, espe-
cially not after the project had officially started on October 4, 2010.  

The producibility analysis has been conducted, but as mentioned above, 
no results were fed back to the project team. No communication with 
the project team occurred before the end of the project. After the end of 
the project, each member of the student team as well as the supervisors 
for project planning and architecture have been interviewed individually 
for approximately 30 minutes by the researcher. Thereby, the researcher 
asked the student interviewee about his or her role in the project, espe-
cially during production. All interviewees were asked to report on critical 
architectural and production planning elements and related problems 
that occurred during the project. The identification of critical elements 
has been supported by a walkthrough of the architecture documentation 
and the production plan to increase the completeness of the results. Es-
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pecially the critical elements the interviewee was in touch with were dis-
cussed in detail. 

After the interviewees had provided their input on critical elements and 
production problems, the results of the producibility analysis were pre-
sented to them including recommendations on how to solve the predict-
ed problems. The interviewees were asked to provide their opinions re-
garding the proposed recommendations. In addition, the interviewees 
were provided with information on the producibility views and were 
asked for feedback regarding the potential usefulness of such views dur-
ing the project. 

Based on the results of the producibility analysis and the project retro-
spective conducted via interviews the case study results presented in 
6.2.4 have been prepared. In addition, the researcher was provided with 
the effort data that have been collected during the project and the real 
timeline of the project, i.e., for instance, when the planned production 
iterations really ended. 

6.2.4 Results 

6.2.4.1 Overview of Results 

The adoption of the producibility analysis method in the case study was 
feasible. It was possible to apply the method to the artifacts provided as 
input, i.e. the architecture documentation of the system and the produc-
tion plan. The producibility views required to conduct the producibility 
analysis have been derived successfully in the preparation phase. The 
producibility metrics have been determined and critical architectural and 
production planning elements have been derived, as well as potential 
production problems and recommendations. Overall, the application of 
the producibility analysis method took ~8 hours including reading the 
input documents, deriving the producibility views, determining the criti-
cal elements, and deriving potential problems and recommendations. 

The case study shows that a high completeness of identified critical ele-
ments can be achieved. Table 18 provides an overview per element type. 
All architectural elements that turned out to be critical during the project 
have been identified by the producibility analysis. Also all critical produc-
tion work activities and production iterations have been predicted up-
front. In the case of resources, 2/3 of the resources that turned out to be 
critical have been identified up-front. Hence, overall 91,67% of critical 
elements have been identified, which is beyond the value of 75% that 
has been mentioned in H2. This means, that the case study provides 
some evidence that a completeness of more than 75% can be achieved, 
and the hypothesis H2 might be accepted. 
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The results regarding the correctness of the identification of critical ele-
ments are also very promising. As shown in Table 18, overall a correct-
ness of 95% has been achieved. Only in the case of architectural ele-
ments, a false positive occurred. In all other cases, 100% of results were 
correct. Hence, the goal of achieving at least 90% correctness as stated 
in H3 has been achieved in the case study, which provides some evi-
dence that H3 can be accepted. 

 Completeness (H2) Correctness (H3) 
Architectural Elements 100% 80% 
Production Work Activities 100% 100% 
Production Iterations 100% 100% 
Resources 66,67% 100% 

Overall 91,67% 95% 

Table 18: Overview Case Study Results 

The critical elements that have been identified by the producibility analy-
sis method caused several production problems in the project. This has 
been detected based on the interviews performed with the project team. 
Production iteration 1, for instance, has been finished with a delay of 4 
days. The students stated that without having the production problems 
they would have been able to finish production iteration 1 in time. 
Hence, if the predicted critical elements and the related production prob-
lems would have been addressed successfully up-front, there would have 
been the potential to save up to 4 days in production iteration 1. Thus, 
the overall duration of production iteration 1 would have been reduced 
from 14 to almost 10 days, which is a reduction by ~29%. The students 
reported in the interviews, that there would have been even more delays 
if experienced supervisors from Fraunhofer IESE would not have actively 
participated in the implementation activities during the last days of pro-
duction iteration 1.  

Unfortunately, the work on production iteration 2 could not start before 
production iteration 1 has been finished because all resources still have 
been involved in production iteration 1. Hence, an overall delay of the 
project of 4 days occurred which lead to the fact that the planned scope 
of the project could not be realized in the end as there was a hard dead-
line. Thus, we can conclude that there is some evidence that the produc-
ibility analysis method bears the potential to save more than 25% of 
time as it has been stated in H1. 

H1 also refers to effort. The effort spent by the resources has been 
tracked throughout the project. Overall, 944 hours have been spent on 
production in the case study. 743 hours have been spent on production 
iteration 1, 201 hours on production iteration 2. The reason that only 
201 hours have been spent on production iteration 2 is on the one hand 
the delay in production iteration 1, and on the other hand the overall 
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project deadline. By means of the producibility analysis results, it would 
have been possible to reduce the effort overhead caused by the delay in 
production iteration 1 and shift the saved effort spent to production it-
eration 2. We can assume based on the collected effort data, that the 4 
additional days spent on production iteration 1 caused 241 hours of ef-
fort. If we save this effort in production iteration 1, which means a sav-
ing of ~32%, we can shift 201 hours into production iteration 2 (we do 
not shift the effort of the supervisors into production iteration 2). 

Although we do not save effort overall as described above, we free up 
32% of effort in one production iteration to spent them in another one. 
This gives us some evidence, that there is potential to save overall project 
effort by means of the producibility analysis method and that H1 even-
tually can be accepted from an effort point of view. 

6.2.4.2 Identified Critical Architectural Elements 

The structural view of the architecture of the system contains 10 archi-
tectural elements, in this case these are 10 components existing at 
runtime. All 10 architectural elements have been included in the produc-
ibility analysis. Overall, 5 out of 10 architectural elements have been 
identified as critical. 

2 out of 10 architectural elements have been classified as critical as a re-
sult of adopting the algorithm for the identification of critical elements. 
Both architectural elements continuously undergo changes during the 
project, both are produced by two production work activities. One of 
them has an increased coupling in addition. 

3 out of 10 architectural elements have been identified as critical based 
on the guidelines provided to identify critical architectural elements. One 
architectural element because it is the foundation to realize one of the 
highest prioritized features requested by the customer. Two other ones 
because they realize the communication between client and server and it 
was known up-front that different technologies have to be integrated 
that furthermore are not well-known to the team. 

4 of the 5 architectural elements that have been identified as critical 
turned out to be critical during the project. They caused effort overhead 
and delays. No additional architectural elements caused problems in the 
project. Hence, in this case 100% of critical architectural elements have 
been identified up-front by the producibility analysis method, whereas 
one architectural element turned out to be not critical, although it has 
been classified as critical. Hence, one false positive occurred, which 
means that 80% of the results have been correct in this case. 
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6.2.4.3 Identified Critical Production Planning Elements 

The production work breakdown structure in the case study contains 12 
production work activities. The production work activities oriented at the 
architecture (not at features to be realized) and always refer to exactly 
one architectural element. 4 of the 12 production work activities have 
been identified as critical. The reasons are sharing architectural elements 
and high coupling. Context factors like the internal design of the shared 
architectural elements do not help to compensate the problem in this 
case.  

All the identified production work activities turned out be critical in the 
project. They refer to architectural elements that have already been iden-
tified as critical before. Hence, 100% of the production work activities 
identified as critical turned out to be critical, which means that no false 
positives occurred in this case. Unfortunately, four production work ac-
tivities that have not been identified by the producibility analysis method 
as critical turned out to be critical and were not finished during the pro-
ject as a consequence of the delays caused by the other production work 
activities. The students reported that they would have been able to finish 
the production work activities if they would have had more time. Hence, 
we can somehow assume that they would not have been critical, if the 
problems with the previous production work activities would have been 
solved. Thus, we somehow can argue that the producibility analysis iden-
tified all critical production work activities. 

The production phase of the project was planned for four weeks. The 
customer required an intermediate presentation of project results show-
ing that certain key features are already realized for the third week. 
Hence, two production iterations have been planned, the first one end-
ing after two weeks delivering the system to be presented at the inter-
mediate presentation. The second one ending after four weeks deliver-
ing the final version of the system. The first of the planned production 
iterations has been identified as critical. It creates more than 50% of the 
overall number of architectural elements. 5 of the 6 architectural ele-
ments produced in the iteration have been classified as critical before.  

The students have been organized in three teams involved throughout 
the two production iterations. Each team takes care of one layer of the 
system, i.e. one team realizes the graphical user interface (GUI), one the 
business logic on the client side, and one the server side. Two of the 
teams have been classified as critical by the producibility analysis meth-
od, the team responsible for the business logic on the client and the 
server team. The business logic team has an increased communication 
effort with the other teams because of the coupling between the archi-
tectural elements assigned to them. The server team has to cope with 6 
out of 10 architectural elements of the system but is not larger than the 
other teams. In the project, all three teams contributed to the production 
problems that occurred. All teams delivered their results too late in the 
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first production iteration. This means the producibility analysis method 
determined 2/3 of the overall number of critical resources and there 
were no false positives in this case. 

Appendix E contains the values of the producibility metrics for all archi-
tectural elements, production work activities, production iterations, and 
resources considered in the case study. 

In the following section, threats to validity that need to be considered 
while interpreting the results are discussed. 

6.2.5 Threats to Validity 

In this section, we discuss threats to validity according to the classifica-
tion referred to in [WRH+00]. 

The MCA case study provides only one data point as a basis to draw 
conclusions on accepting the hypotheses H1, H2, and H3, which is a 
serious threat to conclusion validity. Therefore, we tried to make sure 
that the collected effort data are highly reliable and that the interviews 
are conducted in a structured way to guarantee high quality of the inter-
view results. The quality of the effort data was addressed by providing a 
standardized effort collection sheet to all project members and to con-
tinuously motivate them to add precise effort data into the respective 
sheet. For the interviews, an interview guideline was used by the inter-
viewer and the interview was accompanied by a walkthrough of relevant 
project documentation to assure the completeness of the interview re-
sults. 

The recommendations that were provided as a result of the producibility 
analysis have not been applied to the project. They have been discussed 
during the project retrospective and the project team consisting of su-
pervisors and students estimated, if the recommendations would have 
solved the problems experienced in the project with the critical elements. 
Hence, the conclusion that the recommendations are able to solve the 
experienced problems is based on expert opinion (in the case of the su-
pervisors), but also on the opinion of students that are less experienced 
in general. 

The group of students was well representing a typical team of master 
students. As the curriculum of the master students from the University of 
Kaiserslautern and from the international students are aligned to each 
other, we can assume that they have a similar knowledge on Software 
Engineering foundations. Nevertheless, we conducted short tutorials on 
the main Software Engineering topics relevant for the project like re-
quirements engineering, UI and interaction design, architectural design, 
and quality assurance in the beginning of the project.  
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Some of the students started into the project with more programming 
experience than others, but none of them had any experience in iOS de-
velopment, which was the programming language used by most of the 
students in the team. We taught them development for iOS in another 
tutorial in the beginning of the project. Java and C# have been used in 
the project in addition. Each student had previous experience in at least 
one of these two programming languages. 

The students were not bothered in any form during the project by the 
experiment. Hence, we do not expect maturation effects. They knew 
that we collect effort data anyway to measure the overall project per-
formance, which is also interesting to them. Furthermore, they knew 
that the effort data are not used to measure their individual performance 
or to determine their grade in the end. Only not reporting effort data 
would have an effect on their grade as this would mean that they violate 
the project rules. 

We were able to motivate them for the project retrospective as this was 
a good preparation for the final exam with the responsible professor. In 
the exam, they should be able to report on their role in the project, on 
problems and lessons learned, which we also discussed in the project ret-
rospective. 

As mentioned above, we provided them with an effort collection sheet 
and performed the interviews in the retrospective in a structured way to 
prevent threats caused by instrumentation. 

A thread to construct validity is the fact that the method owner himself 
performed the producibility analysis in the case study. The identification 
of the critical elements based on the quality model of producibility is only 
slightly affected by this. The producibility metrics are objective and addi-
tional critical elements have been identified by means of checklists. The 
method owner stuck to such checklists as far as possible. 

The case study investigates the effect of a producibility analysis on a pro-
ject that has been completely conducted without performing a produci-
bility analysis. This setting is valid as there is no similar approach than the 
producibility analysis method described in this thesis that would allow a 
reasonable comparison. 

The input documents provided to the producibility analysis method have 
been of appropriate quality. It can be assumed that the supervisors of 
the project performed project planning according to the state of the art 
based on their existing experience in industry and research projects. The 
students designed an architecture according to a state of the art archi-
tectural design approach. To assure the quality of the architecture de-
signed by the students, one supervisor was actively involved into the de-
sign process and another one performed the quality assurance of the re-
sults. 

Construct 
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The students did not know that there is a case study going on unless 
they have participated in the interviews and were confronted with the 
results of the producibility analysis. 

The case study is based on an industrial problem in the domain of mobile 
assistant systems. Projects developing similar mobile systems with similar 
architectures can directly benefit from the results of the case study. As 
the project covered certain typical problems of distributed information 
systems, there is also a certain benefit for distributed information system 
in general.  

The size of the overall system is still small, i.e. the number of architectur-
al elements and production planning elements. There was no distributed 
production team, as it is common in many large projects today. Hence, 
the scalability of the producibility analysis method to large, distributed 
projects has not been covered in the case study and the applicability to 
larger problems remains unclear. In general, we expect an even larger ef-
fect of a producibility analysis in larger systems, as the dependencies be-
tween architectural elements and production planning elements get 
more complex and cause even more problems than in smaller systems. 

The project was conducted by a team of master students. We have to 
consider this as a threat to validity as they are close to finishing their 
studies but less experienced as Software Engineers from industry. Hence, 
certain doubts remain if the problems that have been detected in the 
project would also have occurred in a purely industrial setting. We ad-
dressed this threat by providing the students all the support they need. 
The students were located in the same building than the supervisors and 
the supervisors regularly were present in the team room of the students 
to be able to address evolving problems as soon as possible. 

6.3 Summary and Future Validation Steps 

The work on thesis was accompanied by a series of industrial and ap-
plied research projects that contributed to the problem statement, the 
solution ideas, and to initial validation of the ideas. Two projects have 
been specifically relevant. 

In the project “Virtual Office of the Future” (VOF) conducted with the 
Japanese manufacturer of Multi-Functional Office Peripherals (MFP) the 
idea of software production came up and has been initially validated. In 
the VOF project, we identified the need to produce workflows and vari-
ants of workflows on a large scale as part of office environments inte-
grating MFPs but also various office services. Together with Ricoh, we 
were able to define a reference architecture for office environments 
complemented by production processes tailored to the reference archi-
tecture. The production process describes, how workflows of a customer 
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can be realized in the context of the reference architecture and how ex-
isting and new office devices and services can be easily integrated. Ricoh 
expects to be able to deliver customized office environments with short 
time to market based on the ideas of software production. The project 
provided valuable input to the quality model of producibility. 

In a series of industry projects with a large airline manufacturer, the idea 
of software production could be adopted in the context of the migration 
of a large workflow-based information system. The idea of migrating 
workflow by workflow can be supported with production processes and 
production. Unfortunately, the project was canceled on the customer’s 
side before we could gather more results. But the project again showed 
the potential of the idea of software production and provided input to 
the definition of the quality model of producibility. 

The VOF project, the projects in the airline management domain, and 
several other industrial projects provided valuable feedback on the idea 
of software production, we had the chance to adopt the ideas to indus-
trial examples, and input for building the quality model of producibility 
has been gathered. 

The producibility analysis method and the hypothesis stated in Section 
1.5 have been evaluated by means of a case study conducted in an in-
dustrial context with a project team mainly consisting of master stu-
dents. As described in detail in Section 6.2, a mobile configuration assis-
tant has been developed in cooperation with John Deere. The case study 
delivered promising results with respect to all three hypothesis H1, H2, 
and H3. The producibility analysis method has been effective in the case 
study as it detected 91,6% of the critical elements, which is more than 
the 75% mentioned in H2. The results have also been almost completely 
correct as 95% of the identified critical elements have been really critical 
in the project which is beyond the 90% stated in H3. It has been detect-
ed, that 29% of time could have been saved in production iteration 1 if 
the problems related to the critical elements would have been solved 
and that also a significant amount of effort could have been saved for 
later phases of the project which eventually would have made it possible 
to complete the project as planned. Hence, initial empirical evidence that 
H1 can be accepted has been delivered. 

However, a series of threats to validity must be considered in the context 
of the case study. The case study provides only one data point. Hence, 
the results cannot be considered to be highly significant. The producibil-
ity analysis method has been adopted by the method owner. The team 
mainly consisted of master students that are less experienced than Soft-
ware Engineers in industry. The problem to be solved by the students 
was a real industrial problem, but relatively small.  

Nevertheless, the case study provides indications that the expected ef-
fects of the producibility analysis method can be achieved in practice. 
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We expect an even larger effect of the producibility analysis method if 
applied to a larger scale industrial problem. The larger the problem is, 
the more dependencies between architectural and production planning 
elements occur that cannot easily be foreseen and lead to production 
problems.  

The last argument is a good starting point for discussing potential future 
validation activities. 

The producibility analysis method should be adopted in a large-scale 
industrial case study. Unfortunately, this was not possible in the valida-
tion phase of this thesis as appropriate projects were not available at 
that time. In a large project, more architectural and production planning 
elements are involved and their relationships are expected to be more 
complex and can no longer be easily overseen. Hence, it gets more and 
more important to get support in identifying critical architectural and 
production planning elements. We also assume that in large scale project 
with a longer duration and more resources involved, the potential to 
save time and effort by improving the producibility is higher than in 
smaller projects. 

Experiments to validate the hypothesis H1, H2, and H3 are not consid-
ered with high priority. Experiments typically refer to small examples and 
as argued above the producibility analysis method should be adopted to 
large industrial systems to unfold its full potential. Experiments could be 
conducted to validate specific aspects or parts of the producibility analy-
sis method, for instance, to validate the appropriateness of the produci-
bility views to detect production problems or to evaluate the usability of 
the provided checklists. Such experiments could provide useful input to 
improve certain aspects of the method and in the end contribute to im-
prove the overall performance of the method. 

Controlled experiments should be considered to validate the quality 
model of producibility and test the validity of the producibility metrics. 
Various experiment settings are possible depending on the concrete 
goals regarding the validation of the quality model of producibility. One 
goal could be, for instance, to validate if certain producibility metrics cor-
relate with the appearance of certain production problems. Critical val-
ues of metrics regarding the alignment of architecture and production 
schedule, for instance, are supposed to correlate to production problems 
like delays. Variants of an architecture and a corresponding production 
plan could be derived that cause different values regarding metrics char-
acterizing the alignment of architecture and production plan. The vari-
ants could then be produced by different groups of participants of the 
experiment and production problems could be tracked. The basic hy-
pothesis of such an experiment would be that variants of architecture 
and production plan with critical values of the respective producibility 
metrics cause more or more severe production problems than variants 
with less critical values.  

Future Vali-
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7 Summary and Future Work 

This chapter summarizes the contributions of this thesis and gives an 
outlook on future work. 

7.1 Summary of Contributions 

This thesis defined software production as a process “creating and as-
sembling the architectural elements defined in the software architecture 
according to a software production plan” (see definition of software 
production in Section 3.1.). Software production is inspired by the manu-
facturing of hard goods, where product designers and production plan-
ners thoroughly plan production based on the product design and try to 
identify potential production problems up-front, i.e., before production 
starts. Therefore, the definition of software production in Section 3.1 
claims, that “software architecture and software production plan have 
been aligned to each other”. Alignment means in this case, that the rela-
tionships between architectural elements and production planning ele-
ments are explicitly considered and eventual misalignments are proac-
tively resolved. If the same architectural element is planned to be modi-
fied by different resources according, for instance, there is a certain risk 
that conflicts and unexpected side effects arise that lead to production 
problems like delays or effort overhead. If adopted consequently, the 
idea of software production leads to a very product-oriented thinking, 
which we experienced to be very helpful in several industrial projects. 

The definition of software production has been formalized in a meta-
model of software production (see Section 3.4). As a prerequisite, meta-
models of software architecture and software project plans have been 
derived as part of this thesis (see Chapter 2). The meta-model of soft-
ware production integrates these meta-models of software architecture 
(see Section 2.1) and software project plans (see Section 2.2) by intro-
ducing relationships between conceptual elements of software architec-
ture like architectural elements and conceptual elements of project plans 
like work activities, iterations, or resources. By relating architectural ele-
ments with work activities, iterations, and resources, the relationship of 
software architecture and project or production plans becomes as con-
crete as required to define the alignment of architecture and project or 
production plans in a measurable way, which is done in the quality mod-
el of producibility (see Chapter 4). 
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Producibility is introduced in this thesis as a quality attribute of a system 
characterizing the alignment of its architecture and the production plan 
set-up to produce it. In Section 4.1, producibility is defined as “the de-
gree of alignment of a system’s architecture with the production plan”. 
Producibility is considered on three dimensions, namely alignment of ar-
chitecture and production work breakdown structure, architecture and 
production schedule, and architecture and resource assignments. The ra-
tionale for having these three dimensions is that according to the state 
of the practice and the state of the art software project planning mainly 
deals with project scope manifested in a work breakdown structure, with 
project schedule, and resource assignments. Hence, the alignment of ar-
chitecture and production plans is covered comprehensively in the defini-
tion of producibility. 

The quality model of producibility defines producibility in a measurable 
form by providing metrics characterizing the alignment of architecture 
and production plan. Producibility metrics are introduced for all three 
dimensions of the alignment of architecture and production plan men-
tioned before. Thereby, we distinguish metrics that are rather relevant 
from the architect’s point of view (see Section 4.2.1, 4.3.1, and 4.4.1) 
and the production planner’s point of view (see Section 4.2.2, 4.3.2, and 
4.4.2).  

The metrics from an architect’s point of view primarily are supposed to 
help architects in deciding if the architecture could be changed to in-
crease producibility. Production planners are supported by the metrics 
for the production planner’s point of view in considering changes of the 
production plan to eventually improve the producibility. Examples for ar-
chitecture related metrics are the number of production work activities 
producing an architectural element, the number of production iterations 
involving a certain architectural element, the duration for producing an 
architectural element, or the number of resources producing an architec-
tural element. Examples for production plan related metrics are the 
number of architectural elements involved in a certain production itera-
tion, the degree of coverage of the overall system by one iteration, the 
overlapping between two sequential iterations in terms of architectural 
elements, or the coupling between resources caused by the coupling be-
tween architectural elements. 

The producibility metrics have been derived systematically from the me-
ta-model of software production and consequently cover all relations be-
tween architectural and production planning elements specified there. 
Metrics of different producibility dimensions are largely independent of 
each other, i.e., they cover different aspects of producibility and typically 
do not correlate. A high value of Coupling(PI), for instance, does not im-
ply a high value of Coupling (Res).  

Each producibility metric is complemented by a threshold, that indicates 
if a value of the producibility metric must be considered critical. Howev-
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er, based on our experience the values and the respective thresholds al-
ways need to be considered in the respective context. Hence, besides in-
troducing producibility metrics, the quality model of producibility con-
tains a set of context factors that are supposed to be considered while 
interpreting the values of producibility metrics as they have the potential 
to compensate values classified as critical before. 

It is important to mention, that the producibility of a system cannot be 
characterized by one single metric. It depends on the context of a project 
and the specific production requirements that might exist which metrics 
are specifically relevant and how conclusions are drawn. We introduced 
the concept of producibility scenarios in this thesis. They are similar to 
architectural scenarios as they are often used to refine quality require-
ments in the architecture. They can be used to specify production re-
quirements and the overall producibility can be evaluated relative to such 
producibility scenarios. 

Producibility views have been defined to model the relationships of archi-
tectural and production planning elements in concrete projects and de-
termine the producibility metrics of the quality model of producibility 
based on such views. Three producibility views have been defined, one 
for each dimension of producibility (see Section 5.2.2). The production 
work activity view is used to model relationships of architectural ele-
ments and production work activities. The production iteration view 
shows how architectural elements are related to production iterations. 
The resource assignment view relates architectural elements and re-
sources. Producibility views should be part of the architecture and the 
production plan documentation as they are the artifacts manifesting the 
relationship between architecture and production plans and should be 
considered by architects as well as production planners. 

The thesis describes an algorithm that identifies critical architectural and 
production planning elements. The algorithm takes as input the infor-
mation modeled in producibility views and adds critical architectural 
elements, critical production work activities, critical production iterations, 
and critical resources to respective lists of critical elements that form the 
output of the algorithm. To identify elements as critical, the algorithm 
determines values for the producibility metrics specified in the quality 
model of producibility and compares such values to the thresholds pro-
posed for each metric. If the value for a certain element indicates critical-
ity, the element is placed on the respective output lists, i.e., the list of 
critical architectural elements, the list of critical production work activi-
ties, the list of critical production iterations, or the list of critical re-
sources. 
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Initial prototypical tool support has been implemented for the identifica-
tion of critical elements. The producibility views can be modeled by 
means of the industrial modeling tool Enterprise Architect that has been 
extended for this purpose. Based on the modeled producibility views, 
most of the producibility metrics being part of the quality model of pro-
ducibility can be determined automatically. 

The producibility views, the identification of the critical elements based 
on the quality model of producibility, and the initial tool support are the 
core technical contributions of this thesis. 

The producibility analysis method is the methodological contribution of 
this thesis (see Chapter 5). Based on an existing software architecture 
and a software production plan, the producibility analysis method identi-
fies critical architectural and production planning elements based on the 
algorithm mentioned above and guides the method users in deriving 
recommendations on how to prevent production problems like delays, 
and effort overhead. The producibility analysis method can be focused 
on certain aspects if required by using producibility scenarios that de-
scribe production requirements from different stakeholders. 

In the preparation phase of the method (see Section 5.2), producibility 
scenarios are elicited from stakeholders like architects, production plan-
ners, customers, or developers. A template for documenting producibility 
scenarios is provided. A further step in the preparation phase is the 
modeling of the producibility views required to perform the identification 
of critical elements. The producibility views can be modeled by means of 
the tool Enterprise Architect that has been extended with modeling ca-
pabilities for producibility views as mentioned above. 

In the execution phase of the producibility analysis method (see Section 
5.3), critical architectural and production planning elements are identi-
fied based on the algorithm mentioned before and based on expert 
judgment. The algorithm has certain limitations. Sometimes, architectur-
al elements, for instance, turn out to be critical although no metrics 
showed critical values. Architectural elements could have a high inherent 
complexity, for instance, which cannot be detected by the algorithm. 
Hence, architects and production planners are provided with examples of 
critical elements not detected by the algorithm that help them in identi-
fying additional critical elements, which is the initial step of the consoli-
dation phase. 

In the consolidation phase of the method (see Section 5.4), architects 
and production planners first consolidate the critical elements that are 
reported to them from the execution phase. They take decisions if such 
elements appear really critical to them in the respective project context. 
Checklists containing questions derived from the context factors of pro-
ducibility (see Section 4.5) that help them to take their decisions support 
this step. After the consolidated lists of critical elements exist, architects 
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and production planners derive appropriate recommendations on how to 
prevent problems that can potentially be caused by the critical elements. 
They are supported in this step by lists of typical options for recommen-
dations. Recommendations are derived jointly by architects and produc-
tion planners. This is required, because preventing production problems 
might be possible in various ways, i.e., for instance, by changing the ar-
chitecture or by changing the production plan or a combination of both. 
Therefore, decisions on recommendations need to be taken jointly from 
an overall project perspective. 

The producibility analysis method has been initially validated in this thesis 
(see Chapter 6). In an industrial case study conducted with a team of 
master students of the University of Kaiserslautern (see Section 6.2), ini-
tial empirical evidence for the research hypotheses stated in Section 1.5 
has been gathered. In the case study, 91,67% percent of critical ele-
ments have been identified by the method and a correctness of 95%  
has been achieved. It has been estimated, that delays caused by the criti-
cal elements could have been prevented which would have reduced the 
time for the initial iteration of the project by 29%. We also found indica-
tions that the effort spent on certain production iterations in the project 
could have been reduced by means of the producibility analysis method 
which would potentially have enabled the project to realize the complete 
functionality that was initially planned. Actually, the project without us-
ing the results of the producibility analysis was successful overall, but did 
not realize the functionality that was originally planned due to delays 
and effort overhead caused by the identified critical elements. 

7.2 Outlook on Future Work 

The combination of the ideas of software production and agile methods 
to an approach that could be called agile software production seems to 
be very promising. 

Software production is essentially product-oriented, as it puts the archi-
tecture in the center of the production process. Per definition, it takes 
care that each production work activity contributes to the product as 
certain architectural elements are produced, i.e., either newly created or 
modified. But  it can be the case, that certain production iterations do 
not significantly increase the business value of the current version of the 
product. If a production iteration produces and integrates certain infra-
structure architectural elements but no architectural elements realizing 
business functionality using such infrastructure components, the busi-
ness value of such a production iteration might be low also it makes 
sense to have such an iteration from a producibility point of view. 

According to the Agile Manifesto [AM01], agile methods aim at “satisfy-
ing the customer through early and continuous delivery of valuable 
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software”. Agile methods are iterative and incremental and aim at 
providing new features to a customer in each iteration or release. Hence, 
agile methods are also essentially product-oriented. Agile methods dis-
approve huge up-front investments into software architecture. They 
promote a more evolutionary approach to software architecture and 
propose refactoring to solve eventual design issues. They justify their ap-
proach by continuous changes of requirements that bear the risk that 
up-front investments never pay off. The risk of agile methods is that a 
feature required by the customer at a certain point in time somehow 
breaks the architecture. Breaking the architecture could mean in this 
case, that the feature requires the majority of architectural elements of 
the system to be changed. 

Software production and agile methods could be complementary and 
potential weaknesses of one or the other approach eventually could be 
compensated. The alignment of software architecture and production 
plan takes care that realizing a certain feature at a certain point in time 
does not break the architecture in the sense that the majority of archi-
tectural elements would need to be changed. Such a situation could be 
detected by, for instance, a producibility analysis. This would require ar-
chitectural design up-front to a certain degree to enable a “lightweight” 
producibility analysis, for instance. Agile methods could force software 
production to more explicitly make sure that each production iteration 
provides a certain business value and a positive return on investment can 
be achieved potentially earlier.  

Future research in the direction of agile software production is required 
and seems to be promising. A concrete idea could be, for instance, to in-
vestigate how architecture could be used in the iteration and release 
planning performed in agile projects to influence the scope of up-
coming iterations and releases. 

The quality model of producibility defines producibility metrics and relat-
ed optimal values. The algorithm to detect critical elements uses such 
optimal values and classifies elements as critical as soon as the optimal 
value is not achieved. This is a rather pessimistic strategy, as each devia-
tion from the optimal value is supposed to cause production problems. 
But there are cases where already the smallest deviation causes a pro-
duction problem. As soon as an architectural elements is modified in 
parallel by two resources, conflicts and related problems can occur, but 
not necessarily need to. In future work on the producibility model, it 
should be investigated in which situations certain deviations of the opti-
mal value are acceptable and the respective elements do not need to be 
classified as critical. This investigation should consider context factors 
and should be based on empirical data collected in software production 
projects. 
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Three producibility views have been introduced in this thesis. So far, the 
producibility views contain all information relevant to determine the 
producibility metrics and identify critical elements in the execution phase 
of the producibility analysis method. So far, the context factors being 
part of the quality model of producibility are not modeled in the produc-
ibility views and therefore cannot be used for the identification of critical 
elements. In the future, context factors should be considered to be mod-
eled in the producibility views. Some context factors can be modeled as 
properties of the elements used in the producibility views. Technologies 
could be modeled as properties of architectural elements. For production 
iteration, the respective technology mix could then be automatically de-
termined and visualized.  

Context information modeled in the producibility views could be used in 
the algorithm to identify critical elements. The context factors could ex-
tend the automatic identification of critical elements and reduce the 
manual effort required to identify additional critical elements based on 
context factors. 

Additional producibility views can be imagined. One promising example 
could be an architecture evolution view consisting of a sequence of 
structural views of the architecture. It is similar to a manual to assemble 
a piece of furniture. The architecture evolution view shows a structural 
view of the architecture showing a snapshot of the system at the end of 
each production iteration. The structural views are ordered according to 
the sequence of the production iterations. The delta to the structural 
view of the previous production iteration can be visualized in each struc-
tural view. The architecture evolution view visualizes the progress made 
in each production iteration in terms of architectural elements. It pro-
vides a view of the system that is reduced to the scope planned for the 
end of the current production iteration, leaves out future extensions, and 
simplifies the current view on the system for the production team. It 
helps to visually detect complex production iterations and potential pro-
duction problems. 

Various enhancements of the producibility analysis method can be imag-
ined that could further improve the methods effectiveness and efficien-
cy.  

In the preparation phase, the modeling of producibility views could be 
better supported. If the production plan refers, for instance, to features 
but traceability information would be modeled, this could be used as a 
basis to at least partially generate producibility views. This would reduce 
the effort of modeling producibility views. 

For the execution phase, an extended version of the algorithm to identify 
critical elements could be developed that considers context factors. The 
assumption for this extension would be that context information is mod-
eled in the producibility views, as mentioned above. This would increase 
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the degree of automation in detecting critical architectural elements. The 
quality of the results of the algorithm could be further improved by using 
tailored quality models of producibility as mentioned above. 

With respect to the consolidation phase, the derivation of recommenda-
tions could be better supported in the future. Currently, lists of recom-
mendations showing the general options available guide the method us-
ers. The selection of one of the options today is completely human 
based. In the future, it should be considered to semi-automate the selec-
tion of recommendations. Certain recommendations could be pre-
selected automatically based on certain rules derived from the quality 
model of producibility maybe under further consideration of empirical 
data. A human could then take the final decision. 

The approach could be easily extended to be able to deal with customi-
zation and deployment projects of, for instance, standard software solu-
tions. Deplyoment units have already been specified as a type of archi-
tectural elements in Chapter 2.1. Deployment views could be added to 
the set of producibility views, and customization and deployment work 
activities could be added to the production plan. Then, the method spec-
ified in Chapter 5 in general could be adopted to such a customization 
and deployment project. 

The producibility analysis method is an analytic approach to improve the 
producibility of a system. In the future, constructive approaches should 
be considered that, for instance, support architects in designing for pro-
ducibility. This is an approach that again can be adopted from other 
engineering disciplines that consider the whole product lifecycle already 
during design, from manufacturability [Bra98] to recyclability [Fik09]. This 
design process is even tool-supported by Computer Aided Design (CAD) 
and Computer Aided Manufacturing (CAM) tools. 

As already mentioned in Section 6.3, further validation of the producibil-
ity analysis method is required to gather empirical evidence that the 
research hypotheses of this thesis can be accepted. The overall produci-
bility analysis method should validated in a large industrial case study. 
Unfortunately, this was not possible so far during the course of this the-
sis. We expect the full power of the producibility analysis method to be 
unrolled in larger projects where the number of relationships between 
architectural elements and production planning elements and their com-
plexity further increases. Such industrial case studies would be preferred 
over experiments. Nevertheless, experiments are the right approach to 
validate specific aspects of the producibility analysis method like the ap-
plicability of producibility views or the checklists provided to adopt the 
context factors of producibility. Hence, by means of experiments, specific 
aspects of the producibility analysis method could be improved and the 
overall effectiveness, as it has been mentioned in hypothesis H1 of this 
thesis, could be enhanced. Furthermore, experiments should be con-

Design for 
Producibil-
ity 

Future Vali-
dation 



 Summary and Future Work 

  159 

ducted to validate the quality model of producibility and its metrics re-
garding their explanatory power. 

7.3 Concluding Remarks 

This thesis enters a new field of Software Engineering research by sys-
tematically investigating the relationship of software architecture and 
software project or production plans. It introduces producibility as a new 
quality attribute characterizing the alignment of software architecture 
and project or production plans. In several projects, we experienced the 
huge potential of systematically addressing producibility to reduce de-
lays, effort overhead, and quality issues of the final product. The contri-
butions of this thesis enable practitioners to exploit this potential. How-
ever, as this is the first dissertation thesis in this direction, it should be 
seen as a starting point for further research. 
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Appendix A: Producibility Metrics and Conditions 

Producibility Metric Condition checked 

#PWA_producing(AE) >1 
#PWA_consuming(AE) >0 
#AE_produced_by(PWA) >1 
#AE_consumed_by(PWA) >1 
Coupling(PWA) >0 
#Shared_AE(PWA) >0 
#PI_producing(AE) >1 
ProductionDuration(AE) >1 
#AE_involved_in(PI) > round(|AEall| / |PIall|) 
Coupling (PI) >0 
#Shared_AE(PI) >0 
%Shared_AE (PI) >0 
%Completed_AE_after(PI) < IterationNumber(PI) / |PIall|  
%Created_AE_after(PI) < IterationNumber(PI) / |PIall| 
#Resources_working_on 
(AE) 

>1 

#AE_worked_on_by(Res) > round(|AEall| / |RESall|) 
Coupling(Res) >0 
#Shared_AE(Res) >0 
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Appendix B: Algorithm to identify Critical Elements 

The algorithm takes as an input one instance of the producibility views: 

Production Work Activity View PWAView 

Production Iteration View PIView 

Resource Assignment View RAView 

The output of the algorithm are lists of critical architectural and produc-
tion planning elements:  

List ListOfCriticalAE 

List ListOfCriticalPI 

List ListOfCriticalPWA 

List ListOfCriticalRes 

 

The processing of the production work activity view PWAView works as 
follows: 

//Processing the Production Work Activity View 

For each AE in PWAView 

AE.CriticalDimensions = 0 

AE.#PWA_producing_AE = #PWA_producing_AE(AE) 

AE.#PWA_consuming_AE = #PWA_consuming_AE(AE) 

If  AE.#PWA_producing_AE > 1  

or AE.#PWA_consuming_AE > 1 

Then  AE.CriticalDimensions=1 

ListOfCriticalAE.add(AE) 

For each PWA in PWAView 
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PWA.#AE_produced_by_PWA = #AE_produced_by_PWA(PWA) 

PWA.#AE_consumed_by_PWA = #AE_consumed_by_PWA(PWA) 

PWA.Coupling = Coupling(PWA) 

PWA.#Shared_AE_PWA = #Shared_AE_PWA(PWA) 

PWA.%Shared_AE_PWA = %Shared_AE_PWA(PWA) 

If  PWA.#AE_produced_by_PWA > 1  

or PWA.#AE_consumed_by_PWA > 0 

or PWA.Coupling > 0 

or PWA.#Shared_AE_PWA > 0 

Then  ListOfCriticalPWA.add(PWA) 

 

The processing of the production iteration view PIView works as follows: 

//Processing the Production Iteration View 

For each AE in PIView 

AE.#PI_involving_AE = #PI_involving_AE(AE) 

AE.PI_creating = PI_creating(AE) 

AE.PI_finishing = PI_finishing(AE) 

AE.ProductionDuration = AE.PI_finishing - 
AE.PI.creating + 1 

If  AE. #PI_involving_AE > 1 

Then  AE.CriticalDimensions++ 

If !ListOfCriticalAE.contains(AE) 

Then ListOfCriticalAE.add(AE) 

For each PI in PIView 

PI.#AE_involved_in =  #AE_involved_in(PI) 

PI.%System_Coverage = %System_Coverage(PI) 
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PI.Coupling = Coupling(PI) 

PI.#Shared_AE = #Shared_AE(PI1) 

PI.%Shared_AE = %Shared_AE(PI) 

PI.%Completed_AE = %Completed_AE(PI) 

PI.%Created_AE = %Created_AE(PI) 

If PI.#AE_involved_in > |AEall| / |PIall|  

or PI.Coupling > 0 

or PI.Shared_AE > 0 

or PI.%Completed_AE < IterationNumber(PI) / 
|PIall| 

or PI.%Created_AE < IterationNumber(PI) / 
|PIall| 

Then  ListOfCriticalPI.add(PI) 

 

The processing of the resource assignment view works as follows: 

//Processing the Resource Assignment View 

For each AE in RAView 

AE.#Resources_working_on = #Resources_working_on 
(AE) 

If  AE.#Resources_working_on > 1 

Then  AE.CriticalDimensions++ 

If !ListOfCriticalAE.contains(AE) 

Then ListOfCriticalAE.add(AE) 

For each RES in RAView 

RES.#AE_worked_on = #AE_worked_on(RES) 

RES.Coupling = Coupling(RES) 

RES.#Shared_AE = #Shared_AE(RES) 
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RES.%Shared_AE = %Shared_AE(RES) 

If RES.#AE_worked_on > |AEall| / |Resall| 

or RES.Coupling > 0 

or RES.#Shared_AE > 0 

Then  ListOfCriticalRes.add(RES) 



Appendix 

  175 

Appendix C: Checklists for Context Factors 

Checklist for the Application of Context Factors to AE 

General questions for each AE: 
� Is the quality of the architecture documentation with respect to the AE high? 
� Is a production work activity type, i.e. a guideline describing how to produce the AE 

available? 
� Are certain development activity types supporting the production of the AE, for 

instance, continuous integration, regression testing, generation of parts of the AE, 
etc.? 

� Are tools providing specific support for the production of the AE? 
� Can the AE be built based on reuse and is a process how to reuse attached to the 

reusable artifacts? 
� Are the resources providing and potentially adapting the reusable artifacts available 

when the AE is supposed to be produced? 
� Is the available team experienced with the technologies used to realize the AE? 
� Is the AE produced by internal resources and are they co-located? 
� If the AE is produced by external resources or internal resources that are not co-

located, is an appropriate communication infrastructure in place, and an infrastruc-
ture that facilitates the exchange of artifacts? 

� Are contact persons for the AE under analysis and for all related AE in place that can 
help in solving issues? 

 

#PWA_producing(AE) 
� Is a certain order defined for performing the PWAs? 
� Are the PWAs performed by the same team (or by co-located teams)? 
� Is the internal design of the AE prepared for parallel work and/or incremental exten-

sion? 
� Are integration and test processes defined for the AE? 
� Are deployment processes defined for the AE? 
� Are coding guidelines defined for the AE? 
� Does the tool infrastructure support parallel production well? 
 

#PWA_consuming(AE) 
� Are the PWAs consuming the AE produced later on? 
� Are the consuming PWAs performed by co-located resources? 
� If the resources producing consuming PWAs are not co-located, are appropriate 

communication infrastructures and infrastructures to exchange artifacts established 
between the involved resources? 

� Do the involved resources know each other personally? 
� Is the quality of the architecture documentation high, especially the documentation 

of the interfaces of the AE? 
 

#PI_producing(AE) 
� Are the same resources producing the AE throughout all iterations? 
� Is the internal design of the AE prepared for incremental extension? 
� Are integration and test processes defined for the AE? 
� Are deployment processes defined for the AE? 
� Are coding guidelines defined for the AE? 
 

#Resources_working_on(AE) 
� Are the resources producing the AE co-located? 
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� Are appropriate communication infrastructures and infrastructures to exchange 
artifacts established between the involved resources? 

� Do the involved resources know each other personally? 
� Does each involved team have one single point of contact, for instance, a chief 

programmer? 
� Do the resources work on parts of the AE separated in the design of the AE? 
� Is one resource responsible for integration, final test, and deployment of the AE? 
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Checklist for the Application of Context Factors to PWA 

General questions for each PWA: 
� Are all AEs involved in the PWA well described in the architecture documentation? 
� Are the involved AEs following well-known architectural styles, patterns, etc.? 
� Are production work activity types available describing how to produce the involved 

AEs? 
� Do development activity types specifically support the production of the involved 

AEs? 
� Are tools available to specifically support the production of the involved AEs? 
� Are the resources experienced and familiar with the used technologies and tools? 
� Is sufficient effort and time planned for the PWA? 
 

#AE_produced_by 
 

� Is the PWA realizing a cross-cutting feature? 
� If the PWA is realizing a cross-cutting feature, does the architecture prescribe suffi-

ciently how the cross-cutting feature is supposed to be realized in each AE? 
� Is the complexity of the AEs produced by the PWA low? 
� Are only well known technologies used to produce the AEs? 
� Are the involved AEs initially created by the PWA? 
� Can some of the AEs be produced based on reuse? 
� If AEs are produced based on reuse, are the reusable artifacts available in time and 

are contact persons “owning” the reusable artifacts available? 
� Is the team size sufficient to perform the PWA? 
 

#AE_consumed_by 
 

� Are the AEs consumed by the PWA finished in earlier production iterations? 
� Are the AEs consumed by the PWA produced by the same resource? 
� Are the consumed PWAs mostly infrastructure AEs? 
� Are the consumed PWA using the same technologies, especially to communicate 

with them? 
� Are the consumed AEs well documented, especially their interfaces? 
� Do the consumed AE and the communication mechanisms follow well-known 

architectural patterns? 
� Are appropriate quality assurance activities performed for the consumed PWAs? 
 

Coupling 
 

� Are PWAs causing ingoing relations to the PWA assigned to later production itera-
tions? 

� Are PWAs referenced by the PWA assigned to previous iterations? 
� Are related PWAs produced by the same resources? 
� Does the PWA produce mostly infrastructure AEs? 
� Are the related PWA respectively the AEs involved into them well-described in the 

architecture documentation, especially their interfaces? 
 

#Shared_AE 
 

� Are the resources producing the shared AEs co-located? 
� If the resources producing shared AEs are not co-located, are appropriate communi-

cation infrastructures and infrastructures to exchange artifacts established between 
the involved resources? 

� Is the internal design of the AE prepared for parallel work or incremental extension? 
� Are integration and test processes defined for the AE? 
� Are deployment processes defined for the AE? 
� Are coding guidelines defined for the AE? 
� Does the tool infrastructure support parallel production well? 
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Checklist for the Application of Context Factors to PI 

General Questions on PIs: 
 

� Are all AEs involved in the PI well described in the architecture documentation? 
� Are the involved AEs following well-known architectural styles, patterns, etc.? 
� Are production work activity types available describing how to produce the involved 

AEs? 
� Do development activity types specifically support the production of the involved 

AEs? 
� Are tools available to specifically support the production of the involved AEs? 
� Are the resources experienced and familiar with the used technologies and tools? 
� Can a large number of AEs in the PI be built produced based on reuse? 
� If AEs produced by the PI are based on reuse, are the reusable artifacts required 

available in time and are contact persons “owning” the reusable artifacts available? 
� Is parallel work during the PI possible to a large degree? 
� Is some buffer time planned in the end of the PI? 

 

#AE_involved_in or %System_Coverage 
 

� Is the PI realizing cross-cutting features? 
� If the PI is realizing cross-cutting features, does the architecture prescribe sufficiently 

how the cross-cutting feature is supposed to be realized in each AE? 
� Is the complexity of the AEs produced by the PI low? 
� Are only well known technologies used to produce the AEs of the PI? 
� Are the involved AEs initially created by the PI? 
� Can some of the AEs be produced based on reuse? 
� If AEs are produced based on reuse, are the reusable artifacts available in time and 

are contact persons “owning” the reusable artifacts available? 
 

Coupling 
 

� Are AEs referenced by the PI classified as uncritical?  
� Is the previous PI classified as uncritical? 
� Are the AEs referenced by the PI in previous PI well-described in the architecture 

documentation, especially their interfaces? 
� Do previous PI contain buffer time at the end? 

 
%Shared_AE 

 
� Are the resources producing the shared AEs co-located? 
� If the resources producing shared AEs are not co-located, are appropriate communi-

cation infrastructures and infrastructures to exchange artifacts established between 
the involved resources? 

� Is the internal design of the shared AE prepared for incremental extension? 
� Are integration and test processes defined for the AE, especially regression tests in 

this case? 
� Are deployment processes defined for the AE? 
� Are coding guidelines defined for the AE? 
� Does the tool infrastructure specifically support the production of the shared AEs? 

 

  



Appendix 

  179 

Checklist for the Application of Context Factors to Res 

General Questions on Res: 
 

� Is the resource experienced and familiar with the used technologies and tools? 
� Is the resource well connected to the outside via communication and data sharing 

infrastructures? 
� Is the capacity of the resource large enough to deal with the assigned AEs and 

PWAs? 
� Is the resource internally well-organized, i.e. are appropriate processes to make 

decisions in place? 
� Is a single point of contact available from the outside? 
� Is the resource experienced in project management? 
� Can the resource work provide required capacities even if unforeseen events occur 

like illness? 
 

#AE_worked_on_by 
 

� Is the resource realizing cross-cutting features? 
� If the Res is realizing cross-cutting features, does the architecture prescribe suffi-

ciently how the cross-cutting feature is supposed to be realized in each AE? 
� Is the complexity of the AEs worked on low? 
� Are all AEs worked on produced by means of the same technology? 
� Are all AEs worked on by the resource of architectural element types known by the 

team or even of one architectural element type? 
� Are production work activity types available for the AEs worked on? 
� Is specific tool support provided for the AEs worked on? 
� Are the AEs clearly assigned internally in case of a team? 
� Can some of the AEs be produced based on reuse? 
� If AEs are produced based on reuse, are the reusable artifacts available in time and 

are contact persons “owning” the reusable artifacts available? 
 

Coupling 
 

� Are AEs referenced by the resource classified as uncritical? 
� Are related resources not classified as critical? 
� Are the AEs referenced by the Res well-described in the architecture documentation, 

especially their interfaces? 
 

#Shared_AE 
 

� Are the resources producing the shared AEs co-located? 
� If the resources producing shared AEs are not co-located, are appropriate communi-

cation infrastructures and infrastructures to exchange artifacts established between 
the involved resources? 

� Is the internal design of the shared AE prepared for incremental extension and 
parallel work? 

� Are integration and test processes defined for the AE, especially regression tests in 
this case? 

� Are deployment processes defined for the AE? 
� Are coding guidelines defined for the AE? 
� Does the tool infrastructure specifically support the production of the shared AEs? 
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Appendix D: Method Example – Additional Materials 

 

Appendix 1: Structural View 

 

 

 

Appendix 2: Assignment of PWAs to PIs 
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Appendix 3: Resource Assignments 
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Appendix E: Case Study Results 

The following tables show the values of all producibility metrics deter-
mined in the case study. The lists contain all elements, not only the criti-
cal ones.  
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UI Manager 2 0 2 2 1 2 
Control Unit 2 2 2 2 1 2 

Model Manager 1 2 1 1 1 1 
Distribution Manager 1 1 1 1 1 0 
Domain Model Editor 1 0 1 1 1 0 
Domain Model Base 1 2 1 1 1 1 

Configuration Manager 1 2 1 1 1 1 
Tractor Configuration Interface 1 1 1 1 1 0 

Tractor Simulator 1 2 1 1 1 1 
Tractor Simulator Configurator 1 0 1 1 1 0 
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PWA 
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Create UI Manager  1 1 2 1 100 
Extend UI Manager 1 1 2 1 100 
Create Control Unit 1 2 3 1 100 
Extend Control Unit 1 2 3 1 100 

Produce Model Manager 1 1 3 0 0 
Produce Distribution Manager 1 1 2 0 0 
Produce Domain Model Editor 1 1 1 0 0 
Produce Domain Model Base 1 0 2 0 0 

Produce Configuration Manager 1 1 3 0 0 
Produce Tractor Configuration Interface 1 1 2 0 0 

Produce Tractor Simulator  1 0 2 0 0 
Produce Tractor Simulator Configurator 1 0 1 0 0 
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PI1 6 60 0 2 1/3 40 60 
PI2 6 60 0 2 1/3 100 100 
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Team1 1 1 0 0 
Team2 3 2 0 0 
Team3 6 1 0 0 

 

  





 

  187 

Lebenslauf 
 
 
 
Persönliche Daten 
 
 Name Ralf Carbon 
 
 Anschrift Marie-Juchacz-Str. 16 
  67663 Kaiserslautern 
 
 Geburtsdatum und -ort 13.05.1977 in Zweibrücken 
 
 Familienstand Verheiratet, 1 Kind 
 
 
 
Werdegang 
 
 1983 - 1987 Thomas-Mann Grundschule, Zweibrücken 
 
 1987 - 1996 Helmholtz-Gymnasium, Zweibrücken 

(Abitur) 
 
 1996 - 2002 Studium der Informatik, Universität Kaiserslautern 

(Diplom) 
 
 2002 - 2005 Wissenschaftlicher Mitarbeiter in der Arbeitsgruppe 

Software Engineering (AGSE), Technische Universität 
Kaiserslautern 

 
 seit Juli 2005 Wissenschaftlicher Mitarbeiter am Fraunhofer Institut 

für Experimentelles Software Engineering (IESE), 
Kaiserslautern 

 
 
 
Kaiserslautern, den 16.11.2011 





PhD Theses in Experimental Software Engineering

Volume 1 Oliver Laitenberger (2000), Cost-Effective Detection of Software Defects 
Through Perspective-based Inspections

Volume 2 Christian Bunse (2000), Pattern-Based Refinement and Translation of 
Object-Oriented Models to Code

Volume 3 Andreas Birk (2000), A Knowledge Management Infrastructure for 
Systematic Improvement in Software Engineering

Volume 4 Carsten Tautz (2000), Customizing Software Engineering Experience 
Management Systems to Organizational Needs

Volume 5 Erik Kamsties (2001), Surfacing Ambiguity in Natural Language 
Requirements

Volume 6 Christiane Differding (2001), Adaptive Measurement Plans for Software 
Development

Volume 7 Isabella Wieczorek (2001), Improved Software Cost Estimation 
A Robust and Interpretable Modeling Method and a Comprehensive 
Empirical Investigation

Volume 8 Dietmar Pfahl (2001), An Integrated Approach to Simulation-Based 
Learning in Support of Strategic and Project Management in Software 
Organisations

Volume 9 Antje von Knethen (2001), Change-Oriented Requirements Traceability 
Support for Evolution of Embedded Systems

Volume 10 Jürgen Münch (2001), Muster-basierte Erstellung von Software-
Projektplänen

Volume 11 Dirk Muthig (2002), A Light-weight Approach Facilitating an Evolutionary 
Transition Towards Software Product Lines

Volume 12 Klaus Schmid (2003), Planning Software Reuse – A Disciplined Scoping 
Approach for Software Product Lines

Volume 13 Jörg Zettel (2003), Anpassbare Methodenassistenz in CASE-Werkzeugen

Volume 14 Ulrike Becker-Kornstaedt (2004), Prospect: a Method for Systematic 
Elicitation of Software Processes

Volume 15 Joachim Bayer (2004), View-Based Software Documentation

Volume 16 Markus Nick (2005), Experience Maintenance through Closed-Loop 
Feedback



Volume 17 Jean-François Girard (2005), ADORE-AR: Software Architecture 
Reconstruction with Partitioning and Clustering

Volume 18 Ramin Tavakoli Kolagari (2006), Requirements Engineering für Software-
Produktlinien eingebetteter, technischer Systeme

Volume 19 Dirk Hamann (2006), Towards an Integrated Approach for Software 
Process Improvement: Combining Software Process Assessment and 
Software Process Modeling

Volume 20 Bernd Freimut (2006), MAGIC: A Hybrid Modeling Approach for 
Optimizing Inspection Cost-Effectiveness

Volume 21 Mark Müller (2006), Analyzing Software Quality Assurance Strategies 
through Simulation. Development and Empirical Validation of a Simulation 
Model in an Industrial Software Product Line Organization

Volume 22 Holger Diekmann (2008), Software Resource Consumption Engineering for 
Mass Produced Embedded System Families

Volume 23 Adam Trendowicz (2008), Software Effort Estimation with Well-Founded 
Causal Models

Volume 24 Jens Heidrich (2008), Goal-oriented Quantitative Software Project Control

Volume 25 Alexis Ocampo (2008), The REMIS Approach to Rationale-based Support 
for Process Model Evolution

Volume 26 Marcus Trapp (2008), Generating User Interfaces for Ambient Intelligence 
Systems; Introducing Client Types as Adaptation Factor

Volume 27 Christian Denger (2009), SafeSpection – A Framework for Systematization 
and Customization of Software Hazard Identification by Applying Inspection 
Concepts

Volume 28 Andreas Jedlitschka (2009), An Empirical Model of Software Managers’ 
Information Needs for Software Engineering Technology Selection
A Framework to Support Experimentally-based Software Engineering 
Technology Selection

Volume 29 Eric Ras (2009), Learning Spaces: Automatic Context-Aware Enrichment of 
Software Engineering Experience

Volume 30 Isabel John (2009), Pattern-based Documentation Analysis for Software 
Product Lines

Volume 31 Martín Soto (2009), The DeltaProcess Approach to Systematic Software 
Process Change Management

Volume 32 Ove Armbrust (2010), The SCOPE Approach for Scoping Software 
Processes



Volume 33 Thorsten Keuler (2010), An Aspect-Oriented Approach for Improving 
Architecture Design Efficiency

Volume 34 Jörg Dörr (2010), Elicitation of a Complete Set of Non-Functional 
Requirements

Volume 35 Jens Knodel (2010), Sustainable Structures in Software Implementations by 
Live Compliance Checking

Volume 36 Thomas Patzke (2011), Sustainable Evolution of Product Line Infrastructure 
Code

Volume 37 Ansgar Lamersdorf (2011), Model-based Decision Support of Task 
Allocation in Global Software Development

Volume 38 Ralf Carbon (2011), Architecture-Centric Software Producibility Analysis



�

!
��"��������������������	��
���
���
��������#
���
���
���
�$�����
!�������������������%�������������&�'����� ���
�������(��)����� �
��
%�������������*���
�$�����!���������$���������������������
����
+��������� �
�� �,$���������� !
��"���� ������������ -+�!�.� �
����� ���
��������������	����	����
������)��
$�����
���
�$��,��
��"�����$�
$������
���	����
��������������$�����$�����/������0������� ��������
$�
������
�����
������������
�$��,�� &�����
�����������0����
�
�����������$�
�������$�
�����0����� &���������	����
����������

���
���
��������������������� �����	���)�
���/
��������������
$
�������������������
���
�������������
�
����&��,$��������������
�
	���
�������
��0���������)�����0��������)���)������
�������$�
)��
������/���������
���
��"������������������������&�"��������	����
��
�����,$�����������������1��$������&�������������
����*�,$����������
!
��"���������������*��
+�������������&�"��$�	������������������
������������
����+����������
��
�,$����������!
��"����������������-+�!�.������
������!
��"�������
�������������������'�
�$��
�������
�$�����!���������$�����������
����(��)����� �
��%�������������������������������
�������������"�����
����	��������&��������$���	 ��������
������
����

���
��������������
���������������
�	���
�,�����)��������
��
��������
����+�!�����2���
������3'!��'�
�$�

�������
�$�����!���������$�������&�(��)����� �
��%�������������

���
������
���4��	������
��������������������� ��
!������1��������
��
��������
����+�!�����2���
������3'���'�
�$�

�������
�$�����!���������$�������&�(��)����� �
��%�������������

���
������
���4��	������
��������������
������
��$�� �������
��
��������
����+�!�������
����
���
���
�$������
!����������������$��������
�������������&�(��)����� �
��3$$�����
!�������&�%�������������

�
��������
	���������� ��
�
��
�
��
��
��

� 
!"

�

#

��
��
���

�
��
�
�

��
 �

$
�
��



�
$

ISBN 978-3-8396-0372-7

9 7 8 3 8 3 9 6 0 3 7 2 7


