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Abstract

The core element of the PROFES improvement methodology is the concept of
product-process dependency (PPD) models. The purpose of PPD models is to
help focus process improvement activities to those development technologies
and processes that are most effective with regards to achieving specific cus-
tomer-defined product quality goals. This paper describes how system dynam-
ics simulation models can be used to check the plausibility of achieving positive
effects on software product quality when implementing improvement actions
derived from PPD models. Basically, this is done through extending an existing
generic software project simulation model with structures that represent ex-
pected local cause-effect mechanisms of the PPD models. By running simula-
tions with the extended software project simulation model, the potential ef-
fects of the PPD models on product quality can be investigated at low cost be-
fore conducting pilot applications in real projects.
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Introduction

1 Introduction

Software industry is constantly facing increasing demands for quality, produc-
tivity, and time-to-market. At the same time, increasing complexity of software
products and projects makes it ever more difficult for software developers and
managers to improve performance. One reaction to this challenge has been
the — now widely accepted — practice of initiating and conducting continuous
software process improvement (SPI) programmes.

Triggered by the seminal work of Watts Humphrey [17], much effort has been
invested for assessing and improving software process capability and technol-
ogy during the last decade. However, precise knowledge about the effects that
specific process improvement actions have on specific customer defined prod-
uct quality characteristics is still scarce.

In the recently completed European research project PROFES (PROduct Focused
process improvement for Embedded Systems [32]), the relation between prod-
uct and process characteristics has been investigated more closely. The PROFES
improvement methodology [5, 31] integrates several well-proven improvement
techniques, such as process assessment [21, 27] and goal-oriented measure-
ment [10, 37], and promotes a systematic and iterative approach of continuous
improvement according to the Quality Improvement Paradigm (QIP) [4]. The
core element of the PROFES improvement methodology is the concept of so-
called product-process dependency models (PPD models) [30]. The purpose of
PPD models is to help limit process improvement activities to those develop-
ment technologies and processes that are most effective with regards to
achieving specific customer-defined product quality goals.

The PROFES improvement methodology provides guidelines for developing,
using and evolving PPD models [31]. In order to achieve the product quality
targets set by the customer, it is crucial that the PPD models be valid. More
precisely speaking, validity of a PPD model means that in a given context the
technology proposed for application in a particular development process sig-
nificantly helps achieve a pre-defined product quality target. The most reliable
way to validate PPD models is to generate empirical evidence from pilot appli-
cations [7], which is usually time-consuming and sometimes risky. Hence an in-
teresting issue associated with the concept of modelling and exploiting prod-
uct-process dependencies is the assessment of the actual effectiveness of not
yet fully empirically validated PPD models.

When investigating a phenomenon of interest happens to be unfeasible in the
real environment, or at least overly costly or risky, a common engineering prac-
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tice consists of building a model that reproduces this phenomenon and which
can be studied by simulation. The model is a mathematical abstraction that
acts as a substitute for the real entities generating the phenomenon of interest
but which is more amenable to manipulation. It is tempting to adopt the prin-
ciples of modelling and simulation to analyse the (potential) effectiveness of
PPD models in software development projects. In the remainder of this paper,
a simulation-based approach will be proposed for experimenting with PPD
models in a laboratory-like setting, before applying them in real software de-
velopment projects.

The structure of the paper is as follows. In the next section, the basic concepts
of PPD models are briefly presented (Sect. 2). Then, the simulation technique
System Dynamics (SD) is introduced, and its suitability for analysing the effec-
tiveness of proposed PPDs is motivated (Sect. 3). In Section 4, the approach for
simulation-based experimentation with PPD models is outlined. Then, the ap-
proach is illustrated in a case study using a generic SD model and an example
scenario for experimenting with two PPD models (Sect. 5). Section 6 discusses
the results of the experiments conducted. Eventually, Section 7 summarises the
results of the paper and gives an outlook to promising future research paths.
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2 Product-Process Dependencies

PPD repositories are a core element of the PROFES improvement methodology.
They contain an organised collection of so-called PPD models. A PPD describes
the impact that a particular software engineering technology has on a certain
software quality characteristic when applied in a certain development process
in a specific project context.

The following sub-sections present the standard PPD model structure, the PPD
model life-cycle, and a brief discussion of issues associated with PPD model
validation.

2.1 PPD Model Structure

The generic structure of a PPD model consists of a main section and a context
section (Fig. 1 shows an example).

ool ]

Product Quality Maturity (e.g., measured in terms of defect density)

Process Software design specification

Technology Formal inspection (e.g., according to Fagan [14])

Context Factor 1 | Size of inspection team 1-2 3-55-10

<.> <.> <.>

Context Factor n | Size of inspected document | small average large very_large

Figure 1 Example PPD model (adopted from [26])

* Main section:

- Slot 1 (Product Quality): The Product Quality slot specifies the product
quality characteristic that is affected by the suggested process improve-
ment activity. It is recommended to base the specification on a well-
defined and accepted taxonomy, e.g., as provided by standard I1SO9126
[18].

- Slot 2 (Process): The Process slot specifies in which of the software proc-
esses the suggested process improvement activity takes place. Again, it is
recommended to base the specification on a well-defined and commonly
accepted taxonomy, such as standard process taxonomies for assess-
ments (e.g., as provided by standard ISO15594 — also known as SPICE

[19D).
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2.2

Figure 2

2.2.1

- Slot 3 (Technology): The Technology slot specifies the method, tech-
nigue, practice, or tool that the suggested process improvement activity
applies. As for the other slots, it is recommended to base the specifica-
tion on a well-defined and commonly accepted taxonomy. In this case,
however, ready-to-use standards are not available, but company-specific
taxonomies, or taxonomies published by organisations such as the Soft-
ware Engineering Institute can be used as a starting point [36].

» Context section: The context section specifies the conditions under which
the PPD model can be applied successfully. For each known context factor,
a description and a range of possible values is provided. Which of the possi-
ble values are feasible is determined based on empirical evidence (i.e., from
PPD model applications in software projects). The joint set of feasible values
(marked by bold font in Fig. 1) determines the context in which the PPD
model is recommended for use.

More detailed information about different types of PPD models can be found
in [31].

PPD Model Life-Cycle

The PPD model life-cycle comprises three phases: development, usage, and
evolution (see Fig. 2).

Improvement Programme
/ Development Projects

Available Body of
PPD-Related Knowledge
(implicit and explicit)

Use
Develop FAD etz Evolve
PPD models PPD models

3)

PPD model life cycle [6]

PPD Model Development

Developing PPD models is a combined analysis and design task. The objective is
to identify, analyse, and package SPI relevant information such that it can be
easily stored, reused, and maintained. The information contained in PPD mod-
els can be obtained by using different strategies and information sources, i.e.
interviews with experienced software professionals, systematic measurement
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programmes (e,g, following the GQM approach), and process assessments. For
identifying generic, i.e. not company-specific PPDs, scientific literature and sur-
veys can provide good baseline information.

2.2.2 PPD Model Usage

Within SPI programmes the most relevant usage areas of PPD models are the
identification of potential process improvement actions, and the focusing of
process assessments based on the previously defined product quality goals. The
procedure for identifying improvement actions with the help of PPD model re-
positories (PPD repositories) is outlined in [26] and fully described in [31]. The
most important steps of this procedure include:

— STEP 1: Identification of product quality goal.

— STEP 2: Identification of process(es) for which improvement actions are ex-
pected to be most beneficial. This step can be based on process assessment
results and information derived from repositories of existing PPD models.

— STEP 3: Retrieve all PPD models that provide improvement suggestions for
the product-process combination established in steps 1 and 2.

— STEP 4: Rank the PPD models with regards to their suitability for the next
software development project. The ranking is based on the degree to which
the context information provided in the PPD models match with the project
characteristics.

— STEP 5: Select those technologies for introduction in the next software de-
velopment project, which are suggested by the highest ranked PPD models.

2.2.3 PPD Model Evolution

Because the context of software development constantly evolves, enhance-
ment of the PPD models is necessary. In each application of a PPD model new
experience about the relationship between product quality and development
processes is gained, hence the PPD models need to be updated and refined in
order to reflect the evolved context and experience.

2.3 PPD Model Validation

The most problematic and difficult task is the validation of PPD models. The
best way to validate a PPD model is to set up a related measurement pro-
gramme, run a pilot application, and collect measurement data. Based on the
analysis of the collected data, the validity can be judged (for an example cf.
[8]). Since preparing and running pilot projects is usually rather costly — and
sometimes risky — it may be wise to use simulation techniques for pre-checking
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the plausibility of successful PPD model implementation before conducting the
actual validation task.

Basically, three situations for simulation-based plausibility checking of PPD
models can be identified:

1. Before initial empirical validation of a PPD model and its inclusion into the
PPD repository: Plausibility checks based on simulations can indicate that
chances of successful empirical validation are low. This is a useful informa-
tion when deciding whether to conduct (expensive) pilot projects.

2. Before implementation of a technology in a real project, which is based on
the recommendation of a PPD model taken from an existing PPD repository:
Simulation results can help to reduce the risk of failure, particularly in situa-
tions when a complete matching of the context information with the actual
project context cannot be achieved.

3. In order to further evaluate the actual implementation conditions (i.e., the
context information) of existing PPD models before application in new proj-
ects. This can be particularly useful for generic PPD models, because context
information for them is typically not very detailed.

In the following sections, more details are provided on how to support PPD
model validation with the help of system dynamics simulation models.

6 Copyright © Fraunhofer IESE 2000
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3 System Dynamics Modelling

The potential of simulation in software engineering has been pointed out by
many researchers during the last decade (e.qg., cf. [12, 39]). Marc Kellner et al.
[20] list several promising application areas for simulation-based analysis in
software organisations, including: understanding, training and learning, plan-
ning, control and operational management, strategic management, process
improvement and technology evaluation.

Among the most popular simulation modelling methods proposed by research-
ers (a selection is provided in [33]), System Dynamics (SD) seems to be a very
promising approach, because it facilitates an integrated modelling of product,
process, technology, and people. Originally, the SD modelling and simulation
approach was developed by Jay Forrester at the MIT to tackle socio-economic
and/or socio-technical problems [15, 16]. SD is based on the assumption of the
ubiquity of feedback processes in human interactions: considered from a high
level of abstraction, a socio-economic or socio-technical system can be mod-
elled as a feedback structure, whose complex behaviour is generated by the in-
teraction of many (possibly non-linear) loops over time.

In the late 1980s, researchers and practicioners have started to apply SD mod-
elling to the field of software engineering. Published examples of SD applica-
tions in software development cover a variety of issues such as software proj-
ect management [1, 13, 24], the impact of software process improvements on
cycle-time [38], the impact of systems engineering on software development
[28], concurrent software engineering [29], effects of software quality im-
provement activities [2, 25], software reliability management [35], software
maintenance [11], and software evolution [23].

Due to the high flexibility of the SD modelling approach, in an SD model, the
underlying cause-effect structure of a whole software development system
(consisting of products, processes, technologies, and people) can be captured
on an aggregated level, and translated into functional relationships formally
represented by mathematical equations, which are then the basis for running
computer simulations. The structure of the modelled system is graphically rep-
resented by the so-called flow diagram. The basic modelling constructs typically
used in a SD flow diagram are depicted in Fig.3.
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Figure 3

O source or sink outside

level the model boundary
e —>»  flowof quantities
auxiliaryo o3 nformation link
-

constant

Schematic conventions of flow diagrams

Level variables (sometimes also referred to as state variables) describe the state
of the system. They accumulate (or integrate) the results of action in the sys-
tem, an action being always materialised by flows in transit. The derivative of a
level, or equivalently the rapidity at which it is changing, depends on its input
and output flows. The computation of a level is approximated by a difference
equation of the following form:

Level(t + dt) = Level(t) + (z input _rates — Z output_rates)dt (1)

The rates are what change the value of levels. Their equations define how
available information is used in order to generate actions. A rate has four con-
ceptual components: an observed condition is compared to a goal, and the
discrepancy found is taken as the basis for action (flow) generation. The rate
equation, which formalises this policy, is an algebraic expression that depends
only on levels and constant values. Auxiliary variables can be used for interme-
diate computation.

Copyright © Fraunhofer IESE 2000



Simulation-based
Experimentation with PPD
Models

4 Simulation-based Experimentation with PPD Models

The procedure that describes how to use SD models for experimenting with
PPD models in order to check their plausibility is quite straightforward. Basi-
cally, it consists of three steps:

— STEP 1 (baseline SD model): Development of a SD model that captures the
typical behaviour of software development projects in the organisation (with
consideration of specific characteristics — if existing — of those development
projects that are candidates for piloting the suggested improvement action).
In order to be suitable for PPD model evaluation it is necessary that the
model explicitly represent the product-process combination of interest. The
related information can be obtained from the main section of the candidate
PPD model. Note that details about the technology being applied are not
yet implemented in the baseline SD model.

— STEP 2 (extended SD model): Extend the SD model such that it correctly
captures the process changes implied by the implementation of the tech-
nologies suggested by the candidate PPD model. This extension often im-
plies the implementation of new rate and level variables in the SD model. In
order to produce useful simulation results, also the information contained in
the context section of the PPD model has to be reflected adequately by the
extended SD model. Adding new model parameters with information links
affecting the control of rate variables typically does this.

— STEP 3 (evaluation scenario): Define a scenario for evaluating the effects of
the proposed improvement action through simulation, perform the sce-
nario, and analyse the results. Essentially, the scenario consists of running
the baseline and extended SD models with carefully designed sets of pa-
rameter values.

Obviously, in order for this procedure to work, the validity of the SD model is
crucial. Even though there exist tests for checking the validity of SD models [3],
a problem is associated with STEP 2 of the procedure, because empirical valida-
tion of those model elements representing the effects of the PPD model is per
definitionem impossible, and validity checking must rely on expert judgement
alone. Clearly, expert judgement can only extend to checking the correct im-
plementation of all effects the new technology proposed by the candidate PPD
model is expected to have. Note that the added value of running simulations
with a system dynamics model originates in the ability to visualise and analyse
the system behaviour generated by the interaction of many interrelated cause-
effect relations, where each individual cause-effect relationship is believed to
hold if looked at it in isolation. In any case, given the difficulties associated
with model validation, simulation results should mainly be used for refutation
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of the candidate PPD model. That is, simulation results are particularly inter-
esting when they suggest that the candidate PPD model is not as effective as
expected, because this is a warning signal indicating a certain risk that — in the
case that the simulation model was actually valid — empirical validation might
not succeed, too.

In addition to checking the plausibility of the effectiveness of proposed tech-
nologies, experimentation with PPD models may have another benefit. A PPD
model that has not yet been evaluated in real projects tends to be quite ge-
neric, i.e. its context section does not yet contain much detail. Simulation-
based experimentation can also be used to explore the application context of
such PPD models. In the following section, a (hypothetical) case study is con-
ducted to illustrate this usage of the procedure outlined above.
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5 Case Study

Starting point of the case study is the supposed need of a software organisa-
tion to improve the maturity of their software products. Product maturity is ex-
pressed in terms of (expected) defect density after system test. The case study
involves three elements: the simulation model that is used for experimenting
with candidate PPD models, a set of candidate PPD models, and the PPD model
evaluation scenario. All three elements are briefly described in the following
sections.

5.1 System Dynamics Simulation Model GEN-PROSIM

Starting from ideas similar to [1, 24, 25], Fraunhofer IESE developed the SD
model GEN-PROSIM (GENeric PROject Simulation Model). The main purpose of
this model is to demonstrate how SD models can be used for the management
of software development projects, and for the improvement of the underlying
processes and technologies, taking under consideration trade-off effects be-
tween time, cost, and quality, simultaneously.

The model structure represents in a simplified, generic waterfall-model like
fashion the core phases of a typical software development project: Design, Im-
plementation, Test. The calibration of the model was not based on a special
case or on exhaustive empirical research, but on the functional relationships
between effort, time, and size, as suggested by the well-known COCOMO
model [9].

In total, GEN-PROSIM consists of five interrelated sub-models (views):
Production: This view represents a typical software development cycle con-
sisting of the following chain of transitions: set of requirements — design
documents - code - tested code. Note that the detection of defects dur-
ing testing only causes reworking of the code (and not of the design docu-
ments).

— Quality: In this view, the defect co-flow is modelled, i.e.: defect injection
(into design or code) — defect propagation (from design to code) — defect
detection (in the code during testing) — defect correction (only in the code).

- Effort: In this view, the total effort consumption for design development,
code development, code testing, and defect correction (rework) is calcu-
lated.

- Initial Calculations: In this view, using the COCOMO equations, the normal
value of the central process parameter “productivity” is calculated. The
normal productivity varies with assumptions about the product development
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Table 1

mode (organic, semi-detached, embedded) and characteristics of the project
resources available (e.g. developer skill).

— Productivity, Quality & Manpower Adjustment: In this view, project-specific
process parameters, like (actual) productivity, defect generation, effective-
ness of QA activities, etc., are determined based on a) planned target values
for manpower, project duration, product quality, etc., and b) time pressure
induced by unexpected rework or changes in the set of requirements.

The most important model parameters are listed in Table 1 according to their
role for PPD model evaluation. It should be noted, however, that, in total, the
model user can chose from more than 30 parameters in order to adapt the
model to a specific environment.

Input Parameters
Project Characterisation Project Management Output Parameters
Parameters Parameters
Initial_job_size_in_tasks [func- Job_size_in_tasks [implemented and
tional units] tested functional units]
Project_complexity [organic, Planned_manpower Project_time [weeks]
semi-detached, embedded] [persons] (optional) (project total and per phase)
Manpower_skill Planned_completion_time Effort [person weeks]
[low, average, high] [weeks] (optional) (project total and per phase)
Goal_field_defect_density Field_defect_density
[defects per implemented [defects per implemented functional
functional unit] (optional) units after test]

GEN-PROSIM model parameters

5.2 PPD Models Examined

Figure 4

12

Starting from the product quality improvement goal, a search in an available
repository of PPD models revealed two quite generic PPD models as candidates
for implementation (see Fig. 4). The first PPD model suggests implementing
formal inspections during the coding phase, the second PPD model suggests
implementing formal inspections during the design phase. In both cases, the
context section is still quite short and no contextual constraints on the value
ranges of the few defined context factors have been identified.

I PrO Viodel 5

Product Quality Defect density Product Quality Defect density

Process Code development Process Design development

Technology Formal inspection Technology Formal inspection

CF-1 | Project type Organic, semi- CF-1 | Project type Organic, semi-
detached, embedded detached, embedded

CF-2 | Project size Small, average, large CF-2 | Project size Small, average, large

CF-3 | Manpower skill | Low, average, large CF-3 | Manpower skill | Low, average, large

PPD models for coding (A) and design (B) phase
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5.3

Case Study

The integration of the PPD models into SD model GEN-PROSIM affected three
views, namely Production, Quality, and Effort. The Production view must offer
the possibility to conduct design and/or code inspections. The Quality view
must account for early defect detection during design and/or code inspections.
The Effort view must account for additional effort due to inspection activities
and induced rework resulting from defect detection during inspections. Fig. 5
depicts the integration of the PPD models into the Production view of the GEN-
PROSIM flow graph. Gray ovals mark the variables that were added to the
model, i.e. des_insp_practice (the share of the design documents that undergo
inspections), des_insp_rate (design inspection rate), impl_insp_practice (the
share of code documents that undergo inspection), and impl_insp_rate (code
inspection rate).

=P tasksfor tet ———X

impl insp rate

<des mp rate>

<impl mp rate> ) . .
impl insp practice

<test mp rate>

des productivity desinsp practice impl productivity test productivity

Production view of SD model GEN-PROSIM with PPD model implementation

PPD Model Evaluation Scenario and Simulation Results

With the help of the extended SD model GEN-PROSIM, the two suggested PPD
models can be evaluated according to the following scenario:

— STEP 1 (baseline): Run simulation without inspections (des_insp_practice =
0, impl_insp_practice = 0) and store (estimated) defect density after testing
(field_defect_density).

— STEP 2 (evaluation of PPD model A): Run simulation with code inspections
(des_insp_practice = 0, impl_insp_practice = 1) and store (estimated) defect
density at test end (field_defect_density).

— STEP 3 (evaluation of PPD model B): Run simulation with design inspections
(des_insp_practice = 1, impl_insp_practice = 0) and store (estimated) defect
density at test end (field_defect_density).

— STEP 4 (evaluation of PPD model A & B): Run simulation with code and de-
sign inspections (des_insp_practice = 1, impl_insp_practice = 1) and store
(estimated) defect density at test end (field_defect_density).

— STEP 5: Compare results of steps 2-4 with step 1 (baseline) and draw con-
clusions.
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Note that this scenario can be run for any combination of value assignments in
the PPD model context sections. In Fig. 6 below, simulation results for the fol-
lowing context settings are presented: project type = semi-detached, project
size = average (1000 functional size units), and manpower skill = average.

The results of the simulation-based analysis are shown in Fig. 6. The lines 1 to
4 show the trade-off relation between project duration and field defect density
(FDD) for all four cases, i.e. baseline, with PPD model A, with PPD model B,
with PPD models A and B. Note that manpower allocation was kept constant
for all simulations, total effort and project duration are proportional, and thus
effort numbers do not need to be considered. In order to simplify the graph,
relative numbers are plotted on the x-axis, i.e. project_duration equals 1 for
the baseline case (line 1). As can be seen, it is possible to impose variation on
the model variables for project duration and FDD. This is achieved by setting a
specific FDD target value. Depending on whether the target value is greater
than or less than the typical value suggested by the model (indicated by ‘x’ on
lines 2 to 4 in Fig. 6), testing is stopped earlier or later and thus less or more
defects are detected.

In any case, when looking at Fig. 6, there is a clear ranking among the four
situations. Related to the baseline case (field_defect_density = 1.79 defects per
implemented functional unit), the application of code inspections (PPD model
A), and design inspections (PPD model B) results in better product quality. In
addition, the numbers show a clear ranking among results from STEP 2 (with
PPD model A) and STEP 3 (with PPD model B), and in addition the data shows
that the combined application of design and code inspections is even better

wrt. to FDD.
[a]
225
baseline
—FDD/STEP 1
—FDD / STEP 2
—FDD/ STEP 3
PPD model B ! —FDD /STEP 4
PPD model A
0.5
PPD models
A and B
1.2
Project Duration
Figure 6 Simulation results (with rework effort relation 1: 2.5: 7.5)
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A surprising detail of the simulation results is the fact that PPD model A ranked
better than PPD model B. Why is the overall quality of the software better
when conducting code inspections instead of design inspections? A closer look
at how the defect co-flow was implemented in GEN-PROSIM uncovered that
there is a relationship between the point in time of defect detection, and the
associated average rework effort induced per defect. If, in a particular phase,
the rework effort per defect increases (e.g., due to increased difficulty of
analysis and correction), then there is less manpower left over for development
activities. This creates schedule pressure, which in turn reduces the available ef-
fort for conducting inspections, and at the same time increases the probability
of introducing new defects.

In Fig. 6, the relation of the average rework effort per defect between the
phases design, coding, and testing was 1: 2.5: 7.5, i.e. the later a defect has
been detected the more rework effort is induced for defect correction. If this
relation is altered, say to 1: 7.5: 7.5, the ranking of PPD models A and B is re-
versed (cf. Fig. 7). This observation indicates that there is a new context factor
— not yet listed in the context section of the PPD models (i.e., average rework
effort per defect) — that should be further investigated and eventually included
in the context sections of the PPD models.

a
£ 25
2
baseline 4__---_________\
15 ; —FDD/STEP 1
1 — FDD/ STEP 2
PPD model A | [€------------- X\N\ —FDD/STEP 3
PPDmodel B~ [€------mmmmmooos \9\\%\2 —FDD/ STEP 4
: 3
PPD models g5 lg¢-— " T—g
Aand B PX— 4
0 T I\ T 1
0.8 0.9 1 11 1.2
Project Duration
Figure 7 Simulation results (with rework effort relation 1: 7.5: 7.5)
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16

Discussion

The case study conducted in Section 5, sheds light on one possibility of apply-
ing the overall approach of simulation-based experimentation with PPD mod-
els. In the presented case, the purpose of the experimentation was to explore
the (potential) effectiveness of two PPD models in a generic setting. It could be
demonstrated that systematic exploration is feasible, and that, in addition, a
further refinement of the context section of the PPD models could be triggered
based on the simulation results. Of course, due to the lack of empirical validity
of the SD model used, all numbers generated through simulation are only of
limited value, and should only be interpreted qualitatively. In particular, the
simulation results cannot be used for checking the plausibility of the candidate
PPD models with respect to the effectiveness of the proposed technologies in a
real development project. If this was the goal, much more effort had to be put
in developing a valid SD model that is calibrated to a real development envi-
ronment. Guidance for doing this can be found in [22, 34].

It should be noted, however, that even when working with generic (and/or ac-
tually invalid) models, running simulations is a useful tool for deepening the
experts’ understanding of software development projects and SPI actions. Par-
ticularly when the simulation results do not match the expectations of the ex-
perts involved, both the simulation model as well as the mental models of the
experts will be subject to double-checking and possibly revision. This will in any
case trigger learning about reality, and the perception of reality, with substan-
tial positive effects on the management of software projects and SPI pro-
grammes.
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7 Conclusion and Future Work

The case study conducted in Section 5 has demonstrated that the suggested
approach of simulation-based experimentation with PPD models is feasible and
useful. More work, however, is needed to mature the overall approach in order
to make it a reliable, cheap, and easy-to-apply support tool for decision makers
in SPI programmes. To achieve this, future research will focus on three areas:

1. Provision of systematic guidance for conducting simulation-based explor-
ative experimentation with generic PPD models.

2. Provision of systematic guidance for conducting simulation-based plausibility
checks on yet mature PPD models before implementation of the proposed
technology in an upcoming development project.

3. Deeper investigation of the relationships and synergies between SD model-
ling and PPD modelling in order to develop a framework for model-based
learning in software organisations.
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