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Abstract
High resolution irradiance forecasts based on sky imagers are valuable for applications that require short term
decisions based on ramps of solar irradiance. Here, we present our sky imager based forecasting algorithm,
using images of a low cost surveillance camera. Model development and evaluation is done separately for
the different steps in sky imager forecasting, starting with cloud detection, followed by estimation and
extrapolation of cloud movement, and finally deriving irradiance forecasts from the predicted cloud images.
We distinguish between clear and cloudy conditions and especially evaluate the effect of cirrus situations
on the different forecasting steps. To create binary cloud masks, we adapted a pixel value based cloud
algorithm using a set of manually classified pixels. In an independent validation dataset 90.3 % of the
pixels are classified correctly. For the circumsolar region, where cloud decision is known to be especially
challenging and crucial for the forecasting of the direct component of the solar radiation, we introduce a
correction procedure using real-time irradiance measurements and object recognition methods. Applying this
method we can significantly improve the cloud detection in the circumsolar region and increase the forecast
skill of the cloud decision forecast. The development of the irradiance algorithm is a special focus of this
paper. Real-time irradiance measurements and cloud decision information are used as input to our irradiance
model. The algorithm is developed using cloud decision information derived from measurements instead of
sky imager cloud decision forecasts to exclude the influence of errors in cloud decision and cloud motion
methods for model development. Afterwards, the irradiance algorithm is applied to sky imager based cloud
decision forecasts. Even though we start with binary cloud information, the distribution of the clear sky index
from our forecasts is in very good agreement with the distribution of the measurements. In a validation dataset
of 46 days, we receive a positive forecast skill for all forecast horizons larger than 1 min. We also apply our
forecast chain to a dataset of two month from an independent measurement station resulting in a comparable
forecasting performance.
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1 Introduction

Solar irradiance fluctuates with high amplitude on very
short time scales due to passing clouds. Applications
that are affected by these irradiance ramps require short
term irradiance forecasts. Forecasts of solar irradiance
based on Numerical Weather Predictions (NWP) or
satellite data give valuable information for many appli-
cations (Lorenz et al., 2014). However, they cannot re-
solve the passing of single clouds and are thus not suited
well for forecast horizons up to 15 min. Some applica-
tions require forecasts of single clouds with very high
resolution on short time scales. In photovoltaic(PV)-
Diesel systems, for example, fuel can be saved if the
generator is only turned on when clouds are passing (Pe-
ters et al., 2018). Also a distribution grid can benefit
from short term forecasts, since the fluctuating load in
the grid increases due to an increase of large consumers
like heat pumps. Short term forecasts can be used, e.g.,
to control heat pumps combined with PV-systems to be
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even beneficial for the grid operator (Dittmann et al.,
2019). One way to create such high resolution fore-
casts is to use measurement-based statistical approaches
of time series analyses like described in Chowdhury
(1990) and Inman et al. (2013). The downside of these
approaches is that they cannot forecast the timing of sin-
gle clouds passing. This can be achieved by physical ap-
proaches.

Information on clouds and their motion in the sur-
roundings of a given site can be obtained from ground-
based cameras with fisheye lenses, so called sky im-
agers. The first steps of sky imager based forecasts are
typically cloud detection and cloud motion estimation.
To create a forecast, the cloud motion is extrapolated
into the future and as a last step irradiance forecasts are
derived from the predicted clouds. The maximum fore-
cast horizon depends on the cloud situation, especially
on cloud height and cloud velocity. Typical values are
around 15 min (if one sky imager is used). The forecast
resolution can be as small as seconds.

Here, we present our sky imager based forecasting
algorithm for global horizontal irradiance (GHI), using
images of a low cost surveillance camera. Our camera is
installed in Freiburg, Germany, since 2017. We evaluate
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irradiance forecasts for the position of the camera for
forecast horizons up to 15 minutes. Model development
and evaluation is done separately for the different steps
(described above), with a focus on the irradiance model.

The first who developed a sky imager based fore-
casting system were Chow et al. (2011). After that
several studies addressed new ideas and developments
in the area (e.g. Ghonima et al., 2012; Nguyen and
Kleissl, 2014; West et al., 2014; Cazorla et al., 2015;
Chauvin et al., 2016; Liandrat et al., 2017; Kuhn
et al., 2018). New cloud detection methods have been
suggested for example by Ghonima et al. (2012) and
Cheng and Lin (2017). Here, the approach by Schmidt
et al. (2016) is adapted. We optimize the parameters of
the pixel value based cloud decision algorithm using a
set of manually classified pixels. Additionally, we ad-
dress cloud detection in the circumsolar region, which is
known to be difficult, due to high saturation (Urquhart
et al., 2013; Pfister et al., 2003). Yang et al. (2014)
found that the cloud decision in the circumsolar region is
one of most important factors affecting the forecast ac-
curacy. In this study, we introduce a novel procedure to
improve the circumsolar region of the cloud masks us-
ing real-time irradiance measurements and object recog-
nition methods.

Different approaches to determine cloud motion
from sky imager pictures have been investigated e.g. by
Huang et al. (2013) and Chauvin et al. (2016). Fur-
thermore, sky imager based forecasting can benefit from
new methods published in the field of optical flow re-
search which has been very active during the last years 1.
Here, we use the DeepFlow algorithm by Weinzaepfel
et al. (2013) for calculation of cloud motion, which is
suitable to detect also large displacements.

The last step in sky imager forecasting, the transla-
tion of the cloud forecasts to solar irradiance, is a fo-
cus of this study. A simple but often used method for
irradiance retrieval is based on a histogram of the clear
sky index from recent measurements of GHI (Yang
et al., 2014). The clear sky index is defined as the ra-
tio of measured GHI to the modelled clear sky irra-
diance (k∗ = GHI/GHIclear). Other methods calcu-
late the irradiance components direct normal irradiance
(DNI) and diffuse horizontal irradiance (DHI) separately
from a sky image using image information (Kurtz and
Kleissl, 2017; Schmidt, 2017). Nouri et al. (2019) de-
veloped a procedure to forecast DNI by determining the
transmittance for each cloud from recent pyrheliometer
and cloud height measurements and probability estima-
tion from historical measurements.

Here, we address GHI forecasting for PV applica-
tions and use as a baseline the histogram method based
on GHI measurements in combination with binary cloud
decision information similar as proposed by Yang et al.
(2014). We propose and evaluate several modifications
to adapt and improve the irradiance retrieval for different

1http://sintel.is.tue.mpg.de/results

weather situations. The algorithm is developed and op-
timized using cloud decision information derived from
measurements at the forecast valid time instead of sky
imager cloud decision forecasts in order to exclude the
influence of errors in cloud decision and cloud motion
methods for model development. Finally, overall evalu-
ations for the entire forecasting chain from sky imager
pictures to irradiance forecasts are performed for our site
in Freiburg and, additionally, for a test-site in Blaustein.

Another focus of this study is the effect of cirrus
clouds on cloud decision and irradiance forecasting.
Schmidt et al. (2016) and Rodriguez-Benitez et al.
(2018) analysed the forecast performance depending on
the cloud type. They found that the cloud detection as
well as the forecast performance for cirrus situations is
difficult. Here, we discuss the effect of cirrus clouds on
different forecasting steps and possible implications for
future developments.

In the following sections we describe the develop-
ment and validation of our sky imager based forecasting
algorithm, as summarized in Fig. 1. In Section 2 we give
an overview of the datasets we use. In Section 3 we in-
troduce the error metrics used for the validation. In Sec-
tion 4 we explain and evaluate our cloud detection algo-
rithm and our procedure to improve cloud segmentation
in the circumsolar region. In Section 5 we show our op-
tical flow and cloud movement methods along with a
validation. The main focus of this study is the irradiance
forecasting. We explain the development and optimiza-
tion of the algorithm in Section 6 and show the results of
the final algorithm in Section 7. In Section 8 we discuss
sky imager based forecasting for cirrus situations. The
conclusion is given in Section 9.

2 Data

The camera used for the development of our algorithm
is situated in Freiburg located in the Upper Rhine Valley
next to the Black Forest in Southern Germany. This is an
interesting location for sky cameras due to the formation
of convective clouds over the mountains.

We use the surveillance camera FE9381 from Viv-
otek for this study. Images have been stored every 10 s
since February 2017. Next to the camera, a sun tracker
from EKO (STR-22G) is positioned, measuring DNI
with a pyrheliometer (MS-56) and DHI with a pyra-
nometer shaded by a shadow ball (MS-802F). Irradi-
ance is measured instantaneously with a temporal res-
olution of 20 s. For this study GHI is derived from the
irradiance components and the sun zenith angle Θz us-
ing GHI = DHI + DNI · cos(Θz). In the following, the
GHI derived like this is referred to as measured GHI.
For the detection of cirrus situations (Section 8) we also
use cloud height measurements from a ceilometer oper-
ated by the German weather service DWD 1.5 km from
the camera position. The cloud height measurements are
10 min averages.

In addition, we use data from a camera of the same
type located in Blaustein, about 160 km from Freiburg,

http://sintel.is.tue.mpg.de/results
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Figure 1: Steps of our sky imager based forecast.

for validation. GHI is measured with a ventilated pyra-
nometer from EKO (MS80) next to the camera with a
temporal resolution of 1 s.

For both sites all instruments are cleaned weekly. The
irradiance data is filtered using a quality control proce-
dure based on the Baseline Surface Radiation Network
(BSRN) recommendations (Long and Dutton, 2002).
Besides local measurements, clear sky irradiance values
are used in this study to derive the clear sky index. For
calculating clear sky irradiance, we use the clear sky
model introduced by Dumortier (1995) with the tur-
bidity described by Dumortier (1998) and Bourges
(1992).

An overview of the datasets used in this study is
given in Table 1. Model development and detailed eval-
uations were done using data from the Freiburg site.
For the cloud detection algorithm two datasets were cre-
ated, one for optimization (CloudDecision1) and one for
validation (CloudDecision2 – in brackets). They con-
sist of 28 (16) images selected carefully to give a good
representation of cloud types and zenith angles. Cloud
types of the images were assigned manually. Addition-
ally, clear sky libraries were created from clear sky im-
ages in temporal proximity for each data set. In these
images, 1068 (569) randomly selected pixels were clas-
sified manually into the categories cloudy or clear. From
the first set of images an additional dataset containing
289 pixels within a radius of 20° around the sun was cre-
ated (CloudDecisionSun) to validate the cloud detection
in the circumsolar region.

For analysing the shadow and irradiance forecasts,
a dataset from summer and autumn 2018 is used. The
dataset contains 46 days and covers the periods 13 June
2018–5 July 2018 and 23 August 2018–14 September
2018. Only sun zenith angles up to 75° are analysed.

Forecasts were started every 5 min with a maximum
forecast horizon of 15 min and a resolution of 20 s.
We choose these values to get a sufficient number of
forecasts for validation and keep the computation time
acceptable. This dataset (ForecastFreiburg) includes the
sky images, calculated and predicted cloud masks, time
series of shadow forecasts for the site of the camera and
irradiance measurements and forecasts.

Additionally, we created a cloud shadow reference
time series based on this dataset. With a cloud shadow
reference time series, we mean a binary forecast cre-
ated from measured GHI which is supposed to have the
change from cloud to clear sky at exactly the right time.
We used this dataset to validate our shadow forecast and
as a basis to develop the irradiance algorithm in Sec-
tion 6. For simplification we call a cloud shadow at the
measurement site “cloudy”, and no cloud shadow at the
measurement site “clear” in the following. The cloud
shadow reference time series is derived from measured
GHI values by calculating clear sky index values and
applying a threshold of k∗ = 0, 9 to distinguish between
cloudy (k∗ < 0.9) and clear (k∗ ≥ 0.9) as illustrated
in Fig. 2. This threshold was chosen from visual analy-
ses of time series and histograms of the clear sky index
(see also Fig. 7). It is a balance between detecting thin
clouds as clear (threshold too low) and detecting periods
with high turbidity as cloudy (threshold too high). Ev-
idently, applying a simple threshold is a simplification
considering e.g. very thin clouds. Approaches for detect-
ing clear sky periods from the literature like described
in Tina et al. (2012) or Reno and Hansen (2016) are
not suitable for our purpose here. They are designed to
find stable clear sky periods using criteria like moving
averages and variability information. They are not de-
signed to detect short periods without cloud shadows
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Table 1: Overview of the used datasets.

Dataset Time range Overview Count Purpose

CloudDecision1 May 2017 28 images 1068 classified pixels Optimization of the cloud decision algorithm
CloudDecisionSun ′′ ′′ 289 classified pixels Validation of the cloud decision in circumsolar region
CloudDecision2 June 2017 16 images 569 classified pixels Validation of the cloud decision algorithm
ForecastFreiburg June–Sept. 2018 46 days 5908 forecasts Development of the forecasting algorithm
ForecastBlaustein May–June 2019 61 days 9410 forecasts Validation of the forecasting algorithm

Figure 2: Top: time series of k∗ from GHI measurements; a threshold
of k∗ = 0.9 (orange line) is applied to distinguish between clear
(yellow) and cloud shadow (white). Bottom: normalised histograms
and KDE for cloudy (k∗ < 0.9, blue) and clear sky (k∗ ≥ 0.9, orange)
for a forecast starting at 1030 UTC from the above time series; Each
distribution and corresponding histogram are normalised separately.

on a partly cloudy sky with fast fluctuations between
clear and cloudy, which is essential for our method. We
choose to use a method based on GHI, not on the di-
rect and diffuse components, since these are not avail-
able for many measurement sites. With our method, we
get a good indication on the presence of cloud shadows
at the camera position and the timing of the change be-
tween cloudy and clear for many conditions.

As a completely independent validation dataset we
use measurements and forecasts from the station in
Blaustein (ForecastBlaustein). The dataset contains fore-
casts and measurements for May and June 2019. These
forecasts have a resolution of 10 s.

Figure 3 shows a comparison of the cloud situa-
tions of the two datasets ForecastFreiburg and Forecast-
Blaustein based on the evaluation of the cloud masks
derived with the algorithm described in Section 4. The
dataset ForecastFreiburg (ForecastBlaustein) contains
30.4 % (25.7 %) clear, 45.4 % (38.5 %) partly cloudy and
24.2 % (35.8 %) overcast situations. Here, clear is de-
fined as less than 5 % cloudy pixels, overcast as more
than 95 % cloudy pixels and partly cloudy as every-
thing in-between. The dataset ForecastBlaustein con-
tains more overcast situations and less clear and partly
cloudy situations than the dataset ForecastFreiburg.

Figure 3: Histogram of the calculated cloudiness derived from the
improved cloud masks as described in Section 4. Cloudiness is de-
fined here as the fraction of pixels classified as cloudy: 0 corresponds
to cloudless sky, 1 corresponds to a completely cloudy sky. Datasets
ForecastFreiburg and ForecastBlaustein.

Table 2: Contingency table.

Model

Observations Clear Cloudy

Clear true negatives false alarms
Cloudy misses hits

3 Error metrics

To validate the binary classification of the cloud fore-
casts, a contingency table is computed as shown in Ta-
ble 2. This table is used to calculate the accuracy, defined
as the number of correct classified samples divided by
the total number of samples N.

Accuracy =
hits + true negatives

N
(3.1)

For the validation of the irradiance forecasts pi
against the measurements mi the Root Mean Square Er-
ror (RMSE) and the Mean Absolute Error (MAE) is cal-
culated.

RMSE =

√∑N
i=0(pi − mi)2

N
(3.2)

MAE =

∑N
i=0 |pi − mi|

N
(3.3)
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The skill of a forecast evaluates its performance in
comparison to a trivial reference forecasts for a given
score (here accuracy or RMSE) as defined e.g. in Sen-
gupta et al. (2015). It is calculated from the score of the
modelled forecast (S f c), the score of a reference fore-
cast (S ref) and the score of a perfect forecast (S perf).

Skill =
S fc − S ref

S ref − S perf
(3.4)

S perf is one for the accuracy and zero for the RMSE.
The skill has positive values if the score of the modelled
forecast is better than the score of the reference forecast.
It has a maximum value of 1.

As reference we use a persistence forecast derived
from the last measurement. For the cloud shadow fore-
casts, we use persistence of the cloud shadow reference
time series derived from measurements. For the irradi-
ance forecasts, we combine persistence of the clear sky
index with the clear sky irradiance to account for the
diurnal cycle as defined e.g. in Sengupta et al. (2015),
where t is the forecast valid time and t0 is the start time
of the forecast.

GHIpers(t) = GHIclear(t) · k∗(t0) (3.5)

4 Cloud detection

For the calculation of the cloud masks the algorithm de-
veloped by Schmidt et al. (2016) is adapted. The algo-
rithm is based on the evaluation of the red-to-blue-ratio
of the cloud image pixels in relation to a reference clear
sky image. Clear sky libraries were created manually for
the different data sets described in Table 1. From the
clear sky library, we automatically select the image with
the smallest sun angle difference between the cloudy and
the clear sky image. The algorithm contains three pa-
rameters that were adapted to our camera using the man-
ually classified pixels from the dataset CloudDecision1.
The parameters were optimized simultaneously by max-
imising the accuracy (Eq. 3.1) with an automated proce-
dure using systematic parameter variation.

The contingency tables of the training and the valida-
tion dataset are summarized in Table 3 and Table 4, the
calculated accuracy can be found in Table 5. In the in-
dependent validation dataset CloudDecision2, 90.3 % of
the pixels are classified correctly. Using the cloud type
classification of the images we find that many errors oc-
cur for cirrus situations. The pixels of cirrus clouds are
hard to classify into cloudy and clear sky, since they
have no sharp boundaries like other cloud types. Ex-
cluding four cirrus images, 96.5 % of the pixels could
be classified correctly. Comparing the contingency ta-
bles (Table 3, Table 4) we see that this improvement is
mainly caused by a reduction of false alarms, i.e. pixels
classified wrongly as cloudy.

Due to the high saturation at the sun position and in-
tense forward scattering in the circumsolar region, the

Table 3: Contingency tables for the cloud decision model for dif-
ferent datasets and of manually classified pixels using all available
images.

Manual classification Model

CloudDecision1 Clear Cloudy
Clear 532 31
Cloudy 21 479

CloudDecision2 Clear Cloudy
Clear 245 43
Cloudy 12 269

CloudDecisionSun Clear Cloudy
Clear 164 67
Cloudy 7 152

CloudDecisionSun improved Clear Cloudy
Clear 166 65
Cloudy 4 155

Table 4: Contingency tables for the cloud decision model for differ-
ent datasets of manually classified pixels excluding cirrus images.

Manual classification Model

CloudDecision1 Clear Cloudy
Clear 286 7
Cloudy 21 475

CloudDecision2 Clear Cloudy
Clear 151 4
Cloudy 11 257

CloudDecisionSun Clear Cloudy
Clear 120 10
Cloudy 7 152

CloudDecisionSun improved Clear Cloudy
Clear 120 10
Cloudy 4 155

cloud segmentation near the sun is known to be diffi-
cult (Yang et al., 2014; Urquhart et al., 2013). For val-
idating the performance of our algorithm in the circum-
solar region we created the dataset CloudDecisionSun
from the images used for the CloudDecision1 dataset,
containing only pixels in the circumsolar region. Ex-
cluding again cirrus situations (seven out of 28 images)
we find that the accuracy in the circumsolar region of
94,1 % is lower than in the evaluation of the whole im-
age (96.4 %).

Since the circumsolar region is of special importance
for the forecasts, a novel procedure was developed for
our forecasting system to correct the circumsolar region
of the cloud masks. The procedure is based on real-time
GHI measurements and pattern recognition in the cloud
masks. There are two cases of false cloud classification
in the circumsolar region: 1. The optical thickness of a
cloud in front of the sun is not high enough to conceal
the sun completely. It is classified as clear sky in a circle
around the sun (Fig. 4, top). This occurs for nearly all
cloud types, not only for cirrus clouds. 2. In clear sky
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Table 5: Accuracy of the cloud decision for different datasets of manually classified pixels using all images and excluding cirrus images.

Dataset CloudDecision1 CloudDecision2 CloudDecisionSun CloudDecisionSun improved

All images 95.1 90.3 81.0 82.3
Excluding cirrus images 96.4 96.5 94.1 95.2

Figure 4: Improvement of the cloud mask in the circumsolar region;
left: original image; middle: original cloud mask (cloud=white);
right: improved cloud mask; the upper case shows a not detected
cloud in the circumsolar region. The lower case shows a false de-
tected ring around the sun.

situations, often a ring shaped cloud is detected around
the sun as well as sparkles of clouds due to dirt on the
camera dome (Fig. 4, bottom). To identify the first case,
the cloud shadow reference time series derived from
GHI measurements at the camera position is compared
to the cloud classification for the sun position. If the
cloud shadow reference indicates a cloud shadow, a
circle detection (Yuen et al., 1990) is applied on the
cloud mask to detect the cloud hole in the circumsolar
region. This circle is then filled as cloud. The second
case is identified if the cloud shadow reference shows
clear sky. Using circle and object detection, clouds that
form a ring around the sun and very small clouds in
the circumsolar region are recognised and then removed.
Examples of original and corrected cloud masks for the
two cases are shown in Fig. 4.

This algorithm was developed using a subset of the
ForecastFreiburg dataset and evaluated on the Cloud-
DecisionSun dataset. From the 21 cloud masks (without
cirrus situations), nine show a ring around the sun. Six
of these cloud masks are corrected. A wrong cloud hole
is found in six cloud masks. Three of them could be cor-
rected. The validation of the corrected cloud masks with
the classified pixels in the circumsolar region results in
95.2 % of correctly classified pixels. The contingency ta-
ble (Table 4) shows that due to the correction procedure
the number of missed cloudy pixels is reduced by three.
The enhanced cloud masks have a big effect on the cloud
decision forecasts (see Section 5).

5 Cloud and shadow forecasts

In order to create irradiance forecasts from cloud masks
those masks have to be extrapolated into the future. Two
consecutive images are used to compute an optical flow,
which can then be used to compute cloud mask fore-
casts. The field of optical flow research is very active
with new state-of-the-art methods being published ev-
ery year1. We choose to use the DeepFlow algorithm by
Weinzaepfel et al. (2013) also used in Dittmann et al.
(2018) which was state-of-the-art in 2013 and is suit-
able for large displacements, which is necessary for fast
moving clouds. The DeepFlow algorithm is applied to
the undistorted images. For undistortion the calibration
parameters of the camera lens are needed which were
computed from images of a chessboard. For the imple-
mentation we use OpenCV (Bradski, 2000) for both the
DeepFlow as well as the fisheye camera module.

Cloud mask pixels (cmt(x, y)) are moved according
to the optical flow using inverse mapping:

cmt+�t(x, y) = cmt(−u(x, y) · λ�t + x,−v(x, y) · λ�t + y)
(5.1)

For each forecast step, the optical flow components u
and v are multiplied with the factor λ�t that is calculated
as the forecast horizon �t divided by the time difference
between the images used for flow calculation (here 10 s).

We found that applying smoothing on both the flow
as well as the cloud mask yields better performance.
Time series of shadow forecasts for the camera location
are derived from the resulting cloud mask forecasts by
evaluating the pixel corresponding to the position of
the sun, because it determines whether the sun will be
seen by the camera. The pixel position of the sun in the
cloud mask is calculated using the sun angles and the
calibration parameters of the camera lens.

We evaluate the shadow forecasts against the cloud
shadow reference time series derived from measure-
ments, using the dataset ForecastFreiburg. Fig. 5 shows
the skill of the shadow forecasts using the original cloud
masks and using the cloud masks with enhanced sun
region. The correction considerably improves the fore-
casts, especially for small forecast horizons where there
is no skill before. Since the circumsolar region is closest
to the pixel that shades the camera, the probability that
the pixels in the circumsolar region move over the sun
pixel is higher than for pixels further away from the sun
and small forecast horizons are affected more strongly
by the correction. Now, the cloud decision forecasts have
a positive skill from a forecast horizon of 1 min of up
to 12 %.
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Figure 5: Influence of the enhanced cloud maps in the circumsolar
region on the cloud shadow forecasts; the skill of the accuracy is
plotted against the forecast horizon.

6 Irradiance algorithm

The final step in irradiance forecasting is the translation
of a binary shadow forecast to an irradiance forecast,
i.e. assigning irradiance levels to both states cloudy and
clear in order to describe the influence of turbidity, cloud
optical depth and other factors.

We tested various options using real-time irradiance
measurements to estimate future irradiance levels for
cloudy and clear. The most promising concepts are pre-
sented here. In order to investigate the performance of
the irradiance algorithms independent of errors in sky
imager based cloud decision and motion estimation, we
use the following set-up to develop and optimize the
algorithms: Instead of sky imager based cloud shadow
forecasts we use the cloud shadow reference derived
from GHI measurement at forecast valid time. We call
this dataset perfect shadow forecasts, since the changes
between cloudy and clear are supposed to be at exactly
the right time, knowing that this is a simplification as
described in Section 2. The perfect shadow forecasts are
combined with recent irradiance measurements avail-
able at forecast calculation time in order to forecast the
irradiance for the two levels. This study is performed
using the irradiance measurements of the dataset Fore-
castFreiburg.

We develop the irradiance retrieval inspired by the
histogram method introduced by Yang et al. (2014).
This original method is based on the estimation of the
levels of k∗ for cloudy and clear from the peaks in a
k∗ histogram of recent measurements. The clear sky in-
dex values are combined with a clear sky model to de-
rive the irradiance levels. If no peak is found, a default
value is used. Here, we do not use a histogram, but a
kernel density estimation (KDE) using the python pack-
age SciPy (Virtanen et al., 2019) to find the values
of the k∗ peaks as illustrated in Fig. 2. In this exam-
ple, k∗cloud is 0.225 for the histogram method and 0.257
for the KDE method. k∗sky is 1.125 for the histogram

Figure 6: Schema for retrieving k∗ peaks using a weather dependent
length of the time interval of measurements.

method and 1.110 for the KDE method. One advantage
of the KDE method is that the resulting k∗ peaks are not
binned.

The method developed by Yang et al. (2014) uses
a fixed length of the time interval of measurements.
We define this as our “baseline method” where we use
a time interval of 30 min. However, different interval
lengths may be suitable for different weather situations.
On the one hand, the interval has to be long enough to
collect enough data for shaded as well as not shaded
measurements. On the other hand, for most situations
it should be favourable to use a time interval as close
to the present as possible, because the irradiance values
associated with cloudy/clear can vary on small time
scales depending on e.g. cloud type, cloud coverage
and turbidity. In situations with fast fluctuation between
cloud and clear sky, the time interval can be allowed
to be shorter than in situations with larger or slower
moving clouds.

Therefore, we introduce a weather situation depen-
dent time interval of measurements (Fig. 6). The length
of the time interval is increased from 10 min to 2 h in
steps of 10 min, as long as the k∗ peak is not found. We
tested two minimal intervals (10 min and 20 min) and
two maximal intervals (2 h and 6 h) and found the com-
bination of 10 min and 2 h to perform best. The fore-
cast performance is found not to be very sensitive to
these parameters. This method is applied for the k∗ peak
for cloudy and clear separately. If no k∗ peak is found,
0.4/1.0 is used as default values for cloudy/clear. This
irradiance retrieval method is called “flex method”.

Fig. 7a and Fig. 7b show histograms of k∗ for mea-
surements and irradiance forecasts based on the perfect
shadow forecasts for the baseline and the flex method.
For the flex method the distribution of the forecasted k∗

is more realistic compared to the measurements. Note-
worthy are the peaks at the position of the default val-
ues for the baseline method. Due to the flexible length
of the time interval the number of used default values
is reduced for the flex method. For situations where
the cloud decision derived from the last measurement
(at forecast start time) and the forecasted cloud decision



8 A. Dittmann et al.: Sky imager based irradiance forecasting Meteorol. Z. (Contrib. Atm. Sci.)
PrePub Article, 2020

(a) (b)

Figure 7: k∗ Histogram for measurements and forecasts based on the perfect shadow forecast for the dataset ForecastFreiburg; (a) baseline
method; (b) flex method.

(a) (b)

(c) (d)

Figure 8: Forecasted against measured irradiance based on the perfect shadow forecast with a forecast horizon of 5 min; the correlation
coefficient R is given in brackets. (a) baseline method, forecasted cloudy (R = 0.78); (b) baseline method, forecasted clear (R = 0.98);
(c) flex-combi method, forecasted cloudy (R = 0.84); (d) flex-combi method, forecasted clear (R = 0.99).

are the same (i.e. both clear or both cloudy), another
possibility is to use only the last measurement instead
of a time-range of measurements. For these situations
we can use persistence as defined in Equation 3.5. We
found it valuable to analyse and optimize the irradiance

retrieval method separately for clear and cloudy condi-
tions. The difference between clear and cloudy is visu-
alised in Fig. 8a and 8b for a forecast horizon of 5 min
for the baseline method. The scattering is much larger
for cloudy conditions than for clear sky conditions re-
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Figure 9: RMSE and MAE for three different irradiance retrieval
methods based on the perfect shadow forecast.

sulting in a lower correlation coefficient of 0.78 for
cloudy conditions compared to 0.98 for clear sky con-
ditions. The k∗ value for cloudy conditions is character-
ized by a higher variability and faster fluctuations. One
reason for this is that the range of possible values of k∗

is wider for cloudy than for clear (Fig 7). Furthermore,
the clear sky index for cloudy conditions may show fast
fluctuations due to variations in the cloud optional thick-
ness. For clear sky, k∗ is fluctuating much less, mainly
influenced by comparatively slow turbidity variations.

This potentially fast fluctuations of irradiance lev-
els for cloud shadows are a reason that for these situ-
ations persistence represents the irradiance at forecast
valid time better than a longer time range of recent mea-
surements, if persistence is cloudy as well. For clear
conditions both methods perform similar. To forecast ir-
radiance for all situations we use a combined method,
called “flex-combi”. We use

1. persistence, if cloud decision is cloudy for forecast
calculation time and forecast valid time.

2. the flex method for all other situations.

Compared to the baseline method, the scattering
is reduced for this method especially for forecasted
cloudy conditions (Fig. 8c). The correlation coefficient
for cloudy conditions increases from 0.78 for the base-
line method to 0.84. Fig. 9 shows the RMSE and the
MAE for the three compared methods for our study set-
up with the perfect shadow forecasts. The flex method
reduces the RMSE as well as the MAE especially for
low forecast horizons compared to the baseline method.
The flex-combi method further decreases the errors for
all forecast horizons. The forecast skill of the optimized
method lies around 50 % for the perfect shadow fore-
cast (Fig. 10a). It represents the maximal possible skill
for our irradiance model using a binary cloud decision.

(a)

(a)

Figure 10: (a) Skill of the irradiance forecasts for the datasets
Forecast Freiburg based on the perfect shadow forecast and the sky
imager based shadow forecast; (b) Skill of the irradiance forecasts
for the dataset ForecastBlaustein.

Based on these results we choose the model flex-combi
and use it as our irradiance model for further evalua-
tions.

7 Results of the sky imager based
forecasts

Finally, we evaluate the complete forecasting chain
combining the optimized irradiance model flex-combi
with our sky imager based shadow forecasts for Freiburg
and Blaustein. Fig. 11 shows the k∗ distribution of the
optimized sky imager based irradiance forecasts from
the dataset ForecastFreiburg. It reveals a good agree-
ment between the distributions of forecasts and mea-
surements. This is a good performance of the irradiance
model, considering that we started with a binary cloud
decision forecast.

For the sky imager based shadow forecast, as ex-
pected, the skill is much lower than for the study case
described above due to uncertainties in the forecasted
cloud positions (Fig. 10a). Nevertheless, we get a posi-
tive skill for forecast horizons larger or equal to 1 min.
The skill is in the same range as for the cloud decision
forecast (Fig. 5).

To validate our forecast chain with an indepen-
dent dataset we use data from the camera installed in
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Figure 11: k∗ Histogram for measurements and forecasts based on
sky imager based shadow forecasts from the dataset ForcastFreiburg
for all forecast horizons.

Blaustein. Fig. 10b shows that the skill is positive from a
forecast horizon of 100 s on and in a similar range as for
the station in Freiburg. The forecasts of different stations
and time periods are not directly comparable since there
are differences in cloud occurrence and weather situa-
tions. As shown in Fig. 3 this dataset contains a higher
fraction of overcast situations than the Freiburg dataset.
Also the horizon lines of the cameras differ. Neverthe-
less, we show that we can transfer our forecasting model
to a different location without reducing the forecast per-
formance.

8 Forecasting during cirrus situations

Since cirrus situations are identified as a challenge for
cloud classification (Section 4), in agreement with other
studies (Schmidt et al., 2016; Rodriguez-Benitez
et al., 2018), the performance of the irradiance forecast
is also investigated specifically for these situations. As
simple filter for cirrus images, the cloud height mea-
sured by a ceilometer is used. In contrast to the images
with spatial and instantaneous information, the ceilome-
ter data gives temporal averaged point measurements of
the cloud height. To select situations where a large part
of the sky is covered by cirrus clouds, a moving mini-
mum of three consecutive measurements of the lowest
cloud layer is used. Thus, situations with lower clouds
in part of the images or with mainly clear sky are mostly
excluded. An image is categorized as cirrus, if this value
is larger than 6000 m. The result was checked manually
and was found to be an effective method to filter cirrus
situations. 17 % of the images of the dataset Forecast-
Freiburg are categorised as cirrus.

In Section 4 we found that the performance of the
cloud detection is worse for cirrus situations than for
other cloud situations. Fig 12a confirms this also for the
cloud forecasts with a reduced skill for cirrus situations
compared to all situations for all forecast horizons. Since

cirrus clouds have no sharp boundaries and no homo-
geneous optical thickness, it is difficult to classify pix-
els with a binary system. The corresponding GHI mea-
surements have no clear defined ramps since there is a
smooth transition between cloud and clear sky (Fig. 13).
Thus cirrus situations have a reduced accuracy for the
persistence forecast as well as the sky imager based
cloud decision forecast (Fig. 12c). In these situations,
a binary classification is hard even manually and harder
to train an algorithm for this task. Also our measurement
derived cloud shadow reference is of limited reliability
in these cases.

Looking at the irradiance forecast, the outcome is
not so clear. For low forecast horizons the skill strongly
fluctuates and is on average higher for cirrus situations
than for all situations, for forecast horizons from 9 min
on it is reverse (Fig. 12b). Cirrus clouds have a very
low optical thickness and reduce GHI much less than
other cloud types (Fig. 13). Therefore, the RMSE and
the MAE are significantly lower for these situations for
the persistence as well as for the sky imager based fore-
casts (12d, 12e). A low RMSE for persistence forecasts
during cirrus situations compared to other cloud types
was also found by Schmidt (2017). Since cirrus situa-
tions can be recognised well using cloud height infor-
mation or more advanced algorithms, it is suggested to
develop adaptations in the forecast procedure for these
situations.

9 Conclusions

In this study, we present our sky imager based forecast-
ing system. We describe all relevant steps of the forecast
procedure and put a focus on cloud detection in the cir-
cumsolar region and on the step from the binary cloud
forecast to the irradiance forecast.

Cloud detection is known to be especially challeng-
ing in the circumsolar region. We introduce a procedure
to reduce the number of wrongly classified pixels in the
circumsolar region using real time irradiance measure-
ments and object recognition methods. We can signif-
icantly improve cloud detection in the circumsolar re-
gion and increase the forecast skill of the cloud decision
forecast.

For developing and optimising the irradiance al-
gorithm we introduce a measurement derived perfect
shadow forecast in order to exclude errors and biases
in the cloud decision and cloud motion methods. The
irradiance algorithm determines k∗ values for cloudy
and clear sky conditions using recent measurements of
GHI. Depending on the initial situation it uses either a
Gauss based distribution of a weather situation depen-
dent time interval of recent measurements or only the
last measured GHI value. Even though we start with a bi-
nary cloud decision forecast, the distribution of the clear
sky index from our forecasts is in very good agreement
with the distribution of the measurements. In a valida-
tion dataset of Freiburg of 46 days, we receive a positive
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(a) (b)

(c) (d)

(e)

Figure 12: Validation of all data from the dataset ForecastFreiburg compared to cirrus situations; (a) Skill of the cloud shadow forecast;
(b) Skill of the irradiance forecast; (c) Accuracy of the sky imager based cloud shadow forecast and the persistence; (d) RMSE of the sky
imager based irradiance forecast and the persistence; (e) MAE of the sky imager based irradiance forecast and the persistence.

forecast skill for all forecast horizons larger than 1 min.
Evaluations using the independent site in Blaustein show
a similarly good performance.

We examine the performance of our forecasting
model for different cloud situations and find that cloud
detection is a challenge during cirrus situations. Since
cirrus clouds have no sharp boundaries and no homo-

geneous optical thickness, it is difficult to classify pixels
with a binary classification scheme into cloudy and clear
sky. This shows the limitations of a binary cloud deci-
sion system. Though we find cloud detection is on aver-
age worse for cirrus situations, the impact on the quality
of the irradiance forecasting is limited due to the low
optical thickness of cirrus clouds.
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Figure 13: Left: Time series of k∗ calculated from GHI measurements for a cirrus situation; Right: corresponding camera image with time
stamp 2018-09-10 12:30.

In a next step we will investigate our forecasts using a
network of eight measurement stations that we installed
in a radius of 10 km around the camera in Freiburg.
We plan to use these distributed observations combined
with sky imager based shadow projections to develop an
irradiance retrieval method based on machine learning
and image features. Furthermore, we are currently using
the forecasting chain introduced here to employ our
forecasts for the management of heat pumps combined
with a rooftop PV system. Especially, we investigate
additional error metrics relevant for this application and
optimise our forecasts with respect to the most relevant
metrics.
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