Probabilistic and exact frequent subtree
mining in graphs beyond forests

Pascal Welke, Tamas Horvath & Stefan
Wrobel

Machine Learning
ISSN 0885-6125

Mach Learn
DOI 10.1007/s10994-019-05779-1

Machine

Learning

@ Springer

Your article is protected by copyright and all
rights are held exclusively by The Author(s),
under exclusive licence to Springer Science
+Business Media LLC, part of Springer
Nature. This e-offprint is for personal use only
and shall not be self-archived in electronic
repositories. If you wish to self-archive your
article, please use the accepted manuscript
version for posting on your own website. You
may further deposit the accepted manuscript
version in any repository, provided it is only
made publicly available 12 months after
official publication or later and provided
acknowledgement is given to the original
source of publication and a link is inserted

to the published article on Springer's
website. The link must be accompanied by
the following text: "The final publication is
available at link.springer.com”.

@ Springer

Machine Learning
https://doi.org/10.1007/510994-019-05779-1

®

Check for
updates

Probabilistic and exact frequent subtree mining in graphs
beyond forests

Pascal Welke'® - Tamas Horvath'23@) . Stefan Wrobel'23

Received: 14 December 2017 / Accepted: 9 January 2019
© The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2019

Abstract

Motivated by the impressive predictive power of simple patterns, we consider the problem of
mining frequent subtrees in arbitrary graphs. Although the restriction of the pattern language
to trees does not resolve the computational complexity of frequent subgraph mining, in a
recent work we have shown that it gives rise to an algorithm generating probabilistic frequent
subtrees, a random subset of all frequent subtrees, from arbitrary graphs with polynomial
delay. It is based on replacing each transaction graph in the input database with a forest
formed by a random subset of its spanning trees. This simple technique turned out to be quite
powerful on molecule classification tasks. It has, however, the drawback that the number
of sampled spanning trees must be bounded by a polynomial of the size of the transaction
graphs, resulting in less impressive recall even for slightly more complex structures beyond
molecular graphs. To overcome this limitation, in this work we propose an algorithm mining
probabilistic frequent subtrees also with polynomial delay, but by replacing each graph with a
forest formed by an exponentially large implicit subset of its spanning trees. We demonstrate
the superiority of our algorithm over the simple one on threshold graphs used e.g. in spectral
clustering. In addition, providing sufficient conditions for the completeness and efficiency of
our algorithm, we obtain a positive complexity result on exact frequent subtree mining for a
novel, practically and theoretically relevant graph class that is orthogonal to all graph classes
defined by some constant bound on monotone graph properties.

Keywords Pattern mining - Frequent subgraph mining - Frequent subtree mining -
Probabilistic patterns

Editors: Fabrizio Riguzzi, Nicolas Lachiche, Christel Vrain, Elena Bellodi, Riccardo Zese.

B Tamads Horvath
horvath@cs.uni-bonn.de

University of Bonn, Bonn, Germany
Fraunhofer IAIS, Schloss Birlinghoven, Sankt Augustin, Germany

Fraunhofer Center for Machine Learning, Sankt Augustin, Germany

Published online: 15 February 2019 @ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-019-05779-1&domain=pdf
http://orcid.org/0000-0002-2123-3781
http://orcid.org/0000-0001-6852-6939

Machine Learning

1 Introduction

A common approach of extending traditional machine learning algorithms to structured data
such as graphs and other relational structures is to embed the instances into some space
spanned by some appropriately chosen feature set. This method, also known as proposition-
alization is a common technique in Inductive Logic Programming (ILP) (see, e.g. Kramer
et al. 2001, for a survey on this topic). In contrast to kernel methods, where the feature space
can be of infinite dimension and the corresponding embedding function is not explicitly given
or even unknown together with the feature space, propositionalization in ILP always assumes
finite feature sets and explicitly specified embedding functions. One of the main advantages
of this technique is that learning/mining in first-order logic can be reduced to some traditional
problem setting concerned with learning/mining in a single table of fixed width. That is, the
columns of the table correspond to features and the rows to images of the instances in the
underlying feature space. This technique allows also for an effective control of decidability
and complexity issues raised by first-order logic. We note that pattern based propositional-
ization for graph structured data belongs also to this branch of ILP technique. Indeed, since
graphs are special relational structures, our approach can be considered as propositionaliza-
tion in ILP for a restricted type of relational structures. The difference is that for function-free
ILP learning settings (i.e., all function symbols are of arity O or equivalently, constants) when
the patterns are Boolean conjunctive queries (i.e., first-order function-free goal clauses), the
embedding function is typically defined by relational homomorphisms. In contrast, regard-
ing graph patterns as first-order function-free goal clauses, for graphs homomorphisms are
typically required to be injective (i.e., subgraph isomorphisms).

Since the first application of frequent subgraphs as features to molecule classifica-
tion (Deshpande et al. 2005), many further studies have empirically demonstrated a
remarkable predictive performance of frequent patterns on various real-world datasets. In
fact, as shown for instance by Bringmann et al. (2006) in the context of correlated pattern
mining, even very simple patterns, such as paths or trees, often suffice to obtain consider-
able predictive accuracy. Our empirical results in Welke et al. (2018) on various benchmark
chemical graph datasets also confirm that frequent subtrees as features do result only in a
marginal loss in predictive performance compared to frequent connected subgraphs.

Despite the structural simplicity of trees, frequent subtrees cannot be generated in output
polynomial time for arbitrary transaction graphs (unless P = NP). The reduction used in the
proof of the computational intractability of frequent connected subgraph mining (Horvath
et al. 2007) applies to tree patterns as well. This complexity limitation appears to prohibit
frequent pattern mining in practically feasible time even for relatively simple graph structures.
In particular, the empirical results in our recent paper (Welke et al. 2018) indicate that all
the most popular state-of-the-art frequent tree (and subgraph) mining algorithms seem to
be limited to databases of small molecular graphs in practice, as their runtime consistently
explodes even for slightly more complex graph structures. To overcome this problem, in
Welke et al. (2018) we proposed to generate only a random subset of frequent subtrees,
called probabilistic frequent subtrees, and empirically demonstrated that their predictive
performance is very close to that of the complete set of frequent subtrees. This, in turn, is a
tight approximation of the predictive performance of the complete set of frequent connected
subgraphs.

Utilizing that a tree is subgraph isomorphic to a graph if and only if it is subtree isomorphic
to one of the graph’s spanning trees, our algorithm in Welke et al. (2018) generates proba-
bilistic frequent subtrees in the following simple way: It replaces each transaction graph in

@ Springer

Machine Learning

the input database by a forest formed by the vertex disjoint union of a random subset of its
spanning trees and, using e.g. the levelwise search algorithm (Mannila and Toivonen 1997),
generates the set of frequent connected subgraphs (i.e., subtrees) for the forest database
obtained. Since spanning trees can be sampled in polynomial time (Wilson 1996) and sub-
graph isomorphism from a tree into a forest can be decided in polynomial time (Matula 1968),
the results in Horvdth and Ramon (2010) immediately imply that probabilistic frequent sub-
trees can be enumerated with polynomial delay in this way if for each transaction graph, the
number of spanning trees in the sample is bounded by a polynomial of the graph’s size. Note
that the output is sound (i.e., all patterns printed are frequent subtrees), but not necessarily
complete (i.e., some frequent subtrees may not be enumerated). If, however, the number of
spanning trees of the transaction graphs is bounded by a polynomial of their size and all
transaction graphs are replaced with their complete set of spanning trees, then the algorithm
sketched above solves the exact frequent subtree mining problem correctly (i.e., soundly and
completely) and with polynomial delay. The efficiency follows, together with the remarks
above, from the positive result that the set of all spanning trees of a graph can be listed with
polynomial delay (Read and Tarjan 1975).

In this work we go beyond the limitation of processing polynomially many spanning trees
only and present an algorithm able to generate (probabilistic) frequent subtrees from arbitrary
graphs with polynomial delay by considering a potentially exponentially large implicit subset
of the spanning trees for each graph in the database. The core of our mining algorithm is a
pattern matching algorithm that, for a tree pattern H and transaction graph G, (i) partitions
G into a certain set of induced subgraphs, (ii) considers a (random) subset of local spanning
trees for each induced graph, and (iii) decides whether H is subtree isomorphic to one of the
global spanning trees of G obtained by combining its local spanning trees in an appropriate
way. It is inspired by the paradigms developed by MatouSek and Thomas (1992) and by
Shamir and Tsur (1999) for solving subgraph isomorphism for other graph classes.

In a nutshell, we decide the arising pattern matching problem by a dynamic programming
algorithm traversing a rooted tree generated for G in a bottom-up manner and computing the
final solution from partial ones previously calculated. In our case, the nodes of the rooted
tree controlling the evaluation are constructed from the articulation vertices of G. Each
node v of such a tree is associated with the set of spanning trees of certain blocks of G
containing v. For all such local spanning trees 7, we solve the partial subtree isomorphism
problem corresponding to v by carefully extending the partial subtree isomorphisms already
computed for 7. Iterating over all spanning trees and for all nodes, we can correctly decide
subtree isomorphism for the part of G that is “below” v in the rooted tree associated with G.
We prove that our algorithm decides subgraph isomorphism from H to & correctly, where
G is the set of spanning trees of G that can be obtained from the combinations of the local
spanning trees. Furthermore, our algorithm runs in time polynomial in the combined size of
H, G, and the number of local spanning trees selected. The significance of this result is that
the number of global spanning trees in & can be exponential in the number of local spanning
trees. This property has immediate consequences to probabilistic and exact frequent subtree
mining.

Regarding probabilistic frequent subtree mining, by considering exponentially many
(implicit) global spanning trees instead of polynomially many ones, our technique has an
improved performance in terms of recall over the simple algorithm in Welke et al. (2018).
On the one hand, this improvement is only marginal on molecular graph datasets, due to the
relatively simple graph structure of pharmacological compounds (cf. Horvith et al. 2010;
Horvath and Ramon 2010). On the other hand, however, on threshold graphs, which have
applications among others in spectral clustering (see, e.g., von Luxburg 2007), the algorithm

@ Springer

Machine Learning

presented in this work results in a much higher recall compared to the simple one in Welke
et al. (2018). It is important to note that the threshold graphs used in our experiments had a
structural complexity beyond that of the molecular graphs of pharmacological compounds.
Somewhat surprisingly, none of the state-of-the-art frequent subgraph mining algorithms,
which are very effective otherwise on molecular graphs, were able to produce any output
for threshold graphs in practically feasible time.! A robust mining algorithm whose runtime
depends not on certain, typically unknown implicit characteristics of the data, but on some
user specified parameters is of high value for practical problems where the transaction graphs
have no (known) specific structural properties that could be utilized by the mining algorithm.
Our algorithm is robust in this sense because its delay depends only on the number and size
of the input graphs and on the sample size parameter. This latter parameter can thus be used
to control the trade-off between recall and time complexity. In contrast, most state-of-the-
art frequent subgraph mining tools are explicitly or implicitly engineered towards certain
structural properties and are therefore not applicable in such a scenario.

Regarding exact frequent subtree mining, we first note that despite more than two decades
of research there are only a few non-trivial theoretical results concerning the complexity of
frequent subgraph mining. In particular, if the transaction graphs are restricted to forests then
frequent connected subgraphs (i.e., trees) can be generated with polynomial delay (see, e.g.,
Chi et al. 2005). Beyond forests, frequent connected subgraphs can be listed in incremental
polynomial time for graphs of bounded tree-width (Horvath and Ramon 2010). Using the
positive result of MatouSek and Thomas (1992), one can show that for graphs of bounded tree-
width (Robertson and Seymour 1986) and bounded degree, frequent connected subgraphs
can actually be generated with polynomial delay. As a byproduct of our approach, we extend
the known positive complexity results on frequent subgraph mining by a new one formulated
for a graph class that is not only of theoretical, but also of practical interest.

Our result is based on a subgraph isomorphism algorithm that is always correct if all
local spanning trees are considered.” Accordingly, a sufficient condition for our frequent
pattern mining algorithm to be correct and efficient (i.e., polynomial delay) is that the input
graphs are locally easy; a graph G of size n is locally easy if for all vertices v of G, the
union of the blocks containing v has at most poly(n) spanning trees. This class of graphs
is orthogonal to all graph classes (more precisely, nested hierarchies) that are defined by a
constant upper bound on some monotone graph property (e.g., graphs of bounded tree-width).
A graph property is called monotone if itis closed under taking subgraphs. By “orthogonality”
we mean that it always contains an infinite number of graphs that are not contained in the
other graph class. Furthermore, it turns out that the class of locally easy graphs includes a
number of interesting and practically relevant graph classes. The most natural example is
the class of forests. Pseudoforests (i.e., graphs in which every connected component has at
most one cycle) and their generalizations, cactus graphs (i.e., in which all edges belong to
at most one simple cycle) of bounded cyclic block degree (i.e., the maximum number of
cyclic blocks® sharing a vertex is bounded by a constant) are some further straightforward
subclasses of locally easy graphs. Other examples include the class of d-tenuous outerplanar
graphs (Horvéth et al. 2010) of bounded cyclic block degree and that of k-easy graphs of
bounded cyclic block degree, where a graph is k-easy for some constant k& > 0 integer if all

1 We have observed a similar behavior on Erd6s-Rényi graphs (Erdds and Rényi 1959), even for relatively
small value of the edge probability (cf. Welke et al. 2018).

2 We recall that the problem of deciding whether a tree is subgraph isomorphic to a graph G is NP-complete
in general (see, e.g., Garey and Johnson 1979) and remains computationally intractable even for very simple
graphs, e.g., when G is a cactus graph (Akutsu 1993).

3A cyclic block is a maximal biconnected subgraph with at least three vertices.

@ Springer

Machine Learning

blocks have O (nk) spanning trees. Our positive result on mining locally easy graphs is thus
another step towards exploring the border between tractable and intractable fragments of the
frequent pattern mining problem. We conjecture that generalizing our positive result to any
natural graph class beyond locally easy graphs is at least as difficult as solving the P versus
NP problem.

A preliminary version of this paper appeared as Welke et al. (2015). In comparison to that
conference article, in this work we present an application of our pattern mining algorithm to
probabilistic frequent subtree mining and empirically evaluate its performance on threshold
graphs. As another novel contribution compared to Welke et al. (2015), we generalize our
results to a much broader graph class, provide all proofs as well as a tighter runtime analysis,
and discuss some theoretically/practically interesting subclasses of this graph class.

Outline The rest of the paper is organized as follows. In Sect. 2 we provide the necessary
background, describe a generic levelwise search algorithm mining frequent patterns, and
state sufficient conditions for its efficiency. We present our subtree isomorphism algorithm in
Sect. 3 and prove some of its algorithmic properties. Using this pattern matching algorithm,
in Sect. 4 we describe our mining algorithm enumerating probabilistic frequent subtrees
in arbitrary graph databases with polynomial delay and empirically compare its runtime
and recall on threshold graphs with that of our algorithm from Welke et al. (2018). We
discuss exact frequent subgraph mining for locally easy graphs in Sect. 5, together with
some theoretical and practical properties of this graph class. Finally we conclude in Sect. 6
and mention some open problems for further research.

2 Preliminaries

In this section we collect all necessary preliminaries and fix the terminology and notation used
in the paper. In particular, we recall some basic notions from graph theory (see, e.g., Diestel
2012), formally define the pattern mining problem considered in this work, give a generic
mining algorithm for this problem, and formulate sufficient conditions for the efficiency of
this algorithm.

Graphs An undirected (resp. directed) graph G consists of a finite set V(G) of vertices
and aset E(G) € {X € V(G) : |X| = 2} (resp. E(G) € V(G) x V(G)) of edges. We
consider simple graphs, i.e., loops and parallel edges are not permitted. Unless otherwise
stated, by graphs we mean undirected graphs. An edge {u, v} € E(G) will be denoted by
uv and the set of neighbors of a vertex v by N'(v). A subgraph of G is a graph G’ with
V(G') C V(G) and E(G') € E(G); G’ is a subgraph of G induced by aset V' C V(G) if
V(G') = V' and uv € E(G’) if and only if uv € E(G) for all u, v € V’. Such an induced
subgraph is denoted by G[V']. A labeled graph is a graph G such that all vertices and all
edges are labeled with the elements of some finite set. Examples of labeled graphs include
molecular graphs, protein-protein interaction graphs, social networks, the Web graph etc. To
keep the notation and description concise, we will state all results for unlabeled graphs by
noting that all our arguments naturally apply to labeled graphs as well.

An articulation vertex v € V(G) is a vertex such that its removal increases the number
of connected components of G. A graph is biconnected if it is connected and the removal of
any vertex does not disconnect it. A block is a maximal subgraph of G that is biconnected
(i.e., it contains no articulation vertex with respect to itself). A cyclic block is a block with

@ Springer

Machine Learning

at least three vertices.* A bridge is an edge that does not lie on any cycle in G. Accordingly,
a block is either cyclic or it is a bridge or an isolated vertex.

Two graphs G, G are isomorphic, if there is a bijection ¢ : V(G1) — V(G3) such
that uv € E(Gy) if and only if p(u)p(v) € E(G») for all u, v € V(G1). Gy is subgraph
isomorphic to G, denoted G| < G2, if G has a subgraph that is isomorphic to G . Finally,
a graph class is a set of pairwise non-isomorphic graphs that share some common property
(e.g., they have tree-width at most k for some integer k > 0).

Frequent Connected Subgraph Mining In this work, we study a special case of the following
problem:

FREQUENT CONNECTED SUBGRAPH MINING (FCSM) PROBLEM: Given a finite set
D < G for some graph class G and an integer threshold ¢ > 0, list all graphs P € P for
some graph class P, called the pattern class, that are subgraph isomorphic to at least ¢
graphs in D.

The patterns in the output must be pairwise non-isomorphic. In contrast to the standard
problem definition (see, e.g., Horvath and Ramon 2010), we regard a more general problem
parameterized by the pattern class P and focus on the special case of the problem above
that P is the class of trees. This special case will be referred to as FREQUENT SUBTREE
MINING (FTM) PROBLEM. Though in this paper we study the FTM problem, in this section
we consider the more general FCSM problem. The reason is that below we give an algorithm
for the generic FCSM problem and formulate sufficient conditions for G and P that guarantee
the algorithm to generate frequent patterns with polynomial delay. These conditions may be
of some independent interest for the study of other special cases of the FCSM problem.

Note that the mining problem above is a listing problem. For such problems, the following
complexity classes are distinguished in the literature (see, e.g., Johnson et al. 1988). Suppose
an algorithm 2 for the FCSM problem gets D and ¢ as input and outputs a sequence O =
[p1, p2,--+, pnlof patterns.5 Then 2 generates O

— with polynomial delay, if the time before the output of pi, between the output of any
two consecutive elements of O, and between the output of p, and the termination of
is bounded by a polynomial of size(D),

— in incremental polynomial time, if the algorithm outputs p; in time bounded by a poly-
nomial of size(D), the time between outputting p; and p;+1 is bounded by a polynomial
of size(D) + lezl size(p;), and the time between the output of p, and termination is
bounded by a polynomial of size(D) + size(O),

— in output polynomial time, if the algorithm outputs O in time bounded by a polynomial
of the combined size of D and O.

Clearly, polynomial delay implies incremental polynomial time, which, in turn, implies output
polynomial time. It is an open problem whether the first two complexity classes are identical,
or not. In frequent itemset mining, for example, the FP-Growth algorithm (Han et al. 2004)
lists frequent patterns with polynomial delay, while the Apriori algorithm (Agrawal et al.
1996) in incremental polynomial time. We note, however, that the Apriori algorithm can
easily be transformed into a polynomial delay algorithm by retaining the output of frequent
patterns (cf. Horvéth et al. 2010).

The FCSM problem and the FTM cannot be solved in output polynomial time; this follows
directly from the related negative result in Horvéth et al. (2007). One way to obtain positive

4 This implies that each vertex in a cyclic block lies on at least one cycle in G.

3 For sake of simplicity, we formulate the definition for n > 0.

@ Springer

Machine Learning

results is to restrict the graph classes G and P in the FCSM problem. To follow this direction,
below we first give a generic levelwise search pattern mining algorithm and establish sufficient
conditions of polynomial delay pattern generation for this algorithm.

A Generic Mining Algorithm We obtain the main results of this paper by adapting a generic
levelwise search algorithm to our problem setting. Levelwise search (Mannila and Toivonen
1997) is one of the most common techniques in pattern mining that can be used to efficiently
mine frequent patterns for a broad range of problem settings. Its most popular application is
the Apriori algorithm (Agrawal et al. 1996) for frequent itemset mining. In order to find a
pattern in level / + 1, it completely explores all levels up to I. On the one hand, this strategy
is disadvantageous if one is interested in mining long frequent patterns, on the other hand,
in frequent subgraph mining it allows for an incremental polynomial time pattern generation
even for NP-complete pattern matching operators (Horvath and Ramon 2010).

Algorithm 1 A generic levelwise graph mining algorithm.

input: D C G for some graph class G, a pattern class P, and an integer ¢t > 0
output: all frequent subgraphs of D that are in P

1: let Sg € P be the set of frequent pattern graphs consisting of a single vertex
2:for (1 :=0,S; #0;1:=1+1)do
3: setSjp :=PandCiyy =0

4. forall P € S; do

S: print P

6: for all H € p(P) NP satisfying H ¢ C;41 do
7: add H to Cl+1

8 if SUPPORTCOUNT(H, D) > t then

9 add H to Sj41

Algorithm 1 is a generic levelwise search algorithm for the FCSM problem. It is a slight
modification of the algorithm in Horvath and Ramon (2010); the only changes are in Lines 1
and 6. It calculates the set of candidate (resp. frequent) patterns of level [in the set variable
C; (resp. &p). In Line 6 it computes the set p (P) of refinements of a pattern P obtained from
P by extending it with an edge in all possible ways. That is, it either adds a new vertex
w to P and connects it to any vertex in V(P) by an edge, or it connects two vertices in
V(P) that have not been connected yet.% Clearly, |p(P)] is bounded by |V (P)|?. Subrou-
tine SUPPORTCOUNT(H, D) in Line 8 returns the number of graphs G € D with H < G.

It is shown in Horvath and Ramon (2010) that the original version of Algorithm 1 mines
frequent patterns with polynomial delay if patterns and transactions satisfy certain conditions.
However, these conditions have been formulated for the case that the pattern and transaction
graph classes are the same. Below we give a theorem generalizing these conditions to the
case that they can be different. Its proof is very similar to that in Horvath and Ramon (2010).
We nevertheless give it for completeness.

Theorem 1 Let G and P be the transaction and pattern graph classes satisfying the following
conditions:

1. All graphs in P are connected. Furthermore, P is closed downwards under taking sub-
graphs, i.e., for all H € P and for all connected graphs H' we have H' € P whenever
H < H.

6 For the case of tree pattern generation, the second type of extension can be omitted, as it always results in
cycles. Hence, in this case [p(P)| = |V (P)].

@ Springer

Machine Learning

2. The membership problem for P can be decided efficiently, i.e., for any graph H it can be
decided in polynomial time if H € P.

3. Subgraph isomorphism in P can be decided efficiently, i.e., for all Hy, Hy € P, it can be
decided in polynomial time if H) < H>.

4. Subgraph isomorphism between patterns and transactions can be decided efficiently, i.e.,
forall H € P and G € G, it can be decided in polynomial time if H < G.

Then the FCSM problem can be solved irredundantly with polynomial delay for P and for
all finite subsets D C G.

Proof Let G and P be two graph classes such that Conditions 1-4 hold. We first prove
that Algorithm 1 is correct (i.e., sound and complete) and irredundant. The soundness is
immediate from Lines 6 and 8. To show the completeness, let H € P be frequent in D. We
prove by induction on |E(H)| that it will be generated by the algorithm. The proof of the
base case that H consists of a single vertex is straightforward by Line 1. For the inductive
step we have that H has a vertex with degree one or an edge that can be removed without
disconnecting H. Let H' be the graph obtained from H by deleting such a vertex (and the
edge adjacent to it) or such an edge. By construction, H' is connected and hence H' € P
follows from Condition 1. Since it is frequent, it will be generated by Algorithm 1 by the
induction hypothesis. Furthermore, as H € p(H') NP, we have H € Cjgm) by Lines 6
and 7. Therefore, H is added to S|g(x)| because it is frequent (Line 9), completing the proof
of completeness. Finally, the proof of irredundancy is immediate from the condition tested
in Line 6 and the proof of polynomial delay is similar to that of the related Theorem 1 in
Horvath and Ramon (2010). m]

Note that the conditions above allow for mining frequent patterns that do not belong to G.
Furthermore, they enable the generation of restricted subsets of all frequent subgraphs. For
example, we can mine frequent paths in transaction databases consisting of trees. We will
utilize the latter property when restricting P to trees.

Regarding Condition 4, the complexity of subgraph isomorphism is typically disregarded
by the pattern mining algorithms.” Efficient algorithms are restricted to tree databases (see
Chi et al. 2005, for an overview), while general graph miners (e.g., Nijssen and Kok 2005;
Kuramochi and Karypis 2004; Zhao and Yu 2008) use methods with exponential worst-
case time bounds that are based on the classic algorithm by Ullmann (1976) or on some
of its extensions (e.g., Cordella et al. 1999) to solve the subgraph isomorphism problem.
The literature typically justifies this by showing experimental results on chemical graph
databases, on which most mining systems are fast. Somewhat surprisingly, as we discuss
in Sect. 4.2, most state-of-the-art graph mining algorithms are actually limited to molecular
graph databases in practice (Welke et al. 2018). In fact, there is no clear way to predict
whether the graph miners in the literature will be fast or inapplicable on a given dataset,
which heavily restricts their usefulness e.g. in a data exploration setting.

Finally, although it is not required by Theorem 1, the complexity of deciding membership
in the transaction class G is a crucial (practical) issue. For some well-defined graph classes,
e.g., graphs of tree-width at most k, membership is computationally intractable if & is not a
constant (Arnborg et al. 1987). Therefore deciding whether a given graph mining algorithm
can be applied efficiently (i.e., whether D € G) may already be intractable. In practice, the
speed of many existing frequent subgraph mining systems (e.g., Kuramochi and Karypis

7 In fact, most graph miners focus on efficient candidate enumeration, instead of embedding computation.
Here, we go in the opposite direction, focusing on the embedding operator, and refer the reader to the related
work (e.g. Chi et al. 2005) for a discussion of efficient candidate generation.

@ Springer

Machine Learning

2004; Nijssen and Kok 2005) often depends on some graph properties that are not formally
stated and hence not testable.

3 An efficient embedding operator for trees

This section is devoted to the support counting step (cf. SUPPORTCOUNT(H, D) in Line 8)
of Algorithm 1. For the FTM problem setting this step reduces to the following decision
problem:

SUBTREE ISOMORPHISM (SUBTREEISO) PROBLEM: Given a tree H (the pattern) and a
graph G (the transaction graph), decide whether or not H < G.

In Theorem 2 below we first claim that SUBTREEISO can be decided in time polynomial in
the number of local spanning trees of certain induced subgraphs of G. In Sect. 4 we then
show that the algorithm used in the proof of this result can be modified in a natural way
to decide SUBTREEISO with one-sided error in polynomial time by considering a potentially
exponentially large subset of the spanning trees of G, for any arbitrary graph G. This modified
algorithm will allow for efficient probabilistic frequent subtree mining. To state Theorem 2,
our main result for this section, we first introduce the following notation: For a graph G and
v € V(G), let f,(G) be the number of spanning trees in the union of the blocks containing
v and define

Smax(G) = Ug}/a()é) fu(G). (nH

Theorem 2 The SUBTREEISO problem can be solved in time
0 (f2ux(G) - IE@) -V ()[') .

To put Theorem 2 into context, we note that SUBTREEISO is a well-known NP-complete
problem (it generalizes e.g. the Hamiltonian path problem). If, however, the transaction graph
is also a tree, the restricted problem belongs to P (see, e.g., Shamir and Tsur 1999). This
positive result, together with that on generating the spanning trees of a graph with polynomial
delay (Read and Tarjan 1975), implies that SUBTREEISO is in P if G has polynomially many
spanning trees only; just list all spanning trees T of G and check if H is subgraph isomorphic
to 7. Theorem 2 generalizes this straightforward positive result to graphs that can have
exponentially many spanning trees. To prove Theorem 2, we present Algorithm 2 and show
that it decides the SUBTREEISO problem correctly (Lemma 4) and in time stated in the theorem
(Lemma 5).

Algorithm 2 is inspired by the ideas in MatouSek and Thomas (1992) and Shamir and
Tsur (1999). Analogously to tree decompositions of bounded tree-width graphs (see, e.g.,
Diestel 2012), our dynamic programming algorithm splits G into certain induced subgraphs
and evaluates partial (non-induced) subgraph isomorphisms from subtrees of H to such
subgraphs. The evaluation order of our algorithm is, however, controlled by a rooted tree
skeleton defined on the articulation vertices of G. For all nodes v of the tree skeleton, the
blocks that contain v and are “below” v in G are replaced by a (local) spanning tree t in all
possible ways. The subproblem corresponding to v is then solved by carefully combining ©
with the spanning trees considered in the previous level. Iterating over all (local) spanning
trees of the blocks, we can correctly decide SUBTREEISO for the part of G that is “below” v.
We will now describe the algorithm and necessary notation.

@ Springer

Machine Learning

(a) (b) (c)

Fig. 1 a G, b tree skeleton 7, and ¢ G, for a small graph G (with respect to r). In (a), y is the root of the
(cyclic) block B. Roots are shown in gray, while vertices that are not roots are shown in white

In what follows, H and G denote a tree and a graph, respectively. We assume w.l.o.g. that
G is connected and that 2 < |V(H)| < |V(G)|, implying that all blocks of G contain at
least two vertices (i.e., a block is either cyclic or it is a bridge). We fix an arbitrary vertex
r € V(G) and will implicitly also consider », when talking about G. For a block B of G we
define its root v to be the vertex of B with the smallest distance to r and will refer to B as
a v-rooted block. Notice that the condition |V (G)| > 2 implies that r itself is also a root.
For any v € V(G), the subgraph formed by the set of v-rooted blocks of G is denoted by
B(v). Clearly, B(v) can be empty. On the set of roots of the blocks in G we define a directed
graph 7 as follows (since G and r have been fixed, we omit them from the notation): For any
u,v e V(T)withu # v, (u, v) € E(7) if and only if there exists a block B with root v such
that u € V(B). We call T the tree skeleton of G (see, also, Fig. 1a, b). In the proposition
below we show that 7 is indeed a rooted tree (i.e., a directed tree with edges directed towards
the root). This tree will be used to direct our dynamic subgraph isomorphism algorithm.

Proposition 1 7 is a tree rooted at r.

Proof Tt suffices to show that for all u € V(7)) with u # r, u has outdegree at most 1; the
claim then follows by noting that the outdegree of r is 0 and that 7 is connected, as G is
connected. Suppose for contradiction that there exists u € V(7), u # r, with two different
parents vy, vy € V(7). Then there are B; € B(v;) fori = 1, 2 that contain u. By maximality,
Bj and B; are edge disjoint. Furthermore, there is a path P; (resp. P2) in G connecting » and
vy (resp. vp) that is edge disjoint with By (resp. B2). The union of P; and P, together with
the paths connecting u# with vy in By and u with v, in B; contains a cycle intersecting both
B and B,. But then u, vy, and v, all belong to the same (cyclic) block of G, contradicting
the maximality of By and B».]

We need some further concepts. Let v, w € V(G). Then w is below v if all paths connecting
r and w in G contain v. A rooted subgraph G, of G for v is the subgraph of G induced by
the set of vertices below v (see Fig. 1c) for an example). The same notation will be used
consistently for the pair consisting of the tree pattern H and some vertex y € V(H), i.e., for
any u, y € V(H), H; is the tree obtained from the tree H rooted at y by keeping the subtree
rooted at u. The definitions and the connectivity of G imply that G, is connected, G, = G,
and G, is a single vertex if and only if w ¢ V(7). A vertex w’ € V(G) is called a child of
v,ifvw’ € E(G) and w’ € V(B(v)).

A guidance tree of G is a pair T = (7, S) such that 7 is a tree skeleton of G and S is a
family of sets S, forall v € V(7). Thatis, all nodes v of 7" are associated with a set S, called

@ Springer

Machine Learning

Algorithm 2 Subgraph Isomorphism from a Tree into a Connected Graph

Input :tree H with |V(H)| > 1 and an arbitrary connected graph G with |V (G)| > |V(H)]|
Output: TRUE if H < G; o/w FALSE

MAIN(H, G):

l:setC:=0

2: pick a vertex r € V(G) and compute the complete guidance tree T = (7, S) of G for the tree skeleton 7°
rooted at r

3: for all v € V(7) in a postorder do

4 forall r € S, do /I'Sy € Sis the bag of vin T

5: for all w € V(7) in a postorder do

6: C := C U CHARACTERISTICS (v, T, w)

7 if (H}, 7, w) € C then return TRUE

8:

return FALSE

FUNCTION CHARACTERISTICS (v, T, w):
1: C; =0

2: for all 6 € Oy (1) do

3: forallu € V(H) do

4: let 7/ be the tree satisfying # =t Ut/

5: let C (resp. Cs) be the set of children of w in 7 (resp. /) and
CQ = Cr 0] Cr’

6: let B = (CoUN (u), E) be the bipartite graph with

cu' €E <= (ceCr A(HY,T,0)€C)V (ceCpy A(HY, T/ c) €0)
forall cu’ € Cg x N (u)

7: if B has a matching that covers NV () then

8: add (HY, v, w) to C;

9: for all y € N'(u) do

10: if B has a matching covering NV '(«) \ {y} then
11: add (H{,V, T, w) to Cr

12: return C;

the bag of v. Each S, is a subset of the set of spanning trees of 5(v), called local spanning
trees, all rooted at v. If S, contains all spanning trees of B(v) for every v € V(7), then T
is referred to as a complete guidance tree of G. Figure 2 shows an incomplete guidance tree
for the graph from Fig. 1a. For the remainder of this section, by guidance trees we always
mean complete guidance trees. (Incomplete guidance trees will be considered in Sect. 4.)

Let T = (7, S) be a guidance tree of G, v € V(7), and H be a tree. An iso—triple8 &
of H relative to v is a triple (H,,, 7, w) such that u € V(H), y € Nw) U {u}, T € S,,
and w € V(7). Let G’ be an induced subgraph of G and 7 be a spanning tree of G’. Then
G{G'/t} denotes the graph obtained from G by removing all edges of G’ that are not in 7
(i.e., by substituting G’ with 7). Now we are able to define the partial subgraph isomorphisms
we are interested in. A v-characteristic is an iso-triple § = (H,, T, w) relative to v such that
there exists a subgraph isomorphism ¢ from H} to (G{B()/t}),, with ¢(u) = w. In the
lemma below we provide a characterization of subgraph isomorphisms from H to G in terms
of v-characteristics. Its proof follows directly from the definitions. (Recall that by guidance
trees we mean complete guidance trees in this section.)

8 Though our terminology is similar to that in Hajiaghayi and Nishimura (2007), which in turn is based on
the concepts in MatouSek and Thomas (1992), the definitions of iso-triples and characteristics in this paper
are semantically different from their definitions.

@ Springer

Machine Learning

Fig.2 A guidance tree T = (7, S) for the graph G from Fig. la. T is incomplete; each bag contains at most
two local spanning trees. Roots are shown in gray, while vertices that are not roots are shown in white

Lemma 1 Let H be a tree, G be a graph with root r, and T = (T, S) be a guidance tree
of G such that T is rooted at r. Then H < G if and only if there exists a v-characteristic
(Hj, T, w) for somev e V(T),u e V(H), T € Sy, andw € V().

Notice that the number of v-characteristics (H,, , T, w) is bounded by a polynomial in
the number of local spanning trees t. More precisely, there are O (|V(H)| - |V (B(v))]) v-
characteristics for each local spanning tree T € S,. We will show how these characteristics can
be computed recursively by a post-order traversal of the tree skeleton 7. In order to recover
all v-characteristics, the spanning trees of the w-rooted blocks must carefully be combined
with T when w itself is also a root (i.e., w € V(7)). To formalize these considerations, we
introduce the following notation. For any v € V(7), t € S, and w € V(7r) we define

Oyy (1) by

{rut it e Sy} ifweV(T)\{v}

Oy (1) = ..
{r} o/w (ie.,ifw ¢ V(T)orv =w),

where T U t’ is the graph with vertex set V (t) U V(t’) and edge set E(t) U E(t’). That is,
for the case that w € V(7)) \ {v}, @, (1) is the set of trees obtained by “gluing” the local
spanning tree T and 7’ at vertex w, for all local spanning trees ’ € S,,. The definition is
correct, as V(t) NV (t') = {w} for this case. Note that if w is a root vertex different from v
then it always has at least one child in B(w), i.e., T’ is always a tree with at least one edge.
As an example, the combination of the blue and the red tree in Fig. 3 denotes an element
of @y, (7). In Lemma 2 below we first provide a characterization of v-characteristics for
subtrees H; with y € N'(u).

Lemma2 Let H be a tree, G be a graph, and T = (7, S) be a guidance tree of G. An

iso-triple (H;), T, w) of H is a v-characteristic for some v € V(T) and y € N(u) if and
only if there exists a 0 € Oy, (1) and an injective function ¥ from N'(u) \ {y} to the children

@ Springer

Machine Learning

H

Fig.3 This figure shows a small graph G with its subgraphs B(v) and B(w) (depicted by the rounded triangles)
on the right. One spanning tree T of B(v) and 7’ of B(w) are shown in red and blue, respectively. The tree
pattern H depicted on the left is subgraph isomorphic to G. The iso-triple (HLL,‘ ! 1, w) is a v-characteristic, as
there exists a subgraph isomorphism (depicted by the dashed lines) from Hli” to (G{B () UBw)/t Ut }) w

Note that the iso-triple (H,fl , T, w) is not a w-characteristic, as x ¢ V (3(w)) (Color figure online)

of w in 0 such that for all u' € N'(u) \ {y} there is a subgraph isomorphism ¢, from H! to
(G{B(v) U B(w)/0})y) mapping u' to ¥ (u').

Proof “=>"Suppose (H,, , T, w) is a v-characteristic forsome v € V(7)and y € N (). Then,
by definition, there is a subgraph isomorphism ¢ from H] to (G{BW)/t}),, with p(u) = w.
Let R be an arbitrary spanning tree of (G{B(v)/t}), containing the image @(Hy)) as a subtree.
Then R[V (B(w))] € Sy and R[V (B(v))] = t and hence & = R[V (B(v))]UR[V (B(w))] €
Ouy (7) implying that for all " € N(u) \ {y}, ¢ maps Hj, to (G{B(v) U B(w)/0})y -
As ¢ is injective we can set 1 to be the restriction of ¢ to A'(u) \ {y}. As ¢ is a subgraph
isomorphism, we can set ¢,/ to be the restriction of ¢ to (G{B(v) U B(w)/6}), for all
u' e N\ {y}.

“="Let g : V(H) — V({(G{B(W)/t}),) With ¢ : u — w and x’ > ¢, (x") for
all u’ € N(u) \ {y} and x" € V(H}). Since for all u’, ¢, is at the same time a subgraph
isomorphism from H!, to (G{B(v)/t}),,, it holds that ¢,/ (u") = ¥ (u"). But then, as ¥ is
injective, ¢ is a subgraph isomorphism, implying the claim. O

In Lemma 3 we formulate an analogous characterization for the entire pattern H (i.e., for
y = u). The proof of this lemma is similar to that of Lemma 2.

Lemma3 Let H, G, and T = (T, S) be as in Lemma 2. An iso-triple (HY, T, w) of H is a
v-characteristic for some v € V (T) if and only if there exists a 0 € O, (1) and an injective
Sunction ¥ from N () to the children of w in 0 such that for allu’ € N (u) there is a subgraph
isomorphism ¢, from H}, to (G{B(v) U B(w)/60}),(,, mapping u' to ¥ (u").

Lemma 4 below is concerned with the correctness of Algorithm 2 deciding subtree iso-
morphism from a tree into an arbitrary text graph G. We assume without loss of generality
that G is connected.

@ Springer

Machine Learning

Lemma 4 (Correctness) Algorithm 2 is correct, i.e., for all trees H and connected graphs G
with2 < |V(H)| < |V(G)], it returns TRUE if and only if H < G.

Proof Algorithm 2 first fixes a root r of G (Line 2 of MAIN) and computes the complete
guidance tree T = (7, S) of G, where 7 isrooted at r. By traversing 7 in a postorder manner
(Line 3), it calculates the set C of v-characteristics for all v € V(7) (Lines 4-6). We only
need to show that C is correct (i.e., complete and sound); the correctness of the algorithm
then follows directly from Line 7 by Lemma 1.

The completeness of C holds by the fact that all possible iso-triples & = (H,, 7, w)
relative to v are tested for being v-characteristics (Lines 3, 4, and 5 of MAIN together with
Lines 3, 7, and 9 of CHARACTERISTICS). Thus, it remains to show that it is decided correctly
whether or not & = (H,, r, w) is a v-characteristic. We prove this by double induction on
the height 47 (v) of v in 7 and on the height /1, (w) of w in 7. Depending on whether or not
he(w) = 0 and h7(v) = 0, four cases can be distinguished. We only show the base case
h7r(v) = h(w) = 0, denoted («), and the most general case h7(v) > 0 and h;(w) > 0,
denoted (B), by noting that the proofs of the other two cases can be shown by an argumentation
similar to the one used for the most general case.

(o) For the base case h7 (v) = h (w) = 0 we have Cy = @ and hence B = (BUN (u),)
(Lines 5 and 6 of CHARACTERISTICS). Applying Lemma 2 to this case, £ is a v-
characteristic if and only if A'(u) = {y}, which, in turn, holds if and only if there
is a matching covering N'(«) \ {y} in B (Lines 10-11 of CHARACTERISTICS), as there
are no edges in B.

(B) If h7(v) > 0 and h,(w) > 0 then C; # @. Two cases can be distinguished:

(1) Ifw ¢ V(T) then C» = ¥ and thus Cy = C;. Applying Lemma 2 to this case, & is a
v-characteristic if and only if there exists an injective function ¥ : N (u) \ {y} — C;
such that for all ¥’ € N'(u) \ {y}, there exist a child ¢ of w in T (i.e., ¢ € C;) and
a subgraph isomorphism ¢,/ from H!, to (G{B(v)/t}), with ¢,y (u') = ¥ (') = ¢
(i.e., a v-characteristic (H,), 7, ¢)). By the induction hypothesis, the bipartite graph
B is constructed correctly in Line 6 of CHARACTERISTICS, and hence ¢ exists if and
only if there exists a matching in B covering A/ (u) \ {y}.

(i) If w € V(7T) then Cy = C; U Cp with C, C» # (. Then, by Lemma 2, £ is a
v-characteristic if and only if for all #” € A (u) \ {y} there exist a child ¢ of w in #
and an injective function ¥ : N'(u) \ {y} — C; U Cy such that there is a subgraph
isomorphism ¢,/ from H', to (G{B(v) U B(w)/t U t'}). with ¢,/ (u") = ¥ (u') = c.
Such a subgraph isomorphism either corresponds to a v-characteristic (H), 7, c) for
¢ € C, which has already been computed by the induction hypothesis on i, (w), or
to a w-characteristic (H ;‘,, t/, ¢) for ¢ € Cp, which has already been computed by
the induction hypothesis on 27 (v). Hence ¥ exists if and only if a matching in B
(constructed in Line 6 of CHARACTERISTICS) covering NV (1) \ {y} exists (Lines 10-11
of CHARACTERISTICS).

The proof for the v-characteristics (H,, T, w) using Lemma 3 is analog for the test in

Lines 7-8 of CHARACTERISTICS.
O

In Lemma 5 below we show that the runtime of Algorithm 2 is polynomial in the combined
size of H, G, and

f(= max ISul s @

@ Springer

Machine Learning

where T = (7, S) is the guidance tree of G computed in Line 2 of Algorithm 2. Together
with Lemma 4 this implies Theorem 2 by noting that f(T) < f,.<(G), where f, .. (G) is
defined in (1). It is immediate from the definition, that f (T) cannot be larger than f,, .. (G).
It can, however, be strictly smaller: As an example, consider Fig. 3, where B(w) contains
only a subset of the cyclic blocks containing w (i.e., it does not contain the block induced by
the vertices w, x, v). Here, f(T) =3 and f,,,,(G) = 9.

Lemma5 (Runtime) Algorithm 2 runs in O (f*(T) - |E(G)| - |V (H)|'®) time.

Proof Note that the edge sets of the v-rooted blocks of G form a partition of E(G), i.e.,

E(G) = U EB®W)) . 3

veV(T)

This partition and the tree skeleton 7 can be computed in linear time (Tarjan 1972). By
definition, |Sy| < f(T) forallv € V(7). Thus, as the spanning trees of a graph can be gener-
ated with linear delay (Read and Tarjan 1975), S, can be computed in O (|E(B(v))| - f(T))
time for each v € V(7). Hence, by (3), MAIN spends altogether

O (IE(G)| - f(T)) “

time for computing the guidance tree T. Furthermore, it calls subroutine CHARACTERISTICS
only

ol > s &)

weV(G)

times because the number of pairs (v, w) considered in Lines 3 and 5 is O (|V (G)]). Indeed,
each vertex w can occur in at most two sets of rooted blocks: In B(v) for its unique parent
v in 7 (unless w = r) and in B(w) if w is a root itself. Regarding the complexity of
CHARACTERISTICS, note that |®y,,(t)| is bounded by f (T) for any T € S, (see Line 2
of CHARACTERISTICS) and that the bipartite graph B constructed in Line 6 has at most
|IN ()| + |N(w)] vertices for any 6 € Oy, (7).

The edges of B can be constructed by membership queries to C. We can implement the
set C of characteristics found by the algorithm as a multidimensional array of polynomial
size (in f(T) and |V (G)]) such that each look-up and storage operation can be performed
in constant time. A maximum matching of B can be found in O (] (w)| - [N (u)|'*) time
(Hopcroft and Karp 1973, Thm. 3). Applying the same trick as in Chung (1987) and Shamir
and Tsur (1999) for ordinary subtree isomorphism, we can answer the matching queries for
u and all of its neighbors in Lines 7 and 10 of CHARACTERISTICS using a single bipartite
matching computation and an additional operation that is linear in the size of B. Hence, for
a vertex w € V(G), function CHARACTERISTICS runs in time

N

ol £ INw)|- Z IV (u) |13 _0(f(T)-|N(w)|-|E(H)|1-5) 6)

ueV(H)

o(fm-wwl-ven) . @

where (6) follows from the handshaking lemma and (7) from the fact that H is a tree. Thus,
by (5) and by another application of the handshaking lemma to G, together with (4) we obtain

@ Springer

Machine Learning

an overall time complexity

0 (f(T) (IE(G)| + £(T) - |[E(G)| - |V(H)|1~5))

which, in turn, is equal to

0 (FAM-1EG)I - IViD)|') ®)
as claimed. o

Note that in the case that H and G are both trees, f (T) = 1 and hence (8) corresponds to
the time complexity of the ordinary subtree isomorphism algorithms given in Chung (1987)
and Matula (1968). We will address the implications of this algorithm for probabilistic and
exact frequent tree mining in the next two sections.

4 Probabilistic frequent subtree mining

In Welke et al. (2018) we introduced the concept of probabilistic frequent subtrees, a random
subset of frequent trees, and presented an algorithm enumerating this kind of sound, but
incomplete pattern set with polynomial delay. It is based on replacing each graph in the input
with a forest formed by the vertex disjoint union of a random subset of its spanning trees.
On the one hand, the more spanning trees are considered by the algorithm, the higher the
recall of its output is. On the other hand, however, its delay depends linearly on the number
of spanning trees, implying that in order to guarantee polynomial delay it can consider at
most polynomially many spanning trees per graph. In this section we show that the results
from Sect. 3 allow us to go beyond this limitation. In particular, in Sect. 4.1 we propose a
boosted probabilistic frequent subtree mining algorithm that, using a variant of Algorithm 2,
implicitly considers exponentially many spanning trees for the transaction graphs and still
guarantees polynomial delay. In Sect. 4.2 we empirically compare its performance to that of
the simple algorithm in Welke et al. (2018).

4.1 The boosted algorithm

Recall that Algorithm 2 decides the SUBTREEISO problem by splitting the input transaction
graph G into certain induced subgraphs and by considering the set of all local spanning trees
for all such induced subgraphs. In case it takes not all, but only some subsets of the local
spanning trees, its output becomes correct only with respect to the subset of global spanning
trees of G that can be constructed by “gluing” together the local spanning trees considered in
all possible ways. In Theorem 3 below we formulate a straightforward extension of Theorem 2
to this more general setting of the SUBTREEISO problem.

To state this result, we need the following notion. Let T = (7, §) be an arbitrary (i.e, not
necessarily complete) guidance tree of G with bag S, € S forall v € V(7)) and consider the
graph T with V(T) = V(G) and E(T) = UveV(T) E(ty), where t, € S, forallv € V(7).
The definitions imply that T is a spanning tree of G. Hence, the disjoint union of all such
spanning trees of G, i.e, which can be obtained by taking all possible combinations of the
local spanning trees in the bags, forms a forest. We denote this forest by G(T). We are ready
to formulate a generalization of Theorem 2 to arbitrary (i.e., incomplete) guidance trees (see
(2) for the definition of f (T)):

@ Springer

Machine Learning

Algorithm 3 Subgraph Isomorphism from a Tree with One-Sided Error

Input :tree H with |V (H)| > 1 and guidance tree T = (7, S) for some connected graph G
with [V(G)| = [V (H)|
Output: TRUE if H < &(T); o/w FALSE

MAIN(H, T):

l:setC:=0

2: forall v € V(7) in a postorder do

3: forallt € S, do /I'Sy € Sisthebagof vin T
4: for all w € V(7) in a postorder do

5: C := C U CHARACTERISTICS (v, T, w) /I see Algorithm 2
6: if (HY, t, w) € C then return TRUE

7: return FALSE

Theorem 3 Let H be a tree, G be a graph, and T = (T, S) be a guidance tree of G. Then
one can decide whether H < &(T) in time

0 (FAM - 1EG) - VD)

Proof Consider Algorithm 3 for the modified pseudocode of MAIN given in Algorithm 2,
using the same subroutine CHARACTERISTICS. Its input includes T = (7, S), instead of
G. (Line 2 of MAIN in Algorithm 2 is accordingly removed.) The proofs of Lemma 4 and
Lemma 5 immediately apply to the partial sets of local spanning trees as well, implying the
correctness and the runtime with respect to &(T). O

Note that Theorem 2 in the previous section is the special case of the theorem above that
T is a complete guidance tree. Furthermore, Theorem 3 is formulated for deciding subgraph
isomorphism from trees into arbitrary graphs with one-sided error. That is, if Algorithm 3
returns “YES”, then the answer is always correct; o/w it may happen that there exists a
spanning tree T of G such that H < T, but H X &(T). This property holds also for the
algorithm in Welke et al. (2018), which guarantees efficiency by explicitly considering a
polynomial number of (random) global spanning trees of G. The importance of the result in
Theorem 3 above is that it guarantees polynomial time already for the case that the number
of local spanning trees in the bags of T is bounded by a polynomial of G which, in turn, may
however implicitly represent exponentially many global spanning trees in &(T) (cf. Sect. 5
for a straightforward example of this case). This result may be of some independent interest.
Theorem 3 gives rise to the following positive result on efficient mining of frequent subtrees
(without loss of generality, we formulate it for connected transaction graphs):

Theorem 4 Let D be a finite set of connected graphs, T = (g, Sg) be a guidance tree of G
forall G € D, andlet D' be the set of forests defined by D' = {&(T¢) : G € D}. Then forany
positive frequency threshold, the set of frequent subtrees of D' can be generated with delay
polynomial in the combined size of the original dataset D and f (D') = maxgep f(Tg).

Proof The correctness and irredundancy are immediate from Theorem 1. Regarding the
complexity, we can apply the arguments used in the proof of Theorem 1 in Horvath and
Ramon (2010) to the setting considered in the theorem. They imply that the dominating
term in the delay is the complexity of the pattern matching operator. By Theorem 3, it is
polynomial in f (D’) and the size of D, as claimed. O

Clearly, for all positive frequency thresholds, any frequent subtree of D’ is at the same
time a frequent subtree of D as well. (The reverse direction does not hold for potential

@ Springer

Machine Learning

incompleteness.) For the particular case, which is in the focus of this section, that the bags in
T are some random subsets of the corresponding sets of all local spanning trees, frequent
subtrees of D’ will be referred to as probabilistic frequent subtrees. We note that this definition
is different from the one introduced in Welke et al. (2018). Applying Theorem 4 to this case
we have that probabilistic frequent subtrees can be listed with polynomial delay in the size
of D, whenever f (D) is bounded by a polynomial in the size of D. We now discuss some
algorithmic and implementation issues concerning the generation of such random bags.

For the algorithmic aspects of sampling local spanning trees we note that a spanning tree
of any graph B can be generated uniformly at random in expected time O (I V(B)|3) using
the algorithm of Wilson (1996). We can improve on this time and achieve a deterministic
algorithm with O (|E(B)| - log(|V (B)|)) runtime if the spanning trees are not required to be
drawn uniformly at random. Indeed, just pick a random permutation of the edge set and apply
Kruskal’s minimum spanning tree algorithm using this edge order (for a detailed discussion
see Welke et al. 2018).

Regarding the practical implementation of this algorithm, we note that sampling the span-
ning trees is actually never the dominating term. Following the idea of Theorem 4, instead of
sampling local spanning trees anew for each invocation of the embedding operator, we select
a root for all G € D in a preprocessing step and consider the corresponding tree skeleton
T of G. For each v € V(7) we sample, with replacement, / spanning trees of the v-rooted
blocks, where [€ N is some user specified parameter. In case of sampling multiple identical
local spanning trees for v-rooted blocks, we keep only one copy to speed up the algorithm.
In particular, if all v-rooted blocks are bridges for some v € 7, then the graph induced by
the v-rooted blocks is a tree. In this case, we can safely just use this tree once, instead of
sampling / identical spanning trees without changing the set of computed v-characteristics.
We call such a root trivial.

The global spanning trees in G(T) above, considered implicitly by our algorithm, are
random. They are generated neither uniformly nor independently from the set of all spanning
trees of G, even if we sample the local spanning trees uniformly and independently at random.
This is due to the fact that any random local spanning tree picked for a non-trivial root
contributes to at least two spanning trees in &, whenever G (with respect to the fixed root
r) has at least two non-trivial roots. Our experimental results in Sect. 4.2 below however
show that despite this kind of dependency, the recall increases by increasing values of /.

4.2 Experimental evaluation

In this section we experimentally demonstrate the advantage of using /ocal spanning trees
instead of global ones in probabilistic frequent subtree mining. In what follows we will
refer to the former technique as boosted probabilistic subtree (BPS) and to the latter one as
probabilistic subtree (PS) mining. In particular, we show for different values of 7 that within
time ¢, BPS considers a dramatically larger number of spanning trees per graph on average
compared to PS, resulting in an improvement in terms of recall of frequent subtrees.

Our experiments clearly indicate that the amount of improvement strongly depends on the
structural properties of the transaction graphs at hand. In particular, the improvement obtained
for molecular graphs of small pharmacological compounds is negligible; we observed this
consistently on several such benchmark graph datasets. As already mentioned, most exact
frequent pattern mining algorithms have an excellent performance on this kind of graphs,
with GASTON (Nijssen and Kok 2005) being notably the fastest. However, all these exact
methods seem to be limited to this particular graph class, as they were unable to produce any

@ Springer

Machine Learning

Fig.4 A threshold graph on 30 o o
points in the 2D Euclidean unit
square ford = 0.2

frequent patterns in feasible time, even for slightly more complex structures beyond molecular
graphs. In particular, for small neighborhood graphs extracted from social networks, none of
the existing implementations were able to return any frequent patterns. In contrast, already
PS could consistently produce an output having such a high recall® of frequent patterns
that make BPS unnecessary for this other kind of graphs. This is due to the fact that such
neighborhood graphs contain typically a single block only and hence, BPS and PS behave
similarly on them.

If, however, the transaction graphs have exponentially many spanning trees and several
cyclic blocks at the same time, then PS is able to consider only a small fraction of all spanning
trees, implying a negative impact on the recall. Such situations occur, for example, in case
of threshold graphs, which are defined by local neighborhood relationships between objects
in a metric space. Two vertices representing two objects are connected by an edge if and
only if the distance of the corresponding objects is smaller than some given threshold (see
Fig. 4 for a threshold graph on 30 two-dimensional points). This kind of graphs have different
practical applications, for example in spectral clustering (cf. von Luxburg 2007). While in
that application field there are only rules of thumb on how to choose a suitable threshold for a
particular metric and clustering task, one is interested in threshold graphs having a high edge
density within each cluster and a low one among the clusters. This requirement typically
results in threshold graphs having multiple cyclic blocks that are connected by a few bridges
only and hence, in a large number of spanning trees. To demonstrate the advantage of BPS
over PS, we have therefore considered threshold graphs in our experiments.

In particular, we evaluate our methods on artificial graph data sets that simulate the two-
dimensional Brownian motion over time. To construct such a graph database, we first draw n
points from the unit square {(x, y) : 0 < x, y < 1} independently and uniformly at random
and label them with ¢ different labels'? at random for some ¢ > 0 integer. Given a parameter
d € (0, /2], we construct a threshold graph by connecting two points if and only if their
Euclidean distance is at most d. Subsequent graphs in the database are obtained by (i) moving

9 More precisely, we could calculate only a lower bound using Sloane (2016) and found that already it was
very close to 1. We omit the details and refer the reader to Welke (2019) for a detailed overview and discussion
of these results.

10" The number of vertex labels has a non-trivial influence on the number of (non-isomorphic) spanning trees
of graphs and also on the number of frequent patterns in a graph database.

@ Springer

Machine Learning

each point randomly according to a normal distribution with standard deviation x centered
at its former position and (ii) constructing a threshold graph on the resulting set of points
with respect to the same threshold d as above. If a point would leave the unit square due to its
random move, it is reflected back inside. Hence, a database constructed in this way depends
on the parameters n, ¢, d, jt, and N, where N is the number of time steps (or equivalently, the
number of graphs in the database). To obtain the dataset, we generated N = 200 graphs with
n = 30 vertices with ¢ € {2, 5, 10, 30} random colors (i.e., vertex labels). We set d = 0.2 and
= 0.02, as the threshold graphs induced by these numbers fulfilled the desirable structural
properties discussed above.

We first compare the average number of spanning trees and non-isomorphic spanning trees
considered by the PS and BPS methods. As the resulting graphs may be disconnected (see,
e.g., Fig. 4), we extend our algorithms to this case as follows: We compute the number of
different'! spanning trees considered for each connected component separately, sum them up,
and normalize the result by the number of connected components. To obtain the number of
non-isomorphic spanning trees for each graph, we compute a canonical string for each tree in
the above two sets, count the number of different strings, and again normalize by the number
of connected components of the graph. Notice that the average number of non-isomorphic
spanning trees calculated in this way can be smaller than 1 (e.g. when G has many singleton
vertices with the same label).

Table 1 shows the average number of sampled spanning trees and that of non-isomorphic
spanning trees for the threshold graph dataset defined above for PS and BPS. One can see
that for all k € {2, 5, 10, 30}, both the average number of sampled spanning trees and the
resulting non-isomorphic spanning trees is much higher for BPS. For example, for 30 labels
and k = 10 we get on average only 4.51 different spanning trees and 4.06 non-isomorphic
spanning trees for PS. On the other hand, BPS considers on average 2606.08 different and
349.90 non-isomorphic spanning trees, when sampling k = 10 local spanning trees. In order
to obtain a similar number of non-isomorphic spanning trees on average with PS, one would
need to sample at least 350 global spanning trees per graph.

An interesting observation is that the fraction of non-isomorphic spanning trees to different
trees considered is rather different for PS and BPS. While for PS almost all sampled trees are
non-isomorphic, this fraction drops to below 20% for BPS and larger values of k. We do not
know whether this is because the overall number of non-isomorphic spanning trees is rather
small or because of the fact that the combination of local spanning trees results in many
“similar” global spanning trees due to the dependency. We assume the latter by stressing that
the average number of non-isomorphic spanning trees is still much higher than what can be
achieved with a reasonable parameter k for PS.

Finally, we investigate the recall of frequent subtree patterns that can be obtained in a
given time budget. That is, we fix a (low) frequency threshold 8 = 2% (corresponding to the
absolute frequency threshold of 4) and mine (probabilistic) frequent subtrees on the threshold
graph database for increasing values of k until the algorithm exceeds a runtime budget of 200
s. For a given value of k and for both methods PS and BPS, we repeat the mining algorithm
ten times and average runtime and recall to mitigate for the effects of the random samples.
Figure 5 shows the number of frequent patterns found (y-axis) per time (x-axis) for increasing
values of the sampling parameter k. BPS obtains a significantly higher number of frequent
patterns per time than PS for all time budgets up to 200 .12 For example, for 10 vertex colors
(i.e., c = 10), we obtain on average 73,396 patterns in 195 s for k = 59 using PS and 101,503

T Here, two spanning trees 7', T’ are identical if and only if E(T) = E(T’), not if they are isomorphic.
12 Note that according to this definition, the plots in Fig. 5 can end before x = 200.

@ Springer

Machine Learning

Table 1 Average number of spanning trees considered by PS (Welke et al. 2018) and BPS

k 2 labels 5 labels 10 labels 30 labels
PS BPS PS BPS PS BPS PS BPS
2 1.44 4.89 1.44 4.98 1.43 4.81 1.44 4.74
0.94 2.57 0.98 2.59 0.98 2.65 0.99 2.62
3 1.87 29.91 1.87 32.44 1.86 28.13 1.86 31.66
1.33 7.89 1.40 9.15 1.41 8.63 1.41 9.68
4 2.27 118.78 2.27 102.48 2.27 112.12 2.26 100.03
1.70 21.44 1.78 23.82 1.80 29.69 1.81 24.81
5 2.66 243.88 2.66 243.44 2.66 230.08 2.65 265.21
2.04 38.58 2.16 44.67 2.19 53.97 2.20 53.69
6 3.04 510.26 3.03 465.82 3.04 490.62 3.05 498.13
2.40 63.13 2.53 77.55 2.56 91.49 2.60 99.82
7 3.42 865.82 3.43 880.51 3.42 789.28 3.41 883.88
2.73 99.16 291 117.07 2.93 129.55 2.96 141.80
8 3.79 1364.81 3.77 1382.15 3.80 1306.57 3.77 1231.39
3.06 147.61 3.24 161.30 331 183.91 332 187.95
9 4.16 1996.29 4.17 1979.02 4.14 1888.02 4.15 1816.81
3.38 200.06 3.62 251.41 3.65 257.12 3.70 277.92
10 451 2717.93 451 2744.65 451 2868.81 451 2606.08
3.79 260.56 3.97 326.28 4.02 364.06 4.06 349.90

For each number k of sampled global (resp. local) spanning trees for PS (resp. BPS) we report the average
number of sampled spanning trees per connected component in the first row and the resulting average number
of non-isomorphic spanning trees per connected component in the second row

patterns for k = 36 for BPS, a 38.3% increase. Comparing the runtimes necessary to obtain
a given amount of frequent patterns, this difference gets even more concrete. To obtain at
least the same number of frequent patterns returned by PS in at most 200 s, BPS needs only
148.77 s, 106.74 s, 109.52 s, and 124.38 s, for 2, 5, 10, and 30 vertex colors, respectively.
Thus, on transaction graphs consisting of several dense cyclic blocks, such as, for example,
threshold graphs, BPS clearly has a superior performance over PS.

5 Exact frequent subtree mining

Theorems 1 and 2 give rise to the characterization of a new non-trivial graph class beyond
forests for which the FTM problem can be solved with polynomial delay. We will now
formally define this graph class and investigate some of its properties. Recall that frequent
subtrees can be mined efficiently in forest databases, or more generally, in graphs having
polynomially many spanning trees; this follows from the results e.g. in Chi et al. (2005)
and Horvath and Ramon (2010). Such graphs will be referred to as easy graphs. Except
for forests, the class of easy graphs is typically uninteresting from a practical viewpoint, as
even for relatively simple graphs beyond forests, the number of spanning trees usually grows
exponentially with the number of vertices. Our positive result extends to this practically and
theoretically more interesting situation by requiring easiness not for the entire graph, but
only for local surroundings of the vertices. Formally, a graph G with n vertices is locally

@ Springer

Machine Learning

2 Label
104 abels 105 5 Labels
3T T T T T T
) 1 |
520
oW
Gy
o
5 0.5 -
Q [
1
=]
~ ——BPS (k < 37) ——BPS (k < 33)
ol —— PS (k < 48) —— PS (k <51)
- 0
0 100 200 0 100 200
105 10 Labels 10° 30 Labels
T T T T T T
w 10 1h -
£
g
-
<
[al}
Gy
]
5 05 0.5 -
Q
g
=
“ ——BPS (k < 36) ——BPS (k < 43)
—— PS (k< 59) —— PS (k < 83)
0 0
0 100 200 0 100 200
Time [s] Time [s]

Fig. 5 Recall curves for 2%-frequent subtrees on the threshold graph database for PS and BPS for different
numbers of vertex colors ranging from 2 to 30. Each dot corresponds to the average of 10 runs of the respective
algorithms for some given value of k, ranging from 1 to the number indicated in the legends

easy if for all v € V(G), the number of spanning trees of the union formed by the blocks
of G containing v is bounded by a polynomial of #, i.e., f,,,(G) = O (poly(n)) (cf. (1) in
Sect. 3 for the definition of f,, .. (G)). In particular, for the case that it is bounded by p(n)
for some polynomial p (resp. by n) we will speak of locally p-easy (resp. locally linearly
easy) graphs. Clearly, all easy graphs are locally easy, but a locally easy graph may contain
exponentially many spanning trees (see Fig. 6 for an example). We have the following result:

Theorem 5 The FTM problem can be solved with polynomial delay for locally easy trans-
action graphs.

Proof By Theorem 1, Algorithm 1 solves the FTM problem for locally easy transaction
graphs with polynomial delay whenever all conditions required are fulfilled. Conditions 1
and 2 of Theorem 1 are straightforward when P is restricted to trees and Condition 3 follows
e.g. from the results of Shamir and Tsur (1999). Finally, Theorem 2 immediately implies
Condition 4 from tree patterns into locally easy graphs. O

Below we discuss some important properties of locally easy graphs implying the theoret-
ical and practical importance of Theorem 5 above.

@ Springer

Machine Learning

AMAA B

Fig. 6 A locally easy graph with exponentially many spanning trees on the left and a locally linearly easy
graph of tree-width 4 on the right

(P1) The membership problem for locally easy graphs (i.e., whether a graph is locally
easy or not) can be decided in cubic time, implying that it can be checked in polynomial time
for any graph database D whether or not Theorem 5 is applicable to D. More precisely, let
G be a graph with |V(G)| = n and p be some polynomial. One can decide in cubic time
whether G is locally p-easy by performing the following steps: (i) Compute first the set of
all blocks of G, (ii) calculate the number of spanning trees for all blocks of G separately, and
(iii) check for all v € V(G) whether the product of these values for all blocks sharing v is
at most p(n). The claim above then follows by noting that (i) can be solved in linear (Tarjan
1972) and (ii) in cubic time using Kirchhoff’s theorem (see, e.g., Chap. 5.6 in Stanley and
Fomin 1999).

(P2) Locally easy graphs may contain exponentially many spanning trees. As an example,
consider the graph G given in the left-hand side of Fig. 6. It is locally linearly easy (for all
v € V(G) there are at most 9 spanning trees in the union of the (cyclic) blocks containing
v), still it has altogether 39 spanning trees. This and other examples show that our result
formulated in Theorem 5 is non-trivial, as any brute-force pattern matching algorithm that
decides whether a tree is subgraph isomorphic to a locally easy graph G by testing subtree
isomorphism for all spanning trees of G becomes infeasible for such cases.

(P3) The class of locally easy graphs contains some interesting graph classes for which the
FTM problem is computationally tractable. As an example, we mention the class of almost
k-trees of bounded degree, where a graph G is an almost k-tree for some integer k > 0 if
|E(B)| < |V(B)|+k for all blocks B of G. One can decide in polynomial time whether a tree
is subgraph isomorphic to an almost k-tree of bounded degree (Akutsu 1993). Combining
this result with Theorem 1 we have that the FTM problem can be solved with polynomial
delay for almost k-trees of bounded degree. We can obtain this result directly by Theorem 5
as well because the class of locally easy graphs properly contains that of almost k-trees of
bounded degree. The strength of Theorem 5 is that it generalizes the positive mining result
above also to almost k-trees of unbounded degree that are locally easy.

(P4) The class of locally easy graphs is “orthogonal” to all graph classes that are defined
by a constant upper bound on some monotone graph property. To formalize this statement, we
need some further definitions: A nested hierarchy of the class of all finite graphs is a family
of graph classes H = {G; : i > 0} such that for all finite graphs G there exists a non-negative
integer i with G € G; and G; C G4 forall j > 0. The smallest integer i satisfying G € G;
is denoted by I7/(G). A nested hierarchy H is monotone if I+(G1) < I (G>) whenever
G < Gy, forall graphs G, G,. The graph parameters size, order, maximum vertex degree,
tree-width, number of spanning trees of a graph are some straightforward examples inducing
monotone nested hierarchies; an example for some /7 resulting in a non-monotone nested
hierarchy would be the number of connected components or blocks. Using the above concepts,
we are ready to formulate the following claim:

@ Springer

Machine Learning

Claim For any monotone nested hierarchy H = {G; : i > 0} and for any integer k > 0 there
are infinitely many locally linearly easy graphs that are not in Gy.

Proof Let H be a monotone nested hierarchy and let G1, G, G3, .. . be a sequence of graphs
with I (G;) = i. Such a sequence exists by definition. For any i € N, adding new leafs to
G; does not decrease I1¢/(G;), as ‘H is monotone. However, it will eventually decrease the
local easiness of the resulting graph: Recall from (1) in Sect. 3 that for all i > 0, f,,,(G;) is
the maximum number of spanning trees in the union of the blocks of G; containing v, over
all v € V(G;). By adding max (0, f,,..(Gi) — |V (G;)|) new leafs (i.e., vertices of degree 1)
to G; in an arbitrary way, we obtain a locally linearly easy graph G} with I((G}) > i and
fmax(G;) = finax(Gi) foralli > 0. Thus, forany k € N, G;<+j ¢ Gy forall j > 1, implying
the claim. O

We illustrate the idea in the proof above on the monotone nested hierarchy induced by
the tree-width (see, e.g., Diestel 2012, for the definition of tree-width). Consider the graph
G obtained from the complete graph Kj on k vertices for some k > 3 by adding k*=2 — k
leafs to some vertex of K (see the right-hand side of Fig. 6 for an example with k = 5). On
the one hand, the construction does not increase the tree-width, i.e., the tree-width of G is
equal to that of K;. On the other hand, as K has exactly k¥~2 spanning trees by Cayley’s
formula, G is a locally linearly easy graph. Since the construction in this example holds for
any k > 3, local easiness implies no constant upper bound on the tree-width.

The choice of tree-width in the example above is especially interesting because frequent
subtrees of bounded degree can be generated with polynomial delay from graphs of bounded
tree-width. This follows from Theorem 1 together with the positive result of Matousek and
Thomas (1992) on subgraph isomorphism between bounded tree-width graphs. This and
other examples provide evidence that our main result formulated in Theorem 5 extends (or
complements) several results on the (fixed parameter) tractability of the FTM problem for
various monotone nested hierarchies for which subgraph isomorphism from a tree can be
decided in polynomial time. We note, for example, that in the systematic overview of the
parameterized complexity of subgraph isomorphism by Marx and Pilipczuk (2014), 9 out
of the 10 parameters considered result in monotone nested hierarchies. Hence, our result
extends the positive results in their work to the case that the patterns are restricted to trees.

(P5) A large fraction of the molecular graphs considered in chemoinformatics are actually
locally easy. To confirm this observation, we first provide a sufficient condition for local
easiness. Let G be a graph of size n and let ¢, k > 0 be integers. Then G is degree-k easy if
each block of G has at most O (n¥) spanning trees and it is of cyclic block degree-c if each
vertex v of G belongs to at most ¢ distinct cyclic blocks.!? Clearly, if G is degree-k easy and
of cyclic block degree-c for some constants k and c, then G is locally easy.

Many of the chemical graphs of pharmacological compounds are d-tenuous outerplanar
graphs ford < 5 (Horvathetal.2010). Informally, each cyclic block of such a graph is a planar
graph composed of a single Hamiltonian cycle and at most d non-crossing diagonals. Clearly,
d-tenuous outerplanar graphs are degree-(d + 1) easy. Furthermore, chemical graphs have
typically some very small cyclic block degree because they have small vertex degree. Thus,
most chemical graphs are locally easy. To support this claim experimentally, we investigated
local easiness for the graphs in the ZINC dataset.!* Our version of the database contains
8,946, 757 “lead-like” compounds. We have the following distribution of the molecules
with respect to f,.. (G) defined in (1):

13 Note that the vertex degree is an upper bound on the cyclic block degree.
14 Obtained from http://zinc.docking.org.

@ Springer

http://zinc.docking.org

Machine Learning

0 < fax(G) < n | 8,640,166 (96.57%)
no< fux(G) < n? | 302,541 (3.38%)
n? < fox(G) < nd 1864 (0.02%)
< fon(G) 2186 (0.02%)

Thus, by our result in Theorem 5, all frequent trees can be generated from almost all such
chemical graphs with polynomial delay. This complements the positive result of Horvith
et al. (2010) on mining frequent connected subgraphs from d-tenuous outerplanar graphs
with respect to a constrained subgraph isomorphism operator.

6 Concluding remarks

The results described in this paper raise several interesting practical and theoretical issues
for further studies. In particular, as we demonstrated on threshold graphs in Sect. 4.2, the
technique presented can be used to efficiently improve the recall of probabilistic frequent sub-
trees by considering exponentially many spanning trees. While the amount of improvement is
impressive for threshold graphs and for other potential graph classes satisfying the structural
properties discussed in Sect. 4, it is marginal e.g. for chemical or small neighborhood graphs
extracted from social networks. This raises the practical question whether one can design an
algorithm able to decide quickly for any transaction database whether probabilistic frequent
subtrees should be generated by sampling global (cf. Welke et al. 2018) or rather local (cf.
Sect. 4) spanning trees.

It would be interesting to understand how far the positive result of this work on exact
frequent subtree mining can be generalized to other pattern classes beyond trees. Perhaps
the first natural question towards this direction would be to ask whether it is possible to
generate frequent locally easy subgraphs in locally easy transaction graphs with polynomial
delay. In order to calculate the v-characteristics for a root vertex v with respect to a vertex
u in the pattern, our algorithm combines at most two sets of local spanning trees at any
time and assumes that neither « nor the vertices in its local environment are contained in a
cycle. Therefore, in order to apply the algorithm to the more general patterns of locally easy
graphs, we need to work with the spanning trees of certain local environments of #. However,
in contrast to the transaction graphs, it may happen that such spanning trees are composed
of the combination of the spanning trees of the blocks for a non-constant number of root
vertices of the pattern graph. In such a case, an exponential number of spanning trees must
be processed. This indicates that, if it is possible at all, such a generalization would require
some more sophisticated approach.

An Open Problem Finally we give arguments clearly indicating the significance and dif-
ficulty of generalizing the positive result in Theorem 5 to transaction graphs beyond locally
easy graphs. We suspect that obtaining such a generalization is at least as hard as solving the
millennium problem P versus NP. In particular, it is natural to ask whether frequent subtrees
can be generated with polynomial delay also from transaction graphs for which we only
require the number of spanning trees per block to be bounded by a polynomial in the size of
the whole graph (i.e., we do not assume any constant upper bound on the cyclic block degree).
In contrast to locally easy graphs, subgraph isomorphism from trees into this type of more
general graphs becomes NP-complete, even for the very simple class of cactus graphs (i.e.,
in which each cyclic block is a simple cycle, Akutsu 1993). We do not know the answer to the
question above, not even to the case of cactus transaction graphs. We can, however, show the

@ Springer

Machine Learning

importance and high difficulty of this open problem by discussing the potential two answers
separately:

(i) Suppose the problem can be solved with polynomial delay. An important immediate
consequence of this result would be that polynomial delay frequent pattern enumeration
is possible even for NP-complete pattern matching operators, solving an open problem
(cf. Horvath and Ramon 2010).

(i1) Suppose it cannot be solved with polynomial delay. Then, as the class of trees satisfies
Conditions 1-3 of Theorem 1, by contraposition we have that Condition 4 of Theorem 1
does not hold, i.e., the corresponding subgraph isomorphism problem is not in P. But this
would immediately imply that P = NP, indicating the high difficulty of proving this case,
as the subgraph isomorphism problem lies in NP for all pattern and text graph classes.
Note that this consideration applies also to the particular case of cactus transaction
graphs.

We conjecture that case (ii) holds, that is, polynomial delay pattern generation is impossible
for computationally intractable pattern matching operators. This is certainly true for graph
classes for which the Hamiltonian path problem is NP-complete (assuming P % NP).!5 If
our conjecture is true, then

(a) in case of intractable pattern matching operators, the primary question should be whether
the pattern mining problem at hand can be solved in incremental polynomial time, rather
to prove that polynomial delay pattern mining is not possible and

(b) even for very simple graph classes, the cyclic block degree of the transaction graphs is
a crucial parameter for polynomial delay frequent pattern mining.

Acknowledgements Part of this work has been funded by the Ministry of Education and Research of Germany
(BMBF) under project ML2R (grant number 01/S18038C).

References

Agrawal, R., Mannila, H., Srikant, R., Toivonen, H., & Verkamo, A.L. (1996). Fast discovery of association
rules. In Advances in Knowledge Discovery and Data Mining (pp. 307-328). AAAI/MIT Press.

Akutsu, T. (1993). A polynomial time algorithm for finding a largest common subgraph of almost trees of
bounded degree. IEICE Transactions on Fundamentals of Electronics, Communications and Computer
Sciences, 76(9), 1488-1493.

Arnborg, S., Corneil, D. G., & Proskurowski, A. (1987). Complexity of finding embeddings in a k-tree. SIAM
Journal on Algebraic Discrete Methods, 8(2), 277-284. https://doi.org/10.1137/0608024.

Bringmann, B., Zimmermann, A., De Raedt, L., & Nijssen, S. (2006). Don’t be afraid of simpler patterns. In
J. Firnkranz, T. Scheffer, & M. Spiliopoulou (Eds.), European Conference on Principles and Practice
of Knowledge Discovery in Databases (PKDD) Proceedings, Lecture Notes in Computer Science (Vol.
4213, pp. 55-66). Springer. https://doi.org/10.1007/11871637_10.

Chi, Y., Muntz, R. R., Nijssen, S., & Kok, J. N. (2005). Frequent subtree mining—An overview. Fundamenta
Informaticae, 66(1-2), 161-198.

Chung, M. J. (1987). 0 (n?3) time algorithms for the subgraph homeomorphism problem on trees. Journal
of Algorithms, 8(1), 106—112. https://doi.org/10.1016/0196-6774(87)90030-7.

Cordella, L. P., Foggia, P., Sansone, C., & Vento, M. (1999). Performance evaluation of the VF graph matching
algorithm. In International Conference on Image Analysis and Processing (ICIAP) (pp. 1172-1177).
IEEE Computer Society. https://doi.org/10.1109/ICIAP.1999.797762.

Deshpande, M., Kuramochi, M., Wale, N., & Karypis, G. (2005). Frequent substructure-based approaches for
classifying chemical compounds. Transactions on Knowledge and Data Engineering, 17(8), 1036—1050.
https://doi.org/10.1109/tkde.2005.127.

15 We note that the Hamiltonian path problem is polynomial for the case of cactus graphs, making them an
especially interesting candidate graph class.

@ Springer

https://doi.org/10.1137/0608024
https://doi.org/10.1007/11871637_10
https://doi.org/10.1016/0196-6774(87)90030-7
https://doi.org/10.1109/ICIAP.1999.797762
https://doi.org/10.1109/tkde.2005.127

Machine Learning

Diestel, R. (2012). Graph theory, Graduate texts in mathematics (4th ed., Vol. 173). Berlin: Springer.

Erdés, P., & Rényi, A. (1959). On random graphs 1. Publicationes Mathematicae, 6, 290-297.

Garey, M. R., & Johnson, D. S. (1979). Computers and intractability: A guide to the theory of NP-completeness.
New York: W. H. Freeman.

Hajiaghayi, M., & Nishimura, N. (2007). Subgraph isomorphism, log-bounded fragmentation, and graphs of
(locally) bounded treewidth. Journal of Computer and System Sciences, 73(5), 755-768. https://doi.org/
10.1016/j.jcss.2007.01.003.

Han, J., Pei, J., Yin, Y., & Mao, R. (2004). Mining frequent patterns without candidate generation: A frequent-
pattern tree approach. Data Mining and Knowledge Discovery, 8(1), 53—87. https://doi.org/10.1023/b:
dami.0000005258.31418.83.

Hopcroft, J. E., & Karp, R. M. (1973). An n”*5/2 algorithm for maximum matchings in bipartite graphs. SIAM
Journal on Computing, 2(4), 225-231. https://doi.org/10.1137/0202019.

Horvith, T., Bringmann, B., & Raedt, L. D. (2007). Frequent hypergraph mining. In S. Muggleton, R. P. Otero,
& A. Tamaddoni-Nezhad (Eds.), Inductive Logic Programming (ILP) Revised Selected Papers, Lecture
Notes in Computer Science (Vol. 4455, pp. 244-259). Berlin: Springer. https://doi.org/10.1007/978-3-
540-73847-3_26.

Horvith, T., & Ramon, J. (2010). Efficient frequent connected subgraph mining in graphs of bounded tree-
width. Theoretical Computer Science, 411(31-33), 2784-2797. https://doi.org/10.1016/j.tcs.2010.03.
030.

Horvith, T., Ramon, J., & Wrobel, S. (2010). Frequent subgraph mining in outerplanar graphs. Data Mining
and Knowledge Discovery, 21(3), 472-508. https://doi.org/10.1007/s10618-009-0162- 1.

Johnson, D. S., Papadimitriou, C. H., & Yannakakis, M. (1988). On generating all maximal independent sets.
Information Processing Letters, 27(3), 119—123. https://doi.org/10.1016/0020-0190(88)90065- 8.
Kramer, S., Lavra¢, N., & Flach, P. (2001). Propositionalization approaches to relational data mining. In S.
Dzeroski & N. Lavra¢ (Eds.), Relational data mining (pp. 262-291). Berlin: Springer. https://doi.org/

10.1007/978-3-662-04599-2_11.

Kuramochi, M., & Karypis, G. (2004). An efficient algorithm for discovering frequent subgraphs. Transactions
on Knowledge and Data Engineering, 16(9), 1038-1051. https://doi.org/10.1109/TKDE.2004.33.
Mannila, H., & Toivonen, H. (1997). Levelwise search and borders of theories in knowledge discovery. Data

Mining and Knowledge Discovery, 1(3), 241-258. https://doi.org/10.1023/a:1009796218281.

Marx, D., & Pilipczuk, M. (2014). Everything you always wanted to know about the parameterized complexity
of Subgraph Isomorphism (but wereafraid to ask). In E. W. Mayr & N. Portier (Eds.), International
Symposium on Theoretical Aspects of Computer Science (STACS), Schloss Dagstuhl - Leibniz-Zentrum
Sfuer Informatik, LIPIcs (Vol. 25, pp. 542-553). https://doi.org/10.4230/LIPIcs.STACS.2014.542.

Matousek, J., & Thomas, R. (1992). On the complexity of finding iso-and other morphisms for partial k-trees.
Discrete Mathematics, 108(1-3), 343-364. https://doi.org/10.1016/0012-365x(92)90687-b.

Matula, D. W. (1968). An algorithm for subtree identification. Siam Review, 10, 273-274.

Nijssen, S., & Kok, J. N. (2005). The gaston tool for frequent subgraph mining. Electronic Notes in Theoretical
Computer Science, 127(1), 77-87. https://doi.org/10.1016/j.entcs.2004.12.039.

Read, R. C., & Tarjan, R. (1975). Bound on backtrack algorithms for listing cycles, paths, and spanning trees.
Networks, 5, 237-252.

Robertson, N., & Seymour, P. D. (1986). Graph minors. II. Algorithmic aspects of tree-width. Journal of
Algorithms, 7(3), 309-322. https://doi.org/10.1016/0196-6774(86)90023-4.

Shamir, R., & Tsur, D. (1999). Faster subtree isomorphism. Journal of Algorithms, 33(2), 267-280. https://
doi.org/10.1006/jagm.1999.1044.

Sloane, N. J. A. (2016). The online encyclopedia of integer sequences. AO00055: Number of trees with n
unlabeled nodes. http://oeis.org/ AO00055. Accessed 18 November 2016.

Stanley, R. P., & Fomin, S. (1999). Enumerative combinatorics, Cambridge Studies in Advanced Mathematics
(Vol. 2). Cambridge: Cambridge University Press. https://doi.org/10.1017/CB0O9780511609589.

Tarjan, R. (1972). Depth-first search and linear graph algorithms. SIAM Journal on Computing, 1(2), 146-160.

Ullmann, J. R. (1976). An algorithm for subgraph isomorphism. Journal of the ACM, 23(1), 31-42. https://
doi.org/10.1145/321921.321925.

von Luxburg, U. (2007). A tutorial on spectral clustering. Statistics and Computing, 17(4), 395-416. https://
doi.org/10.1007/s11222-007-9033-z.

Welke, P. (2019). Efficient frequent subtree mining beyond forests. Ph.D. thesis, University of Bonn.

Welke, P., Horvith, T., & Wrobel, S. (2015). On the complexity of frequent subtree mining in very simple
structures. In J. Davis & J. Ramon (Eds.), Inductive Logic Programming (ILP) Revised Selected Papers,
Lecture Notes in Computer Science (Vol. 9046, pp. 194-209). Berlin: Springer. https://doi.org/10.1007/
978-3-319-23708-4_14.

@ Springer

https://doi.org/10.1016/j.jcss.2007.01.003
https://doi.org/10.1016/j.jcss.2007.01.003
https://doi.org/10.1023/b:dami.0000005258.31418.83
https://doi.org/10.1023/b:dami.0000005258.31418.83
https://doi.org/10.1137/0202019
https://doi.org/10.1007/978-3-540-73847-3_26
https://doi.org/10.1007/978-3-540-73847-3_26
https://doi.org/10.1016/j.tcs.2010.03.030
https://doi.org/10.1016/j.tcs.2010.03.030
https://doi.org/10.1007/s10618-009-0162-1
https://doi.org/10.1016/0020-0190(88)90065-8
https://doi.org/10.1007/978-3-662-04599-2_11
https://doi.org/10.1007/978-3-662-04599-2_11
https://doi.org/10.1109/TKDE.2004.33
https://doi.org/10.1023/a:1009796218281
https://doi.org/10.4230/LIPIcs.STACS.2014.542
https://doi.org/10.1016/0012-365x(92)90687-b
https://doi.org/10.1016/j.entcs.2004.12.039
https://doi.org/10.1016/0196-6774(86)90023-4
https://doi.org/10.1006/jagm.1999.1044
https://doi.org/10.1006/jagm.1999.1044
http://oeis.org/A000055
https://doi.org/10.1017/CBO9780511609589
https://doi.org/10.1145/321921.321925
https://doi.org/10.1145/321921.321925
https://doi.org/10.1007/s11222-007-9033-z
https://doi.org/10.1007/s11222-007-9033-z
https://doi.org/10.1007/978-3-319-23708-4_14
https://doi.org/10.1007/978-3-319-23708-4_14

Machine Learning

Welke, P., Horvith, T., & Wrobel, S. (2018). Probabilistic frequent subtrees for efficient graph classification
and retrieval. Machine Learning, 107(11), 1847-1873. https://doi.org/10.1007/s10994-017-5688-7.

Wilson, D.B. (1996). Generating random spanning trees more quickly than the cover time. In: G.L. Miller
(Ed.) ACM Symposium on the Theory of Computing (STOC) Proceedings (pp. 296-303). ACM. https://
doi.org/10.1145/237814.237880.

Zhao, P, & Yu, J. X. (2008). Fast frequent free tree mining in graph databases. World Wide Web, 11(1), 71-92.
https://doi.org/10.1007/s11280-007-0031-z.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

@ Springer

https://doi.org/10.1007/s10994-017-5688-7
https://doi.org/10.1145/237814.237880
https://doi.org/10.1145/237814.237880
https://doi.org/10.1007/s11280-007-0031-z

	Probabilistic and exact frequent subtree mining in graphs beyond forests
	Abstract
	1 Introduction
	2 Preliminaries
	3 An efficient embedding operator for trees
	4 Probabilistic frequent subtree mining
	4.1 The boosted algorithm
	4.2 Experimental evaluation

	5 Exact frequent subtree mining
	6 Concluding remarks
	Acknowledgements
	References

