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Abstract 

Significant progress in our understanding of plasticity in body centered cubic (bcc) 
metals during the last decade has enabled a rigorous multiscale modeling based on 
quantitative physical principles. Significant advances have been made at the 
atomistic level in the understanding of dislocation core structures and energetics 
associated with dislocation glide using high fidelity models originating from quantum 
mechanical principles. These simulations revealed important details about the 
influence of non-Schmid (non-glide) stresses on the mobility of screw dislocations in 
bcc metals that could be implemented to mesoscopic discrete dislocation simulations 
with atomistically informed dislocation mobility laws. First applications of dislocation 
dynamics simulations to studies of plasticity in small scale bcc single crystals have 
been performed. Dislocation dynamics simulations inspired the development of 
continuum models based on advanced 3D dislocation density measures with 
evolution equations that naturally track dislocation motion. These advances open 
new opportunities and perspectives for future quantitative and materials specific 
multiscale simulations methods to describe plastic deformation in bcc metals and 
their alloys.  
 
 
Introduction 

Already the first systematic investigations of the mechanical behavior of body-
centered cubic (bcc) metals (1) revealed that their plasticity is fundamentally different 
from that of hexagonal and face-centered cubic metals. Even though plastic slip in 
bcc metals was observed in the expected close-packed <111> directions, the slip 
traces did not coincide with a single crystallographic plane and varied with the 
orientation and sense of the applied stress (2). These findings were a clear violation 
of the Schmid law (3) which states that plastic flow is initiated when the resolved 
shear stress on the most stressed slip system reaches a critical value, the critical 



resolved shear stress (CRSS), and that this critical stress is not affected by any other 
component of the applied stress tensor (4). It has been shown in a number of 
deformation experiments (2) that various bcc single crystals exhibit non-Schmid 
behavior such as a tension-compression asymmetry, a twinning-antitwinning 
asymmetry, and dominant slip on crystallographic planes with low Schmid factors at 
low temperatures (5, 6).   

Some of the observed effects can be related to symmetry properties of the bcc 
crystal structure (7). However, in order to explain all the unusual phenomena it is 
necessary to examine the intrinsic properties of dislocations as the carriers of plastic 
slip. It was first proposed by Sir Peter Hirsch that the peculiar plastic properties of bcc 
metals have their origin in a non-planar spreading of the screw dislocation cores. 
Such non-planar core structure implies large Peierls stresses and makes the screw 
dislocations difficult to move. This hypothesis was supported by many transmission 
electron microscopy observations (2, 8) that detected post-deformation dislocation 
microstructures dominated by long and mostly straight or jogged screw dislocations. 
Additional validation was then provided by atomistic simulations (9) that 
unequivocally confirmed the non-planar character of screw dislocation cores in bcc 
metals.  

The crucial role of screw dislocations and their cores in understanding the 
macroscopic plasticity of bcc metals has been a subject of several reviews in the past 
(7, 10–12). Apart from explaining the non-Schmid behavior, the core effects are also 
responsible for a pronounced temperature dependence of the flow stress, since 
dislocation motion at low temperatures proceeds via the thermally-activated 
nucleation and propagation of kink-pairs on otherwise straight screw dislocations (13, 
14). Such studies of individual dislocations, while important, represent only a first 
step in understanding and describing the macroscopic plasticity of bcc metals at finite 
temperatures. In order to link experimental results to the underlying nanoscale 
mechanisms, it is necessary to employ additional phenomenological models and 
theories that utilize only the essential properties of dislocations instead of covering all 
atomistic details. This enables to capture time and length scales relevant for the 
description of macroscopic materials behavior. 
 
In recent years, newly developed discrete dislocation dynamics (DDD) models (15) 
have provided a mesoscopic description of dislocation ensembles based on single 
dislocation mobilities. These models require as input mobility laws for different 
dislocation segments and dislocation characters as a function of stress and 
temperature. Provided these mobility laws are based on correct nanoscale 
dislocation behavior, DDD simulations can capture the interactions of multiple 
dislocations by their elastic fields and by dislocation reactions, and follow 
quantitatively the evolution of dislocation microstructure during plastic deformation. 
Furthermore, a systematic coarse-graining of discrete dislocations ensembles into 
continuum dislocation densities and dislocation fluxes then leads to the continuum 
mechanical formulation of plastic strain.  
 
Such multiscale modeling framework holds the promise of assessing not just the 
generic features of plastic deformation in bcc metals but to make material-specific 
modeling possible. In this case complex phenomena such as the temperature 
dependence of plasticity, hardening and the influences of crystal defects or alloying 
elements should in principle become accessible.  



There have been growing efforts to pursue the information transfer between the 
different levels of abstraction: from the atomistic investigation of dislocations into 
mobility laws for discrete dislocation dynamics, and from dislocation microstructure 
into continuum formulations of crystal plasticity describing the plastic deformation of 
bcc metals as a consequence of dislocation flow. The goal of this review is to provide 
an overview of these efforts, to highlight the achievements but also to identify existing 
limitations and areas that still need to be developed. For simplicity, we focus here on 
continuous unidirectional deformation at low and intermediate temperatures and at 
typical loading conditions and strain rates, thereby mostly excluding high temperature 
deformation, creep, fatigue, irradiation damage, fracture and shock loading. 

 

 
Core effects and atomistic properties of dislocations 

The properties of individual dislocations can be understood only when the atomic 
structure of their cores is properly taken into account. Detailed insights into the 
dislocation behavior at the atomic level can be obtained from atomistic simulations. 
Dislocation cores in bcc metals have been investigated from the onset of atomistic 
modeling, first using rudimentary classical interatomic potentials but gradually 
employing more complex and accurate descriptions of interatomic interactions (for 
recent reviews see (11, 12, 16)). Advancements in atomistic models, modeling 
methodologies, and computer performance during the last two decades have allowed 
a shift in the main focus from analyses of the generic behavior for the whole class of 
bcc materials to material-specific issues related to chemical differences, 
environmental effects (e.g., external stress, interactions with other defects), and 
quantitative descriptions of dislocation motion. 

The key prerequisite for a quantitative description of material-specific behavior is a 
reliable description of interatomic interactions. The chemical bonding in bcc transition 
metals is characterized by strong unsaturated directional covalent bonds originating 
from the interactions between valence d-electrons (17) and further complicated by 
magnetic effects in case of bcc Fe. At present, the most reliable class of methods 
able to capture the subtleties of chemical bonding are first principles methods based 
on density functional theory (DFT). Despite the fact that DFT calculations are still 
limited to system sizes not exceeding a few hundred atoms, they have been applied 
extensively in simulations of ½<111> screw dislocations in bcc transition metals 
helping to resolve several open questions regarding their behavior (18–28). The last 
decade has also seen an extensive development and application of advanced semi-
empirical schemes such as bond order potentials (BOPs) (29–32) and potentials 
based on first-principles generalized pseudopotential theory (GPT) (16, 33, 34). 
These schemes are derived by rigorous approximations to the electronic structure 
methods so they correctly reflect the physics of bonding but can be applied to 
significantly larger atomic ensembles than DFT calculations. In addition, they provide 
much larger flexibility in the choice of boundary conditions, which is often crucial for 
obtaining meaningful results in simulations of defects.  
 
Core structure and energy 

Most atomistic studies in the last years continued to focus on the properties of the 
½<111> screw dislocation whose non-planar core structure is responsible for the 
unconventional aspects of plastic deformation such as unusually strong orientation 
and temperature dependence of the yield and flow stress, strong strain rate 



sensitivity, anomalous dependence of the yield stress on temperature, and the break-
down of the Schmid law.  

While earlier studies based on empirical interatomic potentials showed a possible 
existence of two core variants (for review see (11)), all DFT studies performed so far 
(18–24, 28, 34–36) predicted consistently the so-called non-degenerate (also known 
as non-polarized) core structure (see Figure 1) as the equilibrium configuration of the 
½<111> screw dislocation. The non-degenerate core structure was also obtained in 
all simulations using semi-empirical electronic structure models such as tight-binding, 
BOP and GPT (16, 29–31, 33, 34, 37). As this result is independent of the 
computational methodology and boundary conditions used, the non-degenerate core 
structure is now broadly considered to be the generic equilibrium configuration of the 
½<111> screw dislocation in all pure bcc transition metals. 

 

 
Figure 1: Equilibrium core structure of the ½<111> screw dislocation in W calculated 
using BOP (30). Colored circles represent atoms at subsequent {111} planes; the 
<111> screw component of the relative displacement between the neighboring 
atoms produced by the dislocation is depicted by arrows whose length is 
proportional to the magnitude of these components. 
 

 

However, a presence of impurities or alloying elements may induce structural 
changes of the core. Indeed, several recent DFT calculations (23, 24, 35) have 
shown that alloying of W with Ta or Re leads to a transition from the non-degenerate 
to the degenerate core depending on the concentration of the alloying element. In 
addition, as will be discussed in more detail below, an application of external stresses 
can also significantly alter the dislocation core structure and consequently its 
properties. 

For detailed quantitative studies of dislocation properties, realistic boundary 
conditions represent a crucial ingredient to obtain meaningful results. As most DFT 
studies employ periodic boundary conditions, dislocations are typically simulated in 
the form of a periodic arrangement of dipoles or quadrupoles. Since dislocations 
exert long range elastic fields, it is necessary to make sure that the dislocation-
dislocation interactions in small DFT supercells do not give rise to spurious artifacts.  



It has been shown (38, 39) that the interaction between periodic images results in a 
conditional convergence of the long range elastic fields. These effects need to be 
taken properly into account when constructing the periodic dislocation configurations 
(40). In addition to the long range elastic fields, it is also necessary in small periodic 
supercells to correct for short range core fields to avoid errors in the computed 
dislocation core energies (41–43). In order to overcome the limit of small supercell 
sizes and periodic arrangements of dislocations, Green’s function flexible boundary 
conditions (19, 34) have been used to study isolated screw dislocations, which 
however require a non-trivial matching between the atomistic and elastic regions. All 
these complexities associated with simulations of dislocations using DFT methods do 
not have to be considered (or are at least much less severe) for the approximate 
electronic structure methods (e.g., TB, BOP, MGPT) that can simulate large atomic 
ensembles containing widely-spaced or individual dislocations. 

 

Peierls stress, barrier and potential 

The goal of atomistic studies is not only to examine the intrinsic properties of 
dislocations at equilibrium but especially how the dislocations respond to externally 
applied loads. In general, when a dislocation moves under applied stress its core 
undergoes changes that are the origin of an intrinsic lattice friction. This friction is 
periodic with the period of the crystal. The applied stress needed to overcome this 
friction at 0 K is called the Peierls stress and the corresponding periodic energy 
barrier is called the Peierls barrier. Atomistic studies employing classical interatomic 
potentials (for review see e.g. (11)) have revealed that the glide of the ½<111> screw 
dislocations in bcc metals is significantly affected by stress components other than 
those parallel to the slip direction. These so-called non-Schmid stresses do not exert 
any force on the dislocation, but can change both the Peierls stress and the glide 
plane by altering the dislocation core structure. Direct manifestations of these atomic-
scale phenomena are experimentally observed twinning–antitwinning and tension–
compression asymmetries (2). To describe these effects it is necessary to identify all 
components of the stress tensor that influence the motion of an individual screw 
dislocation, and subsequently to quantify their effects on the magnitude of the Peierls 
stress.  

The glide of the ½<111> screw dislocation is not confined to a single slip plane but 
can take place on different planes of the <111> zone. This peculiar glide behavior is 
again a consequence of the non-planar core structure and the geometry of the bcc 
lattice. A complete description of the screw dislocation behavior therefore requires 
knowledge of the whole two-dimensional potential energy surface – the Peierls 
potential – as a function of the dislocation position in the (111) plane. It is crucial for 
the explanation of the non-Schmid effects that this energy landscape is not 
stationary, but its magnitude and shape depends on the applied stress as a result of 
stress-induced transformations of the dislocation core.  

Obtaining the Peierls stress and barriers from DFT calculations is complicated 
because of the finite size effects and strong dislocation-dislocation interactions. 
Ventelon et al. (25, 26, 40) carried out several systematic studies of the Peierls 
barriers in various bcc transition metals. They investigated not only transitions 
between the equilibrium dislocation positions (so-called easy core configurations) but 
considered also other dislocation configurations located at high symmetry positions 
(so-called hard and split core configurations) that were expected to correspond to 
energy extrema (maxima or saddle points) of the Peierls potential. The main finding 



of these and related (22, 27) DFT studies is the existence of a smooth minimum 
energy path with a single energy maximum (the Peierls barrier) as the dislocation 
translates between the neighboring equilibrium positions on the {110} plane. 
However, the nature of the saddle point (transition state) configuration and the overall 
topology of the Peierls potential seem to depend on particular electronic and 
magnetic configuration of the transition metal (see Figure 2). 

 

 
 

 
(a) Fe 

 
 

(b) Nb                                          (c) Mo 

Figure 2: 2D Peierls potentials for (a) Fe, (b) Nb and (c) Mo calculated using DFT 
(from Ref. (26)). 
 

 

In order to estimate the Peierls stress from the maximum slope of the Peierls 
potential along the minimum energy path, it is necessary to accurately identify the 
corresponding dislocation trajectory in the (111) plane during the transition. Several 
methods have been proposed to trace the screw dislocation either by matching the 
atomic positions with the anisotropic elastic displacement field (25, 44) or by using a 
constrained nudged elastic band method (45). Unfortunately, due to numerical 
inaccuracies the error in the evaluated Peierls stresses from DFT calculations is 
relatively large (about 20%) and in some cases the minimum energy profile is even 
not sufficiently smooth to carry out the differentiation with respect to dislocation 
position (26). Another limitation of the DFT calculations is that the Peierls barriers 
correspond only to zero stress situations so that they cannot provide information 
about the stress dependences of the Peierls potential and their relation to the non-
Schmid effects (44). In addition, it has been reported (46, 47) that rather large 
variations (up to 40%) of the calculated barrier heights can be obtained when using 
DFT methodologies with different choices of pseudopotentials, exchange-correlation 
functionals, and basis sets. Hence it is still necessary to carefully test the 
convergence and the reliability of the results, especially for the saddle point 
configurations. 

The main advantage of the semi-empirical electronic-structure schemes (TB, BOP, 
MGPT) over the full quantum mechanical methods is their ability to simulate large 
computational blocks with flexible boundary conditions to study dislocation behavior 
under arbitrary external loads. During the last decade, a number of simulation studies 
using the BOP models (29, 30, 48–50) confirmed that structural changes of the screw 
dislocation core due to the local stress have a profound influence on both the 
dislocation mobility (the Peierls stress) and the activated slip system (48, 49, 51, 52). 
The simulations have shown that only four stress components of the full stress tensor 
affect the glide of the ½<111> screw dislocation. Two of these are shear stresses 
parallel to the slip direction resolved in two different planes of the <111> zone, while 



the other two are shear stresses perpendicular to the slip direction. The former two 
are necessary to explain the twinning-antitwinning asymmetry of the critical resolved 
shear stress (CRSS) observed in almost all bcc metals. The latter cause changes of 
the dislocation core structure that are responsible not only for variations of the CRSS 
but also of the slip plane on which the dislocation moves. It was proposed recently 
(53) that the hydrostatic components of the stress tensor may also need to be taken 
into account in order to explain fully the non-Schmid behavior of the screw 
dislocation. However, the apparent influence of the hydrostatic stresses appears to 
be a manifestation of the effects caused by the shear stresses perpendicular to the 
slip direction (54). 

Overall, the BOP studies showed that the detailed response of the core structure to 
the applied stress and thus the orientation dependencies of the yield stress as well 
as the slip geometry may vary significantly from one bcc metal to another. Since the 
BOP models are derived from quantum mechanical principles they are more likely to 
provide more reliable predictions than the empirical interatomic potentials, which 
have been used extensively in the past. Indeed, it was shown that the magnetic BOP 
for Fe correctly predicts not only the equilibrium dislocation properties, but also the 
Peierls barrier in excellent quantitative agreement with DFT calculations and 
experimental estimates. However, due to their semi-empirical nature BOP models do 
have limitations and their predictions need to be validated carefully against DFT 
calculations and experiments. 

An analytical yield criterion for the non-associated flow in Mo, W, and Fe has been 
constructed from BOP studies (48, 51, 52). It closely reproduces the atomistic data 
not only for the glide on the primary slip system but also for slip on other planes. 
Theoretical predictions of these yield criteria regarding operative slip systems for 
uniaxial loadings in bcc single crystals were shown to agree well with available 
experimental observations and provide guidance for dislocation dynamics simulation 
techniques described below. 

The motion of the ½<111> screw dislocations at finite temperatures occurs via 
formation and propagations of thermally activated pairs of kinks. These processes 
have been investigated directly by molecular dynamics simulations (55–57). 
However, due to the limited timescale of molecular dynamics studies the calculations 
had to be carried out at strain rates several orders of magnitude higher than those in 
typical deformation experiments. Results of such dynamical simulations are therefore 
valuable from a qualitative rather than quantitative point of view. Alternative ways 
have been pursued by describing the thermally activated dislocation motion using 
mesoscopic dislocation line tension models parameterized from results of static 
atomistic calculations (45, 58, 59). The key quantity in these models is a stress 
dependent activation enthalpy that governs the rate of dislocation motion. Since the 
activation enthalpy is obtained by integrating over the Peierls potential, the 
knowledge of the dependence of the Peierls potential (or barrier) on the applied 
stress tensor is essential for a correct description of the thermally activated 
dislocation motion. 

Apart from studies of screw dislocations, atomistic simulations have consistently 
shown that the mobility of edge and mixed dislocations are significantly higher than 
those of the screws (60–62). 

In addition to properties of individual dislocations, atomistic simulations can also 
provide valuable information about mutual interactions between dislocations (63, 64) 
as well as about interactions between dislocations and other lattice defects such as 



vacancies (65), interstitials and grain boundaries (66, 67). All these interactions can 
lead to the pinning of dislocations, thereby decreasing their mobility. On the other 
hand, however, they can also facilitate the formation of kinks on the screw 
dislocations, thus enhancing their mobility. 

 

Motion of individual dislocations 

The starting point for the simulation of dislocation ensembles by a discrete dislocation 
dynamics approach is a model for the equation of motion for individual dislocations. 
As pointed out in the introduction, the motion of screw dislocations in bcc metals is 
thermally activated and is affected by the local stress state. There is general 
agreement that the kink-pair model (13, 14) can describe the thermally activated 
screw dislocation mobility. The model requires an activation enthalpy, which can be 
obtained in various ways. In the pioneering work of Tang et al. (68) the glide of 
individual screw dislocations in Ta was parameterized based on macroscopic 
measurement of an effective activation enthalpy for a macroscopic stress state within 
a phenomenological Kocks model approach (68–70). The model has been refined to 
lead to a reasonable limit of zero velocity at zero stress (71) by including kink pair 
nucleation in forward and backward directions with respect to the applied stress in 
the glide plane of the dislocation. The DDD simulations (68) were shown to 
reproduce the overall experimental behavior and to recover the activation enthalpy 
implemented in the mobility law. This led the authors to conclude that individual 
screw dislocation properties are measureable experimentally. The role of dislocation 
interactions was found not to be important for the studied single slip orientation (68). 
However, the framework did not include non-Schmid effects and taking the global 
stress state for the parameterization implicitly disregarded local stress variations due 
to dislocation interactions. 

A first approach to include other stresses than the resolved shear stress on the glide 
plane and to incorporate atomistic information on twinning anti-twinning asymmetry 

on screw dislocation glide was proposed by Chaussidon et al. for 𝛼-iron (57, 72). As 
before, the activation enthalpy was fitted to experiments, but the cross-slip rules 
between the allowed {110} slip planes were adapted to distinguish between screw 
dislocation glide in twinning and anti-twinning directions as found by atomistic 
simulations. This allowed simulating the dislocation structures forming at different 
temperatures in Fe laths (72).  
 
An alternative approach has been brought forward by Gröger and Vitek (50, 52, 58, 
73) who based the constitutive law for the glide of screw dislocations directly on 
atomistic results. This approach has now been further extended (74) and is explained 
below since it offers the ability to directly base discrete dislocation dynamics 
simulations on fundamental atomistic dislocation properties. The formulation is based 
on the classical model of Dorn and Rajnak (14) of the elementary process of kink pair 
formation and propagation of the kinks along the screw dislocation.  
 
Experimental observations of dislocation microstructures in bcc metals at low 
temperatures show almost exclusively long screw dislocations (2, 75). At higher 
temperatures, this predominance of screw dislocations is reduced and a more fcc-like 
dislocation network is observed. This microstructural difference has a direct 
consequence on the internal stress distribution in dislocation networks in bcc metals. 
Above the athermal temperature, the local stresses on different segments of the 
dislocations control their motion. The dislocation microstructure may then safely be 



assumed to be close to equilibrium, meaning that the local curvature is equilibrating 
the shear stress acting locally. This “high temperature” case is not dealt with here. 
 
A completely different situation is obtained at low temperature. There it is assumed 
that all nucleated kinks move rapidly along the screw dislocation and that all 
nucleated kinks on one screw dislocation therefore contribute to dislocation motion. 
Remote effects, such as kink pair nucleation occurring somewhere along the 
dislocation, contribute to the local mobility and local velocity depends linearly on the 

length 𝐿 of the screw dislocation. The effective velocity 𝑣 of a screw dislocation is 
then given by 
 

𝑣 =
𝑏𝑎0𝐿

𝑙𝑐
2 𝜐𝐷𝑒

−
Δ𝐻(𝝈)

𝑘𝐵𝑇         (Eq 1) 

 

where 𝑏 is the length of Burgers vector, 𝑎0 the elementary kink height in the glide 

plane of the screw dislocation, 𝑙𝑐 the critical length for the nucleation of the kink pair, 
𝜈𝐷  the Debye frequency,  Δ𝐻(𝝈) the activation enthalpy, 𝝈 the stess tensor acting 

along the dislocation line, 𝑘𝐵 the Bolzmann  constant and 𝑇 the temperature. The 
kink pair model for dislocation motion is described in detail in Refs. (15, 76). The 
critical quantity in Eq 1 is the stress dependent activation enthalpy which can be 
determined directly from atomistic calculations as detailed in the previous section of 
this article.  
 
Since recent experiments (77, 78) and atomistic results show that the elementary 
planes of slip of screw dislocations are {110} planes only  (31, 49, 50, 52, 58), 
effective slip on other (irrational planes) is regarded as composed of elementary 
steps on {110} planes (74).  An important extension to the initial work of Gröger (50, 

52, 58) is to consider all {110} planes as possible glide planes for a given screw 
dislocation. Gröger (50, 52, 58) found that the stress dependency of the activation 

enthalpy can be parameterized by only three parameters: (i) the angle 𝜒 between the 
maximum resolved shear stress plane (MRSSP) and the primary glide plane, (ii) the 

shear stress 𝜏 in the MRSSP, and (iii) the ratio 𝜂 of the shear stress in a plane 

perpendicular to the MRSSP and the shear stress 𝜏. Taking this into account, the 
total velocity 𝒗𝒕𝒐𝒕 of a screw dislocation is given by the sum of the velocities 𝑣𝑔𝑝 on 

the three possible {110} glide planes (𝒈𝒑) and reads 
 
𝒗𝒕𝒐𝒕 = ∑ 𝑣𝑔𝑝𝑔𝑝 ∈ allowed {110} planes 𝒔𝒈𝒑                               (Eq 2) 

 
The direction 𝒔𝒈𝒑 is perpendicular to the screw dislocation line direction within the 

glide plane 𝑔𝑝 and pointing in the direction of kink nucleation (forward jumps). The 
velocities 𝑣𝑔𝑝 are then controlled by the three activation enthalpies Δ𝐻𝑔𝑝(𝜒, 𝜂, 𝜏) via 

Eq 1. The velocity 𝒗𝒕𝒐𝒕 gives the effective slip direction and is perpendicular to the 
screw dislocation line.  In DDD codes, the effective glide direction can be realized by 
glide on the two most active {110} planes using a probability scheme to switch 

between the {110} systems (57, 72, 74) . 
 
At low temperature, the local stress state along a dislocation line and non-local 
effects on dislocation mobility become increasingly important. A screw dislocation is 
influenced by the stress-state along its entire length because the kink-pair nucleation 
rate varies locally according to Eq 1. The local kink pair nucleation probability is 



integrated over the entire screw dislocation by splitting the dislocation line into 𝑁 

segments with length 𝑙𝑖, where 𝑙𝑖 is chosen short enough to capture local stress 
variations.  For glide on a specific glide plane 𝑔𝑝, the screw dislocation velocity 𝑣𝑔𝑝 is 

then given by 

𝑣𝑔𝑝 = ∑ 𝑣𝑛
𝑁
𝑛=1 =

 𝑏𝑎0

𝑙𝑐
2 𝜐𝐷 ∑ 𝑙𝑛𝑒

−
Δ𝐻𝑔𝑝(𝜒,𝜂,𝜏)

𝑘𝐵𝑇𝑁
𝑛=1                   (Eq 3) 

where the summation goes over the 𝑁 segments of the screw dislocation section. 
This implies that all generated kinks contribute to the forward motion of the screw 
dislocation. Cross-slip and the splitting of screw dislocations onto different glide 
planes due to locally differing stresses are described in detail in (74, 79). Effects of 
(interstitial) impurities or point defects on kink pair nucleation and dislocation mobility 
have not yet been addressed for discrete dislocation modelling.  
 
Within the proposed multiscale framework, it is now worthwhile to address some 
open questions in the understanding of the deformation behavior of bcc metals at low 
temperature. The first issue is the very high Peierls stresses predicted by atomistic 
studies exceeding the experimental values by a factor of 3-5. There are in principle 
two questions to be raised: (i) Is the Peierls stress of an individual screw dislocation 
experimentally measurable? (ii) Is the comparison done for the same loading 
conditions? The latter point is especially important due to the role of non-Schmid 
stresses on the screw dislocation glide.   
 
To address the first question, collective dislocation effects in a dislocation pile-up 
were considered (80) to explain the discrepancy between experiment and simulation. 
The stress on the first dislocation is of course effectively higher than the applied 
stress needed for its glide. The formation of the pile-up configuration however 
remained somewhat unclear, as all screw dislocations within the pile-up would also 
have to somehow overcome the Peierls stress.   
 
The second question concerns the role of loading conditions. Because of the stress 
dependence of the activation enthalpy the Peierls stress is also expected to depend 
on the loading conditions. This has been addressed in (15, 50, 74). As an example, 
for tungsten, one finds a reduction of the Peierls stress for uniaxial loading of about 
25% compared to pure shear loading. Nevertheless, there is still a significant 
discrepancy between the experimental and the atomistic values. This discrepancy 
may be further reduced by taking into account dislocation-dislocation interactions and 
the role of other materials defects on the activation enthalpy. 
 
Recent TEM observations of the glide of individual dislocations in pure Fe at room 
temperature confirm that screw dislocations glide smoothly with a velocity 
proportional to their length. Slip is confined to {110} planes only (77), and a transition 
to jerky motion is found for temperatures below T=250 K  (78). A hypothetical 
mechanism based on a metastable glissile core configuration of screw dislocations 
has been suggested (78) to explain this transition but this has not yet been found in 
atomistic simulations. Thus, the transition to jerky motion remains an interesting 
subject for further investigations.  
 
As early as in 1956 quantum effects were mentioned by Mott for low temperature 
creep (81) and by Seeger to explain internal friction data (13) at low temperature. 
Quantum mechanical effect would limit the localization of the screw dislocation within 
the Peierls valley and therefore lead to a lower Peierls stress. Recently, Proville et al. 



(82) have calculated within a quantum transition state theory the kink-pair formation 
enthalpy and found a decrease due the quantization of the crystal vibrational modes. 
The resulting Peierls stress is closer to the experimental values and strongly 
dependent on non-Schmid effects (83). Gilbert et al. (84) include both stress and 
temperature in the formulation of a Peierls free energy 𝐺𝑃(𝑇, 𝜎) and showed that the 
critical stress is lowered, e.g. about 60% at T=100K. Together with non-local effects 
due to dislocation interactions, the temperature and stress dependent Peierls free 
energy promises to capture a good part of the remaining discrepancy between 
atomistic single dislocation properties and experiments at intermediate temperatures. 
 
 
 
Dislocation interactions 
 
Dislocation interactions play a fundamental role in the hardening behavior of 
materials and the formation of patterns (85). Slip system interaction parameters for 
crystal plasticity models have been determined by dislocation dynamics simulations, 
e.g. for 𝛼-Fe in the athermal regime (86). The work has been extended to derive a 
crystal plasticity law for low and high temperature deformation, including particle 
strengthening mechanisms covering also the transition between both regimes (87).  
 
On a more microscopic level, the role of dislocation interactions can well be 
illustrated with the example of simulating small scale testing of a tungsten micro-
pillar. Within the DDD framework a small scale testing sample with a square cross 
section of side length 0.5 µm and a height of 1.5 µm can be completely described in 
terms of boundary conditions and loading geometry. The big unknown – as 
compared to experiments – is usually the initial dislocation microstructure. The 
simplest choice for dislocation microstructure is to start with a few initially straight 
dislocation segments mimicking Frank-Read sources. Uniaxial tension or 
compression simulations at 300 K with dislocation mobility as described above were 
performed under displacement control, to allow for stress relaxation within the sample 
(79, 88).  
 
The tension-compression asymmetry is clearly visible in Figure 3(a) for the initial 

yield point in the chosen [1̅49] loading direction. Initial yielding at very low stress is 
governed by the operation of the sources which form a structure consisting of pure 
screw dislocations, piercing through the sample surfaces. Usually no dislocation 
reactions occur within the dislocation structure. When significant plastic yielding 
begins, the initially straight screw dislocations start gliding and a stress drop is 
observed. This is accompanied by a steep increase in dislocation density as 
displayed in Figure 3(b). Dislocation motion in the dislocation network is then aided 
by short-range interactions which lead to local stress maxima and increased mobility 
of screw dislocations due to non-Schmid stresses. These local “hot spots” trigger the 
glide of the entire long screw dislocation, which may even move other hitherto 
immobile screw dislocations. The observed stress drop is about 1 GPa in tension and 
more than 3 GPa in compression, where non-Schmid effects are known to be more 
relevant. The stress strain curves of the DDD simulations shown in Figure 3(a) 
closely resemble experimental results for small W-pillars (88).  
 
 

(a) (b) 



  
Figure 3: (a) stress vs. strain curve for pillar deformation along [1̅49] direction in 
tension and compression; the lines (I) and (II) are a reference line for the critical 
stress from atomistic calculations on the glide plane with maximal Schmid factor. (b) 
corresponding dislocation density evolution (adapted from Ref. (79)). 

 
 
 
Anomalous slip and small scale testing 
 
The occurrence of plastic slip on planes with a much lower resolved shear stress 
than the primary slip systems is termed anomalous slip and is common in many high-
purity bcc materials at low temperature (2, 15). It was first observed in Nb (4) but is 

absent in 𝛼-Fe (89). Non-Schmid effects and surface effects are commonly assumed 
to be possible origins of anomalous slip. Surface effects are meant to trigger 
anomalous slip because kinks can nucleate at surfaces more easily due to image 
forces (90). Recent MD and DDD simulations (91) indicated that this mechanism 
could be important. However, the extremely high stresses which were needed for the 
very small specimens leave doubts about the generality of these findings. An 
alternative explanation could be co-planar double slip (92), by which a network of 
screw dislocations is assumed to be generated in the anomalous plane and where 
local interactions of the screw dislocations are proposed to greatly enhance their 
mobility (92). Atomistic studies have indeed shown a somewhat enhanced mobility of 
the screw dislocations due to the network crossing (63), but DDD simulations (79) 
indicate that this leads to enhanced mobility at very short distances for attractively 
interacting dislocations only.  
 



  
Figure 4: (a) Deformed pillar loaded under compression along [1̅ 5 10] colored 
according to the y-component of the total plastic displacement at a total plastic strain 
of 0.8%, in units of lattice constant. The plastic deformation is scaled by a factor of 15 

and added to the undeformed geometry. The slip traces of the primary (1̅ 0 1), 

conjugate (1 0 1), and anomalous (0 1̅ 1) systems are marked by pink, blue, and 

orange lines, respectively. The traces of the anomalous (0 1̅ 1) slip are best visible 
on the right side parallel to the orange lines while only faint traces are visible on the 
left side due to the orientation of the Burgers vector. Panel (b) shows the 
corresponding dislocation microstructure dominated by long straight screw 
dislocations. 

 
 
Advances in in-situ observation methods during microtesting, such as Laue 
microdiffraction (93, 94), now allow the study of slip activity, particularly anomalous 
slip, with an unprecedented richness of detail. Compression tests on W micropillars 
(88) show clear slip traces from the primary and secondary slip systems as well as 
those from anomalous slip. Anomalous slip occurred consecutively and alternately 
with slip on primary and secondary systems (88). This points to the key role of 
dislocation-dislocation interactions as the origin for anomalous slip in W. Using the 
above DDD simulation set-up for tungsten (74), cross-kinks could be identified as the 
origin of the anomalous slip (88). Cross-kinks are formed by interactions of 
dislocations on the primary glide planes and can generate highly mobile mixed 
dislocation segments which cross the entire specimen and produce clear slip traces 
on the surface (see Figure 4).  

This example demonstrates that the non-Schmid effects together with the non-local 
nature of screw dislocation mobility may lead to unexpected new mobile dislocation 
arrangements, which are relevant for explaining the deformation process in bcc 
metals. In order to pick up these phenomena by a continuum plasticity formulation, 
the latter has to explicitly account for the dislocation populations and the probability 
of occurrence of such events has to be studied systematically.  
 
More generally, deformation experiments on small scale samples with at least one 
dimension in the range of micrometers have revealed size effects in the flow stress 
(see (95, 96) for review articles). For bcc metals, the behavior is different in the low 



temperature and high temperature regimes. Below the athermal temperature, the size 
effect in bcc metals is weak (97, 98), while above the athermal temperature it is 
almost as pronounced as in fcc metals. This is independent of single slip or multi slip 
crystal orientation which led to the interpretation that interactions between slip 
systems are not controlling the size effect (97, 98). This is further supported by the 
observation that pre-straining was found to have little effect on the mechanical 
behavior (99). However, the relative orientation of the most active slip systems with 
respect to the sample surfaces is an important factor of influence. If the specimen 
geometry is chosen such that either long or short screw dislocations control the 
plastic flow, the latter geometry showed systematically lower flow stresses, which 
again indicates that interaction of screw dislocations with the specimen surface could 
be important. In summary, one can certainly conclude that modern small scale testing 
together with in situ observation techniques promise to reveal many important 
aspects about plastic deformation of bcc metals that may in the future be 
systematically analyzed with atomistically informed discrete dislocation dynamics 
simulations.   

 

Continuum Dislocation Theory 

Classical models of continuum plasticity in bcc metals are built upon considerations 
of only single screw dislocations and directly relate macroscopic properties of bcc 
metals to dislocation core effects. Basic models typically ignore the collective 
behavior and effects resulting from interactions between dislocations. Hardening has 
in the recent past been incorporated in extensions of such models by 
phenomenological hardening laws (87, 100–104). The original model for strain 
hardening which is used unanimously in these crystal plasticity descriptions dates 
back to the work of Kocks (70) and was originally developed for fcc crystals. Despite 
all refinements, these models remain completely phenomenological due to the 
underlying premise that local dislocation multiplication is governed by the plastic 
strain rate. Macroscopically this is a useful concept but on scales below the 
characteristic length scale of dislocation structures it actually contradicts the physics 
of plastic deformation. Within microstructural scales, high dislocation density regions 
develop in areas of low dislocation activity while regions of high plastic slip may 
become depleted of dislocations. This directly contradicts the paradigm implicitly 
contained in models of Kocks type. Evidently, modeling plasticity on these scales 
requires the consideration of dislocation fluxes and the kinematics of moving 
dislocations. This is evident for small scale materials behavior which may be tackled 
by DDD simulations, but also holds for continuum plasticity formulations which aim at 
including microstructural information. The latter requires a continuum theory of 
dislocation dynamics able to describe dislocation line length changes and changes of 
dislocation character.  

So far, most of the progress in developing continuum dislocation dynamics 
descriptions by derivation of averaged theories of dislocations has been made in the 
context of fcc materials. The progress has now reached a level where it becomes 
feasible to transfer these methods to bcc crystals. In this section, we will summarize 
the progress in averaging evolving dislocation systems and give a perspective on 
applying these methods to bcc materials. 

The derivation of continuum theories of dislocations using averaging methods from 
statistical mechanics was originally suggested by Kröner (105). However, a statistical 



continuum theory of dislocations has yet only been worked out 30 years later for 
simplified, quasi two-dimensional systems of straight parallel edge dislocations (106). 

This theory is based on densities of positive 𝜌+ and negative 𝜌− edge dislocations. 
When dislocation sources are neglected, the evolution equations for these densities 
are conservation laws, 𝜕𝑡𝜌± = −div(𝑣𝜌±𝒎±), where 𝑣 denotes the dislocation 

velocity and 𝒎± the normalized slip direction. The achievement here was the 

derivation of the average dislocation velocity such that it accounts for collective 
effects of dislocations. The average dislocation velocity was found to contain not only 
the resolved shear stress but two further stress contributions which account for short 
range interactions: a Taylor-type flow stress and a so-called back-stress which 
depends on the gradient of the geometrically necessary dislocations. The statistical 
mechanics theory was the only continuum model that was able to reproduce the 
strain and dislocation density distribution observed in the discrete dislocation 
simulations (107, 108). However, the advantage of the statistical mechanics based 
theory over phenomenological theories stemmed from the right reflection of 
dislocation kinematics rather than from a superior strain gradient formulation.  

Reflecting the kinematics of the system in density variables is trivial for the case of 
straight parallel edge dislocations where the conservation law takes the form of a 
divergence. The generalization of the divergence equation to a corresponding 
averaged conservation law for systems of curved dislocations turned out to be 
markedly more difficult (109). Although a conservation law for curved dislocation lines 
is in principle known (110), this curl-type equation is restricted to continuum theories 
with a high spatial resolution where all dislocations are geometrically necessary like 
in DDD simulations. Averaged descriptions for curved dislocation were proposed 
based on distinguishing positive and negative densities of edge and screw 
dislocations separately (111–113). Although considering dislocation fluxes, these 
approaches suffer from cumbersome rules for (or ignorance of) dislocation line length 
changes and line direction changes during the motion of dislocations. A 
straightforward generalization of the signed densities in the quasi two-dimensional 
theory is to introduce a higher dimensional dislocation density function that depends 
on dislocation line direction (114, 115). Nevertheless, higher dimensional descriptions 
only succeeded after the introduction of an additional density variable to ensure the 
connectivity of dislocation lines, which essentially is a measure for the density of 
curvature of the dislocation lines (116).  

Of course, such a higher dimensional theory (116) is of limited practical use (117), It 
is possible, however, to derive from the higher dimensional theory, a kinematically 
consistent continuum dislocation dynamics (CDD) theory (118, 119) for curved 

dislocations, which is (per slip system) just based on the total dislocation density 𝜌, a 

net dislocation vector 𝜿, and a scalar variable 𝑞 containing average information on 
the dislocation curvature. It does not therefore require more variables for the 
characterization of the dislocation structure in an averaging volume than the edge-
screw models mentioned above.  

The so-called curvature density 𝑞 is a conserved quantity containing information on 
the total number of dislocations. This simple CDD theory requires the assumption 
that the dislocation velocity is independent of the dislocation character and is hence 
not suited for bcc metals. Also, the density of screw dislocations strongly exceeds the 
density of edge or mixed dislocations in bcc metals and therefore a description based 
on a single total dislocation density variable seems not suitable for bcc metals at low 
temperature. In fact, the total dislocation density and the net dislocation vector are 
only the first two terms of an expansion of the higher dimensional dislocation density 



into a series of symmetric alignment tensors of increasing order (120). The total 
dislocation density is the scalar or zeroth order tensor and the net dislocation vector 
is the first order tensor. The next element is the recently introduced symmetric 

second order dislocation alignment tensor 𝝆(2) (120). The physical content of this 

tensor is that it assigns a total dislocation vector 𝝆(𝝃) to an oriented surface element 

with unit normal 𝝃 through 𝝆(𝝃) = 𝝃 ⋅ 𝝆(2). The tensor may be pictured as a sum of the 
unit tangent vectors of dislocations piercing an oriented surface element. In a 
coordinate system aligned with screw- and edge-directions (and slip plane normal), 

the in-plane diagonal components of 𝝆(2) correspond to the total density of screw and 
edge dislocations. The off-diagonal element 𝜌12 = 𝜌21 by contrast cannot be 
interpreted as a dislocation density and may take negative values. Evidently, the 
second order alignment tensor is closely related to the earlier mentioned edge-screw 
models, but the decisive difference is that the edge and screw directions do not play 

a special role and total densities of any mixed type of direction 𝒍 may be obtained as 
𝜌𝒍𝒍 = 𝜌𝑖𝑗𝑙𝑖𝑙𝑗. 

An evolution equation for the second order alignment tensor has been given in (120) 
but only for isotropic dislocation mobility. A version which may take into account 
anisotropic dislocation velocities has now been developed (121). Assuming that the 

velocity of a dislocation with a line direction inclined by an angle 𝛼 to the Burgers 
vector is given by 

𝑣(𝛼) = 𝑣s cos2 𝛼 + 𝑣e sin2 𝛼, (Eq 4) 

where 𝑣s denotes the velocity of a screw dislocation and 𝑣e the velocity of an edge 
dislocation, the directional dependence of the velocity assumes an elliptic directional 
dependence. This dependency may also be expressed by a second order tensor 

𝒗(2) = (
𝑣11 𝑣12

𝑣21 𝑣22
) = (

𝑣s 0
0 𝑣e

). (Eq 5) 

With this elliptic velocity distribution the evolution of the total dislocation density, the 
dislocation density vector and the second order dislocation density tensor take the 
form (121) 

 

𝜕𝑡𝜌 = 𝜕𝑖( 𝑣𝑘𝑙  𝜀𝑖𝑗 𝜌𝑘𝑙𝑗  ) +  𝑣𝑘𝑙𝜀𝑘𝑚𝑄𝑚𝑛 (Eq 6) 

𝜕𝑡𝜅𝑖 = −𝜀𝑖𝑗𝜕𝑗(𝑣𝑘𝑙𝜌𝑘𝑙)   (Eq 7) 

𝜕𝑡𝜌𝑖𝑗 = −𝜀𝑖𝑚𝜕𝑚( 𝑣𝑘𝑙  𝜌𝑘𝑙𝑗 ) + 𝑣𝑘𝑙𝑄𝑖𝑗𝑘𝑙 − 𝜌𝑘𝑙𝑚𝑖𝑛𝜀𝑗𝑛𝜕𝑚𝑣𝑘𝑙 −  𝑣𝑘𝑙(𝑄𝑘𝑗𝑙𝑖 + 𝑄𝑙𝑗𝑘𝑖),  (Eq 8) 

 

where 𝜀𝑖𝑗 = 𝑛𝑘𝜀𝑖𝑘𝑗 is the tensor which tilts vectors in the slip plane by 90°, i.e., the 

cross product with the slip plane normal 𝒏 (𝜀𝑖𝑘𝑗 denotes the totally antisymmetric 

Levi-Civita-symbol). In these evolution equations, the symmetric dislocation density 
tensors (𝜌𝑖𝑗𝑘, 𝜌𝑖𝑗𝑘𝑙𝑚) and curvature tensors (𝑄𝑖𝑗, 𝑄𝑖𝑗𝑘𝑙) appear to order five and four, 

respectively. In fact, these evolution equations are part of an infinite hierarchy of 
evolution equations of alignment tensors of increasing order. To be useful, this 
hierarchy has to be terminated at low order. The lowest order for which this 
termination seems meaningful in the bcc case is second order. All tensors of higher 
order need then be obtained from closure assumptions. The most simple closure 
assumptions take the expression known for single dislocations to define simple 
product expressions for higher order tensors in terms of lower order ones (121). More 



sophisticated closure assumptions may be obtained from a maximum entropy 
approach as suggested in (122).  

We note that Eq. 6 is redundant as it is derived by taking the trace of Eq. 8, and that 
Eq. 7 is in principle well known as it expresses the definition of the dislocation density 
tensor as the curl of the plastic distortion tensor.  What makes Eq. 8 unique and 
markedly different from classical screw-edge approaches is that it contains the right 
kinematics of evolving curved dislocations. In Eq. 8 the first term is a curl-type 
dislocation flux expression, the second term is a product of dislocation velocity and 
curvature, which describes line length increase and virtual rotations of dislocation 
segments, the third term (which is traceless) describes segment rotations due to 
spatial gradients of the dislocation velocity, and the fourth term (which is also 
traceless) accounts for segment reorientation due to the directionally dependent 
velocity, which tends to rotate curved dislocation segments. Notably, the second term 
𝑣𝑘𝑙𝑄𝑖𝑗𝑘𝑙 contains the production of screw dislocation density from the motion of edge 

dislocations and vice versa. This production obviously depends on the curvature of 
the dislocations since long straight screw segments would not produce edge 
dislocations while (expectedly) curved edge segments increase the screw density. 
The consideration of different curvatures for edge and screw segments requires at 
least a second order curvature tensor similar to the second order alignment tensor. 
Therefore, Eqs. 6-8 need to be complemented with suitable evolution equations for 
dislocation curvature variables.  

In this chapter, we discussed only the kinematic aspects of the anisotropic CDD 
theory, omitting the modeling of the dislocation velocity and its dependence on the 
surrounding dislocation state. As long as collective dislocation effects are of 
secondary importance, CDD may use essentially the same velocity laws as DDD. In 
general, however, the velocity tensor in the CDD formulation rather stands for an 
average velocity of dislocations of a given type. For the quasi 2D case of straight 
parallel edge dislocations, a velocity law was derived using pair correlation functions, 
which turned out to be short ranged. It may safely be assumed that similar stress 
contributions will also be of importance in three-dimensional systems. Because 
dislocations will generally be curved, an additional line-tension contribution has been 
suggested (118). However, there is little hope to be able to apply the same strategy 
as in the quasi two-dimensional theory, where pair correlations of dislocations have 
been obtained from a huge number of relaxed dislocation configurations. Pair 
correlation functions in bcc metals (Mo) have been obtained from three-dimensional 
discrete dislocation simulations by (123–125). But the analyzed pair correlations were 
obtained from high strain rate simulations and show dependency on initial dislocation 
structure and loading configuration and have consequently not been turned into a 
constitutive model for a kinetic theory of dislocations. 

 

 

Outlook  

Building up a physically based multiscale simulation model for bcc materials involves 
challenges at all involved scales. At the atomic scale, reliable approaches based on 
quantum mechanical principles have provided important quantitative information 
about the energetics of dislocations at 0 K, but the analysis in terms of activation 
enthalpies and free energies that are necessary for description of dislocation 
behavior at finite temperatures is still largely unexplored. In addition, studies of 



mutual interactions between dislocations as well as between dislocations and other 
lattice defects and impurities certainly deserve further attention. The recent atomistic 
calculations as well as in situ TEM experiments have consistently shown that the 
elementary glide of the ½<111> screw dislocations occur exclusively on the {110} 
planes and no evidence of core transformations at elevated temperatures, which was 
proposed to explain the transition from {110} to {112} glide in some bcc metals (126), 
has been found. Instead, both the lattice resistance and the net glide plane (127) 
seem to be controlled primarily by core transformation due to the applied stress, 
including its non-glide (non-Schmid) components. 

At the mesoscopic level, the discrete dislocation dynamics models rely on accurate 
mobility laws. Recent attempts to derive the mobility laws for screw dislocations 
based on atomistic approaches have proven to be successful. First studies of multi-
dislocation problems during deformation of pillars have already revealed interesting 
new phenomena and may help to explain hitherto seemingly contradicting 
experimental observations. Further DDD investigations of multi-dislocation behavior 
need to aim at direct quantitative comparison of the computed mechanical properties, 
e.g. flow stresses, with small-scale experiments. To reach this, it is necessary to 
parameterize the dislocation mobilities for various bcc metals and to consider effects 
of vacancies, self-interstitials, impurities and eventually grain boundaries in order to 
address the plasticity of polycrystalline materials. The emergent new phenomena in 
multi-dislocation simulations occur as a consequence of the local action of stresses 
between dislocations and their effect on the screw dislocation mobility. Direct 
dislocation-dislocation core interactions may introduce new and unexplored effects 
(128). These phenomena however should probably be investigated simultaneously 
also using large scale atomistic simulations and TEM studies.  

At the macroscopic level, continuum dislocation dynamics provides a new 
perspective for deriving mesoscopic crystal plasticity laws for bcc metals entirely 
based on dislocation density variables. However, CDD still bears many open 
questions and challenges. This is most obviously true for the to-be derived 
constitutive equations for the dislocation velocity. As discussed before, there is little 
hope that direct averaging of three-dimensional discrete dislocation results may be 
employed in the same way as it has been in the quasi two-dimensional theory. 
Possibly a more promising starting point for a generalization to three-dimensional 
systems may be the variational formulation recently presented in (129, 130) for the 
quasi two-dimensional case or the additional consideration of specific dislocation 
configurations like dipoles in the formulation of the averaging procedures (131). Even 
then, further corrections may be required to take additional microstructural elements 
into account which lead to pile-ups and strong local lattice curvature (132). A three-
dimensional generalization of dipole interactions is available from the multipole 
expansion of dislocation interactions suggested in (133, 134). In that theory a local 
distribution of dislocation lines is expanded into geometric multipole moments in finite 
averaging volumes. It seems promising to connect the local mutlipole expansion into 
alignment tensors with the geometrical multipole moments to obtain averaged 
descriptions of dislocation interactions. 
 
Aside from the question of constitutive modeling the kinematic evolution equations of 
CDD represent a new type of conservation laws for tensorial representations of line-
densities. These are strongly coupled systems of partial differential equations 
containing flux and source terms. Preliminary studies show that the consideration of a 



Taylor-type hardening term in the velocity seems to make the equations inherently 
unstable, leading to the emergence of inhomogeneous dislocation structures. This 
may be expected because this Taylor hardening triggers a feedback loop where high 
dislocation density regions lead to low dislocation velocities such that they will trap 
dislocations and further increase the density (135). While this may be a desirable 
feature for a physical theory of dislocation plasticity, where dislocation structures are 
observed ubiquitously, it is a challenge for numerical simulations.  
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