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Abstract 
 
Accuracy of online friction estimation depends on the ability of the sensors to capture 
information about the current interaction between road and tire. Sensors have differ-
ent characteristics and limitations, so depending on the situation their contribution 
varies. 
 
In this work we investigated the construction of a model that maps a driving situation 
(represented as sensor data time series) to the accuracy of friction estimation that 
can be expected for this particular situation. To train such a model from data, we 
used „Echo State Networks“, a method for constructing and training large Recurrent 
Neural Networks. 
 
 
Kurzfassung  
 
Die Genauigkeit, mit der die Bodenhaftung eines Fahrzeugs auf einer Fahrbahn 
während der Fahrt abgeschätzt werden kann, hängt von den Fähigkeiten der ver-
wendeten Sensorik ab. Sensoren haben unterschiedliche Charakteristiken und Be-
schränkungen, die je nach Fahrsituation ihre Aussagekraft und damit auch die Ge-
nauigkeit des Bodenhaftungsschätzung beeinflussen. 
 
In dieser Arbeit untersuchen wir die Möglichkeit, von der aktuellen Fahrsituation nicht 
nur die aktuelle Bodenhaftung zu schätzen, sondern auch die Genauigkeit dieser 
Schätzung. Um aus den Sensor-Daten die aktuelle Fahrsituation wird ein Verfahren 
zur Zeitreihen-Analyse verwendet, nämlich „Echo State Networks“, ein Verfahren zur 
Konstruktion und Training von großen Rekurrenten Neuronalen Netzwerken. 
 
 
 
1.  Introduction 
 
Knowing the actual friction between road and tire is essential for avoiding accidents, 
in particular, when road conditions change during driving. Low friction conditions 
should lead to a warning signaled to the driver, and safety measures, e.g., carried 
out by the Automated Emergency Braking System (AEB). 
 
In [5], we describe experiments with cars equipped with both on-board and additional 
advanced sensors.  We showed that the friction coefficients for the road, and individ-
ually for each wheel can be estimated from sensor data using „Echo State Networks“ 



 

 

(ESNs) [4] [6], a method for constructing and training large Recurrent Neural Net-
works (RNNs). This method was chosen because the dynamics of driving situations 
can only be identified by analyzing the time series of sensor data. RNNs, and in par-
ticular ESNs, are very powerful in performing such time series analysis. 
 
However, it turned out that the accuracy of friction estimation varies during driving. 
Estimation accuracy was bad, for instance, when the vehicle is not exposed to any 
acceleration in any direction. On the contrary, estimation worked very well during ac-
celeration and cornering, in particular, during sinus driving.  
 
In this paper, we describe how friction estimation can be enhanced by additionally 
estimating the accuracy. Accuracy of friction estimation depends on the current in-
teraction between road and tire, and the ability of the sensors to capture information 
about it. Sensors have different characteristics and limitations, so depending on the 
situation their contribution varies. 
 

 
 

Figure 1: The accuracy of estimating the friction potential of a wheel is varying  
during a drive of approximately one minute. 

 
 
Again, Echo State Networks are used to determine accuracy of friction estimation. 
We built an ESN model that estimates the accuracy of friction estimation varying 
over time during driving. 
 
We start with the discussion of some related work (in section 2). Then the measure-
ments and the sensor data used are described (section 3). The technical approach 
we used to estimate accuracy is detailed in section 4. Section 5 shows how 95% 
confidence intervals can be obtained to be utilized by an Automated Emergency 
Braking System (AEB). Applying our approach on tire friction estimation has lead to 
results which are presented in section 6. 
 
 
2.  Related Work 
 
There are numerous approaches on online failure estimation and prediction, see [9] 
for a comprehensive survey. The choice of a method is influenced by the task to be 
solved (e.g. should the failure (or accuracy) be quantified, or is it sufficient just to 
show the existence of a failure), and by the data available (e.g. is it possible to de-



 

 

termine failure/accuracy from the current state of the system, or is it necessary to 
analyze the time series of system states).  
 
Applying the taxonomy of [9] on friction estimation leads to time series analysis 
methods, like autoregressive Methods (like ARIMA) [2], Hidden Markov Models [1], 
and Recurrent Neural Networks (RNNs) [3]. Echo State Networks (ESNs) is an ap-
proach of constructing and training RNNs in a way that enables fast and stable train-
ing of large RNNs (having several thousand internal nodes). The learning power of 
large ESNs offers the capability to detect complex dynamical patterns in long multi-
variate time series. 
 
There are also methods which can be used to investigate how confident a trained 
model is in the accuracy of its own result. For instance, one could run a model with 
different levels of noise added to the same input data. If the model’s result remains 
stable for reasonable amounts of input noise, it can be inferred that the model is ra-
ther ‘confident’ in its result. Extending such investigations to processes in time leads 
to Monte Carlo simulation [7]. In the domain of regression methods, Gaussian Pro-
cess Regression [8] offers a methodology to compute the distribution of a result de-
pending on its correlation with the data used for training.  
 
Note that in most cases these methods are used with the assumption that the 
‘measurement noise’ is Gaussian with constant variance for all data points. As 
measurement noise is a synonym for measurement accuracy, or measurement error, 
it is obvious that this assumption does not hold for friction estimation, because of 
sensor characteristics in responding differently in different driving situations. 
 
 
3. Data Acquisition  

Sensor Data 

Measurements were conducted on Contidrom proving ground with an Audi A4 Avant 
1.8 TFSI including several driving maneuvers. Three different tire types with different 
inflation pressures were evaluated on dry and wet road surfaces. 
 
The wind velocities on the proving ground were  5.2 m/s during all measurements 
and the road surface temperature varied between 16.5 and 30 C. Quasi-steady-
state driving maneuvers of at least 15 minutes were conducted before starting the 
measurements to ensure that the tires were at operating temperature. The inflation 
pressures were set at operating temperature of the tires. Altogether, 98 driving ma-
neuvers have been performed. 
 
Both the standard on-board sensors of the vehicle as well as an advanced meas-
urement equipment to evaluate the vehicle dynamics have been used.  
 
The on-board vehicle sensors record the wheel speeds of all four wheels, the steer-
ing wheel angle, the vehicle’s longitudinal velocity in the COG (centre of gravity), the 
engine’s rotational speed, the engine torque, the accelerator pedal position, the vehi-
cle’s yaw rate, and the environment temperature. 
 



 

 

 
 
 
 
 
 
 
 
 

Figure 2: The test vehicle with additional advanced sensory equipment 
 
Advanced vehicle dynamics measurement equipment included optical speed sen-
sors, fibbers-optic gyro for rotational speeds, and braking pressure measurements.  
 

Determination of the true Friction Potentials (Reference Values) 

The true friction potentials, which should be the output of the learned friction model, 
are determined based on additional information about the tire, the road surface, and 
the car 
 
For each combination of road surface and mounted tire, a global friction potential  
has been identified based on driving manoeuvres near the limits of the maximum 
achievable accelerations. To ensure that the driving manoeuvres were at the limits, 
the slip angles at the maximum lateral acceleration  were compared to lateral tire 
characteristics measured on a test bench. Based on a simplified vehicle model, the 
following relationship between the friction potential  in lateral direction and  
is assumed: 

. (1) 

Longitudinal tire characteristics were not available, so the identified friction potential 
is only based on the measured accelerations achieved during braking. Usually, the 
longitudinal potential of tires is higher, but the comparison between the achieved 
longitudinal and the lateral accelerations showed similar results. So it was further on 
assumed that the friction potential was the same in longitudinal and lateral direction: 
 

. (2) 

In addition to the global friction potential , also wheel-individual friction potentials 
 are estimated, see equation (3). They indicate the maximum transmittable forces 

on each tire and can be used to enhance the AEB strategy.  
 

. (3) 

The value  is a function of the time variant dynamical vertical force  acting 
on each tire  and is determined based on the lateral tire characteristics measured on 
a tire test bench. The dynamical vertical forces  were calculated using a two-track 
vehicle model validated using measurements. 



 

 

4. Accuracy Estimation 
 
In addition to a model for friction estimation (whose construction we have described 
in [5]), we want to build a second model which estimates the accuracy, i.e. the mean 
absolute error, of the first model for a particular driving situation. 
 
A model for estimation the accuracy of friction estimation is obtained in a 2-step pro-
cedure. 
 
In the first step, we determine how accurate the friction can be estimated for the 
training data obtained from driving maneuvers on the training course (section 3).  
 

 
 
Figure 3: ESN models are trained that map sensor data time series to friction values  

 
Of course, accuracy of a model can only be determined on data not used for training 
the model. In order to utilize the limited available driving data in an optimal way, we 
applied Leave-one-out Cross Validation (LOOCV).  
 
During LOOCV, the following process is repeated for each driving maneuver: one 
driving maneuver is selecting for test; then a friction estimation model is trained using 
data of all other maneuvers. This model is used to estimate the friction on the ma-
neuver not used for training. The difference between the estimated friction and the 
true one (reference values, see section 3) constitutes the estimation error, i.e. the 
accuracy. By repeating this procedure, we get the accuracy (i.e. absolute error) for all 
data points of all maneuvers. 
 
In the second step, we train a model to estimate the accuracy of friction estimation. 
The input of the model is again the sensor data like in the first step. The output is not 
the friction (like in the first step) but the absolute error of the friction estimation de-
termined in the first step. 
 

 
 

Figure 4: ESN models are trained that map sensor data time series  
               to absolute error in friction estimation. 

 
Again we apply LOOCV in order to use as much as possible of the available data for 
training the models. This way we estimate the absolute error on the estimation for all 
maneuvers.  



 

 

 
The output of the model for a particular driving situation xt ant time t is the mean ab-
solute error of the friction estimation for xt. 
 
 
5. Estimation of Worst Case Accuracy for AEB 
 
An Automated Emergency Braking System (AEB) has to avoid two kinds of situa-
tions. First, it should avoid that the car collides with an obstacle or reduce the impact 
energy to reduce injury severity. Secondly, it has to avoid that automatic braking 
starts too early or when there is no emergency situation. Investigations show that 
alarms that are perceived as unhelpful lead to decreased trust in the system und 
would not be accepted by the drivers.  Both situations can occur either if friction is 
underestimated (=>warning and intervention earlier than necessary) or overestimat-
ed (=> collision). 
 

 
 

Figure 5: Automated braking situations when friction is underestimated (above)  
               and overestimated (below). 

 
Instead of getting friction estimation and its mean absolute error, the AEB needs 
worst case friction estimation. In case of a possible collision, the AEB could first trig-
ger some slight deceleration of the car while continuously analyzing further friction 
estimations. It can be assumed that deceleration situations lead to more accurate 
friction estimations. If the danger of collision still persists even after deceleration, the 
AEB has to trigger automatic braking.  
 
The accuracy estimation described in section 4 computes the mean absolute error 
without any standard deviation or probability distributions. This has to be modified to 
obtain a worst case estimation. 
 
For this reason, we shift and scale the error estimation to obtain a worst case estima-
tion wce such that in 95% of all cases it exceeds the real estimation error. I.e. we 
determine offset a and scaling factor b such that for 95% of all data points x, condi-
tion (4) holds. 
 

wce(x)  = a + b*estimatedError(x)  >  realError(x)     (4) 



 

 

 
Condition (4) can be satisfied for many combinations of a and b. In order to minimize 
false alarm rate, a and b can be chosen to minimize the sum of wce(x) on all data 
points x. 
 
 
6. Results 
 
We applied the procedure described in section 4 on the data of the experiments de-
scribed in section 3. In a 2-step procedure we obtained for each data point x 

a) the ‘real’ error, i.e. how accurate the friction at this data point can be estimat-
ed using an ESN model (step 1).  

b) an estimate of the mean absolute error at x obtained from a second ESN 
model (step 2).  

 
It showed that a model for estimating the absolute error can be learned. This is not a 
trivial result, as learning of an error model is harder than learning the friction model. 
We also tried to learn an error model using another approach (ESN in combination 
with Gaussian Process Regression) not described in this paper. This approach totally 
failed, i.e. the estimated errors showed very low correlation with the real errors. 
 
We then shifted and scaled the mean error estimation obtained from the ESN model 
according to section 5 to obtain a worst-case friction estimation which can be used 
by an AEB. Figure 6 gives an impression about how error varies over time (dotted 
line), and how worst case error estimation can provide an upper bound for the error 
to be valid in 95% of all data points. 
 

 
 

Figure 6: Friction error (dotted line) and worst case error estimation (solid line) 
 
 

 



 

 

 
7. Conclusions 

 
Previously we have shown that tire friction can be estimated from sensor data using 
Echo State Networks (ESNs) [5]. But it has turned out that the error of friction estima-
tion varies too much to be used directly for AEB. 
 
So we investigated the hypothesis whether the error in friction estimation can be es-
timated by ESN models as well. We developed a 2-step procedure to compute and 
validate ESN models for error estimation. In an additional step we transformed the 
model output to obtain a worst case error estimation of 95% confidence to be usable 
for an AEB. 
 
This paper shows a principle approach to solve the problem of error estimation. This 
approach can, of course, be further refined and improved. In particular, the require-
ments of AEBs have to be explored more in detail and more specialized error estima-
tion can be designed according to the particular behavior of the AEB to treat certain 
situations.  
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