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Abstract

In modern days automatic speech recognition (ASR) systems rise in
popularity especially in smartphones and smart home devices. If those
ASR systems were to reach the level of human hearing, they could
for example be used to remotely control intelligent devices or create
live subtitles on television. Those systems would, among other things,
vastly increase the living standards of deaf people and revolutionize
the human-computer interaction.
One of the biggest problems of ASR are background noises like car
sounds, conversations or wind. With the exclusion of these noises
state-of-the-art ASR systems are already nearing the proficiency of
human hearing. A common approach to handle these noises are speech
enhancement (SE) systems.
In this thesis we examined a speech denoising system based on Convo-
lutional Neural Networks (CNN). CNNs were already successfully used
for speech recognition, SE and image denoising in previous studies.
Based on these results using CNNs as a speech denoising system stands
to reason.
The goal of this thesis was to create a CNN based speech enhancer to
be used in the Fraunhofer speech recognition pipeline. The network
presented consisted solely of convolutional layers and mapped noisy
filter bank features onto clean filter bank features. As foundation the
speech recognizer from the Eesen toolkit of the Wall Street Journal
(WSJ) example was used.
In our experiments we found out, that the CNN denoising network can
decrease the word error rate (WER) of a speech recognition system up
to more than an absolute of 20% in an environment with a moderate
signal-to-noise ratio (SNR). At the same time the WER of speech
recorded on high SNRs only increased by one percent. Additionally it
was shown that the denoising system generalizes onto multiple noise
types and onto real world data.
The results of our studies showed, that denoising audio using a CNN
on the feature level is possible and can improve state-of-the-art speech
recognition systems significantly for noisy environments while at the
same time only slightly decreasing the performance for clean speech.



1 Introduction

1.1 Motivation

Automatic Speech Recognition (ASR) is one of the most sophisticated tasks in
artificial intelligence and computer science. The process of simulating human
hearing and transforming spoken sentences into written text is far from perfect
up till today. Yet those systems are already influencing our everyday life.
They are for example used by smart assistants in our smartphones, computers
or smart home devices. Other important tasks for ASR is the remote control
of navigation systems or intelligent cars and the creation of video subtitles
for online videos or live television. The last example is especially important
for deaf people.

Even though ASR systems are so important and omnipresent, they still
got many flaws. One of their major problems is noise. Audio recorded outside
a quiet room contains background noises like car sounds, conversations, ma-
chines working, wind and many more. Most ASR systems were not setup to
deal with those background noises. It is a big problem if a navigation system
fails to understand a location because of car noises, a broadcast stenocap-
tioning creates faulty results because of wind noise or a smartphone does not
understand the user because he is sitting in a crowded cafeteria.

Recently SE systems based on Deep Neural Networks (DNN) became the
state-of-the-art. For example Xu et al. [1] proposed a DNN based speech
enhancer in 2014 showing significant improvements in comparison to the
logarithmic minimum mean square error approach [2]. And Du et al. [3] won
the 4th CHiME speech separation and recognition challenge [4] using deep
Convolutional Neural Networks (CNN). There exist many more examples of
DNN for SE. Especially CNNs create decent results in the process of speech
recognition [5], image denoising [6, 7], robust speech recognition [8] and SE [9].

Our work built up on those previous studies and tried to further enhance
the results of state-of-the-art ASR systems. A CNN was used for noise reduc-
tion of speech on the feature level. The neural network consisted solely of
convolutional layers learning to map artificially noised audio features onto
clean features. Our experiments were to show that denoising using CNNs on
the feature level is possible and promising for future research.
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1.2 Content

In this thesis we start in Chapter 2, by explaining all theoretical background
knowledge needed to understand our field of research. We will introduce
the foundation of digital audio processing, ASR and SE in Section 2.1. And
Artificial neural networks, DNNs and CNNs will be theorized in Section 2.2.
Afterwards in Section 2.3 the important toolkits and datasets used in our
thesis will be introduced.

In Chapter 3 our experiments will be provided. This chapter starts in
Section 3.1 by giving an extensive overview on previous studies in the field of
state-of-the-art SE and DNN. Our experiments included the development of
a SE testing environment and the set up of all required datasets explained in
Section 3.2. That environment was build on the Eesen[10] speech recognition
toolkit and as datasets the WSJ corpora [11, 12] were used. As feature type
we used filter bank coefficients. The noisy audio files were created by mixing
a given clean audio file with another given noise file and as noise files we used
the CHiME-4 challenge [4] noises. Finally the mixing was done on different
Speech Noise Ratios (SNR). At this point all preparations for the experiments
were concluded.
In the following Section 3.3 the setup of our denoising system, optimization
and evaluation will be introduced. For the experiments we used a multi-layerd
CNN consisting only of convolutional layers plus activation functions. The
neural networks were implemented in Keras using Tensorflow [13] as back end.
The training was realised by calculating features for noisy and clean speech
and teaching the network to map the noisy features onto the clean ones. The
ASR system was the standard system of Eesen having only the denoising
network added. In the experiments we let our speech enhancer denoise noisy
features and used the Eesen ASR system for speech recognition. As metric
for the results we used the Word Error Rate (WER).
In Section 3.4 the hyperparameter optimization is provided. The optimization
was done by training different CNNs, using them as denoising system and
evaluating the denoised speech features using the speech recognizer. This
process was done for the same validation dataset on different SNRs and the
WER for each SNR level was determined. As the optimization winner we
used the CNN with the lowest average WER. In the process of finding the
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best network possible for our experimental setup we optimized the number
of hidden layers, the batch size, the number of convolutional kernels in the
hidden layers and the optimizer function.
In section 3.5 the experiments evaluation is provided. The evaluation was
done comparing four different ASR setups. The clean speech recognizer, the
CNN denoising system, a speech recognizer trained on noised speech, and
an ASR system trained on the denoised feature vectors were compared. The
WER was used as metric comparing the four systems on different SNRs.
In Section 3.6 we generalized the experiments. In the generalization process
the optimized denoising CNN was used on four types of noise instead of
one, too test if the denoising system generalizes onto different types of noise.
Afterwards experiments on real world data were conducted to test if the
denoising system generalizes onto real world noise.

Chapter 4 concludes the final results of our thesis. The chapter gives a
brief overview on the achievements of this thesis and provides some ideas for
future studies. The results of the experiments showed that the CNN denoising
system created decent improvements on the intelligibility of speech noised
on low and moderate SNRs. At the same time the system generalizes onto
multiple noise types and real world data.
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2 Theoretical Background

In this chapter the theoretical background knowledge needed to understand
the findings in our thesis is given. In Section 2.1 we will explain everything
concerning ASR. Section 2.2 is about artificial neural networks. And the
last Section 2.3 contains all information needed to understand our working
environment.

2.1 Speech Recognition

In this Section we are going to explain everything concerning ASR. First we
will introduce the conversion of an analog audio signal into a digital audio
signal in Subsection 2.1.1. Afterwards we will explain the method to calculate
filter bank feature vectors in Subsection 2.1.2. Next a brief introduction on
the process of speech recognition will be provided in Subsection 2.1.3 and
directly afterwards on robust speech recognition in Subsection 2.1.4. At the
end we will give an introduction to the speech noise ratio (SNR) in Subsection
2.1.5 and WER in Subsection 2.1.6.

2.1.1 Analog-to-Digital Converter

Sound as a real world signal is analogue. To be able to manipulate an audio
signal on a computer it must first be converted into a digital signal. The
conversion is done by an Analogue-to-Digital Converter (ADC).
An analogue audio signal is a smooth and continues sound signal. It is com-
posed of multiple overlapping sinusoid functions with different amplitudes
and frequencies. A digital audio signal is a sequence of discrete amplitudes
each given to a discrete time. The conversion of an analogue audio signal to
a digital one involves sampling and quantization.

Sampling reduces a continues time signal into a discrete time signal by
measuring the value of the continues function fs times per second. fs in hertz
(Hz) is the sample rate. Since sampling is a reduction, parts of the original
information will be lost in the process. As shown by the Nyquist-Shannon
sampling theorem [14], with a sampling rate of fs a signal up to a frequency of
1
2
fs can be sampled without information loss. Meaning the original continues

signal can be reconstructed. A sample rate of fs = 16000 Hz was used
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throughout this thesis as the sample rate of the given audio data.

Quantization in digital signal processing is a function, mapping an infinitely
large number of input values onto a finite set of values. In audio processing
the quantization is applied onto the frequency range of the audio signal. The
quantization is done by dividing the input value range into a finite number
of contiguous intervals. The discrete time signal gets mapped onto those
intervals. The precision of the mapping and the interval size depends on
the number of bits used to represent the input signal, called bit depth. The
trainings data used in our project has a bit depth of 16 bits per sample.

2.1.2 Feature Extraction

There are various different types of features used in state-of-the-art speech
recognition (for example Mel-frequency cepstral coefficients (MFCC), filter
bank coefficients, etc.). In this work we use filter bank coefficients [15] with
first and second order deltas.

Given an audio signal x(n) the filter bank coefficients are calculated in
three steps visualized in Figure 1. First of all the signal x(n) is split into
multiple time frames x0(n), x1(n), ..., xk−1(n). The distance between two
frames is called hopsize and the frame size is called window length. In our
setup the frames have a hopsize of 10 ms (160 samples) and a window length
of 25 ms (400 samples). Therefore the frames overlap with each other. To
prevent the leakage effect [16], each sample in a frame was multiplied with a
weight wi. The weights are calculated for each frame by a windowing function
w(n), 0 ≤ n ≤ 399. In this thesis the hamming windowing function given in
Equation 1 was used.

w(n) = 0.54− 0.46 · cos(2 · π · n
399

) (1)

Next the magnitude spectrum of each frame is calculated by using the fast
Fourier transformation (FFT) as fast implementation of the discrete Fourier
transformation (DFT). A DFT approximates the original signal by a linear
combination of sinusoidal functions in the form of complex exponentials. The
calculated functions are sine waves with given frequencies, amplitudes and
phases. For a given frequency k and a signal x(n) at time n with length N
the functions phase and amplitude |Xk(n)| are encode in a complex number
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Xk which is calculated by the DFT Equation 2. The DFT calculation by
Equation 2 has a runtime of O(N2). The FFT is a method used to calculate
the DFT in O(Nlog(N)).

Xk =
N−1∑
n=0

x(n) · e−2iπkn/N (2)

Finally a triangular logarithmic filter bank maps the magnitude spectrum
into filter bank coefficients ci(n). A filter bank is a set of bandpass filters
which splits the continues frequency range into a set of frequency bands and
calculates an amplitude value for each band. The number of frequency bands
is m. The amplitude for a band is calculated as a weighted average of the
samples inside the band. For a triangular filter bank the filter’s center samples
weight more than the corners.

Framing Magnitude Spectrum Filter bank

Signal
x(n)

Frames
xi(n)

Spectrum
|Xi(n)|

Features
ci(n)

Figure 1: Flow chart for the filter bank calculation

As mentioned before we used filter bank features with first and second
order deltas. This means we combine the original filter bank features ci =
(ci,0, ci,1, ..., ci,m−1) with its delta vector c′i = (c′i,0, c

′
i,1, ..., c

′
i,m−1) and the second

order delta vector c′′i = (c′′i,0, c
′′
i,1, ..., c

′′
i,m−1). This way the number of features

triples in comparison to standard filter bank features. The new feature vectors
got the form ci = (ci,0, ..., ci,m−1, c

′
i,0, ..., c

′
i,m−1, c

′′
i,0, ..., c

′′
i,m−1). The first and

second order deltas of each feature ci,j are calculated as a weighted linear
combination of ci−2,j, ..., ci+2,j. The deltas approximate the first and second
order derivatives of the signal.

In the experiments the deltas were only used in the ASR system and not
in the denoising system. This means the deltas were calculated after the
denoising was complete and before the speech recognition.
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2.1.3 Clean Speech Recognition

In the following we are going to explain the classic phoneme-based speech
recognition pipeline visualized in Figure 2. The standard ASR algorithm
consists of four main components.

1. Feature calculation

2. Acoustic model

3. Lexicon

4. Language model

The first component is the calculation of the feature vectors described
in Subsection 2.1.2. Additionally an acoustic model is used to transform
feature vectors into phoneme probabilities. Phonemes are sound units used
to distinguish words. A lexicon is used to map phonemes onto words and a
language model combines words into syntactic correct sentences. The acoustic
model, lexicon and language model combined calculate the likeliest written
sentence represented by the feature vectors.
In this work the Eesen [10] speech recognition toolkit was used as ASR system.
Eesen uses a recurrent neural network (RNN) based approach for the acoustic
model. The model is implemented as a long short-term memory (LSTM)
[17] and trained using a variation of connectionist temporal classifications
(CTC) [18]. In the case of Eesen the lexicon and the language model are both
implemented as weighted finite state transducers (WFST) [19]. Under the
usage of OpenFST [20] the two WFSTs were fused into a single search graph.
The graph receives phonemes as input and calculates sentences as output. In
this thesis we will refer to the trained acoustic model in combination with
the lexicon and language model as ASR decoder.

Feature extraction Acoustic model
LSTM

Lexicon/Language model
WFST

Signal
x(n)

Features
c(n)

Phonemes
p(n)

Text
t(n)

ASR Decoder

Figure 2: Flow chart for phoneme based speech recognition
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2.1.4 Robust Speech Recognition

One of the major challenges in speech recognition are background noises. The
field of ASR on noise influenced speech is called robust speech recognition.
There exist different approaches for robust speech recognition using DNNs.
One common approach is to train an automatic speech recognizer on noised
trainings data. This way the recognizer will learn from start to ignore all
kind of background sounds.
Another approach is to train a speech recognizer with a standard clean dataset
and add a denoising algorithm into the speech recognition pipeline. This
approach has some advantages important for us in comparison to the first
approach. One advantage is that the denoising system can be activated or de-
activated as needed. This is an important feature because speech recognizers
solely trained on clean data give better results for clean speech recognition in
comparison to systems developed for noisy ASR. This means a system build
for robust speech recognition usually provides slightly worse results on clean
data. If the denoising algorithm can be deactivated, a company worker or
even an algorithm can decide whether the denoising system is needed or not.
A second advantage of this approach is the existing ASR system must not be
retrained or modified and is independent of the noise filter. This leads to two
advantages, on the one hand experiments can be accomplished easier and on
the other hand filter for different noises can be trained and applied as needed.
Because of those reasons we decided to use the second approach of denoising
input data, before applying a preexisting speech recognition system.

The input data can be denoised in two common ways. The first approach
is to denoise the data stream on the signal level. This means the denoising
algorithm receives a noisy digital audio signal as input and has to map that
signal onto either a clean digital audio signal or onto clean feature vectors.
The second approach is to denoise on the feature level. This means the
algorithm receives noisy feature vectors as input and has to map those onto
clean feature vectors. We decided to use the second approach because it
was easier to implement and as a previous feasibility study [21] showed the
denoising approach on filter bank features is possible. Therefore the extracted
filter bank coefficients ci(n) get denoised to ĉi(n) using a CNN. And those
denoised filter bank coefficients are used as input for the ASR Decoder as
visualized in Figure 3.

8



Feature Extraction Denoising ASR Decoder

Signal
x(n)

Features
ci(n)

Denoised Features
ĉi(n)

Text
t(n)

Figure 3: Flow chart for robust speech recognition

2.1.5 Signal-to-Noise Ratio

The Signal-to-Noise Ratio (SNR) is a measure to compare the level of a signal
to the level of background noises. In the context of speech recognition the
SNR is the ratio of the power of the speech signal spow in comparison the
power of the noise signal bpow in decibel (dB).

SNR = 10 · log10(
spow
bpow

) (3)

The power of a digital signal x(n) with length N is the average square of
its samples and can be calculated by Equation 4.

P =
1

N

N−1∑
i=0

x(i)2 (4)

For the calculation of the SNR a clear distinction of the clean and the
noisy signal is needed. There exist two common way to achieve a distinction
between those two signals. The first approach is to divide the signal into
a clean and a noisy component. This approach is very difficult and if we
managed to properly divide a speech and a noise signal, there would be no
need for a denoising algorithm. The more realistic approach is to start with a
clean speech signal s(n) and a noise signal b(n). Those two signals get mixed
by Equation 5 and create an artificial noisy speech signal x(n).

x(n) = s(n) + b(n) (5)

The SNR is an important measure to estimate the degree of noisiness in a
signal. For example, a SNR of 30 dB means there is nearly no background
noise, a SNR of 0 dB means the speech and noise power are the same and a
SNR of -6 dB means that the background noise is stronger than the speech.
One important fact is, that decreasing the SNR by a step of 6 dB means the
noise volume is roughly doubled.
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2.1.6 Word Error Rate

The WER is a metric for the performance of a speech recognition system. It
is the percentage of wrongly recognized words and it is calculated using the
Levenstein distance. Let V = (v0, v1, ..., vn−1) and W = (w0, w1, ..., wm−1),
n,m ∈ N be two sentences with vi, wj being words for 0 ≤ i ≤ n − 1
,0 ≤ j ≤ m − 1. The Levenstein distance levV,W = levV,W (n,m) of the
sentences V and W is calculated recursively. The recursions base is given in
Equation 6 and the recursion step in Equation 7.

levV,W (0, j) = j and levV,W (i, 0) = i (6)

levV,W (i, j) = min


levV,W (i− 1, j)

levV,W (i, j − 1) + 1

levV,W (i− 1, j − 1) + Ivi 6=wj

(7)

Ivi 6=wj
is the indicator function being 0 if vi equals wj and 1 otherwise.

In simple terms the Levenstein distance tries to convert the original sen-
tence V into the predicted sentence W by adding, subtracting or replacing
words. The recursion finds the conversion path with the least operations. The
Levenstein distance is the minimum number of operations needed to convert
V to W .

To receive the WER the Levenstein distance is divided by the number of
words in the original sentence.

WER =
levV,W
n

(8)

Therefore a WER of 0 % means that V and W are identical and the
spoken sentence was recognised correctly. On the contrary a WER above
100 % suggests that more words were incorrectly recognized than actually
existed in the original sentence (⇒ m > n). This can happen on data with
strong noises. If for example the spoken sentence consists of 20 words and
the speech recognizer recognizes 24 words and none of the recognized words
is part of the original sentence, the WER is 120 %.
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2.2 Artificial Neural Networks

In this Section we are going to explain everything concerning artificial neural
networks. We will start off in Subsection 2.2.1 by introducing artificial neurons
as fundamental components of neural networks. Afterwards in Subsection
2.2.2 we explain the way to combine single neurons into a neural network.
Next the convolutional kernel as foundation for CNNs will be explained in
Subsection 2.2.3. And directly afterwards in Subsection 2.2.4 we explain the
functionality of CNNs. In 2.2.5 we explain the training of neural networks
using the backpropagation algorithm and at the end in Subsection 2.2.6
different optimizer functions will be presented.

2.2.1 Artificial Neuron

An artificial neuron is a mathematical construct used as a key component for
artificial neural networks. An artificial neuron consists of three parts. At the
beginning the neuron receives an input in form of a vector. Than the neuron
weights every value of the input, deciding which input part is important or
unimportant for the neuron. Afterwards one output value is calculated, given
the weighted input.

Mathematically this means n input values x0, x1, ..., xn−1 are given and
each input is multiplied by a weight w0, w1, ..., wn−1. The results of the
multiplications are summed and an activation function fa(x) is applied to
receive the neurons output. Therefore a neuron’s output is calculated by
Equation 9.

y = fa(
n−1∑
i=0

xi · wi) (9)

If the input x = (x0, x1, ..., xn−1) and the weights w = (w0, w1, ..., wn−1)
are given as vectors the mathematical rule can be shortened to vector multi-
plication.

y = fa(x
Tw) (10)

An example visualization for a single artificial neuron is given in Figure 4.

The activation function of a neuron is a real-valued function adjusting
the output of the networks sum. Activation functions are an essential part of
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x1

x2

xn

∑
fa y

w1

w2

wn

Figure 4: An artificial neuron including its activation function

DNNs. They are needed to add non-linearity into the network. Every DNN
without activation functions is a linear regression. This means the network
can only approximate linear functions. The problem hereby is that most
modern problems can not be represented by a linear function.
On the other hand if the network got at least one hidden layer and an non
linear activation function, the network is a universal function approximator[22].
This means the network can approximate any continues function, under the
assumption of containing enough neurons. There exist a lot of different
activation functions. One commonality of all functions is that their differential
can be calculate efficiently, which is needed for the network training described
in Subsection 2.2.5. In the following we will list the most common activation
functions implemented in Keras[23].

• Exponential linear unit (elu) fa(x) =

{
exp(x)− 1 , if x < 0

x , else

• Softplus fa(x) = log(1 + ex)

• Softsign fa(x) = x
|x|+1

• Recitified linear unit (relu) fa(x) = max(0, x)

12



• Tanh fa(x) = tanh(x)

• Sigmoid fa(x) = 1
1+e−x

• Hard sigmoid fa(x) = max(0,min(x · 0.2 + 0.5, 1))

• Linear function fa(x) = x

• Softmax fa(v) = ev

sum(ev)

The softmax function is special because every neuron output value x is
influenced by the other output values calculated on the same layer. The layer
outputs are represented as vector v. Therefore the softmax function of a
single value x ∈ v is given as fa(x, v) = ex

sum(ev)
.

2.2.2 Artificial Neural Network

An artificial neural network is a combination of multiple artificial neurons into
so called layers and connecting those into a network. Neural networks consist
of three important types of layers. At the beginning of a network there is
an input layer. As the name suggests this layer represents the input of the
neural network. If the network has a 40 dimensional input, this layer contains
40 neurons, each neuron representing one input value. The input neurons
each receive a single value as input and distribute the value into the first
hidden layer. Therefore this layer neither got a sum nor an activation function.

After the input layer comes the hidden layers. Those are the actual
thinking part of the network. Nowadays most neural networks are DNNs,
which means they contain multiple hidden layers. Each hidden layer receives
an input vector containing output values of the layer before. The size of the
input vector depends on the number of neurons in the previous layer and also
on the layer type. Some common types of neural layers will be explained later
on.

The last layer in the neural network is the so called output layer. This
layer is the same as a hidden layer with the peculiarity of its neuron count
determining the size of the networks output vector. Therefore each output
neuron receives multiple inputs from the previous layer, sums them up, adds
an activation function and outputs a single value into the output vector. The
input of the output layer also depends on the layer type.
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For now we will give a short introduction to the most important layer types
in state-of-the-art SE.

• Dense layer: Every neuron in a dense layer takes every output value
of the previous layer as input. This means every neuron in a layer, is
connected to every neuron in the subsequent layer. A network only
consisting of dense layers is called fully connected neural network.

• Convolutional layer: A convolutional layer only takes a regionally con-
nected part of the last layers output values as input. Also each convolu-
tional layer consists of so called kernels each receiving the same input
and being trained in parallel. For a detailed explanation see Subsection
2.2.4.

• Recurrent layer: Recurrent layers do not only receive the previous layers
output as input but also part of their own output. This way the layers
output also depends on previous outputs creating an artificial memory.

Figure 5 shows a fully connected neural network containing the input
layer x, two hidden layers a and b and the output layer y. The input is
n-dimensional and the output is m-dimensional. The first hidden layer a
consists of i many neurons and the second hidden layer b consists of j many
neurons.

2.2.3 Convolutional Kernel

In this section we are only going to explain two dimensional convolutions
using three dimensional convolutional kernels. But the same mechanics can
be easily adapted onto higher or lower dimensions.

A kernel is a three dimensional matrix commonly used as a filter in image
processing. It can be used for blurring, sharpening, edge detection and many
more. A kernel is used in a mathematical, two dimensional convolution onto
a three dimensional input x = (xi,j,k) ∈ R3, 1 ≤ i ≤ n, 1 ≤ j ≤ m, 1 ≤ k ≤ c.
In this thesis n ∈ N is the number of filter bank features representing one
input file, m ∈ N is the size of the filter bank vectors and c ∈ N is the number
of input channels. The number of features n is dependent on the input file.
The convolution is applied onto the first and second dimension of the input.
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Figure 5: A fully connected neural network containing two hidden layers

The size of the first dimension of the kernel is from now on called kernel width
Kw and the size of the second dimension is called kernel height Kh. If kernel
width and kernel height are equal, and therefore the kernel is quadratic, we
will call both of them kernel size Ks.

In Figure 6 a simple visualization of a convolutional kernel is given. The
whole cube visualises an input sample with each small cube representing a
single value. The red and blue area is the input to the kernel and at the
same time the input of a single neuron in the convolutional layer. This means
in the example a single neuron receives a 3 × 3 × 3 = 9 dimensional input.
The third dimension of the input is painted in blue, to visualize the the
convolution is independent of the third dimension. Meaning the kernel always
receives the full third dimension as input and in conclusion each neuron in
the convolutional layer receives an input of Kw ×Kh × c. From this point
onward for simplicity our explanation will only refer to the first and second
dimension of the kernel and explain everything following independent of the
third dimension.
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Figure 6: A cube representing the input and a single convolutional filter

One of the tricks of convolutional layers is that all neurons share the same
weights. This means every neuron calculates the same output value for a
given input and they could be regarded as only one filter used multiple times
on the same input.

So far we explained the input a single neuron receives. If every neuron
received exactly the same input, only a small part of the original features were
used in the convolutional layer. Therefore in the following we will explain
which part of the input is given to each neuron in the layer. Two important
mechanics, stride and padding, are used to include the whole input matrix
into the convolutional layer.

Stride is the mechanism of splitting the input into regions and use every
region as input for a different neuron. The stride is the number of pixels
each region is distanced to the neighbouring region on the input matrix.
Normally the stride is smaller than the kernel size, meaning the inputs for
different neurons overlap. Figure 7 shows a 3× 3 kernel applied to a 8× 5
dimensional input with a stride of two. The nine input fields coloured in red
are given as input into one neuron producing the red output value. Same
applies to the other colours. Because the stride is smaller than the kernel
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size some neuron inputs overlap. There is for example the value in the third
row and third column given as input to the red, blue, green and purple
neuron. The most commonly used stride is a stride of one. This way a fil-
ter with kernel size centred around every input value is applied onto the input.

Input Convolutional layer Output

Figure 7: The input and output of a convolutional layer with a kernel size of
3× 3, a stride of two and no padding

Applying a convolutional layer with a 3× 3 kernel like shown in Figure 7
will decrease the output size in comparison to the input size even with a
stride of one. The reason is that the filter in the top left corner is not centred
around the top left corner input x0,0, but rather around the input value x1,1.
If the kernel were to be applied to the top left corner input value x0,0, five of
the nine kernel inputs were out of the input bounds. Solutions for this border
problem are paddings. Some common padding methods are listed below. In
Figure 8 and example of a zero padding is provided.

• No padding: The kernel is only applied to input values, there is no
outside the border (see Figure 7). This way the original dimension is
reduced.

• Zero padding: The values outside the border are set to 0 (see Figure 8)

• Constant padding: The values outside the border are set to a constant
k. Zero padding is a special and very common case of constant padding.
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• Repeated padding: The values outside the border are set to the nearest
input value.

Mathematically the input is given as x = (xa,b,d) ∈ Rn×m×c , 1 ≤ a ≤ n,
1 ≤ b ≤ m, 1 ≤ d ≤ c. The input is distributed into overlapping areas
xa,b ∈ Rkw×kh×c, xa,b ⊂ x. The distance between the areas is the stride. The
convolution is a matrix multiplication of each input area xa,b with the kernel
weights w ∈ Rkw×kh×c creating an output ya,b ∈ R as given by Equation 11
and combining them into the two dimensional output y = (ya,b) ∈ Rn×m.

ya,b = fa(
∑

(xa,b · w)) (11)

In image processing the output of a kernel can be regarded as filtered image.
This way each kernel represents an image processing algorithm highlighting
a special characteristic of the input image. That is why the output of a
convolutional kernel is referred to as feature.

119 -64 5 53
27 22 -5 7
119 -64 5 7
22 99 25 -111

(a) No padding

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 119 -64 5 53 0 0
0 0 27 22 -5 7 0 0
0 0 119 -64 5 7 0 0
0 0 22 99 25 -111 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

(b) Zero padding

Figure 8: Example for zero padding
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2.2.4 Convolutional Neural Network

CNNs are a special form of DNNs. Most of the networks hidden layers are
convolutional layers. A convolutional layer consists of a set of convolutional
kernels used to interpret the input tensor. By using multiple kernels the
layer applies different convolutions on the input, each calculating its own
independent output. A convolutional layer could for example use five kernels
and thus receive a three dimensional input and create five independent
two dimensional outputs. Those outputs are merged together into a three
dimensional tensor. The follow up layer would than receive a three dimensional
input containing five channels.
The idea of CNNs can best be explained on the problem of image recognition.
In image recognition the input is three dimensional. It consists of two
dimensions for the image pixels and one dimension for the colour channels. In
image recognition each kernel would calculate a new two dimensional image
containing information on different features. For example one kernel could
highlight edges in the image and another sharpens the image. All calculated
feature images would be taken as input for the next layer.
So in each convolutional layer, multiple kernel features are calculated and
stacked. This stack is given to the next layer in the form of a new three
dimensional tensor. This way a two dimensional convolutional layer receives
a three dimensional input and creates a three dimensional output.
In this thesis the last convolutional layer will only contain one kernel and this
way calculate a two dimensional output containing a new feature matrix.

2.2.5 Backpropagation

In the following we are going to explain the idea of the backpropagation algo-
rithm. We will start by explaining the idea on a single neuron and afterwards
generalize it onto a network.

Let x = (x0, x1, ..., xn−1) be a given trainings sample input to a neuron
with the desired output y∗ = (y∗1, y

∗
2, ..., y

∗
m−1). Let the weights of one neuron

be w = (w0, ..., wn−1) and the activation function fa. Additionally in the
following we will refer to the sum of all input values as net =

∑n−1
i=0 (xi ·wi) and

the output of the activation function as out = fa(net). The backpropagation
algorithm consists of three steps.

1. Forward propagation
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2. Backward propagation

3. Update weights

The forward propagation is quite simple. The sample is given to the neural
network and an output y = (y0, y1, ..., ym−1) is calculated. In the following
we will refer to y as real output and to y∗ as desired output. To evaluate
the real output a loss function E : Rn → R is applied. In this thesis we used
the common mean squared error given in Equation 12 as the loss function to
calculate the loss L.

L = E(y, y∗) =
1

m

m−1∑
j=0

(yj − y∗j )2 (12)

At this point the forward propagation is complete. Therefore the forward
propagation calculates the output for a given sample and rates it using a loss
function.

The back propagation step is the process of calculating the gradient of
the loss L with respect to each weight wi. That gradient is given as δL

δwi
and

can be calculated using the chain rule. For a variable z depending on y and
at the same time y depending on x the chain rule is given in Equation 13.

δz

δx
=
δz

δy
· δy
δx

(13)

By applying the chain rule onto a single neuron one receives Equation 14.
The weights influence on the loss is the sum of the gradient of each neuron
evaluation state always in respect to the previous state.

δL

δwi
=

δL

δout
· δout
δnet

· δnet
δwi

(14)

We mentioned before that for efficient usage of the backpropagation algo-
rithm the differential of the activation function must be efficiently calculable.
The reason is that δout

δnet
= δfa(net)

δnet
and therefore the differential of fa is needed

for the back propagation step.
Equation 14 only applies for neurons with a single output target and

therefore L ∈ R is a single value. However in case that the neuron had
multiple output targets and their losses were given as L0, ..., Lm−1 ∈ R the
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equation can be generalized by summing up the influence of the weight wi
onto each of those losses. The generalization is given in Equation 15. Because
the influence from the weight wi onto out does not change for the different
losses the new equation can easily be optimized for faster calculation.

δL

δwi
=

m∑
j=1

(
δLj
δout

· δout
δnet

· δnet
δwi

) =
m∑
j=1

(
δLj
δout

) · δout
δnet

· δnet
δwi

(15)

Up to this point we explained how to calculate the influence of a single
weight of a neuron onto its output losses. This process can now be generalized
for a whole network using the chain rule in the same manner as before.
For the generalization we define a neuron in a hidden layer of our network
as neu0. The neuron got the weights w0,i and additionally net0 and out0
defined the same way as before. In the same way we also define all neurons
of the following layer receiving the output of neu0 as neuj , 1 ≤ j ≤ k. Those
neurons also got weights wj,i and the calculation steps netj and outj. For
simplicity let additionally wj,0 be the weight between neu0 and neuj.
In this setup the gradient of the loss in respect to one of the neurons weights
δL
δw0,i

can be calculated by the chain rule seen in Equation 16.

δL

δw0,i

=
δL

δout0
· δout0
δw0,i

(16)

In the formula, δout0
δw0,i

can be calculated as described before in Equation 14

and the interesting part is δL
δout0

. This one can again be calculated using the
chain rule in a way described by Equation 17.

δL

δout0
=

k∑
j=1

(
δL

δnetj
· δnetj
δout0

) (17)

For δL
δnetj

, if netj is part of the output layer, it can be calculated the same

way as described for a single neuron in Equation 15. If it is part of a hidden
layer we can assume by induction that the value was already calculated in an
earlier backpropagation step. So the only thing left to calculate is

δnetj
δout0

which
is equal to the weight between neu0 and neuj as described by Equation 18.

δnetj
δout0

= wj,0 (18)
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So far we learned how to calculate the gradient of the loss function with
respect to every single weight inside the neural network. The whole process
was accomplished using the chain rule backwards starting at the output loss
of the neural network.

The last step is to update each weight wi using gradient decent on its
gradient in respect to the final loss δL

δwi
. This way the updated weight w∗i is

given as w∗i = wi−γ δL
δwi

. In the formula, γ is the learning rate and determines
the learning speed of the network. A high learning rate means that the
network adjusts quickly to the trainings data but at the same time is less
precise. A small learning rate on the other hand needs more time to train
but gives more accurate results. Normally it is advantageous to have a high
learning rate at the beginning of the training and a small learning rate at the
end. That way the network trains efficiently fast and precise.

The backward propagation and its weight updates can either be performed
on every sample, every batch or some given value of samples smaller than
the batch size. Additionally the learning rate γ can be adapted whenever a
weight update is performed. Deciding how to setup the learning rate, adjust
the learning rate and the updating process is explained in Chapter 2.2.6.

2.2.6 Optimizer

An optimizer is a method used in the training process of a neural network.
The optimizer decides on how to update a weight wi with a given gradient
δL
δwi

. The updated weight is w∗i . A high learning rate can stop the network
from converging and a low learning rate can cause the network to end up
in a minor local minimum. Therefore optimizer have a great impact on the
neural networks performance. There are multiple variations of optimizers. In
the following we will take a look at the most important ones implemented
in Keras. We will only give a brief overview on each optimizer, for a better
understanding we suggest Sebastian Ruders summary of optimizers [24].

• Stochastic Gradient Descent (SGD) w∗i = wi − γ · δLδwi

SGD is the common gradient descend algorithm with γ as learning rate.
It can be improved using momentum and decay.
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• Momentum vj = (α · vj−1 + γ · δL
δwi

), w∗i = wi − vj
Momentum was introduced to reduce fluctuation while training. In
momentum the past update change vj−1 is remembered and used to
calculate the new update value vj. Thereby α is the influence of the
previous update onto the new one.

• Nesterov accelerated gradient (NAG) vj = (α ·vj−1+γ · δL
δwi−αvj−1

),

w∗i = wi − vj
NAG is similar to momentum with a small change. Instead of calculating
the gradient of the momentarily weight, the weight is changed according
to the momentum α · v and a future prediction is done. This way the
new weight w∗i is shifted in the momentum direction and afterwards
adjusted according to the gradient.

• Adaptive Gradient Algorithm (AdaGrad)
AdaGrad has a learning rate for each weight. The learning rate for
weight wi is modified based on all past gradients of wi.

• Adaptive Learning Rate Method (AdaDelta)
AdaDelta improves AdaGrad by only using a set part of the past weight
gradients to adapt the learning rate. This can be achieved efficiently by
adding the past squared gradients into one value with an exponentially
decaying average. This way only a fraction of the original gradient
remains after a given number of samples.

• RMSprop
RMSprop is another approach like AdaDelta. The two algorithms were
developed around the same time and are based on the same idea.

• Adaptive Moment Estimation (Adam)
Adam is the AdaGrad algorithm with the add of momentum. This
means the optimizer remembers a portion of the past squared gradients
and additionally remembers a decaying portion of the past not squared
gradients. Both values are used to influence the new weight.

• AdaMax
AdaMax is a small variation of Adam using the maximums norm instead
of the square of past gradients.
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• Nesterov-accelerated Adaptive Moment Estimation (Nadam)
Nadam is a combination of Adam and Nag using the Nag method of
shifting the weight by its past momentum and afterwards adjusting it
according to the gradient.

2.3 Environment

This section contains all information needed to understand our working
environment. In Subsection 2.3.1 we give a short overview on the deep
learning framework Keras. Afterwards the speech recognition toolkits Kaldi
and Eesen will be explained in the Subsections 2.3.2 and 2.3.3. And in the
last Subsection 2.3.4 we will introduce the Wall Street Journal (WSJ) corpus.

2.3.1 Keras

Keras is an open source, self-contained framework for deep learning written
in Python. It uses either Tensorflow [13], CNTK [25] or Theano [26] as
back end. The main goal of Keras is to provide a library for fast and easy
experimentation on DNNs. The API is self-contained and therefore the user
never has to interact with the underlying engine and does not need any
knowledge on the back end system. Keras is build up on four principle
guidelines.

1. User friendliness. ”Keras is an API designed for human beings, not
machines.”[27]. To achieve this goal Keras reduces the number of steps
needed for common use cases, provides good and easy understand-
able feedback upon errors and offers a standardized API with good
documentation and many examples.

2. Modularity. Initialization schemes, cost functions, optimizers, neural
layers, activation functions, regularization schemes are all autonomous.
They can be combined to form all sort of different deep learning layouts.

3. Easy extensibility. New modules, algorithms and state-of-the-art
research can be added without changing or adjusting most of the code.
This makes Keras exceptionally interesting for research.

4. Work with Python. Python is easy adjustable, quick for testing,
compact and the standard programming language for deep learning.
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Therefore Keras is fully implemented in Python and can be used without
the need of other languages.

2.3.2 Kaldi

Kaldi[28] is a popular, free, open-source toolkit for speech recognition re-
search introduced by Daniel Povey et al. in the year 2011. Kaldi contains
implementations for most standard techniques of speech recognition. The
toolkit creates state-of-the-art results for many different speech tasks and
especially for the WSJ dataset described in 2.3.4. The code is written in C++
and designed to be flexible, easy modifiable and extendible.

2.3.3 Eesen

Eesen is a common, free, open-source toolkit for speech recognition research
introduced by Yajie Miao, Mohammad Gowayyed and Florian Metze from
Carnegie Mellon University in 2015. Eesen is an extension of Kaldi, build-
ing up on the idea of creating a flexible research environment for speech
recognition. The biggest difference between those two toolkits is, that Eesen
replaces many elements of Kaldis ASR pipeline with a single Recurrent Neural
Network (RNN). It replaces the Hidden Markov models, Gaussian mixture
models, Decision trees and phonetic questions with a RNN directly mapping
speech to text. Therefore Eesen is easier to use and consists of a more com-
prehensive source code. But even though the toolkit is slimmer, its results
are state-of-the-art and comparable to Kaldi.

2.3.4 Wall Street Journal Corpus

The WSJ corpus [11, 12] is a data corpus used for continues speech recog-
nition created by John Garofolo et al. in the years 1991 to 1994. The plan
was to create a corpus for research on Large-Vocabulary Continues Speech
Recognition (LVCSR) systems. The corpus consists of two parts WSJ0 and
WSJ1, both can be obtained from the Linguistic Data Consortium (LDC)
[29] under the catalog numbers LDC93S6B and LDC94S13B. The two sets
consist mainly of read speech drawn from wall street journal news texts. The
corpus contains 81 hours of transcribed English speech given as 1-channel
by Pulse-code Modulation (PCM) compressed audio with a sample rate of
16000 hz. The speech was recorded in a sound safe environment.
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3 Feature Denoising using CNNs

In this chapter we are going to present our experiments conducted on robust
speech recognition using CNNs. We start of in Section 3.1 by giving an
overview on previous research conducted on SE systems and neural networks,
providing a motivation for our thesis. Afterwards we will describe the steps
needed to prepare our dataset and working environment in Section 3.2. In
Section 3.3 the experimental setup will be described. The optimization results
will be provided in Section 3.4 and the evaluation is given in Section 3.5. At
the end we will show that our system generalizes on different noises, speaker
and even real world data in Section 3.6.
To create an easy adjustable working environment for noisy speech recognition
using neural networks, our project is build modular. Each module represents
a code asset independent of the rest of the code. This way the project can
easily be adjusted for further experiments. For example the denoising could
be done using waveforms instead of features or using a different feature type
or a different dataset. Additionally the type of noise, the method to mix
clean audio with noise, the noise levels, the denoising network or the speech
recognizer are adjustable.

3.1 Literature Review

In this Section we give a brief overview on the current state of research. The
Section was split into two parts. First we will introduce some important
methods used for SE without neural networks. Afterwards we show the im-
provements done by neural networks in the fields of speech recognition and SE.

One classic approach for SE is the Wiener Filter [30] being used and
studied up to date. The filter has recently been analysed by J. Benesty et al.
[31], who found out that for a single-channel Wiener filter, the noise reduction
is most of the time proportionate to the speech distortion.
Another classic SE algorithm is the spectral subtraction method [32]. The
algorithm is used for example by Anuradha R. Fukane et al. [33], who used
variations of the spectral subtraction method to reduce the musical noise
distortion in hearing aids. Their experiments showed that their algorithms
could be used to improve speech quality without affecting the intelligibility
of the speech signal. Other modern examples for the spectral subtraction
methods are the variations of S. S. Bharti et al. [34] and R. M. Udrea et al.
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[35].
Other state-of-the-art methods for SE are signal subspace approaches [36].
Adam Borowicz [37] recently used a signal subspace approach for spatio-
temporal prediction for multichannel SE. In their publication they used the
signal subspace approach to further increase the results of temporal spatial
prediction. The evaluation showed that the signal subspace approach outper-
formed the conventional time-domain [38] method by providing lower speech
distortions but at the same time higher noise attenuation.

All these classic approaches give decent results up to date and are still
used in a lot of different applications. Nevertheless as well as in many other
fields of research, experiments including neural networks were performed. And
often DNNs were either able to keep up with the conventional methods or
outperform those classic algorithms. In the following we give a brief overview
on neural network based SE methods.
Y. Xu et al. [1] tested a DNN with up to four layers for SE. The goal of their
experiments was to enhance the noised audio quality. Their setup improved
the speech quality on an SNR range of -5 to 20 dB and outperformed the
classic log minimum mean squared error approach [2] and shallow neural
networks.
F. Weninger et al. [39] used a long short-term memory (LSTM) Recurrent
Neural Network (RNN) for SE tasks. Their experiments were conducted on
the CHiME-2 [4] speech recognition task achieving a 13.76% average WER
for SNRs of -6 to 9 dB. These may be the best results for the CHiME-2 task
up to date.
J. Chen et al. [40] proposed a DNN with more than 20 million tunable
parameters trained with 10.000 noises. Their system was developed for pa-
tients needing a hearing aid or having a cochlear implant to improve speech
intelligibility in noisy environments. The results showed an absolute increase
on the number of correctly recognized words of 27 % for hearing-impaired
listeners at a SNR of 0 dB with babble noise.

Continuing with the study of neural networks for SE we decided to use
CNNs as SE system. This is reasonable because CNNs had outstanding
performances in other areas of research connected to SE.
Ossama Abdel-Hamid et al. [41] used CNNs for phoneme recognition on the
TIMIT [42] dataset. In their studies CNNs create significant improvements on
the Phoneme Error Rate (PER) in comparison to DNNs. In their experiments
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CNNs reduced the PER by 6 to 10 % on the TIMIT phoneme recognition
and the voice search large vocabulary speech recognition tasks.
Ying Zhang et al.[5] from university of montreal also used CNNs for phoneme
recognition and showed that CNNs can achieve state-of-the-art performance
comparable to LSTMs and other RNNs. Theire setup used nearly the same
number of parameters for the CNN and RNNs, but the CNNs could be trained
faster achieving a 2.5 times faster training speed. At the same time the CNNs
received comparable results as the RNNs.
Dimitri Palaz et al. [43] used CNNs for speech recognition directly on raw
speech as input. They showed that CNNs create significant improvements on
the Aurora [44] test set on different SNRs in comparison to standard Hidden
Markov models (HMM) in combination with artificial neural networks. They
also showed that the features learned by the CNN could generalize across
different databases.

While our experiments were ongoing, others released studies on CNNs for
SE. In the following we will give a brief overview of their promising results.
S. R. Park et al. [9] used a fully connected CNN for SE. They proposed a
convolutional encoder decoder network and tested their results on the TIMIT
dataset with 27 different types of noise clips. Their experiments showed
that CNN can achieve similar or better results in comparison to Feedforward
Neural Networks (FNN) and RNNs while at the same time containing less
parameters.
S. Fu et al. [45] proposed a fully convolutional neural network based speech
enhancer on raw waveforms. Their experiments suggested that the CNN,
beside having a drastically parameter reduction to only 0.2% in comparison
to DNN, created better results.

Up to this point there exist many more studies of neural networks and
CNNs for SE. So many that we can not list them all, but for a good overview
on neural network based SE we suggest the paper of Z. Zhang et al. [46].
They give a very brief overview on the current developments of robust speech
recognition.

3.2 Data Preparation

In this section we are going to explain everything needed for the data prepa-
ration and setting up of our working environment.
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The first thing we needed to do was selecting a dataset for our experiments.
We decided to use the WSJ corpus [11, 12] containing clean speech. The
WSJ corpus is a standard set for ASR and also it is one of the sets with
preexisting scripts in Eesen. For further information about the WSJ dataset
see Chapter 2.3.4.

For the experiments we needed clean and noisy training, validation and
testing data. The WSJ train tr95 and train cv05 subsets were used for
training, the test dev93 subset for validation and the test eval92 subset for
testing. The training data was later used to train the denoising system and
also the clean speech recognizer. The validation set was used for the hyper
parameter optimization and the test set was used for the evaluation of our
final network.
As noise files we used the babble background noise of the 4th CHiME Speech
Separation and Recognition Challenge [4] recorded in a pedestrian area. The
noise mainly contains background noises of talking people.
The data preparation was done in three main steps:

1. Convert the audio files into riff wave format

2. Combine speech signals and noise signals at different SNRs

3. Calculate the filter bank features and create Eesen information folders

The WSJ dataset was originally stored in the NIST Sphere [47] file format
which is not supported by most modern programs and toolkits. Thus for
further processing of the speech files we needed to convert them into a modern
standard format. Therefore we used the Sphere conversion tools [48] provided
by LDC, to convert the files into riff wave files.
For further processing the noise and speech files needed to be in the exact
same format. To achieve this we converted the given noise files into the format
used by the speech files using the sox [49] command-line interface. The WSJ
audio files consist of one audio channel each and use a sample rate of 16 kHz
with a precision of 16 bit and therefore a bit rate of 256 kbit per second. The
noise files were converted to the riff wave format with the same number of
channels, sample rate and bit rate as the WSJ audio files.

The next step was the creation of noisy speech audio. The speech files
were artificially noised by mixing each speech signal with one noise signal.
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In the following we take a look at the noising of a single speech file given as
digital audio signal s = (s1, s2, ..., sn). For the mixing one of the noise files
was randomly chosen and given as digital audio signal b∗ = (b∗1, b

∗
2, ..., b

∗
m).

One requirement was that the given speech file was shorter than the noise file
n < m. Therefore the first step was to cut the noise signal into the same length
as the speech signal. For the trimming a random function rand(j, k) was used,
returning a random integer between j ∈ Z and k ∈ Z, both included. The
starting point of the trimming was given as b∗start = rand(1,m− n) and the
end point was b∗end = b∗start + n. Next the noise was cut to b = (b1, b2, ..., bn) =
(b∗start, b

∗
start+1, ..., b

∗
end) using sox. Up to this point a clean speech signal and a

noise signal in the same format with the same length were given.
Next in line was to mix these two signals with different SNR levels. The
SNR level was given as SNR in dB. For the mixing with a concrete SNR we
needed the power of both audio signals. The power of both audio signals was
calculated by Equation 4 and is defined as spow for the speech signal and bpow
for the noise signal.
Finally for the mixing we needed to calculate a relation α of the strength
used for the speech signal and the strength of the noise signal. The relation
was dependent on the two signals powers and calculated to assure that by
adding the noise with the ratio α onto the speech signal, the output signal
had the desired SNR. The ratio can be calculated by Equation 19.

α =

√
spow

bpow · 10SNR
(19)

Using the ratio we could at last create the noised speech signal
x = (x1, x2, ..., xn) by adding the speech and noise signal as done in Equation 20.

xi = si + bi · α (20)

The data was noised to SNRs of 30 dB, 24 dB, 18 dB, 12 dB, 6 dB, 0 dB
and -6 dB. Steps of 6 dB were used because by increasing an audio signal
by 6 dB it is approximately twice as strong as before. Thus the noise of a
SNR of 18 dB is supposed to sound twice as loud as the noise of a 24 dB
SNR. Additionally to the noisy datasets a clean set containing the original
speech files without noise and a SNR mix set containing evenly distributed
files from the different noisy sets (including the clean set) were created. Not
all training, validation and testing sets were needed with all SNRs. The list
of created datasets is given in Table 1.
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Dataset
SNR [dB]

Clean mixed 30 24 18 12 6 0 -6

train tr95 4 4 7 7 7 7 7 7 7

train cv05 4 4 7 7 7 7 7 7 7

test dev93 4 4 4 4 4 4 4 4 4

test eval92 4 4 4 4 4 4 4 4 4

Table 1: The datasets artificially created and used in the experiments

The final preparation step was to create an information folder for each
of our datasets. The Eesen toolkit uses a special data structure to represent
datasets. Each dataset is represented by a single folder containing seven
files. The files are spk2gender, spk2utt, utt2spk, text, wav.scp, feats.scp and
cmvn.scp. An utterance id is a unique id used to identify each speech sample.
The spk2utt and utt2spk files are mappings of a speaker to all utterance ids
spoken by that person. The spk2gender file maps a speaker to his gender.
The text file maps each utterance id to the spoken sentence in text form.
The wav.scp, feats.scp and cmvn.scp files contain paths to the audio file,
feature matrix and Cepstral Mean and Variance Normalization (CMVN) [50]
coefficients of each utterance. The information folder for the clean datasets
were prior created by the Eesen preparation.
All Eesen information folders for the noisy datasets were created by the
method explained in the following. For the explanation the clean information
folder will be referred to as original folder and the new noisy information
folder will be referred to as noisy folder. The text, spk2gender, spk2utt and
utt2spk files were copied from the original information folder into the noisy one.
The filter bank features and CMVNs were calculated using the preexisting
make fbank.sh and compute cmvn stats.sh Eesen scripts. By using the scripts
the feats.scp and cmvn.scp files were created as well. The last file was created
by writing the utterance ids jointly with their respective noisy speech files
into the wav.scp.
Additionally to the information folders we needed the filter bank features
in the form of Python matrices for the training, testing and evaluation of
our denoising network. Unfortunately the filter bank features were given
in a compressed, binary format. Therefore using the copy-feats command
we converted the features into a human readable format. We than applied
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a self written script and converted the human readable filter bank features
into a NumPy [51] matrix. For each audio sample a single file containing a
N × 40 dimensional feature matrix was created and later used for the network
training, validation and testing.

3.3 Experimental setup

In the following we are going to explain the setup of our conducted experiments.
Those experiments were based on the Eesen toolkit[10] using the standard
setup of Eesen. The only modification was the added CNN denoising part.
Therefore our experimental pipeline consisted of three main steps.

1. Train the denoising and speech recognition systems

2. Denoise the noisy datasets

3. Use the speech recogniser on the denoised data

The layout of our networks and the setup of the training environment will
be introduced in Subsection 3.3.1. In Subsection 3.3.2 we introduce the setup
of our optimization and evaluation process and in Subsection 3.3.3 we explain
how the batches were artificially created.

Our denoising system is a fully convolutional neural network, meaning
we got a CNN only consisting of convolutional layers. The network was
implemented in Keras [23] using Tensorflow [13] as a back end. The input
features were N × 40-dimensional filter bank features, where N is variable to
fit the size of each input file and corresponds to the number of frames. The
features were calculated using Eesen’s filter bank calculation. The output
features were also N × 40-dimensional filter bank features with reduced noise.
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3.3.1 Training

In our setup there were two networks which need to be trained. The first
network was our denoising system and the second one was the Eesen speech
recognizer.
For the training, the denoising CNN learned to map the mixed train tr95
set to the clean train tr95 set in form of filter bank features. This way the
network learned to map noisy features with all different SNRs onto clean
features. A batched training with each batch represented by one speech file
was used. A batch is a set of input samples used to train the network at once.
In the backpropagation algorithm the gradient of one batch is calculated
before the weights are updated. After each sample was used once for the
network training an epoch ends. As regularization a simple variation of
early stopping was implemented. After each epoch the trained network was
validated on the mixed test dev93 dataset and the MSE of the calculated and
the real clean test dev93 set was used as metric. The training stopped if the
MSE on the test set did not improve for three epochs. Since the training was
done by Keras, the Keras internal back-propagation algorithm was used.

The training and denoising algorithms were enclosed in self-contained
scripts. The training script only received the hyper parameters and layer
information of the CNN as input and the denoising script received input
data and the trained network as input. The hyper parameters and layer
information were given to the training script in form of a self made format
explained in the following.

[<Loss> <Optimizer> <#Batches> <#Layers> <Layers>]

The format was enclosed by square brackets and contained different
informations divided by spaces. In this setup <Loss> is the loss function
used in the training process. <Optimizer> is the optimizer used by the back
propagation algorithm. <#Batches> is the number of batches used in each
training step. <#Layers> is the number of hidden layers contained in the
denoising network. These are the hyper parameter needed to define the CNN.
Beside the hyper parameters there exist also the parameters of each hidden
layer. Those were given as a list in the <Layers> section. <Layers> contains
for each hidden layer information in the following format.

<#Kernels> <Width> <Height>
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In this format <#Kernels> is the number of kernels used in this layer and
therefore additionally the number of input channels the next layer receives.
<Width> is the width of the kernels and <Height> is the height of the
kernels.
One example network configuration could be given as:

[mse adadelta 10 2 10 5 5 softplus 1 7 7 linear ]

This network consist of two hidden layers. The first hidden layer consists
of ten kernels with a size of 5 × 5 and a softplus activation function. The
second hidden layer consists of one kernel with a size of 7× 7 and a linear
activation function. The network is trained with mean square error as loss
function and an adadelta optimizer receiving ten batches at a time.

The stride was set to one and padding is set to zero padding. The learning
rate was not adjusted and depends on the optimizer. Every other parameter
not mentioned here was kept unchanged and therefore was left as the Keras
or Tensorflow default value.

CNN’s often consist of multiple convolutional layers followed by pooling
layers. Pooling layers reduce the dimensionality of the image. In our case we
did not use any pooling layers, because we wanted the output dimensionality
to be exactly the same as the input dimensionality. Also a lot of networks
add fully connected layers at end of their network. This is for example useful
for image recognition problems, where CNNs calculate and filter important
information out of the input and fully connected layers are used to interpret
the information. In our case we only wanted to calculate new information out
of existing one and let the speech recognizer interpret it. Therefore only using
convolutional layers seemed more appropriate and also showed promising
results before [9, 45].

The Eesen speech recognizer was trained on the standard Eesen setup
for phoneme based speech recognition. The standard setup trained the
recognizer using the train tr95 dataset as trainings set and the train cv05 set
as validation set with a learning rate of 0.00004.
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3.3.2 Optimization and Evaluation setup

The optimization of hyper parameters was conducted on the WER calculated
by the output of the speech recognition system and not on the output of
the denoising system. That means our denoising system was trained on the
train tr95 dataset and used to denoise the test dev93 dataset. Afterwards the
speech recognition system was applied on the denoised data and the WER was
determined as described in Subsection 2.1.6. The hyperparameters creating
the best average WER as final result were chosen for further experiments.
The denoising and speech recognition were applied to the clean, mixed, SNR
30, SNR 24, SNR 18, SNR 12, SNR 6, SNR 0 and SNR -6 test dev93 datasets.
As optimization metric the average WER of all datasets was used. Because
the fluctuation of the WER is stronger on audio files with strong noise we
assumed that our metric supports low value SNRs more than high value SNRs.
Thus we assume that by using a different metric the denoising system could
improve on low noised data while taking cuts on highly noisy data.

Because each training, denoising and decoding cycle was time-consuming
the optimization was parallelized. The only information needed for each
individual, parallel step was the network layout described in Section 3.3.1.
The data preparation as well as the training of the speech recognizer was
processed once beforehand. The pretrained recognizer network was reused in
every parallel run. This way each parallel process consisted of four steps.

1. Train the denoising CNN with a given network layout

2. Denoise the mixed test dev93 dataset

3. Decode the denoised dataset

4. Output the WER in %

For the evaluation the clean test eval92 set and the test eval92 sets noised
with a SNR of 30 dB, 24 dB, 18 dB, 12 dB, 6 dB, 0 dB and -6 dB were
denoised using the denoising CNN. Afterwards all those datasets were decoded
and the WER was calculated.

As the start configuration for our optimization we used the following
network visualized in Figure 9.

35



[ mse adadelta 1 7 10 10 10 softplus 10 10 10 softplus 10 10 10 softplus 10 10
10 softplus 10 10 10 softplus 10 10 10 softplus 1 10 10 linear]

This network used a mean squared error loss function, which is the most
common loss function. As optimizer we used an adadelta optimizer, because
it does not need any hyperparameter optimizations for decent results. We
decided to use seven convolutional hidden layers as starting point and optimize
the number of hidden layers as first optimization step. Each layer, but the
last one, uses ten kernels with a size of 10 × 10 and softplus as activation
function. The last layer only uses one kernel to create a two dimensional
output equivalent to the networks input dimensions. Also the last layer uses
a linear activation function, because softplus calculates values in the region
of [0,1], but our filter bank features were not downscaled to this numerical
area. So an activation function returning values in the 16-bit integer range
was needed and we decided to use a linear activation function. As starting
point for the batch size we decided to use one file per batch, since it was the
fastest to implement and seemed good enough for the first optimization steps.
But of course the number of batches was later optimized as well.
The input layer was N × 40× 1 dimensional. The last hidden layer always
consisted of only one kernel and therefore the output layer was also N×40×1
dimensional.
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Figure 9: The starting CNN for our optimization process

For the evaluation we trained four different types of ASR systems. The
first ASR setup was the original Eesen speech recognizer used in the WSJ
example. The recognizer was trained on the clean train tr95 dataset and
no denoising system was added. Of course this ASR system is not fit for
robust speech recognition and was mostly used as state-of-the-art baseline
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comparison system for the other ASR systems. The assumption for the
standard speech recognizer was that it creates the best results on clean audio
files but got a quickly decreasing performance on low SNR levels. In the
evaluation we referred to this ASR system as clean ASR.

The second setup as well did not use a denoising system. The standard
Eesen speech recognizer was trained on the mixed noise train tr95 dataset
instead of the clean one. This way the robust ASR system was supposed to
learn speech recognition under noisy conditions and be able to ignore the
noise. The assumption for this system is to create decent results for every
noise level and therefore be a good comparison for our denoising CNN. In the
evaluation we referred to this ASR system as noise trained ASR.

The third setup was our developed robust ASR system based on the
standard Eesen speech recognizer with an added denoising CNN. We hoped
for our setup to vastly increase the performance of the original ASR on the
moderate SNR levels and therefore transform noisy data into clean data. In
the evaluation we referred to this ASR system as denoise CNN ASR.

The fourth setup was a mix between the second and third system. We
used our denoising CNN plus the standard Eesen speech recognizer trained
on the output data create by the denoising system. This means instead of
training the speech recognizer on clean speech we used our denoised filter
bank features as training data. The assumption for this system was to even
further increase the performance of our denoising setup. In the evaluation we
referred to this ASR system as denoise trained ASR.

For the evaluation we used the clean and the SNR -6 dB, 0 dB ,6 dB,
12 dB, 18 dB, 24 dB and 30 dB versions of the test eval92 set. We will
additionally present the results of the validation test dev93 dataset. Further
more the WER was used as performance metric.

3.3.3 Batches

Up until now we have not explained how we created our batches. We thought
of three possible solutions to create batches containing information of multiple
input files. The first and most obvious idea was to create a four dimensional
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tensor and place all batches in the fourth dimension. That way the first
dimension would be the number of feature vectors depended on the length of
the input file. The second dimension would be the feature vectors with a size
of 40. The third dimension would be the channel size which is one. And the
fourth dimension would be the feature tensors of the batches. The size of the
fourth dimension would than be equal to the batch size.
The problem of this approach was that the first dimension is depending on the
size of the input file and therefore different for each file. Hereby the problem
was that we could not simply add the input tensors together unless all input
tensors got the same size. One solution could be to fill all shorter tensors
with zeros at the end. The problem here is, that all audio files are around ten
seconds long, but the distance between files often reaches one or two seconds.
By adding zeros to resize the files to the same length, up to one sixth of the
resulting batch input tensor would be filled with zeros and strongly influence
the trainings results.
The second approach was to concatenate the audio files and afterwards
calculate the feature vectors. Because the batch size changed, this approach
would lead to the batch creation and the calculation of the feature vectors
within the parallel processing of the training. Though the calculation of
feature vectors is time consuming and therefore for time efficiency we decided
to not use this approach either.
The third method gives nearly the same results as the second approach without
the loss of time. Instead of the audio files we concatenated the feature tensors
of multiple sample files in the first dimension. This way we received one big
feature tensor.

3.4 Optimization

In this section we explained our optimization process. The initial network of
the experiments was described in Subsection 3.3.2 and was given as:

[ mse adadelta 1 7 10 10 10 softplus 10 10 10 softplus 10 10 10 softplus 10 10
10 softplus 10 10 10 softplus 10 10 10 softplus 1 10 10 linear]

Optimizing multiple hyperparameters in parallel creates better results but
is more time-consuming. For time saving we decided to optimize only one
parameter at a time. We assumed that the number of hidden layers has the
biggest influence onto the ASR results, therefore we started by optimizing
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the number of hidden layers in Subsection 3.4.1. Afterwards we decided to
optimize the batch size in Subsection 3.4.2 and the number of kernels in
3.4.3. We also tried out different optimizer in Subsection 3.4.4. This way our
optimization steps were given as follows.

1. Number of hidden layers

2. Batch size

3. Number of Kernels

4. Optimizer

All optimizations were concluded on the test dev93 validation set and the
metric was the average WER of the sets.

3.4.1 Number of Hidden Layers

The first hyper parameter optimization was done on the number of hidden
layers. The hidden layers were all convolutional layers. Every layer but
the last one had 10 kernels with the size of 10× 10 and softplus activation
functions. The last layer had one kernel of the size 10 × 10 and a linear
activation function. If for example the number of hidden layers was set to one,
the network consisted only of the last layer with one kernel. If the number
was set to six, the network consisted of five hidden layers with ten kernels
plus the last layer with one kernel.
At the beginning the hidden layer optimization was done on a number of
hidden layers from one to ten, but those results were indistinct. Therefore we
expanded the optimization range and tested the number of hidden layers up
to twenty.

As the experiments visualized in Figure 10 showed a number of ten hidden
layers gave the best results. As expected one hidden layer with only one kernel
is not enough for proper speech denoising and thus created poor results. After
adding more hidden layers the WER quickly dropped to an average value of
35.36%. For comparison, the average WER of the clean speech recognizer is
42.645% on the validation set. After reaching the minimum with ten hidden
layers the WER started to raise again and showed erratic movements. We
assume that the network became to big and started to overfit.
The optimized ten layered CNN is given as:
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Figure 10: Optimizing the number of hidden layers

[ mse adadelta 1 10 10 10 10 softplus 10 10 10 softplus 10 10 10 softplus 10
10 10 softplus 10 10 10 softplus 10 10 10 softplus 10 10 10 softplus 10 10 10

softplus 10 10 10 softplus 1 10 10 linear]

3.4.2 Batch Size

The second optimization step was done on the batch size. The batches were
implemented as described in Section 3.3.3. The batch optimization was done
in two steps. First we tested out exponential batch sizes of 1, 2, 4, 8, 16, 32
samples per batch and visualized the results in Figure 11. In the experiment
we found out that a small batch size created good results while increasing
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batch sizes increased the error rate. We ended the experiment with a batch
size of 32, because larger feature tensors were too huge for our main memory
and additionally previous results already showed that a batch size larger than
32 should return worse results. Afterwards we tested batch sizes between one
and ten and visualized the results in Figure 12. Those experiment showed the
same results as the previous one. A batch size of one created the best results
and therefore the optimized network is the same as the optimized result of
the previous optimization step.

[ mse adadelta 1 10 10 10 10 softplus 10 10 10 softplus 10 10 10 softplus 10
10 10 softplus 10 10 10 softplus 10 10 10 softplus 10 10 10 softplus 10 10 10

softplus 10 10 10 softplus 1 10 10 linear]

Normally one would assume that a batch size of one is bad, because
of missing diversity for each update in the training process. But in our
experiments a small batch size created the best results. We thought of two
possible reasons why the best batch size was unexpectedly one. The first
reason was the cut between batches disturbing the speech recognition. The
sudden change of background noise and speech between two samples caused
the training to be worsened. The second reason was, that the tensors of
each sample already contained a lot of data and with a rising batch size the
amount of data became too much for proper training. Of course we could not
determine the real reason and only gave assumptions.

3.4.3 Number of Kernels

The third optimization step was done on the number of kernels. The number
of kernels was set equal for all hidden layers but the last one. Thus these
experiments influenced the first nine hidden layers of the denoising network.
A number of kernels of three would for example represent a CNN with 10
hidden layers. The first nine layers consists of three 10× 10 sized kernels and
the last layer consists of a single 10× 10 sized kernel.
Same as the batch optimization we started of by exponential step size of
the parameters. The results visualized in Figure 13 showed that the optimal
kernel size should be between 4 and 16. Thus for the non exponential testing
we decided to try out 1 to 20 kernels in each layer. The results of these
experiments visualized in Figure 14 were as expected. With small kernel sizes
the network created a high WER and therefore was bad at ASR. With a
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Figure 11: Optimizing the batch size, exponential step size
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Figure 12: Optimizing the batch size
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Figure 13: Optimizing the kernel size, exponential step size

rising number of kernels used in the CNN the WER decreases until reaching
a minima on 14 Kernels per layer. By further increasing the kernel count the
WER increased again and showed erratic movements. We assume that the
networks with low numbers of kernels were too small to learn proper speech
denoising and the big networks were too big and started to overfit.
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Figure 14: Optimizing the kernel size
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3.4.4 Optimizer

The last optimization step was on the optimizers. We wanted to try out to
further improve our results by training the denoising system with different
optimization functions. For explanation on the methods see Section 2.2.6.
All function parameters were left at the preset values of Keras. The results
were underwhelming and are listed in Table 2. Only the originally used
Adadelta optimizer created decent results. The ASR denoising system with
other optimization functions were either by far worse than the Adadelta setup
or failed.
We could only think of one reason why the different methods failed to create
proper results. We assume that the hyper parameters of the optimizer them-
selves needed optimization.
The final denoising CNN after the optimization process is depicted in
Figure 15.

Optimizer Adadelta RMSProp Adam AdaMax Nadam
Average WER [%] 35.13 90.6 100 50.13 99.26

Table 2: Optimizing the optimizer on the validation set
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Figure 15: The final denoising CNN after the optimization process
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3.5 Evaluation

In this section we will present the experimental results. The final results of
the validation set are visualized in Figure 16 and the final results of the test
set are visualized in Figure 17. The two graphs are strongly similar verifying
that the denoising system most likely did not overfit. In the following we will
only inspect the more important results of the evaluation.
On all SNRs of 18 dB and lower our CNN based denoising ASR system
created the best results. On a SNR of 6 dB our denoising system decreased
the recognition WER by an absolute value of more than 20 % transforming a
strongly noised speech signal into a usable state. And on a SNR of 12 dB
the WER was decreased from 23.78 % to 15.08 %. Thus the denoising CNN
managed to vastly increase the audio quality and intelligibility on moderate
SNRs. The system also vastly decreased the WER on 0 dB but unfortunately
even after improving the WER by an absolute value of 27.8 % the resulting
speech signal was not good enough to be used in most real world applications.
Additionally the CNN denoising setup is the only ASR system able to decrease
the WER on a SNR of -6 dB to less than 100 %.
Of the three ASR system built for robust speech recognition the denoising
CNN creates the best results on all SNRs including the clean data. Only
the clean ASR system gives better results on the clean and high SNR speech
signals. But this was to be expected, because the denoising system learned
to map noisy audio data onto clean one, which made it nearly impossible for
our system to improve the clean data. Even though on a SNR of 24 dB or 30
dB our denoising systems WER is only a single percentage worsen than the
clean setup. Only for clean speech our system looses by a WER difference of
2.39 %, which is acceptable most of the time.
The conclusion of these results is that CNN denoising works well on low and
moderate SNRs while at the same time only marginally decreasing an ASRs
performance on high SNRs.
One possible reason why the denoising setup was observably worse on the
clean data in comparison to the high SNR data may be visible in Figure 18.
Even a high SNR value of 30 dB contains noises visibly influencing the audio
spectrum. The denoising system was trained on an uniform distribution of
eight SNR levels including the clean audio. Our guess is that the training
of the denoising system got strongly influenced by the overrepresented noisy
speech signals. Therefore the system became noticeable worse at handling
clean speech signals.
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Another mentionable result of our experiments are the clearly visible im-
provements created by the denoising system and visualized in Figure 18.
Especially on SNRs of 6 dB and 18 dB the noisy filter bank features contained
only slightly visible speech characteristics and after the denoising process
the speech signal was restored. The graphic additionally visualizes that only
slight changes occurred on the clean feature matrices.

Speech-Noise-Ratio clean 30 24 18 12 6 0 -6

Clean ASR 11.99 12.12 13.72 17.42 29.95 60.23 92.83 102.90
Noise tr. ASR 18.38 17.50 17.18 18.39 23.89 41.30 78.59 117.43

Denoise CNN ASR 15.35 14.56 14.94 16.74 22.12 36.71 68.05 92.53
Denoise tr. ASR 14.65 14.91 15.47 17.84 26.49 48.94 83.73 107.80
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Figure 16: Results of the four ASR systems on the validation set
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Speech-Noise-Ratio clean 30 24 18 12 6 0 -6

Clean ASR 7.76 8.44 9.57 13.11 23.78 46.93 84.83 100.04
Noise tr. ASR 12.10 11.02 11.02 12.42 15.52 27.50 62.13 106.50

Denoise CNN ASR 10.15 9.87 10.49 11.73 15.08 26.05 57.03 87.91
Denoise tr. ASR 11.38 10.54 11.02 13.52 19.32 35.74 70.53 101.38
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Figure 17: Results of the four ASR systems on the test set
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Figure 18: Normalized filter bank features on different SNRs noisy and
denoised. The original speech is utterance 440c040a of the WSJ eval 92 set.
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3.6 Generalization

Two of the major problems of our experimental setup were that we only
used a single noise type for the training and we tested our setup on the
exact same noise. Therefore it was possible that the denoising CNN only
learned to remove the exact noise pattern of our training noise. To prove that
our network is a general working denoising system we used the 4th CHiME
speech seperation and recognition challenge[4]. Hereby we wanted to prove
two things.

1. The denoising system generalizes onto different types of noises

2. The denoising system generalizes onto real world problems

To achieve that goal, we prepared our dataset, trained and tested the
ASR and denoising system the same way as before, described in Sections 3.2
and 3.3. The only difference was that we used all eight hours of the CHiME
background audio recorded on four different locations. The locations were a
in a café, on a street, on a bus and in a pedestrian area.
The result of this experiment, visualized in Figure 19, clearly show the gener-
alization of the denoising CNN on different noise types. They are similar to
the results for pedestrian noise in Figure 17. On a SNR of 24 dB and higher
the clean ASR system created the best results but starting at 18 dB and lower
our denoising system noticeably improves the WER. On an SNR of 12 dB the
WER is increased by an absolute value of more than 10 % and on a SNR of 6
dB even more than 20 %. Interestingly the denoising system trained on four
noises creates a little bit worse results on clean and low SNRs but remark-
ably better results on high SNRs than the CNN trained only on pedestrian
noise. Therefore the denoising system generalizes onto different types of noises.

But even by generalizing our denoising system onto four types of noise
instead of a single one, we still used the same noise signals for training and
testing. To solve this problem we decided to test our algorithm on real world
data. Therefore we decided to use the real dataset of the CHiME challenge.
The real dataset consists of 1320 utterances from four speakers recorded in
four different noisy locations. This means the test set was not artificially
created by mixing speech and noise, but instead consisted of real world audio
recorded with six microphones on one tablet. Also the four speakers did not
overlap with any speakers of the training or validation set. This means neither
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the noise nor the speech of the training and testing set overlapped in any way.
Only the four locations were the same as used for the training, in a café, on
a street, on a bus and in a pedestrian area. The results of this experiment
were promising. The clean ASR system achieved a WER of 86.31 % and that
results was improved by the denoising system by more than an absolute of
20 % to reach a WER of 65.91 %. Therefore the denoising system not only
generalizes to unknown speaker and noises but it additionally generalizes to
real world data. We assume that the results of the CHiME challenge are by
far worse than the results of the artificially created data, because the CHiME
challenge had a different method for audio recording. The WSJ speech used
for the training process was recorded with a professional microphone in a
quiet environment. The CHiME audio in opposite was recorded with six
comparably low quality microphones. Sometimes speaker held their finger on
a microphone or it was blocked by obstacles. The recording method created
attenuations and reverberations. Since the original ASR was not trained to
handle bad quality speech the WER on the CHiME challenge dataset was
noticeably worse.

The results of these experiments were that the CNN denoising system
generalizes to different speaker, noises and to a real world environment. In
all experiments the CNN managed to vastly improve the speech recognition
performance on moderate and low SNRs.
For a final overview we presented the results of the three important experi-
ments, the evaluation on the pedestrian noised data, on the data noised with
four types of noises and the results of the CHiME challenge, in Table 3. All
results were given as average WER in %.

Dataset
System

Clean
ASR

Denoise
CNN ASR

Noise
tr. ASR

Denoise
tr. ASR

Pedestrian 32.72 % 25.37 % 28.69 % 30.38 %
Four noises 31.45 % 22.04 - -
Real CHiME 86.31 % 65.91 - -

Table 3: Results of the four ASR systems on the test set containing pedestrian
noise only, the test set containing all four noise types and the real world test
set of the CHiME challenge. All results are the average WER in %.
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Speech-Noise-Ratio clean 30 24 18 12 6 0 -6

Clean ASR 7.76 8.03 9.69 13.77 24.93 47.86 76.86 94.19
Denoise CNN ASR 10.51 10.10 10.35 11.54 14.78 24.26 44.87 71.97

clean 30 24 18 12 6 0 -6
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Figure 19: Results of the clean and denoised ASR systems trained and
evaluated with four types of noises on the test set
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4 Conclusion and outlook

In this thesis we investigated the usage of CNNs as SE method on the feature
level of noisy speech data. The motivation for our experiments were past
studies in which CNNs were used as improved speech recognizer, speech
enhancement system on the spectral level or image denoising system.
For the experiments we built a SE pipeline by adding a denoising system into
the WSJ example of the Eesen toolkit. We created noised speech by mixing
the WSJ corpus with noise files of the 4th CHiME challenge on different SNRs.
Afterwards we trained a fully convolutional neural network implemented in
Keras as denoising system to map noisy filter bank features onto clean ones.
The denoising system was optimized using a validation set and evaluated
using a test set of the WSJ corpus.
For the evaluation we compared the CNN denoising system with a speech
recognizer trained on clean speech, an ASR system trained on noisy speech
and an ASR system trained on denoised speech features. In the experiments
the denoising CNN outperformed the ASR trained on noisy and denoised
feature vectors. The denoising approach created better results than the other
two systems on all datasets and all SNRs. The CNN setup also outperformed
the clean setup on a SNR of 18 dB and below. Only on a SNR of 24 dB
and higher the clean speech recognition system expectedly performed slightly
better than our denoising setup. On an SNR of 6 dB the CNN system
managed to decrease the WER of previously noisy data by an absolute value
of more than 20 % from previous 46.93 % down to 26.05 %, improving the
ASR output by a large margin. Also on a SNR of 12 dB the CNN manages
to decrease the WER by an absolute value of more than 8 %.
Additionally we tested our system on a generalized setup, training it with four
different types of noises instead of previously a single noise type. The results
of those experiments were partly even better than the results on pedestrian
noise, decreasing the average WER of the four noise type dataset by more
than 9 % from 31.45 % down to 22.04 %. With this result we proved that
our denoising system generalizes onto different types of noises.
We additionally tested the denoising CNN on the CHiME real world dataset
proving that the CNN also generalizes onto real world data. On the dataset
the denoising system decreased the WER of the clean speech recognizer from
86.31 % down to 65.91 %.

All in all the results of our thesis reach the best case scenario. At the
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beginning of our experiments using CNNs for SE was only a conceptual idea.
In this thesis we proved that this concept works and is very promising. Even
an easy CNN without much optimization performs state-of-the-art SE while
at the same time generalizes to different types of noises and even real world
data. Therefore we guess that CNNs have a bright future and much room for
further improvements in ASR.

For the future built up on this thesis we have some suggestions. For
example one could try out if the CNN also generalizes onto different feature
types. We would like to see if our CNN or a similar CNN can be used for SE
on MFCCs. Another thing is that we did not have enough time for a layer size
optimization. We would like to know how much optimizing the different layer
sizes can increase the performance of the denoising system. Another factor we
are interested in, is the real performance of the denoising CNN on the CHiME
challenge with the CHiME baseline speech recognizer. We would like to know
how far our system can compete with the other challengers. Also interesting
would be to train and test the CNN on multi channel audio, which could be
easily implemented, because CNNs are perfectly suited for multi channel input.

Finally we hope that this thesis gave a good introduction into feature
denoising using CNNs for noisy speech recognition and maybe the promising
results encourage more studies into this field of research.

55



References

[1] Yong Xu, Jun Du, Li-Rong Dai, and Chin-Hui Lee. A regression approach
to speech enhancement based on deep neural networks. IEEE/ACM
Transactions on Audio, Speech, and Language Processing, vol. 23 no. 1
pp. 7-19, 2015.

[2] Y Ephraim and D Malah. Speech enhancement using a minimum mean-
square error log-spectral amplitude estimator. IEEE Trans. Acoustics,
Speech and Signal Processing, vol. ASSP-33, pp. 443-445, 1985.

[3] Jun Du, Yan-Hui Tu, Lei Sun, et al. The ustc-iflytek system for chime-4
challenge. The 4th CHiME Speech Seperation and Recognition Challenge,
2014.

[4] Emmanuel Vincent, Shinji Watanabe, Jon Barker, and Ricard Marxer.
An analysis of environment, microphone and data simulation mismatches
in robust speech recognition. Computer Speech and Language, 2016.

[5] Ying Zhang, Pezeshki Mohammad, Philémon Brakel, et al. Towards
end-to-end speech recognition with deep convolutional neural networks.
arXiv:1701.02720v1 [cs.CL], 2017.

[6] Lovedeep Gondara. Medical image denoising using convolutional denois-
ing autoencoders. arXiv:1608.04667v2 [cs.CV], 2016.

[7] Kai Zhang, Wangmeng Zuo, Yunjin Chen, Deyu Meng, and Lei Zhang.
Beyond a gaussian denoiser: Residual learning of deep cnn for image
denoising. arXiv:1608.03981v1 [cs.CV], 2016.

[8] Mike Kayser and Victor Zhong. Denoising convolutional autoencoders
for noisy speech recognition. Stanford University, 2015.

[9] Se Rim Park and Jin Won Lee. A fully convolutional neural network for
speech enhancement. arXiv:1609.07132v1 [cs.LG], 2016.

[10] Yajie Miao, Mohammad Gowayyed, and Florian Metze. Eesen: End-to-
end speech recognition using deep rnn models and wfst-based decoding.
arXiv:1507.08240v3 [cs.CL], 2015.

[11] John Garofolo, David Graff, Doug Paul, and David Pallett. Csr-i (wsj0)
sennheiser ldc93s6b. Philadelphia: Linguistic Data Consortium, 1993.



[12] John Garofolo, David Graff, Doug Paul, and David Pallett. Csr-ii (wsj1)
sennheiser ldc94s13b. Philadelphia: Linguistic Data Consortium, 1994.

[13] Mart́ın Abadi, Ashish Agarwal, Paul Barham, et al. TensorFlow: Large-
scale machine learning on heterogeneous systems, 2015. Software available
from tensorflow.org.

[14] Clause E. Shannon. A mathematical theory of communications. Bell
System Technical Journal. 27, 1948.

[15] Ryan J. Cassidy and Julius O. Smith III. Auditory filter
bank lab. https://ccrma.stanford.edu/realsimple/aud_fb/What_

Filter_Bank.html, 2008. Accessed: 08.09.2017.

[16] Todd K. Moon. Lecture 9: Aliasing and leakage. http:

//ocw.usu.edu/Electrical_and_Computer_Engineering/Signals_

and_Systems/9_2node2.html, 2011. Accessed: 08.09.2017.

[17] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory.
Neural computation, vol. 9 no. 8, pp. 1735-1780, 1997.

[18] Alex Graves, Santiago Fernández, Faustino Gomez, and Jürgen Schmid-
huber. Connectionist temporal classification: Labelling unsegmented
sequence data with recurrent neural networks. Neural computation, vol.
9 no. 8, pp. 1735-1780, 1997.

[19] Mehryar Mohri, Fernando Pereira, and Michael Rifley. Weighted finite-
state transducers in speech recognition. Computer Speech and Language,
vol. 20, no. 1, pp. 333-336, 2002.

[20] Cyril Allauzen, Michael Riley, Johan Schalkwyk, Wojciech Skut, and
Mehryar Mohri. OpenFst: A general and efficient weighted finite-state
transducer library. In Proceedings of the Ninth International Conference
on Implementation and Application of Automata, (CIAA 2007), volume
4783 of Lecture Notes in Computer Science, pages 11–23. Springer, 2007.
http://www.openfst.org.
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