
Composite Kernels For Relation Extraction

Frank Reichartz
Fraunhofer IAIS

St. Augustin, Germany

Hannes Korte
Fraunhofer IAIS

St. Augustin, Germany
{frank.reichartz,hannes.korte,gerhard.paass}@iais.fraunhofer.de

Gehrard Paass
Fraunhofer IAIS

St. Augustin, Germany

Abstract

The automatic extraction of relations be-
tween entities expressed in natural lan-
guage text is an important problem for IR
and text understanding. In this paper we
show how different kernels for parse trees
can be combined to improve the relation
extraction quality. On a public benchmark
dataset the combination of a kernel for
phrase grammar parse trees and for depen-
dency parse trees outperforms all known
tree kernel approaches alone suggesting
that both types of trees contain comple-
mentary information for relation extrac-
tion.

1 Introduction

The same semantic relation between entities in
natural text can be expressed in many ways, e.g.
“Obama was educated at Harvard”, “Obama is a
graduate of Harvard Law School”, or, “Obama
went to Harvard College”. Relation extraction
aims at identifying such semantic relations in an
automatic fashion.

As a preprocessing step named entity taggers
detect persons, locations, schools, etc. men-
tioned in the text. These techniques have reached
a sufficient performance level on many datasets
(Tjong et al., 2003). In the next step relations be-
tween recognized entities, e.g. person-educated-
in-school(Obama,Harvard) are identified.

Parse trees provide extensive information on
syntactic structure. While feature-based meth-
ods may compare only a limited number of struc-
tural details, kernel-based methods may explore
an often exponential number of characteristics
of trees without explicitly representing the fea-
tures. Zelenko et al. (2003) and Culotta and
Sorensen (2004) proposed kernels for dependency
trees (DTs) inspired by string kernels. Zhang et

al. (2006) suggested a kernel for phrase grammar
parse trees. Bunescu and Mooney (2005) investi-
gated a kernel that computes similarities between
nodes on the shortest path of a DT connecting the
entities. Reichartz et al. (2009) presented DT ker-
nels comparing substructures in a more sophisti-
cated way.

Up to now no studies exist on how kernels for
different types of parse trees may support each
other. To tackle this we present a study on how
those kernels for relation extractions can be com-
bined. We implement four state-of-the-art ker-
nels. Subsequently we combine pairs of kernels
linearly or by polynomial expansion. On a pub-
lic benchmark dataset we show that the combined
phrase grammar parse tree kernel and dependency
parse tree kernel outperforms all others by 5.7%
F-Measure reaching an F-Measure of 71.2%. This
result shows that both types of parse trees contain
relevant information for relation extraction.

The remainder of the paper is organized as fol-
lows. In the next section we describe the inves-
tigated tree kernels. Subsequently we present the
method to combine two kernels. The fourth sec-
tion details the experiments on a public benchmark
dataset. We close with a summary and conclu-
sions.

2 Kernels for Relation Extraction

Relation extraction aims at learning a relation
from a number of positive and negative instances
in natural language sentences. As a classifier we
use Support Vector Machines (SVMs) (Joachims,
1999) which can compare complex structures, e.g.
trees, by kernels. Given the kernel function, the
SVM tries to find a hyperplane that separates pos-
itive from negative examples of the relation. This
type of max-margin separator has been shown both
empirically and theoretically to provide good gen-
eralization performance on new examples.

2.1 Parse Trees

A sentence can be processed by a parser to gener-
ate a parse tree, which can be further categorized
in phrase grammar parse trees (PTs) and depen-
dency parse trees (DTs). For DTs there is a bijec-
tive mapping between the words in a sentence and
the nodes in the tree. DTs have a natural ordering
of the children of the nodes induced by the posi-
tion of the corresponding words in the sentence. In
contrast PTs introduce new intermediate nodes to
better express the syntactical structures of a sen-
tence in terms of phrases.

2.2 Path-enclosed PT Kernel

The Path-enclosed PT Tree Kernel (Zhang et al.,
2008) operates on PTs. It is based on the Convolu-
tion Tree Kernel of Collins and Duffy (2001). The
Path-enclosed Tree is the parse tree pruned to the
nodes that are connected to leaves (words) that be-
long to the path connecting both relation entities.
The leaves (and connected inner nodes) in front of
the first relation entity node and behind the sec-
ond one are simply removed. In addition, for the
entities there are new artificial nodes labeled with
the relation argument index, and the entity type.
Let KCD(T1, T2) be the Convolution Tree Kernel
(Collins and Duffy, 2001) of two trees T1, T2, then
the Path-enclosed PT Kernel (ZhangPT) is de-
fined as

KZhangPT(X, Y) = KCD(X∗, Y ∗)

where X∗ and Y ∗ are the subtrees of the origi-
nal tree pruned to the nodes enclosed by the path
connecting the two entities in the phrase grammer
parse trees as described by Zhang et al. (2008).

2.3 Dependency Tree Kernel

The Dependency Tree Kernel (DTK) of Culotta
and Sorensen(2004) is based on the work of Ze-
lenko et al. (2003). It employs a node kernel
∆(u, v) measuring the similarity of two tree nodes
u, v and its substructures. Nodes may be described
by different features like POS-tags, chunk tags,
etc.. If the corresponding word describes an en-
tity, the entity type and the mention is provided. To
compare relations in two instance sentences X, Y
Culotta and Sorensen (2004) proposes to compare
the subtrees induced by the relation arguments
x1, x2 and y1, y2, i.e. computing the node kernel
between the two lowest common ancestors (lca) in

the dependecy tree of the relation argument nodes

KDTK(X,Y) = ∆(lca(x1, x2), lca(y1, y2))

The node kernel ∆(u, v) is definend over two
nodes u and v as the sum of the node similarity
and their children similarity. The children simi-
larity function C(s, t) uses a modified version of
the String Subsequence Kernel of Shawe-Taylor
and Christianini (2004) to compute recursively the
sum of node kernel values of subsequences of
node sequences s and t. The function C(s, t) sums
up the similarities of all subsequences in which ev-
ery node matches its corresponding node.

2.4 All-Pairs Dependency Tree Kernel

The All-Pairs Dependency Tree Kernel (All-Pairs-
DTK) (Reichartz et al., 2009) sums up the node
kernels of all possible combinations of nodes con-
tained in the two subtrees implied by the relation
argument nodes as

KAll-Pairs(X, Y) =
∑

u∈Vx

∑

v∈Vy

∆(u, v)

where Vx and Vy are sets containing the nodes of
the complete subtrees rooted at the respective low-
est common ancestors. The consideration of all
possible pairs of nodes and their similarity ensure
that relevant information in the subtrees is utilized.

2.5 Dependency Path Tree Kernel

The Dependency Path Tree Kernel (Path-DTK)
(Reichartz et al., 2009) not only measures the
similarity of the root nodes and its descendents
(Culotta and Sorensen, 2004) or the similari-
ties of nodes on the path (Bunescu and Mooney,
2005). It considers the similarities of all nodes
(and substructures) using the node kernel ∆ on
the path connecting the two relation argument en-
tity nodes. To this end the pairwise comparison
is performed using the ideas of the subsequence
kernel of Shawe-Taylor and Cristianini (2004),
therefore relaxing the “same length” restriction of
(Bunescu and Mooney, 2005). The Path-DTK ef-
fectively compares the nodes from paths with dif-
ferent lengths while maintaining the ordering in-
formation and considering the similarities of sub-
structures.

The parameter q is the upper bound on the node
distance whereas the parameter µ, 0 < µ ≤ 1,
is a factor that penalizes gaps. The Path-DTK is

5-times 5-fold Cross-Validation on Training Set Test Set
Kernel At Part Role Prec Rec F At Part Role Prec Rec F

DTK 54.9 52.8 72.3 71.7 53.7 61.4 (0.32) 50.3 43.4 68.5 79.5 44.0 56.7
All-Pairs-DTK 59.1 53.6 73.0 73.1 57.8 64.5 (0.26) 54.3 53.9 71.8 80.2 49.6 61.3
Path-DTK 64.8 62.9 77.2 80.2 61.2 69.4 (0.09) 54.9 55.6 73.5 76.7 52.8 62.5
ZhangPT 66.8 69.1 77.7 80.6 65.0 71.9 (0.21) 62.9 64.2 72.2 82.0 54.5 65.5

ZhangPT + Path-DTK 70.1 76.6 80.8 84.6 68.2 75.5 (0.20) 66.3 71.3 77.7 85.7 60.9 71.2

Table 1: F-values for 3 selected relations and micro-averaged precision, recall and F-score (with standard
error) for all 5 relations on the training (CV) and test set in percent.

defined as
KPath-DTK(X, Y) =

∑
i∈I|x|, j∈I|y|,

|i|=|j|, d(i),d(j)≤q

µd(i)+d(j)∆′(x(i), y(j))

where x and y are the paths in the dependency
tree between the relation arguments and x(i) is
the subsequence of the nodes indexed by i, anal-
ogously for j. Ik is the set of all possible in-
dex sequences with highest index k and d(i) =
max(i)−min(i)+1 is the covered distance. The
function ∆′ is the sum of the pairwise applications
of the node kernel ∆.

3 Kernel composition

In this paper we use the following two ap-
proaches to combine two normalized1 kernels
K1,K2 (Schoelkopf and Smola, 2001). For a
weighting factor α we have the composite kernel:

Kc(X, Y) = αK1(X, Y) + (1− α)K2(X,Y)

Furthermore it is possible to use polynomial ex-
pansion on the single kernels, i.e. Kp(X,Y) =
(K(X, Y) + 1)p. Our experiments are performed
with α = 0.5 and the sum of linear kernels (L) or
poly kernels (P) with p = 2.

4 Experiments

In this section we present the results of the ex-
periments with kernel-based methods for relation
extraction. Throughout this section we will com-
pare the approaches considering their classifica-
tion quality on the publicly available benchmark
dataset ACE-2003 (Mitchell et al., 2003). It con-
sists of news documents containing 176825 words
splitted in a test and training set. Entities and the
relations between them were manually annotated.

1Kernel normalization: Kn(X, Y) = K(X,Y)√
K(X,X)·K(Y,Y)

The entities are marked by the types named (e.g.
“Albert Einstein”) , nominal (e.g. “University”)
and pronominal (e.g. “he”). There are 5 top level
relation types role, part, near, social and at, which
are further differentiated into 24 subtypes.

4.1 Experimental Setup

We implemented the tree-kernels for relation
extraction in Java and used Joachim’s (1999)
SVMlight with the JNI Kernel Extension using
the implementation details from the original pa-
pers. For the generation of the parse trees we used
the Stanford Parser (Klein and Manning, 2003).
We restricted our experiments to relations between
named entities, where NER approaches may be
used to extract the arguments. Without any modi-
fication the kernels could also be applied to the all
types setting as well. We conducted classification
tests on the five top level relations of the dataset.
For each relation we trained a separate SVM fol-
lowing the one vs. all scheme for multi-class
classification. We also employed a standard grid-
search on the training set with a 5-times repeated
5-fold cross validation to optimize the parameters
of all kernels as well as the SVM-parameter C for
the classification runs on the separate test set. We
use the standard evaluation measures for classifi-
cation accuracy: precision, recall and F-measure.

4.2 Results

Table 1 shows F-values for three selected rela-
tions and micro-averaged results for all 5 relations
on the training and test set. In addition the F-
scores for the three relations containing the most
instances are provided. Kernel and SVM parame-
ters are optimized solely on the training set. Note
that the training set results were obtained on the
left-out folds of cross-validation. The composite
kernel ZhangPT + Path-DTK performs the best on
the cross validations run as well as on the test-set.
It outperforms all previously suggested solutions

DTK All-Pairs-DTK Path-DTK ZhangPT

ZhangPT 63.5 (70.2) PP 67.9 (72.8) PP 71.2 (75.5) LP 65.5 (71.9)
Path-DTK 62.7 (67.7) PP 62.9 (69.5) PL 62.5 (69.4)
All-Pairs-DTK 60.0 (64.7) PP 61.3 (64.5)
DTK 56.7 (61.4)

Table 2: Micro-averaged F-values for the Single and Combined Kernels on the Test Set (outside paren-
thesis) and with 5-times repeated 5-fold CV on the Training Set (inside parenthesis). LP denotes the
combination type linear and polynomial, analogously PP and PL.

by at least 5.7% F-Measure on the prespecified
test-set and by 3.6% F-Measure on the cross val-
idation. Table 2 shows the F-values of the differ-
ent combinational kernels on the test set as well
as on the cross validation on the training set. The
ZhangPT + Path-DTK performs the best out of all
possible combinations. The difference in F-values
between ZhangPT + Path-DTK and ZhangPT is
according to corrected resampled t-test (Bouckaert
and Frank, 2004) significant at a level of 99.9%.
These results show that the simultanous consider-
ation of phrase grammar parse trees and depen-
dency parse trees by the combination of the two
kernels is meaningful for relation extraction.

5 Conclusion and Future Work

In this paper we presented a study on the combi-
nation of state of the art kernels to improve re-
lation extraction quality. We were able to show
that a combination of a kernel for phrase gram-
mar parse trees and one for dependency parse trees
outperforms all other published parse tree ker-
nel approaches indicating that both kernels cap-
tures complementary information for relation ex-
traction. A promising direction for future work is
the usage of more sophisticated features aiming at
capturing the semantics of words e.g. word sense
disambiguation (Paaß and Reichartz, 2009). Other
promising directions are the study on the applica-
bility of the kernel to other languages and explor-
ing combinations of more than two kernels.

6 Acknowledgement

The work presented here was funded by the Ger-
man Federal Ministry of Economy and Technol-
ogy (BMWi) under the THESEUS project.

References
Remco R. Bouckaert and Eibe Frank. 2004. Evaluat-

ing the replicability of significance tests for compar-
ing learning algorithms. In PAKDD ’04.

Razvan C. Bunescu and Raymond J. Mooney. 2005. A
shortest path dependency kernel for relation extrac-
tion. In Proc. HLT/EMNLP, pages 724 – 731.

Michael Collins and Nigel Duffy. 2001. Convolution
kernels for natural language. In Proc. NIPS ’01.

Aron Culotta and Jeffrey Sorensen. 2004. Dependency
tree kernels for relation extraction. In ACL ’04.

Thorsten Joachims. 1999. Making large-scale SVM
learning practical. In Advances in Kernel Methods -
Support Vector Learning.

Dan Klein and Christopher D. Manning. 2003. Accu-
rate unlexicalized parsing. In Proc. ACL ’03.

Alexis Mitchell et al. 2003. ACE-2 Version 1.0; Cor-
pus LDC2003T11. Linguistic Data Consortium.

Gerhard Paaß and Frank Reichartz. 2009. Exploiting
semantic constraints for estimating supersenses with
CRFs. In Proc. SDM 2009.

Frank Reichartz, Hannes Korte, and Gerhard Paass.
2009. Dependency tree kernels for relation extrac-
tion from natural language text. In ECML ’09.

Bernhard Schoelkopf and Alexander J. Smola. 2001.
Learning with Kernels: Support Vector Machines,
Regularization, Optimization, and Beyond.

John Shawe-Taylor and Nello Cristianini. 2004. Ker-
nel Methods for Pattern Analysis. Cambridge Uni-
versity Press.

Erik F. Tjong, Kim Sang, and Fien De Meulder.
2003. Introduction to the CoNLL-2003 shared task:
Language-independent named entity recognition. In
CoRR cs.CL/0306050:.

Dmitry Zelenko, Chinatsu Aone, and Anthony
Richardella. 2003. Kernel methods for relation ex-
traction. J. Mach. Learn. Res., 3:1083–1106.

Min Zhang, Jie Zhang, and Jian Su. 2006. Explor-
ing syntactic features for relation extraction using a
convolution tree kernel. In Proc. HLT/NAACL’06.

Min Zhang, GuoDong Zhou, and Aiti Aw. 2008. Ex-
ploring syntactic structured features over parse trees
for relation extraction using kernel methods. Inf.
Process. Manage., 44(2):687–701.

