# VERNETZTE DATEN, DINGE UND DIENSTE – CHYBER-PHYSICAL SYSTEM

Prof. Dr.-Ing. Thomas Bauernhansl 14. Juli 2016

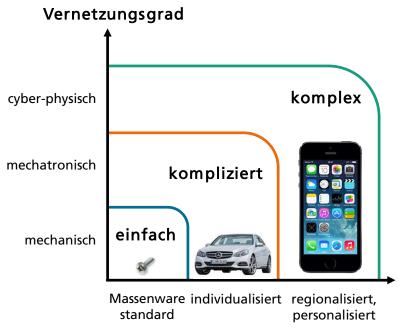




## Die digitale Welt von heute und morgen

### **Internet of Everything**

## Holistische Vernetzung der Welt als Basis neuer Business Ecosystems


- 3 Milliarden Menschen nutzten im Jahr 2014 das Internet.
- 17 Milliarden Dinge waren im Jahr 2014 über das Internet vernetzt. Im Jahr 2020 werden es voraussichtlich 28 Milliarden Dinge sein.
- Die Anzahl der Services im Internet sind ungezählt. Beispiel Apple Store: > 1 Millionen Apps wurden mehr als 75 Milliarden mal heruntergeladen
- Neue Formen des Wirtschaftens entstehen:
  - Shared Economy
  - Prosumer
  - Industrie 4.0 ...

Verbundene Geräte (Milliarden) "Geräte" (Maschinen, Sensoren usw.) Tablet-Computer PCs & Laptops Mobiltelefone 10 2010 2014 2020

Quelle: The Internet of Things, MIT Technology Review, Business Report, Siemens

## Wandel der Produktarchitektur aufgrund von steigender Vernetzung und Personalisierung

Offene Architekturen in Verbindung mit cyber-physischen Systeme legen die Basis für "Big Bang Disruptions"



- Minimale Komplexität bei Maximum an Personalisierung und Skaleneffekten
- Kunde beteiligt sich am Personalisierungsprozesses
- Innovationsfokus: Ecosystem, personalisierte Assistenz und HMI
- Erfolgsfaktor: Offenheit

Personalisierungsgrad

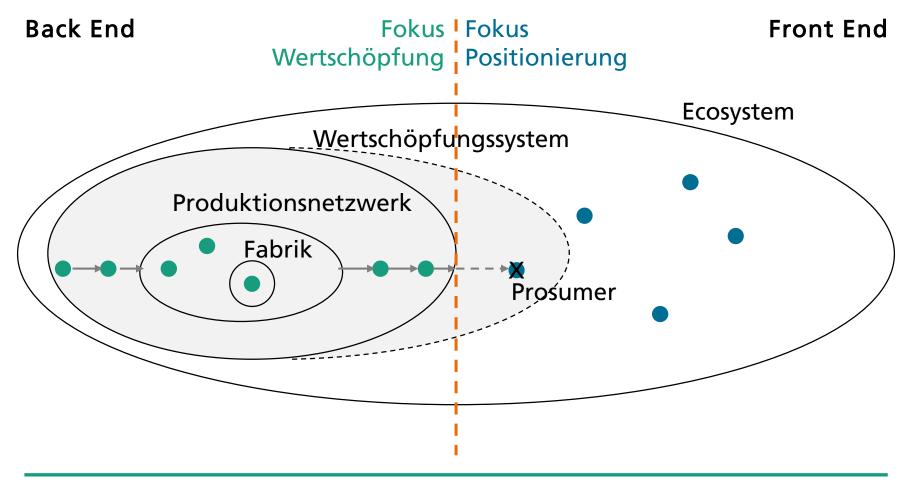
Quellen: Wildemann, H.: Wachstumsorientiertes Kundenbeziehungsmanagement statt König-Kunde-Prinzip; Seemann, T.: Einfach produktiver werden – Komplexität im Unternehmen senken; Bildquellen: apple.de





### Bausteine der vierten industriellen Revolution

Vernetzung und Rechenleistung öffnet neue Gestaltungs- und Optimierungsdimensionen für Wertschöpfungssysteme (Vertikale Integration)


| Infrastruktur (physisch, digital)                                 |                                                 |  |
|-------------------------------------------------------------------|-------------------------------------------------|--|
| Cyber-physisches System                                           |                                                 |  |
| Produktlebenszyklus (wertschöpfend = personalisiert + nachhaltig) |                                                 |  |
| Zusammenarbeit                                                    |                                                 |  |
| Physische Systeme (handeln, messen, kommunizieren) M              | enschen (entscheiden, gestalten, kommunizieren) |  |
| Reflektion Reflection                                             |                                                 |  |
| Digitaler Schatten (Echtzeitmodell)                               |                                                 |  |
| Transaktion                                                       |                                                 |  |
| Softwaredienst (machine-skills, Apps, Plattformdienste)           |                                                 |  |
| Interaktion                                                       |                                                 |  |
| Cloudbasierte Plattformen (Privat, Community, Public)             |                                                 |  |
| Preskription Preskription                                         |                                                 |  |
| Analytik (Big Data/maschinelles Lernen)                           |                                                 |  |
| Kommunikation                                                     |                                                 |  |
| Internet of Everything (Menschen, Dienste, Dinge)                 |                                                 |  |

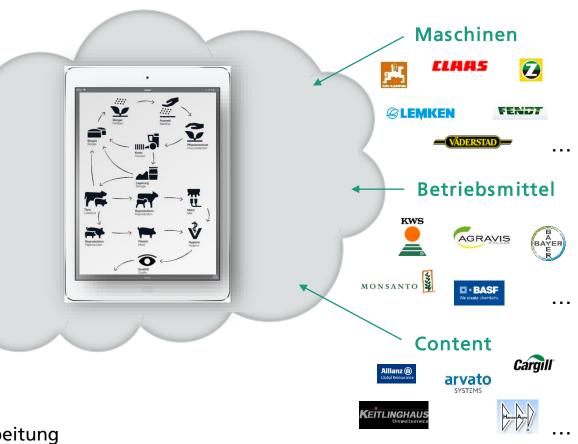




### **Aufbau von Ecosystems**

### Integrierte Gestaltung von Front und Back End




### **Business Ecosystems**

### "Farmnet 365" – eine Initiative aus dem Landmaschinenbau



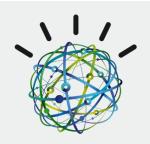
Online Tracking
 Echtzeitzugriff auf die Informationen zu jeder Zeit an jedem Ort

- Traceability
   Lückenlose,
   automatisierte
   Dokumentation
- Transparenz Integration aller Prozesse
- Effizienz
   Entscheidungshilfe und
   Wissenstransfer
- Qualität
   Tracking, Dokumentation und rechtzeitige Warnung
- AnalyseVorhersagen, Big Data Verarbeitung








## Die Basis: Rechenleistung und Vernetzung

Moore und Metcalfe behalten recht und bestimmen die Möglichkeiten und Wert eines Unternehmens

### Vernetzung

#### Metcalfe:

"Der Nutzen eines Kommunikationssystems wächst mit dem Quadrat der Anzahl der Teilnehmer."



### Leistung

#### Moore:

"Die Rechnerleistung verdoppelt sich alle 18 Monate."

### Ökosysteme für Smart Business Modelle

**Transparenz** 

Cyber-physische Systeme

Wissen

- Internet der Dinge und Dienste
- Real time & at run time
- Everything as a Service













Bildquellen: wikipedia.de, ibm.com, abcnews.com





## Fünf Handlungsfelder für die Wertschöpfungsmodelle der Zukunft

- Optimale Verteilung der Wertschöpfung im Ecosystem
- Optimale Verteilung und Adaption der Funktionalitäten in der cyberphysischen System Architektur
- Massendatenbasierte Prognose von Zukünften
- Herstellung von personalisierter Hardware
- Verschwendungsfreie und personalisierte Mensch-Maschine-Interaktion







## Alle Objekte in der Fabrik werden smart

### iBin – Intelligente Behälter bestellen ihre Befüllung autonom



Quelle: Fraunhofer IML, Prof. Dr. Michael ten Hompel



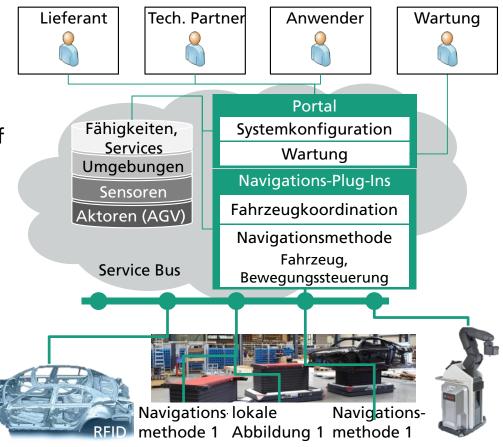


## Alle Objekte in der Fabrik werden weitestgehend mobil

Beispiel: Audi R8 – frei navigierendes FTS (navigation as a service)



Quelle: audi-mediaservices.com






## Beispiel 2: Was, wenn es AGV Cloud Navigation gäbe?

### Vorteil

- Logistik: zentrale Fahrzeugkoordination (Stand heute)
- "Lean Client" AGVs;Navigationsfähigkeit nach Bedarf
- Zentrale Datensammlung
  - Optimierung durch statistisches Lernen (Anpassung von Fähigkeiten, Zustandsüberwachung)
- Partnerschaft mit Technologieanbietern und externen Dienstleistern

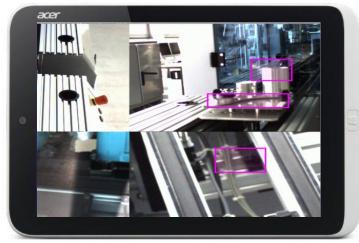


in Entwicklung



### Smarte Optimierung der Produktivität

Beispiel: Automatisierte Erkennung von Abhängigkeiten zwischen Prozessen und Ableiten von Verbesserungspotenzialen


#### Durch

- "Minimalinvasive" Prozessbeobachtung mit Kameras ohne aufwendige Systemintegration
- Merkmalsbasierte Konfiguration und Wiedererkennung von Zuständen in den Videos mittels adaptiver Auswertealgorithmen

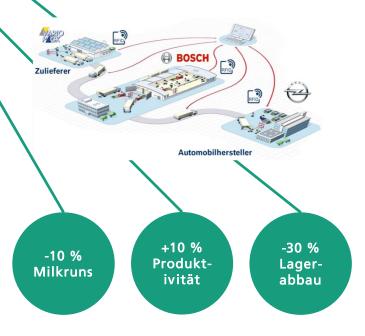
#### Vorteile

- Echtzeitnahe Prozessanalyse mit direkter Zuordnung von Verlustursachen
- Ermittlung und quantitative Bewertung von Potenzialen zur Prozessoptimierung
- Ständige Transparenz durch Bereitstellung der Störungen und Anlagenzustände für Bediener und Planer








## Unternehmenspotenziale durch Industrie 4.0

## Experten erwarten eine Gesamt-Performance-Steigerung von 30-50 % in der Wertschöpfung

### Abschätzung der Nutzenpotenziale

| Kosten                | Effekte                                                                                                                                                                          | Potenziale    |
|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| Bestandskosten        | <ul><li>Reduzierung Sicherheitsbestände</li><li>Vermeidung Bullwhip- und Burbidge-<br/>Effekt</li></ul>                                                                          | -30 bis -40 % |
| Fertigungskosten      | <ul> <li>Verbesserung OEE</li> <li>Prozessregelkreise</li> <li>Verbesserung vertikaler und<br/>horizontaler Personalflexibilität</li> <li>Einsatz von Smart Wearables</li> </ul> | -10 bis -30 % |
| Logistikkosten        | <ul><li>Erhöhung Automatisierungsgrad<br/>(milk run, picking,)</li><li>Smart Wearbles</li></ul>                                                                                  | -10 bis -30 % |
| Komplexitätskosten    | <ul> <li>Erweiterung Leitungsspannen</li> <li>Reduktion trouble shooting</li> <li>Prosumer Modell</li> <li>Everything as a Service (XaaS)</li> </ul>                             | -60 bis -70 % |
| Qualitätskosten       | Echtzeitnahe Qualitätsregelkreise                                                                                                                                                | -10 bis -20 % |
| Instandhaltungskosten | <ul> <li>Optimierung Lagerbestände Ersatzteile</li> <li>Zustandsorientierte Wartung<br/>(Prozessdaten, Messdaten)</li> <li>Dynamische Priorisierung</li> </ul>                   | -20 bis -30 % |

Pilotprojekt von Bosch, bei dem der gesamte Versandprozess über das werksinterne Logistikzentrum in einem Industrie 4.0-Projekt neu strukturiert wurde.



Ouelle: IPA/Bauernhansl, Bosch





### Erfolgreiche Einführung von Industrie 4.0



- Hervorgegangen aus dem erfolgreichen Werk "Industrie 4.0 in Produktion, Automatisierung und Logistik"
- Detaillierte Einführung in Industrie 4.0
- Zahlreiche Beispiele aus der Praxis
- Anschauliche Beschreibung der Basistechnologien
- 12 neue Kapitel, über 800 Seiten
- Erscheint Oktober 2016

ISBN 978-3-662-45278-3





# VERNETZTE DATEN, DINGE UND DIENSTE – CHYBER-PHYSICAL SYSTEM

Prof. Dr.-Ing. Thomas Bauernhansl 14. Juli 2016



