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Abstract. In this contribution knowledge-based image understanding
is treated. The knowledge is coded declaratively in a production system.
Applying this knowledge to a large set of primitives may lead to high
computational efforts. A particular accumulating parsing scheme trades
soundness for feasibility. Per default this utilizes a bottom-up control
based on the quality assessment of the object instances. The point of
this work is in the description of top-down control rationales to accel-
erate the search dramatically. Top-down strategies are distinguished in
two types: (i) Global control and (ii) localized focus of attention and in-
hibition methods. These are discussed and empirically compared using a
particular landmark recognition system and representative aerial image
data from GOOGLE-earth.

1 Introduction

Structural recognition of patterns or objects is an option in cases where the
structure of the target patterns is the property which distinguishes them from
clutter or background best, i. e., for patterns and objects where no obvious
or simple numerical features are at hand which promise satisfying recognition
performance of machine learning or statistical methods. Structural recognition of
patterns or objects should also be considered if the structure of the targets is the
desired output, i. e., if recognition is meant as automatic pattern understanding.
Last but not least structural recognition of patterns or objects may be beneficial
if the number of training examples is low – or none are given at all – while there
is knowledge accessible on the constructive elements and rules that define the
targets, i. e., if the learning data consist of handbooks, CAD-models, thesauri,
or ontologies respectively. Production systems give an approved formalism for
structural recognition of patterns or objects.

The idea to employ high-level knowledge for the guidance or control of low-
level image analysis processes has ever been conceived since the days of early
work of Kanade [5] and, e. g., Tenenbaum and Barrow [13]. Performed on single
images – often termed image understanding, compare [12] – the work of Neumann
[4] and colleagues can be seen as a prominent and current work in the field of
top-down control of low-level image analysis. Work on exploitation of high-level
knowledge in form of expectations or anticipations on time-varying imagery –



left-hand constraint right-hand

pprolong longline collinear and overlapping line ... line

pstripe1 road parallel and 6.75m < d < 11.25m longline longline

pstripe2 halfhighway parallel and 16m < d < 19m longline longline

pdstripe highway parallel and 6.0m < d < 8.4m halfhighway halfhighway

pcross bridge crossing the T road highway

Table 1. Example production system for recognizing bridges over highways.

i. e. videos – have been reported by the groups of Dickmanns [3] and Nagel [1],
to name only two. Declarative production rules as means to code knowledge for
aerial image understanding has been introduced, e. g., in the SIGMA system [8].
This includes a discussion on intelligent control of the search – being aware of
the dangerous combinatorics inherent in such formulations.

2 Knowledge-based Recognition by Production Systems

Context-free constrained multi-set grammars are discussed in [7] particularly
with regard to graphical languages and computer interfaces. The basic idea is
generalizing the generative string grammars by replacing the concatenation con-
straint by a more general constraint to be tested in higher dimensional space –
such as a picture. This generalized grammar can then be employed to parse an
image – taking basic image features such as lines as input and trying to derive
complex structures: elements of language defined by the grammar. Next to their
symbolic name the instances then have attributes – such as locations, orienta-
tions, etc. Basically, we have a finite set of non-terminals N and terminals T
and a finite set of production rules p : A→ Σ where only context free forms are
allowed, i. e., A ∈ N and Σ = BC, Bc, or bc with B, C ∈ N and b, c ∈ T . In [10]
recurrent subsystems of the form {p : A→ bb, q : A→ Ab} are approximated by
short-cut productions s : A → b . . . b for particular classes of constraints – such
as adjacency or collinearity. Here clustering techniques or accumulator methods
such as the Hough transform are included in a declarative way into the knowl-
edge representation. Actually, this can not only be done on the terminal level
but also with non-terminals yielding the form s : A → B . . . B. The constraint
is tested on a set of instances of the object class in Σ where the size of this
set is not fixed. In order to distinguish this form we call it cluster form, while
the classical production are said to have normal form. An example production
system is given in Table 1. For the classical language of such systems P one root
object R ∈ N must be reduced from a set of primitive instances S:

Lreduce = {S : {R} ∗−→P S} (1)

where the asterisk has the usual meaning of successive right-to-left reduction
using productions from P . In recognition tasks from out-door scenery usually



clutter objects have to be tolerated. Thus the language is defined as the set of
all primitive object sets S where a set X is reducible that contains a root object:

Lcluttered = {S : R ∈ X ∗−→P S}. (2)

2.1 Recognition Using the Approximate Any-time Interpreter

The language definitions given in Section 2 are of combinatorial nature. To the
best of our knowledge there exists no interpretation algorithm of polynomial
computational complexity for such systems. In order to assure feasibility in the
presence of input data containing several thousands of primitives – as they are
commonly segmented from input images or videos – approximate interpretation
is crucial. Algorithm 1 adapted from [6] gives such method in particular for
Lcluttered. It works on a constantly growing database (DB) of object instances
which is initialized by the set of primitive terminal instances S. It associates
working hypotheses (o, p, h, α) with each instance o in the DB where p is the
partner class (i.e. Σ = op or po), h is the hypothesis type (left-hand side) and α
is the priority. All newly inserted instances cause a working hypothesis initially
with p, h = nil and α set from the quality of the object instance o. When such
a hypothesis is encountered appropriate clones are constructed with p and h
according to the productions in the system. At this point the priority can be
changed.

As can be seen from Algorithm 1 production of normal form are treated in
the usual combinatorial way leading to a branching search tree. Productions of
cluster form are treated differently: Only the maximal set is reduced. All sub-sets
which also may fulfill the constraint are not reduced. This violates the soundness.
Here the algorithm only gives an approximate solution. For the justification of
this see [10] and the definition of the maximal meaningful gestalt in [2]. Cluster
analysis is often iterative. Here this means that for a cluster form production
s : A → b . . . b hypotheses h1 = (b, b, A, α) and h2 = (A, b, A, α) are permitted
– the first for triggering objects b and the latter for triggering objects A. For
justification see again [10]. An example is given with pprolong in Table 1. For
each object longline a hypothesis is formed for further prolonging it. When such
hypothesis triggers, a more accurate query can be posed giving a larger set of
line objects to feed the production.

2.2 Re-evaluation Strategies Control the Search

For all kinds of search control it is demanded that every object concept should
have a quality attribute with it assessing the saliency, relevance, or importance
respectively. This allows comparing instances of the same object concept. In
order to control the search using Algorithm 1 the importance of hypotheses
interrelated with instances of different object concepts have to be compared,
e. g., by weighting factors. So much for the data-driven bottom-up control. But
more can be done. The importance of the hypotheses can be re-assessed with



repeat
sort(queue);
set of hypothesis = choose best n(queue);
foreach trigger hypo ∈ set of hypothesis do

if p=nil then
foreach q where trigger obj ∈ right-hand side do

adjust priority(q);
append queue(trigger elem, q, new priority);

end

else
actual query = construct query(trigger hypo);
candidate set = select DB(actual query);
switch p of type do

case normal form
foreach partner ∈ candidate set do

p:new elem ← (trigger elem, partner);
insert DB(new elem);
construct null hypo(new elem);

end

end
case cluster form

p:new elem ← candidate set;
insert DB(new elem);
construct null hypo(new elem);

end

end

end
remove queue(trigger hypo);

end
foreach newly inserted element do

re evaluate all hypotheses;
end

until root R found OR timeout OR queue=∅ ;

Algorithm 1: Approximate Any-time Interpreter for Production Systems.

respect to the state of the DB reached. We distinguish two different classes of
such importance calculation.

A very simple example for global priority control is delaying hypotheses
(o, p, h, α) for triggering objects o until the set of partner objects p in the DB
is not empty anymore. In the example given in Section 3 this is included in all
variants. When there are multiple hypotheses (o, p, h1, α), . . . , (o, p, hk, α) with
the same triggering instance o there often will be a preference for one of these
inhibiting the others. For the system given in Table 1 actually three hypotheses
are formed for objects longline, namely for pstripe1, pstripe2 and also for pprolong

(see Section 2.1). According to the principle of maximal meaningful gestalts
[2] the hypotheses for further prolonging has high preference over the others.
Only after the prolongation production failed to produce any new instance the



Fig. 1. Local re-evaluation function automatically derived from ’higher’ productions.

other hypotheses regain their original priority. This is included in all our systems.
Furthermore, in production systems with a hierarchy on the non-terminals higher
priorities α can be chosen with rising hierarchy. In the example reported in
Section 3 the priorities were chosen as linear functions of the quality αqual in
overlapping intervals with ascending hierarchy hie using appropriate offset v and
factor w:

αmin(hie) ≤ α = v + (wαqual) ≤ αmax(hie) (3)

This leads to a depth first search characteristic. More dynamically, a histogram
of instance numbers for each symbol of the DB can be acquired with low compu-
tational effort. Hypotheses with h being a frequent object type may be punished
and rare ones rewarded. In the beginning of an interpretation run this also leads
to a depth-first search characteristic. Later with rising computation time the
search will get broader. For the sake of simplicity such control has not been used
in the present system.

Local priority control: With every hypothesis tested there is a triggering
object instance, and this instance is located somewhere in the corresponding
attribute space. Also during the last execution of the foreach trigger hypo block
new object instances have been constructed. Of course while inserting them
to the DB it was tested whether they are not already present there. The re-
evaluation is based on the relation between the newly inserted objects and the
triggering objects of the hypotheses. Since here all pairs of new objects and hy-
potheses have to be considered this causes considerable computational effort. In
Table 2 these extra costs are shown in the column titled top down. The first
possibility for such control is general local inhibition: other hypotheses of the
same production with their corresponding triggering object located close to the
instance at hand will lead to similar queries. Such control has been preliminarily
investigated with a very simple toy production system in [11] using a smooth
re-evaluation function. A similar strategy is appositely termed as anticipation
or focus of attention: It uses declarative knowledge from productions that con-
tain both, the newly built object and the object resulting from the triggered
hypothesis. Figure 1 gives an example: On the abscissa here we have distance of



success partial time out failure production sorting top down complete

with 15 13 6 7 8.22 8.18 0 17.25

without 22 11 2 6 2.03 2.80 3.76 8.89

Table 2. Number of fully/partial successful cases with and without anticipation
control strategy and average runtimes in seconds.

a location from a newly built object long-line. All hypotheses building long-line
objects are re-evaluated. If the corresponding objects are very close their prior-
ity will be multiplied by 0.1. The focus of attention is at a particular distance
interval. Here the weighting factor will be 2. Otherwise, their priority will not be
changed. Qualitatively, this is similar to the smooth re-evaluation functions used
in [11], but has more parameters and is more focused – recall that this has to be
defined for all combinations. Interesting here is that the particular distance and
the width must be taken from ”higher” productions. In the example the priority
of hypotheses with triggering objects line is doubled because an object longline
has been constructed in the vicinity and another such object is needed here in
order to form an object road. The construction of the focus of attention uses the
constraint predicate of the production forming road-stripe objects. This means
that declarative knowledge and control knowledge interact – a dangerous but
successful thing.

3 Experiments

The simple production system used here (compare Table 1) is designed to recog-
nize bridges over highways. Knowledge – such as the expected width of single
carriage ways used in production pstripe2 (and in the localized top-down control)
– can be obtained from Wikipedia. Experiments where made with a set of im-
ages taken during an evaluation run with a test-bed based on Google earth [9].
These images where picked blindly, i. e., the operator sees on the map layer of
Google maps that there should be a landmark consistent with the model at that
location. One of these 41 images actually doesn’t contain a bridge – it is present
in the map, but in the corresponding image there is a construction under way
with the bridge removed. Some other pictures turn out to be difficult: Construc-
tions under way, low contrasts, shadows, similar structures running parallel to
the autobahn, etc. Not every failure of the system may be crucial depending on
the task at hand. We distinguish for classes of recognition behaviour: (1) full
success – the model has been instantiated properly with corresponding contours
in the image, the location is precise; (2) semi success – the model has been in-
stantiated partially correct, the localization is good enough for the task at hand;
(3) no instantiation of the model could be achieved in the time limit – set in
this experiment to 60 seconds; (4) false instantiation of the model to contours
that are really caused by something else. Table 2 gives the success rates with
and without the localized anticipation top-down control function automatically



Fig. 2. Left terminal primitives for this image, center result with bottom up control,
right result with localized top down control, upper row image 17 lower row image 4

derived from higher productions and indicated in Figure 1 (right). In particu-
lar in time critical applications we have fewer problems with recognition failure
due to time out constraints. The anticipation control produces only one such
error – the other time-out is correct because that is the image which contains
no bridge. Whereas, without this control five time-out failures are produced –
and also one correct time-out. All times have been obtained on the same server
machine running eight processors at 3GHz. The instantiation of the productions
is run in parallel threads – thus the time spent on them is not the major part.
The administration of the process queue – in particular sorting and the control
handling – is done serially. We observed one more failure of type (4) with the
default control than with the anticipation control. This cannot be regarded as
significant given the small test sample set. Because this is the most important
type of failure for the assessment of the robustness of the system for the task
at hand we would still like to learn something on this topic from this experi-
ment. We therefore give two examples, where one control works and the other
one fails. Example results can be seen in Figure 2. The sets of primitive objects
are displayed in the left column (usually between 10.000 and 20.000 instances
per picture). The upper example is from a forested area, the lower from a urban
environment. In the forest example the south eastern contour of the bridge is
very weak. Accordingly, the default control concentrates on the strong autobahn
contours – until the time is over. This example counts as a failure of type (3) in
table 1. On the same data the anticipation first instantiates the major contours
of the autobahn. Then it spreads its focus of attention more into the forest. It
also instantiates the critical weak contour of the bridge. However, before this



can trigger any hypotheses other parallel structures in the forest are found to
be consistent with the model. We counted this as a type (4) failure. Thus we see
that the anticipation automatic is not always necessarily better in every single
example. The lower example contains many adjacent salient structures that may
well be confused with the landmark. Important contours of the autobahn are
much weaker than some other contours caused by buildings. Such structures at
the south-western part of the image happen to fit the autobahn model. Some
other road structure then forms the desired ”crossing the T”. This is a clear
type (4) failure. Nothing here corresponds correctly and the landmark position
is localized completely wrong. On the very same data the anticipation control
gives a full type (1) success. A fairly tight cluster of landmark instances is found
in the correct position (in fact some of them also refer to the shadow of the
bridge – which we tolerate as still correct).
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