
Neil Jami

Container Fleet Management in
Closed-Loop Supply Chains

ITWM
Fraunhofer

Container Fleet Management in
Closed-Loop Supply Chains

Neil Jami

FRAUNHOFER VERLAG

Fraunhofer-Institut für
Techno- und Wirtschaftsmathematik ITWM

Kontakt:
Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM
Fraunhofer-Platz 1
67663 Kaiserslautern
Telefon +49 631/31600-0
Fax +49 631/31600-1099
E-Mail info@itwm.fraunhofer.de
URL www.itwm.fraunhofer.de

Bibliografische Information der Deutschen Nationalbibliothek
Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der
Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im
Internet über http://dnb.d-nb.de abrufbar.
ISBN (Print): 978-3-8396-1210-1

D 386

Zugl.: Kaiserslautern, Univ., Diss., 2016

Druck: Mediendienstleistungen des
Fraunhofer-Informationszentrum Raum und Bau IRB, Stuttgart

Für den Druck des Buches wurde chlor- und säurefreies Papier verwendet.

© by FRAUNHOFER VERLAG, 2017
Fraunhofer-Informationszentrum Raum und Bau IRB
Postfach 80 04 69, 70504 Stuttgart
Nobelstraße 12, 70569 Stuttgart
Telefon 0711 9 70-25 00
Telefax 0711 9 70-25 08
E-Mail verlag@fraunhofer.de
URL http://verlag.fraunhofer.de

Alle Rechte vorbehalten

Dieses Werk ist einschließlich aller seiner Teile urheberrechtlich geschützt. Jede Ver wertung, die
über die engen Grenzen des Urheberrechtsgesetzes hinausgeht, ist ohne schriftliche Zustimmung
des Verlages unzulässig und strafbar. Dies gilt insbesondere für Vervielfältigungen, Übersetzungen,
Mikro ver filmungen sowie die Speiche rung in elektronischen Systemen.
Die Wiedergabe von Warenbezeichnungen und Handelsnamen in diesem Buch berechtigt nicht
zu der An nahme, dass solche Bezeichnungen im Sinne der Warenzeichen- und Markenschutz-
Gesetzgebung als frei zu betrachten wären und deshalb von jedermann benutzt werden dürften.
Soweit in diesem Werk direkt oder indirekt auf Gesetze, Vorschriften oder Richtlinien (z.B. DIN, VDI)
Bezug genommen oder aus ihnen zitiert worden ist, kann der Verlag keine Gewähr für Richtigkeit,
Vollständigkeit oder Aktualität übernehmen.

Container Fleet Management
in Closed-Loop Supply Chains

Vom Fachbereich Mathematik
der Technischen Universität Kaiserslautern
zur Verleihung des akademischen Grades

Doktor der Naturwissenschaften
(Doctor rerum naturalium, Dr. rer. nat.)

genehmigte

Dissertation

von

Neil Jami

1. Gutachter: Prof. Dr. Karl-Heinz Küfer
2. Gutachter: Prof. Dr. Jörg Rambau

Datum der Disputation: 3. März 2017

D 386

Acknowledgements

This work has been done with the financial support of the department Op-
timization of Fraunhofer Institute for Industrial Mathematics (ITWM).

I would like to express my sincere gratitude to my supervisor Prof. Dr. Karl-
Heinz Küfer for giving me the opportunity to work on this PhD thesis in his
department and for the very insightful comments on my research. I thank
everyone form the optimization department for the great environment that
really made me feel confortable in my research.

Special thanks to Dr. Michael Schröder, who introduced me to this chal-
lenging research topic and for the many fruitful discussions that helped me
to define a research direction.

I am also grateful to Jasmin Kirchner for helping me through many admin-
istrative procedures, which allowed me to concentrate on my thesis.

Besides, I thank Martin Berger, Bastian Bludau, Esther Bonacker Elisabeth
Finhold, Tino Fleuren, Michael Helmling, Anna Hoffmann, Helene Krieg,
Dimitri Nowak, Rasmus Schroeder, and Phillip Süss for giving me advises
and helping with some proof-reading.

Finally, I want to thank my family for their love and support.

Kaiserslautern, September 2016

v

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Literature Summary . 3

1.3 Goals of the Thesis . 4

1.4 Outline of the Thesis . 5

2 Problem Description 9

2.1 Problem Statement . 9

2.2 Cost Structure . 12

2.3 Problem Properties . 14

2.4 The Wagner-Within Algorithm 16

2.5 Notations for the Simulations 18

Nomenclature 19

I Deterministic Study 23

3 Deterministic Model 25

3.1 Literature Survey . 25

3.2 Introduction to Network Theory 29

3.3 Problem Analysis . 34

3.4 Flow Network Formulation 37

3.5 Outlook . 41

4 Algorithms for Increasing Demand 43

4.1 Introduction . 43

4.2 Solution without Disposables 44

4.3 Demand Profitability . 47

4.4 Solution Forbidding Close Placements 48

4.5 Solution Allowing Close Placements 55

4.6 Extensions . 60

4.7 Outlook . 63

vi CONTENTS

5 Algorithms for General Demand 65

5.1 Solution without Delay . 65

5.2 Solution without Disposables 70

5.3 Algorithm Forbidding Close Placements 72

5.4 Algorithm Allowing Close Placements 87

5.5 Comparison and Extensions 91

5.6 Network Analysis with Acyclic Flows 94

5.7 Outlook . 109

6 Computational Study 111

6.1 Algorithms Performance . 111

6.2 Multi-Threading . 117

6.3 Compact Network Representation 118

6.4 Cycle-Canceling Algorithm 124

6.5 Simulations . 139

6.6 Outlook . 141

II Stochastic Study 143

7 Strategies for the Stochastic Model 145

7.1 Literature Survey . 145

7.2 Problem Description . 153

7.3 Online Strategy . 155

7.4 Convexity under Linear Cost 159

7.5 Offline Heuristic . 164

7.6 Hybrid Algorithms . 169

7.7 Simulations . 173

7.8 Extensions and Outlook . 176

8 Alternative Models 179

8.1 Saturated Offline Policy . 179

8.2 Offline Solution under Zero Delay 186

8.3 Other Resolution Approaches 191

III Application and Conclusion 197

9 A Real-Life Application 199

9.1 Problem Data . 199

9.2 Description of the Experiments 202

9.3 Experiments . 205

CONTENTS vii

10 Conclusion and Future Research 211
10.1 Problem Statement and Contributions 211
10.2 Resolution Methodology . 212
10.3 Future Research . 213

A Scientific Career 227

B Akademischer Werdegang 229

C Publications 231

1

Chapter 1

Introduction

The objective of this thesis is to develop models and algorithms to plan the
purchasing of reusable containers in a closed-loop supply chain where the
demand is increasing. This first chapter introduces the topic of container
management and describes the contribution of this thesis.

1.1 Motivation

The work in this thesis is motivated by a collaborative research project
in the automotive industry. Our goal is to improve the flow of returnable
containers between an original equipment manufacturer and his supplier. In
this closed-loop supply chain, the supplier provides some car parts to the
manufacturer on a daily basis. For safety and quality reasons, these items
are transported in containers stacked on pallets (see Figure 1.1).

Figure 1.1: Pallet containing several containers

2 CHAPTER 1. INTRODUCTION

The manufacturer owns the containers and keeps most of them in his in-
ventory. He periodically provides empty containers to the supplier. In the
agreement, the manufacturer sends empty containers back to the supplier
on a weekly basis. Because it is expensive for the supplier to hold many con-
tainers, he should keep as few containers as possible. Consequently, there
is a need to manage containers in the logistic chain and decide how many
empty containers should be sent to the supplier.

Furthermore, the actors of the supply chain have noticed a rapid increase
of the demand over time (see Figure 1.2). The second objective of this use
case is to determine when the manufacturer should purchase new returnable
containers, and how many containers to add to the system.

Figure 1.2: Evolution of the expected demand over time.

Shortage of items must be avoided, since stopping the production chain of
cars would incur a huge cost to the manufacturer. Backlogging is not al-
lowed and the supplier must ensure that his production is enough for the
worst case scenario. This is a necessary cost in the supply chain. However,
shortage of containers is possible, and the supplier has the possibility to buy
one-way packages like cardboard boxes to transport the car parts. While
this alternative is definitely profitable is some cases, the use of returnable
containers is favored for safety, cost, and environmental reasons. Cardboard
boxes are disposed by the manufacturer after their arrival and the manu-
facturer must take a special care of the one-way packages, which incurs an
additional cost.

1.2. LITERATURE SUMMARY 3

1.2 Literature Summary

Inventory management problems are one of the most studied scientific topics.
We cite for example “The logic of logistics”from Simchi-Levi et al. [108],
“Foundations of Inventory Management”of Zipkin [143] and “Principles of
Inventory Management”from Muckstadt, [82] among many. Grünert and
Irnich [34] describe the basic problems and models in transportation logistics
as well as the main optimization tools to solve these problems. Some other
books like “Approximate Dynamic Programming”from Powell [90] focus on a
general algorithmic framework and consider applications in logistics, because
logistic problems are very challenging and it requires a lot of efforts to obtain
a good solution. This thesis builds up on two main streams of research: lot-
sizing problems and empty container repositioning problems.

Lot-sizing problems consist in deciding how many items we should buy at
each time period to face future demands, given a setup cost at purchas-
ing and a linear holding cost. A fundamental characteristic of lot-sizing
problems is that, because of the setup cost when purchasing new items, the
optimal policies generally do not purchase items at every period. An impor-
tant part of developing algorithms consists in deciding at which periods the
purchasing should be done.

A fundamental work on lot-sizing problems is fromWagner andWithin [128],
in 1958. They introduce the dynamic lot-sizing problem, where the demand
is deterministic and evolves over a finite time horizon. The authors develop
a dynamic programming based algorithm, which we describe in this thesis
and adapt to our use case. This algorithm is considered as one of the most
influential papers in management science (see Hopp [47]), and many studies
have extended it to more complex models.

When the demand is random, the problem is much more difficult to solve.
Bookbinder and Tan [11] describe three possible strategies to solve the dy-
namic lot-sizing problem under stochastic demands.

In our use-case, an interesting extension of the dynamic lot-sizing problem
includes remanufacturing. A fixed amount of items returns to the manufac-
turer. These returned items can be converted back into ’serviceable items’
and be sold again. Nonetheless, lot-sizing problems with remanufacturing
assume no relationship between the number of sent items and the number of
returning items, which is a fundamental difference with our problem. In our
case, the manufacturer only needs to purchase new containers correspond-
ing to the demand increase. Kiesmüller and Van der Laan [63] present an
inventory control problem where sold products return with some probability
to be then remanufactured and sold again. They show that neglecting the
relationship between demands and returns frequently leads to bad perfor-
mances.

On the other hand, there is also a lot of literature on empty container

4 CHAPTER 1. INTRODUCTION

repositioning problems for both deterministic and stochastic demands. We
refer to Cimino et al. [17] for a state of the art on this topic. The paper
of Kroon and Vrijens [65] sensitizes about the importance of returnable
containers in supply chains and introduces several models to use them.

In the deterministic setting, the problem is usually formulated either as an
integer linear program or as a network flow. In the stochastic setting, many
papers write either a Markov decision process or a stochastic mathematical
program. Since the stochastic problem is at least NP-hard, an approxi-
mation is frequently computed either using approximate dynamic program-
ming (see Powell [90]), or with the help or a meta-heuristic like the gradient
method (see Dong and Song [22]) or the sample average approximation (see
Kleywegt et al. [64]).

However, despite the close relationship between lot-sizing problems and
empty container repositioning problems, very few studies consider the ques-
tioning of purchasing containers. From our point of view, this lack of re-
search comes from two reasons:

1. Firstly, most container management problems have a huge state space,
and are very complex to solve due to the resulting curse of dimension-
ality (see Powell [90]). Consequently, many researchers rather consider
a short time horizon. They can then suppose that every container is
purchased right from the start, without deteriorating much the solu-
tion.

2. Secondly, most of the research on empty container repositioning is
between maritime ports, where the number of containers is known
to be largely sufficient for a middle term planning. The main issue
in maritime container management is the imbalance of the exchanges
between regions. Thus, there is an important need to send empty
containers back to heavy exporting regions rather than purchasing
new containers.

Rather than considering a ramp-up scenario with a growing demand, re-
search papers either consider a stationary demand or add an option of
leasing containers from a third party provider. Alternatively, some stud-
ies assume that the container fleet size is unlimited and that containers can
be stored into depots at a low holding cost. There is a branch of literature
called container fleet sizing, where the objective is to optimize the number
of containers in a generally stationary system.

1.3 Goals of the Thesis

The main goal of this thesis is to propose a first attempt at optimizing
the purchasing plan of returnable containers. We consider both cases of

1.4. OUTLINE OF THE THESIS 5

a deterministic demand and of a stochastic demand. Our work is mostly
restricted to a logistic chain between a single manufacturer and a single
supplier. We assume that there is a central decision maker in the supply
chain aiming at minimizing the joint cost of the two partners. The total
cost is then possibly redistributed between the partners, but that is not the
subject of the thesis.

We put a strong accent on two criteria. Firstly, because of the growing de-
mand on the market, we would like to avoid purchasing every container at
the start. Instead, we gradually increase the container fleet size. Nonethe-
less, purchasing new containers too frequently disturbs the stability of the
supply chain and brings more administrative work. Because of that, we
consider a high setup cost for each container purchasing to models admin-
istrative and management costs. Secondly, we consider positive lead times.
We give a lot of importance to this assumption, because in our application
research project, it takes around two days to transport the items to the
manufacturer, whereas the empty containers are sent every week. Conse-
quently, the number of outgoing full containers should have a strong impact
on the optimal container fleet size. In this thesis, we show that the problem
is much easier to solve without these assumptions.

1.4 Outline of the Thesis

This thesis is divided into two introductory chapters and three parts, as
illustrated in Figure 1.3. Chapter 2 provides a mathematical description of
our container management problem and explains some properties making
this problem challenging to solve. Moreover, we explain the dynamic pro-
gramming framework used in the Wagner-Within algorithm which we use
all along this thesis.

Our first contribution regroups Chapters 3 to 6 and solves the problem
when the demand is deterministic. Every study in this part is based on
flow networks. The deterministic part presents and extends the results from
one of our papers [54]. More precisely, Chapter 3 provides a literature
overview, introduces the reader to the network flow theory, and formulates
the problem as a minimum cost flow on a network with fixed-plus-linear cost.
However, there is no efficient algorithm in the literature to solve this type
of flow problem. Chapter 4 presents a first resolution of the problem, where
we assume that the demand is steadily increasing. Under the hypothesis
that no disposable is bought for shortly after purchasing new containers, we
solve the problem in polynomial time. Algorithm Flow.4.1 is the central
result of our paper [54] and runs in O(T 4 · R2 · log[R · T]2) time. This
algorithm is similar to the Wagner-Within algorithm but computes minimum
linear-cost flows at each iteration. We extend it to different settings such
as multiple suppliers and a bi-objective function. We adapt it to compute

6 CHAPTER 1. INTRODUCTION

Figure 1.3: Outline of the thesis

a feasible solution when the demand is not always increasing, but at the
cost of the optimality property. Chapter 5 is dedicated to a general demand
pattern. We develop alternative algorithms to those from Chapter 4. These
algorithms are optimal under the hypothesis that at least one container must
be idle at each purchasing period. We also propose a very general framework
to solve the problem. In Chapter 6, we finally present a computational study
highlighting the efficiency of our algorithms. In addition, we propose three
ways of improving the running time of our algorithms. We consider parallel
computing, an more compact network representation, and a new algorithm
to compute a minimum linear-cost flow in our flow networks. This algorithm
uses the cycle-canceling framework and is a notable result of this chapter,
as it outperforms the best algorithm of the literature when applied to our
model.

The second part of this thesis includes Chapters 7 and 8. It analyzes the
problem under a stochastic demand. This contribution is based on a second
paper [55]. Chapter 7 develops a literature review in this setting and proves
that the problem is NP-hard. We extend the three lot-sizing strategies de-
scribed by Bookbinder et al. [11] to our container management context. We

1.4. OUTLINE OF THE THESIS 7

complete our solution framework with a fourth strategy corresponding to
the Silver-Meal heuristic (see Silver and Meal [107], Silver [106]). Our algo-
rithms use a Markov decision process framework. The online algorithm runs
in O(T ·R5 ·D6

max) time and the other algorithms in O(T 2 ·R4 ·D4
max) time.

In Chapter 8, we discuss alternative algorithms and ideas from the litera-
ture, to compute a faster solution. This chapter opens up several research
directions which are not developed during my thesis.
The final third part provides an outlook on the thesis. Our last contribution
in Chapter 9 is the application of different policies from this thesis to a real-
life scenario in the automotive industry. Chapter 10 concludes the thesis,
highlighting its contributions and future research directions.

9

Chapter 2

Problem Description

This chapter formally defines our container management problem, which
we call container purchasing problem (CPP). Three assumptions make the
problem more realistic but also more complex. Firstly, the supplier does
not need to exactly match the demand in containers as he can buy single-
use disposables. Secondly, the transportation of containers between the two
actors takes some time, which requires a more careful use of containers.
Thirdly, container purchasing comes at a setup cost, so the manufacturer
does not want to purchase new containers at every period. Afterward we
describe the Wagner-Within Algorithm (W-W). Finally, we explain some
notations we use for our simulations.

2.1 Problem Statement

We consider a cooperation in a closed-loop supply chain where items have to
be transported in packages. Every package has the same size and the same
type, so any package can be used to transport any item. A package can
be either in a returnable container, which we call container, or a single-use
disposable container like a cardboard box, which we call disposable.

We focus on a supply chain between a single supplier and a single manu-
facturer. The supply chain is described in Figure 2.1. The manufacturer
can purchase new containers at a setup cost, while disposables are directly
available at the supplier location. For clarity, we use the verb purchase
exclusively for containers and the verb buy only for disposables.

The time horizon is finite and composed of T periods of R time steps each.
The periods are indexed t ∈ {0, . . . , T − 1} while the steps are indexed
r ∈ {0, . . . , R − 1}. Since every variable is discrete, we use the traditional
interval notations for integral numbers. The time (t, r) corresponds to step
r ∈ [0, R[of period t ∈ [0, T [, which is the (R · t + r)-th point of the time
horizon. We extend the definition of the time to r ∈ Z so that time (t, r)
equals time (t + 1, r − R). In the thesis, we frequently use the notation

10 CHAPTER 2. PROBLEM DESCRIPTION

Figure 2.1: Closed-loop supply chain

(t, r+r′) with r ∈ [0, R[to denote the point in time r′ steps after time (t, r),
even if r+r′ ≥ R. We use the wordings up to and from period t (respectively
time (t, r)) when we include period t (respectively) time (t, r)), and the words
before and after when we exclude it. For instance, the expression “from time
t1 to time t2”denotes the time interval [(t1, 0), (t2, R − 1)], whereas “before
period t”represents the periods t′ < t.
We denote by demands the flow of items in packages from the supplier to
the manufacturer, and by order the flow of empty containers from the man-
ufacturer back to the supplier. A demand Dt,r (or D(t, r)) occurs during
every step r ∈ [0, R[of every period t ∈ [0, T [. We use the notation D(t, r)
when the demand is deterministic and Dt,r for stochastic demand. We de-
note respectively by αt and βt the order size and the purchase size at period
t ∈ [0, T [. At time step r = 0, the purchasing occurs first, followed by the
ordering and finally the demand. We extend the definition of D(t, r) , αt

and βt to t ∈ Z so that:

∀t /∈ [0, T [, ∀r ∈ [0, R[: αt = βt = D(t, r) = 0 (2.1)

We decompose every demand D(t, r) into demand units D(t, r, i) with i ∈ N

so that each demand unit requires the use of one package. We use the
term satisfying a demand as a general term meaning that we send the cor-
responding number of items in packages of any type. In contrast, we say
that a demand unit is fulfilled if the item is put in a container and not in
a disposable. We say that a container fulfills a demand unit if it is used
to transport the item. Without loss of generality, we always fulfill D(t, r, i)
before D(t, r, i+ 1).
We denote by ordering delay Lord ≥ 0 the (integral) number of steps needed
to send empty containers from the manufacturer to the supplier, and by
delivery delay Ldel ≥ 1 the (integral) number of steps to sent full containers
to the manufacturer. In our model, the ordering is done at the beginning of
each time step (t, r) We suppose that the decisions αt and βt are taken ex-
actly at the beginning of time (t, 0) whereas the demandsD(t, r) are satisfied
during time (t, r), i.e. between time (t, r) and time (t, r+ 1). Consequently,

2.1. PROBLEM STATEMENT 11

for an identical ordering and delivery delay in practice, the full containers
relative to demand D(t, r) leave the supplier after time (t, r) and arrive after
time (t, r+Ldel), so these containers can only be ordered starting from time
(t, r+Ldel + 1). On the other hand, the empty containers leaving the man-
ufacturer at time (t, 0) arrive at time (t, Lord), so before demand D(t, Lord)
is satisfied. Thus, for the same transportation time in both directions, we
will have: Ldel = Lord+1. We assume that the ordering and delivery delays
also include the time of every operation from the departure of the contain-
ers from an actor’s stock to their arrival to the other actor’s stock, like the
loading, unloading and cleaning of containers.
We denote by rotation the cycle of a container in the process, from being
ordered to its arrival back to the manufacturer as a full container. We assume
that the minimum rotation time is lower than the ordering frequency:

Hypothesis 2.1 [Delay]:

1 ≤ Lord + Ldel ≤ R (2.2)

We refer to a container as idle during a period t if it is in the manufacturer
stock at time (t, 0) but is not ordered. This container hence stays in the
manufacturer stock up to time (t + 1, 0). A container which is not idle is
said to be busy. A busy container may be transported, in the supplier stock
or even in the manufacturer stock at time (t, r) if it arrived after time (t, 0).
When we decide that a container will be ordered, it will be busy for an
integral number of periods.
At each time (t, r), the events occur in the following sequence:

1. The manufacturer purchases αt containers, if r = 0.

2. The supplier orders βt containers, if r = 0.

3. Empty containers arrive to the supplier, if r = Lord ≥ 0. In particular,
the empty containers immediately arrive if Lord = 0.

4. Full containers sent Ldel ≥ 1 steps ago arrive to the manufacturer.

5. The supplier buys disposables. The coming demand D(t, r) is known
before buying disposables, so the supplier knows exactly how many
disposables he needs.

6. The demand D(t, r) of time (t, r) is entirely satisfied, using disposables
and containers.

We put no limit to the number of containers we can purchase and to the
number of disposables we can buy. Moreover, we assume that a disposable
cannot be kept in the supplier inventory, so that every disposable bought at
time (t, r) must be immediately filled and sent to the manufacturer.

12 CHAPTER 2. PROBLEM DESCRIPTION

We denote by container fleet size ut the number of containers in the sys-
tem at period t before purchasing, and by uαt the container fleet size after
purchasing. We define a policy as a function giving at each time step: the
purchase quantity, the order size and the number of disposables bought by
the supplier.
Our objective is to find a policy of purchasing and ordering returnable con-
tainers in the supply chain at minimum cost, when the demand is globally
increasing. We say that a policy is optimal if it minimizes the joint cost of
manufacturer and supplier.

2.2 Cost Structure

2.2.1 Notations

The costs of the system are separated into container purchasing costs, con-
tainer holding costs and disposable costs. Buying a disposable at time (t, r)
costs Cdis(t, r). Container purchasing at the beginning of period t incurs a
setup cost Csetup(t) plus a price Ccont(t) per container. We denote by place-
ment a period where a positive number of containers is purchased. The
holding cost of a container at the end of time (t, r) is Csup(t, r) for the sup-
plier and Cman(t, r) for the manufacturer. We suppose that containers are
ordered without any cost. We can generalize our model to a constant cost
Cord ≥ 0 per ordered container, as it is equivalent to decreasing the dispos-
able cost by Cord. The cost Cidle(t) of a container being idle during period
t is such that:

∀t : Cidle(t) :=
R−1∑
r=0

Cman(t, r) (2.3)

We suppose that the manufacturer holding cost is positive, as otherwise
we only need to purchase containers at the first period. We consider the
following cost structure:

Hypothesis 2.2 [Cost]: The manufacturer holding cost is lower than the
supplier holding cost so that we keep the excess of containers at the manu-
facturer:

∀t, r, t′, r′ : 0 < Cman(t, r) < Csup(t
′, r′) (2.4)

Moreover, the disposable costs are close enough to each other so that it is
never optimal for the supplier to buy a disposable while holding a container
(see Figure 2.2):

∀t, r : Cdis(t, r) + Csup(t, r) < Cdis(t, r + 1) + Cman(t, r + Ldel) (2.5)

The first assumption is called the non-speculative cost structure, which is
generally assumed in the literature (see Chandoul et al. [12, 13]). It leads
to the following result:

2.2. COST STRUCTURE 13

Manufacturer

Supplier
(t, r)

(t, r + Ldel + 1)

Figure 2.2: Illustration of the second cost assumption: it is more expensive
for a container to follow the red path than the blue path.

Lemma 2.2.1 Under Hypothesis 2.2 [Cost], it is always cheaper to order
containers as late as possible:

R−1∑
r=0

Cman(t, r) + Cord(t+ 1) ≤ Cord(t) +

R+Lord−1∑
r=Lord

Csup(t, r) (2.6)

Proof:

Suppose that a container is ordered at period t but only fulfills a demand
at time (t + 1, Lord) or later. The total holding cost of the container from
time (t, 0) to (t + 1, Lord) is equal to the total supplier holding cost from
time (t, Lord) to (t+1, Lord). By Hypothesis 2.2 [Cost], This cost is greater
than the total manufacturer cost from time (t, 0) to (t+1, 0) which we would
have paid if we ordered the container at time (t+ 1, 0) instead.

�
We call the cost structure stationary if the cost functions Cman, Csup and
Cdis are constants. The second assumption of Hypothesis 2.2 is a conse-
quence of the first one under stationary costs. When the cost functions are
time dependent, we add this assumption to ensure that the supplier must
favor the use of containers. In Figure 2.2, it is cheaper to send a container
at time (t, r) and let it in the manufacturer stock for one step than keeping
it to the supplier stock for one step before sending it.

2.2.2 Demand Profitability

We define the profitability G(t, r) of a demand D(t, r) as the cost difference
of satisfying one of its demand units between using a disposable and a con-
tainer, assuming that a container is in the manufacturer stock. If we use
a container, the cost of this container is equal to the supplier holding cost
from its arrival to the supplier stock to its departure at time (t, r), plus the
manufacturer holding cost from its arrival to the manufacturer stock to the
next ordering time. If we use a disposable, the cost of using a disposable
is the disposable price Cdis(t, r) plus the cost of holding a container in the

14 CHAPTER 2. PROBLEM DESCRIPTION

manufacturer stock during the whole rotation. We have then:

∀r ∈ [0, Lord[: G(t, r) := Cdis(t, r) +

R+r+Ldel−1∑
r′=0

Cman(t− 1, r′) (2.7)

−
R+r−1∑
r′=Lord

Csup(t− 1, r′) (2.8)

∀r ∈ [Lord, R[: G(t, r) := Cdis(t, r) +

r+Ldel−1∑
r′=0

Cman(t, r
′) (2.9)

−
r−1∑

r′=Lord

Csup(t, r
′) (2.10)

We say that a demand is profitable if its profitability is positive. If a demand
is not profitable, then it is always cheaper to satisfy it using exclusively
disposables, no matter how large the container fleet size is. Therefore, we
can assume without loss of generality that every demand is profitable.

2.3 Problem Properties

2.3.1 Effect of Positive Lead Times

Positive lead times add complexity to our container management problem.
The issue is that some demands allow a faster rotation of the containers
than others. If r ∈ [Lord, R − Ldel], the rotation of the container finishes
after one period. On the other hand, for r ∈ [0, Lord[∪]R − Ldel, R[,
the containers need one more period to be back to the manufacturer and
ready to be ordered. We call a time step r and its corresponding demands
D(t, r) preliminary if r ∈ [0, Lord[, early if r ∈ [Lord, R − Ldel], and late if
r ∈]R− Ldel, R[, as illustrated in Figure 2.3.

The rotation in the system takes two periods for preliminary and late de-
mand while it only takes one period for early demands. Indeed, to fulfill
a demand D(t, r) with r ∈ [0, Lord[, the containers must be sent at period
t − 1 and can be re-ordered at period t + 1. To fulfill a demand D(t, r)
with r ∈]R − Ldel, R[, the containers must be ordered at period t but will
arrive to the manufacturer after the ordering time of period t + 1, so they
can only be re-ordered at period t+2. In the special case Lord = 0, there is
no preliminary time step, the early time steps are r ∈ [0, R − Lord − Ldel],
and the late time steps are r ∈]R− Lord − Ldel, R[.

The presence of non-early demands creates a challenge in deciding how many
containers should be ordered at each period, because a part of the containers
ordered at period t cannot be sent at period t+1. Even for stationary costs,
constant fleet size and deterministic demand, an optimal ordering policy

2.3. PROBLEM PROPERTIES 15

Figure 2.3: Partitioning of the demand in a period into preliminary, early
and late demands, when Lord = 2 and Ldel = 3. The time is represented
on the horizontal axis. The solid arrows represent the flow of full packages
from the supplier to the manufacturer, whereas the dotted arrows represent
the flow of empty containers.

may use a container for a late demand with low profitability at period t and
a disposable for a more profitable late demand at period t+1, or reciprocally.

2.3.2 Lost-Sales Models

When the supplier does not have enough containers to entirely fulfill a de-
mand, single-use disposables are bought to get enough packages. This way
of dealing with the lack of packages is called a lost-sales model. Two alterna-
tive models are the non-shortage model, where the supplier must fulfill every
demand using exclusively containers, and the backlogging model, where the
unfulfilled demand is repeatedly postponed to the next period until we have
enough containers. It is also possible to make combination of these strate-
gies.

In the case of backlogging, the supplier has to pay a shortage cost at every
period where containers are missing, so we will pay a shortage cost several
times for the same item until there is a container to fulfill it. In the stochastic
inventory control literature (see Chapter 7), it is well known that the models
with backlogging are much simpler to solve than the models with lost-sales.
Nevertheless, when items are returnable containers, backlogging does not
seem to make the problem simpler since we also need to track the arrival of
full containers at the manufacturer location. Furthermore, in Chapter 3 we
formulate the deterministic version of the container purchasing problem as a
network flow, whereas there is no simple way to model it under backlogging.

2.3.3 Consequences of the Setup Cost

In this thesis, we suppose that a setup cost has to be paid whenever new
containers are purchased. This assumption fundamentally changes the cost
structure of the process because other costs are linearly dependent on the

16 CHAPTER 2. PROBLEM DESCRIPTION

number of corresponding packages. A linear cost structure usually provides
interesting properties helping to solve the problem. In the deterministic
part, we will see that the problem without setup cost can be solved very
efficiently with a minimum linear-cost flow algorithm, whereas including a
setup cost makes it very complex. In the stochastic part, we will see that
the linear problem has convexity properties whereas the case with setup cost
does not.

2.4 The Wagner-Within Algorithm

The W-W model is a pure lot-sizing problem with no direct connection to
container management. The W-W model is referred to as Pww. We muss
satisfy demandsDww(t) over a time horizon of T periods t ∈ [0, T [. However,
they must be entirely fulfilled, without any backlogging or lost-sales.

There is a purchasing setup cost when purchasing items and a holding cost
at the end of each period. The objective is to find a cost minimizing pur-
chasing policy. We call placement a period where at least one container is
purchased. We denote by x(t) the manufacturer stock at the beginning of
period t, before purchasing, and by α(t) the purchase quantity before ful-
filling demand Dww(t). A fundamental property of the W-W model is the
so called zero inventory ordering property :

Proposition 2.4.1 [Zero Inventory Ordering (ZIO) Property [128]]:
There is an optimal solution to Pww so that the manufacturer stock is empty
at the end of each period preceding a placement:

∀t : x(t) · α(t) = 0 (2.11)

This property greatly simplifies the resolution of the problem. If we decide
to purchase containers at period t, then we can divide the problem Pww into
two smaller problems:

1. A first sub-problem fulfilling demands up to period t− 1.

2. A second sub-problem fulfilling demands starting from period t.

We now introduce notations for the W-W algorithm:

• f(k): a policy fulfilling the demands D(t) for t ∈ [0, k[.

• F (k): cost of policy f(k).

• f(k1, k2): a policy fulfilling every demand D(t), for t ∈ [0, k2[under
the assumption that the last placement is at period k1.

• F (k1, k2): cost of policy f(k1, k2).

2.4. THE WAGNER-WITHIN ALGORITHM 17

Figure 2.4: Construction of an optimal solution due to the ZIO property.

• h(k1, k2): the unique policy fulfilling every demand D(t), t ∈ [k1, k2[,
under the assumption that the only placement is at period k1.

• H(k1, k2): cost of policy h(k1, k2).

We say that a policy is locally optimal for a sub-problem if it solves it at
minimum cost. For example, we say that f(k) is locally optimal if it only
fulfills demands from period 0 to period k− 1 and does it at minimum cost.
Clearly, if f(T) is locally optimal, then it is an optimal solution to problem
Pww. We use the notations f∗ and F ∗ for locally optimal solutions. We have
by definition that:

∀k2 : F ∗(k2) = min{F ∗(k1, k2); k1 ∈ [0, k2[} (2.12)

The ZIO property implies that a locally optimal solution f∗(k1, k2) can
be generated by ’adding’ the purchasing policies from any locally optimal
solution f∗(k1) and h(k1, k2), as illustrated in Figure 2.4. Alternatively, if
there is an optimal solution to Pww respecting the ZIO property so that
k is the last placement, then we can generate f∗(T) by computing two
locally optimal solutions f∗(k) and h∗(k, T), where h∗(k, T) contains a single
placement k and f∗(k) is defined on a smaller time horizon.

The W-W algorithm generates a locally optimal solution f∗(N) by comput-
ing every possible value f∗(k1, k2). This algorithm is a dynamic program
that we will use in most of our algorithms. The term dynamic programming
refers to a framework consisting in computing a set of interdependent values
in the right sequence to avoid computing the same value several times. Dy-
namic programming was first introduced by Bellman [9] to efficiently solve
multi-stage mathematical problems.

18 CHAPTER 2. PROBLEM DESCRIPTION

Algorithm 1: W-W algorithm

F (0) := 0;
for period k2 from 1 to T do

k1 := argmin
{
F ∗(k, k2) := F ∗(k) +H(k, k2); k ∈ [0, k2[

}
;

f∗(k2) := f∗(k1) + h(k1, k2);

return f∗(T);

The complexity of this algorithm is O(T 2). Nonetheless, Federgruen and
Tzur [27], Wagelmans et al. [127] as well as Aggarwal and Park [1] found
different approaches to solve this problem in O(T) time. We will not explain
these algorithms here as they are quite complex and we could not extend
them to our container purchasing problem.

2.5 Notations for the Simulations

In our simulations, we randomly generate our demand and cost data. We use
the binomial and uniform distributions: We denote by U(a, b) the uniform
distribution taking any integral value between a and b included. We denote
by B(n, p) the binomial distribution summing n Bernoulli random values, so
the values go from 0 to n.
We write X → D to denote that variable X follows distribution D. In
particular, in the deterministic setting our demand and cost may follow
random distributions; every random value is generated before running the
algorithm. This approach is used to quickly generate different scenarios.
Finally, we define the sum D1 + D2 of two distributions D1 and D2 so
that the random variable is the sum of two random variables following
the corresponding distributions. For instance, a random variable follow-
ing U(1, 3) + B(1, 5) is generated by summing the realizations of a random
variable following U(1, 3) and a second random variable following B(1, 5).

19

Nomenclature

General Notations

(t, r) point in time, corresponding to time step r of period t.

:= Symbol of equality as a definition or affectation.

αt Number of containers purchased at period t (decision).

N Set of natural numbers.

R Set of real numbers.

Z Set of integral numbers.

βt Number of empty containers ordered at period t (decision).

Ccont(t) Unit purchasing cost of a container at period t.

Cdis(t, r) Cost of buying a disposable at time (t, r).

Cidle(t) Total manufacturer holding cost during period t.

Cman(t, r) Manufacturer holding cost at time (t, r).

Csetup(t) Setup cost of purchasing containers at period t.

Csup(t, r) Supplier holding cost at time (t, r).

ut Container fleet size at period t before purchasing.

uαt Container fleet size at period t after purchasing.

Ldel Delivery delay of full containers from the supplier to the manufac-
turer.

Lord Ordering delay of empty containers from the manufacturer to the
supplier.

UM Upper bound of the container fleet size.

k index used exclusively for purchasing times.

20 CHAPTER 2. PROBLEM DESCRIPTION

R Number of time steps per period (ex. working days per week).

r index used exclusively for time steps.

T Number of periods (ex. weeks).

t index used exclusively for periods.

CPP Container Purchasing Problem.

Notations for the Deterministic Study

adis Arc representing the use of disposables.

aend Arc representing the leftover containers at the end of the time hori-
zon.

aend Arc representing leftover containers at the end of the time horizon in
the networks for Algorithms Flow.4.1 and Flow.4.2.

a5.1end Arc representing leftover containers at the end of the time horizon in
the networks for Algorithm Flow.5.1.

a5.2end Arc representing leftover containers at the end of the time horizon in
the networks for Algorithm Flow.5.2.

Flow.4.1 First deterministic algorithm developed for increasing demand.

Flow.4.1 Second deterministic algorithm developed for increasing demand
and allowing close placements.

Flow.5.1 First deterministic algorithm developed for general demand pat-
terns.

Flow.5.2 Second deterministic algorithm developed for general demand pat-
terns and allowing close placements.

aman Arc representing the container holding for the manufacturer.

apur Arc representing the container purchasing.

asup Arc representing the container holding for the supplier.

CA(f) Container assignment on flow f .

F Specific subnetwork of G.
G Network modeling the deterministic problem.

H Specific subnetwork of G.
Mcf Cost of an arbitratry minimum linear-cost flow algorithm.

2.5. NOTATIONS FOR THE SIMULATIONS 21

SP Cost of an arbitratry shortest path algorithm.

G(t, r) Profitability of demand D(t, r).

vman Node representing the manufacturer stock at time (t, r).

vpur Node representing the third party provider who produces new con-
tainers.

vsup(t, r) Node representing the supplier stock at time (t, r).

D(t, r) Demand at time (t, r).

D(t, r, i) Demand unit number i in D(t, r).

D
[
(t1, r1) → (t2, r2)

]
Total demand in the time interval [(t1, r1), (t2, r2)].

f Flow on the corresponding network F .

f∗ Minimum cost flow on the corresponding F .

h Flow on the corresponding network H.

h∗ Minimum cost flow on the corresponding network H.

DCPP Deterministic Container Purchasing Problem.

Notations for the Stochastic Study

E Expected value operator.

F Cumulative distribution function.

P Density function.

Δt,r Random variable for the number of containers used for demand Dt,r.

δt,r Realization of variable Δ(t, r).

Dmax Upper bound of the demand variables Dt,r.

EoH End of the time horizon, after which the costs and the demands are
null.

ut Random variable for the container fleet size at period t before pur-
chasing.

uαt Random variable for the container fleet size at period t after pur-
chasing.

γt Online decision at period t.

22 CHAPTER 2. PROBLEM DESCRIPTION

ψ Expected cost of the current time or period.

ϕ Expected cost of the considered policy from the current time and
state up to the end of the time horizon.

ϕ′ Expected cost function.

ϕ∗ Expected cost of an optimal policy from the current time and state
up to the end of the time horizon.

ŝt,r = [x̂t,r, ŷt,r, ẑt,r] Realization of the alternative state formulation.

St,r Random variable of the process state at time (t, r).

st,r Realization of variable St,r.

Dt,r Random variable for the demand at time (t, r).

dt,r Realization of variable D(t, r).

Xt,r Parameter of state St,r.

xt,r Realization of variable Xt,r.

Xt Supplier stock at period t.

Yt,r Parameter of state St,r.

yt,r Realization of variable Yt,r.

Yt Manufacturer stock at period t.

Zt,r Parameter of state St,r.

zt,r Realization of variable Zt,r.

Zt Number of outgoing full containers at at period t.

SCPP Stochastic Container Purchasing Problem.

23

Part I

Deterministic Study

25

Chapter 3

Deterministic Model

In this chapter, we describe the deterministic container purchasing problem
(DCPP) and model it as a minimum cost flow on a network with concave
cost. Solving this flow problem is the subject of the next chapters.

Section 3.1 provides a detailed state of the art, regrouping literature on
both lot-sizing and container management problems. Section 3.2 introduces
the reader to network flows. Section 3.3 analyzes properties specific to the
deterministic model. Finally, Section 3.4 formulates the network flow.

3.1 Literature Survey

The deterministic container purchasing problem in this thesis builds up on
two main streams of research, namely lot-sizing problems and empty con-
tainer repositioning problems.

3.1.1 Lot-Sizing Problems

Lot-sizing problems consist in deciding how many items we should buy at
each time step to face future demands, given a manufacturing setup cost
and a linear holding cost.

The research on lot-sizing is very old, and the current literature is very large.
Harris [41] determines the economic order quantity in a logistic process with
constant demand and stationary costs. This formula gives the optimal order
quantity and the optimal order interval in a continuous review production
system. In such a system, the time horizon is not discretized into periods
and thus items can be produced at any time. In particular, this study has
been extended by Donaldson [21] to a linearly increasing demand.

Dynamic Lot-Sizing Problems

A fundamental work on lot-sizing is due to Wagner and Within [128]. They
introduce the dynamic lot-sizing problem, where the cost functions and the

26 CHAPTER 3. DETERMINISTIC MODEL

demand may vary over a finite and discrete time horizon of T periods. They
provide a first resolution in O(T 2) time using dynamic programming (see
Chapter 2). The heuristic from Silver and Meal [107] is a very popular
heuristic for the dynamic lot-sizing problem to approximate at every place-
ment the optimal purchase size and the next placement. Such an algorithm
is particularly interesting when applied to a rolling horizon environment,
where exact algorithms are not efficient due to the time horizon being unlim-
ited. When the time horizon is finite, Van den Heuvel and Wagelmans [123]
show however that the worst case performance guaranty of a rolling horizon
heuristic is at best two, i.e. for every rolling horizon policy there exists a
demand pattern and cost functions so that the policy cost is at least twice
as great as an optimal policy.

Aksen et al. [3] propose an extension of the Wagner-Within (W-W) algo-
rithm allowing lost-sales in O(T 2) time. The dynamic lot-sizing problem
has been widely extended to more complex scenarios, including in particu-
lar stochastic demands, product remanufacturing, production capacity con-
straints or perishable products. In his thesis, Van den Heuvel [122] describes
and analyzes different dynamic lot-sizing variants. He proposes efficient
heuristics and performance bounds for the dynamic lot-sizing problem and
extensions to remanufacturing and pricing. In the following, we present
extensions related to our research.

Lot-Sizing with Remanufacturing

The remanufacturing option is somehow very close to our use of containers,
but differs from it by the lack of relationship between departure and arrival
of the items: in lot-sizing problems with remanufacturing, it is assumed
that the product returns are known in advance and do not depend on the
previous demand. This means in particular that more products can return
than the number that had been sent, and that backlogging and lost-sales
have no impact on the returns.

Richter and Sombrutzki [94] as well as Richter and Weber [95] propose lot-
sizing models with simple remanufacturing options, where we have either
a purchasing option or a remanufacturing option. Golany et al. [31] and
Yang et al. [134] consider a lot-sizing problem with separate decision of
manufacturing and remanufacturing products and with concave costs. They
formulate the problem as a network flow, prove that it is NP-hard even
for stationary costs, and provide a heuristic algorithm. Teunter et al. [119]
study the dynamic lot-sizing problem with linear costs and either joint or
separate setup costs for manufacturing products and remanufacturing re-
turned products. For joint costs, they prove that there the stock at the
beginning of any period has at most O(T 2) possible values. They deduce a
O(T 4) time extension of the W-W algorithm. For separate setup costs, they
conjecture that the problem is NP-hard and propose an heuristic. Van den

3.1. LITERATURE SURVEY 27

Heuvel [121] proves that the dynamic lot-sizing model with separate setup
costs is NP-hard. Helmrich et al. [46] consider and develops the previous
lot-sizing models with remanufacturing. In particular, they show that the
models with joint and with separate setup cost are NP-hard. Moreover,
they develop and simulate efficient heuristic algorithms. Wang et al. [130]
consider a lot-sizing problem with remanufacturing and outsourcing, where
the outsourcing option is equivalent to lost-sales. In their setting, manu-
facturing and remanufacturing have separate setup costs, and they solve
the problem similarly to [119]. Schulz [102] proposes an extension of the
Silver-Meal heuristic to include a remanufacturing option.

Multi-Echelon Lot-Sizing

Our problem shares similarities to two-echelons lot-sizing problems. The
first echelon represents the manufacturer dealing with container purchasing
and packages arrival. The second echelon represents the supplier receiving
empty containers and sending full packages. Zangwill [138] proposes an
algorithm in O(T 4 · N) time to solve a lot-sizing problem on N echelons,
where demands only occur in the last echelon. When N = 2, the complexity
is improved to O(T 3) by Van Hoesel et al. [124], then to O(N2 ·T 2 ·log[N ·T])
by Melo and Wolsey [76]. Lee et al. [67] provide an O(T 6) algorithm for N =
2 with demand backlogging. Melo and Wolsey [77] describe heuristics for
this problem. Barany et al. [7] present a polyhedral study for a multi-echelon
lot-sizing problem, leading to fast algorithms which can be generalized to
more complex models. The book of Pochet et al. [88] gives an review of
extensions. The closest multi-echelon study to our problem is from Zhang
et al. [140], who consider a lot-sizing with several echelons of demands.
Indeed, for three echelons, their model consists in one echelon of purchasing
and two echelons of demand. The network flow we describe in this chapter
can be seen as composed of three echelons: one echelon of purchasing, one
echelon of negative demand representing container arrival and one echelon
of positive demand. An echelon of purchasing may be modeled as an echelon
of high negative demand, where the last period of the time horizon is kept
to store the not-purchased containers. If we invert the sign of the demands,
our supplier echelon corresponds to the echelon of purchasing whereas our
manufacturer and purchasing echelons correspond to the two echelons of
demand. Zhang et al. solve a three echelons problem in O(T 4) time.

3.1.2 Empty Container Repositioning

In the literature on empty container repositioning, most papers formulate
either a minimum linear-cost flow or an integer program. Flow networks
are typically time-expanded graphs, containing a node per location and per
time period plus a few additional nodes. The arcs represent the flow of

28 CHAPTER 3. DETERMINISTIC MODEL

containers between locations from one time period to a later one. One
of the earliest work in container management is due to White [132]. He
formulates a minimum linear-cost network flow and solved it with the out-
of-kilter algorithm, which was the best algorithm at the time. This algo-
rithm is pseudo-polynomial and not as efficient as the algorithms we use
in this thesis. Crainic et al. [18] present deterministic and stochastic mod-
els for the empty container repositioning problem. They provide a general
framework to solve the deterministic container management problem using
network flows. The stochastic problem is modeled as a two-stage stochastic
program. Gao [28] proposes an integer linear program to optimize the ini-
tial container fleet size and the container repositioning decisions in a liner
shipping system. Shen and Khoong [103] describe an empty container repo-
sitioning decision system allowing the decision maker to not fulfill every
demand. This lost-sales option is equivalent to our use of disposables, as in
both cases the company has to pay an extra amount of money for not sat-
isfying a part of the demand, and one less container arrives to the demand
destination. Karimi et al. [61] consider a large scale container repositioning
problem in the chemical industry. They assume that the container fleet size
is infinite and propose an efficient linear programming formulation. Erera
et al. [25] also study an intermodal container management problem for a
chemical industry. The problem is formulated as minimum linear-cost flow
on a time-expanded network, clustered into geographic regions. The trans-
port between two locations in the same region is cheap and fast, whereas the
transport between two different clusters is long and expensive. In another
paper [24], the authors generalize their study to uncertain demands using a
robust optimization approach. Jula et al. [60] study a more complex con-
tainer management system where each demand must be satisfied in a time
window. The decision maker owns different trucks and must give a traveling
route to each truck. Olivo et al. [84] formulate a minimum linear-cost flow
for empty container management. They try to fix the container imbalance in
a process where each demand must be satisfied during a given time interval.
To avoid infeasibility, they extend their model to add an option of leasing
containers. Container leasing has an excessive cost so that it is only done
when necessary. This is different from our DCPP where we look for a com-
promise between the use of disposables and containers. Di Francesco [20]
considers in his thesis several deterministic container management problems
and models each of them either as a network flow or as an integer linear
program. In Chandhoul et al. [12], the authors analyze a container manage-
ment problem between a single manufacturer and a single supplier. They
include the option to store unused containers in a depot. Contrary to the
other papers, this paper assumes that the lead time between the location
is immediate. The authors also assume that every demand must be fully
satisfied, hence consider no lost-sales and no disposable. Imai et al. [52]
compare two kinds of large scale service networks. The multi-port network

3.2. INTRODUCTION TO NETWORK THEORY 29

allows locations to directly exchange containers. On the other hand, the
hub-and-spoke model only allows one location from each region to send and
receive containers from outside of the region. Glock and Kim [30] consider a
supply chain between a supplier and several clients for a constant demand.
They focus on the ordering decision when the production rate is limited.

Up to this point, very few papers on empty container repositioning include
a purchasing option at a setup cost, as this consideration makes the problem
much more complex. The only papers we are aware of are from Chandoul et
al. [13] and Moon et al. [79]. Both solve the problem using integer linear pro-
gramming. In Chandhoul et al. [13], the authors consider the same model as
in their previous work [12], so without lead times or disposables, and deduce
some properties of the optimal solutions. Moon et al. [79] consider empty
container repositioning among multiple maritime ports, with container pur-
chasing and container leasing options. The leasing-in and leasing-off options
are a simple way to manage containers when the demand is fluctuating. Con-
tainers are leased-in when the demand is too high and leased-off when the
demand decreases. Containers are purchased at a high unit cost but with-
out setup cost, and are leased at a low unit cost but with a setup cost. The
objective of having two different cost structures is to make the distinction
between the desired container fleet size, and the demand surges. The authors
also include a setup cost for container transportation, and approximate the
optimal solution with a genetic algorithm.

3.2 Introduction to Network Theory

3.2.1 Definition

Network flow problems can be described as the task of sending some com-
modities through a network from some locations to some others and sat-
isfying some cost and capacity constraints. The two main flow problems
are

1. the maximum flow problem, where we want to send as many commodi-
ties as possible from one point to another, under some restrictions on
the number of items we can send through each route.

2. the minimum cost flow problem, where we want to send a specified
number of commodities between some points at minimum cost, under
some cost structure whenever we send items through a route.

In this thesis, we are exclusively interested in the minimum cost flow prob-
lem. A flow network is a directed graph G = (VG , AG , CG , EG , UG , LG), where:

• VG is a set of nodes representing some locations at a specified point in
time, and

30 CHAPTER 3. DETERMINISTIC MODEL

+12

−10 −5

+3
1 2

113

3

3

2

2

1

Figure 3.1: Example of a flow network. Each node is annotated with its
excess value if not zero, and each arc with its linear cost. Sources are in
blue while sinks are in red.

• AG is a set of directed arcs between two nodes of VG , representing the
shipping routes.

An example of a flow network is given in Figure 3.1. Each node v ∈ VG
is associated to an excess EG(v) representing the number of commodities
provided or needed. A node v with EG(v) > 0 has an excess of commodities
to get rid off and is called a source, whereas a node with negative excess has
a need of commodities and is called a sink. Each arc a ∈ AG possesses a
cost function CG(a) so that sending x commodities over the arc incurs a cost
CG(a)(x). In addition, there may be a minimum LG(a) ≥ 0 and a maximum
UG(a) ≥ 0 number of commodities that can be sent over any arc a. We
define the flow in an arc a as the number of commodities sent through this
arc. We define a pseudo-flow as a function f attributing a flow in each arc.

Given an arc a = (v1, v2) going from node v1 to node v2, we say that the
flow of arc a goes out of v1 and goes in (or goes to) v2. Given a node v ∈ VG ,
we denote by InG(v) and OutG(v) to set of arcs going in node v and going
out of node v respectively. We then define the imbalance of a node as its
resulting excess after sending commodities according to the current pseudo-
flow. Thus, the node’s imbalance equals its excess plus the total flow going
to it and minus the total flow going out of it. We say that a node respects
the imbalance constraint if its total imbalance is zero. A pseudo-flow f on
network G is called flow if every node respects the imbalance constraint.
Given network G, the objective of the minimum cost flow problem is to
compute a flow f∗ on G minimizing the total costs:

min
f

∑
a∈AG

CG(a) (f(a)) (3.1)

s.t.

LG(a) ≤ f(a) ≤ UG(a) ∀a ∈ AG

EG(v) +
∑

a∈InG(v)

f(a) +
∑

a∈OutG(v)

f(a) = 0 ∀v ∈ VG

3.2. INTRODUCTION TO NETWORK THEORY 31

In our networks, we will always have:

LG(a) = 0 ∀a ∈ AG (3.2)

We say that a network is uncapacitated if

UG(a) = +∞ ∀a ∈ AG (3.3)

Network flows received a lot of attention in the scientific community in the
second half of the twentieth century, and are now frequently used to solve
deterministic economical problems. The following literature review covers
flow networks with linear cost functions and with concave cost functions.

3.2.2 Results on Minimum Linear-Cost Flows

The minimum linear-cost networks assume that the cost of the flow in each
arc is proportional to the flow quantity. These networks are simple and
have very nice properties. We recommend the book of Ahuja et al. [2] for
an introduction to network flows and to algorithms on linear-cost networks.
Under linear costs, there is a large number of algorithms to compute a
minimum cost flow, including the well known simplex algorithm and the
out-of-kilter algorithm.

We distinguish two main frameworks of algorithms to solve the minimum
linear-cost flow problem. In the first strategy, we start with an empty
pseudo-flow and turn it into an optimal flow by iteratively adding some
flow in the arcs. The second approach starts from a sub-optimal flow and
improves it until it has minimum cost.

The two most interesting families of algorithms for us are the minimum
cycle-canceling algorithms and the successive shortest path algorithms, as
both can solve the minimum linear-cost flow problem in polynomial time [2].
In the following, we review these two approaches.

Shortest-Path-based Algorithms

Successive shortest path algorithms start with an empty pseudo-flow on the
network and iteratively compute a minimum cost path from an arbitrary
source to an arbitrary sink and add it to the current pseudo-flow solution.
Once the imbalance property is respected for every node, the solution is a
minimum linear-cost flow.

In each iteration, the path is computed using a shortest path algorithm in
the so-called residual network relative to the current pseudo-flow solution:
given a pseudo-flow f on an uncapacitated network G, the residual network
R(f) is a capacitated network so that any pseudo-flow f ′ on R(f) induces
a feasible pseudo-flow f + f ′ on G so that the cost of f + f ′ equals the cost
of f plus the cost of f ′. The residual network R(f) has different arc costs

32 CHAPTER 3. DETERMINISTIC MODEL

than G, and an additional arc a′ = (v2, v1) for each arc a = (v1, v2) with
positive flow in f . For further details, we refer to Ahuja et al. [2].
On general networks, the Dijkstra algorithm is the fastest one and computes
the shortest path from one node to every other node in O(M +N · log[N])
time, where N denotes the number of nodes and M the number of arcs.
Currently, the most efficient algorithm, both in theory and in practice, is
the enhanced capacity scaling (ECS) algorithm developed by Orlin [85].

Theorem 3.2.1 (Orlin 1993) Let G be an uncapacitated network with
linear costs, N nodes and M arcs. Let SP be the time complexity to compute
a shortest path from one node to every other node in G. Then the ECS
algorithm computes a minimum cost flow on G in O (N · log[N] · SP) time.

Corollary 3.2.2 (Orlin 1993) Using the Dijkstra algorithm, the ECS al-
gorithm solves the uncapacitated minimum linear-cost flow problem in time
O
(
N · log[N] · (M +N · log[N])

)
.

This algorithm sends big amounts of flow at once, from sources with big
excess to sinks with high demand, in order to reduce the number of shortest
path computations. More precisely, it sets a scaling value Δ, and sends Δ
flow units from a node with excess above Δ · (N − 1)/N to a node with
excess below −Δ/N , or from a node with excess above Δ/N to a node with
excess below −Δ · (N−1)/N . If there are no such nodes, the scaling value is
halved: Δ := Δ/2. The particularity of this algorithm compared to others
is that adding a shortest path may transform a source into a sink or a sink
into a source, for the sake of reducing the running time.

Cycle-Canceling-based Algorithms

An alternative way to compute minimum linear-cost flows is by using a
cycle-canceling algorithm. In this framework, we define a negative cycle of
a flow f as cycle and a direction so that:

• At least one flow unit can be added in the cycle. An arc a in the
forward direction in the cycle can be incremented by up to UG(a)−f(a)
units, whereas an arc a in the backward direction in the cycle can be
incremented by up to f(a)− LG(a).

• The total cost of the directed cycle is negative, where a forward-
directed arc a is affected to the unit cost CG(a) and a backward-
directed arc a is affected to the unit cost −CG(a).

Ahuja et al.[2] show that a flow in a linear-cost network is optimal if it does
not contain any negative cycle:

Theorem 3.2.3 (Ahuja et al. 1993): In a linear-cost network, a flow is
optimal if and only if it contains no negative cycle.

3.2. INTRODUCTION TO NETWORK THEORY 33

Sending flow forward on a negative cycle decreases the cost of the solution.
This operation is called removing a negative cycle. Therefore, by iteratively
finding and removing negative cycles, we gradually improve the solution and
end up with an optimal flow after a finite number of iterations1.
A strongly polynomial variant of this algorithm removes cycles with min-
imum mean cost, i.e. so that each removed cycle minimizes the average
cost per arc. In Chapter 5, we use Theorem 3.2.3 to prove that one of our
operations preserves flow optimality. In Chapter 6, we develop our own
cycle-canceling algorithm.

3.2.3 Literature on the Minimum Concave-Cost Flow

The minimum cost flow problem is much more complex to solve when the
costs are not linear. In particular, Garey and Johnson [29] prove that finding
a minimum cost flow is NP-hard when the costs have a concave structure.
The result can also be found in Johnson [59].

Theorem 3.2.4 (Garey and Johnson 1979): The minimum concave-
cost flow problem is NP-hard.

In this chapter, we formulate the deterministic container purchasing problem
as a fixed-plus-linear-cost flow problem, where each arc has a cost propor-
tional to the amount of flow in it plus a fixed value if the flow is positive.
This is a special case of concave-cost networks.
One of the most important results on minimum concave-cost flows is by
Zangwill [137], who provides a characterization of an optimal solution:

Theorem 3.2.5 (Zangwill 1968): In any uncapacitated network with
concave costs, there exists at least one acyclic minimum cost flow.

Zangwill [138] studies the minimum concave cost network with a single
source, and an application to lot-sizing problems. Veinott [126] analyzes a
class of minimum concave-cost networks and some applications in logistics.
Graves and Orlin [33] study some instances of concave-cost networks and
apply their algorithm for the lot-sizing problem with fixed-plus-linear costs.
Erickson et al. [26] propose a minimum concave-cost flow algorithm that is
polynomial in the number of nodes and arcs, but exponential in the number
of non-zero excess nodes. In the coming chapter, our formulation has a lin-
ear number of non-zero excess nodes. Therefore this algorithm is not suited
for our network. Guisewite and Pardalos [37] overview minimum concave-
cost networks and show the NP-hardness of some special cases. Guisewite
and Pardalos [38] provide a strongly polynomial algorithm for the single-
source uncapacitated minimum concave-cost flow in a network with a single

1This is because a negative cycle removes at least one cost unit and any flow has a
non-negative cost.

34 CHAPTER 3. DETERMINISTIC MODEL

non-linear-cost arc. Aggarwal and Park [1] use the data structure of Monge
arrays to improve the complexity bound of some lot-sizing problems. In par-
ticular, they improve the algorithms of [33] and [26]. Recently, He et al. [44]
have proven that the minimum concave-cost flow problem is polynomial if
the network has a grid structure. In our case, the flow network would have
a grid structure if there was no lead time or no disposables. This result is
mostly of theoretical importance, due to the excessively large time complex-
ity of the algorithm. A more complete study has then been proposed in the
thesis of He [43].

3.3 Problem Analysis

3.3.1 Use of Disposables

We stated in Chapter 2 that the supplier buys disposables when he does
not have enough containers for the demand. Under deterministic demand,
it is debatable whether the use of disposables is meaningful or not. Indeed,
disposables are usually considered to face a random demand with a high
variance so that we can order a reasonable number of containers while being
able to satisfy an unexpected demand surge. Shen and Khoong [103] firstly
consider the problem without lost-sales, and then include a lost-sales option.
Meanwhile, Di Francesco [20] as well as Chandhoul et al. [12, 13] assume
that the demand cannot be lost or backlogged.

In this thesis, our main objective is to compute a solution allowing dispos-
ables. Nevertheless, the setting without disposables is much simpler and is
solved in Chapters 4 and 5 respectively for an increasing demand and under
a general demand pattern. Afterward, we compare the performance of the
two alternatives in Chapter 6.

We expect an optimal policy to buy some disposables during the few last
periods before a placement, since it is intuitively the point where we may
be lacking containers in the system.

3.3.2 Ordering Delay

We simplify DCPP using the following lemma:

Lemma 3.3.1 Under deterministic demand, every instance of DCPP is
equi-valent to an instance with zero ordering delay.

Proof:

Consider a problem with Lord > 0 and Ldel ≤ R − Lord. We can re-index
the time for the supplier with (t, r)′ := (t, r + Lord). The empty containers
ordered from the manufacturer at time (t, 0) arrive to the supplier at time
(t, 0)′, and the loaded parts departing from the supplier at time (t, r)′ arrive

3.3. PROBLEM ANALYSIS 35

to the manufacturer at time (t, r + Lord + Ldel). Consequently, the system
with ordering time Lord and delivery time Ldel is equivalent to a system with
ordering time 0 and delivery time Lord+Ldel, where the demands arrive Lord

time steps earlier.

�
Starting from now and until the end of the deterministic study, we assume
that Lord = 0, i.e. that the ordered empty containers instantaneously arrive
to the supplier. This result does not hold for stochastic demands because,
when we must take the ordering decision, we do not know the exact leftover
supplier stock at order arrival.

Assuming Lord = 0 simplifies our notations as we now only have early steps
r ∈ [0, R−Ldel] where full containers arrive during the same week, and late
steps r ∈ [R−Ldel+1, R−1] where full containers only arrive after the next
ordering time. We have no preliminary time step anymore.

3.3.3 Supplier Stock Holding

The following lemma is a direct consequence of Lemma 2.2.1 in case of a
deterministic demand.

Lemma 3.3.2 Suppose that Hypothesis 2.2 [Cost] holds. In every optimal
deterministic policy and for each period t, the supplier stock is empty after
satisfying demand D(t, R− 1).

Proof:

Suppose that the supplier still has a container after satisfying demand
D(t, R − 1) at some period t. This container has been ordered at period t
or before. By Lemma 2.2.1, ordering it at period t+1 instead decreases the
solution cost.

�

Corollary 3.3.3 Under Hypothesis 2.2 [Cost] and in every optimal deter-
ministic policy, any ordered container returns to the manufacturer within
two periods of time.

3.3.4 Maximum Fleet Size

By Corollary 3.3.3 we can bound the maximum fleet size with the total
demand within a two periods interval. We denote by D

[
(t, r) → (t′, r′)

]
the

total demand from time (t, r) up to time (t′, r′).

36 CHAPTER 3. DETERMINISTIC MODEL

Lemma 3.3.4 Suppose that Hypothesis 2.2 [Cost] holds. Then, in the sys-
tem we will never need more than UM containers, where:

UM := max
t∈[0,T [

⎧⎨
⎩

R−1∑
r=1−Ldel

D(t, r)

⎫⎬
⎭ (3.4)

Proof:

The optimal fleet size is bounded by the maximum number of containers
that we may need at any decision time (t, 0). During period t ∈ [0, T−1], the
number of outgoing containers is bounded by the total late demand of the
previous period, from time (t−1, R−Ldel+1) to (t−1, R−1). In addition,
by Lemma 3.3.2, an optimal policy never orders more than

∑R−1
r=0 D(t, r)

containers during period t. Therefore, at the beginning of any period t we
need at most than UM containers in the system.

�

3.3.5 Integer Linear Program

The deterministic problem can be formulated as an Integer Linear Program
(ILP). We denote by δ(t, r) the number of containers used to fulfill demand
D(t, r). We recall that by Hypothesis 2.2 the disposables must be directly
used and cannot be held in stock. We define γ(t) := �

[
α(t) > 0

]
, and denote

by Xend(t, r) and Yend(t, r) the supplier and the manufacturer stock at the
end of time (t, r). In the integer linear program, the variables are one or
two dimensional vectors indexed with characters ’[]’ instead of ’()’:

min
α,β,δ,γ

T∑
t=0

[
γ[t] · Csetup(t) + α[t] · Ccont(t)

+

R∑
r=0

(
Xend[t, r] · Csup(t, r) + Yend[t, r] · Cman(t, r)

− δ[t, r] · Cdis(t, r)
)]

(3.5)

s.t.

Yend[0,−1] = 0

Yend[t, 0] = Yend[t,−1] + α[t]− β[t] + δ[t,−Ldel]

Yend[t, r] = Yend[t, r − 1] + δ[t, r − Ldel], ∀r ∈]0, R[

Xend[t, 0] = β[t]− δ[t, 0]

Xend[t, r] = Xend[t, r − 1]− δ[t, r], ∀r ∈]0, R[

δ[0,−Ldel] = 0

δ[t, 0] ≤ β[t]

3.4. FLOW NETWORK FORMULATION 37

δ[t, r] ≤ X[t, r − 1], ∀r ∈]0, R[

δ[t, r] ≤ D(t, r)

β[t] ≤ α[t] + Yend[t,−1] + δ[t,−Ldel]

γ[t] ≤ 1

α[t] ≤ UM · γ[t]
α[t], β[t], δ[t, r], γ[t] ≥ 0

α[t], β[t], δ[t, r], γ[t] ∈ N

3.4 Flow Network Formulation

We formulateDCPP as a minimum fixed-plus-linear-cost flow, as illustrated
in Figure 3.2. The above part shows a general description of the network
while the below part indicates the linear-costs and the excess values for a
representative subnetwork. We later analyze arc capacities in the network.

Figure 3.2: Flow network in the case R = Ldel = 2 and for stationary costs.
Dashed arcs have in addition a setup cost. Each node is annotated with
either the excess value or its sign.

Even though demand is only between periods 0 and T−1, we add two dummy
periods T and T +1 for technical reasons. There is a manufacturer node and
a supplier node for each time step of each period. Bold nodes annotate the
beginning of each period. Horizontal arcs represent the holding of containers.
Vertical arcs describe container orderings, assumed instantaneous. Dashed
arcs are relative to container purchasing, and are affected with the setup cost.
Each manufacturer node has an excess equal to the number of containers
departing Ldel time steps ago, and is linked to the corresponding demand

38 CHAPTER 3. DETERMINISTIC MODEL

with a backward arc. The flow in every backward arc represents the number
of disposables used for the corresponding demand: for each flow unit, one
less container is required for the demand and one less container arrives to
the manufacturer.
Formally, we model the deterministic container purchasing problem as a
network G = (VG , AG , CG , EG), where VG is a set of R · (2 · T + 3)+ 2 nodes,
AG is a set of (T + 1) · (3 ·R+ 1)+ 1 arcs, CG is a cost function for the arcs
and EG is an excess function for the nodes. The set of nodes VG contains:

1. a supplier node vsup(t, r) for each t ∈ [0, T], r ∈ [0, R[, with excess
−D(t, r) if t < T and 0 otherwise.

2. a manufacturer node vman(t, r) for each t ∈ [0, T], r ∈ [0, R[and for
(t, r) = (T + 1, 0), with excess:

• 0 if t = 0 and r < l′,
• +D(t, r − l′) if t ∈ [0, T [and r ∈ [l′, R[,

• +D(t− 1, R+ r − l′) if t ∈ [0, T] and r ∈ [0, l′[
• 0 if t = T , r ∈ [l′, R[or if (t, r) = (T + 1, 0).

3. a purchasing node vpur with excess value zero.

The set of arcs AG contains:

1. An arc asup(t, r) for each t ∈ [0, T + 1] and each r ∈ [0, R − 2], rep-
resenting container holding at the supplier location. We recall that
for each period, the stock is empty at the end of the last time step
R − 1, so we have no arc asup(t, R − 1). Arc asup(t, r) has linear-cost
Csup(t, r) and goes from vsup(t, r) to vsup(t, r + 1).

2. An arc aman(t, r) for each t ∈ [0, T] and r ∈ [0, R[. Arc aman(t, r)
models a container holding for the manufacturer and has linear-cost
Cman(t, r) if t < T and no cost if t = T . It goes from vman(t, r) to:

• vman(t, r + 1) if r < R− 1,

• vman(t+ 1, 0) if r = R− 1.

3. An arc apur(t) for each t ∈ [0, T] representing the purchase quantity at
period t. Arc apur(t) goes from vpur to vman(t, 0) and has linear-cost
Ccont(t) and setup cost Csetup(t). Arc apur(t) has no cost.

4. An arc aord(t) for each t ∈ [0, T +1] representing the order quantity at
period t. Arc aord has no cost and goes from vman(t, 0) to vsup(t, 0).

5. An arc adis(t, r) with linear cost Cdis(t, r) for each t ∈ [0, T [and each
r ∈ [0, R[, representing the number of disposables used for D(t, r),
thus the capacity of arc adis(t, r) is D(t, r).

3.4. FLOW NETWORK FORMULATION 39

• If r < R− l′, then it goes from vman(t, r + l′) to vsup(t, r),

• otherwise, it goes from vman(t+ 1, r + l′ −R) to vsup(t, r).

6. An arc aend(T + 1) from vman(T + 1, 0) to vpur, with no cost.

The dummy nodes and arcs in G for period t ≥ T have no influence on the
solution. Actually, the manufacturer dummy nodes are needed for disposable
arcs relative to late demands of period t−1. It is easy to see that any solution
can be written as a flow on G. However, not every flow corresponds to a
policy, since according to our network it is possible to send more than D(t, r)
flow units over arc adis(t, r).

Lemma 3.4.1 With capacity constraint of D(t, r) to arc adis(t, r), the net-
work formulates DCPP .

Proof:

With the capacity constraint, the network is readily equivalent to the integer
linear program described in the previous section.

�
By Lemma 3.4.1, in order to prove the correctness of our network formula-
tion, we only have to prove that in any minimum cost flow in G, the flow in
arc adis(t, r) is at most D(t, r). This is easily proven for stationary costs:

Proposition 3.4.2 Suppose that Hypothesis 2.2 [Cost] holds. Then, for
any minimum cost flow and any time (t, r), the flow in arc adis(t, r) is at
most D(t, r).

Proof:

Suppose that the flow in arc adis(t, r) is greater than D(t, r), and let
vman(t

′, r′) be the node incident to adis(t, r) such that (see Figure 3.3):

(t′, r′) = (t, r) + Ldel

The excess of vsup(t, r) is −D(t, r) and the ingoing flow is at least D(t, r)+1.
This is impossible for r = R− 1 because vsup(t, R− 1) has no outgoing arc.
For r < R − 1, it follows that the outgoing flow in asup(t, r) is positive. By
Hypothesis 2.2 [Cost], sending a flow unit from vman(t

′, r′) to vsup(t, r + 1)
is cheaper via node vman(t

′, r′ + 1) than vsup(t, r). Thus the flow is not
optimal.

�
Finally, we generalize our network to hold under a weaker assumption than
Hypothesis 2.2 [Cost]. Firstly, if the result from Lemma 3.3.2 does not hold,
we only need a new arc asup(t, R − 1) from vsup(t, R − 1) to vsup(t + 1, 0).
Secondly, it may be profitable to buy a disposable while holding a container.
Our network can still be generalized under the assumption that at every time

40 CHAPTER 3. DETERMINISTIC MODEL

vsup(t, r) vsup(t, r + 1)

adis(t, r)

asup(t, r)

vman(t
′, r′) vman(t

′, r′ + 1)

Figure 3.3: Network in the neighborhood of adis(t, r). The red arcs have a
positive flow.

(t, r) we are not allowed to buy more than D(t, r) disposables. To avoid hav-
ing infeasible flows, we need a capacity of D(t, r) to arc adis(t, r). Using the
operation described in Ahuja et al. [2], we make the network uncapacitated
again by adding O(T ·R) nodes and arcs. Figure 3.4 illustrates the periodic
pattern in the initial network G and in the adapted network. To generate
the uncapacitated network, we separate every node vsup(t, r) into two nodes
vsup(t, r) with zero excess and vdem(t, r) with excess −D(t, r). The nodes

(a) Network pattern under Hypothesis 2.2 [Cost].

(b) Updated pattern.

Figure 3.4: Patterns of the uncapacitated flow networks, depending on
whether Hypothesis 2.2 [Cost] holds or not.

3.5. OUTLOOK 41

vsup(t, r) still represent the stock of the supplier while the nodes vdem(t, r)
correspond to the transportation of material parts from the supplier to the
manufacturer. The arcs asup(t, r − 1) and asup(t, r) are incident to node
vsup(t, r), as well as arc aord when r = 0. However, arc adis(t, r) is now inci-
dent to vdem(t, r). In addition, we create new arcs acont(t, r) from vsup(t, r)
to vdem(t, r) with zero cost. This network update increases the number of
nodes and the number of arcs by R ·(T+2). Therefore, we still have O(R ·T)
nodes and arcs, even though the number of nodes has increased by roughly
33%.

3.5 Outlook

This chapter describes the deterministic version of the container purchasing
problem in a closed-loop supply chain between a supplier and a manufac-
turer. Despite the literature on deterministic container repositioning and
on dynamic lot-sizing being very abundant, there are no models considering
the management of containers in a ramp-up environment with increasing
demand. Container repositioning problems usually assume either a stable
demand, or a possibility to lease-on and -off containers very easily from a
third party privider and without setup cost. Such a model is very fitting
for container management problems in maritime ports, where the total de-
mand is huge and supply companies store large amounts of these Twenty-foot
Equivalent Units containers (TEU) used between ports. However, In local
closed-loop supply chains, items may require a special care hence the use
of special containers. It becomes more difficult to get new containers and a
more careful study is required.
Moreover, we have proven that we can assume without loss of generality in
a deterministic environment that the ordering delay is zero. We have shown
that in most scenarios we can assume without loss of generality that ev-
ery demand is profitable. Afterward, we have formulated the deterministic
container purchasing problem as a minimum cost flow on an uncapacitated
network with fixed-plus-linear cost. This problem is known to be NP-hard
in general, and the next two chapters are dedicated to computing a solu-
tion. Finally, we generalized the network formulation to hold for a weaker
hypothesis on the cost structure.

43

Chapter 4

Algorithms for Increasing
Demand

In a previous publication [54], we solved the deterministic problem under
several restrictive assumptions. The contribution of this paper to the lit-
erature is a first polynomial time algorithm on DCPP , as other authors
(Chandoul et al. [13], Moon et al. [79]) only write an integer linear program
which they then solve using a meta-heuristic.
We present and develop these results in this Chapter. Section 4.1 describes
our hypotheses and summaries our paper. Section 4.2 solves the special case
where no disposable is allowed. Since the demand follows a specific pattern,
the demand cannot be assumed without loss of generality to be profitable
anymore. This topic is analyzed in Section 4.3. In Section 4.4, we add
another hypothesis to solve the problem optimally with a first algorithm.
Section 4.5 relaxes this hypothesis using the succinct hints we gave in [54],
and deduce a slightly more complex algorithm. Both algorithms run in
O(R2 · T 4 · log[R · T]2) time. Section 4.6 presents new work, as we extend
the algorithms to more general settings, namely longer lead times, several
suppliers and making our algorithm also compute a feasible solution for
general demand patterns.

4.1 Introduction

In this chapter, we assume that the demand D(t, r) is non-decreasing with
respect to t for a fixed time step r:

Hypothesis 4.1 [Demand]:

∀r ∈ [0, R[, ∀t ∈ [1, T [: D(t, r) ≥ D(t− 1, r) (4.1)

This is a quite restrictive assumption, since in real life scenarios the demand
may punctually decreases despite a clear increasing trend. We consider gen-

44 CHAPTER 4. ALGORITHMS FOR INCREASING DEMAND

eral demand patterns in Chapter 5. We recall that by assumption, Hypoth-
esis 2.1 [Delay] and 2.2 [Cost] hold. Moreover, every time the manufacturer
purchases new containers, we suppose that the resulting container fleet is
big enough so that the supplier does not need to buy any disposable for the
next two periods:

Hypothesis 4.2 [Placement]: There is an optimal policy so that if k is
a placement, then no disposable is bought during periods k and k + 1.

This assumption is reasonable because when the manufacturer purchases
new containers, he whould get at least enough containers for a short time
horizon. Under these assumptions, we solve optimally the flow network G
described in Chapter 3, which we recall in Figure 4.1.

Figure 4.1: Network flow to solve in this chapter.

In Jami et al. [54], we model the problem with the same network G. We com-
bine the W-W algorithm [128] with a minimum linear-cost flow algorithm
from the literature [85] to solve DCPP optimally in O(R2 · T 4 · log[R · T]2)
time.

4.2 Solution without Disposables

We first consider the special case without disposables.

Hypothesis 4.3 [NoDisposable]: Disposables are not allowed in the sup-
ply chain or are too expensive to be bought.

In the following, we reduce the DCPP to the dynamic lot-sizing model
described in Chapter 2.

4.2.1 Network for the Lot-Sizing Problem

We show in Figure 4.2 a flow network formulation of the dynamic lot-sizing
problem, which we denote by Gww.

4.2. SOLUTION WITHOUT DISPOSABLES 45

Figure 4.2: Flow network Gww modeling the dynamic lot-sizing problem.

The bottom echelon of the network represents the supplier with a demand
at each period, while the middle echelon represents the manufacturer with
a holding cost and zero ordering cost. Since we are handling non-returnable
items instead of containers, the manufacturer node has no excess. It is
straightforward to check that the network Gww describes the dynamic lot-
sizing problem. The networks Gww and G only differs on four points:

1. In Gww, there is no disposable arc.

2. In Gww, the manufacturer nodes have no excess.

3. In Gww, they use R = 1.

4. In G, we require the demand to be non-decreasing.

4.2.2 Problem Reduction

Lemma 4.2.1 Under Hypotheses 2.1 [Delay], 2.2 [Cost], 4.1 [Demand] and
4.3 [NoDisposable], DCPP and Pww are equivalent.

Proof:

We prove that we can transform G into a network with the same form as
Gww, i.e. with the four differences we presented above.

1. Disposable arcs:

Under Hypothesis 4.3 [NoDisposable], the disposable arcs in G are
always empty, so they can be removed.

2. Manufacturer excess:

A container used for an early demand at period t can always be ordered
at period t+1. Since demand is non-decreasing and we can arbitrarily
decide which container we order. We force the containers used for

46 CHAPTER 4. ALGORITHMS FOR INCREASING DEMAND

an early demand D(t, r) to be used for the early demand D(t+ 1, r),
and force the containers used for a late demand D(t, r) to be used for
the late demand D(t+ 2, r). Then, the movements of a container are
characterized by its purchasing time and the first demand it fulfills.
Consequently, everything occurs as if container were not returning and
we fulfilled the demands Dww(t, r) so that:

∀t, ∀r ∈ [0, R− Ldel] : Dww(t, r) := D(t, r)−D(t− 1, r)

∀t, ∀r ∈]R− Ldel, R[: Dww(t, r) := D(t, r)−D(t− 2, r)

3. Single Time Step:

Since the demands Dww(t, r) are non-returnable items and every de-
mand must be entirely fulfilled, we can group them into a single de-
mand Dww(t) per period:

∀t : Dww(t) :=
R−1∑
r=0

Dww(t, r)

4. Dynamic Demand :

Despite the demands D(t, r) being non-decreasing with respect to r,
the equivalent demands Dww(t) can already take any non-negative
value.

Finally, under the hypotheses of the lemma, any instance of DCPP can be
transformed into an instance of Pww, where the demand Dww(t) at a period
t is the sum of increase of the early demands compared to period t− 1 and
increase of the late demands compared to period t− 2.
Meanwhile, any instance of Pww can be transformed into an instance of
DCPP with any number R of time steps by partitioning the demands
Dww(t) into R quantities Dww(t, r). The demands D(t, r) for DCPP are
then:

∀t, ∀r : D(t, r) :=

t∑
x=0

Dww(x, r)

The solution of this problem under the lemma hypotheses is also a solution
to the instance of Pww.

�

Proposition 4.2.2 Under Hypotheses 2.1 [Delay], 2.2 [Cost], 4.1 [Demand]
and 4.3 [NoDisposable], DCPP can be solved in O(R · T) time.

Proof:

The transformation described in the proof of Lemma 4.2.1 can be done in
O(R · T) time, and the resulting problem is solved in O(T) time using for
example the algorithm of Wagelmans et al. [127].

�

4.3. DEMAND PROFITABILITY 47

4.3 Demand Profitability

In Chapter 2, we noted that without loss of generality, we can assume that
every demand is profitable enough so that we should fulfill it rather than
keeping an empty container idle during its rotation:

∀r ∈ [0, Lord[: Cdis(t, r) +

R+r+Ldel−1∑
r′=0

Cman(t− 1, r′)

−
R+r−1∑
r′=Lord

Csup(t− 1, r′) > 0

∀r ∈ [Lord, R[: Cdis(t, r) +

r+Ldel−1∑
r′=0

Cman(t, r
′)

−
r−1∑

r′=Lord

Csup(t, r
′) > 0

Our argument is that we can first solve the simpler problem considering only
profitable demand, and then satisfy unprofitable demands using disposables.

However, in this chapter, the demand is assumed to be non-decreasing. Re-
moving an unprofitable demand D(t, r) from the system will violate the
increasing demand assumption if a previous demand D(t′, r) is positive and
profitable, for t′ < t.

Lemma 4.3.1 If the cost functions Cman, Csup and Cdis are constants, then
the profitability of demand D(t, r) is independent from t ∈ [0, T [.

Proof:

This follows from the definition of the profitability.

�

Corollary 4.3.2 If the cost functions Cman, Csup and Cdis are constants,
then we can assume without loss of generality that every demand is profitable.

Proof:

If a demand D(t, r) is not profitable, then every demand D(t′, r) is not
profitable, so we can remove all these demands from the process without
violating Hypothesis 4.1.

�
In this chapter, we assume that every demand is profitable, even if the cost
structure is not stationary.

48 CHAPTER 4. ALGORITHMS FOR INCREASING DEMAND

4.4 Solution Forbidding Close Placements

We now consider a setting where disposables are allowed. To simplify the
resolution, we also assume that the placements must be relatively distant
from each other and that the time horizon begins with a placement and ends
right before a placement. We say that two placements are close if they are
at consecutive periods k and k+1. On the opposite, two placements k1 and
k2 > k1 are consecutive if there is no placement on interval]k1, k2[.

Hypothesis 4.4 [Distance]: There is an optimal policy respecting Hy-
pothesis 4.2 [Placement] so that:

1. t = 0 is a placement,

2. t = T − 1 is not a placement,

3. there are no close placements.

We relax this hypothesis in the next section. In the following, we first
generalize the notations h and f from the W-W algorithm. Then we state
Proposition 4.4.1 adapting the zero inventory property, i.e. Proposition 2.4.1,
to our DCPP . Finally, we present our algorithm.

4.4.1 Generalization of the Notations

For k ∈ [0, T], we denote by F(k) the restriction of network G to demands
of periods 0 to k + 1, so that:

1. period k is a placement,

2. period k + 1 is not a placement,

3. no disposable is used for periods k and k + 1.

Network F(k) is generated from G by the following steps (see Figure 4.3).

1. Remove vman(t, r) for each t > k + 1, r ∈ [0, R[and for t = k + 1,
r ∈ [1, R[.

2. Remove vsup(t, r) for each t > k + 1, r ∈ [0, R[.

3. Add a new arc aend(k + 1) from vman(k + 1, 0) to vpur with cost 0.

4. Update the excess of vpur so that the total excess in the network is 0.

5. Remove the setup cost Csetup(k) from apur(k).

6. Remove apur(k + 1).

7. Remove adis(t, r) for t ∈ [k, k + 1], r ∈ [0, R[.

4.4. SOLUTION FORBIDDING CLOSE PLACEMENTS 49

Figure 4.3: Network F(k). Differences from G are in gray.

By construction, G is equivalent to F(T) because dummy periods T and
T + 1 have been added. Let k1 ∈ [0, T − 2] and k2 ∈ [k1 + 2, T].
We define network F(k1, k2) from F(k2) by (see Figure 4.4):

1. removing arcs apur(t) for t ∈ [k1 + 1, k2[,

2. removing the setup cost on apur(k1).

Figure 4.4: Network F(k1, k2). Differences from F(k2) are in gray.

Thus, k1 and k2 are the last two placements in F(k1, k2). Finally, we want
to define network H(k1, k2) as “F(k1, k2) − F(k1)”. We generate H(k1, k2)
from F(k1, k2) with the following steps (see Figure 4.5):

1. Remove vman(t, r) for each t ∈ [0, k1[and r ∈ [0, R[.

2. Give zero excess to vman(t, r) for t = k1, r ∈ [0, R[and for (t, r) =
(k1 + 1, 0).

3. Remove vsup(t, r), asup(t, r), adis(t, r) and aord(t) for each t ∈ [0, k1+1]
and r ∈ [0, R[.

4. Update the excess of node vpur so that the total excess in the network
is zero.

50 CHAPTER 4. ALGORITHMS FOR INCREASING DEMAND

Figure 4.5: Network H(k1, k2). Differences to F(k1, k2) are in gray.

We denote by f(k), f(k1, k2), h(k1, k2) the flows on networks F(k), F(k1, k2),
H(k1, k2) respectively, and their cost by F (k), F (k1, k2), and H(k1, k2). A
flow is locally optimal if no other flow on the same network has lower cost.
We denote by f∗(k), f∗(k1, k2), h∗(k1, k2) locally optimal flows on F(k),
F(k1, k2), H(k1, k2) and their cost by F ∗(k), F ∗(k1, k2) and H∗(k1, h2). We
say that we compute f∗(k) (resp. f∗(k1, k2) or h∗(k1, k2)) if we compute
any locally optimal flow on F(k) (resp. F(k1, k2) or H(k1, k2)) satisfying
Hypotheses 4.2 [Placement] and 4.4 [Distance]. For a flow f(k1) on F(k1)
and a flow h(k1, k2) on H(k1, k2), we define the sum f(k1)+h(k1, k2) as the
sum of these two flows on F(k1, k2).

4.4.2 ZIO Property

For Pww, the ZIO property for the dynamic lot-sizing problem gives the
formula:

F ∗(k1, k2) = F ∗(k1) +H∗(k1, k2)

However, the networks F(k1) and H(k1, k2) overlap on R + 2 nodes: vpur,
vman(k2+1, 0) and every manufacturer node vman(k2, r) for r ∈ [0, R[. While
vpur is also common node in Pww, the manufacturer nodes are not. The
following proposition adapts the ZIO property to our container management
problem. It states that, despite F(k1) and H(k1, k2) overlapping, any pair
of locally optimal solutions on F(k1) and H(k1, k2) builds a locally optimal
solution on F(k1, k2).

Proposition 4.4.1 We assume that Hypotheses 2.1 [Delay], 2.2 [Cost], 4.1
[Demand], 4.2 [Placement], and 4.4 [Distance] hold. Let k1 ∈ [0, T − 2] and
k2 ∈ [k1+2, T]. For every pair of locally optimal flows f∗(k1) and h∗(k1, k2),
the flow defined by f∗(k1) + h∗(k1, k2) is locally optimal on F(k1, k2).

4.4. SOLUTION FORBIDDING CLOSE PLACEMENTS 51

To prove Proposition 4.4.1, we define new notations. We define a task A as
the set of consecutive demand units with the same parameters r and i. For
an early time step, an early task is written:

A(r, i, early) := {D(t, r, i), t : D(t, r) ≥ i} (4.2)

For a late time step, a late task is written as one of:

A(r, i, odd) := {D(t, r, i), t : odd,D(t, r) ≥ i} (4.3)

A(r, i, even) := {D(t, r, i), t : even,D(t, r) ≥ i}. (4.4)

Since the demand is non-decreasing, tasks are repeating. Early tasks repeat
every period and late tasks every two periods. We denote by L(A) the
periodicity of a task A so that L(A) := 1 for early tasks and L(A) := 2
for late tasks. Given a flow f on a network, we assign tasks to containers,
i.e. we tell which container fulfills which task at which period. This operation
creates a container assignment which does not change the flow f .

Lemma 4.4.2 For every flow, we can assign tasks to containers so that if
a task A is fulfilled at periods t and t+L(A). then it is fulfilled by the same
container.

Proof:

Lemma 4.4.2 is proved by induction on t using the fact that a container
fulfilling task A at period t can be ordered at period t+ L(A).

Consider a task A which is fulfilled at periods t and t+L(A). The container
Cont1 fulfilling task A at period t arrives to the manufacturer stock after
ordering at period t + L(A) − 1 and before ordering at period t + L(A).
At period t + L(A), a container Cont2 is sent to the supplier to fulfill task
A. If containers Cont1 and Cont2 are not the same, we can exchange the
movements of these containers starting from the beginning of period t+L(A),
so that Cont1 is used to fulfill task A at time t+ L(A) and Cont2 do what
Cont1 was doing before exchanging the containers. The flow is exactly the
same, and task A is fulfilled by the same container at times t and t+L(A).

At the initialization of the induction, we have t = 0. The exchange of
containers we just described does not change what the containers were doing
before time t + L(A). Thus, after we exchanged containers for task A for
t = 0, the container Cont1 is busy fulfilling task A from period 0 to period
2 · L(A) − 1. Exchanging other containers at time t = 0 will not prevent
Cont1 from fulfilling task A at times t = 0 and t = L(A). Thus, we can
iterate on the tasks A at period 0 to create a container assignment so that
the lemma holds for t = 0.

For the induction step, we assume that we have container assignment so
that the lemma holds for all t < k, for some k ≥ 0. Since the exchange of

52 CHAPTER 4. ALGORITHMS FOR INCREASING DEMAND

containers does not change the assignment up to period k − 1, iterating on
the tasks at period k transforms the container assignment into a container
assignment so that the lemma holds for all t ≤ k.

�
Let CA[f] be a function generating from flow f a container assignment for
which the property of Lemma 4.4.2 holds. Note that we use CA[f] for the
sake of our proof and do not need to compute it in our algorithm.

Lemma 4.4.3 Under Hypotheses 2.1 [Delay] and 2.2 [Cost], for any flow
f on a network, CA[f] is so that:

1. a container that fulfills an early task A at period t is not idle at t+ 1,

2. a container that fulfills a late task A at period t is not idle at t+ 3.

Proof:

Suppose that a container fulfills an early task A(r, u, early) at period t and
is idle at period t+1. By Lemma 4.4.2 task A is not fulfilled at t+1. Since
the demands are profitable, the solution is not optimal and we should have
used the container to fulfill task A at period t+ 1.
Suppose that a container fulfills a late task A(r, u, odd) or A(r, u, even) at
period t and is idle at period t+3. During period t+1, this container is still
fulfilling task A. It must be idle during period t+ 2, as otherwise it fulfills
an early task, which is impossible because we just proved that a container
cannot be idle after an early task. Thus, the container is idle during periods
t + 2 and t + 3 and could have been used to fulfill task A at period t + 2.
Since the demands are profitable, and 4.4.2, the solution is not optimal.

�

Corollary 4.4.4 Let f∗ be a locally optimal flow on a network. Under
Hypothesis 2.1 [Delay] and 2.2 [Cost], after its first task, a container in
CA[f] alternates between fulfilling tasks and be idle for at most one period.

Proof:

By Lemma 4.4.3, a container is idle at most one period after fulfilling a late
task and is never idle after fulfilling an early task.

�

Lemma 4.4.5 In any network, there is a locally optimal flow f∗ to F(k)
so that if k1 is a placement, then every container in CA[f∗] purchased at
period k < k1 fulfills at least one task before period k1.

Proof:

Suppose that a container stays idle from its purchasing time k to placement
k1. Under stationary costs, we can reduce the cost of the flow by (k1 − k) ·

4.4. SOLUTION FORBIDDING CLOSE PLACEMENTS 53

R · Cman by purchasing the container at period k1 instead. Under non-
stationary costs, there are three possibilities:

1. If it is more profitable to purchase containers at period k and let them
idle until period k1, then the solution is not locally optimal as we
should not purchase containers at period k1.

2. If it is more profitable to purchase containers at period k1 directly,
then the solution is not locally optimal as containers purchased at
time k and idle until placement k1 incur an additional cost.

3. If both alternatives induce the same cost, then we can shift the pur-
chasing of all containers from period k1 to period k. If in addition
Csetup(k1) > 0, the shifting decreases the cost. Otherwise, the flow
has the same cost, so we can choose a locally optimal flow where con-
tainers purchased at period k are not always idle until period k1 > k.

�

Lemma 4.4.6 Suppose that Hypotheses 2.1 [Delay], 2.2 [Cost], 4.1 [Demand],
and 4.2 [Placement] hold. Let k1 ∈ [0, T − 3] and k2 ∈ [k1 + 2, T [. Then in
any locally optimal flow h∗(k1, k2) on network H(k1, k2), arc aend(k2 + 1) is
empty1.

Proof:

We have to prove that every container in h∗(k1, k2) is busy during period
k2 + 1, since the flow in aend(k2 + 1) corresponds to idle containers.
We first generate the container assignment CA[h∗(k1, k2)]. The containers
in the system at period k1 can be divided into two groups: The containers
from the first group are purchased at period k1, while the containers from
the second group are purchased before period k1 and is represented by the
arrival of containers between time (k1 + 1, 1) and time (k1 + 2, Ldel − 1).
By Lemma 4.4.5, containers from the first group fulfill at least one task
before period k2. In addition, containers from the second group are busy
during period k2 + 1. By Corollary 4.4.4, containers from both groups are
not idle at period k2 − 1 or k2. By Hypothesis 4.2 [Placement], every task
fulfilled at period k2 − 1 or k2 is also fulfilled at periods k2 and k2 + 1.
Therefore, in CA[h∗(k1, k2)], containers from either group are busy during
periods k2 and k2 + 1. It follows that no container is in the manufacuturer
stoch after ordering at period k1 + 1 and thus the flow in aend(k2 + 1) is
zero.

�

1Note that k2 �= T in this lemma.

54 CHAPTER 4. ALGORITHMS FOR INCREASING DEMAND

Using the same lead as in Lemma 4.4.6, we prove Proposition 4.4.1:

Proof (Proposition 4.4.1):

We want to prove that any locally optimal flow f∗(k1, k2) in F(k1, k2) has
the same cost as F ∗(k1) + H∗(k1, k2), for any locally optimal flows f∗(k1)
and h∗(k1, k2).
We generate the container assignment CA[f∗(k1, k2)]. By Lemma 4.4.5,
Corollary 4.4.4, Hypotheses 4.2 [Placement] and 4.4 [Distance], we deduce
with the same reasoning as for Lemma 4.4.6 that no container in CA[f∗(k1, k2)]
is idle at period k1 + 1. Thus, containers in CA[f∗(k1, k2)] can be divided
into:

1. containers that are either:

• purchased at a period k < k1 and not idle at periods k1 and k1+1,

• purchased at period k1 and not idle at period k1 + 1.

2. containers that are either:

• purchased at period k2,

• purchased at period k1, idle at periods k1 and k1 + 1, and only
fulfilling tasks after period k1 + 2.

The first group of containers builds a container assignment on F(k1). The
second group builds a container assignment onH(k1, k2). By local optimality
of f∗(k1) and h∗(k1, k2), we get: F ∗(k1) + H∗(k1, k2) ≤ F ∗(k1, k2). Since
F ∗(k1, k2) is locally optimal and f∗(k1) + h∗(k1, k2) is a flow on F∗(k1, k2),
it follows that F ∗(k1, k2) = F ∗(k1)+H∗(k1, k2) and thus f∗(k1)+h∗(k1, k2)
is locally optimal on F(k1, k2).

�

4.4.3 Polynomial Algorithm

We deduce from Proposition 4.4.1 the following algorithm adapting the W-
W algorithm to the deterministic container purchasing problem.

Algorithm 2: Algorithm Flow.4.1

Compute f(0) and F (0);
for k2 : 1 → T do

k1 := argmin
{
F (k) +H(k, k2), k ∈ [0, k2[

}
;

f(k2) := f(k1) + h(k1, k2);

return f(T)

Theorem 4.4.7 We assume that the Hypotheses 2.1 [Delay], 2.2 [Cost], 4.1
[Demand], 4.2 [Placement] and 4.4 [Distance] hold. Let Mcf be the com-
plexity of a minimum linear-cost flow on any network H(k1, k2). Algorithm
Flow.4.1 computes an optimal deterministic policy in O(T 2 · Mcf) time.

4.5. SOLUTION ALLOWING CLOSE PLACEMENTS 55

Proof:

At each of the O(T) iterations, we compute O(T) minimum linear-cost flows
on an uncapacitated network H(k1, k2) with O(R · T) nodes and O(R · T)
arcs. The optimality follows from Proposition 4.4.1.

�

Remark 4.4.8 If the cost assumption described in (2.5) does not hold, we
have to consider a more complex network pattern (see Figure 3.4b in Chapter
3). The adapted pattern requires to use R · T more nodes and 2 ·R · T more
arcs, so the complexity bound is the same despite the running time most
likely increasing by 50%.

Proposition 4.4.9 Using the enhanced capacity scaling algorithm described
by Ahuja et al. [2] and the Dijkstra algorithm to compute shortest paths,
Algorithm Flow.4.1 runs in O(R2 · T 4 · log[R · T]2) time.

We conclude this section with a proposition on the structure of the locally
optimal flows.

Remark 4.4.10 Let 0 ≤ k1 < k2 ≤ T and h∗(k1, k2) be a locally optimal
flow. If k2 = T , then no container is purchased at period k2, since we are
past the end of the time horizon. otherwise, the flow in aend(k2+1) is empty
by Lemma 4.4.6. Thus, vpur is incident to at most two arcs with positive
flow.

4.5 Solution Allowing Close Placements

We now relax Hypothesis 4.4 [Distance], namely that:

1. period 0 must be a placement,

2. period T − 1 should not be a placement,

3. consecutive periods cannot be simultaneously placements.

Firstly, relaxing the constraint at period 0 is straightforward. We only
need to create dummy periods with zero-demand before period 0, such that
the algorithm can force the first period to be a placement without loss of
generality. Since we will allow consecutive periods to be simultaneously
placements, we only need to add a single dummy period −1. Otherwise, we
would have to add two dummy periods −1 and −2. On the dummy period
−1, there is no demand and the manufacturer holding cost is infinite so that
no container can be in stock at the beginning of period 0.

Secondly, consider the assumption that period T −1 cannot be a placement.
This assumption is needed for Algorithm Flow.4.1 because it requires period

56 CHAPTER 4. ALGORITHMS FOR INCREASING DEMAND

T to be a placement in order for f∗(T) to be the optimal solution. We relax
it by adding a dummy period T+2 without demand or cost, and by returning
f∗(T + 1) instead of f∗(T).
Finally, we adapt our algorithm to allow close placements. For that pur-
pose, we extend the networks functions F and H, and along with them the
notations f , f∗, F , F ∗, h, h∗, H and H∗. Our generalizations come with
the following new definition:

Definition 4.5.1 We call a placement k grouped if either periods k − 1 or
k+1 is also a placement, and isolated otherwise. For −1 ≤ k1 ≤ k2 ≤ T , we
call interval [k1, k2] a placement interval if k1−1, k2+1 are not placements
and every period k ∈ [k1, k2] is a placement. A placement k is called odd
if it is at an odd position in its placement interval, and even otherwise. In
particular, in the placement interval [k1, k2], the first placement k1 is odd.

For the extension of network H, we use the same structure as previously so
that each network still contains at least four periods. However, we consider
four possible patterns of the network describing the different possibilities,
whether periods k1 + 1 and k2 + 1 are placements or not.
Consider a placement k1 ∈ [−1, T−2] and the first placement k2 ∈ [k1+2, T]
at least two periods later. We replace network H(k1, k2) with four networks
Hi,j(k1, k2) with i, j ∈ {1, 2} so that (see Figure 4.6):

• periods k1 and k2 are placements.

• period k1 + 1 is a placement if and only if i = 2.

• period k2 + 1 is a placement if and only if j = 2.

• if i = 2 and k1 + 2 < k2, then we remove the arcs adis(k1 + 2, r) for
r ∈ [0, R[, so that no disposable is allowed at period k1 + 2.

• placements k1 and k2 are odd.

Consequently, for k1 ≥ 0, networks H1,1(k1, k2) and H(k1, k2) are identical.

Remark 4.5.2 The last property of the definition of Hi,j(k1, k2) is very
important for our optimality proof. However, because of it we need to add
the dummy period T + 2 and return the best policy up to period T + 1.

For k ∈ [−1, T], and j ∈ {1, 2}, we define the networks Fj(k) so that:

• The only demand nodes are vsup(t, r) with r ∈ [0, R[and t ∈ [−1, k+2].

• The only manufacturer nodes are vman(t, r) with (t, r) ≤ (k + 1, 0).

• Period k is an odd placement.

• Period k + 1 is a placement if and only if j = 2.

4.5. SOLUTION ALLOWING CLOSE PLACEMENTS 57

Figure 4.6: Four networks Hi,j to compute in the algorithm. The black
rectangles represent periods k1, k1 + 1, k2 and k2 + 1. When j = 2, the
white rectangles represent period k1 + 2, where the demand has not been
fulfilled yet, must must be entirely fulfilled.

For k1 ∈ [−1, T − 2], k2 ∈ [k1 + 2, T], i ∈ {1, 2} and j ∈ {1, 2}, we define
networks Fi,j(k1, k2) from F(k1, k2) so that:

• k1 and k2 are odd placements.

• k1 + 1 (resp. k2 + 1) is a placement if and only if i = 2 (resp. j = 2).

• no period on [k1 + 2, k2 − 1] is a placement.

Lemma 4.5.3 We have, for all k ∈ [0, T]:

Fj(k) = min
{
Fi,j(k1, k); k1 ∈ [0, k − 2], i ∈ {1, 2}} (4.5)

Proof:

Take a locally optimal solution f∗
j (k) satisfying Hypothesis 4.2 [Placement].

We recall that we set our first placement at the dummy period −1, and the
manufacturer holding stock at this period is infinite. Therefore, if k is the
first placement starting from t ≥ 0 in the policy f∗

j (k), then:

f∗
j (k) = f1,j(0, k)

and placement k is odd due to being the first of its interval. Otherwise, let
k1 be the last placement before k.

• If k1 < k − 1 and k1 is odd, then placement k is odd due to being the
first element of its placement interval and we have:

f∗
j (k) = f1,j(k1, k)

58 CHAPTER 4. ALGORITHMS FOR INCREASING DEMAND

• If k1 < k − 1 is even, then period k1 − 1 must be odd. Placement k is
also odd as the first element of its interval and:

f∗
j (k) = f2,j(k1 − 1, k)

• If k1 = k−1 is even, then periods k and k1 belong to the same interval
and placement k is odd. Moreover, placement k1 being even means
that period k1 − 1 is an odd placement, so the policy fj(k) can be
written as:

f∗
j (k) = f2,j(k1 − 1, k)

• If k1 = k−1 is odd, then periods k and k1 belong to the same interval.
However period k must be odd, which contradicts our assumption.
Even though this can occur in a locally optimal policy, it does not
correspond to a value fj(k), so this case is disregarded.

�

Remark 4.5.4 Since there is no new demand after period T − 1, we can
assume without loss of generality that the optimal policy to compute does not
purchase any container at period T .

Corollary 4.5.5 Both policies f∗
1 (T + 1) and f∗

2 (T + 1) are optimal solu-
tions to the deterministic container purchasing problem under Hypotheses
2.1 [Delay], 2.2 [Cost], 4.1 [Demand] and 4.2 [Placement].

Since Lemmas 4.4.2, 4.4.3, 4.4.5 and Corollary 4.4.4 do not require Hypoth-
esis 4.4 [Distance], they also hold in this section. Therefore, we only have
to extend Proposition 4.4.1.

Proposition 4.5.6 Let i, j ∈ [1, 2], k1 ∈ [−1, T − 2] and k2 ∈ [k1 + 2, T].
For any locally optimal flows f∗

i,j(k1, k2), f
∗
i (k1), h

∗
i,j(k1, k2), we have that:

F ∗
i,j(k1, k2) = F ∗

i (k1) +H∗
i,j(k1, k2) (4.6)

Proof:

This proposition follows the same lead as Proposition 4.4.1. We consider
a container assignment CA to f∗

i,j(k1, k2) as explained in Lemma 4.4.2. Un-
der CA and by Hypothesis 4.1 [Demand], every container purchased at a
placement k < k1 will be busy fulfilling a task during cycles k1 and k1 + 1.
Therefore, containers are divided into two groups:

1. Containers purchased up to k1 + 1 and fulfilling some tasks during
period k1 + 1, building a flow on Fi(k1).

2. Containers purchased starting from k1 and idle up to period k1 + 2,
building a flow on Hi,j(k1, k2).

4.5. SOLUTION ALLOWING CLOSE PLACEMENTS 59

Thus, f∗
i,j(k1, k2) is composed of one flow on Fi(k1) and one on Hi,j(k1, k2)

and the proposition holds.

�
Algorithm 3: Algorithm Flow.4.2

Compute f(0) and F (0);
for k2 : 1 → T + 1 do

k1,1 := argmin
{
F1(k) +H1,1(k, k2), k ∈ [−1, k2 − 1]

}
;

k2,1 := argmin
{
F2(k) +H2,1(k, k2), k ∈ [−1, k2 − 1]

}
;

k1,2 := argmin
{
F1(k) +H1,2(k, k2), k ∈ [−1, k2 − 1]

}
;

k2,2 := argmin
{
F2(k) +H2,2(k, k2), k ∈ [−1, k2 − 1]

}
;

f∗
1 (k2) :=
argmin

{
F ∗
1 (k1,1) +H∗

1,1(k1,1, k2),F
∗
2 (k2,1) +H∗

2,1(k2,1, k2)
}
;

f∗
1 (k2) :=
argmin

{
F ∗
1 (k1,2) +H∗

1,2(k1,2, k2),F
∗
2 (k2,2) +H∗

2,2(k2,2, k2)
}
;

return F1(T + 1)

Theorem 4.5.7 Let Mcf be the complexity of computing a minimum linear-
cost flow on a network Hi,j(k1, k2). If Hypotheses 2.1 [Delay], 2.2 [Cost],
4.1 [Demand] and 4.2 [Placement] hold, Algorithm Flow.4.2 computes an
optimal policy in O(T 2 · Mcf) time.

Proposition 4.5.8 Using the Dijkstra algorithm to compute shortest paths
and the enhanced capacity scaling algorithm to compute minimum linear-cost
flows, Algorithm Flow.4.2 takes O(R2 · T 4 · log[R · T]2) time.

We conclude with a last small result:

Lemma 4.5.9 For j ∈ {1, 2}, there is a locally optimal flow h∗2,j(k1, k2) on
H2,j(k1, k2) with an empty flow in apur(k1).

Proof:

Since a flow h2,j(k1, k2) on H2,j(k1, k2) only satisfies demands starting from
period k1 + 2, a container purchased at period k1 in h2,j(k1, k2) will nec-
essarily stay idle during periods k1 and k1 + 1, while purchasing at period
k1 + 1 only requires the containers to be idle at period k1 + 1.

Therefore, unless the container cost Ccont(t) is much cheaper for t = k1 and
t = k2, purchasing containers at period k1 incurs a higher cost. Otherwise,
it is not profitable to have a placement at period k1 + 1 if we have one at
period k1. Thus, because of the positive setup cost Csetup(k1+1), h∗2,j(k1, k2)
does not belong to any optimal solution to the problem.

�

60 CHAPTER 4. ALGORITHMS FOR INCREASING DEMAND

4.6 Extensions

In this section, we consider several extensions of either of the two algorithms
we described. For the sake of simplicity, we assume stationary costs and
describe the extensions for Algorithm Flow.4.1.

4.6.1 Several Suppliers

We suppose now that we have J suppliers numbered 1, . . . , J . For Supplier
j ∈ [1, n], we denote then by Ldel[j] < R the delivery delay to the manu-
facturer, by Csup[j] the holding cost, by Cdis[j] the disposable cost and by
D[j](t, r) the demand at time (t, r). The ordering delay is still assumed zero
for each supplier, without loss of generality.

The suppliers are not required to order at the same time, but have the same
ordering periodicity of R time steps. We denote by ρ[j] ∈ [0, R[the ordering
step of supplier j. The manufacturer can only purchase containers at the
beginning of a period.

Lemma 4.6.1 The updated network for J suppliers has R · J · (T +2)+R ·
(T + 1) + 2 nodes and (T + 1) · ((J + 2) ·R+ 1

)
+ 1 arcs.

We generalize Hypothesis 4.1 [Demand] as following:

Hypothesis 4.5 [Demand-Sup]: For each r ∈ [0, R[and j ∈ [1, J], the
demand D(t, r)[j] is non-decreasing in t.

Since the manufacturer is purchasing, Lemmas 4.4.2, 4.4.3, 4.4.5 as well
as Corollary 4.4.4 can be trivially generalized to J suppliers. Thus, with
exactly the same reasoning, we can generalize Proposition 4.4.1. Therefore,
our algorithm also compute an optimal solution in a setting with J suppliers,
by updating the networks H and F so that every supplier gets the same
treatment as in the single supplier case.

We conclude:

Theorem 4.6.2 Under Hypotheses 4.2 [Placement] and 4.5 [Demand-Sup],
Algorithm Flow.4.1 can be extended to J suppliers to solve DCPP optimally
in O(T 4 ·R2 · J2 · log[T ·R · J]2) time.

4.6.2 Longer Lead Times

We suppose that the delivery delay can take any non-infinite integral value.

Hypothesis 4.6 [GenDelay]: There is a constant ω > 0 so that:

(ω − 1) ·R < Ldel ≤ ω ·R (4.7)

4.6. EXTENSIONS 61

Hypothesis 2.1 [Delay] corresponds to the special case ω = 1. We had early
tasks with periodicity of one period and late tasks with periodicity of two
periods. For ω ≥ 1, we still have two kind of tasks, namely early tasks with
periodicity of ω periods and late tasks with periodicity of ω+1 periods. We
update Hypothesis 4.2 [Placement] to:

Hypothesis 4.7 [Placement-GenDelay] There is an optimal solution to
DCPP so that if k ∈ [0, T] is a placement, then no disposable is bought from
period k to k + ω.

Lemmas 4.4.2 still holds because its statement is generic in the periodicity
of tasks. Lemma 4.4.5 also holds. Lemma 4.4.3 must be generalized as:

Lemma 4.6.3 Suppose that Hypotheses 2.2 [Cost], 4.6 [GenDelay], and 4.7
[Placement-GenDelay] hold. For any flow f , CA[f] is such that a container
fulfilling a task A of length L(A) is not idle in period t+ 2 · L(A)− 1.

Corollary 4.4.4 becomes:

Corollary 4.6.4 Let f be a locally optimal flow on a network. Then, after
its first task, a container in CA[f] alternates between fulfilling tasks and be
idle for at most ω periods.

A generalization of Proposition 4.4.1 follows with updated networks F and
H so that we have ω+1 special periods after each placement instead of two.
We update Hypothesis 4.4 [Distance] to:

Hypothesis 4.8 [Distance-GenDelay]: There is an optimal solution ful-
filling Hypothesis 4.7 [Placement-GenDelay] so that:

• period 0 is a placement.

• if k ∈ [0, T − 1] is a placement, then there is no placement from period
k + 1 to k + ω.

• Periods T − ω to T − 1 are not placements.

Theorem 4.6.5 We suppose that Hypotheses 2.2 [Cost], 4.6 [GenDelay],
4.7 [Placement-GenDelay] and 4.8 [Distance-GenDelay] hold. Then, an al-
gorithm similar to Algorithm Flow.4.1 solves optimally DCPP in O(R2 ·
T 4 · ω2 log[R · T]2) time.

Proof:

The algorithm is straightforward to generalize and is correct by the above
analysis. The factor ω2 is added to the complexity because there is at most
one placement every ω periods.

�

62 CHAPTER 4. ALGORITHMS FOR INCREASING DEMAND

However, when Hypothesis 4.8 [Distance-GenDelay] does not hold, a direct
extension of Algorithm Flow.4.2 has to consider every placement possibili-
ties for the ω+1 consecutive periods following a placement, as we presented
in Figure 4.6 in the case ω = 1. Therefore, a direct generalization gives a
algorithm polynomial in T and R but exponential in ω.

Theorem 4.6.6 Suppose that Hypotheses 2.2 [Cost], 4.6 [GenDelay] and
4.7 [Placement-GenDelay] hold. We can update Algorithm Flow.4.2 to solve
DCPP optimally in O(R2 · T 4 · 4ω log[R · T]2) time.

4.6.3 Bi-Objective Optimization

In our modeling, we made the simple assumption that the placements can
be modeled by a setup cost like in most lot-sizing problems. An alternative
modeling is to consider the number of placements as a different objective
function.

We compute the minimum cost policy using K ∈ [1, T] placements. After-
ward, a manager decides on the best compromise between cost and number
of placements.

Instead of computing the locally optimal solutions f∗(k) up to period k+1,
we add a parameter n ≥ 2 and compute the locally optimal solutions f∗(k, n)
containing exactly n placements before period k. Therefore, we consider the
same costs H∗(k1, k2) and update the dynamic programming search such
that:

∀k ∈ [1, T [: f∗(k, 1) := h∗(0, k) (4.8)

∀k2 ∈ [1, T [, ∀n ≥ 1 : F ∗(k2, n+ 1) := min
k1<k2

[
F ∗(k1, n) +H∗(k1, k)

]
(4.9)

The time complexity of this dynamic program is thus O(T 3), as we iterate
over k2 ∈ [1, T], k1 ∈ [0, k2[and n ∈ [1, T [.

Finally, we define the pareto optimal solutions so that no other solution is
better, i.e. every solution either induces a greater cost or a different number
of placements. The solution of this bi-objective problem is the set of O(T)
pareto optimal solutions, that is one minimum cost policy for each number
of placements.

We point out that a minimum linear-cost flow on a network H(k1, k2) takes
at least O(R · T) time, as we need to assign a flow to each of the O(R · T)
sinks. We conclude:

Theorem 4.6.7 The bi-objective problem can be solved in O(T 2 · Mcf)
time, where Mcf is the cost of a minimum linear-cost flow on a network
H(k1, k2).

4.7. OUTLOOK 63

4.6.4 General Demand Patterns

We now look at the behavior of Algorithm Flow.4.1 under a general demand
pattern. Consider two values k1 and k2 so that 0 ≤ k1 < k2 ≤ T , and
network H(k1, k2). In the case of a non-decreasing demand pattern, we have
shown with Lemma 4.4.6 that arc aend(k2+1) is empty in any locally optimal
flow. However, when the demand follows a general demand pattern, it may
be optimal to purchase more containers at period k1 and let them idle during
periods k2 and k2 + 1. This occurs in particular when the purchasing costs
Csetup(k2) and Ccont(k2) as well as the demand at periods k2 and k2 +1 are
very low. It is then more profitable to purchase new containers at period
k2, but the total demand at this period will be lower than the optimal fleet
size to have before period k2.

If k2 < T , our algorithm does not compute a feasible solution, because
the arc aend(k2 + 1) is only allowed to be empty when k2 = T . Indeed,
the algorithm will purchase the additional profitable containers using arc
apur(k1) and send the resulting flow back to vpur using arc aend(k2 + 1).
The flow will not be a feasible solution because we have currently no way of
transposing the flow in aend(k2 + 1) into network G, unless k2 = T .

We can avoid this problem by giving a very high cost to arc aend(k2 + 1)
so that it will never be in any locally optimal solution. In other words, we
keep the property that no container in the system is idle at period k2 +1 in
network H(k1, k2), as every container either fulfills a late demand of period
k2 or a demand of period k2 + 1.

However, even if aend(k2+1) has an infinite cost, it may still have a positive
flow in a locally optimal solution. This occurs in particular if the total early
demand at period k2 is greater than the total demand at period k2+1, or if
the total demand at periods k1 and k1 +1 is greater than the total demand
at periods k2 and k2 + 1. The resulting over excess will necessarily be sent
to other demand nodes via arc aend(k2 + 1) This locally optimal flow will
have a very high cost, thus the extended algorithm will choose other locally
optimal flows to build a policy. We note that the locally optimal flow on
network H(0, T) cannot have this issue, so there is least one feasible flow
h∗(0, T) on G without any flow in infinite cost arcs.

Finally, the algorithm always compute a feasible solution, but there is no
guarantee that the policy is optimal, even under Hypotheses 2.1 [Delay], 2.2
[Cost], and 4.2 [Placement].

4.7 Outlook

In this chapter, we have solve optimally the deterministic container man-
agement problem under the assumptions that:

1. no disposable is bought for the two periods following a placement,

64 CHAPTER 4. ALGORITHMS FOR INCREASING DEMAND

2. the demand at each time step is non-decreasing,

3. every demand is profitable.

When a demand is not profitable, removing it from the system may violate
the non-decreasingness behavior of the demand. If not, the third assumption
can be made without loss of generality.
We have presented three algorithms. Firstly, the problem without disposable
can be reduced to the dynamic lot-sizing problem, making it easy to solve.
The two other algorithms adapts the W-W algorithm to our network by
computing minimum linear-cost flows at every iteration. They both run
in O(R2 · T 4 · log[R · T]2). The first of these two algorithms is simpler
to understand, but requires an additional hypothesis, whereas the second
extends the first with more complex notations. This last algorithm is the
main result of this chapter.
We have considered some possible extensions of these algorithm such as
longer lead times and a supply chain between several suppliers and a single
manufacturer.
Finally, we have updated the algorithms to generate a feasible policy for a
general demand pattern, but at the cost of the solution optimality. The next
chapter covers algorithms under a general demand behavior.

65

Chapter 5

Algorithms for General
Demand

In this chapter, we solve the DCPP under any demand pattern and adapt
the algorithms from Chapter 4 to this setting. Sections 5.1 and 5.2 solve the
problem respectively without transportation delay and without disposables.
Sections 5.3 and 5.4 adapt the flow-based algorithms Flow.4.1 and Flow.4.2
to any demand pattern, under an hypothesis similar to 4.2 [Placement]. In
Section 5.5, we compare the algorithms of the two chapters and present
possible extensions of the new algorithms. In Section 5.6 we describe a flow
decomposition using extreme points and deduce sufficient conditions to add
to the system for DCPP to be polynomially solvable. We conclude this
chapter with an outlook.

5.1 Solution without Delay

In this section, we solve the problem under zero delivery delay. Every con-
tainer used for a demand D(t, r) can already be ordered at period t+ 1.

Hypothesis 5.1 [NoDelay]: The delivery takes one time step: Ldel = 1.

Every demand is early under Hypothesis 5.1 [NoDelay]. Given a policy, we
denote by βt the order size at period t and by u+t the container fleet size
after possible purchasing. Then:

Lemma 5.1.1 Under Hypotheses 2.2 [Cost] and 5.1 [NoDelay], we have for
each minimum cost policy:

βt = min
{
ut,

R−1∑
r=0

D(t, r)
}

(5.1)

Thus, no container is idle during period t when the supplier buys disposables.

66 CHAPTER 5. ALGORITHMS FOR GENERAL DEMAND

We denote by D(t) the total demand at period t. We sort the demand units
in D(t) by decreasing profitability such that it is always more profitable to
fulfill the i-th demand unit than the (i + 1)-th. Since every unit D(t, r, i)
of demand D(t, r) has the same profitability, the demand units in D(t) are
grouped by time step. For each r ∈ [0, R[, we sort the demand units D(t, r, i)
in D(t) by increasing unit i. We have then:

D(t) :=
[
D(t, 0, 0), D(t, 0, 1), . . . , D(t, 0, D(t, 0)− 1),

D(t, 1, 0), D(t, 1, 1), . . . , D(t, 1, D(t, 1)− 1),

...

D(t, R− 1, 0), D(t, R− 1, 1), . . . , D(t, R− 1, D(t, R− 1)− 1)
]

Remark 5.1.2 By Hypothesis 2.2 [Cost], every demand D(t, r) is more
profitable than the demand D(t, r + 1), for r ∈ [0, R − 2]. Therefore, the
demand units in D(t) are sorted by increasing time step. The results of this
section can be generalized to the case where Hypothesis 2.2 [Cost] does not
hold. We must then consider a specific sequence r0, . . . rR−1 of time steps so
that D(t, ri) is not less profitable than D(t, ri) + 1, for ri ∈ [0, R− 2].

For t ∈ [0, T [and i ∈ N, we define G(t, i) as the profitability of the i-th
demand unit in D(t) if i < D(t) and as −Cidle(t) < 0 if i ≥ D(t). The
negative profitability −Cidle(t) is equal to the cost of holding a container
in the manufacturer stock. Given periods k1 and k2 > k1 We denote by
G[k1, k2, i] the total profitability of fulfilling the i-th demand unit at every
period of the interval [k1, k2 − 1]:

G[k1, k2, i] :=

k2−1∑
t=k1

G(t, i) (5.2)

By definition, we have:

Lemma 5.1.3 If Hypotheses 2.2 [Cost] and 5.1 [NoDelay] hold, then for all
0 ≤ k1 < k2 ≤ T , the total profitability G[k1, k2, i] is non-increasing in i.

We denote by h(k1, k2) a policy between periods k1 and k2 − 1 so that k1 is
the only placement, and by H(k1, k2) its cost. We denote by f(k) a policy
between periods 0 and k − 1, and by F (k) its cost. Moreover, we use the
notations h∗(k1, k2), H∗(k1, k2), f∗(k) and F ∗(k) for locally optimal policies.

Proposition 5.1.4 Suppose that Hypotheses 2.2 [Cost] and 5.1 [NoDelay]
hold. Then we can assume without loss of generality that there is no con-
tainer in the system before purchasing at period k1 when computing h∗(k1, k2).
Therefore, we have the dynamic programming formula:

∀k2 ∈ [1, T] : F ∗(k2) = min
0≤k1<kw

[
F ∗(k1) +H∗(k1, k2)

]
(5.3)

5.1. SOLUTION WITHOUT DELAY 67

Proof:

Consider an optimal policy and let k1 and k2 > k1 be two consecutive
placements. At period k1, there are uk1 containers in the system before
purchasing and uαk1 afterward. If we exclude the setup cost, the gain of
purchasing up to u > uk1 containers at period k1 is:

u∑
i=uk1

+1

(
G[k1, k2, i]− Ccont(k1)

)

By Lemma 5.1.3, we have:

∀i : G[k1, k2, i+ 1] ≤ G[k1, k2, i]

Therefore the optimal fleet size uαk1 is such that:

G[k1, k2, u
α
k1 + 1] < Ccont(k1) < G[k1, k2, uk1]

Consequently, uαk1 does not precisely depend on the value of uk1 < uαk1 . If
the process started without any container at period k1, it would be the most
profitable to purchase uαk1 containers.

�
We separate the possible container fleet sizes into intervals. We define
U [t, r] as the unit index in D(t) relative to the last demand unit of D(t, r),
i.e. D

(
t, r,D(t, r)− 1

)
. We define U(k1, k2) as (see Figure 5.1):

U(k1, k2) :=
{
U [t, r], t ∈ [k1, k2 − 1], r ∈ [0, R[

} ∪ {0}

Figure 5.1: Illustration of U(0, 4), the possible container fleet sizes between
periods k1 = 0 and k2 − 1 = 3.

Proposition 5.1.5 Suppose that Hypotheses 2.2 [Cost] and 5.1 [NoDelay]
hold. Consider 0 ≤ k1 < k2 < T as well as two fleet sizes u1 and u2 > u1 in
U(k1, k2) such that:

∀u ∈ [u1 + 1, u2 − 1] : u /∈ U(k1, k2) (5.4)

68 CHAPTER 5. ALGORITHMS FOR GENERAL DEMAND

We have then:

∀u ∈ [u1 + 1, u2] : G[k1, k2, u] = G[k1, k2, u2] (5.5)

Proof:

By definition, the demand units in D(t) are grouped by time step. Let
Suppose first that u1 and u2− 1 are units from the same demand D(t, r) for
every t ∈ [k1, k2[. Then, every unit u ∈ [u1, u2[also corresponds to demand
D(t, r) and Equation (5.5) holds. Suppose now that u1 and u2 − 1 are from
different demands D(t, r) and D(t, r′) for some t ∈ [k1, k2[. Then, there is
a i ∈ [u1 + 1, u2 − 1] corresponding to the demand unit D

(
t, r,D(t, r)− 1

)
.

This unit i belongs to the set U(k1, k2) but unit i+1 does not, so Equation
(5.4) does not hold.

�

Corollary 5.1.6 Under Hypotheses 2.2 [Cost] and 5.1 [NoDelay], there is
a locally optimal policy h∗(k1, k2) so that the container fleet size after pur-
chasing at period k1 is an element of U(k1, k2).
We denote by u∗(k1, k2) the fleet size after purchasing at period k1 in the
optimal policy described by Corollary 5.1.6:

u∗(k1, k2) := max{i ∈ U(k1, k2), G[k1, k2, i] ≥ Ccont(k1)} (5.6)

By Lemma 5.1.3, the profitability G[k1, k2, i] is non-decreasing in i, so Equa-
tion (5.6) is equivalent to the minimization problem:

u∗(k1, k2) := argmin
{
u · Ccont(k1)−

u∑
i=0

G[k1, k2, i] : u ∈ U(k1, k2)
}

(5.7)

We define:

G∑(t, u) :=
u∑

i=0

G(t, i) (5.8)

G∑[k1, k2, u] :=
u∑

i=0

G[k1, k2, i] (5.9)

The corresponding minimum cost H∗(k1, k2) is then:

H∗(k1, k2) = Csetup(k1) + u∗(k1, k2) · Ccont(k1)

+

k2−1∑
t=k1

R−1∑
r=0

Cdis(t, r) ·D(t, r)−G∑
[
k1, k2, u

∗(k1, k2)
]

(5.10)

Note that the function G∑ represents a gain instead of a cost. Algorithm 4
uses a dynamic program similar to the W-W algorithm to compute the best
policy from the values H∗(k1, k2).

5.1. SOLUTION WITHOUT DELAY 69

Algorithm 4: Algorithm NDel.D

Sequence the demand units by decreasing profitability;
// Compute U(0, T)
U(0, T) = ∅;
for t : 0 → T − 1 do

U(t, t) = ∅;
for r : 0 → R− 1 do

Retrieve U [t, r] from D(t);
U(t, t+ 1) = U(t, t+ 1) ∪ U [t, r];

U(0, T) = U(0, T) ∪ U(t, t+ 1);
Sort(U(t, t));

Sort(U(0, T));
// Compute G∑[k1, k2, u]

foreach u ∈ U(0, T) do
for t : 0 → T − 1 do

Compute G∑(t, u);

for k1 : 0 → T − 1 do
G∑[k1, k1 + 1, u] := G∑(k1, u);

for k2 : k1 + 2 → T do
G∑[k1, k2, u] = G∑[k1, k2 − 1, u] +G∑(k2 − 1, u);

// Compute u∗

for k1 : 0 → T − 1 do
U = ∅;
for k2 : k1 → T do

U = U ∪ U(k2, k2 + 1);
u∗(k1, k2) = argmax

{
G∑[k1, k2, u]− u · Ccont(k1) : u ∈ U};

Deduce H∗(k1, k2) using Equation (5.10);

// Compute the solution
F ∗(0) = 0;
for k2 : 1 → T do

k1 := argmin
{
F ∗(k) +H∗(k, k2); k ∈ [0, k2[

}
;

f∗(k2) := f∗(k1) + h∗(k1, k2);

return f∗(T);

Proposition 5.1.7 If Hypotheses 2.2 [Cost] and 5.1 [NoDelay] holds, then
Algorithm NDel.D computes an optimal solution in O(R · T 3) time.

Proof:

By Corollary 5.1.6, the algorithm computes the exact values for H∗(k1, k2).
Therefore, the W-W dynamic program computes an optimal solution under

70 CHAPTER 5. ALGORITHMS FOR GENERAL DEMAND

the two hypotheses, by Proposition 5.1.4.
We now analyze the time complexity. The algorithm is divided into five
parts. In the first part, we genenrate for each period t the demand D(t).
The profitability of each demand unit is implicitely computed from the index
U [t, r]. The first part hence takes O(R · T) time.
In the second part, we compute the set U(0, T) of every possible fleet size
possibly corresponding to a locally optimal policy h∗(k1, k2). There are at
most R ·T possible values of the set of all U [t, r], hence possible optimal fleet
sizes. It takes (R ·T) time to generate the set U(0, T) and O

(
R ·T · log[R ·T])

time to sort it.
In the third part, we compute the profitabilities. We compute the single
period profitabilities U(t, t+1) by increasing value of i and compute in O(1)
time the profitability difference between two consecutive values. This takes
altogether O(R) time per period. The intervals of profitabilities U(k1, k2)
are computed altogether in O(R · T 3) time, by deducing G[k1, k2, i] from
G[k1, k2 − 1, i] in O(1) time.
In the fourth part, we compute the cost H∗(k1, k2). For each k1 and k2,
we compute and sort U(k1, k2) from the already sorted set U(k1, k2 − 1)
in O(R · T) time. By Lemma 5.1.3, we can get u∗(k1, k2) in O(log[R · T])
time using a binary search. Pre-computing the sums of disposable cost in
Equation (5.10) takes O(T 2 · R) time. We deduce H∗(k1, k2) in O(1) time.
The time complexity for the fourth part is hence O(T 3 ·R).
Finally, we compute the optimal policy f∗(T) in O(T 2) time using dynamic
programming. The total time complexity is thus O(R · T 3).

�

5.2 Solution without Disposables

In this section, we solve DCPP when disposables are not allowed by re-
ducing it to the dynamic lot-sizing problem. In Chapter 4, we described
an algorithm which is optimal under the assumption that the demand is
non-decreasing. When disposables are not allowed, the order quantity βt at
each period t is known:

∀t : βt :=
R−1∑
r=0

D(t, r) (5.11)

In addition, the number of outgoing full containers Zt at each period is equal
the total late demand from the previous period:

∀t : Zt :=
R−1∑

r=R−Ldel+1

D(t− 1, r) (5.12)

5.2. SOLUTION WITHOUT DISPOSABLES 71

Lemma 5.2.1 If after potentially purchasing at period t, a policy has less
than βt + Zt containers in the system, then this policy buys disposables.

We use a different container assignment from the one in Chapter 4. We
recall that a container is called busy whenever it is not idle, which includes
the containers held by the supplier.

New container assignment CAndis: We sequence the containers in the
system and assign them to demand units such that the supplier orders the
empty containers with the lowest sequence index.

Using container assignment CAndis, we only order a a container for the first
time when every container already used once are busy at the same period.
We denote by nu(t) the number of containers used at least once from period
0 to period t. The other containers in the process at the same period have
been idle since their purchase time.

Proposition 5.2.2 Under the container assignment CAndis, we have:

∀t ∈ [0, T − 1] : nu(t) = max
t′∈[0,t]

[
Zt + βt

]
(5.13)

We divide the cost of any policy without disposable into two costs:

1. The supplier and manufacturer holding costs relative to the nu(t) con-
tainers during each period t.

2. The purchasing cost of every container and the manufacturer cost of
the containers above the required nu(t) at period t.

Since our system has no option to discard containers, the first group of costs
is the same for every policy not using disposables, by Proposition 5.2.2.
The problem of minimizing the second group of costs can be reduced to the
following instance of dynamic lot-sizing problem:

• There are T time periods.

• The demand at time t is nu(t)− nu(t− 1).

• The purchasing cost of x containers at period is Csetup(t)+x ·Ccont(t).

• The holding cost at period t is Cidle(t).

Algorithm 5: Algorithm Ndis.D using zero disposables

for t : 0 → T − 1 do
Compute the best order size βt;
Compute the number of required containers nu(t);

Compute the best purchasing plan;
return the purchasing plan and the order policy;

72 CHAPTER 5. ALGORITHMS FOR GENERAL DEMAND

Proposition 5.2.3 If Hypothesis 4.3 [NoDisposable] holds, then Algorithm
Ndis.D computes an optimal policy in O(R · T) time.

Proof:

For each t, the values βt and nu(t) can be computed in O(R) time. We can
use any of the fast algorithms from Federgruen and Tzur [27], wagelmans et
al. [127], Aggarwal and Park [1] to solve each dynamic lot-sizing problem in
O(T) time and deduce the purchasing plan.

�

5.3 Algorithm Forbidding Close Placements

In this section, we adapt Algorithm Flow.4.1 to general demand patterns.

Hypothesis 5.2 [Idleness]: In every optimal solution to DCPP , if k is
a placement, then at least one container is idle at period k.

Like Hypothesis 4.2 [Placement], this is a practicable hypothesis because
a large amount of containers is purchased at each placement in a ramp-up
scenario with high setup cost.

Remark 5.3.1 Following our analysis from Section 4.5, we can assume
without loss of generality that t = 0 and t = T are placements.

Remark 5.3.2 There is no close plcaments under Hypothesis 5.2 [Idleness].

For each k ∈ [0, T], we define a network F̂(k) from G as following (see Figure
5.2):

1. Remove every vsup(t, r), vman(t, r), aord(t), asup(t, r), apur(t), adis(t, r)
such that t ≥ k.

2. Remove every vman(t, r) and aman(t, r) so that t ≥ k + 1.

3. Add an arc a5.1end(k) from vman(k + 1, 0) to vpur with negative cost
−Ccont(k)− Cidle(k).

Likewise, we create network Ĥ(k1, k2) for 0 ≤ k1 < k2 ≤ T from F̂(k2) with
the following steps (see Figure 5.3):

1. Remove every vsup(t, r), vman(t, r), aman(t, r), asup(t, r) for all t < k1.

2. Remove every ordering arc aord(t) for t ≤ k1.

3. Remove every purchasing arc apur(t) for t ∈ [0, k2[.

4. Add an arc aordpur(k1) from vpur to vsup(k1, 0) with cost Ccont(k1).

5.3. ALGORITHM FORBIDDING CLOSE PLACEMENTS 73

. . .

. . .

. . .

vpur

period 0 period 1 period k-1 period k

Figure 5.2: Network F̂(k). Removed nodes and arcs are presented in gray.
The added arc (in red) is a5.1end(k).

5. Add an arc aidlepur (k1) from vpur to vman(k1+1, 0) with cost Ccont(k1)+
Cidle(k1).

6. For r ∈ [0, Ldel[, set the excess of vman(k1, r) to zero.

We note that step 6 sets the network Ĥ(k1, k2) as if every late demand of
period k1 − 1 only uses disposables. We define F̂(k1, k2) from F̂(k2) by
removing every purchasing arc apur(t) with t ∈]k1, k2[. We use the same

notations f̂∗, ĥ∗, F̂ ∗, Ĥ∗ as in Chapter 4. By definition, we have:

G = F̂(T) (5.14)

Remark 5.3.3 In contrast to Chapter 4, the networks F̂(k1, k2), F̂(k2),
and Ĥ(k1, k2) do not include purchasing at period k2, hence exclude the
setup cost Csetup(k2).

Finally, we define the network Ĝ as the network containing every node and
arc:

Ĝ = G ∪ {
aordpur(t), a

idle
pur (t), a

5.1
end(t) : t ∈ [0, T]

}
(5.15)

Lemma 5.3.4 The networks F̂(k), Ĥ(k1, k2) and F̂(k1, k2) are defined so
that the excess in vpur is zero.

period k1+1

. . .

. . .

. . .

vpur

period k1 period k2-1 period k2

Figure 5.3: Network Ĥ(k1, k2). Removed nodes and arcs are presented in
gray. The added arcs (in red) are aordpur(k1), a

idle
pur (k1) and a5.1end(k2). The nodes

in red have a zero excess.

74 CHAPTER 5. ALGORITHMS FOR GENERAL DEMAND

Proof:

For each supplier node, the manufacturer node corresponding to demand
arrival is in the network with the opposite excess. In addition, each manu-
facturer node has a zero excess whenever the associated supplier node is not
in the network.

�
Similarly to Chapter 4, we want to prove that we can compute the opti-
mal solution f̂∗(T) to DCPP by adding locally optimal flows ĥ(k1, k2) and
transposing the resulting flow into network G.

Lemma 5.3.5 For any flow f on any network in this section and for any
period r ∈ [0, T] and every time step r ∈ [1, R[we have:

f(aman(t, r − 1)) ≤ f(aman(t, r)) (5.16)

Proof:

The flow in aman(t, r−1) arrives to vman(t, r) with excess D(t, r−Ldel) ≥ 0.
The node vman(t, r) has one ingoing arc aman(t, r − 1) and two outgoing
arcs aman(t, r) and adis(t, r − Ldel). Under Hypothesis 2.2 [Cost], at most
D(t, r − Ldel) flow units can go in arc adis(t, r − Ldel). Therefore, the flow
in aman(t, r) equals the flow in aman(t, r − 1) plus the excess flow not going
in adis(t, r − Ldel).

�
We now create two operations, one to transform a flow on F̂(k1, k2) into a
flow on F̂(k1) plus a flow on Ĥ(k1, k2), and the reverse operation. We call
these operations the splitting and the merging operations respectively.

Given a flow on Ĝ, we define the merging operation at placement k as in
Algorithm 6, removing the flow in the special arcs aordpur(k) and aidlepur (k). In
addition, it removes as much flow as possible from arc a5.1end(k).

After using the merging operation on every placement of a flow, if there is
no flow left on any arc a5.1end(k), then the resulting flow is defined on network
G, hence is a solution to DCPP . We want to show that this condition holds
under Hypothesis 5.2 [Idleness]. We call the merging operation successful
if it removes the entire flow from the corresponding arc a5.1end(k). We call a
flow feasible if it only contains positive flow in arcs from network G. Thus,
a flow is feasible whenever it is generated by successful merging operations.
We now analyze the construction of a flow merging locally optimal flows on
networks Ĥ(k1, k2).

5.3. ALGORITHM FORBIDDING CLOSE PLACEMENTS 75

Algorithm 6: Algorithm MergeFlow for placement k.

Data: Flow f̂ , placement k
// Step 1:
Add f̂

(
aordpur(k)

)
flow units in aord(k) and apur(k);

Remove all flow in f̂
(
aordpur(k)

)
;

// Step 2:
Add f̂

(
aidlepur (k)

)
flow units in apur(k) and aman(k, r) for all r ∈ [0, R[;

Remove all flow in f̂
(
aidlepur (k)

)
;

// Step 3:
x := min

{
f̂
(
aman(k, 0)

)
, f̂

(
apur(k)

)
, f̂

(
a5.1end(k)

)}
;

Remove x flow units from arcs apur(k), a
5.1
end(k) and every arc

aman(k, r) with r ∈ [0, R[;

Lemma 5.3.6 The merging operation preserves the imbalance property on
every node and the flow cost.

Proof:

Algorithm 6 is decomposed into three steps. In the first step, we shift the
flow from aordpur(k) to the path containing aord(k) and apur(k). In the second

step, we shift the flow from aidlepur (k) to the path containing apur(k) and the
arcs aman(k, r). In the third step, we remove some flow in the zero-cost
cycle vpur → vman(k, 0) → . . . → vman(k + 1, 0) → vpur. By Lemma 5.3.5,
every arc has a non-negative flow after the third step. Since we start from
a flow and each step preserves the flow cost and the imbalance property, we
conclude that the resulting pseudo-flow is a flow with the same cost.

�
We define the merging operation on two flows f̂(k1) on F̂(k1) and ĥ(k1, k2)
at period k1 as the merging operation of the sum of their flows transposed
to Ĝ. We denote this operation as MergeFlow

(
f̂(k1), ĥ(k1, k2)

)
. Figure

5.4 shows the networks F̂(k1) and Ĥ(k1, k2) around period k1.

Proposition 5.3.7 Consider locally optimal flows f̂∗(k1) and ĥ∗(k1, k2) on
F̂(k1) and Ĥ(k1, k2). The merging operation successfully transforms these
flows into a flow f̂(k1, k2) on F̂(k1, k2) with the same cost if and only if:

f̂(k1)
(
a5.1end(k1)

) ≤ ĥ(k1, k2)
(
aidlepur (k1)

)

+min
{
ĥ(k1, k2)

(
aordpur(k1)

)
, f̂(k1)

(
aman(k1, 0)

)}
(5.17)

Proof:

By Lemma 5.3.6, Algorithm 6 merges the initial flows into a single flow
with the same total cost. The merging operation removes all the flow in arcs
aordpur(k) and aidlepur (k). Every other arc except a5.1end(k) belongs to F̂(k1, k2).

76 CHAPTER 5. ALGORITHMS FOR GENERAL DEMAND

vpur

aordpur(k1)

period k1 period k1 + 1

aidlepur (k1)
a5.1end(k1)

period k1 − 1

. . .

. . .

. . .

. . .

. . .

. . .

Figure 5.4: Netowkrs F̂(k1) and Ĥ(k1, k2) around placement k1. The blue
nodes and arcs are in F̂(k1). The red nodes and arcs arcs are in Ĥ(k1, k2).
The black nodes and arc are common to both networks.

Consider the computation of x in the algorithm. The flow in f̂
(
aman(k, 0)

)
equals its initial value plus the initial flow in aidlepur (k), and the flow in

f̂
(
apur(k)

)
equals the initial flow in aordpur(k) plus the flow in aidlepur (k), as

its initial value is zero. Equation 5.17 holds if and only if both these terms
are not lower than f̂(k1)

(
a5.1end(k1)

)
, i.e. if and only if the flow in arc a5.1end(k1)

is empty at the end of the algorithm. We conclude that the merging is suc-
cessful and the resulting flow in defined on F̂(k1, k2) if and only if Equation
5.17 holds.

�
Algorithm 7 describes the splitting operation as an inverse of the merging
operation. The splitting operation removes the flow from arcs apur(k) and
apur(k). By splitting a flow at every placement, we transpose a flow into
several networks Ĥ.

Lemma 5.3.8 Using the variable names from the splitting operation, we
have that z ≥ 0.

Proof:

Since the input flow is feasible, every flow is non-negative and corresponds
to the movement of containers in the system. In the algorithm, we have:

z :=

k−1∑
t=0

(
f̂
(
apur(t)

))− f̂
(
a5.1end(k)

)

=
k−1∑
t=0

(
f̂
(
apur(t)

))− x

≥− [
f̂
(
aord(k)

)− f̂
(
apur(k)

)]+

5.3. ALGORITHM FORBIDDING CLOSE PLACEMENTS 77

Therefore, if f̂
(
aord(k)

) ≤ f̂
(
apur(k)

)
, then z ≥ 0. Otherwise, note that the

container fleet size uα(k) after placement k is:

uα(k) :=

k∑
t=0

f̂
(
apur(t)

)

Since we can only order containers which are present in the system, we have:

k∑
t=0

f̂
(
apur(t)

) ≥ f̂
(
aord(k)

)

⇔ f̂
(
apur(k)

)
+ z + f̂

(
a5.1end(k)

) ≥ aord(k)

⇔ z ≥ f̂
(
aord(k)

)− f̂
(
apur(k)

)− x

⇔ z ≥ 0

We conclude that in both cases we get z ≥ 0.
�

Algorithm 7: Algorithm SplitFlow for placement k.

Data: Feasible flow f̂ , placement k
// Step 1:

x :=
[
f̂
(
aord(k)

)− f̂
(
apur(k)

)]+
;

Add x flow units to apur(k), aman(k, r), r ∈ [0, R[and a5.1end(k);
// Step 2:
Add f̂

(
aord(k)

)
flow units to aordpur(k);

Remove f̂
(
aord(k)

)
flow units from aord(k) and apur(k);

// Step 3:
y := min{f̂(apur(k)

)
, f̂

(
aman(k, 0)

)};
Add y flow units to aidlepur (k);

Remove f̂
(
apur(k)

)
flow units from apur(k) and aman(k, r), r ∈ [0, R[;

// Step 4:
z :=

∑k−1
t=0

(
f̂
(
apur(t)

))− f̂
(
a5.1end(k)

)
;

Add z flow units to both a5.1end(k) and aidlepur (k);

Lemma 5.3.9 The splitting operation preserves the imbalance property on
every node and the flow cost.

78 CHAPTER 5. ALGORITHMS FOR GENERAL DEMAND

Proof:

Algorithm 7 is decomposed into four steps. In the first step, we add some
flow to the zero-cost cycle containing apur(k), aman(k, r) and a5.1end(k) to

ensure that the flow in apur(k) is at least f̂
(
aord(k)

)
. In the second step, we

shift the flow from apur(k) and aord(k) to the equivalent arc aordpur(k). In the

third step, we shift some flow y from aidlepur (k) to the path containing apur(k)
and the aman(k, r). By Lemma 5.3.5, every arc has a non-negative flow
after the third step. In the fourth step, we sdd some flow z to the zero-cost
cycle composed of aidlepur (k) and a5.1end(k). By Lemma 5.3.8, the added flow is
positive. Since we start from a flow and each step readily preserves the flow
cost and the imbalance property, we conclude that the resulting pseudo-flow
is a flow with the same cost.

�

Lemma 5.3.10 Suppose that Hypothesis 2.2 [Cost] holds. Consider a flow
f on Ĝ with placement at period k. Let x denote the flow in arc aman(k, Lord−
1). After the splitting operation, for each r ∈ [Lord, R[, the flow in arc
aman(k, r) is at most x.

Proof:

Consider r ∈ [Lord, R[. The node vman(t, r) has excess D(k, r − Ldel), one
ingoing arc aman(k, r−1), and two outgoing arcs aman(k, r), adis(k, r−Ldel).
By Proposition 3.4.2, the flow in adis(k, r − Ldel) is at most D(k, r − Ldel).
Therefore, the flow in aman(k, r) greater or equal to the flow in aman(k, r−1)
and this lemma follows.

�

Proposition 5.3.11 Suppose that Hypothesis 2.2 [Cost] holds. Consider
a flow f̂(k1, k2) on F̂(k1, k2) so that at period k1 at least one container is
idle and at least one is purchased. Using the splitting operation, we can
decompose f̂(k1, k2) into a flow f̂(k1) on F̂(k1) and a flow ĥ(k1, k2) on
Ĥ(k1, k2) with the same total cost and such that:

f̂(k1)
(
a5.1end(k1)

) ≤ ĥ(k1, k2)
(
aidlepur (k1)

)
(5.18)

Proof:

In this proof, we decompose this flow into two pseudo-flows f̂(k1) and
ĥ(k1, k2).
As shown in Figure 5.4, the only arcs which are common to the two networks
F̂(k1) and Ĥ(k1, k2) are aman(k1, r) for r ∈ [Lord, R[. By Lemma 5.3.10 in
these arcs is at least equal to aman(k1, Lord − 1). We decompose the flow in
these arcs to that their flow in f̂(k1) equals the flow in aman(k1, Lord − 1).
The left-over flows goes in ĥ(k1, k2). Moreover, the two arcs apur(k1) and
aord(k1) have zero flow after the splitting operation. Every other arc in

5.3. ALGORITHM FORBIDDING CLOSE PLACEMENTS 79

F̂(k1, k2) is either in F̂(k1) or in Ĥ(k1, k2). Thus, we add the flow in each
of these arcs to the corresponding flow f̂(k1) or ĥ(k1, k2).

In network F̂(k1), the arcs aman(k1, r) for r ∈ [Lord − 1, R[have the same
flow and can be contracted into a single arc a from node vman(k1, Lord−1) to
vpur. Besides this arc a and node vpur, every node and every arc is either in
F̂(k1) or in Ĥ(k1, k2). By Lemma 5.3.9, the imbalance property is respected
in the flow after the splitting operation. Consequently, every node in F̂(k1)
respects the imbalance property besides maybe vpur. By Lemma 5.3.4, the
imbalance in F̂(k1) − {vpur} is zero. Since vpur is the only node connected
to F̂(k1) − {vpur} after the contraction of the flow in the arcs aman(k1, r)
for r ∈ [Lord − 1, R[into arc a, it follows that vpur respects the imbalance

property in flow f̂(k1). We deduce that both f̂(k1) and ĥ(k1, k2) are flows.

Since the flow f̂(k1, k2) does not contain the arcs aidlepur (k1) and a5.1end(k1),
these arcs only contain the flow added by the splitting operation:

f̂(k1)
(
a5.1end(k1)

)
= x+ z

ĥ(k1, k2)
(
aidlepur (k1)

)
= y + z

Using the algorithm variables, x flow units are added to both apur(k1) and
aman(k1, 0) in step 1, then the flow in either apur(k1) or aman(k1, 0) is added
to aidlepur (k1) in step 3, so we have y ≥ x and hence:

f̂(k1)
(
a5.1end(k1)

) ≤ ĥ(k1, k2)
(
aidlepur (k1)

)

�
We define the splitting operation on flow f̂(k1, k2) on F̂(k1, k2) as the split-
ting operation of this flow at period k1. We denote by SplitFlow

(
f̂(k1, k2)

)
this operation. That is, we assume that the splitting operation is by default
on the last placement of the considered flow. The following result is a fun-
damental result in our study, and follows from Propositions 5.3.7 and 5.18.

Theorem 5.3.12 Suppose that Hypothesis 2.2 [Cost] holds. Any feasible
flow f̂(T) on G can be decomposed into n feasible flows ĥ(ki, ki+1), where
k0 = 0 < k1 < . . . < kn−1 = T are the placements in f̂ . Moreover, these
flows ĥ(ki, ki+1) are successfully merging together to generate f̂ so that:

F̂ (T) =
n−1∑
i=0

(
Ĥ(ki, ki+1) + Csetup(ki)

)
(5.19)

Theorem 5.3.12 justifies a first adaptation of Algorithm Flow.4.1 to general
demand patterns:

80 CHAPTER 5. ALGORITHMS FOR GENERAL DEMAND

Algorithm 8:

Initialize f̂∗(0) as an empty flow;
for k2 : 1 → T do

for k1 : 0 → k2 − 2 do

Compute ĥ∗(k1, k2);
f̂∗(k1, k2) := MergeFlow

(
f̂∗(k1), ĥ∗(k1, k2)

)
;

f̂∗(k2) := feasible flow f̂∗(k1, k2) with minimal F̂ ∗(k1, k2);

return f̂∗(T);

Theorem 5.3.13 Suppose that Hypotheses 2.1 [Delay], 2.2 [Cost], and 4.4
[Distance] hold. Let Mcf be the cost of a minimum linear-cost flow on any
network Ĥ(k1, k2). Algorithm 8 computes an optimal solution to DCPP in
O(T 2 · Mcf) time if for every k2 the flow f̂∗(k1, k2) minimizing F̂ ∗(k1, k2)
is feasible.

Proof:

The locally optimal flows ĥ∗(k1, k2) can be computed altogether in O(T 2 ·
Mcf) time and the dynamic program takes O(T 2) time, thus the complexity
of Algorithm 8 is O(T 2 · Mcf).
By Hypothesis 4.4 [Distance], there is an optimal policy f̂∗(T) never pur-
chasing at consecutive periods and let k0 = 0 < k1 < . . . < kn−1 = T be its
placements. We denote by ĥ∗(ki, ki+1) and f̂∗(ki, ki+1) the flow generated
by splitting f̂∗(T) on its placements from kn−2 to k1, and by ĥ(ki, ki+1) and
f̂(ki, ki+1) the flows generated by Algorithm 8.
We prove by recursion on i that F̂ (ki) ≤ F̂ ∗(ki). This statement trivially
holds for i = 1 as f̂(k1) = ĥ(0, k1) is locally optimal. Suppose now that
the statement holds for all j < i. When Algorithm 8 computes f̂(k1), it
successfully merges the flows f̂(ki−1) and ĥ(ki−1, ki), so the flow f̂(ki) has
at most cost F̂ (ki−1 + Ĥ(ki−1, ki)). Since ĥ(ki−1, ki) is locally optimal on
Ĥ(ki−1, ki) and by the recursion hypothesis, we deduce that F̂ (ki) ≤ F∗(ki).
Finally, Algorithm 8 computes a feasible policy with cost at most F∗(T). It
is hence optimal and has cost F∗(T).

�
However, if Algorithm 8 encounters an unsuccessful merging flow f̂∗(k1, k2),
this flow will not be selected for f̂∗(k2) because it induces an infeasible
policy. It is possible that the best policy up to period k2 − 1 has period k1
as last placement but using different flow.

Remark 5.3.14 If we encounter an infeasible flow f̂∗(k1, k2), a simple way
to improve the quality of Algorithm 8 would be to compute a minimum linear-
cost flow on F̂(k1, k2) instead of Ĥ(k1, k2). We consider the same placements
as in f̂∗(k1) plus on placement at period k1. This operation does not increase

5.3. ALGORITHM FORBIDDING CLOSE PLACEMENTS 81

the complexity bound, as we compute at most O(T 2) additional minimum
linear-cost flows.

In the following, we develop an alternative algorithm which is optimal under
Hypothesis 5.2 [Idleness].

Proposition 5.3.15 Suppose that Hypotheses 2.1 [Delay], 2.2 [Cost], and
4.4 [Distance] hold. Let f̂∗(T) be an optimal solution to the problem re-
specting Hypothesis 5.2 [Idleness]. Using the splitting operation, f̂∗(T) can
be decomposed into locally optimal flows ĥ∗(k1, k2) on networks Ĥ(k1, k2).

Proof:

In this proof, we denote by f̂∗(k1) the flow on F̂(k1) generated from the
splitting operation on the flow f̂∗(k2) at period k1, where k1 and k2 are
consecutive placements. Since we already know the placement sequence, we
indifferently use the notations f̂∗(k2) and f̂∗(k1, k2).
We prove this proposition by recursion. Consider the flow f̂∗(k2) on F̂(k2)
and suppose that it is locally optimal. At period k1, at least one container is
idle by assumption and at least one container is purchased by definition. By
Proposition 5.3.11, the splitting operation decomposes into two flows f̂∗(k1)
and ĥ∗(k1, k2) on F̂(k1) and Ĥ(k1, k2).
Flow f̂∗(k2) is locally optimal, so by Theorem 3.2.3 it does not contains
any negative cycle. Any negative cycle in ĥ∗(k1, k2) necessarily contains arc
aordpur(k) or aidlepur (k), as these are the only two arcs not in F̂(k2). Moreover,

every other arc in the cycle has the same flow as in f̂∗(k2). However, by con-
struction, the flow in aordpur(k1) is at most as big as the maximum of the flows

in apur(k1) and aord(k1) on F̂(k2), whereas the flow in aidlepur (k1) is at most as

big as the maximum of the flows in apur(k1) and aman(k1, 0) on F̂(k2). More-
over, the cost of arc aordpur(k1) (respectively aidlepur (k1)) is equal to the cost of
arcs apur(k1) and aord(k1) (respectively apur(k1) and aman(k1, r), r ∈ [0, R[).

Thus, if there is a negative cycle in ĥ∗(k1, k2), there is also a negative cycle
in f̂∗(k2). We conclude that flow ĥ∗(k1, k2) is locally optimal.
Likewise, any negative cycle in f̂∗(k1) must contain arc a5.1end(k1), and every

other arc in the cycle has the same flow as in f̂∗(k2). Therefore, for every
negative cycle in f̂∗(k1), there is a cycle in f̂∗(k2) using arcs apur(k1) and
aman(k1, r), r ∈ [0, R[, whose flows are positive by assumption and have the
same cost. We deduce that f̂∗(k1) does not contain any negative cycle and
is hence locally optimal. The proposition follows by recursion on k2.

�
Proposition 5.3.15 states that, under Hypothesis 5.2 [Idleness], an optimal
flow f̂∗(T) can be decomposed into several locally optimal flows ĥ∗(k1, k2).
Nevertheless, this does not mean that a simple dynamic program as in Algo-
rithm 8 automatically finds it. This issue comes from the merging operation
not necessarily being successful.

82 CHAPTER 5. ALGORITHMS FOR GENERAL DEMAND

Indeed, suppose that k1 < k2 < k3 are three consecutive placements in
the optimal policy. In order to compute the best flow f̂(k2), a simple dy-
namic program will choose the previous placement k inducing the lowest
cost F̂ (k, k2). Nevertheless, it may end up choosing another value k �= k1
inducing a cost F̂ (k, k2) ≤ F̂ (k1, k2) but purchasing more containers so that
the flow f̂(k, k2) does not merge successfully with network ĥ(k2, k3), whereas
the flow f̂(k1, k2) does. In this case, a simple dynamic program has no way
of recovering the placement k1.

In the following, we update the dynamic program of Algorithm 8 to find
an optimal solution. We start with the simple case where there is a unique
locally optimal flow on every Ĥ(k1, k2):

Hypothesis 5.3 [Unique-h*]: For all k1 ∈ [0, T − 2] and k2 ∈ [k1+2, T],
there is a unique locally optimal flow ĥ∗(k1, k2).

Under this hypothesis, Proposition 5.3.15 states that one combination of
these flows ĥ∗(k1, k2) builds an optimal solution to DCPP . We have defined
the network F̂ (k1, k2) so that every flow on it is feasible. So, we are looking
for a minimum cost feasible flow on the network.

Lemma 5.3.16 Suppose that Hypotheses 2.1 [Delay], 2.2 [Cost], 5.2 [Idleness],
and 5.3 [Unique-h*] hold. Let k1 < k2 < k3 be three successive placements.
Then the flow in networks ĥ∗(k1, k2) and ĥ∗(k2, k3) determines whether the
flows f̂∗(k1, k2) and ĥ∗(k2, k3) can be successfully merged or not. It does not
depend on f̂∗(k1).

Proof:

The success of the merging operation at period k2 only depends on the arcs
aman(k2, 0), a

5.1
end(k2) from flow f̂∗(k1, k2) and arcs aordpur(k2), a

idle
pur (k2) from

flow ĥ∗(k2, k3). Moreover, the flow in aman(k2, 0) and a5.1end(k2) is the same

in f̂∗(k1, k2) and in ĥ∗(k1, k2), which proves this lemma.

�

Lemma 5.3.17 Let f̂(k1) be an infeasible flow on network F̂(k1)∪
{
a5.1end(t) :

0 ≤ t < k1
}
and let ĥ(k1, k2) be a flow on Ĥ(k1, k2). Then the merging of

these two flows is not feasible either.

Proof:

The infeasibility of f̂(k1) means that there is an arc a5.1end(t) with positive
flow where t < k1. Since the merging operation does not affect the flow in
any of these arcs, the merging does not generate a feasibe flow either.

�

5.3. ALGORITHM FORBIDDING CLOSE PLACEMENTS 83

Proposition 5.3.18 Consider two successive placements k2 < k3 and sup-
pose that Hypotheses 2.1 [Delay], 2.2 [Cost], 5.2 [Idleness], and 5.3 [Unique-h*]
hold. The minimum cost flow f̂∗(k2, k3) equals the merging of the two flows
f̂∗(k1, k2) and ĥ∗(k2, k3) which can be successfully merged and have mini-
mum cost over all k1 ∈ [0, k2 − 2].

Proof:

We show by recursion on k2 that this proposition holds for every k1 < k2−1
and k3 > k2+1. For k2 = 2 and for each k3 > k2+1,the only possible value
for k1 is 0, and f̂∗(k1, k2) = ĥ∗(k1, k2) is feasible and has minimum cost by
definition.

Suppose that the statement holds for every k < k2. Consider any k3 > k2+1.
We look for the best flow f̂(k2) so that f̂(k2) and ĥ∗(k2, k3) successfully
merge and have minimum cost. By Lemma 5.3.17, f̂(k2) must be feasible.

Let k1 be the last placement in flow f̂(k2), i.e. f̂(k2) = f̂(k1, k2), and denote
by f̂(k1) and ĥ(k1, k2) the splitting of this flow. By Proposition 5.3.15, we
only need to look at flows f̂(k1, k2) so that ĥ(k1, k2) = ĥ∗(k1, k2) is locally
optimal, as otherwise it cannot be part of an optimal solution.

By Lemma 5.3.16, it only depends on the flow ĥ∗(k1, k2) whether f̂(k1, k2)
and ĥ∗(k2, k3) can merge. We deduce that f̂∗(k2, k3) must be the merging of
two locally optimal solutions f̂∗(k1, k2) and ĥ∗(k2, k3) with k1 ∈ [0, k2 − 1],
and the value k1 inducing a minimum cost among the values inducing a
successful merging.

�
Algorithm Flow.5.1 presents the adapted dynamic program. We use the
notation f̂∗(k0, k1, k2) for the minimum cost feasible flow on network F̂ (k2)
so that k0 and k1 are the last two placements, and denote by F̂ ∗(k0, k1, k2)
its cost.

Theorem 5.3.19 We suppose that Hypotheses 2.1 [Delay], 2.2 [Cost], 5.2
[Idleness], and 5.3 [Unique-h*] hold. Then Algorithm Flow.5.1 solves the
DCPP optimally in O(T 2 · Mcf) time, where Mcf is the time complexity
of a minimum linear-cost flow on any network Ĥ(k1, k2).

Proof:

The optimality follows from Proposition 5.3.18. The complexity of com-
puting every flow ĥ(k1, k2) is O(T 2 ·Mcf), and the dynamic program takes
O(T 3) time. Since the networks Ĥ(k1, k2) have O(R·T) sources and O(R·T)
sinks, the minimum complexity of any algorithm is O(R · T) time. We con-
clude that the time complexity is bounded by O(T 2 · Mcf).

�

84 CHAPTER 5. ALGORITHMS FOR GENERAL DEMAND

Algorithm 9: Algorithm Flow.5.1

Initialize f̂∗(0) as an empty flow;
for k2 : 1 → T do

Compute ĥ∗(0, k2);
f̂∗(0, k2) := ĥ∗(0, k2);
f̂∗(0, 0, k2) := ĥ∗(0, k2);
for k1 : 0 → k2 − 2 do

Compute ĥ∗(k1, k2);
for k0 : 0 → k1 − 2 do

f̂∗(k0, k1, k2) := MergeFlow
(
f̂∗(k0, k1), ĥ∗(k1, k2)

)
;

f̂∗(k1, k2) := feasible flow f̂∗(k0, k1, k2) minimizing
F̂ ∗(k0, k1, k2);

f̂∗(T) := flow f̂∗(k1, T) minimizing F̂ ∗(k1, T);
return f̂∗(T);

Remark 5.3.20 Proposition 5.3.18 still holds if we assume, instead of Hy-
pothesis 5.2 [Idleness], that at least one optimal policy has at least one idle
container after every placement.

Since Algorithm Flow.5.1 does the same as Algorithm 8 but considers the
best policy over O(T) times more candidates, the new dynamic program
always generates a better policy and the optimality certificate is still valid
for this algorithm.

Theorem 5.3.21 We suppose that Hypotheses 2.1 [Delay], 2.2 [Cost], and
4.4 [Distance] hold. The cost of the policy generated by Algorithm Flow.5.1
is never greater than the cost of the policy generated by Algorithm 8. More-
over, Algorithm Flow.5.1 computes an optimal policy if the flow f̂∗(k1, k2)
minimizes the cost over every f̂∗(k0, k1, k2).

We finally consider several locally optimal flows on Ĥ(k1, k2), and show that
Algorithm Flow.5.1 still computes an optimal policy.

Lemma 5.3.22 We suppose that Hypotheses 2.1 [Delay], 2.2 [Cost], and
5.2 [Idleness] hold. Consider a flow f̂(T) on G and suppose it has been
generated using some feasible flows ĥ(k0, k1) and ĥ(k1, k2), which is possible
by Theorem 5.3.12. Let X be the following value, which is non-negative by
Proposition 5.3.7:

X :=ĥ(k1, k2)
(
aidlepur (k1)

)− ĥ(k0, k1)
(
a5.1end(k1)

)

+min
{
ĥ(k1, k2)

(
aordpur(k1)

)
, ĥ(k0, k1)

(
aman(k1, 0)

)} ≥ 0 (5.20)

5.3. ALGORITHM FORBIDDING CLOSE PLACEMENTS 85

Then X corresponds to the minimum between the number of purchased con-
tainers and the number of idle containers at period k1. If f̂(T) is an optimal
flow then X is strictly positive.

Proof:

By construction, the number of idle (respectively purchased) containers at
period k1 is equal to the flow in arc aman(k1, 0) (respectively apur(k1)) in

the flow generated by merging ĥ(k0, k1) and ĥ(k1, k2).
By Theorem 5.3.12, the feasible flows ĥ(k0, k1) and ĥ(k1, k2) successfully
merge. Consider Algorithm 6 after step 2. The flow contains a zero cost
cycle whose flow is x := min

{
f̂
(
aman(k, 0)

)
, f̂

(
apur(k)

)
, f̂

(
a5.1end(k)

)}
. We

have shown in Proposition 5.3.7 that if X ≥ 0, then the minimum value is
f̂
(
a5.1end(k)

)
. Step 3 of the merging algorithm removes this zero-cost cycle

and the merged flow in either apur(k1) or aman(k1, 0) is X. However, by

assumption, k1 is a placement in f̂(T), so the flow in apur(k1) is positive.

Moreover, since f̂(T) is optimal, we have by Hypothesis 5.2 [Idleness] that
the flow in aman(k1, 0) is also positive. We conclude that X > 0

�

Proposition 5.3.23 Consider two optimal flows f1 and f2 on a network.
We can generate f2 from f1 by adding exclusively zero-cost cycles.

Proof:

Firstly, we can prove by induction on the number of changed arcs that we
can transform any flow to any other flow by adding cycles. Indeed, if we
add a path from a node v1 to another node v2, then we create a pseudo-flow
where the balance is not respected for nodes v1 and v2 until we add a path
from node v2 to node v1 with the same flow quantity.
Suppose now that to generate f2 from f1 we need to add non-zero cost cycles.
In the following, we exclusively consider cycles used for this transformation.
We define the absorbing set of a cycle by firstly putting this cycle (alone)
in the set, then iteratively adding to the set every cycle sharing at least one
arc with at least one cycle already in the set.
We consider the absorbing set of a negative cycle. Since this set is indepen-
dent from any other cycle, we can add this cycle to f2. We prove by induction
on the number of arcs that we can transform it into a set of zero-cost cycles.
Since there is a negative-cost cycle, at least one arc must be considered more
than once. Otherwise, there would be no negative cycle in it. Consider an
arc visited at least twice. Necessarily the flow in both direction must be the
same. We can hence divide the cycle into one zero-cost cycle containing this
arc in the two directions, and every other arc. These leftover arcs contain
one less arc, so if they still contain a negative cycle, we deduce from the
induction hypothesis that we can transform them into a set of zero-cost
cycles.

86 CHAPTER 5. ALGORITHMS FOR GENERAL DEMAND

�

Corollary 5.3.24 We suppose that Hypotheses 2.1 [Delay] and 2.2 [Cost]
hold. Consider three periods k0, k1, k2 so that k0 ∈ [0, T − 4], k1 ∈ [k0 +
2, T − 2] and k2 ∈ [k1 + 2, T]. Suppose that there are two locally optimal
flows ĥ1(k0, k1) and ĥ2(k0, k1) on Ĥ(k0, k1) and two locally optimal flows
ĥ1(k1, k2) and ĥ2(k1, k2) on Ĥ(k1, k2) so that ĥ1(k0, k1) and ĥ1(k1, k2) suc-
cessfully merge, whereas ĥ2(k0, k1) and ĥ2(k1, k2) do not. Then there exist
two locally optimal flows ĥ3(k0, k1) and ĥ3(k1, k2) which successfully merge
and so that the merged flow has zero flow in arc aman(k1, 0).

Proof:

Let ĥ1(k0, k1, k2) and ĥ2(k0, k1, k2) be the two merged flows on Ĝ. By Propo-
sition 5.3.23, we can transform ĥ1(k0, k1, k2) into ĥ2(k0, k1, k2) by adding
one-flow-unit zero-cost cycles on Ĝ. These cycles change the flow on each
arc by at most one, and therefore change the value X described in Lemma
5.3.22 by at most one. Since k1 is a placement, we can assume without loss
of generality that apur(k1) must be positive. Since ĥ1(k0, k1, k2) is so that

X ≥ 0 and ĥ2(k0, k1, k2) is so that X < 0, there exists necessarily a flow
ĥ3(k0, k1, k2) so that X = 0 which can be split into two locally optimal flows
ĥ3(k0, k1) and ĥ3(k1, k2). These locally optimal flows merge successfully and
induce a zero flow in aman(k1, 0) by Lemma 5.3.22.

�

Theorem 5.3.25 We suppose that Hypotheses 2.1 [Delay], 2.2 [Cost], and
5.2 [Idleness] hold. Then Algorithm Flow.5.1 solves DCPP optimally in
O(T 2 ·Mcf) time, where Mcf is the time complexity of a minimum linear-
cost flow on any network Ĥ(k1, k2).

Proof:

The complexity is the same as for Theorem 5.3.19. By Proposition 5.3.15,
any optimal flow f̂∗(T) can be decomposed into locally optimal flows ĥ∗(ki, ki+1)
with 0 = k0 < k1 < . . . < kn−1 = T .
Algorithm Flow.5.1 successively generates the flows f̂(ki, ki+1) using the
locally optimal flows ĥ(ki, ki+1). If every best flow is feasible, then by The-
orem 5.3.21 the generated policy is optimal. Using the same arguments, if
for every i ∈ [2, n[the flow f̂(ki−2, ki−1, ki) is feasible, then the final policy
will have at most cost F̂ (T), and hence will be optimal.
Otherwise, consider the first placement ki ∈ {k0, . . . , kn−1} so that the flow
f̂(ki−2, ki−1, ki) is not feasible. Consequently, f̂(ki−2, ki−1) is feasible but
cannot successfully merge with ĥ(ki−1, ki). Using Proposition 5.3.7, we de-
duce that the flows ĥ(ki−2, ki−1) and ĥ(ki−1, ki) do not merge successfully.
However, the flows ĥ∗(ki−2, ki−1) and ĥ∗(ki−1, ki) defined on the same net-
works Ĥ(ki−2, ki−1) and Ĥ(ki−1, ki) successfully merge. By Corollary 5.3.24,

5.4. ALGORITHM ALLOWING CLOSE PLACEMENTS 87

there are two locally optimal flows ĥ3(ki−2, ki−1) and ĥ3(ki−1, ki) success-
fully merging and so that the flow in aman(ki−1, 0) is zero.

The two f̂(ki−2, ki−1) and ĥ3(ki−1, ki) necessarily successfully merge due
to f̂(ki−2, ki−1) and ĥ3(ki−1, ki) successfully merging. Indeed, ĥ3(ki−1, ki)
has been generated from ĥ(ki−1, ki) by purchasing more containers and
ĥ3(ki, ki−1) from ĥ3(ki, ki−1) by purchasing less containers.

We prove by recursion on ki that there exists a flow f̂3(ki−1, ki) with cost
F̂ (ki−1, ki) ≤ F̂ ∗(ki−1, ki) and so that no container is idle after at least one
placement. For each coming placement kj > ki + 1, either f̂3(kj−2, kj−1)

successfully merges with ĥ(kj−1, kj) hence generating f̂3(kj−1, kj), or we
use Corollary 5.3.24 to show that there are two other locally optimal flows
ĥ4(kj−2, kj−1) and ĥ4(kj−1, kj) which successfully merge together, success-

fully merge with f̂3(kj−3, kj−2) and so that no container is idle at period
kj−1.

When we arrive at kj = kn−1 = T , we have proven that there is an optimal
policy violating Hypothesis 5.2.

�

Remark 5.3.26 The enhanced capacity scaling algorithm presented in the
previous chapters requires the network to have exclusively non-negative arcs.
However, arc a5.1end(k) has a strictly negative cost −Ccont(k)−Cidle(k). Ahuja
et al. [2] propose the following network update to have only non-negative
costs. Firstly, we compute an upper-bound of the flow which may go in each
negative-cost arc, for example the total positive excess of every source in
the network. We then send this amount of flow in the arc and consider
the residual network. In the residual network, this arc is inverted and has
positive cost. Note that we must not forget to take into account to cost of
this initial amont of flow.

5.4 Algorithm Allowing Close Placements

Algorithm Flow.5.1 does not allow placements at consecutive periods. We
now extend it to allow close placements. We consider the following hypoth-
esis:

Hypothesis 5.4 [Idleness-Or-Placement]: There is an optimal solu-
tion to DCPP so that if period k is a placement, then either:

• a container is idle during period k, or

• period k + 1 is a placement.

We do not prove all results rigorously as they can be deduced with similar
arguments as in the previous section, for Algorithm Flow.5.1.

88 CHAPTER 5. ALGORITHMS FOR GENERAL DEMAND

. . .

. . .

. . .

vpur

period 0 period 1 period k-1 period k

Figure 5.5: Network F̂2(k). Removed nodes and arcs are presented in gray,
and added arcs are in red.

We create networks F̂2(k2), Ĥ2(k1, k2), and F̂2(k1, k2) from respectively
F(k2), H(k1, k2), and F(k1, k2) by (see Figures 5.5 and 5.6):

1. replacing arcs aman(k2, 0), r ∈ [0, R[with a new arc a5.2end(k2) from node
vman(k2, 0) to vpur with cost −Ccont(k2), and

2. replacing arc a5.1end(k2) with a new arc a5.2end(k2 + 1), which is also from
node vman(k2 + 1, 0) to node vpur but with cost −Ccont(k2 + 1).

Note that for every t, arcs a5.2end(k2) and apur(k2) build a zero-cost cycle.

Since we now consider close placements, we define the network Ĥ(k1, k2)
for k1 = k2 − 1. Network Ĥ(k2 − 1, k2) has a similar definition as other
networks Ĥ(k1, k2). The only difference is that we do not need the arc
aidlepur (k2−1), because no container will be idle at period k2−1 by Hypothesis
5.4 [Idleness-Or-Placement].

Figure 5.7 illustrates the networks F̂2(k2−1) and Ĥ(k2−1, k2) around period
k2 − 1 for consecutive placements k1 := k2 − 1 and k2. For each k2 ∈ [2, T]
and k1 ∈ [0, k1 − 1], any flow on F̂(k1, k2) can be split into:

• a flow on F̂(k1) and a flow on Ĥ(k1, k2) if k1 < k2 − 1, or

• a flow on F̂2(k1) and a flow on Ĥ2(k1, k2) if k1 = k2 − 1.

period k1+1

. . .

. . .

. . .

vpur

period k1 period k2-1 period k2

Figure 5.6: Network Ĥ2(k1, k2). Removed nodes and arcs are presented in
gray, and added arcs are in red.

5.4. ALGORITHM ALLOWING CLOSE PLACEMENTS 89

vpur

aordpur(k1)

period k1 = k2 − 1 period k2period k1 − 1

. . .

. . .

. . .

a5.2end(k1)
a5.2end(k2) . . .

. . .

. . .

aidlepur (k1)

a5.1end(k2)

Figure 5.7: Flows f̂2(k1) and ĥ(k1, k2) around placement k1, when k1 = k2−1
and the placement after k2 is k3 > k2 + 1. The blue nodes and arcs are in
F̂2(k1). The red nodes and arcs arcs are in Ĥ(k1, k2). The black nodes and
arc are common to both networks and gray arcs are in none.

Moreover, any flow on F̂2(k1, k2) can be split into:

• a flow on F̂(k1) and a flow on Ĥ2(k1, k2) if k1 < k2 − 1, or

• a flow on F̂2(k1) and a flow on Ĥ2(k1, k2) if k1 = k2 − 1.

For the merging of two flows f̂(k) and ĥ(k−1, k) to be successful, we require
in addition arc aordpur(k−1) to have a bigger flow than a5.2end(k−1). Nonetheless,

if the flow in a5.2end(k − 1) was greater than the flow in aordpur(k − 1), we could
decrease the solution cost by not purchasing at period k − 1. Therefore, it
is not restrictive to assume than the flow in aordpur(k − 1) is bigger. Similarly
to Algorithm 8, we extend the ZIO property and deduce Algorithm 10.

Algorithm 10:

Initialize f̂∗(0) as an empty flow;
for k2 : 1 → T do

for k1 : 0 → k2 − 2 do

Compute ĥ∗(k1, k2);
f̂∗(k1, k2) := MergeFlow

(
f̂∗(k1), ĥ∗(k1, k2)

)
;

f̂2
∗
(k1, k2) := MergeFlow

(
f̂∗(k1), ĥ2

∗
(k1, k2)

)
;

Compute ĥ∗(k2 − 1, k2);

f̂∗(k2 − 1, k2) := MergeFlow
(
f̂2

∗
(k2 − 1), ĥ∗(k2 − 1, k2)

)
;

f̂2
∗
(k2 − 1, k2) := MergeFlow

(
f̂2

∗
(k2 − 1), ĥ2

∗
(k2 − 1, k2)

)
;

f̂∗(k2) := feasible flow f̂∗(k1, k2) with minimal F̂ ∗(k1, k2);
f̂2

∗
(k2) := feasible flow f̂2

∗
(k1, k2) with minimal F̂2

∗
(k1, k2);

return f̂∗(T);

90 CHAPTER 5. ALGORITHMS FOR GENERAL DEMAND

Theorem 5.4.1 Suppose that Hypotheses 2.1 [Delay] and 2.2 [Cost] hold.
If the best feasible flows f̂(k2) and f̂2(k2) always minimize the cost, i.e. if

we never encounter a k1 minimizing F̂ ∗(·, k2) or F̂2
∗
(·, k2) while inducing

an infeasible flow, then Algorithm 10 generates an optimal policy.

Using the dynamic program from Algorithm Flow.5.1, we extend Algorithm
10 to Algorithm Flow.5.2 to compute an optimal policy under Hypothesis
5.4 [Idleness-Or-Placement].

Algorithm 11: Algorithm Flow.5.2

Initialize f̂∗(0) as an empty flow;
for k2 : 1 → T do

for k1 : 0 → k2 − 1 do

Compute ĥ∗(k1, k2);
if k1 == 0 then

f̂∗(0, k2) := ĥ∗(0, k2);
f̂∗(0, 0, k2) := ĥ∗(0, k2);
f̂2

∗
(0, k2) := ĥ∗(0, k2);

f̂2
∗
(0, 0, k2) := ĥ∗(0, k2);

else
for k0 : 0 → k1 − 1 do

if k1 == k2 − 1 then

f̂∗(k0, k1, k2) := MergeFlow
(
f̂∗(k0, k1), ĥ∗(k1, k2)

)
;

f̂2
∗
(k0, k1, k2) :=

MergeFlow
(
f̂∗(k0, k1), ĥ2

∗
(k1, k2)

)
;

else

f̂∗(k0, k1, k2) := MergeFlow
(
f̂2

∗
(k0, k1), ĥ∗(k1, k2)

)
;

f̂2
∗
(k0, k1, k2) :=

MergeFlow
(
f̂2

∗
(k0, k1), ĥ2

∗
(k1, k2)

)
;

f̂∗(k1 − 1, k1, k2) := MergeFlow
(
f̂∗(k1 − 1, k1), ĥ∗(k1, k2)

)
;

f̂∗(k1, k2) := feasible flow f̂∗(k0, k1, k2) with minimal
F̂ ∗(k0, k1, k2);

f̂2
∗
(k1, k2) := feasible flow f̂2

∗
(k0, k1, k2) with minimal

F̂2
∗
(k0, k1, k2);

f̂∗(T) := flow f̂∗(k1, T) minimizing F̂ ∗(k1, T);
f̂2

∗
(T) := flow f̂2

∗
(k1, T) minimizing F̂ ∗(k1, T);

return Flow among f̂∗(T) or f̂2
∗
(T) with minimal cost;

5.5. COMPARISON AND EXTENSIONS 91

Theorem 5.4.2 Suppose that Hypotheses 2.1 [Delay] and 2.2 [Cost] hold.
The cost of the policy generated by Algorithm Flow.5.2 is never greater
than the cost of the policy generated by Algorithm 10. Moreover, Algo-
rithm Flow.5.2 computes an optimal policy if the best flows f̂∗(k1, k2) and

f̂2
∗
(k1, k2) minimize the cost over every f̂∗(k0, k1, k2) and f̂2

∗
(k0, k1, k2) re-

spectively.

Theorem 5.4.3 Suppose that Hypotheses 2.1 [Delay], 2.2 [Cost], and 5.4
[Idleness-Or-Placement] hold. Algorithm Flow.5.2 solves DCPP optimally
in O(T 2 · Mcf) time, where Mcf is the time complexity of a minimum
linear-cost flow on any network Ĥ(k1, k2).

5.5 Comparison and Extensions

5.5.1 Comparison

In Chapter 4, we have constructed two algorithms generating an optimal
solution under some hypotheses in the case of a non-decreasing demand.
Chapter 5 proposes alternative algorithms which are optimal under similar
hypotheses but for any demand pattern. These algorithms all have the same
structure, namely first running O(T 2) minimum linear-cost flow algorithms,
then using a dynamic program to build a solution from these flows.

There is a fundamental difference between the algorithms from the two chap-
ters. In Chapter 4, the solution ĥ∗(k1, k2) has a fixed amount of containers
at periods k2 and k2 + 1. The question is whether these containers should
come at period k2 or before. The solution is infeasible if we start at period
k1 + 2 with more containers than this amount, due to arc aend(k2 + 1) not
being empty.

On the other hand, in this chapter we purchase at period k1 as many contain-
ers as it is profitable to, by virtually selling every container at period k2+1.
We purchase these containers again in the next flow network Ĥ(k2, k3). The
solution may be infeasible if the number of containers we need in period
interval [k2, k3[is not significantly greater than the number of containers in
period interval [k1, k2[.

Figure 5.8 shows an example of a network where Algorithms Flow.4.1 and
Flow.4.2 compute a sub-optimal policy whereas Algorithms Flow.5.1 and
Flow.5.2 compute an optimal policy. This example has zero setup cost at
periods 0 and 3, and 1000 setup cost at other periods, so that only periods 0
and 3 are placements. Moreover, the disposable cost is very high such that
every optimal policy necessarily fulfills every demand. Algorithm Flow.4.1
cannot purchase more than 45 containers at period t = 0, which represents
the number of containers we need to fulfill every demands at next placement
t = 3 and period t = 4. Consequently, some disposables must be used. We

92 CHAPTER 5. ALGORITHMS FOR GENERAL DEMAND

note that this example shows a very clear increasing demand trend with
only one day off at time (3, 1).

We can also create instances where Algorithm Flow.4.1 computes an optimal
policy but not the algorithms from this Chapter. We present an example in
Figure 5.9. In this example, the placements are periods 0 and 3, with the
zero setup cost. However, the container price at period 3 is much higher
than at period t = 0. Consequently, Algorithm Flow.5.1 will purchase more
containers at period 0 to fulfill a demand at period t = 2 with relatively low
disposable cost. However, because of a day off at period t = 4 and the close
end of horizon, there is no reason to purchase containers at period t = 3 and
letting them idle without fulfilling any demand. The additional containers
purchased at period t = 0 only seemed profitable because we did not look
further into the future.

We conclude with two remarks on this last example. Firstly, if the time hori-
zon contained one or two more periods with high demand, then Algorithm
Flow.5.1 would have computed an optimal policy and Algorithm Flow.4.1
would have not. Secondly, we note that this issue is not easy to solve in

−10 −15 −20−5 −10 −20 −25 000 −25−25 −30−20 00

t = 0 t = 1 t = 2 t = 3 t = 4 t = 5 t = 655

10 15 20

2515
25

30

30 3030

45
55

75
45 7520

40

20

20 30 5040 40

20

15

(a) Optimal flow, computed by Algorithm Flow.5.1

−10 −15 −20−5 −10 −20 −25 000 −25−25 −30−20 00

t = 0 t = 1 t = 2 t = 3 t = 4 t = 5 t = 645

10 10

10

15 20

2515

10 20

25

30

30 30

30

30 305040

45
55

75
45 7520

30
15

(b) Sub-optimal flow computed by Algorithm Flow.4.1

−10 −15 −20−5 −10 −20 −25 000 −25−25 −30−20 00

t = 0 t = 1 t = 2 t = 3 t = 4 t = 5 t = 610

10

10

10 1010 10

10

10

10

(c) Flow difference: a negative-cost cycle

Figure 5.8: Example of a network where Algorithm Flow.5.1 computes an
optimal policy but Algorithm Flow.4.1 does not. The flow quantities are
given in red and the negatives excesses −D(t, r) are in black.

5.5. COMPARISON AND EXTENSIONS 93

−10 −15 −20−5 −10 −20 −25 000 −25−25 −30−20 00

t = 0 t = 1 t = 2 t = 3 t = 4 t = 5 t = 645

10 10

10

15 20

2515

10 20

25

30

30 30

30

30 305040

45
55

75
45 7520

30
15

(a) Optimal flow, computed by Algorithm Flow.4.1

−10 −15 −20−5 −10 −20 −25 000 −25−25 −30−20 00

t = 0 t = 1 t = 2 t = 3 t = 4 t = 5 t = 655

10 15 20

2515
25

30

30 3030

45
55

75
45 7520

40

20

20 30 5040 40

20

15

(b) Sub-optimal flow computed by Algorithm Flow.5.1

−10 −15 −20−5 −10 −20 −25 000 −25−25 −30−20 00

t = 0 t = 1 t = 2 t = 3 t = 4 t = 5 t = 610

10

10

10 1010 10

10

10

10

(c) Flow difference: a negative-cost cycle

Figure 5.9: Example of network where Algorithm Flow.4.1 computes an
optimal policy but Algorithm Flow.5.1 does not. The flow quantities are
given in red and the demands values −D(t, r) in black.

the general cases because whether it is profitable or not to purchase the
additional containers at period 0 also depends on the future placements,
especially when they have high container prices and some demand have a
very low profitability.

5.5.2 Extensions

Using a similar reasoning as in Chapter 4, we can trivially extend Algorithms
Flow.5.1 and Flow.5.2 to several suppliers. In a supply chain with I sup-
pliers, the algorithms’ complexity is then O(T 2 ·McfI), where McfI is the
cost of a minimum linear-cost flow on a network Ĥ(k1, k2) with O(I ·R · T)
nodes and arcs.

If we assume that the distance between two placements is at least ω ≥ 1
periods, we can extend Algorithm Flow.5.1 to a delivery time between ω−1
and ω periods. If we do not set a minimum distance between two consecutive
placements, we must compute 2ω flows f̂i instead of only f̂ and f̂2.

94 CHAPTER 5. ALGORITHMS FOR GENERAL DEMAND

Furthermore, our algorithms can easily be adapted to a bi-criteria problem,
where the setup costs are replaced or completed with a second objective
function of minimizing the number of placements. Then, the time complex-
ity is O(T 2 · Mcf + T 3) for Algorithms 8 and 10, and O(T 2 · Mcf + T 4)
for Algorithms Flow.5.1 and Flow.5.2. We believe that we cannot find any
minimum linear-cost flow algorithm on the networks Ĥ(k1, k2), so the time
complexity should stay at O(T 2 · Mcf).

5.6 Network Analysis with Acyclic Flows

In this section, we develop an algorithm using the theorem of extreme points.

5.6.1 Introduction to Extreme Points

We recall that an acyclic flow contains by definition no cycle with positive
flow on each arc. Moreover, the network G modeling the DCPP has fixed-
plus-linear cost, which is a special case of a network with concave cost.
Theorem 3.2.5 states that there is an acyclic optimal flow in any concave-
cost network. Given a flow and a period k ∈ [0, T + 1], we define the set
VG(k) as the connected component of node vman(k, 0) if k is a placement,
and as an empty set otherwise. Consequently, there is an optimal flow so
that the sets

{
VG(k)

}
for k ∈ [0, T + 1] are disjoints (see Figure 5.10).

Figure 5.10: Tree representation of an acyclic flow on network G.

In graph theory, a cut denotes a set of arcs separating the graph into two
disconnected subgraphs. It this section, we enumerate several sets of cuts
to compute a solution.

5.6. NETWORK ANALYSIS WITH ACYCLIC FLOWS 95

5.6.2 Cuts in the Wagner-Within algorithm

The dynamic lot-sizing problem can be modeled as illustrated in Figure 5.11.
In this figure, we have T = 5, the leftmost node and the rightmost nodes
correspond respectively to the state at the beginning of period 0 and at end
of period 4.

t = 0 t = 1 t = 2 t = 3 t = 4

Figure 5.11: Network modeling of the dynamic lot-sizing problem.

Figure 5.12 formulates the zero-inventory property as a cut of the network,
highlighting that the stock must be empty before purchasing. In this chap-
ter, we extend this representation to our container management problem to
compute an optimal policy.

t = 0 t = 1 t = 2 t = 3 t = 4

Cut

purchasing

Figure 5.12: Network cut modeling the zero-inventory property. Non-
considered purchasing arcs are marked in gray for better readability.

5.6.3 Streams

This subsection characterizes the connected components of the flow. For
notational convenience, we write asup(t,−1) to denote the arc aord(0).

Arc Notations

Consider a flow f on a subnetwork of G. We say that a disposable arc
adis(t, r) is early if r is an early time step and late otherwise. A non-
disposable arc a is called empty if its flow f(a) is zero and partial otherwise.
We call a disposable arc adis(t, r) full if f

(
asup(t, r − 1)

)
= 0. We call it

partial if its flow is positive but less than D(t, r). A disposable arc which is
neither full nor partial is called empty. For every positive demand D(t, r),
arc adis(t, r) is:

1. empty if its flow is zero.

96 CHAPTER 5. ALGORITHMS FOR GENERAL DEMAND

2. full if its flow is equal to D(t, r).

3. partial otherwise.

We made the definitions more complex to extend the notations to arcs
adis(t, r) relative to an empty flow. We have then, for any flow and any
time (t, r):

1. If adis(t, r) is partial or empty, then adis(t, r
′) is empty for all r′ ∈]0, r[.

2. If adis(t, r) is partial or full, then adis(t, r
′) is full for all r′ ∈]r,R[.

Moreover, any flow should have at most one partial arc per period.

Definition and Properties of Streams

Consider a flow f on G. We denote by stream a connected component of
partial arcs in the restriction of f to G − {vpur}. An example is given
later in Figure 5.13. The following lemmas follow from the assumption
that Ldel ≤ R. Therefore, at step r = 0, every container is either heading
to the manufacturer or already there. Outgoing containers arrive to the
manufacturer before the end of the period. We say that a flow represents a
policy if it corresponds to the movement of containers in the process in an
acyclic flow. We have shown in Chapter 3 every acyclic flow represents a
policy under Hypothesis 2.2 [Cost] holds.

Lemma 5.6.1 Consider a flow f in G representing a policy and a period t.
Period t contains no partial arc if and only if no container is in the system.

Proof:

On the one hand, if there is a partial arc, then there are containers in the
system. On the other hand, if arcs aord(t) and aman(t, R − 1) are empty,
then both the supplier and the manufacturer hold no container at every step
of the period. Since Ldel ≤ R, every container outgoing at time (t, 0) would
have returned to the manufacturer, inducing a positive flow in aman(t, R−1).
We conclude that there is no container in the system.

�

Lemma 5.6.2 Consider a flow f in G representing a policy and a time
(t, r). If arc asup(t, r) is partial, then aord(t) is partial and belongs to the
same stream.

Proof:

If arc asup(t, r) is partial, then some containers are held by the supplier.
These containers have been ordered at period t. Thus aord(t) and every
aman(t, r

′) for r′ ∈ [0, r] are partial and hence belong to the same stream.
�

5.6. NETWORK ANALYSIS WITH ACYCLIC FLOWS 97

Lemma 5.6.3 Consider a flow f in G representing a policy and a period t.
If arc aman(t, r) is partial, then aman(t, R − 1) is partial and belongs to the
same stream.

Proof:

If arc aman(t, r) is partial, then some containers are held by the manufac-
turer at time (t, r). These containers stay in the manufacturer stock at least
until time (t, R − 1). Consequently, every arc aman(t, r

′) with r′ ∈ [r,R[is
partial and hence belong to the same stream.

�

Proposition 5.6.4 Consider a flow f representing a policy and a period t.
The partial arcs from period t come from at most two streams. Moreover, if
there are two streams, then

1. one stream contains arc aman(t, R− 1),

2. the other stream contains arc aord(t).

3. Arc aman(t, 0) is empty,

4. No early disposable arc adis(t, r) is partial, for r ∈ [0, R− Ldel].

Proof:

Lemmas 5.6.2 and 5.6.3 show that every non-disposable arc at period t
belongs to a stream including either aord(t) or aman(t, R−1). If a disposable
arc adis(t, r) is partial, then arc asup(t, r − 1) must be partial, so adis(t, r)
belongs to the same stream as aord(t).

Furthermore, if aman(t, 0) is partial, then a container is idle and the two
streams are connected, which is a contradiction. If there is an early dis-
posable arc adis(t, r), then a container is hold by the supplier from time
(t, 0) to time (t, r) and by the manufacturer from time (t, r + Lord) to time
(t + 1). Thus the two arcs aord(t) and aman(t, R − 1) are connected, which
is a contradiction.

�
When there are two stream at a period t, we denote by supplier-stream the
stream including arc aord(t) and by manufacturer-stream the one includ-
ing arc aman(t, R − 1). We say that period t contains a stream Str, or
equivalently that stream Str is in period t, if Str contains arc aord(t) or
aman(t, R− 1).

Given a flow, we call the start (respectively the end) of a stream the first
(respectively the last) period it is in. By Hypothesis 2.1, the arcs are either
between two nodes from a same period or between nodes of consecutive
periods. Therefore, any stream is in any period between its start and its end.
A stream containing arc aord(t) also contains node vman(t, 0) and a stream

98 CHAPTER 5. ALGORITHMS FOR GENERAL DEMAND

containing arc aman(t, R − 1) also contains node vman(t + 1, 0). Therefore,
a stream containing node vman(t, 0) is in both periods t and t+ 1.

Proposition 5.6.5 Consider a flow f representing a policy and a period
t. If there are two streams over periods t and t + 1, then there exists r ∈
]R− Ldel, R[so that adis(t, r) is partial.

Proof:

Among the two streams, one stream Str1 contains node vman(t + 1, 0)
and the other stream Str2 contains nodes vman(t, 0) and vman(t + 2, 0).
Consequently, nodes vman(t, 0) and vman(t + 2, 0) are connected by a path
of partial arcs. This path contains either aman(t, R − 1) or adis(t, r) for
some r ∈ [R − Ldel, R[. Since vman(t + 1, 0) and vman(t, 0) are on different
streams, the stream including vman(t, 0) cannot contain arc aman(t, R − 1)
or adis(t, R−Ldel). Therefore it must contain a late disposable arc adis(t, r),
for some r ∈]R− Ldel, R[.

�

Corollary 5.6.6 Consider a flow f representing a policy and a period t so
that two streams are both in periods t and t + 1 Then each of the streams
is the manufacturer-stream of one of the periods and the supplier-stream of
the other period.

5.6.4 Cuts

Introduction

A difficulty to decompose the flow is that a cut must separate the flow on
two echelons, namely on the manufacturer echelon as well as on the supplier
echelon. In particular, Figure 5.13 presents a possible decomposition of
optimal solution into streams. Suppose that the demand only increases
from an even period to the next one but is constant over all odd periods.
Then an optimal policy may only purchase containers at even periods. The
associated optimal flow contains a single stream (in green) for the demand
at odd periods and one stream (in gray) per even period with purchasing. In
this case, we have no simple cut of network G − {vpur} between a subgraph
for early periods and a subgraph for late periods.

Start-Cuts

Consider a flow f in G, a period ts ∈ [−1, T + 2] and a time step rs ∈
[Ldel − 1, R[. We say that the flow contains the start-cut Cuts(ts, rs) when
(see Figure 5.14):

1. Arc aman(ts, rs) is empty.

5.6. NETWORK ANALYSIS WITH ACYCLIC FLOWS 99

Figure 5.13: Flow decomposition with a long stream (in green) starting
before and ending after several smaller streams (in gray).

2. If rs < R− 1, then arc aman(ts, rs + 1) is not empty.

3. ∀r ∈ [0, R− Ldel], arc adis(ts, r) is not partial.

Note that the second condition ensures that a flow does not contain two
start-cuts at the same period.

Lemma 5.6.7 Any flow f representing a policy and containing the start-cut
Cuts(ts, rs) is such that:

• For each r ∈ [0, rs], arc aman(ts, r) is empty.

• For each r ∈ [1, rs], arc adis(ts, r − Ldel) is full.

• Arc adis(rs+1−Ldel) is empty and demand D(rs+1−Ldel) is positive.

period tperiod t− 1 period t+ 1
Cutr

Figure 5.14: Start-cut Cuts(t, r) (in red), crossing non-partial arcs. Blue
arcs must be full and dashed arcs must be empty.

Proposition 5.6.8 Consider a flow f representing a policy. If a stream
starts at period ts, then f contains a start-cut at period ts.

Proof:

Suppose that a stream Str starts at period ts. It contains vman(ts + 1, 0),
but not vman(ts, 0) since the stream is not in period ts − 1. Arc aman(ts, 0)
must be empty and every early disposable arc adis(ts, r) must not be partial,
as otherwise there would be a path from vman(ts, 0) to vman(ts+1, 0), hence

100 CHAPTER 5. ALGORITHMS FOR GENERAL DEMAND

vman(ts, 0) would belong to the stream. For every late demand D(ts − 1, r),
arc adis(ts, r) is not partial, as otherwise the stream would be in period
ts − 1. We consider the last empty arc aman(ts, rs). No arc adis(ts, r) with
r ∈ [0, R−Ldel] can be partial, as otherwise there would be a path of partial
arcs from vman(ts, 0) to vman(ts + 1, 0) and the stream would be at period
ts − 1. We conclude that there is a start-cut at period ts.

�

Remark 5.6.9 Consider a flow on G − vpur and let Gt be the restriction
of this flow to time (t + 1, 0). A start-cut at period t is a cut of the flow
on Gt such that one of the connected components is in periods t and t + 1.
However, a start-cut does not necessarily induces a new stream on G − vpur,
because the two connected components on Gt may be connected after time t.

End-Cuts

Consider a flow f in G, a period te ∈ [−1, T +2] and a time step re ∈ [0, R].
We say that the flow contains the end-cut Cute(te, re) when (see Figure 5.15):

1. Arc aman(te, 0) is empty.

2. ∀r ∈ [0, re[, arc adis(te, r) is empty.

3. ∀r ∈ [re, R[, arc adis(te, r) is full.

Similar to start-cuts, the second condition ensures that there is at most one
end-cut per period. Note that the set [0, re[is empty for re = 0, whereas
the set]re, R[is empty for re = R.

Lemma 5.6.10 Any flow f representing a policy and containing the end-
cut Cute(te, re) is such that:

• If re > 0 then asup(te, re − 1) is empty. Otherwise aord(te) is empty.

• If re > 2, then asup(te, re − 2) is not empty. If re > 1, then aord(te) is
not empty.

• For each r ∈ [re, R[, arc asup(te, r) is empty.

Proposition 5.6.11 Consider a flow f on G. If a stream ends at period te,
then f contains an end-cut at period te.

Proof:

Suppose that a stream ends in period te. It contains vman(te, 0), but not
vman(te+1, 0) since it is not in period te+1. Arc aman(te, 0) must be empty
and every early disposable arc adis(te, r) must not be partial, as otherwise

5.6. NETWORK ANALYSIS WITH ACYCLIC FLOWS 101

period tperiod t− 1 period t+ 1

Cut
r

Figure 5.15: End-cut Cute(t, r) (in red), crossing non-partial arcs. Blue arcs
must be full and dashed arcs must be empty.

there would be a path from vman(te, 0) to vman(te+1, 0), hence vman(te+1, 0)
would belong to the stream. If every disposable arc adis(te, r) with r ∈ [0, R[
is empty, then we have the end-cut Cute(te, R). Otherwise, consider the first
full disposable arc adis(te, re) in period te. Every arc adis(te, r) with r < re
is empty. In addition, arc asup(te, re) is empty so there is no container in
the supplier stock after time (te, re). Thus every disposable arc after time
step re is full and we have the end-cut Cute(te, re).

�

Remark 5.6.12 Similar to start-cuts, there may be an end-cut at period
t without any stream ending. This occurs when there is a single stream at
period t− 1.

Middle-Cuts

Consider a flow f in G, and a period tm ∈ [−1, T +2]. We say that this flow
contains the middle-cut Cutm(tm) when (see Figure 5.16):

1. Arc aman(tm, 0) is empty.

2. ∀r ∈ [0, R− Ldel], arc adis(tm, r) is empty.

period tperiod t− 1 period t+ 1

Cut

Figure 5.16: Example of a middle-cut (in red). Dashed arcs (in black) must
be empty.

Proposition 5.6.13 Consider a flow f on G. If two streams are in periods
tm − 1, tm and tm + 1, then f contains a middle-cut at period tm.

102 CHAPTER 5. ALGORITHMS FOR GENERAL DEMAND

Proof:

Necessarily, one stream contains nodes vman(tm − 1, 0) and vman(tm − 1, 0)
while the other stream contains node vman(tm, 0) and vman(tm + 2, 0). We
call Str1 the former stream and Str2 the later one. By Proposition 5.6.4, arc
aman(t, r) is empty and every early arc adis(tm, r) is not partial. Moreover,
by Proposition 5.6.5 there is a partial arc adis(tm, rm) for some rm ∈]R −
Ldel, R[. Therefore, every early disposable arc adis(tm, r) with r ≤ R−Ldel <
rm must be empty. We have thus the middle-cut Cutm(tm).

�

5.6.5 Extreme Points Theorem

Lemma 5.6.14 Consider a flow in G and a positive demand D(t, r). Arc
adis(t, r) is full if and only if vsup(t, r) is not adjacent to any partial arc.

Proof:

Node vsup(t, r) is incident to at most three arcs: adis(t, r), asup(t, r) and
either asup(t, r−1) or aord(t). Arc adis(t, r) is full if and only if asup(t, r−1)
is empty. Then, arc asup(t, r) must be empty for the imbalance inequality
to hold.

�
The following lemma adapts Theorem 3.2.5 to our network.

Lemma 5.6.15 There is an optimal flow on G such that every induced
stream in G contains at most one manufacturer node vman(k, 0) where k
is a placement. Reciprocally, if k is a placement, then apur(k) is adjacent to
a partial arc and hence to a stream.

Proof:

Theorem 3.2.5 states that there exists an acyclic optimal flow. If a stream in
this flow contained two purchasing arcs apur(k1, 0) from vpur to vman(k1, 0)
and apur(k2, 0) from vpur to vman(k2, 0) with k1 �= k2, there would be a cycle
in the flow.
The destination node vman(k, 0) of arc apur(k) has excess D(k− 1, R−Ldel)
and is incident to four other arcs: aend(k), adis(k − 1, R − Ldel), aman(k, 0)
and aord(k) Arc aend(k) is empty because arc apur(k) is not1. The flow in
adis(k−1, R−Ldel) is at most D(k−1, R−Ldel), so at least f

(
apur(k)

)
> 0

flow units go through arcs aman(k, 0) and aord(k) combined. Thus, at least
one of these non-disposable arcs has a positive flow and therefore is partial.

�
By Lemma 5.6.15, if period k is a placement, then vman(k, 0) belongs to a
stream and we say that this stream contains placement k. The following
lemma states that we do not need the knowledge of full arcs to build a flow.

1Recall that these two arcs are incident to the same two nodes.

5.6. NETWORK ANALYSIS WITH ACYCLIC FLOWS 103

Lemma 5.6.16 Any flow f on network G is fully characterized by its pur-
chasing sizes and the flow in its streams.

Proof:

Any flow f is defined by its value in arcs with positive flow, i.e. in partial
arcs and full arcs. By Lemma 5.6.14, every supplier node vsup(t, r) incident
to a full arc in f is not incident to any partial arc. Therefore, given the flow
in the partial arcs we can reconstruct the flow f by correcting the imbalance
property of every supplier node via a disposable arc.

�

Remark 5.6.17 Consider a stream which is part of a flow on G. Then the
total excess of its nodes is negative if and only if it is a purchasing stream.
The total excess of its nodes cannot be positive.

5.6.6 Stream-based Algorithm

We define a block of a stream as an interval of periods in which this stream
is the only one, and a branch of a stream as an interval of periods on which
there is a second stream. We say that two streams Str1 and Str2 are adjacent
if there is a period containing both streams. A stream adjacent to a partial
purchasing arc is called purchasing-stream. When decomposing a flow into
streams, we deduce from the total excess in each stream whether this stream
is a purchasing stream or not, by Remark 5.6.17.

We denote by branch-stream a stream containing no block and a block-
stream a stream containing at least one block. Any branch of any stream
alternates over time between being the supplier-stream, and the manufac-
turer stream. We consider in particular a stream with a single block, which
we call one-block-stream. A one block stream is composed of block and up
to two branches, one in earlier periods and the other in later periods. The
following proposition is the central result to construct our acyclic flow using
dynamic programming

Proposition 5.6.18 A one-block-stream is characterized by two start-cuts
Cuts(t1, r1), Cuts(t3, r3) and two end-cuts Cute(t2, r2), Cuts(t4, r4) where
t1 ≤ t2 < t3 ≤ t4 and such that t2 − t1 and t4 − t3 are even numbers.

Proof:

This proposition follows from the propositions on the cuts. We refer to
Figure 5.17 for an illustration. By Proposition 5.6.8, every stream starts
with a start-cut and by Proposition 5.6.11 every stream ends with an end-
cut. Consider a stream with a single block. This stream begins with a start-
cut Cuts(t1, r1) and ends with an end-cut Cute(t4, r4). Consider the earliest
period k2 + 1 > k1 of the block from this stream. There are two streams at

104 CHAPTER 5. ALGORITHMS FOR GENERAL DEMAND

period k2, thus there is a cut Cute(t2, r2) ending this second stream. Consider
the last period t3 − 1 < t4 of the block. A new stream starts at period t3
so there is a start-cut Cuts(t3, r3). In every period between t1 and t2 − 1
and between t3 + 1 and t4, there are two streams. By Proposition 5.6.13,
there is thus a middle-cut at every of these periods. By definition of the cuts
and by Lemmas 5.6.7 and 5.6.10, each cut at a period t with two streams
defines which arc belongs to which stream at that period. Therefore, the
four cuts Cuts(t1, r1), Cute(t2, r2), Cuts(t3, r3), and Cuts(t4, r4) characterize
the stream.

Finally, by Corollary 5.6.6, the one-block-stream alternates between being a
supplier-stream and a manufacturer-stream. Since the one-block-stream is
the manufacturer-stream of periods t1 and t2 (respectively t3 and t4), t2− t1
(respectively t4 − t3) needs to be a even number.

�

Proposition 5.6.19 A branch-stream is defined by a start-cut Cuts(t1, r1)
and an end-cut Cute(t4, r4) such that t1 < t2 and t4 − t1 is an odd number.

Proof:

By Proposition 5.6.8, a branch-stream starts with a start-cut Cuts(t1, r1)
and ends with an end-cut Cute(t4, r4) so that t1 ≤ t4. A branch-stream
starts as a manufacturer-stream, ends as a supplier-stream and alternates
between being the supplier-stream and the manufacturer-stream. Therefore,
t4 − t1 is an odd number.

�

Remark 5.6.20 Using the notations of Proposition 5.6.18, a branch-stream
is the extension of a block-stream to t3 = t2−1, where the branches in period
intervals [t1, t2] and [t3, t4] are connected.

Using the notations from Proposition 5.6.18, we note that between periods
t1 and t2 (respectively periods t3 and t4), there may be several start-cuts
and end-cuts delimiting the flow between several branch-streams. All these
branch-streams would be adjacent to the one-block-stream, but these start-
cuts and end-cuts have no influence on which arc is in the one-block-stream.

r2

r1

period t2period t1

Start-cut
End-cut

period t3 = t4
r3

Start-cut

End-cut

r4

Figure 5.17: A stream with a single block (in blue) is defined by up to two
start-cuts and two end-cuts (in red).

5.6. NETWORK ANALYSIS WITH ACYCLIC FLOWS 105

We show that we can compute these streams together with a single minimum
linear-cost flow.

We say that an arc is adjacent to a stream if it is adjacent to a node in this
stream. Consider two adjacent streams. By definition, at one period t one
of these streams is the supplier-stream and the other is the manufacturer-
stream. By Proposition 5.6.4, every early disposable arc at period t is empty
and hence is adjacent to both of these streams. Adding these disposable arcs
to the partial arcs in the two streams build a connected component.

We call pack of streams a set of several adjacent streams and some non-
partial arcs building together a purchasing-stream. Any pack of stream can
therefore be generated from a purchasing-stream by removing some partial
arcs. The cost of a minimum linear-cost flow on the subnetwork delimited
by these arcs is lower or equal to the total cost of minimum linear-cost
flows computed of each of the streams and non-partial arcs from the pack.
Consequently, we do not need to consider every stream decomposition to
compute a minimum cost flow on G. Instead, we can only consider every
decomposition in packs of streams. We refer to a pack of streams as a one-
block-pack if the corresponding partial arcs build a single block, as illustrated
on Figure 5.18. With the same arguments as in Proposition 5.6.18, a one-
block-pack is also characterized by two start-cuts and two end-cuts.

Figure 5.18: A one-block-pack composed of a one-block-stream (in blue), a
branch-stream (in red) and several non-partial arcs (in green). Note that if
the green supplier arc was not in the one-block-pack, the pack of streams
would not delimit a one-block-stream.

We denote by h∗(t1, r1, t2, r2, t3, r3, t4, r4, k) a locally optimal flow on the one-
block-pack delimited by the start-cuts Cuts(t1, r1), Cuts(t3, r3), the end-cuts
Cuts(t2, r2), Cute(t4, r4) and with a placement at period k ∈ [t1 + 1, t4]. We
denote by h∗(t1, r1, t2, r2, t3, r3, t4, r4) a best of these flows:

H∗(t1, r1, t2, r2, t3, r3, t4, r4) := min
k∈[t1+1,t4]

{
H∗(t1, r1, t2, r2, t3, r3, t4, r4, k)

}

(5.21)
We denote by f∗(t3, r3, t4, r4) the best flow from time (0, 0) delimited by
the start-cut Cuts(t3, r3) and the end-cut Cuts(t4, r4). Algorithm 12 com-
putes f∗(t3, r3, t4, r4) as the best combination of flows f∗(t1, r1, t2, r2) and
h∗(t1, r1, t2, r2, t3, r3, t4, r4) over every possible previous start-cut Cuts(t1, r1)
and end-cuts Cute(t2, r2).

106 CHAPTER 5. ALGORITHMS FOR GENERAL DEMAND

Algorithm 12: Stream-based algorithm

Set f∗(0, r1, 0, r2) = 0 for all r1, r2;
for End-cut Cute(t4, r4) in increasing sequence do

for Start-cut Cuts(t3, r3) in increasing sequence do
foreach End-cut Cute(t2, r2) with t2 ≤ t3 + 1 do

foreach Start-cut Cuts(t1, r1) with t1 ≤ t2, t3 do
foreach Placement k in [t1 + 1, t4] do

Compute h∗(t1, r1, t2, r2, t3, r3, t4, r4, k)with a
minimum linear-cost flow;

Deduce h∗(t1, r1, t2, r2, t3, r3, t4, r4);

Deduce f∗(t3, r3, t4, r4) minimizing the cost
F ∗(t1, r1, t2, r2) + h∗(t1, r1, t2, r2, t3, r3, t4, r4);

return f∗(T + 1, 0, T + 1, 0) ;

Theorem 5.6.21 Suppose that Hypotheses 2.1 [Delay] and 2.2 [Cost] hold.
If there exists an acyclic minimum cost flow such that every stream con-
tains at most one block, then Algorithm 12 computes and optimal solution
to DCPP in O(T 5 ·R4 ·Mcf) time, where Mcf denotes the complexity of
a minimum linear-cost flow.

Proof:

The computation of every locally optimal flows h∗(t1, r1, t2, r2, t3, r3, t4, r4, k)
takes O(T 5 · R4 · Mcf) time. The algorithm then iterates over two start-
cuts and two end-cuts, which takes O(T 4 · R4) time. Therefore, the time
complexity of Algorithm 12 is O(T 5 ·R4 · Mcf).

By Propositions 5.6.18 and 5.6.19, the algorithm iterates over every one-
block-stream and every branch-stream. Since, by assumption one of these
combinations builds an optimal flow, we conclude that the algorithm com-
putes an acyclic minimum cost flow.

�

Theorem 5.6.22 Suppose that Hypotheses 2.1 [Delay] and 2.2 [Cost] hold.
If there exists an acyclic minimum cost flow such that every purchasing-
stream contains at least one block, then Algorithm 12 computes and optimal
solution to DCPP in O(T 5 ·R4 ·Mcf) time, where Mcf denotes the com-
plexity of a minimum linear-cost flow.

Proof:

By Proposition 5.6.18 and by definition of a one-block-pack, the algorithm
iterates over every possible one-block-pack. We show that the acyclic opti-
mal flow can be decomposed into one-block-packs.

5.6. NETWORK ANALYSIS WITH ACYCLIC FLOWS 107

Consider a purchasing-stream. If it contains several blocks, then by assump-
tion every branch stream between two blocks contains no placement. We
can thus generate a one-block-pack from this purchasing stream by adding
these branch-streams. It follows that the acyclic optimal flow can be decom-
posed into one-block-packs and thus the Algorithm 12 computes an optimal
solution to DCPP .

�

Proposition 5.6.23 Suppose that Hypotheses 2.1 [Delay], 2.2 [Cost], and
5.2 [Idleness] hold. Then Algorithm 12 computes an optimal solution to
DCPP .

Proof:

We prove that under the hypotheses, every purchasing-stream has at least
one block. Consider a placement k. By Hypothesis 5.2 [Idleness], arc
aman(k, 0) is partial. Thus, by Proposition 5.6.4 there is a single stream
at period k. Therefore this stream is a purchasing-stream with at least one
block.

�
It follows from Theorem 5.6.21 that if we the number of blocks is limited to
a constant value, then the problem is still polynomial.

Theorem 5.6.24 if Hypothesis 2.1 [Delay] and 2.2 [Cost] hold and if every
stream contains at most K blocks, then a minimum cost flow on G can be
computed in polynomial time in T and R and factorial time in K.

Proof:

Each block-stream Str is defined by its start-cut, the end of a previous
stream, the start of a future stream, its end-cut, its placement as well as
the placement of every branch-stream between two of its blocks. There are
at most K blocks, so there are at most K placements to consider: one for
Str, and one for each of the K − 1 branch-streams. We thus compute the
minimum cost flow in Str and every potential branch-stream between two
of its blocks by computing K! minimum linear-cost flows.

�

Proposition 5.6.25 If Hypotheses 2.1 [Delay], 2.2 [Cost], 4.1 [Demand],
and 4.2 [Placement] hold, then Algorithm 12 computes an optimal solution
to DCPP .

Proof:

Consider a placement k. By assumption, no disposable is bought at periods
k and k + 1. If a container is idle at period k then the purchasing-stream

108 CHAPTER 5. ALGORITHMS FOR GENERAL DEMAND

contains at least one block. If no container is idle at period k but no dispos-
able is bought at period k − 1, then there is a cut at period k ending every
stream. Therefore, the stream Strk with placement at period k is not inside
of a block of another purchasing stream.

Suppose finally that a disposable is bought for a late demand at period
k − 1 and that no container is idle at period k. Because the demand is
non-decreasing, the containers arriving to the manufacturer from the late
demands of period k− 1 are not sufficient to fulfill the demand from period
k+1. We deduce that some containers are purchased at period k+1. More-
over, the stream Strk+1 with placement at period k+1 is the manufacturer-
stream at period k. Consequently, these two streams cannot be inside of a
block from another purchasing-stream.

From these three cases, it follows that during a block of a purchasing-stream
there is at most one purchasing-stream and this stream (if any) would be
composed of a single branch. We conclude by noting that any stream without
placement can be included to a purchasing stream into a bigger virtual
purchasing-stream.

�

5.6.7 Limitation of the Stream-based Approach

It appears with Theorem 5.6.24 that a stream composed of several blocks
requires a high computational effort, since we may have branch-streams with
placement between two blocks.

Figure 5.19 describes a flow difficult to construct using a stream-based ap-
proach. In the example, the red arcs represent a minimum acyclic cost flow.
We can choose any cost function such that this flow is optimal.

The optimal flow is composed of two purchasing streams, namely a branch-
stream in periods t ∈ [2, 3] and a block-stream composed of two blocks in
periods [0, 2] and [3, 4]. Algorithm 12 disregard purchasing-streams com-
posed a single branch between two block of another purchasing stream.

We have shown in Theorem 5.6.24 that a stream-based algorithm similar
to Algorithm 12 can still compute an optimal acyclic flow in polynomial
time. However, we can build flow networks where every optimal acyclic flow
contains a stream with O(T) blocks such that there is a placement in each
branch-stream between every block. The number of possible decompositions
in stream is factorial in T , which leads us to the following conjecture:

Conjecture 5.6.26 DCPP is NP-hard in the general case.

Finally, note that the optimal flow fulfills every demand during the first two
periods after each placement. Therefore, Algorithm Flow.4.1 computes an
optimal solution and Algorithm 12 does not, even though both algorithms
are optimal under the hypotheses from Chapter 4.

5.7. OUTLOOK 109

t = 0 t = 1 t = 2 t = 3 t = 4

−10 −5 −20 −100 −10 −105

+10 +5 +20 +100
20 95

10

10 10

5

5

510

5

15

15

15

15

100

100

15 5 105

10510

10 105

Figure 5.19: Example of acyclic optimal flow (in red) which cannot be gen-
eratd using Algorithm 12. The positive flow is denoted in red, whereas the
excess values are in black. There is no early demand.

5.7 Outlook

This chapter analyzes the DCPP under a general demand pattern. We
firstly present optimal polynomial-time algorithms in the special cases of
zero delay and of zero disposables. The algorithm forbidding disposables is
an extension of an algorithm from Chapter 4.
We then propose two polynomial-time algorithms Flow.5.1 and Flow.5.2
using the same framework as Algorithms Flow.4.1 and Flow.4.2 from the
previous chapter. Algorithm Flow.5.1 is optimal whenever there exists an
optimal solution letting an idle container at every placement. Algorithm
Flow.5.2 extends it to allow close placements, such that Hypothesis 5.2
[Idleness] only needs to hold for placements which are not followed by an-
other placement at the next period. In addition, we provide a certificate of
optimality of Algorithms Flow.5.1 and Flow.5.2. Consequently, the algo-
rithms may ensure that the generated policy is optimal.
All four flow algorithms Flow.4.1, Flow.4.2, Flow.5.1 and Flow.5.2 have
the same complexity bound O(T 2 · Mcf). Moreover, we provide examples
showing that none of Flow.4.1 and Flow.5.1 is strictly better than the other.
Finally, we propose a general algorithmic framework to compute efficient
solutions. We conjecture that the DCPP is NP-hard and give a class of
flow networks such that an optimal policy can be computed in polynomial
time.

111

Chapter 6

Computational Study

This chapter focuses on experimental performances of our algorithms, bence
both their execution speed and the quality of the generated policies. In
Chapters 4 and 5, we presented several algorithms to solve DCPP . On the
one hand, there are four1 flow-based algorithm computing several minimum
linear-cost flows, namely Flow.4.1, Flow.4.2, Flow.5.1 and Flow.5.2. These
algorithms are the result of our study and we will show that they are efficient.
On the other hand, in Chapter 5 we described two algorithms, one computing
an optimal policy when disposables were not allowed and then other when
transportation delays are null.

The four flow algorithms represent our solutions to DCPP , whereas the last
two algorithms are used as a reference to measure the performance of the
flow algorithms and the impact of lead times and disposables on the optimal
policy.

In the first section, we compare the performance of the different algorithms.
In Sections 6.2 to 6.4, we propose several ways of improving the running time
of our flow algorithms. Our three improvements include multiple threading,
an alternative network formulation and an alternative algorithm to compute
minimum linear-cost flows. Simulations for the last two improvements are
presented together.

6.1 Algorithms Performance

In Chapters 4 and 5, we propose several algorithms to solve DCPP :

• Algorithm Ndis.D computes the best policy without disposable and
with minimum cost. Each chapter proposes a version, one for non-
decreasing demand and one for general demand.

1In Chapter 5, we have presented two other algorithms 8 and 10 as preliminary algo-
rithms to Algorithms Flow.5.1 and Flow.5.2. These two algorithms are disregarded in
this chapter.

112 CHAPTER 6. COMPUTATIONAL STUDY

• Algorithm NDel.D computes a policy neglecting the delivery delay.

• Flow.4.1 and Flow.4.2 compute an optimal policy if the demand is
non-decreasing and if no disposable is bought two periods after a place-
ment. Algorithm Flow.4.1 is a simpler version assuming that there are
no close placements.

• Flow.5.1 and Flow.5.2 compute an optimal policy if at least one con-
tainer must be idle at each placement. Algorithm Flow.5.2 is an ex-
tension allowing close placements.

In addition to those, we describe a new algorithm Opt.D computing system-
atically the optimal solution. We show that taking lead times into account
influences the optimal policy tremendously, as it changes the number of
containers we will need. Nonetheless, as we explained in Chapter 3, it is
debatable whether the use of disposables is meaningful or not, when the de-
mand is deterministic. We include Algorithm Ndis.D into our performance
simulations to answer this question.

6.1.1 Optimal Algorithm

We briefly describe our pseudo-polynomial time algorithm Opt.D computing
an optimal solution to DCPP . We refer to Chapter 7 for further details on
the Markov decision process framework we use here.

At each period t, namely each time (t, 0), we denote by [Yt, Zt] the state
of the system, where Yt is the number of containers in the manufacturer
stock and Zt is the number of outgoing containers. Since the demand is
deterministic and the demand profitability is decreasing at each period, we
deduce from Zt the number of containers used for each demand D(t− 1, r)
of period t − 1. Moreover, the state at period t + 1 follows from the state,
the order size, and the purchase size at period t.

We run a backward dynamic program starting from period T where the cost
is zero for each state. Then, for each period t ∈ [0, T [and each state at
period t, we compute the optimal ordering and purchase quantities as well
as the cost up to the end of the time horizon from the cost of the system at
period t+ 1 computed earlier.

When we arrive to period t = 0, the cost of the optimal policy is the cost at
period 0 starting in state [0, 0].

6.1.2 Simulations

We now compare our algorithms for three different data sets. The first two
experiments consider a short time horizon and small increasing demands to
compare the performance of the algorithms we developed in Chapters 4 and
5 to the optimal algorithm described in this chapter. The third simulation

6.1. ALGORITHMS PERFORMANCE 113

Table 6.1: Algorithm performances under five different increasing demand
patterns. The running times are given in seconds.

Pattern: 1 2 3 4 5

Algo Opt.D Cost: 10524 8574 10346 12292 12264
Duration: 408 180 526 1236 988

Algo Flow.4.1 Cost: 10536 8574 10346 12352 12264
Duration: 0.09 0.11 0.09 0.09 0.09

Algo Flow.4.2 Cost: 10536 8574 10346 12352 12264
Duration: 0.22 0.28 0.28 0.27 0.28

Algo Flow.5.1 Cost: 10524 8574 10346 12352 12264
Duration: 0.11 0.13 0.13 0.11 0.16

Algo Flow.5.2 Cost: 10524 8574 10346 12352 12264
Duration: 0.36 0.28 0.33 0.27 0.33

Algo Ndis.D Cost: 13292 11292 14964 18446 16964
Duration: 0.02 0 0 0 0

Algo NDel.D Cost: 14592 11882 13564 15362 19344
Duration: 0 0 0 0 0

studies a longer time horizon and general demand patters, and compares
the quality of the flow-based policies to each other.
In the first experiment, we consider a short time horizon, with T = 6,
R = Ldel = 3, and Lord = 0. So, there is one early demand and two late
demands at each period. For simplicity, every cost is assumed stationary,
and we use Cman = 2, Cdis = 6, and Ccont = 50. Table 6.1 presents the
experiment results for the following five demand patterns:

1. Pattern 1: D(t, r) := 15 + 3 · t+ r.

2. Pattern 2: D(t, r) := 10 + 3 · t+ r.

3. Pattern 3: D(t, r) := 5 + 2 · (3 · t+ r).

4. Pattern 4: D(t, r) := 0 + 3 · (3 · t+ r).

5. Pattern 5: D(t, r) := 10 + 3 · (3 · t+ r).

For instance, in Pattern 3 the initial demand is 5, and the demand increases
by 2 at each time step. The costs used for this experiment are Csetup = 1000
and Cdis = 30. The flow algorithms always compute the same solution
for these test instances, and the generated policies are optimal except for
Pattern 4, where the demand starts from zero and increases very fast.
In addition, the policy not using any disposable performs surprisingly poorly,
which shows that the disposable option is meaningful even under determin-
istic demand. We note that ordering a disposable for late demand D(t, 2)
incurs a holding cost of 12 at the supplier and of 2 at the manufacturer up

114 CHAPTER 6. COMPUTATIONAL STUDY

to time (t+2, 0), which total is much lower than the cost 30 of a disposable.
However, both the container price and the setup cost are high. Furthermore,
even for test instances as small as T = 6 and R = 3, the optimal algorithm
takes several minutes. The two algorithms Flow.4.1 and Flow.5.1 forbid-
ding close placements have the same running time, and so have Algorithms
Flow.4.2 and Flow.5.2. These four flow-based algorithms compute the same
policy.

In the second experiment, we look at the algorithms performance for differ-
ent setup and disposable costs. The higher the disposable costs, the better
Algorithm Ndis.D will perform. Moreover, when the setup costs are low,
an optimal policy will purchase new containers very frequently, so The flow
algorithms will perform more poorly. Table 6.2 shows simulation results for
five different cost pattern. The settings are the same as in the previous
experiment, with the fifth demand patterns of Table 6.1. The cost patterns
are:

1. Pattern 1: Csetup = 1000, Cdis = 30.

2. Pattern 2: Csetup = 1000, Cdis = 50.

3. Pattern 3: Csetup = 1000, Cdis = 100.

4. Pattern 4: Csetup = 500, Cdis = 50.

5. Pattern 5: Csetup = 0, Cdis = 50.

For this simulation, the flow algorithms performs also very well, but are not
optimal when the setup cost is zero. The algorithms Flow.4.2 and Flow.5.2
allowing purchasing at consecutive periods perform slightly better, but are
still not optimal.

Finally, we compare the flow algorithm for bigger data sets and two kinds
of demand patterns, both being non-increasing. We consider the following
parameters T = 20, R = 5 Ldel = 5, Lord = 0, and the stationary costs
Cman = 2, Csup = 6, Cdis = 75, Csetup = 10000, Ccont = 50.
The first demand pattern describes an approximately increasing demand:

• For each r ∈ [0, R[, demand D(0, r) follows distribution D(0, r) :=
U(25, 50).

• For each r ∈ [0, R[, t ∈ [1, T [, demand D(0, r) follows the distribution
sum D(t, r) := D(t, r − 1) + U(−10, 20).

The second demand pattern represents a strictly increasing demand per-
turbed by several zero values:

• For each r ∈ [0, R[, demand D(0, r) follows distribution D(0, r) :=
U(25, 50).

6.1. ALGORITHMS PERFORMANCE 115

Table 6.2: Algorithm performances under five different cost patterns. The
running times are given in seconds.

Pattern: 1 2 3 4 5

Algo Opt.D Cost: 12264 15184 16964 14464 13020
Duration: 1043 1052 1043 1048 1058

Algo Flow.4.1 Cost: 12264 15184 16964 14464 13464
Duration: 0.09 0.09 0.09 0.08 0.08

Algo Flow.4.2 Cost: 12264 15184 16964 14464 13200
Duration: 0.30 0.30 0.30 0.27 0.27

Algo Flow.5.1 Cost: 12264 15184 16964 14464 13464
Duration: 0.11 0.13 0.13 0.13 0.13

Algo Flow.5.2 Cost: 12264 15184 16964 14464 13200
Duration: 0.28 0.36 0.30 0.34 0.28

Algo Ndis.D Cost: 16964 16964 16964 15924 13800
Duration: 0 0 0 0 0

Algo NDel.D Cost: 16344 25120 30936 22620 20120
Duration: 0 0 0 0 0

Table 6.3: Algorithm performances under general demand patterns. The
running times are given in seconds.

Pattern: Approx.Increasing Increasing.with-Zeros

Algo Flow.4.1 Cost: 786421 281131

Algo Flow.4.2 Cost: 786414 281131

Algo Flow.5.1 Cost: 786420 280717

Algo Flow.5.2 Cost: 786413 280717

Algo Ndis.D Cost: 796435 288833

Algo NDel.D Cost: 2037442 834853

• For each r ∈ [0, R[, t ∈ [1, T [, demand D(0, r) follows the distribution
sum D(t, r) := D(t, r − 1) + U(5, 10).

• In addition, we iteratively and randomly replace 25 demand values
with a zero. We have then up to 25 zero demands2.

Table 6.3 presents the simulation results over 100 instances. Note that in
this experiment the policy using zero disposable performs very well, but is
still not as good as the flow-based algorithms.

For the first demand pattern, the flow algorithms results are close to each
other. Since the cost of Algorithms Flow.4.1 and Flow.4.2 are not identical,
we deduce that the setup cost of 10000 is too low, and therefore it may be

2Our algorithm allows to replace a demand with zero which has already been replaced
with zero during a previous iteration.

116 CHAPTER 6. COMPUTATIONAL STUDY

profitable to purchase at consecutive periods. In addition, the algorithms
from Chapter 5 perform slightly better than the algorithms from Chapter
4. The reason is that the former algorithms are designed for yielding better
results for general demand patterns. Nonetheless, the cost different is not
significative and Algorithm Flow.4.1 (resp. Flow.4.2) performs as well as
Algorithm Flow.5.1 (resp. Flow.5.2) on 98 of the 100 instances.

For the second demand pattern, no optimal policy purchases at consecu-
tive placements, so Algorithms Flow.4.1 and Flow.4.2 (resp. Flow.5.1 and
Flow.5.2) compute the same policies. Furthermore, Algorithms Flow.5.1
and Flow.5.2 are significantly faster than their counterpart. Moreover,
there is a more noticeable difference between the performances of Algo-
rithms Flow.5.1 and Flow.5.2. In 33 out of the 100 simulations, Algorithm
Flow.5.1 performs better than Flow.4.1. However, in our experiment Algo-
rithm Flow.5.1 performed worse than Algorithm Flow.4.1 in three out of
100 test instances.

While there is a clear favor toward Algorithms Flow.5.1 and Flow.5.2, there
are still some text instances where the algorithms from Chapter 4 are more
efficient, despite not being thought for this kind of demand pattern. This
result highlights the study we made at the end of Chapter 5. This study
has shown that Algorithm Flow.5.1 actually computes better policies under
increasing demand and should in general also perform better under general
demand patterns. Nevertheless, there are a few test instances where Algo-
rithm Flow.5.1 purchases too many containers and end up performing worse
than Algorithm Flow.4.1.

Conclusions

In these first experiments, we have analyzed the performance of the algo-
rithms presented in the previous two chapters.

We found that considering disposables noticeably improve the quality of
the solution. Moreover, as we expected, a policy neglecting the lead times
performs significantly worse than any other policy.

In the previous chapters, we proposed four similar flow-based algorithms:
Flow.4.1, Flow.4.2, Flow.5.1, Flow.5.2. Algorithms Flow.4.2, Flow.5.2 are
extensions of Algorithms Flow.4.1, Flow.5.1 that allow close placements, so
they perform slightly better than their counterpart. Algorithms Flow.4.1
and Flow.4.2 were designed in Chapter 4 to handle increasing demand. They
perform worse than the other algorithms when the demand has several zero-
values. When the demand is not strictly increasing, they may perform better
or worse than the other algorithms. Nevertheless, the cost difference is not
significant and the algorithms from Chapter 5 perform better in general.

Finally, despite the flow-based algorithms computing very good policies, we
are not entirely satisfied with their speed. The rest of this chapter deals
with optimizing the execution speed of the flow algorithms.

6.2. MULTI-THREADING 117

6.2 Multi-Threading

In this section, we demonstrate that multiple threads can be efficiently used
on our algorithms. Multi-threading allows to compute different parts of an
algorithm simultaneously on different processors or machines. This means
significantly decreases the running time, but requires that the algorithm does
not need to compute tasks in a specific sequence. Using several threads to
solve tasks simultaneously is called task parallelism.

In our simulations, the flow algorithm are divided into four parts. Firstly,
we generate a data structure representing network G and which we use to
compute flows on networks H(k1, k2) and F(k). We associate to every node
and arc a Boolean value deciding whether it is active or not, i.e. whether or
not the node or arc belongs to the network H(k1, k2) whose flow we want
to compute. We then compute every minimum linear-cost flow on the same
network, by considering different active nodes and arcs.

Secondly, for each values k1 and k2, we update the nodes and arcs activity
to select H(k1, k2) and compute the cost of a minimum linear-cost flow
H∗(k1, k2).
Thirdly, we use the Wagner-Within dynamic programming framework to de-
duce the cost of the optimal solution F ∗(T) as well as the list of placements.
This list can be easily computed by storing for each F ∗(k2) the value k1 of
the best previous placement so that F ∗(k2) = F ∗(k1, k2).
Finally, we compute the solution by computing and adding the correspond-
ing locally optimal flows h∗(k1, k2). We note that we can slightly reduce
the running time of the algorithm by saving every value h∗(k1, k2), but this
would require a much bigger memory space.

Simulations show that the computation of the locally optimal flows h(k1, k2)
represents 95% of the execution time of Algorithm Flow.4.1 (see Table 6.4).
The leftover time is used to compute the policy, computing O(T) minimum
linear-cost flows. Therefore, any strategy aiming at improving the running
time of the algorithm should improve the speed of computing the minimum
linear-cost flows.

This experimental result only confirms a simple time complexity analysis.
Indeed, we generate network G in O(T · R) time (see Section 3.4) and the
optimal solution cost F ∗(T) in O(T 2) time. Meanwhile, the computation of
the H∗(k1, k2) require O(T 2) minimum linear-cost flow, hence a total time of
O(T 4 ·R2 log[T ·R]) using the enhanced capacity scaling algorithm. Likewise,
generating the optimal solution takes at most O(T 3 ·R2 log[T ·R]).

The locally optimal flowsH∗(k1, k2) can be computed independently, as long
as we generate multiple copies of network G. Table 6.5 shows experimen-
tal execution speeds of Algorithm Flow.4.1 when using several threads to
simultaneously compute multiple values H∗(k1, k2). We use a machine In-
tel(R) Core(TM) i5 CPU with two cores, take the problem values T = 25,
R = 5 and Ldel = 3, and compute the minimum linear-cost flows with the

118 CHAPTER 6. COMPUTATIONAL STUDY

Table 6.4: Time consumption of the tasks in Algorithm Flow.4.1.

running time (seconds) time percentage

Create the network 0.03 0.6%
Compute the h∗(k1, k2) 45.83 95%

Compute F ∗(T) 0 0%
Recompute the solution 0.203 4.4%

Total Duration 46.1 100%

enhanced cycle-canceling algorithm. This experiment shows that using a
second thread nearly halves the running time. Thus, the program can effec-
tively divide the policy computation between the two cores of the machine.
A third thread further decreases the running time, but additional threads
have no effect. We conclude:

Conjecture 6.2.1 If we use a machine with X cores and assign the thread
tasks ’Compute h∗(k1, k2)’ with a greedy approach, we can expect the running
time to be reduced by factor X.

Table 6.5: Running time (in seconds) of Algorithm Flow.4.1 using 1 to 10
threads to compute the minimum linear-cost flows.

number of threads 1 2 3 4 5 10

running time 46.0 29.9 24.7 23.6 23.7 23.9

6.3 Compact Network Representation

We propose a more compact representation of the network only containing a
single manufacturer node per period, at step r = 0. We define the extended
network formulation Ge = G as the network described in Chapter 3, and
the compact network formulation as the new network Gc we propose in this
section. The compact representation can be used for all flow algorithms.

6.3.1 Construction

Once a container arrives to the manufacturer, it must stay there at least
until the next ordering decision. Therefore, the number of containers stored
in the manufacturer at any point in time (t, r) depends only on the number
of arriving full containers and the number of idle containers. Therefore, we
can change the network formulation so that each arc adis(t, r) is incident to a
manufacturer node aman(tman, 0) at ordering time, as depicted in Figure 6.1.
We recall that we define a network with parameters (V,A,C,E) representing

6.3. COMPACT NETWORK REPRESENTATION 119

(a) Extended network pattern.

(b) Compact network pattern.

Figure 6.1: Pattern of the extended and compact network representations.

respectively the set of nodes, the set of arcs, the arc cost function and the
node excess function.

Definition 6.3.1 The compact network Gc := (VG,c, AG,c, CG,c, EG,c) is gen-
erated from the extended network Ge := (VG,e, AG,e, CG,e, EG,e) by aggregating
the manufacturer nodes from time (t−1, 1) to time (t, 0) for every t ∈ [0, T].

1. For each t ∈ [0, T], update aman(t, 0) to be from vman(t) to vman(t+1)
and with cost:

CG,c
(
aman(t)

)
:=

∑
r

CG,e
(
aman(t, r)

)

2. For each t ∈ [0, T [and r ∈ [0, R − Ldel], update arc adis(t, r) to be
from vman(t+ 1, 0) to vsup(t, r) with cost:

CG,c
(
adis(t, r)

)
:= CG,e

(
adis(t, r)

)−
R−1∑

rman=r+Ldel

Cman(t, rman)

3. For each t ∈ [0, T [and r ∈]R − Ldel, R[, update arc adis(t, r) to be
from vman(t+ 2, 0) to vsup(t, r) with cost:

CG,c
(
adis(t, r)

)
:= Cdis(t, r)−

R−1∑
rman=r+Ldel−R

Cman(t+ 1, rman)

120 CHAPTER 6. COMPUTATIONAL STUDY

4. For each t ∈ [1, T + 1], update the excess of vman(t, r) into:

EG,c
(
vman(t, 0)

)
:= EG,e

(
Cman(t, 0) +

R−1∑
r=1

CG,e
(
vman(t− 1, r)

)

5. For each t ∈ [0, T], rename vman(t, 0) into vman(t) and aman(t, 0)
into aman(t). Rename vman(T + 1, 0) into vman(T + 1)

6. For each t ∈ [0, T] and r ∈ [1, R[, remove node vman(t, r) and arc
aman(t, r) from the network.

Remark 6.3.2 We note that every node (resp. arc) in Ge corresponds to
at most one node (resp. arc) in Gc while every node (resp. arc) in Gc corre-
sponds to exactly one node (resp. arc) in Ge, due to the operation updating
nodes and arcs instead of creating new nodes and arcs (and removing even
more of them).

We now describe algorithm converting a flow on one network representation
into a pseudo-flow on the other. We recall that a pseudo-flow is a function of
the arc flow whereas a flow is a pseudo-flow so that the imbalance equation
holds on every node, i.e. the total outgoing flow equals the total ingoing flow
plus the node excess.

Algorithm 13: Transformation of a flow on Ge into Gc

Data: Flow fe on Ge

Result: Pseudo-flow fc on Gc

foreach arc a ∈ Gc do
fc(a) := fe(a);

return fc;

Lemma 6.3.3 For each t ∈ [0, T [and all r ∈ [1, R[, the flow in arc aman(t, r)
in any flow fe on Ge is:

fe
(
aman(t, r)

)
= fe

(
aman(t, 0)

)
+

r∑
r′=1

[
EG,e(vman(t, r

′))−fe
(
adis(t, r

′−Ldel)
)]

(6.1)

Proof:

For each t ∈ [0, T [and for r = 1, the equation follows from the imbalance
property. We deduce the lemma for each t ∈ [0, T [by recurrence on r.

�
Aggregating the manufacturer nodes induces a flow of EG,e

(
vman(t, r)

)
from

node vman(t, r) to node vman(t+1, 0), for each t ∈ [0, T] and each r ∈ [1, R[.

6.3. COMPACT NETWORK REPRESENTATION 121

We denote this cost by C0
G,c:

C0
G,c :=

T∑
t=0

(R∑
r=1

EG,e
(
vman(t, r)

) ·
R−1∑
r′=r

Cman(t, r
′)
)

(6.2)

Lemma 6.3.4 Algorithm 13 transforms a flow fe on Ge into a flow fc on
Gc so that the following relationship holds between their costs Fc and Fe:

Fe = Fc + C0
G,c (6.3)

Proof:

Consider a flow fe on Ge, and the corresponding pseudo-flow fc generated
by Algorithm 13. Since fc is generated from fe by aggregating some nodes,
this pseudo-flow respects the imbalance property at every node in Gc and is
hence an actual flow on fc.
We now consider the difference of cost between these two flows. For each
arc a, we denote by Fe(a) the cost of the flow fe(a), by Fc(a) the cost of the
flow fc(a) and by Δc,e(a) the difference in cost:

Δc,e(a) := Fe(a)− Fc(a)

where:
∀a /∈ Gc, Fc(a) = 0

The difference of cost between the arcs adis(t, r) is then:

∀t ∈ [0, T [, ∀r ∈ [0, R− Ldel] :

Δc,e

(
adis(t, r)

)
:= fe

(
adis(t, r)

) ·
R−1∑

r′=r+Ldel

Cman(t, r
′)

∀t ∈ [0, T [, ∀r ∈ [0, R− Ldel] :

Δc,e

(
adis(t, r)

)
:= fe

(
adis(t, r)

) ·
R−1∑

r′=r+Ldel

Cman(t+ 1, r′)

The difference of cost between the arcs aman(t, 0) and aman(t) is:

∀t ∈ [0, T [: Δc,e

(
aman(t)

)
= −fe

(
aman(t, 0)

) ·
R−1∑
r=1

Cman(t, r)

For each t ∈ [0, T [and all r ∈ [1, R[, the flow in arc aman(t, r) can be
computed using the imbalance property and the flow before time (t, r):

fe
(
aman(t, r)

)
= fe

(
aman(t, 0)

)
+

r∑
r′=1

[
EG,e(vman(t, r

′))−fe
(
adis(t, r

′−Ldel)
)]

122 CHAPTER 6. COMPUTATIONAL STUDY

The total cost difference between these two flows is then:

Δc,e :=
T−1∑
t=0

(R−Ldel∑
r=0

[
fe
(
adis(t, r)

) ·
R−1∑

r′=r+Ldel

Cman(t, r
′)
]

+
R−1∑

r=R−Ldel+1

[
fe
(
adis(t, r)

) ·
R−1∑

r′=r+Ldel

Cman(t+ 1, r′)
]

− fe
(
aman(t, 0)

) ·
R−1∑
r=1

Cman(t, r)

+
R−1∑
r=1

[r∑
r′=1

[
EG,e(vman(t, r

′))− fe
(
adis(t, r

′ − Ldel)
)]

+ fe
(
aman(t, 0)

)] · Cman(t, r)
)

=

T−1∑
t=0

(R−1∑
r=0

r∑
r′=1

EG,e
(
vman(t, r

′)
) · Cman(t, r)

)

=

T∑
t=0

(R∑
r=1

EG,e
(
vman(t, r)

) ·
R−1∑
r′=r

Cman(t, r
′)
)
= C0

G,c

�
Algorithm 14: Transformation of a flow on Gc into Ge

// Set the flow to common arcs
foreach arc a ∈ Ge ∩ Gc do

fe(a) := fc(a);

// Set an empty flow to new arcs
foreach arc a ∈ Ge − Gc do

fe(a) := 0;

// Update the flow in new arcs
for t : 0 → T do

for r : 1 → R− 1 do
fe
(
aman(t, r)

)
:= leftover imbalance on vman(t, r);

return fe;

Lemma 6.3.5 Algorithm 14 transforms a flow fc on Gc into a flow fe on
Ge so that the following relationship holds between their costs Fc and Fe:

Fc = Fe + C0
G,c (6.4)

Proof:

Consider a flow fc on Gc and use Algorithm 14 to transform it into a
pseudo-flow fe on Ge. By Lemma 6.3.4, fe respects the imbalance property

6.3. COMPACT NETWORK REPRESENTATION 123

on every node besides maybe the nodes vman(t, 0). The imbalance property
of these nodes vman(t, 0) follows from the fact that fc is a flow and no two
nodes vman(t1, 0) and vman(t2, 0) are adjacent. Furthermore, Algorithm 13
transforms fe back into fc. We deduce that Equation (6.4) holds.

�
We deduce that both network representations are equivalent, so we can use
the compact network to find an optimal solution to DCPP .

Proposition 6.3.6 Both network flow formulations Ge and Gc are equiva-
lent: Algorithm 13 transforms any flow fe on Ge in to a flow fc on Gc and
Algorithm 13 makes the reverse operation. Their costs Fe and Fc are so
that:

Fc = Fe + C0
G,c (6.5)

6.3.2 Predicted Improvement

We recall that the extended network contains Ne(T,R) := R · (2 · T +3)+ 2
nodes and Me(T,R) := (T + 1) · (3 ·R+ 1) + 1 arcs.

Proposition 6.3.7 The compact network has Nc(T,R) := Ne − (T + 1) ·
(R−1) nodes and Mc(T,R) := Me−(T+1) ·(R−1) arcs. Using the compact
representation, Algorithms Flow.4.1 and Flow.4.2 are expected to be around
π := (Mc ·Nc)/(Me ·Ne) ∈ [1, 6] times faster.

Proof:

At each period t ∈ [0, T], we remove R− 1 nodes vman(t, r) and R− 1 arcs
aman(t, r), with r ∈ [1, R[. Moreover, we saw earlier in this chapter that the
most time consuming task in our network resolution is the minimum linear-
cost flow. The enhanced capacity scaling algorithm takesO(M ·N ·log[N]2) =
o(M · N) time. We can thus expect the running time of the algorithm to
be (Me · Ne)/(Mc · Nc) times faster. Finally, we have 1 ≤ Ne/Nc ≤ 2 and
1 ≤ Me/Mc ≤ 3, so ∀T,R, π(T,R) ∈ [1, 6]

�
Figure 6.2 illustrates the function π(T,R) for different values of T and R.
When R = 1, π(T,R) = 1 so our algorithms have a similar running time
for both network representations. For (T,R) = (100, 20), π(T,R) ≈ 3, 5, so
the compact networks are expected to take only 30% of the time required
to compute the solution with the extended network.

Example 6.1 Consider a container purchasing problem over one year and
with weekly container ordering. There are 53 weeks and up to 7 working
days a week. Thus the compact representation only keeps 58% of the nodes
and 73% of the arcs, going from Ne = 765 nodes and Me = 1189 arcs in Ge

to Nc = 441 nodes and Mc = 865 arcs in the compact network. We hence

124 CHAPTER 6. COMPUTATIONAL STUDY

T
 (1

 to
 1

00
)

R (1 to 20)

speed factor

1.5

2.0

2.5

3.0

3.5

Figure 6.2: Evolution of the expected speed factor π(T,R) for T ∈ [1, 100]
and R ∈ [1, 20].

go from Me · Ne · log[Ne]
2 = 40.101.739 to Mc · Nc · log[Nc]

2 = 14.143.375,
which is only roughly 35% of the time.

Conjecture 6.3.8 In practice, the flow algorithms are expected to be two
or three times faster when using the compact network formulation instead of
the extended one.

6.4 Cycle-Canceling Algorithm

Our flow algorithms solve the DCPP by computing several minimum linear-
cost flows. As mentioned in Chapter 3, the fastest minimum linear-cost flow
algorithm in the literature is the enhanced capacity scaling algorithm from
Orlin [85]. We have seen in Section 6.2 that the running time of our flow
algorithms directly depends on the performance of the minimum linear-cost
flow resolutions. In this section, we develop an alternative algorithm specific
to our network structure. Firstly, we briefly present how we could improve
the capacity scaling algorithms. Then, we present our cycle-canceling frame-
work for Algorithm Flow.4.1. Afterward, we analyze the time complexity

6.4. CYCLE-CANCELING ALGORITHM 125

and propose an efficient way of removing the desired cycle in linear time.
Finally, we shortly explain how to extend the cycle-canceling framework to
the other three flow algorithms

6.4.1 Remark on the Capacity Scaling Algorithms

We briefly describe two possible improvements of the capacity scaling algo-
rithms, but do not test them, as we present a more efficient algorithm.

Firstly, in contrast to a random network, in our flow networks H(k1, k2)
most sinks are nodes vsup(t, r) and are adjacent to a source vman(t, r +
Ldel) with the exact opposite excess. Thus, instead of using a capacity
scaling algorithm, we can send a flow of D(t, r) from vman(t, r + Ldel) to
vsup(t, r), for all node vsup(t, r) in the considered network. For Algorithms
Flow.5.1 and Flow.5.2, the only nodes left with positive imbalance are vpur,
vman(k2, 0) and vman(k2+1, 0), due to the operation reverting the arcs with
negative cost. For Algorithms Flow.4.1 and Flow.4.2, the nodes left are the
manufacturer nodes corresponding to a demand at period k1 and k1+1, the
supplier nodes at periods k2 and k2 + 1, plus possibly vpur. In both cases,
we can easily set the major part of the optimal flow.

Secondly, we can improve the Dijkstra algorithm computing the shortest
path from a source to every other node. The Dijkstra algorithm assumes
that each arc has positive cost, and divides the set of nodes into three groups:

1. The nodes whose distances are computed; we call these nodes achieved.

2. The nodes in which we already found a path from the source; we call
these nodes only-visited.

3. The other node, which we call unvisited.

Consider the only-visited node with the minimum-length computed path.
We can easily check that this path is the shortest path. The Dijkstra al-
gorithm marks it as achieved, and expends the computed paths and the
only-visited nodes using its incident arcs. The Dijkstra algorithm must
hence repetitively find the best only-visited node O(n) times, which takes
a lot of time if there are many only-visited nodes at the same time. Our
network structure is so that the nodes from period t are only connected to
nodes of periods t− 1 and t+ 1. Thus, if we visited some nodes at periods
t− 2 and t+2 for some period t, it is very likely that the unvisited nodes at
period t are isolated from the other unvisited nodes at periods before t− 1
and after t+ 2, so we should be able to compute their distances separately.
Consequently, we should be able to reduce the experimental running time of
the algorithm by O(log[T]/ log[R]), keeping only O(R) only-visited nodes.

126 CHAPTER 6. COMPUTATIONAL STUDY

6.4.2 Adapted Cycle-Canceling

We consider Algorithm Flow.4.1 from Chapter 4, and two consecutive place-
ments k1 and k2. We assume in particular that Hypotheses 2.1 [Delay], 2.2
[Cost], 4.1 [Demand], 4.2 [Placement] and 4.4 [Distance] hold. We use the
extended network formulation proposed in Chapter 3. Our objective is to
compute the minimum linear-cost flows h∗(k1, k2).
Without loss of generality, we assume that the purchasing cost Ccont(k2) at
period k2 is lower than the purchasing cost Ccont(k1) at period k1 plus the
total manufacturer holding cost of an idle container from period k1 to period
k2− 1. Otherwise, it would not be optimal to purchase containers at period
k2 when we purchase container at period k1; we could replace h∗(k1, k2) with
any sub-optimal flow on H(k1, k2), and the algorithm would still generate
an optimal policy.
Similarly to the minimum mean cycle-canceling algorithm, we look for the
best negative cycle to remove, so that we do not need to cancel too many
negative cycles. Our approach is based on the following lemma:

Lemma 6.4.1 Consider network H(k1, k2) for some 0 ≤ k1 < k2 ≤ T . If
k2 < T , the container fleet size at period k2 + 1 is:

uk2+1 :=
R−1∑

r=1−Ldel

D(k2 + 1, r) (6.6)

Moreover, if every container is purchased at period k1, then the system cost
is minimized when no disposable is bought. If k2 = T and uT−1 or more
containers are purchased at period k1, then the system cost is minimized
when no disposable is bought.

Proof:

Suppose that k2 < T . At period t, we have up to
∑R−1

r=1−Ldel
D(t − 1, r)

outgoing containers and order up to
∑R−1

r=0 D(t, r). Therefore, we need at

most
∑R−1

r=1−Ldel
D(t, r) containers in the system at period t. By Hypothesis

4.1 [Demand], we do not need more than uk2+1 containers. By Hypothesis
4.2 [Placement], no disposable is bought at periods k2 and k2+1, we need at
least uk2+1 containers. We conclude that after the last purchasing at period
k2, we will have exactly uk2+1 containers.
Moreover, by demand profitability no disposable is bought if some containers
are idle at the same time. By Hypothesis 4.1 [Demand], if every container is
purchased at period k1, we have enough containers to fulfill every demand,
so we do not need any disposable.
The reasoning is the same for k2 = T .

�
We hence define a best flow as a flow with an optimal ordering policy given a
purchasing policy. Our algorithm starts with the best flow purchasing every

6.4. CYCLE-CANCELING ALGORITHM 127

containers at period k1, and then iteratively shift the container purchasing
to period k2 while conserving an optimal ordering policy. For i ≥ 0, we
define hi(k1, k2) the flow on H(k1, k2) at the beginning of the i-th iteration,
before looking for a negative cycle. We generate the initial flow h0(k1, k2)
using Algorithm 15, and define invariant (I) to hold at the beginning of each
iteration so that the flow is a best flow.

Invariant (I): In the flow hi(k1, k2) at iteration i, any negative cycle con-
tains arc apur(k1) (hence node vpur).

Algorithm 15: Generating the Initial Flow h0(k1, k2)

for Supplier Node vsup(t, r) do
Send D(t, r) flow units from vpur to vsup(t, r) via apur(k1),
aman(t

′, r′) for all (k1, 0) ≤ (t′, r′) < (t, 0), aord(t) and asup(t, r
′)

for all 0 ≤ r′ < r;

foreach Manufacturer node vman(t, r) do
Send all excess from vman(t, r) to vpur via aman(t

′, r′) for
(t, r) ≤ (t′, r′) < (T,R− 1) and aend(k2 + 1);

return the generated flow;

Lemma 6.4.2 The pseudo-flow generated by Algorithm 15 is a best flow.

Proof:

The pseudo-flow is generated by having the imbalance property respected
of every manufacturer nodes and every supplier nodes while only increasing
the flow in the arcs. Since the network imbalance is zero, the imbalance of
vpur is also zero, so we have generated a flow. By Lemma 6.4.1, it is thus a
best flow.

�
We now show how to remove negative cycles while keeping the invariant.

Remark 6.4.3 Every cycle in H(k1, k2) contains at least either a disposable
arc, arc apur(k1) or apur(k2), since the network is acyclic without these arcs.

We recall that a negative cycle has a direction such that adding a flow unit
in this direction of the cycle decreases the flow cost. An arc in a cycle is
called forward if it is in the direction of the cycle and backward otherwise.

Lemma 6.4.4 Flow h0(k1, k2) respects invariant (I).

Proof:

Suppose that there is a negative cycle in h0(k1, k2) not containing apur(k1).
Since the flow in apur(k1) is empty, the cycle does not contain vpur. By
Remark 6.4.3, there is at least one disposable arc in the cycle. We consider

128 CHAPTER 6. COMPUTATIONAL STUDY

the negative cycle with the shortest length. In particular, this negative cycle
is not the union of smaller cycles. If this cycle contains a single disposable
arc adis(t, r), then the situation is as illustrated in Figure 6.3.

Figure 6.3: A negative cycle (in red) with a single disposable arc and without
arc apur(k1) contradicts the assumption of demand profitability.

Let vman(tman, rman) be the manufacturer node incident to adis(t, r). Nec-
essarily, the cycle contains arc aord(t) and arcs asup(t, r

′) for each r ∈ [0, r[.
The only way to get a cycle is to also have arcs aman(t

′, r′) for each (t, 0) ≤
(t′, r′) < (tman, rman). Since h0(k1, k2) does not contain adis(t, r), this dis-
posable arc is necessarily forward and it directly follows that keeping a
container idle instead of fulfilling demand D(t, r) decreases the cost. Thus
the demand is not profitable, which contradicts our hypothesis.
We deduce that there are at least two disposable arcs. These arcs must all
be forward arcs in the negative cycle. In particular, because the length of
the negative cycle is minimum, this implies that the negative cycle cannot
contain disposable arcs relative to the demands of the same period.
Let (t1, r1) and (t2, r2) be the two earliest times so that arc adis(t1, r1)
and adis(t2, r2) are in the cycle, and assume that t1 < t2. Necessarily, the
negative cycle contains arc aord(t1), aord(t2) as well as arcs asup(t1, r

′) for
r′ ∈ [0, r1[and asup(t2, r

′) for r′ ∈ [0, r2[. If we had t2 = t1 + 1, then the
negative cycle would be as shown in Figure 6.4, so adis(t1, r1) and adis(t2, r2)
are in opposite direction, which is a contradiction.

Figure 6.4: A negative cycle (in red) with several disposables arc and without
arc apur(k1) necessarily contains backward disposable arcs.

Thus, we have t2 > t1 + 1 and aord(t1 + 1) is not in the negative cycle. So,
the cycle contains aman(t1 + 1, r′) for (t+ 1, 0) ≤ (t+ 1, r′) ≤ (t, r1) + Ldel.
Therefore, the negative cycle contains a smaller cycle with a single disposable
arc adis(t1, r1), hence does not have minimum length.

�
Lemma 6.4.4 states that invariant (I) holds at the first iteration. We now
want to remove negative cycles while preserving (I). Our approach is to

6.4. CYCLE-CANCELING ALGORITHM 129

compute a cycle containing arc apur(k1) backward and with minimum cost-
per-flow-unit, i.e. with minimum cost assuming that we only send one flow
unit through the cycle. If the resulting cycle has negative cost, then we re-
move it and call hi+1(k1, k2) the new flow. Otherwise, we stop our algorithm
and show in the following that hi(k1, k2) = h∗(k1, k2) is locally optimal. We
denote by R(

h(k1, k2)
)
the residual network of flow h(k1, k2) on H(k1, k2).

Remark 6.4.5 Consider the flow hi(k1, k2) and suppose that apur(k1) has a
positive flow. A minimum cost-per-flow-unit cycle including apur(k1) back-
ward is by definition a shortest path from node vpur to node vman(k1, 0) in
the residual network R(hi(k1, k2)).

Remark 6.4.6 There may be negative cycles with a higher cost-per-flow-
unit reducing the solution cost by a greater amount due to a greater flow
capacity in the cycle.

Remark 6.4.7 If a flow contains a negative cycle with apur(k1) backward,
then this cycle has a negative cost per-flow-unit, so the minimum cost-per-
flow-unit cycle containing apur(k1) backward is negative.

Lemma 6.4.8 Removing a minimum cost-per-flow-unit negative cycle con-
taining apur(k1) backward preserves the invariant.

Proof:

Suppose that the invariant holds for hi(k1, k2) but not for hi+1(k1, k2).
We denote by nci(k1, k2) the negative cycle flow so that hi+1(k1, k2) =
hi(k1, k2) + nci(k1, k2). Since the invariant does not hold at iteration i+ 1,
there is a negative cycle nc0 in hi(k1, k2).

Suppose first that the negative cycle excludes vpur, i.e. does not contain
apur(k2) and aend(k2+1). Since there is no negative cycle in hi(k1, k2) exclud-
ing vpur, some arcs in the negative cycle must be contained in nci−1(k1, k2).
Thus, we can include the negative cycle nc0 into nci−1(k1, k2). The result-
ing path has a smaller cost-per-flow-unit than nci−1(k1, k2), so nci−1(k1, k2)
cannot be not a shortest path.

Suppose now that the negative cycles includes apur(k2) and aend(k2+1), but
not apur(k1). Recall that no disposable is allowed at period k2, so the only
path from vman(k2) to vman(k2+1) necessarily goes through aman(k2, r) for
r ∈ [0, R[, so there is a unique cycle. This cycle has negative cost when
apur(k2), aend(k2 + 1) and the aman(k2, r) are all backward and contains
a positive flow. Since the starting flow in apur(k2) is empty, we must have
previously removed a negative cycle containing apur(k2) forward and apur(k2)
backward. This cycle cannot contain aend(k2 + 1) as vpur is only incident
to three arcs while we only remove negative cycles going at most once in
each arc. Thus, this cycle does not go in arcs aman(k2, r) for r ∈ [0, R[

130 CHAPTER 6. COMPUTATIONAL STUDY

either. This cycle is does not minimize the cost-per-flow-unit, because it
contains arc apur(k2) forward with positive cost, while arcs aend(k2+1) and
the aman(k2, r) backward induce a negative flow, and we can use them as
they have a positive flow. We conclude that this previous cycle was not the
best one.

�
Our Adapted Cycle-Canceling Algorithm is as following:

Algorithm 16: Adapted Cycle-Canceling Framework

Data: values k1, k2
Result: minimum linear-cost flow on H(k1, k2)
h := h0(k1, k2);
nc := minimum cost-per-flow-unit cycle in h on H(k1, k2);
δ := maximum flow in nc;
while nc has negative cost do

h := h+ δ · nc: remove the cycle nc from flow h;
nc := minimum cost-per-flow-unit cycle in h on H(k1, k2);
δ := maximum flow in nc;

h∗(k1, k2) := h;

Corollary 6.4.9 Invariant (I) holds at the beginning of each iteration of
Algorithm 16.

Corollary 6.4.10 If there is no negative cycle containing apur(k1) back-
ward, then there is no better solution purchasing less containers at period
k1.

To prove the correctness of our adapted cycle-canceling algorithm, we have
yet to show that the algorithm stops with the right number of containers
purchased at period k1.

Lemma 6.4.11 No flow on H(k1, k2) has a lower cost than h0(k1, k2) while
purchasing more containers at period k1.

Proof:

Consider the minimum cost flow on H(k1, k2) among the flows purchasing
more containers at period k1. By Lemma 6.4.1, no disposables is bought,
so the only different to flow h0(k1, k2) is that more containers are purchased
and idle on the whole time interval [k1, k2 + 1], so the cost is greater.

�

Proposition 6.4.12 Suppose that invariant (I) holds at iteration i ≥ 0,
there is a negative cycle containing apur(k1) backward and there is no flow
with lower cost while purchasing more containers at period k1 than hi(k1, k2).

6.4. CYCLE-CANCELING ALGORITHM 131

Then at iteration i + 1, there is no flow with lower cost than hi+1(k1, k2)
while purchasing more containers at period k1.

Proof:

We consider the flow hi(k1, k2) and the negative cycle nci(k1, k2) we com-
puted. Let nflowi be the quantity of flow we removed to transform hi(k1, k2)
into hi+1(k1, k2). Then, for every value n ∈ [0, f lowi−1], The flow generated
from hi(k1, k2) by removing n flow units in cycle nci(k1, k2) has exactly the
same arcs with positive flow, hence exactly the same negative cycle. Conse-
quently, invariant (I) also holds for this flow and there is no flow with the
same purchase size at period k1 with lower cost.

Moreover, this flow still contains the negative cycle nci−2(k1, k2), so it has
a greater cost than the new flow hi+1(k1, k2).

�

Theorem 6.4.13 At iteration i, if there is no negative cycle including arc
apur(k1), then the flow hi(k1, k2) is locally optimal.

Proof:

This result follows from Lemma 6.4.11, Proposition 6.4.12 and Corollary
6.4.9.

�

6.4.3 Time Complexity Analysis

Lemma 6.4.14 Flow h0(k1, k2) can be computed in O(R · T) time.

Proof:

The construction of h0(k1, k2) is divided into three steps:

1. Send the manufacturer excess to the supplier nodes,

2. Fulfill the imbalance of supplier nodes before period k2 via arc apur(k1).

3. Fulfill either the imbalance of manufacturers starting from period k2 =
T via arc aend(k2 + 1), or the imbalance of suppliers from periods
k2 < T and k2 + 1 via arc apur(k2).

In the first step, we send a flow over a predefined path of length O(R) for
each supplier node, which should take in total O(R2 · T) time. However, we
can improve this complexity to O(R ·T) by grouping the flow of the supplier
nodes vsup(t, r) of a same period t:

• We first send all the excess of the manufacturer nodes vman(t
′, r′) with

(t− 1, 1) ≤ (t′, r′) ≤ (t, 0) to supplier node vsup(t, 0) in O(R) time.

132 CHAPTER 6. COMPUTATIONAL STUDY

• We do it by sending iteratively all the excess from node vman(t
′, r′) to

node vman(t
′, r′ + 1) in O(1) time and by increasing r′ ∈ [1, R[, then

all the excess in vman(t, 0) to vsup(t, 0).

• We get for each r in O(1) time the flow quantity to send to vsup(t, r).

• We thus send in O(1) time the desired flow from vsup(t, r) to vsup(t, r+
1) by increasing r ∈ [0, R− 2]. The total time is then O(R)

The second step consists in sending a flow over paths of length O(R ·T) and
to O(R · T) supplier nodes. This would lead to a complexity of O(R2 · T 2).
Similarly to the first step, we improve this complexity by pre-computing for
each period t the quantity of flow to send over arc aord(t) in O(R) time. Then
we deduce the quantity of flow that must go through every arc aman(t, r) in
O(T ·R) time. Finally, we can send in O(R, T) time the flow from vsup(t, 0)
to the vsup(t, r) for each t and r. The complexity is then O(R · T) time.
The last step is similar to the second one, but takes O(R) time.

�

Lemma 6.4.15 Under invariant (I), every disposable arc adis in a mini-
mum cost-per-flow-unit cycle containing apur(k1) backward is forward.

Proof:

This proof is similar to the proof of Lemma 6.4.4. The lemma trivially
holds for the first iteration. Suppose that a minimum cost-per-flow-unit
cycle including apur(k1) backward contains a backward arc. Under invariant
(I), the cycle cannot contain any smaller negative cycle, as it would exclude
vpur. Therefore, without loss of generality, we assume that the cycle is
simple, i.e. does not contain any smaller cycle.
Suppose first that the cycle contains two disposable arcs adis(t, r1) and
adis(t, r2) at the same period, as illustrated in Figure 6.5. The minimum
cost-per-flow-unit cycle contains a path as in Figure 6.5, which is the sum
of another path and a cycle. This cycle has thus necessarily a negative
cost3, which contradicts the demand profitability assumption. Thus, the
minimum cost-per-flow-unit cycle cannot contain two disposable arcs at the
same period.
Let adis(tsup, rsup) denote the earliest backward disposable arc. This last
analysis is illustrated in Figure 6.6. Then, the cycle contains aord(tsup) for-
ward and asup(tsup, r) forward for r < rsup, which we will call the ’red path’.
Let vman(tman, rman) be the manufacturer node incident to adis(tsup, rsup).
In addition, the minimum cost-per-flow-unit cycle including apur(k1) back-
ward necessarily contains two other paths:

1. a ’blue path’ from vpur to vman(tsup, 0), and

3because it is included in a minimum cost cycle

6.4. CYCLE-CANCELING ALGORITHM 133

(a) Path containing two disposable arcs in the same period.

(b) Decomposition (1/2): simple path

(c) Decomposition (2/2): cycle with positive cost

Figure 6.5: A minimum cost-per-flow-unit cycle containing disposable arcs
in the same period violate the demand profitability assumption. The path
(in red) shown in Figure 6.5a can be decomposed into a path (cf. Figure
6.5b) and a positive cycle (cf. Figure 6.5c).

2. a ’brown path’ from vman(tman, rman) to vman(k1, 0).

By assumption, the minimum cost-per-flow-unit cycle is simple, so these
three paths are disjoint. For the blue and the red paths to be disjoints, we
need arc adis(tsup, rsup) corresponds to a late demand and the blue path to
contain arc aord(tsup + 1) backward, as well as arcs aman(tsup, r) backward
for r ∈ [Ldel, R[. However, for the brawn path disjoint to the red path,
it need to go through a disposable arc adis(tsup − 1, r) for some r ≤ Ldel,
which requires to visit arc aman(tsup, Ldel), which already belongs to the
blue path. This is a contradiction, and we conclude that no disposable arc
can be backward in the cycle.

�
Lemma 6.4.15 states that, when we decrease the number of containers pur-
chased at placement k1, we never decrease the number of used disposables
at any time step, not even at the cost of increasing the number of dispos-
ables at another time step. We deduce a very interesting structure of the
minimum cost-per-flow-unit cycle containing apur(k1) backward.

134 CHAPTER 6. COMPUTATIONAL STUDY

(a) ’Red path’ in the minimum cost-per-flow-unit cycle.

?

?

(b) ’Blue path’ going from vpur to vman(tsup, 0).

?

?

(c) ’Blue path’ from vman(tman, rman) to vman(k1, 0).

Figure 6.6: A minimum cost-per-flow-unit cycle containing a forward dis-
posable arc cannot be simple, as we assumed.

Lemma 6.4.16 Consider a flow hi(k1, k2) at iteration i+1. In a minimum
cost-per-flow-unit cycle containing apur(k1) backward in hi(k1, k2), every arc
aman(t, r), asup(t, r) or aord(t) is then backward.

Proof:

It follows from Lemma 6.4.15 that every disposable arc in a minimum cost-
per-flow-unit cycle is forward. We show for each t by recursion on r that arc
asup(t, r) is backward. If asup(t, R − 2) was forward, we would attain node
vsup(t, R − 1) whose only other adjacent arc adis(t, R − 1) must be forward
and thus cannot be considered. Therefore asup(t, r) cannot belong to a cycle,
which is contradictory. We deduce that asup(t, r) is backward. Suppose
now that for some r arc asup(t, r) cannot be backward and asup(t, r − 1) is
forward. We would be in the same situation, where we cannot go out of node
vsup(t, r) and hence asup(t, r − 1) must be backward. By extension, every
ordering arc aord(t) must be backward. Suppose finally that a manufacturer
arc aman(t, r) is forward in the cycle. We assume without loss of generality
that the cycle is simple, i.e. it does not contain any other cycle. There are
two scenarios:

1. Every arc aman(t, r
′) for r′ ∈ [0, R[is forward. This is impossible when

the cycle is simple because there is no possible path from vman(t+1, 0)

6.4. CYCLE-CANCELING ALGORITHM 135

to vman(k1, 0) without going through vman(t, R−1) (using aman(t, R−
1)) or vman(t, 0) (using a disposable arc at period t+ 1).

2. Every arc aman(t, r
′) for r′ ∈ [0, r] is forward as well a disposable

arc adis(t, r
′) for a r′ ∈ [r, Ldel[. As shown in Figure 6.7, there is

necessarily a path in the cycle using a disposable arc adis(t, r2) as well
as ordering arc aord(t). These two paths form another path containing

(a) Path in the minimum cost-per-flow-unit cycle.

(b) Decomposition (2/2): simple path.

(c) Decomposition (2/2): cycle with positive cost.

Figure 6.7: Second case of having a forward manufacturer arc. Figure 6.7a
represents the path (in red), while Figures 6.7b and 6.7c are its decomposi-
tion into a path and a positive cycle.

two disposable arcs, at least one of them being related to a late task.
This total path is actually composed of another path and a cycle,
which has positive cost by demand profitability, which contradicts the
assumption that the initial cycle has minimum cost-per-flow-unit.

�

Corollary 6.4.17 If the cycle contains vman(t, 0) for a period ∈]k1, k2[,
then it also contains either:

1. Arc aman(t−1, r) backward for all r ∈ [0, R[, corresponding to removing
an idle container.

2. Some arcs aman(t− 1, r) backward, an arc adis(t− 1, r) forward, some
arcs asup(t− 1, r) backward and arc aord(t− 1) backward.

136 CHAPTER 6. COMPUTATIONAL STUDY

3. Some arcs aman(t− 1, r) backward, an arc adis(t− 2, r) forward, some
arcs asup(t− 2, r) backward and arc aord(t− 2) backward.

Proof:

By lemma 6.4.16, at each node vman(t, r), the two only possibilities are
going forward in a disposable arc or backward in a manufacturer arc. If we
follow a disposable arc, we will go backward in supplier arcs and backward
in an ordering arc. In this corollary, the first case corresponds to having R
consecutive backward manufacturer arcs, the second case to going in a early
disposable arc, and the last one to going in a late disposable arc.

�

Lemma 6.4.18 We cannot remove more than O(R ·T) negative cycles con-
taining apur(k2) backward.

Proof:

By Lemmas 6.4.15 and 6.4.16, every time we remove a negative cycle, the
flow decreases on:

• some ordering arcs,

• some manufacturer arcs

• some supplier arcs

• arc apur(k1)

• maybe also aend(k2 + 1).

The flow only increases on some disposable arcs and maybe on apur(k2).

Moreover, every time we remove a negative cycle, the flow on one arc goes
down from begin positive to zero. Since this can happen only once for each
of the above named arcs, which can decrease, we conclude that we can have
at most as many iterations as the O(R · T) number of non-disposable arcs
(and besides apur(k2)) in the network.

�
Furthermore, note that the number of iterations for Lemma 6.4.18 is actually
very small in practice:

• the flow in arc aman(t, r) is not lower than the flow in arc aman(t, r−1).

• once the flow in arc aman(t, r) is zero, the flow in arc aman(t, r+1) goes
down to zero at the same time as the flow in arc asup(t

′, r′) incident
to arc vman(t, r + 1).

6.4. CYCLE-CANCELING ALGORITHM 137

We only need to consider arcs apur(k1), aord(t), asup(t, r) and aman(t, 0),
which is close to one third of the arcs in the network, and around R · (k2 −
k1−2) arcs. Moreover, we will not expect that more than half of the days of
the week in average (over the periods) will use disposables, so the number
in practice is halved again. Finally, we can expect that, during the first
iterations, many disposable arcs are entirely filled (so with flow equal to the
demand) at the same time, due to a high purchasing at period k1, so many
arcs will be emptied at the same time. The O(R · T) is thus a worst case
upper bound.
A minimum-cost-per-flow-unit cycle can be computed with the Dijkstra
shortest path algorithm in O(R·T ·log[R·T]) time. Instead, we use Corollary
6.4.17 to compute in linear time the minimum cost-per-flow-unit cycle:

Algorithm 17: Minimum Cost-per-unit Cycle Framework

Data: k1 and k2
Initialize the distances Dist(k2) and Dist(k2 + 1);
for t from k2 − 1 to k1 do

Dist 1(t) := cost from Dist(t+ 1) being idle at period t;
Dist 2(t) := cost from Dist(t+ 1) using one more disposable for
early demand at period t;

Dist 3(t) := cost from Dist(t+ 2) using one more disposable for
late demand at period t;

Dist 4(t) := cost from Dist(t+ 1) using one more disposable
disposable for late demand at period t− 1, then being idle at
period t− 1;

Dist(t) := min
{
Dist i(t), i ∈ [1, 4]

]
;

Finish the cycle to vpur with a purchasing arc at period k1;
return the generated cycle;

Lemma 6.4.19 Algorithm 17 computes the minimum cost-per-flow-unit cy-
cle containing apur(k1) backward in O(R · T) time.

Proof:

The algorithm iterates over O(T) manufacturer nodes vman(t, 0). For each
nodes, we compute the distance from vpur in O(R) time by comparing three
paths of length O(R).

�

Theorem 6.4.20 If Hypotheses 2.1 [Delay], 2.2 [Cost], 4.2 [Placement] and
4.4 [Distance] hold, then we can use Algorithm 17 to find negative cycles.
Thus, Algorithm 16 computes a locally optimal flow h∗(k1, k2) on H(k1, k2)
in O(R2 · T 2) time, for any value k1 and k2.

Proof:

138 CHAPTER 6. COMPUTATIONAL STUDY

The initial flow h0(k1, k2) is computed in O(R · T) time by Lemma 6.4.14.
There are at most O(R · T) iterations by Lemma 6.4.18, and each iteration
done computed in O(R · T) by lemma 6.4.19. Theorem 6.4.13 states the
correctness of the algorithm.

�

6.4.4 Extensions

Compact Networks

The adapted cycle-canceling framework is generic so that it can also be used
for compact networks. In particular, we note that each of the four paths in
Algorithm 17 can be transposed into the compact network.

Algorithm Flow.4.2

In Algorithm Flow.4.2, we consider up to four purchasing periods k1, k1+1,
k2 and k2 + 1 instead of two. We recall that in network H2,i(k1, k2) no
container will be purchased at period k1. Then, we use a similar initial flow
h0(k1, k2) purchasing every container at period k1 + 1. We note that arcs
aend(k2+1) and apur(k2+1) cannot be non-empty at the same time. Then,
we use the same negative cycle algorithm, since exactly as for aend(k2+1) and
apur(k2) we only have to look for a negative cycle containing arcs aman(k2, r)
for r ∈ [0, R[. We can also use compact networks.

Algorithm Flow.5.1

Just like Algorithm Flow.4.1, the networks used in Algorithms Flow.5.1 are
set between two placements k1 and k2. Nevertheless, we satisfy demands at
periods k1 and k1 + 1 instead of k2 and k1 + 2. We can also start with
a policy using zero disposable and purchasing every containers at period
k1. The invariant has to be updated so that every negative cycle contains
arc a5.1end(k2) backward. Every negative cycle contains either aordpur(k1) or

aidlepur (k1+1). We note that the distance of vman(k2+1, 0) is computed from
a5.1end(k2) and the distance of vman(k2+1, 0) is computed from vman(k2+1, 0)
with idleness at period k2, since there is no demand to fulfill at period k2.
Every result can then be extended and the computation of a negative cycle
follows the same pattern as Algorithm 17, besides a special treatment at
periods k2 + 1, k1 + 1 and k1. We can also use compact networks.

Algorithm Flow.5.2

The networks for Algorithm Flow.5.2 are nearly identical to the networks
for Algorithm Flow.5.1, as we only replace the manufacturer arc aman(k2, 0)

6.5. SIMULATIONS 139

with arc a5.2end(k2), and a5.1end(k2) with a5.2end(k2 + 1). For the invariant, we re-
quire every negative cycle to contain either aordpur(k1) or a

idle
pur (k1+1) backward,

and either a5.2end(k2) or a5.2end(k2 + 1) backward. In addition, the distance of
node vman(k2, 0) is computed directly from a5.2end(k2), since there is no de-
mand to fulfill at period k2. Every other result can be extended, and we can
also use compact networks.

Conclusion

Theorem 6.4.21 The adapted cycle-canceling algorithm can be used for
both extended and compact network, and all flow algorithms. Flow.4.1,
Flow.4.2, Flow.5.1, Flow.5.2. The worst case time complexity is O(R2 ·T 2).

6.5 Simulations

We compare the running time of the four flow-based algorithms in six dif-
ferent settings. We consider the two representations, namely extended and
compact. Moreover, to compute a minimum linear-cost flow we use either the
enhanced capacity-scaling algorithm (E.C.S), the adapted cycle-canceling al-
gorithm (A.C.C.) or a standard capacity scaling algorithm (Std.C.S).

The results on Tables 6.6 and 6.7 are average running times over N = 10
simulations with randomly generated data. We denote by U(m,M) the
discrete uniform distribution with minimum valuem and maximum valueM ,
and by B(n, p) the binomial distribution with n experiments and probability
p of success for each experiment. We also use operations on the distributions,
so that 10 · B(10, 0.5) + 5 is a distribution taking values 5, 15, 25, . . . , 105.

• T → U(15, 30), R → U(3, 7).
• Ldel follows a uniform distribution taking any odd value in [3, R].

• For each r ∈ [0, R[, the demand distribution follows an additive auto-
regressive model4. Demand D(0, r) follows distribution U(50, 100). At
time t > 0, demand D(t, r) follows the sum of distribution U(−10, 20)
and the distribution D(t− 1, r).

• ∀t, ∀r, Cman(t, r) → U(1, 2).
• ∀t, ∀r, Csup(t, r) = 6.

• ∀t, ∀r, Cdis(t, r) = 100.

• ∀t, Csetup(t) → 50 · (2 + B(4, 0.8)).

4This is a common model used to describe the evolution of a variable. It also enters
into the famous martigale model of forecast evolution framework [45]

140 CHAPTER 6. COMPUTATIONAL STUDY

Table 6.6: Average running times (in seconds) of the flow algorithms for
each variant. In this simulation, the setup cost follow distribution 10000 ·(
1 + B(20, 0.4)) at every period.

Algorithm Flow.4.1 Flow.4.2 Flow.5.1 Flow.5.2

Cost 551529 551529 551529 551529

E.C.S. Extended 18.7 70.9 20.8 51.1
Compact 8.7 32.1 9.7 22.2

Std C.S. Extended 7.4 29.6 8.6 20.5
Compact 5.2 20.0 6.2 14.5

A.C.C. Extended 0.16 0.62 0.1 0.25
Compact 0.08 0.3 0.06 0.16

Table 6.7: Average running times (in seconds) of the flow algorithms for
each variant. In this simulation, the setup cost follow distribution 5000 ·(
1 + B(20, 0.4)) at every period.

Algorithm Flow.4.1 Flow.4.2 Flow.5.1 Flow.5.2

Cost 552124 541170 549596 538475

E.C.S. Extended 25.5 98.8 29.1 65.2
Compact 11.0 44.4 12.7 29.2

Std C.S. Extended 10.2 40.6 11.8 25.9
Compact 6.9 27.1 8.4 18.9

A.C.C. Extended 0.20 0.764 0.13 0.28
Compact 0.1 0.36 0.08 0.17

First of all, the experiments show that the standard capacity scaling algo-
rithm is in average twice as fast as the enhanced capacity scaling algorithm.
While we may not have implemented the later algorithm as efficiently as it
should be possible, we believe that this result is not unexpected. The en-
hanced capacity scaling algorithm requires to separate the nodes into trees
and merge some trees after possibly every shortest path algorithm. This
algorithm hence takes a lot of time to ensure that at each iteration enough
flow is sent from a source to a sink. Nevertheless, in our networks, the sinks
have in general a close excess value, so there should be no need to use the
enhanced capacity scaling algorithm. Furthermore, the enhanced capacity
scaling algorithm systematically divides the Δ flow of the shortest paths by
two, resulting in decimal flow quantities. Meanwhile, our standard capacity
scaling algorithm starts with a power-of-two initial Δ flow, thus it only con-
siders integral flows. We believe that this difference is the reason for slowing
down the enhanced capacity scaling algorithm.

Secondly, the adapted cycle-canceling algorithm is approximately 75 times
faster than the standard capacity scaling algorithm for this simulation data.

6.6. OUTLOOK 141

This shows that the number of shortest paths we compute is fairly low, and
that this alternative algorithm is very well adapted to our network.

Thirdly, it turns out that the use of the compact network representation
halves the running time of all three minimum linear-cost flow algorithms.
It is interesting to see that we keep that speed increase from the compact
network representation even when using the cycle-canceling algorithm, de-
spite the computation of the path being nearly the same for both network
formulations. We recall that the minimum linear-cost flow algorithms can
be computed separately using different threads, so the computational im-
provement from using several threads naturally stacks up with the running
time decrease from using a compact network formulation and the adapted
cycle-canceling algorithm.

Finally, compared to their initial version described in Chapters 4 and 5, our
three algorithmic improvements speed up every flow algorithm by a factor
of 300. The final complexity is below half of a second when considering a
container purchasing plan over half a year, with T = 30 and R = 7. This
complexity is very satisfying for our application, where we consider a time
horizon of one year with five working days per week.

6.6 Outlook

In this chapter we have analyzed the solution quality and the running time
of our deterministic algorithms. Firstly, we compare the quality of the poli-
cies described in Chapters 4 and 5. It turns out that the policy forbidding
disposables is noticeably more costly than our policies allowing them. This
shows that even in a deterministic setting it is meaningful to allow dispos-
ables. Moreover, the flow algorithms from Chapter 4 are in practice nearly
as good as the flow algorithms from Chapter 5, despite not being designed
for a general demand pattern. The former algorithms are only perform-
ing poorly when the demand is not steadily increasing and when there is a
very low demand at the desired purchasing time. In this case, Algorithms
Flow.4.1 and Flow.4.2 will use a limited fleet size.

The flow-based algorithms are nearly always optimal but are a little slow,
so we proceeded to improve their experimental running time. The first
improvement uses several threads, as we experimentally highlight that the
algorithms are easily parallelizable. Our 2-core machine hence computes a
policy twice as fast using two or three threads. The second idea is to formu-
late network G in a more compact way, only using 60% to 80% as many nodes
and arcs. This method also halves the running time of the flow algorithms.
However, it systematically excludes a cost from the system so we have to
compute it separately. Finally, we developed a cycle-canceling algorithm to
compute minimum linear-cost flows on our specific networks. Compared to
the enhanced capacity scaling algorithm, this approach is around 70 times

142 CHAPTER 6. COMPUTATIONAL STUDY

faster. Using these three algorithmic improvements, we reduce the total
running time from nearly one second to hundreds of milliseconds for data of
average size: T = 30, R = 7.

143

Part II

Stochastic Study

145

Chapter 7

Strategies for the Stochastic
Model

We consider the stochastic version of the container purchasing problem,
which we denote by (SCPP). Every demand is now stochastic and its
distribution is fixed at the beginning of the time horizon. In a previous
paper [55], we study SCPP using a Markov decision process framework,
and extend two basic strategies from the stochastic lot-sizing literature.
This chapter develops this earlier work and completes our framework with
two hybrid strategies.

In Section 7.1, we review the related literature on stochastic problems. Sec-
tion 7.2 describes our Markov decision process framework and defines the
objective function according to four different strategies. Sections 7.3, 7.5
and 7.6 repectively present the online strategy, the offline strategy and the
two hybrid strategies, which we call the quasi-online and the quasi-offline
strategies. In Section 7.4, we prove that the cost functions of our problem
are L�-convex for the online policy if we remove the setup costs. Our policies
are experimentally evaluated in Section 7.7. Finally, Section 7.8 summarizes
our study and states some extensions of the model.

7.1 Literature Survey

Similar to the deterministic setting, a lot of research has been done on
stochastic inventory control problems, but there is little literature on de-
termining the optimal fleet size. To the best of our knowledge no article
searched a purchasing plan of containers in a ramp-up scenario.

We restrict our review to periodic review systems, where decisions can only
made at specific points in time. It is usually assumed that the time peri-
ods between two consecutive points have the same length and represent a
time unit. We divide the existing related literature into three categories:
stochastic lot-sizing problems (SLSP), inventory control problems with lost-

146 CHAPTER 7. STRATEGIES FOR THE STOCHASTIC MODEL

sales (ICPL) and empty container repositioning problems (ECRP). Just like
in the stochastic setting, the lot-sizing problems represent the literature with
a setup cost for purchasing and the empty container repositioning problems
consider returnable items in a closed-loop supply chain. Inventory control
problems have neither of these properties, but the used methods are relevant
for our work.

7.1.1 Stochastic Lot-Sizing Problems

Following the deterministic lot-sizing model of Wagner and Within [128],
researchers realized the importance of taking into account the uncertainty
in lot-sizing decisions [131]. We refer to Aloulou et al. [4] for a general litera-
ture on stochastic lot-sizing problems. Early, Silver [106] as well as Askin [6]
proposed some heuristic algorithms under a simple demand distribution pat-
tern. In particular, Silver [106] extends the Silver-Meal heuristic [107] to a
stochastic setting. We recall that the Silver-Meal heuristic consists of ap-
proximating at each placement the purchase size and the time of the next
placement. Both papers adapt a deterministic heuristic to a stochastic envi-
ronment. Several other papers deal with uncertain demands by determining
a safety stock buffer (see [4]).

A fundamental contribution is by Bookbinder and Tan [11]. They proposed
a classification of strategies for SLSP with a fixed time horizon into three
groups. Firstly, the dynamic uncertainty strategy consists in computing a
solution in an online manner, i.e. taking every decision as late as possible
to make the best choice given the latest information. Secondly, the static
uncertainty strategy consists in deciding at the beginning of the time hori-
zon on the placements and the purchase quantities. The algorithm is thus
offline and may not be as efficient as a dynamic uncertainty strategy. How-
ever, the planning does not have to be constantly updated, which offers more
stability and less nervousness to the solution. Finally, the static-dynamic
uncertainty strategy is a compromise where the placements are fixed at
the beginning of the time horizon but the purchase quantities are decided
online, depending on the left-over inventory. However, in a context of con-
tainer management, the static-dynamic approach has no a priori advantage
compared to the static uncertainty strategy. The authors of [11] consider a
service level constraint instead of a penalty cost for not meeting a demand.
We note that the Silver heuristic [106] which is frequently used in practice
does not correspond to any of their three strategies. In this thesis, we call
policy a decision function and strategy the set of policies following the same
decision pattern. Given a strategy, we say that a policy is optimal if it
minimizes the cost over all other policies following this strategy. We can
hence call a static uncertainty policy optimal even though is has higher cost
than a dynamic uncertainty policy. We often refer to a policy following the
dynamic uncertainty strategy as an online policy and to a policy following

7.1. LITERATURE SURVEY 147

the static uncertainty strategy as an offline policy.

The dynamic uncertainty strategy has a very abundant literature which over-
laps traditional inventory control problems without setup cost. We present
the online strategy together with inventory control problems in the next
subsection.

Literature on the static uncertainty strategy is rather scarce. The reason
is that this strategy usually does not generate efficient policies, because it
cannot adapt to the demand realizations. In contrast, the static-dynamic
strategy found much more success as we can raise the inventory position to
a satisfying level, so that the stock after ordering is loosely dependent to the
previous demand realizations. For the static uncertainty model, Sox [115]
considers a rolling horizon framework with backlogging cost. Haugen [42]
use a progressive edging meta-heuristic to solve SLSP. Vargas [125] as well
as Piperagkas [87] also study the static uncertainty strategy of SLSP.

In the following, we present papers on the static-dynamic uncertainty model.
Pujawan [92] considers two traditional heuristic algorithms for determin-
istic lot-sizing problems and analyze their properties and behavior under
demand variability. Pujawan and Silver [93] propose two heuristic static-
dynamic algorithms for SLSP. They show through numerical experiments
that these heuristics perform better than the usual dynamic-uncertainty
policy (s, S), ordering up to stock S whenever the stock falls below value
s. Tarim and Kingsman [117] consider the static-dynamic strategy of Book-
binder and Tan [11] and formulate a mixed integer linear program. They
also assume a minimum service level constraint instead of a penalty cost.
They allow the linear cost function to be dynamic and show that their so-
lution is an improvement over earlier work [11]. In a following paper [118],
the same authors replace the minimum service level with a backlogging cost.
Again, the problem is solved using a mixed integer linear program, and the
authors look for a replenishment cycle policy (Rt, St). The traditional base-
stock policy for stationary demand and zero setup cost consists of ordering
at each period to raise the stock up to a fixed level S. Such a policy is opti-
mal if there is no lead time. When there is a setup cost, there are four main
classes of parametric policies in the literature, as summarized on Table 7.1.
Firstly, two policy classes fix an ordering interval and the two others order
whenever the stock falls below a threshold. Secondly, for two strategies we
order the same quantity at every order and on the two others we order up to
a certain level. The (R,S) policy orders up to stock S every R periods. A

Every R periods When stock falls below s

Order size q (R, q) policies (s, q) policies
Order up to S (R,S) policies (s, S) policies

Table 7.1: Four simple classes of ordering policy.

148 CHAPTER 7. STRATEGIES FOR THE STOCHASTIC MODEL

straightforward generalization for non-stationary demand disributions is to
make the parameters R and S depend on t. Consequently, when ordering at
period t, we raise the inventory up to stock level St and set the next order
time at period t + Rt. This policy follows the static-dynamic uncertainty
strategy because every parameter Rt and St is decided at the beginning.

The study of Özen et al. [86] is maybe the most similar paper to our stochas-
tic study. They compute a static-dynamic solution to the stochastic lot-
sizing problem with lost-sales by coupling a Markov decision process with a
simple dynamic program. They then approximate the stock we have left at
ordering time using two intuitive heuristics and show experimentally that
the results are close to optimal while drastically decreasing the running time.

Rossi et al. [97] use constraint programming to compute the optimal (Rt, St)
policy of the SLSP with penalty cost. The same authors improve the run-
ning time of their constraint programming approach using filtering methods.
They use this new method to solve the problem under a minimum service
level constraint in [116] and under a backlogging cost in [100]. In Rossi et
al. [98], they extend the model to stochastic lead times. Rossi et al. [99]
compute an optimal (Rt, S,t) policy using state space aggregation and state
space augmentation in a static-dynamic model of SLSP where unmet de-
mand is backlogged, hence without any service level constraint. In [96],
they propose a generalized framework to compute near-optimal solutions
of the SLSP following a static-dynamic strategy, and including service con-
straints, backlogging or lost-sales. Tunc et al. [120] reformulate the mixed
integer program of [11] for the static-dynamic strategy of the SLSP. They
show that their algorithm is very fast for large problem instances.

7.1.2 Inventory Control with Lost-Sales

We now give an overview of the literature with online stochastic inventory
control problems. The objective is to compute online policies with or without
setup cost. In particular, an online lot-sizing problem is not any different
from an inventory control problem with setup cost.

We recall that there are two main ways of dealing with stock-out, namely
backlogging and lost-sales. The distinction between lost-sales and backlog-
ging only makes sense for positive lead time. Our container management
problem has a lost-sales behavior. We refer to Bijvank and Vis [10] for a re-
view of lost-sales problems in a different setting than ours, as in continuous
review models and perishable products, for example.

Lost-Sales and Backlogging Models

It is well known in the literature (see for exmaple [108, 82, 143]) that tradi-
tional inventory control problems with backlogging, stationary demand and
no setup-cost is very easy to solve. We define the inventory position as the

7.1. LITERATURE SURVEY 149

inventory level plus the sum of outgoing orders. For this class of problems
with backloging, the optimal ordering policy is a function with the form
St(x) := S − xt, where xt is the inventory position at ordering and S is the
optimal inventory position. When we add setup costs, the optimal order
size is characterized by two values (s, S), where the inventory levels is raised
up to S whenever it falls below a threshold s. We refer to base-stock policies
as those policies, defined by an inventory position S with or without the
ordering threshold s.
Inventory control problems with lost-sales are more complex to solve. One of
the earliest work is from Karlin and Scarf [62], who showed in particular that
the optimal policies are not base-stock policies when the lead time is positive.
The authors have also modeled the problem as a general Markov decision
process and analyzed some basic properties when the lead time equals one
period. Morton [80] has generalized basic results from [62] to any positive
integral lead time, and developed efficient bounds on the optimal policy.
Later, Morton [81] proposed some myopic policies and experimentally an-
alyzed their performance. Zipkin [142] experimentally compares different
policies in inventory problems with lost-sales and shows that simple my-
opic policies perform much better than the best base-stock policy. In other
words, it is better to minimize the cost for the coming period only rather
than considering the best inventory position. The biggest issue with my-
opic policies for many applications is their long computation time. Indeed,
myopic policies separately compute the order size for each state. Instead,
the base-stock policies map the order policy using a parametric function,
which can be efficiently approximated. A good alternative to base-stock
policies is the class of restricted base-stock policies introduced by Johansen
and Thorstenson [58]. Restricted base stock policies only differ from simple
base-stock policies by having a maximum order size R, and have been shown
to perform very well in practice. Zipkin [142] considers a similar alternative
called the vector base-stock policy with a single parameter representing a
service level. The order size is set such that the inventory position ensures
approximately this service level over the coming periods.
Several papers further analyze the performance of optimal base-stock policies
in lost-sales problems. Janakiraman et al. [57] compare simple inventory
problems with positive lead time under backlogging and under lost-sales.
Huh et al. [50] prove that any optimal base-stock policy is asymptotically
optimal for lost-sales inventory systems when the shortage cost gets large.
This result can be interpreted as follows. On one hand, restricted base-
stock policies are close to optimal. On the other hand, a simple base-stock
policy with parameter S only orders a different quantity than most restricted
base-stock policies with parameter (S,R) when the inventory position is low.
When the shortage cost is large, the best restricted base-stock policies keep
a high stock to avoid stock-out. It is thus nearly equivalent to a base-stock
policy. In another work, Huh et al. [49] propose an adaptive algorithm

150 CHAPTER 7. STRATEGIES FOR THE STOCHASTIC MODEL

to compute the optimal base-stock policy when the demand distribution is
stationary but unknown. The algorithm is shown to converge very fast.

In practice, both the backlogging models and lost-sales models require a long
computation time, especially when the demand is not stationary. Therefore,
some researchers look for efficient approximation methods. Levi et al. [70]
introduce the class of dual-balancing policies. In dual balancing policies, the
expected holding cost, shortage cost and purchasing cost are equal. These
strategies have a provable performance guarantee. In a setting with back-
logging, immediate ordering and zero lead time, the expected cost of the
dual-balancing policy is at most twice the expected cost of the best online
policy. Nonetheless, this bound holds for the worst case scenario and the
performance of the policy is much closer to optimal in most cases. Levi
et al. [69] adapt this policy to lost-sales models and prove that the policy
has the same performance guarantee. We discuss these policies in the next
Chapter.

Convex Optimization

Several researchers pay attention to convexity properties. Convex problems
are easier to solve, since we can use a binary search to compute an optimal
order size. Moreover, convexity may ensure the convergence to optimality for
several meta-heuristics. Janakiraman and Muckstadt [56] derive properties
of optimal policies in a stochastic inventory control system with lost-sales
and fractional lead time. Fractional lead times correspond to transportation
times shorter than one week in our application. In particular, they prove the
convexity of the cost following an ordering decision with respect to the stock
at ordering. Furthermore, they show that the slope of this cost function is
in [−1, 0] and give simple upper and lower bounds of the optimal order
size. In contrast, our supplier and manufacturer holding costs are incurred
not only at the end of each week, but also every day. Closer to us is the
work of Chiang [16]. The author considers an inventory control problem
with replenishment every R time steps and a lead time smaller than R. He
writes a dynamic program and proves for the lost-sales setting that the cost
function is convex. Moreover, he shows that the derivative of the optimal
order size is a convex function of the stock at hand. Halman et al. [40] solve
a general stochastic inventory control problem using dynamic programming.
Moreover, they prove the convexity of the cost functions and derive a fully-
polynomial time approximation scheme (FPTAS): for every ε, the algorithm
is polynomial in ε−1 and is an ε-approximation, so that the expected cost
of the generated policy is at most (1 + ε) times the expected cost of the
optimal policy. Halman et al. [39] describe a framework to create FPTAS,
in particular for stochastic inventory control problems.

More recently, work has been done on convex problems with larger lead
times. Indeed, most of the previously cited papers consider a short lead

7.1. LITERATURE SURVEY 151

time such that we only need one parameter to represent the state space.
When the lead time is larger than the review period, the traditional con-
vexity property does not hold anymore. Instead, we use L�-convexity (L-
natural convexity), which is a generalization of convexity introduced by
Murota[83]. Zipkin [141] characterizes optimal inventory control policies in
a system with lost-sales. He shows that the cost functions in a Markov de-
cision process framework are L�-convex for a specific state space. In Section
7.4, we present these results as described by Simchi-Levi et al. [108] and use
them to show the L�-convexity of the cost functions. Chen et al. [14] use the
L�-convexity properties from [141] and deduce a pseudo-polynomial approxi-
mation scheme similar to the FPTAS in [40]. Their paper adapts the work of
Halman et al. [40] to multi-dimensional state, decision and demand spaces.
However, their approximation scheme is only pseudo-polynomial, and it is an
open question whether a fully polynomial approximation scheme exists for
their problem. Huh and Janakiraman [48] extend the work of Zipkin [141]
to serial supply chains. Our work in this chapter adapts these results to
container management problems without setup costs.

Further Research on Online Stochastic Lot-Sizing

Guan et al. [35] use a branch-and-cut algorithm on a tree data structure to
generate a dynamic strategy for the SLSP, and extend some properties of
the optimal solution in the deterministic case. Their work is extended by
Guan and Miller [36], who present the equivalent of the fundamental zero
inventory property of Wagner and Within [128] to a stochastic environment.
Nevertheless, the SLSP problem is proven to by NP-complete by Halman et
al. [40], so one can only create an algorithm which is polynomial in the size
of the scenario tree structure. Li et al. [72] consider a SLSP with remanufac-
turing and solve the dynamic model using stochastic dynamic programming.
Wagner [129] considers two online lot-sizing problems with the additional re-
striction that the manager has no information on the future demands and on
the length of the planning horizon. He compares the cost of the algorithms
to offline algorithms having full knowledge of this information.

7.1.3 Stochastic Container Management

Stochastic container management problems extend deterministic container
management problems to stochastic data. The uncertainty may concern
various parameters like demand value, lead time, container deterioration and
so on. We restrict our literature review to container management problems
where the only stochastic parameter is the periodic demand value. We
note that most articles present a container repositioning problem without a
purchasing option. In addition, the repositioning time is usually assumed
immediate and researchers look for an optimal base-stock policy (s, S).

152 CHAPTER 7. STRATEGIES FOR THE STOCHASTIC MODEL

In 1987, Dejax and Crainic [19] presented a review of the stochastic fleet
management problems, including both truck management and container
management. Crainic et al. [18] as well as Cheung and Chen [15] model
a general container management problem as a two-stage stochastic integer
program.
Container management problems are very complex to solve. They are fre-
quently modeled as Markov Decision Processes. Powell [91, 90] recommends
to use approximate dynamic programming to efficiently solve logistics prob-
lems. We present and discuss approximate dynamic programming in Chap-
ter 8 as an alternative and a possible extension of our work in this chapter.
Lam et al. [66] applied approximate dynamic program using temporal differ-
ences on a simple maritime container repositioning problem. Their model
includes neither positive lead time nor container purchasing.
Li et al. [74, 73] study an empty container repositioning problem in the
maritime industry, first at a single port and then over multiple ports. They
consider the problem from a theoretical aspect and prove that the optimal
policy at each port is a threshold policy under zero lead time and stationary
demands. A threshold policy is defined by two variables lp and up for each
port p. The stock at any port p is raised up to lp if it was below it, and
decreased down to up if it was above it. A similar result is proven by
Song [110] for a single port, and by Song and Earl [112] for a two depots
system. Zhang et al. [139] consider a similar container repositioning problem
with lost-sales. For a single port, they show that the optimal repositioning
policy is a threshold policy and compute it in polynomial time. For multiple
ports, they approximate the best threshold policy using a similar algorithm.
For a single port and infinite fleet size, Song [109] computes an optimal
threshold policy in a continuous review inventory model.
Dong and Song [22] consider a joint container fleet sizing and repositioning
problem in a system between several maritime ports under stationary de-
mands and zero lead time. The container fleet sizing can be defined as a
container purchasing of containers at every port during the first time period,
so there is no initial repositioning. They consider a liner shipping process
where the ships transporting containers follow some specific routes. They
model a stochastic program and solve it using a gradient-based method.
They extend their work in [23] to consider further inland transportation.
Lee et al. [68] consider a similar study as Dong and Song [22], and also pro-
pose a gradient-based method to compute a threshold policy and a container
fleet size.
Song and Zhang [113] prove that without repositioning delay a two level
threshold policy is optimal for a single port, assuming an infinite external
fleet size. Song and Zhang [114] consider a container repositioning problem
with positive lead times. The repositioning decision is a rule-based inventory
control policy. Since they consider transportation delays, their work is close
to ours. However, they consider a stationary demand pattern and measure

7.2. PROBLEM DESCRIPTION 153

the steady-state performances of their heuristic threshold policy.

Erera et al. [24] study container repositioning in the chemical industry. They
extend their previous paper [25] with deterministic demands to uncertain
demands, using a a robust optimization with budget: Every single demand
has to be fulfilled. Whenever the stock of empty containers is lower than
the demand, empty containers are immediately imported at a cost. The
repositioning before the demand comes out is computed to minimize the
cost under the contraint that the immediate repositioning cost after the
demand realization does not exceed a budget constraint.

Yi [135] and Yin [136] solve in their PhD theses a stochastic container man-
agement problem using meta-heuristics, respectively the Compass method
and a progressive edging algorithm. In [135], the author focuses on threshold
policies in a container repositioning problem with stationary demands. The
container fleet size is a decision to take at the beginning of the time hori-
zon. The maximum necessary fleet size is the sum of the optimal threshold
values. However, they show that this maximum fleet size is usually not the
optimal fleet size. Therefore, in our container management problem with
increasing demand, it is clearly not the case either.

For further literature results on container management problems, we refer
to Dong and Song [111].

7.2 Problem Description

7.2.1 Notations and Strategies

Contrary to the deterministic setting, we denote now the demand by Dt,r

instead of D(t, r). Furthermore, the ordering delay Lord is assumed positive.
We assume that the demand cannot exceed a value Dmax.

We call order size βt the number of empty containers sent from the manufac-
turer to the supplier before (t, 0), and denote by αt the number of containers
purchased before ordering. At time (t, r), the sequence of events is:

1. If r = 0, the manufacturer purchases αt containers, then the supplier
orders βt empty containers.

2. Demand Dt,r occurs and is satisfied using the available packages.

3. Outgoing containers arrive to their respective locations:

• The containers used for demand at time (t, r) − (Ldel − 1) are
added to the manufacturer stock.

• If r = Lord − 1, βt containers are added to the supplier stock.

At the beginning of each period t, we denote by Xt the supplier stock, by Yt
the manufacturer stock and by Zt the number of outgoing full containers.

154 CHAPTER 7. STRATEGIES FOR THE STOCHASTIC MODEL

We call container fleet size Ut the number of containers in the system before
purchasing. By Hypothesis 2.1 [Delay], the ordering delay is smaller than
one period so there is no outgoing order at time (t, 0). Thus:

Ut = Xt + Yt + Zt. (7.1)

We denote by Uα(t) the number of containers in the system after purchasing
at period t. We assume that at the beginning of the time horizon, there is
no container in the system.
Our objective is to find a purchasing and ordering policy minimizing the
expected cost over the whole time horizon. Container ordering is an op-
erational decision because it should to be done dynamically depending on
the supplier stock. Thus, we make the order decision βt during period t.
Meanwhile, we see container purchasing as a tactical decision because a
purchasing decision should look into the future to avoid unnecessary pur-
chasing in the near future, due to the setup cost. We consider four different
strategies:

1. An online strategy, where the purchase size αt is decided at period t.

2. An offline strategy, where αt is decided at period 0.

3. A quasi-offline strategy, where we decide on the purchasing times at
period 0, i.e. whether αt = 0 or αt > 0. At period t we decide on the
actual purchase size if we decided that αt > 0.

4. A quasi-online strategy, where we decide at each placement the number
of purchased containers and the time of the next placement.

The online, offline and quasi-offline strategies extend respectively the dy-
namic, static and static-dynamic strategies from Bookbinder and Tan [11].
The quasi-online strategy corresponds to the Silver-Meal heuristic [106]. We
call hybrid strategies the quasi-offline and the quasi-online strategies.
The quasi-online strategy is a meaningful alternative to the online strategy
because a tactical decision like the container fleet size should be planned
ahead of time. Instead, an online policy waits until the last moment to
decide whether or not to purchase new containers at a period.
On the other hand, it is not clear at first sight whether a quasi-offline policy
is a significant improvement over the offline policy. In traditional inven-
tory control problems, the static-dynamic strategy is a great compromise
between the static and the dynamic policies. Since the static policy fixes
the purchase sizes right from the start, its performance is heavily influenced
by the demand realizations. Contrary to the static-dynamic policy, it has
no way of correcting the inventory level after facing a surge or a drop of de-
mand. In a container purchasing problem however, the offline policy should
not be as sensitive to the demand realizations, since every container we send
to the supplier will return after a couple of periods. It is hence meaningful
to compare the performance of an offline policy to a quasi-offline policy.

7.3. ONLINE STRATEGY 155

7.2.2 Problem Complexity

Lemma 7.2.1 (Halman et al. [40]) The problem of computing the con-
volution of N independent random variables is #P-hard with respect to N .
In particular, this problem is equivalent to computing the distribution of the
sum of N independent random variables.

Proposition 7.2.2 Even under stationary cost functions, the container pro-
duction planning problem is #P-hard with respect to R for each of the four
strategies.

Proof:

Suppose that the container purchasing costs Csetup(t) and Ccont(t) are zero
and the time horizon consists in a single period: T = 1. Thus, every decision
is made at the beginning of the time horizon, and any policy follow at the
same time any of the four strategies. The objective is to find an order
quantity minimizing the cost over R time steps of demand. This is equivalent
to computing the distribution of the sum of R independent random variables.
By Lemma 7.2.1 this problem is #P-hard with respect to R.

�

7.3 Online Strategy

We model the online problem as a Markov decision process over R · T time
steps, where the state at time (t, r) is noted St,r. The decision γt at period
t is:

γt := [αt, βt] (7.2)

In the stochastic setting, we use capital letters for random variables and
lower case letters for their realization. The realizations of St,r, Xt,r, Yt,r,
Zt,r, Ut, U

α(t) are thus written st,r, xt,r, yt,r, zt,r, ut, u
α(t). Moreover, we

use a bold font to denote vectors, as opposed to a normal font for scalars.
We denote by Pt,r(d) := P(Dt,r = d) the probability that variable Dt,r takes
value d. We only need three parameters in St,r:

St,r := [Xt,r, Yt,r, Zt,r]. (7.3)

Since the decisions are only taken at times (t, 0), we define St,0 := [Xt, Yt, Zt]
as our main states, while states St,r for r > 0 are only transition states used
to avoid the computation of R simultaneous demand variables, which would
take a lot of time as shown by Lemma 7.2.1. In the following, we firstly define
the variables Xt,r, Yt,r and Zt,r, then write the equations corresponding to
the transition from a state st,r to the next state st,r+1.
Consider t ∈ [0, T [and r > 0. We define Xt,r as the supplier stock at
time (t, r). We define Yt,r as the ensured manufacturer stock at time (t, r)

156 CHAPTER 7. STRATEGIES FOR THE STOCHASTIC MODEL

for time (t+ 1, 0), that is, the current manufacturer stock plus the number
of full containers which left the supplier before time (t, r) and will arrive
between times (t, 1) and (t+ 1, 0). We put the leftover information relative
to the outgoing number of containers into variable Zt,r. For r ∈ [1, Lord−1],
Zt,r equals the order size βt. Between time steps Lord and R − Ldel, we do
not need any other information than Xt,r and Yt,r, so we can set Zt,r = 0.
Finally, for r ∈]R−Ldel, R[, we count the number of outgoing full containers
which will arrive after the next ordering time (t + 1, 0). Note that Xt, Yt,
Zt correspond to the definition of Xt−1,R, Yt−1,R, Zt−1,R, so our notations
are consistent. Let Δt,r be the number of containers used for demand Dt,r.
Under Hypothesis 2.2 [Cost], we have:

Δt,r := min{Dt,r, Xt,r} (7.4)

Consider state st,r = [xt,r, yt,r, zt,r] at time (t, r). The demand realization
dt,r induces a number δt,r := min{dt,r, xt,r} of full containers sent from the
supplier to the manufacturer. In addition, if r = 0 we take the decision
γt = [αt, βt]. Under Hypothesis 2.2 [Cost], the next state at time (t, r + 1)
is computed using the following equations:

• For r = 0:

st,1[st,0,γt, dt,0] = [xt,0 − δt,0; yt,0 + αt − βt + zt,0 + δt,0; βt] (7.5)

• For r ∈ [1, Lord − 2]:

st,r+1[st,r, dt,r] = [xt,r − δt,r; yt,r + δt,r; zt,r] (7.6)

• For r = Lord − 1:

st,r+1[st,r, dt,r] = [zt,r + xt,r − δt,r; yt,r + δt,r; 0] (7.7)

• For r ∈ [Lord, R− Ldel]:

st,r+1[st,r, dt,r] = [xt,r − δt,r; yt,r + δt,r; 0] (7.8)

• For r > R− Ldel:

st,r+1[st,r, dt,r] = [xt,r − δt,r; yt,r; zt,r + δt,r] (7.9)

Lemma 7.3.1 Under Hypotheses 2.1 [Delay] and 2.2 [Cost], we have at
each time (t, r):

• 0 ≤ xt,r ≤ (R+ Lord) ·Dmax

• 0 ≤ yt,r ≤ (R+ Lord + Ldel) ·Dmax

7.3. ONLINE STRATEGY 157

• 0 ≤ zt,r ≤ Ldel ·Dmax

• 0 ≤ αt ≤ (R+ Lord + Ldel) ·Dmax

• 0 ≤ βt ≤ R ·Dmax

Moreover, an upper bound of the optimal container fleet size is:

UM := (R+ Lord + Ldel) ·Dmax ≤ 2 ·R ·Dmax (7.10)

Proof:

The maximum demand between two order arrivals is R ·Dmax. Therefore,
whenever we order more than R·Dmax containers, some containers will be left
in the supplier stock before the next order arrival, which is never profitable
by Hypothesis 2.2 [Cost]. We deduce: ∀t, βt ≤ R · Dmax. Likewise, if the
inventory position is above (R+Lord) ·Dmax, the stock before order arrival
will not be empty, hence xt,r ≤ xt + βt ≤ (R+ Lord) ·Dmax. The maximum
container fleet size is so that we can create an ordering policy never buying
any disposable. It is thus bounded by the maximum inventory position
given that the number of outgoing containers is maximum. The number of
outgoing containers at r = 0 is bounded by zt ≤ Ldel ·Dmax. We hence have
the upper bound UM := (R + Lord + Ldel) ·Dmax of the optimal fleet size.
Any container over UM will stay in the manufacturer stock during the whole
process, hence only incurring additional purchasing and holding costs. Since
we will never have more than UM containers, we will never purchase more
than UM containers at once and the manufacturer will never have more than
UM containers in stock: αt, yt ≤ UM = (R+ Lord + Ldel) ·Dmax.

�
We denote by EoH the end of the time horizon, i.e. time (T, 0). Let ϕ∗

t,r(s)
be the expected cost of an optimal policy starting from state s at time (t, r)
up to EoH, and ϕ∗

t (s) := ϕ∗
t,0(s). Let ϕ∗

t (s,γ) be the minimum expected
cost starting from state s and decision γ at time (t, 0) and up to EoH, when
future decisions are taken optimally. Then:

ϕ∗
t (s) = min

γ
ϕ∗
t (s,γ) (7.11)

We denote by ψt,r(s, d) the cost incurred at time (t, r) when starting from
state s and under demand d, and by ψt(s,γ, d) the cost at time (t, 0) under
state s, decision γ and demand d:

• For r = 0:

ϕ∗
t (s,γ) = Ed

[
ψt,r(s, d)

]
+ Ed

[
ϕ∗
t,1 (st,1[s,γ, d],γ)

]
(7.12)

• For r ∈ [1, R− 1]:

ϕ∗
t,r(s) = Ed

[
ψt,r(s, d)

]
+ Ed

[
ϕ∗
t,r+1 (st,r+1[s, d])

]
(7.13)

158 CHAPTER 7. STRATEGIES FOR THE STOCHASTIC MODEL

The single time step cost ψt,r must be defined as a function of the current
state s, demand d and decision γ. The ensured manufacturer stock Yt,r is
greater than the actual manufacturer stock as it contains the full containers
which should arrive later in the current period. Therefore, the cost ψt,r must
already include the manufacturer holding cost of the Δt,r full containers from
their planned arrival (t′, r′) up to the next ordering time (t′ +1, 0). At time
(t, 0), we consider in addition the holding cost for each container which has
not been ordered and will thus stay idle in the manufacturer stock up to
the next ordering time (t + 1, 0). Let Cman(t, r → R) denote the total
manufacturer holding cost of a container from time (t, r) to time (t+ 1, 0),
so that Cman(t, R− 1 → R) = Cman(t, R− 1) and Cman(t, R → R) = 0. We
define the single step cost function ψt,r as following:

• If r = 0:

ψt,r(s,γ, d) = (d− δ) · Cdis(t, 0) + δ · Cman(t, Ldel → R)

+ (x− δ) · Csup(t, 0) + (y + α− β) · Cman(t, 0 → R)
(7.14)

• If r ∈ [1, R− Ldel]:

ψt,r(s, d) = (d− δ) · Cdis(t, r) + δ · Cman(t, r + Ldel → R)

+ (x− δ) · Csup(t, r) (7.15)

• If r > R− Ldel:

ψt,r(s, d) = (d− δ) · Cdis(t, r) + δ · Cman (t+ 1, r + Ldel −R → R)

+ (x− δ) · Csup(t, r) (7.16)

Algorithm 18 computes an optimal online policy to the container purchasing
problem. We note that the optimal policy corresponding to ϕ∗

t is computed
at the same time as its expected cost, so we will equivalently say that we
compute an optimal policy or its expected cost.

Theorem 7.3.2 Under Hypotheses 2.1 [Delay] and 2.2 [Cost], Algorithm
18 computes an optimal online policy in O

(
T ·R6 ·D6

max

)
time.

Proof:

By Lemma 7.3.1, the state space is O(R3·D3
max), the demand space O(Dmax)

and the decision space O(R2 ·D2
max). There are T time steps with decision

and (R− 1) · T steps without, so the total complexity is O
(
T ·R6 ·D6

max

)
.
�

7.4. CONVEXITY UNDER LINEAR COST 159

Algorithm 18: Optimal online Algorithm Mdp.N

ϕ∗
T (s) := 0 for all s;

for period t from T − 1 to 0 do
for step r from R− 1 to 1 do

for each state st,r do
Compute ϕ∗

t,r(st,r) using (7.12), (7.15) and (7.16);

for each state st do
for each decision γt do

Compute ϕ∗
t (st,γt) using (7.11), (7.13) and (7.14);

ϕ∗
t (st) := minγ

[
ϕ∗
t (st,γ)

]
;

return ϕ∗
t ([0, 0, 0]);

7.4 Convexity under Linear Cost

We consider the special case without the setup costs Csetup(t) for container
purchasing. We prove using results from the literature that the cost func-
tions are then L�-convex. We use an alternative and less intuitive modeling
of the state, inspired from Zipkin [141]. The convexity result was already in
our paper [55]. However, we discovered later a paper from Huh and Janaki-
raman [48] extending the results of Zipkin [141] to multi-echelon supply
chains. Their state model is very close to ours, and they deduce from the
L�-convexity that the sensitivity of the optimal order policy is very small.
We extend this result to our model, which allows us to further reduce the
time complexity bound of our algorithms.

7.4.1 Literature Results on L�-Convexity

We denote by E a one dimensional space, and by E+ its restriction to positive
values. We denote by e the vector of ’1’, and by ei the vector so that the
i-th element is a ’1’ and every other element is a ’0’.
Given two vectors w = [w1, . . . , wn] ∈ En and w′ = [w′

1, . . . , w
′
n] ∈ En, we

define:
w ∧w′ :=

[
min{w1, w

′
1}, . . . ,min{wn, w

′
n}

]
(7.17)

w ∨w′ :=
[
max{w1, w

′
1}, . . . ,max{wn, w

′
n}

]
(7.18)

Definition 7.4.1 A space En is lattice if for each w,w′ ∈ En and λ ∈ E+,
the vectors (w + λ · e) ∧w′ and w ∨ (w′ − λ · e) are also in En.

Definition 7.4.2 A function f : En → R is L�-convex if En is lattice and
for each w,w′ ∈ En and λ ∈ E+, we have:

f(w) + f(w′) ≥ f
(
(w + λ · e) ∧w′)+ f

(
w ∨ (w′ − λ · e)) (7.19)

160 CHAPTER 7. STRATEGIES FOR THE STOCHASTIC MODEL

The following theorem regroups several properties of L�-convex functions,
which can be found in the book of Simchi-Levi et al. [108] (Propositions
2.3.3, 2.3.4 and Lemma 2.3.5):

Theorem 7.4.3 [Simchi-Levi et al. 2013]

1. Any set with representation {w ∈ En : l ≤ w ≤ u, wi−wj ≤ vi,j ∀i �=
j} is lattice, where l,u ∈ En and vi,j ∈ E(i �= j). In fact, any closed
lattice set in the space En can have such a representation.

2. A function f : En → R is L�-convex if and only if the function
g(w, λ) := f(w − λ · e) is L�-convex.

3. If f1, f2 : En → R are L�-convex and λ ∈ E+, then λ · f1 + f2 is also
L�-convex.

4. If f(·, ·) : En×Em → R is L�-convex with respect to its first parameter,
then g(v) := Ew[f(v,w)] is also L�-convex, if it is well defined.

5. If f(·) : En → R is L�-convex, then g : En+1 → R defined by g(v, λ) :=
f(v − λ · e) is also L�-convex.

6. If f(·, ·) : En × Em → R is L�-convex, then the function g(v) :=
infw f(v,w) is also L�-convex.

7. Suppose that g(v, λ) : En → R is L�-convex, and let λ∗(v) be the
largest optimal solution (assuming existence) of the minimization prob-
lem minλ g(v, λ). Then, for all ω ≥ 0 and all i ∈ [1, n] we have:

λ(v) ≤ λ(v + ω · ei) ≤ λ(v + ω · e) ≤ λ(v) + ω (7.20)

Moreover, if a continuous function f is L�-convex, then its restriction to any
discrete lattice set is also L�-convex and the properties still hold. Therefore,
we can analyze the L�-convexity on a continuous state, decision and demand
space, and the results also hold for our discrete definition domains.
Chen et al. [14] prove the intuitive result that, under L�-convex cost func-
tions, we can use a binary search to find the optimal decision in logarithmic
time with respect to the decision space.

Proposition 7.4.4 [Chen et al. 2014a, Lemma 8] It takes O(log[U −
L]k) time to minimize a discrete L�-convex function f : [L,U]k → R

+.

7.4.2 L�-Convexity under Linear Cost

We assume that there is no setup cost and suppose first that Lord = 1.
Our state reformulation is very similar to Zipkin [141] as well as Huh and
Janakiraman [48].

7.4. CONVEXITY UNDER LINEAR COST 161

We set the number of full containers δt,r ∈ [0,min{dt,r, xt,r}] used for de-
mand dt,r as a decision variable. By Hypothesis 2.2, the value of δt,r mini-
mizing the expected cost is:

δ∗t,r = min(xt,r, dt,r). (7.21)

We denote by Y α
t and Xβ

t (resp. yαt and xβt) the variables (resp. their real-
izations) of the post-purchasing manufacturer inventory level and the post-
ordering supplier inventory position at period t. We recall that in inventory
management, the inventory level refers to the stock and the inventory posi-
tion equals the stock plus the total order size. Moreover, we denote by Uα

t

and uαt the variable and realization of the post-purchasing container fleet
size:

Y α
t := Yt + αt

Xβ
t := Xt + βt

Uα
t := Ut + αt

In order to prove the L�-convexity of the cost functions ϕt,r, the state tran-
sition must be so that we add or remove a value to every parameter at the
same time, in order to make use of Theorem 7.4.3.(2). In addition, the
decision should be written as the minimization problem in 7.4.3.(6).
For time (t, r), we define state ŝt,r as following:

• For r = 0:
ŝt,0 := [xt; −yt − zt; −zt] (7.22)

• After purchasing:

ŝαt,0 := [xt, ; −yt − zt − αt, ; −zt] (7.23)

• After ordering:

ŝβt,0 := [xt − βt, ; −yt − zt − αt − βt, ; −βt] (7.24)

• For r = Lord:

ŝt,Lord :=
[
x̂βt,0 + ẑβt,0; ŷβt,0; 0

]
− δ∗t,Lord−1 · e (7.25)

• For r ∈ [Lord + 1, R− Ldel]:

ŝt,r := [x̂t,r−1; ŷt,r−1; 0]− δ∗t,r−1 · e (7.26)

• For r ∈ [R− Ldel + 1, R]:

ŝt,r := [x̂t,r−1; ŷt,r−1; ẑt,r−1]− δ∗t,r−1 · e (7.27)

162 CHAPTER 7. STRATEGIES FOR THE STOCHASTIC MODEL

After ordering, we have x̂βt,0 = xt + βt and ẑβt,0 = βt. Given demand
realization dt,0, then maximum of δvart,r equals the minimum of dt,r and
ẑt,r = x̂t,r − ẑt,r. For t ∈ [0, T [, our new decisions ares:

γ̂t := [α̂t, β̂t] (7.28)

α̂t := − αt − xt − yt − zt (7.29)

β̂t := − βt (7.30)

We define ϕ̂∗
t,r, ϕ̂

∗
t and ψ̂t,r relatively to the updated states ŝt,r similarly to

ϕ∗
t,r, ϕ

∗
t and ψt,r. By definition, we have then:

∀t, x, y, z ϕ∗
t (x, y, z) = ϕ̂∗

t (x,−y − z,−z) (7.31)

Lemma 7.4.5 The definition domain of state ŝt,r is lattice for every t ∈
[0, T [and r ∈ [0, R[.

Proof:

Consider t ∈ [0, T [. The definition domain of ŝt,r for all r ∈ [0, R[is as
following, by Lemma 7.3.1:

• For x̂t,r:
0 ≤ x̂t,r ≤ (R+ Lord) ·Dmax

• For ŷt,r: (
2 · (R+ Ldel) + Lord

) ·Dmax ≤ ŷt,0 ≤ 0

• For ẑt,r:

r = 0 : ŷt,0 ≤ ẑt,0 ≤ 0

ŷαt,0 ≤ ẑαt,0 ≤ 0

0 ≤ ẑβt,0 ≤ x̂βt,0

r ∈ [Lord, R− Ldel] : ŷt,r ≤ ẑt,r(= 0) ≤ 0

r ∈]R− Ldel, R− 1[: ŷt,r ≤ ẑt,r ≤ 0

Note that we need to extend the definition space of ẑt,r, r ∈ [Lord, R−
Ldel] to negative values so that the state [x̂t,r−1, ŷt,r−1, 0] − δt,r−1 be-
longs to the domain of ŝt,r

The definition domains are as in Theorem 7.4.3.(1) and are hence lattice.
�

Proposition 7.4.6 Under Hypotheses 2.1 [Delay] and 2.2 [Cost], the func-
tions ϕ̂∗

t,r, ϕ̂
∗
t and ψ̂t,r are L�-convex for every t ∈ [0, T [, r ∈ [0, R[.

7.4. CONVEXITY UNDER LINEAR COST 163

Proof:

By Lemma 7.4.5, the definition domains are lattice. Following Equations
(7.14) to (7.16), the single time step cost function ψ̂t,r for state ŝt,r is the
solution of a minimization problem over δvart,r . Since the minimization prob-

lem is a linear combination of the parameters, it is L�-convex by Theorem
7.4.3.(6).

From the post-decision state at time (t, r) to the next state at time (t, r+1),
the state is updated by removing δvart,r to all state parameters. Therefore,
for r ∈ [1, R[:

ϕ̂t,r(ŝt,r) = Edt,r

[
ψ̂t,r(ŝt,r, dt,r)

]
+ Edt,r

[
inf
δvart,r

ϕ̂t,r+1(ŝt,r − δvart,r)
]

(7.32)

By Theorem 7.4.3.(2,3,4,6), we have that if ϕ̂t+1,0 is L�-convex then the

post-decision function ϕ̂β
t,0 at time (t, 0) is also L�-convex.

Likewise, the post-purchasing cost function ϕ̂α
t,0 is L�-convex by Theorem

7.4.3.(2,6), as it can be written:

ϕ̂t,0(ŝt,0
α)α = inf

β̂t

ϕ̂β
t,0(ŝt,0

α − β̂t) (7.33)

Thus, the pre-purchasing cost function ϕ̂t,0 is L
�-convex by Theorem 7.4.3.(2),

as it is a minimization problem over a single variable.

�
We deduce that the problem is L�-convex. Consequently, in Algorithm 18
we can use a binary search to find the optimal decisions. Therefore, without
setup cost, we can compute an optimal online policy in O

(
T · R4 · D4

max ·
log[Dmax ·R]2

)
time.

When Lord > 1, the difficulty lies within the preliminaries time steps r ∈
[1, Lord[. We need the post-ordering state to contain both values xt and
xt + βt to be able to compute the maximum value of δvart,r . This can be

done by replacing the decision β̂t = −βt by a two dimensional decision,
whose parameters correspond to the leftover manufacturer stock and the
new supplier inventory position.

Theorem 7.4.7 Without setup costs, Algorithm 18 computes an optimal
online policy in O

(
T ·R4 ·D4

max · log[Dmax ·R]2
)
time.

Furthermore, we deduce from the L�-convexity that the partial derivative of
the optimal purchasing α∗

t = α∗
t (x̂, ŷ, ẑ) and order size β∗

t is in {−1, 0} with
respect to the supplier stock xt and in {0, 1} with respect to the manufac-
turer stock yt and the outgoing fleet zt of full containers:

164 CHAPTER 7. STRATEGIES FOR THE STOCHASTIC MODEL

Corollary 7.4.8 Under Hypotheses 2.1 [Delay], 2.2 [Cost] and without setup
cost, the optimal decisions α∗ and β∗ are so that:

0 ≤ ∂

∂ẑ
β∗ ≤ ∂

∂ŷ
β∗ ≤ − ∂

∂x̂
β∗ ≤ 1 (7.34)

0 ≤ ∂

∂ẑ
α∗ ≤ ∂

∂ŷ
α∗ ≤ − ∂

∂x̂
α∗ ≤ 1 (7.35)

Proof:

The result follows from the L�-convexity from the cost functions ϕ̂t.

�
We conclude:

Theorem 7.4.9 Under Hypotheses 2.1 [Delay], 2.2 [Cost] and without setup
cost, We can compute an optimal online policy in O

(
T ·R4 ·D4

max

)
time.

Proof:

By corollary 7.4.8, the gradient of the purchasing and ordering decisions
is between −1 and 1 for every parameter. Therefore, after computing the
optimal purchase and order sizes for a state, the optimal decisions in the
neighborhood can be computed by considering a constant number of possi-
bilities. Therefore, the amortized computation time is O

(
T ·R4 ·D4

max

)
.

�
We call incremental search the search we use to compute the order size in
Theorem 7.4.9, as opposed to the binary search.

Remark 7.4.10 The incremental search from Theorem 7.4.9 is more effi-
cient than the binary search used for Theorem 7.4.7. However, the binary
search computes the optimal decision for every state separately, which can
be used with approimation methods proposed in Chapter 8.

In the following section, we describe an algorithm whose cost functions are
L�-convex, and uses a binary search to compute the optimal order size, as we
have done in our paper [55]. The complexity bounds using the incremental
search is obtained by removing the logarithmic terms.

7.5 Offline Heuristic

In this section, we present two algorithms for the offline strategy. The first
algorithm is optimal, but is not applicable in practice due to an exponential
running time. The second policy is our heuristic to compute an efficient
purchasing plan. We propose two algorithms computing the same offline
policy, with concurring time complexities. All algorithms are based on the
Markov decision processes described for the online algorithm.

7.5. OFFLINE HEURISTIC 165

7.5.1 Optimal Algorithm

We compute an optimal offline policy using an exhaustive seach over every
posible purchasing plan. For each purchasing plan, the purchasing cost is
fixed, so the cost functions are L�-convex and the optimal ordering decisions
can be found using a binary search (or an incremental search) as described in
the previous section. Moreover the container fleet size is known and we only
need two parametersXt,r and Zt,r per state. The state space is O(R2 ·D2

max).
By theorem 7.4.7, it takes O

(
T ·R3 ·D3

max · log[Dmax ·R]
)
time to compute

the expected cost and the optimal ordering policy under a fixed container
purchasing plan. The backward programming takes O(T ·R ·Dmax) time per
state and decision, and the ordering decision takes O(log[Dmax · R]) time.
We denote by Opt.F this optimal offline algorithm. Since the complexity of
Opt.F is exponential, we can only run it for very small test instances.

7.5.2 Heuristic Algorithm

We first describe the heuristic using the same states st,r as in Algorithm 18.
Afterward, we show the L�-convexity of the cost functions using the states
ŝt,r. Recall that computing a policy is equivalent to computing its expected
cost so in our algorithm we look for the expected cost of the optimal policies.

We denote by ϕ∗[k2](sk2) the cost of the optimal offline policies from state
sk2 at period k2 to EoH. The policy ϕ∗[k2] is so that the container fleet
size after purchasing at period k2 is the same for each starting state sk2 at
period k2. An offline policy defined over periods [k2, T [gives the purchasing
plan starting from period k2. In particular, it raises the container fleet size
to uα(k2) for each state at period k2 with initial fleet size below uα(k2). The
policy supposes hence that the container fleet size before placement k2 is at
most uα(k2).

We denote by ϕ∗[k1, k2, uα](sk1) the expected cost of an optimal offline
policy from state sk1 at period k1 to EoH so that k1 and k2 are the first two
placements and so that the container fleet size after purchasing at period k1
is uα. We can compute ϕ∗[k1, k2, uα] from ϕ∗[k2] using backward dynamic
programming.

Suppose that we know the cost function ϕ∗[k2]. For a fixed k1, there are
two values k∗2(k1) > k1 and uα,∗(k1) inducing an optimal offline policy with
cost ϕ∗[k1] := ϕ∗ [k1, k∗2(k1), uα,∗(k1)] from period k1 to EoH. The optimal
policy starting from placement k1 and with next placement k∗2(k1) raises the
container fleet size of the process at period k1 up to uα,∗(k1) < uα(k∗2(k1)).
As we may expect, different initial states Sk1 at period k1 may lead to
different best values of k2(k1) and uα(k1). When using a Markov decision
process, we hence need the probability distribution of Sk1 at period k1 to find
k∗2(k1). Contrary to Wagner and Within [128] as well as Vargas [125], the
optimal solution after purchasing period k1 depends on the optimal solution

166 CHAPTER 7. STRATEGIES FOR THE STOCHASTIC MODEL

before purchasing time k1. The state probability distribution at period k1
can only be derived from an optimal policy up to period k1. But, in order
to determine it, we need the expected cost ϕ[k1](sk1) for each state sk1 at
period k1, which is what we actually want to compute.
Our heuristic neglects the influence of the state Sk1 on the optimal container
fleet size after period k1 and on the next purchasing timing. Hence, we
approximate the optimal container fleet size uα,∗(k1) after purchasing and
the next purchasing time k∗2(k1) as the cost minimizing values uα,ref (k1)
and k′2(k1) when starting from the reference state s′k1

:= [0, 0, 0] at time

(k1, 0). We would like uα,ref (k1) and k′2(k1) to be close to uα,∗(k1) and
k∗2(k1). Then, for each other state sk1 , we set uk1 := xk1 + yk1 + zk1 ,
αk1(sk1) := uα,ref (k1) − uk1 and compute the optimal order size βk1 given
uα,ref (k1) and k′2(k1). Since we are only computing a suboptimal solution,
we use the notation ϕ instead of ϕ∗. Our quasi-offline policy computes
ϕ[k1, k2] from ϕ[k2], and deduce k′2(k1) and uα,ref (k1). The optimal solution
is approximated by:

ϕ[k1] := ϕ
[
k1, k

′
2(k1), u

α,ref (k1)
]

(7.36)

Our algorithm is initialized with the EoH costs:

∀s : ϕ[T](s) = 0 (7.37)

Without loss of generality, we can assume that some containers are pur-
chased at period 0. To relax this assumption, we add a dummy period −1
with zero demand, zero manufacturer holding cost and infinite supplier hold-
ing cost. Our offline heuristic policy has then expected cost ϕ[0] ([0, 0, 0]).
We now explain how to efficiently compute ϕ[k1, k2] from ϕ[k2] using back-
ward programming and the L�-convexity. For k2 ∈ [1, T] and given cost
ϕ[k2], we define φ

′[k1, k2](s) as the expected cost of the optimal policy start-
ing from state s at time (k1, 1) up to EoH without purchasing containers
before period k2 and so that the expected cost from state sk2 at period k2
up to EoH is given by ϕ[k2](sk2).

Lemma 7.5.1 Suppose that Hypotheses 2.1 [Delay] and 2.2 [Cost] hold.
Consider a period k2 and suppose that the costs ϕ[k2] are known and L�-
convex. Then, the costs φ′[k1, k2] for all k1 ∈ [0, k2 − 1] are also L�-convex
and can be computed altogether in O

(
T · R4 · D4

max · log[R · Dmax]
)
time

(O
(
T ·R4 ·D4

max

)
for the incremental search).

Proof:

For a fixed k2, all φ
′[k1, k2] can be computed altogether with a single back-

ward dynamic program starting from ϕ[k2] up to time (k1, 1), with O(R ·T)
iterations. Since we are not purchasing any container while computing
φ′[k1, k2], we prove using the same reasoning and the same states ŝt,r as

7.5. OFFLINE HEURISTIC 167

in Sect. 4, that the cost of all φ′[k1, k2] are L�-convex. By Lemma 7.3.1, the
state space is O(R3 ·D3

max) and the decision space is O(R ·Dmax). Due to
the L�-convexity, we get the best order size in O (log[R ·Dmax]) time. The
total time complexity is then O

(
T ·R4 ·D4

max · log[R ·Dmax]
)
.

�

Lemma 7.5.2 Suppose that Hypotheses 2.1 [Delay] and 2.2 [Cost] hold.
Consider periods k1 and k2 and suppose that the costs φ′(k1, k2) are known
and L�-convex. Then the costs ϕ[k1] are also L�-convex and can be computed
in O

(
T ·R3 ·D4

max · log[R ·Dmax]
)
time (O

(
T ·R3 ·D4

max

)
for the incremental

search).

Proof:

The policy relative to ϕ[k1] already includes the setup cost Csetup(k1),
thus the computation of the costs ϕ[k1] only consider linear costs and the
L�-convex cost functions φ′(k1, k2). Using the same reasoning as in Lemma
7.5.1, the cost ϕ[k1, k2, u

α](ŝ) is L�-convex for each state ŝ and every k1, k2, u
α.

We compute k′2(k1) and uα,ref (k1) using a binary search on the purchasing
and ordering decisions over a single time step and a single state, which takes
O(T ·Dmax · log[R ·Dmax]

2) time.
We then compute ϕ[k1] := ϕ[k1, k

′
2(k1), u

α,ref (k1)] for O(R3 · D3
max) states

and with a binary search for the order size, which takes O(R3 ·D4
max · log[R ·

Dmax]) time. The total complexity is O
(
T ·R3 ·D4

max · log[R ·Dmax]
)
.

�

Proposition 7.5.3 Suppose that Hypotheses 2.1 [Delay] and 2.2 [Cost] hold.
Every cost φ′(k1, k2) for 0 ≤ k1 < k2 ≤ T is L�-convex and can be computed
altogether in O

(
T 2 ·R3 ·D4

max · log[R ·Dmax]
)
time (O

(
T 2 ·R3 ·D4

max

)
for

the incremental search).

Proof:

This proposition is proven by recursion. For k2 = T , the costs ϕ[T] = 0
are L�-convex. Therefore the costs φ′[k1, T] for k1 ∈ [0, T − 1] are L�-
convex and we compute them them O

(
T ·R4 ·D4

max · log[R ·Dmax]
)
time.

Consider now a value of k2 ∈ [1, T − 1] and suppose that for all k4 ∈ [k2 +
1, T] and all k3 ∈ [0, k2], the cost φ′(k3, k4) is known and L�-convex. In
particular, the cost φ′(k2, k′(k2)

)
is L�-convex, and by Lemma 7.5.2 ϕ(k2)

is L�-convex and computed in O
(
T · R4 · D4

max · log[R · Dmax]
)
time. By

Lemma 7.5.1, for all k1 ∈ [0, k2 − 1], the costs φ′(k1, k2) are also L�-convex
and take O

(
T ·R4 ·D4

max · log[R ·Dmax]
)
time to compute. We conclude

that all costs φ′(k1, k2) for 0 ≤ k1 < k2 ≤ T can be computed altogether in
O
(
T 2 ·R4 ·D4

max · log[R ·Dmax]
)
time.

�
Our offline heuristic policy is computed by Algorithm 19.

168 CHAPTER 7. STRATEGIES FOR THE STOCHASTIC MODEL

Algorithm 19: offline Algorithm Mdp.F

ϕ∗
T (s) := 0 for all s;

for period k from T − 1 to 0 do
Compute φ′[k, k + 1] from ϕ[k + 1];
for period t from k − 1 to 0 do

Compute φ′(t, k + 1) from φ′(t+ 1, k + 1);

Compute k′2(k) and uα,ref (k) from {φ′[k, k2], k2 > k};
Compute ϕ(k) from φ′[k, k′2(k)] and uα,ref (k);

return ϕ(0)[0, 0, 0];

Theorem 7.5.4 Suppose that Hypotheses 2.1 [Delay] and 2.2 [Cost] hold.
Algorithm Mdp.F computes an offline policy with the time complexity O

(
T 2 ·

R4 ·D4
max · log[R ·Dmax]

)
. (O

(
T 2 ·R4 ·D4

max

)
for the incremental search).

Proof:

This theorem follows directly from Proposition 7.5.3 and Lemma 7.5.2.

�

Remark 7.5.5 If for every t ∈ [0, T [, all states ŝt induce the same purchase
size and next placement time, then Algorithm 19 computes an optimal policy.

7.5.3 Alternative Heuristic

We present an alternative algorithm to compute the same offline policy. It
uses the fact that we do not need the O(R3 ·D3

max) values of ϕk2 to compute
φ′[k1, k2]. We only need O(R2 ·D2

max) values ϕuα(k2)[k2] corresponding to the
value of the state after raising the container fleet size to uα(k2) containers.

Therefore, we can remove from the state the parameter Ẑk2 := −Yk2 − Zk2 .
with the biggest definition domain, and store the container fleet size after
placement uα(k2) instead.

The price of this state space reduction is that, when computing the optimal
purchasing for the reference state, we have to recompute the value φ′

uα [k1, k2]
for each considered purchase size, hence adding a factor O(log[R·Dmax]) back
to the complexity. We note that now φ′

uα [k1, k2] contains the purchase size
at period k2.

Moreover, for a fixed value k2, we do not consider the same fleet sizes for
different values of k1. Therefore, we need to compute φ′

uα [k1, k2] separately
for every value k1 ∈ [0, k2[. We recall that in Algorithm Mdp.F , we generate
every value ϕ′[k1, k2] while computing ϕ′[0, k2].
We define our new end of horizon costs as:

∀uα ∈ [0, UM], ∀x, y, z :: φT,uα [x̂, ŷ] = 0 (7.38)

7.6. HYBRID ALGORITHMS 169

Since this alternative only consists in removing one parameter from the state
space in exchange for computing a backward dynamic program several times,
we deduce:

Lemma 7.5.6 Suppose that Hypotheses 2.1 [Delay] and 2.2 [Cost] hold.
Consider k2 ∈ [1, T] and uα ∈ [0, UM]. If the function ϕuα [k2] is L�-convex,
then ϕ′

u[k1, k2] is also L�-convex and can be computed in O(T · R3 · D3
max ·

log[R ·Dmax]) time, for all k1 ∈ [0, k2[and u ∈ [0, uα].

Lemma 7.5.7 Suppose that Hypotheses 2.1 [Delay] and 2.2 [Cost] hold.
Consider period k1 and suppose that the cost functions φ′

uα [k1, k2] are L�-
convex for all k2 ∈]k1, T]. Then the cost function ϕuα [k1] is also L�-convex
and can be computed in O(R2 ·D3

max · log[R ·Dmax]) time.

Algorithm 20: Algorithm Mdp.F bis, computing an offline policy

ϕuα [T](s) := 0 for all s, uα;
uα(T) := UM ;
for period k1 from T − 1 to 0 do

for period k2 from k1 to T − 1 do
for fleet uα in [0, uα(k2)] as a binary search do

Compute φ′
uα [k1, k2] from ϕuα(k2)[k2];

Compute ϕuα [k1, k2] from φ′
uα [k1, k2];

Stop if ϕuα [k1, k2] minimizes the costs over uα;

uα(k1, k2) := uα;

k1(k2) := argmin
[
ϕuα(k1,k2)[k1, k2] : k2 ∈ [k1, T − 1]

]
;

uα(k1) := uα
(
k1, k2(k1)

)
Compute ϕuα(k1)[k1] from

ϕuα(k1,k2)[k1, k2];

Compute ϕ[0]([0, 0, 0]) from ϕuα(0)[0];

return ϕ[0]([0, 0, 0]);

Theorem 7.5.8 Suppose that Hypotheses 2.1 [Delay] and 2.2 [Cost] hold.
Algorithm Mdp.F bis computes the same policy as Algorithm Mdp.F , but in
O(T 3 ·R3 ·D3

max · log[R ·Dmax]
2) time.

Remark 7.5.9 Compared to Algorithm Mdp.F , Algorithm Mdp.F bis mul-
tiplies the running time by factor O

(
T · log[R · Dmax]/(R · D)

)
, where the

O(R ·D) results from removing a state parameter. Which one of these algo-
rithm is faster depends on the size of the demands and time horizon.

7.6 Hybrid Algorithms

We present here two quasi-offline algorithms, a slow optimal algorithm and a
faster heuristic. Both are very similar to their offline counterpart. To avoid

170 CHAPTER 7. STRATEGIES FOR THE STOCHASTIC MODEL

repetition, we refer to the offline strategy for the definitions and the use
of the functions ϕ′. Afterward, we briefly describe an optimal quasi-online
algorithm using the same structure as the quasi-offline heuristic algorithm.

7.6.1 Optimal Quasi-Offline Algorithm

The optimal quasi-offline algorithm computes an optimal quasi-offline pol-
icy by iteratively considering every possible set of purchasing times. For
each set of purchasing times, the purchasing costs are fixed, and we can
compute the optimal purchase sizes and the optimal order policy in O

(
T ·

R3 · D4
max · log2[Dmax · R]

)
time, when using a binary search for the pur-

chase and order sizes. Since there are T periods, there are 2T possible sets
of purchasing times. Thus, there are far fewer possible sets of possibilities
and each possibility takes O(Dmax · log[Dmax ·R]) more time. This algorithm
should be significantly faster than our optimal offline policy but still not fast
enough. In our simulations, we denote this optimal quasi-offline algorithm
by Opt.Qf .

7.6.2 Quasi-Offline Heuristic

We denote here by ϕ∗[k1, k2][sk1] the expected cost of an optimal quasi-
offline policy from state sk1 at period k1 to EoH so that k1 and k2 are the
first two placements. We denote by ϕ∗[k2](sk2) the optimal quasi-offline
policy from state sk2 at period k2 to EoH. Given the costs ϕ∗[k2], we
compute ϕ∗[k1, k2] using backward dynamic programming. For a fixed value
k1 there is a value k

∗
2(k1) > k1 inducing an optimal policy with cost ϕ∗[k1] :=

ϕ∗ [k1, k∗2(k1)] from period k1 to EoH. Like for the offline strategy, different
values of Sk1 at period k1 may lead to different best values of k2(k1). When
using a Markov decision process, we thus need the probability distribution
of Sk1 at period k1 to find k∗2(k1).
We use the same reference state s′k1

:= [0, 0, 0] to choose the next placement
k′2(k1) after k1. We then set:

ϕ∗[k1] := ϕ∗[k1, k′2(k1)]

and compute the optimal order size βk1 for each state at period k1. For the
quasi-offline heuristic, we then also use the notation ϕ instead of ϕ∗. Our
algorithm is initialized with the EoH costs:

∀s : ϕ[T](s) = 0 (7.39)

Without loss of generality, we can assume that some containers are pur-
chased at period 0. Indeed, we can relax this assumption by adding a dummy
period −1 with zero demand, zero manufacturer holding cost and infinite
supplier holding costs. Our quasi-offline heuristic policy has then expected
cost ϕ[0] ([0, 0, 0]).

7.6. HYBRID ALGORITHMS 171

We define the functions ϕ′[k1, k2] as the optimal policy from period k1 to
EoH given a fixed policy ϕ[k2] starting from period k2 so that k1 and k2 are
the first two placements.

Lemma 7.6.1 Suppose that Hypotheses 2.1 [Delay] and 2.2 [Cost] hold.
Consider a period k2 and suppose that the costs ϕ[k2] are known and L�-
convex. Then, the costs φ′[k1, k2] for all k1 ∈ [0, k2 − 1] are also L�-convex
and can be computed altogether in O

(
T · R4 · D4

max · log[R · Dmax]
)
time

(O
(
T ·R4 ·D4

max

)
for the incremental search).

Proof:

Same as Lemma 7.5.1.

�

Lemma 7.6.2 Suppose that Hypotheses 2.1 [Delay] and 2.2 [Cost] hold.
Consider periods k1 and k2 and suppose that the cost functions φ′(k1, k2)
are known and L�-convex. Then the costs ϕ[k1] are also L�-convex and can
be computed in O

(
T ·R3 ·D4

max · log[R ·Dmax]
2
)
time (O

(
T ·R3 ·D4

max

)
for

the incremental search).

Proof:

Same as Lemma 7.5.2.

�

Proposition 7.6.3 Suppose that Hypotheses 2.1 [Delay] and 2.2 [Cost] hold.
Every cost φ′(k1, k2) for 0 ≤ k1 < k2 ≤ T is L�-convex and can be computed
altogether in O

(
T 2 ·R3 ·D4

max · log[R ·Dmax]
2
)
time (O

(
T 2 ·R3 ·D4

max

)
for

the incremental search).

Proof:

Same as Lemma 7.5.2.

�
Our quasi-offline heuristic policy is computed by Algorithm 21.

Algorithm 21: Quasi-offline Algorithm Mdp.Qf

ϕ∗
T (s) := 0 for all s;

for period k from T − 1 to 0 do
Compute φ′[k, k + 1] from ϕ[k + 1];
for period t from k − 1 to 0 do

Compute φ′(t, k + 1) from φ′(t+ 1, k + 1);

Compute k′2(k) from {φ′[k, k2], k2 > k};
Compute ϕ(k) from φ′[k, k′2(k)];

return ϕ(0)[0, 0, 0];

172 CHAPTER 7. STRATEGIES FOR THE STOCHASTIC MODEL

Theorem 7.6.4 Suppose that Hypotheses 2.1 [Delay] and 2.2 [Cost] hold.
Algorithm Mdp.Qf computes a quasi-offline policy with the time complexity
O
(
T 2 · R4 · D4

max · log[R · Dmax]
2
)
(O

(
T 2 · R4 · D4

max

)
for the incremental

search).

Remark 7.6.5 If for every t ∈ [0, T [, all state ŝt induce the same next
placement time, then Algorithm 21 computes an optimal policy. this is the
case in most application scenario, due to the weak impact of the state at
placement to the system cost after one period.

Remark 7.6.6 When we use a binary search, the quasi-offline algorithm
has a higher complexity bound than the offline algorithm, because the offline
heuristic doe not need to compute the optimal purchase size for every state.

7.6.3 Quasi-Online Algorithm

Computing an optimal quasi-offline policy follows the same pattern as Algo-
rithm Mdp.Qf . We recall that the quasi-offline Algorithm approximate the
best next placement as the best next placement k2 := k′2(k1) for a reference
state. Then, we approximate the cost ϕ[k1] assuming that k2 is the place-
ment following k1. In the case of a quasi-online policy, we do not need k2 to
be fixed, so the optimal policy can be fixed by letting the next placement
k2 depend on the current placement k1. It follows that Algorithm Mdp.Qn
computes an optimal quasi-online policy. The O(T 2) factor in the quasi-
offline algorithm comes from the computation of the function φ′, which is
computed the same way for both hybrid algorithms. We deduce that the
complexity bound of the two algorithms is the same, despite the quasi-online
algorithm being expected to be slower in practice.

Algorithm 22: Quasi-online Algorithm Mdp.Qn

ϕ∗
T (s) := 0 for all s;

for period k from T − 1 to 0 do
Compute φ′[k, k + 1] from ϕ∗[k + 1];
for period t from k − 1 to 0 do

Compute φ′(t, k + 1) from φ′(t+ 1, k + 1);

foreach state s do
Compute k∗2(k, s) from {φ′[k, k2], k2 > k};
Compute ϕ∗(k)[s] from φ′[k, k∗2(k)];

return ϕ∗(0)[0, 0, 0];

Theorem 7.6.7 Suppose that Hypotheses 2.1 [Delay] and 2.2 [Cost] hold.
Algorithm Mdp.Qn computes an optimal quasi-online policy with the time
complexity O

(
T 2 · R4 · D4

max · log[R · Dmax]
2
)
(O

(
T 2 · R4 · D4

max

)
for the

incremental search).

7.7. SIMULATIONS 173

Remark 7.6.8 The online algorithm has a space complexity of O
(
T · R3 ·

D3
max

)
, since there is a different decision to make for each state of each pe-

riod. For the non-online policies, a naive approach requires a space O
(
T 2 ·

R3 ·D3
max

)
, since there is one decision for each state of each period and given

each future decision time. Nevertheless, for an offline and quasi-offline pol-
icy, we can reduce the memory space to O

(
T ·R3 ·D3

max

)
by firstly computing

the optimal purchasing times and quantities from the reference state, and
then recomputing the order size given the future decision times.
This is not possible for a quasi-online policy, where every order size not only
depends on the state and the period, but also on the future purchasing time.
For instance, if period k is a placement, then an optimal quasi-online policy
may order at period k − 1 every containers in the manufacturer stock. In
contrast, if the next placement is later, the policy will save some containers
and order them at period k.

7.7 Simulations

In this section, we simulate and compare the efficiency of our algorithms.
Our first objective is to compare our offline and quasi-offline heuristics with
the slower optimal algorithms. We also compare how our offline heuristic
performs compared to a simple offline algorithm using no disposable. Our
second objective is to compare the performance of the four strategies to
each other. In particular, in a traditional lot-sizing problem, the quasi-
offline strategy has significantly lower cost than the offline policy because
it allows to adapt the inventory level to the past demands. Instead, in our
container management problem the containers used for a demand are still
in the system so the quasi-offline policy may not be as meaningful as in a
traditional lot-sizing problem. Our objective here is to quantify the influence
of delaying the decision of the purchase quantity to the system cost.

7.7.1 Data

We denote by Algorithm Ndis.F the best offline policy avoiding disposables
at all costs. As a consequence, the order size follows immediately from the
supplier stock. This simple algorithm is meaningful in our simulations where
the support of each demand variable is a small interval. We note that this
algorithm can be adapted to larger supports by approximating the largest
demand value by a quantile. We use an algorithm similar to the Wagner-
Within algorithm [128] to deduce the purchasing plan from these minimum
fleets, in O(T 2) time. A forward dynamic program computes the expected
cost of the policy. Since the fleet size is known for every period, we only
need two state parameters so the complexity is O(T ·R3 ·D3

max).
We use a virtual data set in order to highlight the strengths and weaknesses
of our algorithms. As pointed out by Özen et al. [86], Markov decision pro-

174 CHAPTER 7. STRATEGIES FOR THE STOCHASTIC MODEL

cess based algorithms are slow in practice and cannot be used for big test
instances. They develop a Markov decision process with a single state pa-
rameter, a single time step per period and one ordering decision per period.
Using a binary search to find the optimal order, their algorithm already
takes a few hours for a time horizon as small as T = 18 periods. For this
reason, our simulations only consider a short time horizon T ≤ 15, an ag-
gregation of the time steps R = 3 and relatively small demand values. We
set transportation delays as Lord = 1 and Ldel = 2, so that every period
contains a time step before demand arrival and a time step with late de-
mand. The asymmetry Lord = Ldel − 1 of the delays is a consequence of
how we defined them. Indeed, suppose that a transport takes a little less
that one time step. Empty containers depart at the beginning of a step and
arrive before its end, while full packages depart during the step and arrive to
the manufacturer during the next time step, hence after container ordering;
finally we get Lord = 1 but Ldel = 2. We consider stationary costs, and
write the vector of costs C := [Cman, Csup, Cdis, Csetup, Ccont]. We model
the demand variability as a binomial distribution B(n, p).
Table 7.2 shows the expected cost (rounded to an integer) and the running
times (rounded to four digits) of the considered algorithms on very small
instances. In this first simulation the maximum demand value Dmax(T) :=
3 ·T +2 increases linearly with T . As a consequence, even for T = 5 it takes
more than 40 minutes to compute the optimal offline policy. We note that
the online policy does not scale very well, due to the absence of a convexity
structure. Up to now, we did not find any way to accelerate the computation
without losing optimality. In this experiment, policies generated by Algo-
rithm Mdp.F are optimal or close to optimal. Moreover, our offline heuristic
computes much better solutions than the simple algorithm ’NoDis’. How-
ever, the running time of our algorithm still increases much faster, and is not
suited for instances where the demand can go above 50. We note that for
T = 3, Algorithm Mdp.F generates a suboptimal solution. Consequently,
the best values u′k1+1 and k′2(k1) corresponding to the reference state [0, 0, 0]
are not equal to the optimal values u∗k1+1 and k∗2(k1). There is a slight gain
by using a quasi-offline policy instead of an offline policy. Moreover, the op-
timal and the heuristic quasi-offline policies are identical for the simulation
data. We deduce that the reference state [0, 0, 0] has little impact on the
optimal value of the future placement. The alternative offline heuristic is as
fast as the first offline heuristic.
Furthermore, the expected cost of the quasi-offline heuristic is not only the
same as the optimal quasi-offline policy, but also the same as the quasi-
online policy. Therefore, in our test instances the state of the system at
purchasing time has little to no influence on the next purchasing time. In
addition, both our quasi-online algorithm and quasi-offline heuristic should
give a very tight bound on the expected cost of the optimal quasi-offline
policy.

7.7. SIMULATIONS 175

Table 7.2: Expected cost and running time of the algorithms for different
time horizons. We use: C := [2, 6, 50, 200, 50], D(t, r) → 3 · t+ B(2, 1/2).

T = 3 T = 4 T = 5 T = 6 T = 7 T = 8

Mdp.N cost 1080 1946 2817 3832 5022 6335
Mdp.N time 1s054 6s580 29s44 88s11 242s9 572s5

Mdp.Qn cost 1080 1946 2817 3832 5022 6335
Mdp.Qn time 0s515 2.699 10s06 26s60 66s94 148s0

Opt.Qf cost 1080 1946 2817 3832
Opt.Qf time 0s936 7s644 37s19 181s5

Mdp.Qf cost 1080 1946 2817 3832 5022 6335
Mdp.Qf time 0s312 1s279 3s931 8s159 17s28 32s71

Opt.F cost 1080 1946 2816 (3832)
Opt.F time 0s187 50s20 5907s

Mdp.F cost 1080 1946 2816 3832 5035 6337
Mdp.F time 0s047 0s187 0s484 0s967 2s043 3s604
Mdp.F bis time 0s047 0s156 0s406 0s967 1s934 3s588

Ndis.F cost 2244 3300 4482 5880 7280 8822
Ndis.F time 0s016 0s 0s 0s016 0s016 0s031

T = 9 T = 10 T = 15

Mdp.N cost 7679 9147
Mdp.N time 1229s 2346s

Mdp.Qn cost 7728 9147
Mdp.Qn time 299s7s 563s7s

Opt.Qf cost (7728) (9147)
Opt.Qf time

Mdp.Qf cost 7728 9147 17672
Mdp.Qf time 56s86 93s57 618s4

Opt.F cost (7728) (9147)
Opt.F time

Mdp.F cost 7728 9147 17672
Mdp.F time 6s29 10s36 71s74
Mdp.F bis time 6s224 10s36 71s85

Ndis.F cost 10366 12052 21352
Ndis.F time 0s016 0s016 0s094

In the simulations, the offline, the quasi-offline and the quasi-online heuristic
have very close value. This shows that the offline heuristic performs well for
reasonable system cost. In such a case, the quasi-offline heuristic is not very
interesting. However, Algorithm Mdp.F may perform poorly when the opti-
mal offline policy purchases new containers at nearly every period. Indeed,
our reference state [0, 0, 0] deciding on the best fleet size underestimates
the required container fleet, because it neglects the value of Xt and Zt at

176 CHAPTER 7. STRATEGIES FOR THE STOCHASTIC MODEL

Table 7.3: Expected cost of the different policies for different cost functions.
We use T = 4, D(t, r) → 2 · t+ B(2, 1/2).

Mdp.N Opt.F Mdp.F Ndis.F

Running time 1s763 95s01 0s094 0s

C := [3, 6, 50, 100, 50] 1816 1816 1816 2476
C := [3, 6, 150, 10, 50] 2046 2055 2136 2316
C := [3, 6, 1500, 0, 50] 3511 3547 3639 3636

Mdp.Qn Opt.Qf Mdp.Qf

Running time 1s014 1s560 0s577

C := [3, 6, 50, 100, 50] 1816 1816 1816
C := [3, 6, 150, 10, 50] 2050 2051 2053
C := [3, 6, 1500, 0, 50] 3511 3511 3511

purchasing time. The approximation error increases when purchasing times
get closer to each others. Table 7.3 presents a simulation with increasing
disposable cost and decreasing setup cost, which leads to a worse and worse
performance of Algorithm Mdp.F . In the last instance of this second sim-
ulation, with costs C = [3, 6, 1500, 0, 50], the offline heuristic Mdp.F gets
high cost when purchasing at consecutive periods. In the simulation, the
offline policy does not purchase any container at period 2, contrary to the
other algorithms. We conclude that the reference state should be adapted
to the system cost. On the opposite, the quasi-offline heuristic Mdp.Qf
always performs nearly as well as the optimal quasi-offline policy and the
quasi-online algorithm.

We conclude from these simulations that our offline heuristics performs very
well in general, but not in every scenario. When the purchasing times are
close to each other, the offline policy does not compute the optimal pur-
chasing size. Our quasi-offline heuristic seems to always perform close to
optimal, and does not have the drawback of the offline heuristic. Moreover,
the optimal quasi-online and quasi-offline policies have very similar expected
costs.

7.8 Extensions and Outlook

In this chapter, we considered the stochastic version of the container manage-
ment problem, where each demand is a random variable whose distribution
is known at the beginning of the time horizon.
We model the stochastic problem as a Markov decision process, and con-
sider four different strategies. The online strategy takes decisions as late as
possible, so at period t we decide how many containers are purchased and
how many are ordered during this period. The offline strategy assumes that
the purchasing plan must be decided at the beginning of the time horizon,

7.8. EXTENSIONS AND OUTLOOK 177

whereas the order quantities are chosen dynamically. The quasi-offline strat-
egy fixes the purchasing times at the beginning, but dynamically decides on
the actual purchase quantities, along with the order size. The quasi-online
strategies is similar to the online strategy, but fixes the next purchasing time
in advance. The first three strategies are extensions of the basic policies pro-
posed by Bookbinder and Tan [11], whereas the last one corresponds to the
well-known Silver-Meal heuristic [106].
Instead of computing an optimal policy for each strategy, we approximate
the solutions using a common dynamic programming framework. Each of
these four algorithms runs in pseudo-polynomial time. The online algorithm
is optimal but much slower than the others, due to not having a convexity
property. The offline and quasi-offline algorithms are approximations, as
they use a reference state to guess the best purchasing decision at every
placement. Under this approximation, the cost functions are L�-convex,
which reduces the running time. The quasi-online policy is both optimal
and has L�-convex cost functions. This quasi-online algorithm justifies in a
way the meaningfulness of the offline and quasi-offline heuristics, as all three
algorithms use the same framework.
Simulations show that the heuristic algorithms perform well in general, but
the offline algorithm has a rather poor quality in some extreme scenarios
where our reference state is not adapted. The quasi-offline policy is less
interesting in a container management problem than in a traditional inven-
tory control problem. Despite this fact, our offline heuristic is very sensitive
to the service level in an optimal solution, in contrast our the quasi-offline
policy. Consequently, the quasi-offline solution measures to some extend
the quality of the offline policy. Moreover, all algorithms are rather slow in
practice, so further work is needed to get faster solutions. The simulations
provided on Chapter 9 aggregate the demand to compute the policies.
Our Markov decision process model can be extended in several ways. Con-
sider first a bi-criteria optimization problem, where the number of place-
ment is a additional function to minimize. Since we are using a dynamic
programming framework, we can adapt our algorithm to compute the best
policies for every possible number of placements by adding a fourth param-
eter in the state relative to the number of placements. The total complexity
increases by a factor of O(T). Furthermore, we can extend our problem
to variable lead times and variable number of time steps per period, as
long as the container sent at a period arrive before the second next order-
ing time, i.e. as long as for every t ∈ [0, T − 2] and r ∈ [0, Rt[we have
r + Ldel(t, r) ≤ R(t) + R(t + 1). The model can also be extended to sev-
eral suppliers, several manufacturers and longer lead times, but at the price
of bigger decision spaces. Since the running time is already fairly slow for
three state space, we cannot realistically compute any solution for higher
state space without using some approximation method.

179

Chapter 8

Alternative Models

In this chapter, we have a look at other modelings and resolutions of SCPP .
Firstly, we study the offline problem in two special cases. The first case
considers a saturated system with more containers than needed. We then
use the solution of this system to improve our choice of reference state.
The second case assumes immediate lead time. Aferward, we discuss ap-
proximation algorithms which are efficient in classical inventory control and
container repositioning problems. In particular, we consider approximate
dynamic programming.

8.1 Saturated Offline Policy

In the deterministic model, we considered the special case where disposables
are not allowed. In this section, we adapt this idea into the stochastic model
and compute the best offline policy in this scenario.

Because the demand is stochastic, the demand may attain high values with
very low probability. Nevertheless, disposables are very profitable for such
unexpected demands. Thus, we should not forbid the use of disposables. In
this section, we look for the best policy so that the order size is not restricted
by the number of containers in the system instead. If this property holds,
we say that the system is saturated. In a saturated system the order size
βt only depends on the supplier stock Xt. Indeed, the manufacturer stock
Yt is only considered in the system state as a limit of the order size. The
outgoing fleet Zt is added to the state parameters to remember the container
fleet size. Consequently, the ordering policy can be computed independently
from the container fleet size and hence from the purchasing plan. From the
best ordering policy, we deduce the minimum number of containers which
we must have in the system at every period to ensure that the system is
saturated and that the ordering policy is feasible. The best purchasing plan
respects these fleet size constraints at minimum cost.

In the following, we first compute the best ordering policy. Then we de-

180 CHAPTER 8. ALTERNATIVE MODELS

duce the saturation levels and finally compute the best purchasing plan in
a saturated environment.

8.1.1 Ordering Policy

In Chapter 7, we have restricted the maximum fleet size to value UM :

UM := (R+ Lord + Ldel) ·Dmax

Therefore, the system is saturated if the container fleet size at period 0 is
UM .
We can compute the best ordering policy using a Markov decision process
as for the online algorithm, but with a single parameter Xt per state, with
a constant container fleet size UM and without any purchasing decision.

Algorithm 23: Best Order Policy in a Saturated System

ϕ∗
T (s) := 0 for all s;

for period t from T − 1 to 0 do
for step r from R− 1 to 1 do

foreach state st,r do
Compute ϕ∗

t,r(st,r) using (7.12), (7.15) and (7.16);

foreach state st = [xt] do
Compute the optimal order size β∗

t (xt)

return policy β∗;

Since the order size is independent from both the outgoing fleet and the
manufacturer stock, computing the ordering policy is equavalent to solving a
standard stochastic inventory control problem with lost-sales and fractionnal
lead times. The only difference to the model of Zipkin [141] is that we only
order a quantity every R periods. The cost function are thus L�-convex:

Lemma 8.1.1 In a saturated environment, the functions ψt(xt) and ϕt(xt)
are L�-convex.

Proof:

The proof is very similar to the one in Chapter 7 but simpler. We consider
an alternative state space with two parameters corresponding to the supplier
stock and inventory position. At time step r = 0, the decision variable is
the inventory position after purchasing xt + βt instead of −βt. At time step
r = Lord, the inventory position becomes equal to the inventory level and the
parameter relative to the inventory position will be equal to the inventory
level until time (t + 1, 0). The cost function ϕt,r is L�-convex as it solves
a minimization problem with decision δt,r and where the cost is the sum of
expected values of L�-convex functions.

�

8.1. SATURATED OFFLINE POLICY 181

Corollary 8.1.2 In a saturated environment, the derivative of the optimal
order size β∗

t (xt) is in [−1, 0].

Proposition 8.1.3 Suppose that Hypotheses 2.1 [Delay] and 2.2 [Cost] hold.
Algorithm 23 computes the best order policy in a saturated system in O(T ·
R2 ·D2

max) time.

Proof:

Algorithm 23 computes the best saturated policy because it computes the
exact solution of the corresponding Markov decision process. By Lemma
7.3.1, the state space is in O(R ·Dmax), the decision space is in O(R ·Dmax),
the demand space is in O(Dmax) and the time is R · T . Since the cost
functions are L�-convex, it takes O(log[R · Dmax] · Dmax) to compute the
best order size and expected cost for state [0, 0, 0] at period t. In addition,
it takes O(Dmax) to compute the best order size and expected cost for state
[x, y, z] at period t given the best order size for either [x−1, y, z], [x, y−1, z]
or [x, y, z − 1]. We conclude that the time complexity of Algorithm 23 is
O(T ·R2 ·D2

max).
�

8.1.2 Saturation Levels

For t ∈ [0, T [, we define the (offline) saturation level ηt as the minimum
number of containers required in the system after purchasing at period t to
ensure that the order size is not limited by the container fleet size for any
demand scenario and policy before period t:

∀t ∈ [0, T [, ηt := max
[
xt + zt + β∗

t (xt); P
(
St = [xt, UM − xt − zt, zt]

)
> 0

]
(8.1)

Indeed, if the number of container after purchasing is at least ηt, then no
matter where the containers are, we will have at least β∗

t (xt) containers in
the manufacturer stock. Moreover, if we used ηt− 1 containers, there would
be at least one state that can be attained with positive probability in which
we cannot order β∗

t (xt) empty containers. The fsaturation level ηt is hence
equal to the minimum fleet size.
However, we note that ηt is not necessarily increasing in t, because we have
no constraint on the evolution of the demand distribution. We define the
cumulative saturation level η[0,t] as the minimum fleet size required after
purchasing at period t for the process to be saturated:

η[0,t] := max
t∈[0,t]

ηt (8.2)

If the container fleet size after purchasing at period t is lower than η[0,t],
there is at least one previous period to < t where the fleet size is lower than
ηto and thus the system is not saturated. Reciprocally, if the container fleet

182 CHAPTER 8. ALTERNATIVE MODELS

size after purchasing is at least η[0,t] at every period t, then the system is
saturated. We deduce that the cumulative saturation levels are the fleet size
constraints that the purchasing policy needs to respect.

To compute the saturation levels, we can use a forward search on the process
using a state st,r with the two parameters xt,r and zt,r. The parameter zt,r
stores the number of outgoing containers if r > R−Ldel and the order size if
r < Lord. Therefore, a naive forward search computes the state probabilities
in O(T ·R3 ·D3

max) time.
Following (8.1) and (8.2), we compute the saturation levels from the state
probabilities in O(T ·R2 ·D2

max) time and deduce the cumulative saturation
levels in O(T) time.

Proposition 8.1.4 Using a forward dynamic program, we can compute the
cumulative saturation levels for any ordering policy in O(T ·R3 ·D3

max) time.

In fact, we can compute them faster by making use of Corollary 7.4.8. When
we do not consider setup cost, the optimal order size decreases by either zero
or one when either xt, −yt or −zt increases by one. This property holds for
both saturated and non-saturated systems.

Lemma 8.1.5 Let x∗t−1,R−Ldel+1 be the maximum supplier sotck at time
(t−1, R−Ldel+1) given the optimal saturated order policy. Then ηt equals the
required fleet size at period t when starting from supplier stock x∗t−1,R−Ldel+1

and having a maximal late demand at time (t− 1, r), r ∈]R− Ldel, R[.

Proof:

By definition, ηt is the maximum value of xt + zt + β∗
t (xt). Consider the

supplier stock Xt−1,R−Ldel+1 before the first late demand. Then every con-
tainer leaving the supplier stock until period t will be outgoing at ordering
time, so we have:

Xt−1,R−Ldel+1 = Xt + Zt (8.3)

Consider a supplier stock xt−1,R−Ldel+1 at time (t − 1, R − Ldel + 1) and
a realization of the total late demand at period t − 1. They induce the
parameter values Xt = xt and Zt = zt. We can control the value of zt with
the total late demand. If zt increases by one, then xt decreases by one and
hence β∗

t increases by zero or one. Therefore, the required fleet increases
with zt. We deduce that for a fixed supplier stock xt−1,R−Ldel+1 at time
(t− 1, R−Ldel +1), we obtain the maximum required fleet when every late
demand is maximal.
Morevoer, when we increase xt−1,R−Ldel+1, either xt or zt increases by one
and thus β∗

t decreases by zero or one. Consequently, the required fleet size
is non-decreasing in Xt−1,R−Ldel+1 and the required fleet ηt is attained when
starting from stock x∗t−1,R−Ldel+1.

�

8.1. SATURATED OFFLINE POLICY 183

From the maximum supplier stock at time (t, R−Ldel+1), we hence compute
ηt in O(R ·Dmax) time, assuming that we can access the maximum demand
at each time step in constant time.

Lemma 8.1.6 Let Dmin
t,0:Lord−1 be the minimum total demand between the

ordering time (t, 0) and the order arrival time (t, Lord). We can choose β∗
t

so that:
∀xt ≤ Dmin

t,0:Lord−1 : β∗
t (xt) = β∗

t (0) (8.4)

Proof:

If the supplier stock xt at ordering time is lower than the minimum demand
during the ordering delay, then the supplier stock at order arrival is equal
to the order size β∗

t (xt). Therefore, the expected cost function after order
arrival is the same for every xt in[0, Dmin

t,0:Lord−1]. We can thus choose the
same order size minimizing this function.

�

Proposition 8.1.7 Suppose that Hypotheses 2.1 [Delay] and 2.2 [Cost] hold.
We can compute the cumulative saturation levels for any ordering policy in
O(T ·R ·Dmax) time.

Proof:

We have seen in the previous chapter that without any setup cost the
derivative of the order size function β∗

t (xt) with respect to xt only has values
in [−1, 0].

�
In the special case where the support of each demand is an interval, we can
reduce the computation time to calculate the saturation levels. We first
compute the possible values of the supplier stock Xt,R−Ldel+1, in O(T ·R2 ·
D2

max). If we can get the minimum and maximum demands in constant time,
then we compute in O(T ·R) time the minimum and the maximum total late
demand at every period. Otherwise, it takes O(T ·R2 ·Dmax) time instead.
Then, for each of the O(R ·Dmax) possible supplier stocks and O(R ·Dmax)
possible total late demands, we compute the number of containers required
at the next ordering t+ 1.

Proposition 8.1.8 If the support of every late demand is an interval, we
can compute the cumulative saturation levels for any ordering policy in O(T ·
R2 ·D2

max) time.

8.1.3 Optimal Purchasing

We now compute the best purchasing policy making the system saturated,
i.e. ensuring that the container fleet size after purchasing at period t is at
least η[0,t].

184 CHAPTER 8. ALTERNATIVE MODELS

Proposition 8.1.9 Given the cumulative saturation levels, the problem of
computing an optimal offline purchasing policy can be reduced to a dynamic
lot-sizing problem over T periods with, at period t ∈ [0, T [:

• demand Dww(t) := η[0,t] − η[0,t−1] if t > 0, Dww(0) = η0.

• Purchasing setup cost Csetup(t) and unit cost Ccont(t).

• holding cost Cidle(t)

Proof:

After purchasing at period t, we need η[0,t] containers in the system, and any
additional container will necessarily incur the idleness cost Cidle(t). There-
fore, we want to purchase containers so that the container need increases by
Dww(t) at period t, and we penalize with holding costs Cidle(t) the contain-
ers purchased too early. This corresponds to the lot-sizing problem from
this proposition.

�

Corollary 8.1.10 Given the cumulative saturation levels, an optimal of-
fline saturated purchasing policy can be computed in O(R · T) time.

Proof:

The lot-sizing problem is solved by algorithms from the literature [27, 127, 1]
in O(T) time, and we need O(T · R) time to reformulate the container
purchasing problem as a dynamic lot-sizing problem. Thus, it takes O(R ·T)
time to compute an optimal offline saturated policy given the cumulative
saturation levels η[0,t].

�

Theorem 8.1.11 Suppose that Hypotheses 2.1 [Delay] and 2.2 [Cost] hold.
An optimal offline saturated policy can be computed in O(T ·R3 ·D3

max) time.

8.1.4 New Reference State

In the offline heuristic, at every placement we used a reference state [0, 0, 0]
to estimate the best next placement and the best purchase size. However,
this reference state is not adapted to test instances where placements are
close to each other and the disposables are expensive. In this case, we need
a reference state with a high supplier stock xt and a high outgoing fleet zt.
As an alternative reference state, we consider the state [xsatt , 0, zsatt] max-
imizing the saturation level at placement t. The best saturated policy is
much faster than the offline policy, so computing the best saturated offline
policy before using our offline heuristic will not noticeably increase the run-
ning time. We denote by Mdp.F ref the offline algorithm using this new
reference state.

8.1. SATURATED OFFLINE POLICY 185

8.1.5 Simulations

We end this section with two experiments on the offline algorithms. Firstly,
we compare the saturated policy to Algorithm Mdp.F and the best pol-
icy without disposables. Secondly, we compare two variants Mdp.F and
Mdp.F ref of our offline heuristic using the initial reference state [0, 0, 0] and
the new one [xsatt , 0, zsatt]. Table 8.1 and 8.2 show the running times and
expected costs of the algorithms using the the same simulation instances as
in Chapter 7.

Table 8.1: Comparison of the expected cost and running time of the satu-
rated policy and the updated offline heuristic Mdp.F ref to the algorithms
from Chapter 7. We use: C := [2, 6, 50, 200, 50], D(t, r) → 3 · t+ B(2, 1/2).

T = 3 T = 4 T = 5 T = 6 T = 7 T = 8

Mdp.F time 0s047 0s187 0s484 0s967 2s043 3s604
Mdp.F cost 1080 1946 2816 3832 5035 6337
Mdp.F ref cost 1080 1946 2816 3832 5035 6337

Sat.F cost 2052 3062 4127 5478 6831 8325
Sat.F time 0s005 0.007s 0.018s 0s029 0s044 0s057

Ndis.F time 0s016 0.007s 0s 0s016 0s016 0s031
Ndis.F cost 2244 3300 4482 5880 7280 8822

T = 9 T = 10 T = 15

Mdp.F time 9s553 16s00 114s7
Mdp.F cost 7728 9147 17664
Mdp.F ref cost 7728 9147 17664

Sat.F time 0s067 0s111 0s378
Sat.F cost 9822 11461 20525

Ndis.F time 0s077 0s016 0s094
Ndis.F cost 10366 12052 21352

In the simulation presented in Table 8.1, the offline heuristic has the same
expected cost for both choices of reference state. The two variants have
the same purchasing plan. Thus, in most test instances, we can expect the
offline heuristic with the new reference state to perform as well as using the
initial reference state [0, 0, 0].
In Table 8.2, there is a significant improvement of the expected cost when
using the new reference state. For the second cost structure, the heuristic
using the new reference state is nearly optimal. However, the variant does
not entirely remove the problem as the difference of cost to the optimal
solution only decreases by 33% for the third cost structure.
Furthermore, the best saturated policy performs much worse than the offline
heuristics. Its performance is actually close to the best policy forbidding
disposables. This results confirms the supposition we made in the previous
chapter. Namely, the variance of the considerd demand distributions is small

186 CHAPTER 8. ALTERNATIVE MODELS

Table 8.2: Comparison of the expected cost of the saturated policy and the
updated offline heuristic Mdp.F ref to the algorithms from Chapter 7, when
the initial offline heuristic Mdp.F performs worse than usual. We use T = 4,
D(t, r) → 2 · t+ B(2, 1/2).

Opt.F Mdp.F ref Mdp.F Sat.F Ndis.F

Running time 95s01 0s094 0s094 0s005 0s

C := [3, 6, 50, 100, 50] 1816 1816 1816 2326 2476
C := [3, 6, 150, 10, 50] 2055 2058 2136 2190 2316
C := [3, 6, 1500, 0, 50] 3547 3609 3639 3611 3636

enough so that the best policy without disposables is close to the best policy
we can attain if we always want to keep the same service level. Our conlusion
is hence that we can significantly reduce the expected cost of the process if
we use more disposables shortly before a placement. By doing so we reduce
the manufacturer holding cost between two consecutive placements.

8.2 Offline Solution under Zero Delay

In this section we consider the simple case without lead time, which we have
done in Chapter 5 but for deterministic demand:

Hypothesis 5.1 [NoDelay]: The ordering and delivery delays are imme-
diate, i.e. Lord = 0 and Ldel = 1.

The consequence of immediate delivery is that there are never outgoing
containers at the beginning of any time step. Therefore:

∀t, ∀r : Zt,r := 0

We denote the states at ordering as:

St := [Xt, Ut],

where the parameter Ut = Xt+Yt replaces Yt. The time complexity of every
algorithm from Chapter 7 is decreased by O(R ·T). Moreover, systems with
immediate ordering provide a good control on the supplier stock. We denote
by ωt the supplier stock after ordering.

In the following, we propose a faster offline algorithm under the hypothesis
that the distribution demand is stochastically non-decreasing :

Hypothesis 8.1 [Demand-Sto] The demand is stochastically non-decrea-
sing in t:

∀t ∈ [1, T [, ∀d ∈ R
+ : P(Dt,r > d) ≥ P(Dt−1,r > d) (8.5)

8.2. OFFLINE SOLUTION UNDER ZERO DELAY 187

We call decision cost at period t the total cost incurred from:

1. the supplier holding cost during period t.

2. the disposable cost during period t.

We call ψω
t (wt, ut) the decision cost at period t when the post-purchasing

supplier stock is ωt, and ϕω
t (ωt, ut) the minimum total decision cost from

period t to EoH when ordering the optimal quantities afterward. We also
define, when starting with state st = [xt, ut] at period t:

ϕt(xt, yt) := min
β≤yt

[
ϕt(xt + β, ut)

]
(8.6)

Lemma 8.2.1 Under Hypotheses 2.2 [Cost] and 5.1 [NoDelay], the cost
functions ψt(ω, u) and ϕt(ω, u) are L�-convex for a fixed offline purchasing
plan.

Proof:

Similar to the L�-convexity under zero setup cost from Chapter 7.

�

Corollary 8.2.2 Under Hypotheses 2.2 [Cost] and 5.1 [NoDelay], the cost
function ϕt(ω, u) is non-decreasing in ω ≤ u for a fixed u.

Proof:

When the starting supplier stock is xt = 0, we can choose any post-ordering
supplier stock without cost. Therefore, xt = 0 is a minimum of the L�-convex
functions. By convexity, the cost function ϕt is then non-decreasing starting
from xt = 0 for all t ∈ [0, T [.

�
Given the fleet size u, we denote by ω∗

t (u) the smallest optimal supplier
stock after order arrival in this saturated environment:

ω∗
t (u) := argmin

x

[
ϕt(x, u)

]
(8.7)

Moreover, consider ωψ
t minimizing the single period decision costs:

ωψ
t (u) := argmin

x

[
ψt(x, u)

]
(8.8)

Lemma 8.2.3 If Hypotheses 2.2 [Cost] and 5.1 [NoDelay] hold, then we
have:

∀t ∈ [0, T [: ∀u : ω∗
t (u) ≤ ωψ

t (u) (8.9)

Furthermore, if xt > ω∗
t (u), then the optimal order size is zero.

188 CHAPTER 8. ALTERNATIVE MODELS

Proof:

Suppose that at period t we have stock xt and order βt so that:

xt + βt > ωψ
t (u)

The cost at period t is then not lower than ψω
t (ω). In addition, the supplier

stock at period t+1 will be greater than the post-ordering supplier stock ω.
Therefore, by Corollary 8.2.2, the cost starting from period t+ 1 is greater
than if we only ordered up to ωψ

t (u). We conclude that if xt ≤ ω∗
t , we should

order up to ωψ
t (u). By Corollary 8.2.2, the cost starting from period t+1 is

also not lower than if we ordered up to ωψ
t (u). We conclude that we should

raise the inventory position at period t above ωψ
t (u)

�
Lemma 8.2.3 states that the best order size should not make the inventory
position exceed the myopic order-up-to quantity ωψ

t (u). Under a demand
which is not stochastically non-decreasing, an optimal policy raises the in-
ventory level below ωψ

t (u). For instance, if the demand at the coming period
t+1 is expected to be very low, we should order less at period t because the
leftover containers at the end of the period will likely stay in the supplier
stock up to the end of period t+ 1. This cannot occur under stochastically
non-decreasing demand:

Proposition 8.2.4 Under Hypotheses 2.2 [Cost], 5.1 [NoDelay], and 8.1
[Demand-Sto], we have:

∀t ∈ [1, T [, ∀u : ωψ
t−1(u) ≤ ωψ

t (u) (8.10)

Proof:

Suppose that the fleet size ut at period t is fixed. By definition, ωψ
t (ut)

minimizes:

ψt(ω, ut) := ψdis
t (ω, ut) + ψsup

t (ω, ut)

where:

ψdis
t (ω, ut) := E{Dt,r}

[R−1∑
r=0

(
Cdis(t, r)− Cman(t, r)

) ·max
(r∑
r′=0

Dt,r′ − ω
)+]

ψsup
t (ω, ut) := E{Dt,r}

[R−1∑
r=0

Csup(t, r) ·max
(
ω −

r∑
r′=0

Dt,r′
)+]

The derivative is zero for ω = ωψ
t .

∂

∂ω

{
ψdis
t (ω, ut)

}

8.2. OFFLINE SOLUTION UNDER ZERO DELAY 189

= E{Dt,r}
[R−1∑

r=0

(
Cdis(t, r)− Cman(t, r)

) · ∂

∂ω

{ r∑
r′=0

dt,r′ − ω
}+

]

= −
R−1∑
r=0

(
Cdis(t, r)− Cman(t, r)

) · P(
r∑

r′=0

dt,r′ > ω
)

Likewise:

∂

∂ω

{
ψsup
t (ω, ut)

}
=+

R−1∑
r=0

Csup(t, r) · P
(r∑
r′=0

dt,r′ ≤ ω
)

Thus:

R−1∑
r=0

P
(r∑
r′=0

dt,r′ ≤ ωψ
t (ut)

) · (Csup(t, r) + Cdis(t, r)− Cman(t, r)
)

=

R−1∑
r=0

(
Cdis(t, r)− Cman(t, r)

)

Let F0:r be the cumulative distribution function of
∑r

r′=0Dt,r. We define:

Cω
t,r := Csup(t, r) + Cdis(t, r)− Cman(t, r),

Cω :=

R−1∑
r=0

Cω
t,r

and Cω
qtl :=

∑R−1
r=0 Cdis(t, r)− Cman(t, r)

Cω
∈ [0, 1]

Moreover, we define the function Fω so that we have for each x that:

Fω(x) :=

R∑
r=0

Cω
t,r

Cω
· F0:r(x)

As a weighted sum of cumulative distribution functions Fω itself is a cumu-
lative distribution function. The optimal post-ordering stock ωψ

t is thus the
Cω
qtl quantile of this distribution.

ωψ
t (ut) = min

{[R∑
r=0

Cω
t,r

Cω
· F0:r

]−1(
Cω
qtl

)
, ut

}
(8.11)

By hypothesis, the demand is stochastically non-decreasing, consequently
F0:r is increasing in t for each r ∈ [0, R[. Since Fω is an increasing func-
tion of the cumulative distribution functions F0:r and due to ut being non-
decreasing, it follows that ωψ

t (ut) is non-decreasing in t.
�

190 CHAPTER 8. ALTERNATIVE MODELS

Theorem 8.2.5 Supper that Hypotheses 2.2 [Cost], 5.1 [NoDelay], and 8.1

[Demand-Sto] hold. Then ω∗
t (ut) = ωψ

t (ut) minimizes ψt(·, ut).
Proof:

Firstly, the optimal stock ω∗
T−1(uT−1) after ordering minimizes

ψω
T−1(·, uT−1) = ϕT−1(·, uT−1).

Consider t ∈ [0, T − 2] and suppose that ω∗
t+1(ut+1) minimizes ψt+1(·ut+1).

By Proposition 8.2.4, the stock ωψ
t minimizing ψt is so that:

ω∗
t (ut) ≤ ωψ

t (ut) ≤ ωψ
t+1(ut+1) = ωϕ

t+1(ut+1)

Therefore, we have ω∗
t (ut) ≤ ω∗

t+1(ut+1). Consequently, there is no advan-

tage anymore in having less than ωψ
t (ut) containers in the supplier stock

after ordering. In fact, this would increase the decision cost at period t
without decreasing the cost after period t, as the leftover stock at period
t+ 1 will not be greater than the desired quantity ω∗

t+1(ut+1). We deduce:

ω∗
t (ut) = ωψ

t (ut)

The proposition follows by recurrence on t.
�

By Theorem 8.2.5, we can compute each cost function ψ(ωt, ut) indepen-
dently from each other. We deduce the optimal purchasing policy from
these values. We define the locally optimal policy cost ψ[k1, k2, u] between
consecutive placements k1 and k2−1 given that the container fleet size after
purchasing at period k1 is u. The value ψ[k1, k2, u] is equivalent to a value
“ H(k1, k2) ”in the W-W algorithm. We define u∗(k1, k2) so that:

H∗(k1, k2, u∗(k1, k2)) = min
u

[
H∗(k1, k2, u)

]
(8.12)

Algorithm 24: Offline Algorithm under Zero Delay

for period t : 0 → T − 1 do
foreach Fleet size ut do

Compute ω∗
t (ut);

Compute ψt(ω
∗
t (ut), ut);

for period k2 : T → 1 do
for period k1 : 0 → k2 − 1 do

foreach fleet size u do
Deduce from the ψt(ω

∗
t (u), u) the cost ψ[k1, k2, u];

Deduce u∗(k1, k2);

Deduce ϕ∗
k2
;

return ϕ∗
0;

8.3. OTHER RESOLUTION APPROACHES 191

Theorem 8.2.6 Suppose that Hypotheses 2.2 [Cost], 5.1 [NoDelay] and 8.1
[Demand-Sto] hold. Then Algorithm 24 computes an optimal offline policy
in O(T 2 ·R ·Dmax + T ·R2 ·D2

max) time.

Proof:

Using backward programming, computing the functions ψt takes O(T ·R2 ·
D2

max) time, because the R − 1 iterations for r > 0 can be summarized to
a single parameter state St,r = [Xt,r], and the last iteration r = 1 can be
summarized with state St = [ut] by Theorem 8.2.5. The ψ[·, ·, ·] functions
can be computed in O(T 2 · R · Dmax) time. Indeed, for each k2 and every
u, we can compute every ψ[k1, k2, u] together in O(T) time, by computing
directly:

ψ[k1, k2 + 1, u] = ψ[k1, k2, u] + φk2+1(ω
∗
t (u), u)

�

Remark 8.2.7 Under zero delay and for stochastically non-decreasing de-
mands, the optimal offline policies are also optimal as a quasi-offline strat-
egy. In fact, by Theorem 8.2.6 and Proposition 8.2.4, we can order the
containers so that every container ordered at period t are also ordered at pe-
riod t+1. Since there is no ordering cost, the cost up to EoH when starting
at placement k and state [xk, zk] is equal to the cost at state [x′k, z

′
k], where:

x′k = min{ω∗
t , xk + zk}

z′k = xk + zk − x′k

Therefore, the cost and the purchasing decision at placement k do not depend
on the state at period k.

8.3 Other Resolution Approaches

In this section, we present and comment on a literature overview of other
ways of solving the stochastic container purchasing problem. First and
foremost, we review the framework of approximate dynamic programming
(ADP), which we believe is very efficient to compute good policies and can
be used jointly with our resolution approach from Chapter 7. Then, we very
briefly present dual-balancing policies and discuss meta-heuristics.

8.3.1 Approximate Dynamic Programming

Introduction

Whenever we use a Markov decision process to solve a problem, we are bound
to face the curse of dimensionality : the running time explodes whenever the
state space and the decision space are not very limited.

192 CHAPTER 8. ALTERNATIVE MODELS

A popular way to decrease the running time while keeping a good solu-
tion quality is to approximate the cost functions ϕt using approximate dy-
namic programming. Powell [90] dedicates a book to ADP, which covers the
concepts, the mathematical foundations as well as detailed applications in
logistics. The author also provides a succinct introduction to ADP in [89].

As described by Meisel [75], the two main alternatives to approximate the
functions ϕt are state space aggregation, decreasing the state space, and
predictive modeling, simplifying them to a parametrized function. Meisel [75]
proposes to use business intelligence to accelerate an approximate dynamic
program.

State Space Aggregation

State space aggregation consists in computing the cost value and decision
only for a few states which we call main states. We call the other states ag-
gregated states. We implicitly approximate the decision and the cost value
at the aggregated states using the decision and cost value of the main states
in some neighborhood. The simplest aggregation method uniformly aggre-
gates the state space. It considers an aggregation factor Ni for each state
state parameter i. Every state whose value of parameter i is a multiple of
Ni for every i is chosen as a main state. In addition to aggregation of the
state space, we can also aggregate the demand and the decision space. We
use nonetheless the term of “state”space aggregation because it is the most
commonly used in the literature.

Halman et al. [40, 39] use a smart form of state space aggregation to com-
pute their fully polynomial time approximation scheme. They exploit the
convexity of their problem to show that the implicitly computed values are
close enough to their actual values, so that the final solution has a rela-
tive performance guarantee. Likewise, Chen et al. [14] use a coarse cube
structure to show that their pseudo-polynomial time approximation scheme
has an absolute performance guarantee. Arts et al. [5] make another form
of aggregation. They consider an inventory control model where the lead
time takes several periods, hence the state contains a list of L outgoing
orders. They aggregate the outgoing orders into a single sum and prove
that the next order arrival can be approximated well enough to generate an
asymptotically optimal solution for high lost-sales cost.

There are many ways to aggregate our container management process. On
the one hand, we can aggregate the time steps to only have three time steps
per period, corresponding to preliminary, early and late time steps. One
the other hand, we can aggregate the state space, the decision space, and
the demand space, for example by adapting the approximation scheme from
Chen et al. [14].

For each type of aggregation, we need to create a formula to approximate
the cost value and decision of the aggregated states.

8.3. OTHER RESOLUTION APPROACHES 193

Predictive Modeling

In predictive modeling we approximate either the cost value of being in a
state or the corresponding decision to take.

The method of value approximation is the most widely used method. It
consists in approximating the cost functions ϕt. There are many ways of
approximating the functions ϕt. A common method uses Monte Carlo sim-
ulations. This is a simple framework where we iteratively generate Monte
Carlo samples which are random scenarios of demand realization starting
form an initial state. Each sample is used to update the quality of the
solution, namely the cost of being in each state. Monte Carlo simulations
enable to update a reduced number of states for each sample. There are
several methods to update the cost functions like using Q-learning or the
temporal difference learning TD(λ). This approach has been proven to con-
verge to the optimal solution. As an alternative approach, we approximate
each function ϕt using a parametric function. In this case, we only need
to compute the value at a few points to estimate the parameters and hence
get an approximation of the cost of being in every state. This approach
significantly reduces the running time but requires more knowledge on the
cost structure to find a good parametrized function to optimize.

The method of policy approximation is used if we are able to approximate the
value of being in the future states and represent the policy using a parametric
function. We then compute the optimal ordering decision for several states
to estimate the best value for the parameters. In our framework, we need to
compute the value of being in each state in order for the dynamic program
to make the purchasing decisions.

Besides, a myopic ordering policy would optimize the cost over a short time
horizon. In this case, we recommend at least two periods of time horizon to
take into account the limitation of the next order size due to the outgoing
fleet. We expect an ordering policy optimizing the within one single period
of time to perform poorly.

Applications of ADP

Approximate dynamic programming has been successfully applied to several
logistic problems, such as in Powell and Topalogu [91], Lam et al. [66],
Powell [90] and Meisel [75]. The researchers in this field insist on the fact that
in most cases, approximate dynamic programming and especially predictive
modeling are meaningless without a good understanding of the problem and
the solution properties. Indeed, a poorly chosen parametrized function may
lead to a very poor performance.

Therefore, some properties such as an asymptotic behavior, convexity of the
costs and an experimental analysis of the optimal solution are a good way
to start a study before deciding on the ADP.

194 CHAPTER 8. ALTERNATIVE MODELS

For instance, Huh et al. [50] prove that the best base-stock policy is asymp-
totically optimal in a inventory control system with lost-sales when the short-
age cost gets large. Therefore, we can use a base-stock policy to approximate
the optimal order size. Arts et al. [5] consider the same problem when the
lead time Lord is not negligible. Consequently, the state consists in an in-
ventory level and Lord−1 outgoing order sizes. They approximate this state
with only two parameters, namely the inventory level and the sum of the
outgoing orders. They approximate the number of items arriving at time t
from the distribution of the demand at time t − Lord − 1 and the sum of
outgoing orders. They prove that when the shortage cost gets large, the
best policy relative to this approximate state representation is asymptot-
ically optimal. An ADP using this space aggregation has Lord − 2 fewer
parameters, with is a significant improvement.
For the same problem but for infinite time horizon, Xin and Goldberg [133]
and Goldberg [32] show that a constant order policy is asymptotically opti-
mal when the lead time gets large. Consequently, when the lead times are
long, we have an easy way to approximate the optimal solution.

Possible Applications in SCPP

Firstly, we can use an aggregation, in particular when the demand real-
izations are big. In Chapter 9, the containers are aggregated in pallets of
15.
Secondly, we may use a parametric approximation of the optimal order size.
In the algorithms from Chapter 7, the cost functions are L�-convex, so by
Corollary 7.4.8, the gradient of the cost functions is between −1 and +1.
This behavior is similar to the traditional inventory control problems with
lost-sales. Consequently, we expect the optimal ordering policy in our con-
tainer management problem to be close to a restricted base-stock policy.
An interesting approach for future research consists in approximating at
each period the order size βt(xt, yt, zt) with:

βt(xt, yt, zt) ≈ min{St − xt, y
α
t , R

1
t (xt), R

2
t (u

α
t)}, (8.13)

where St is the base-stock level, yαt the manufacturer inventory level after
purchasing, R1

t (xt) an upper-bound of the order size in a saturated en-
vironment, and R2

t (u
α
t) an upper-bound of the order size given the post-

purchasing container fleet size uαt . The parameter R1
t (xt) hence corresponds

to the second parameter R in a restricted base-stock policy. Meanwhile, the
parameter R2

t (u
α
t) represents a new constant specific to container manage-

ment problems with a limited fleet size, and should avoid ordering too many
containers at a period and as a result not having enough containers for the
next period. Similarly to the vector base-stock policy from Zipkin [142], we
can have St, R

1
t and R2

t depend on a same parameter θt approximating a
service level.

8.3. OTHER RESOLUTION APPROACHES 195

A third idea would be to approximate the cost functions ϕt with a second de-
gree polynomial and to estimate its three parameters with a approximation
of the expected cost at some states.

8.3.2 Dual-Balancing Policies

Dual-balancing policies are a simple and efficient way of computing near-
optimal online policies when the system is composed of concurring cost
functions.

Even though they were already used before, dual-balancing policies were
introduced in the inventory control literature and first analyzed by Levi
et al. [70]. They consider a periodic-review stochastic inventory control
problem with positive lead times, holding cost and backlogging cost. They
define the marginal cost of a decision as the expected cost generated by
this decision. The marginal cost regroups the shortage cost from the order
arrival to the next order arrival and the holding cost of the ordered items
up to the end of the time horizon, assuming that the items are sold in the
same sequence as they are ordered. The authors prove that such a policy
has a performance guarantee of 2, i.e. the cost of this policy is at most twice
the optimal expected cost. They extend their study to include a setup cost
and show that the resulting policy has a performance guarantee of 3.

Hurley et al. [51] extend these policies to include lower and upper bounds
on the order sizes. They also conduct an extensive computational study
of these policies under a Martingale Model of Forecast Evolution (MMFE).
The MMFE is a popular framework to model the evolution of forecasts, and
has been introduced by Heath and Jackson [45]. Levi et al. [71] extend the
study without setup cost to capacitated systems facing non-stationary and
correlated demands. The capacities define a maximum order size at each
period. The authors generalize the dual-balancing policy by adding to the
martingale cost a forced backlogging cost representing additional items one
could have ordered and will not be able to order in the future due to the
order capacity. Levi et al. [69] extend these study to lost-sales models, and
prove that the inventory control problem without setup cost has a perfor-
mance guarantee of 2. Shi et al [105] propose a 4-approximation generalizing
the inventory models with backlogged demand with setup cost, correlated
demand, capacitated ordering, and batch ordering1. Shi [104] presents an
overview of these approximation algorithms. We note that only Levi et
al. [69] study a system with lost sales.

We find the idea of a dual balancing policy very interesting, and it is an
open question whether there is a dual-balancing policy for the online and
quasi-online strategies with a performance guarantee.

1i.e. where the ordering is a multiple of a constant integer.

196 CHAPTER 8. ALTERNATIVE MODELS

8.3.3 Meta-Heuristics

There are many meta-heuristics in the literature such as the genetic algo-
rithms, the simulated annealing algorithms and the tabu search algorithms
to cite a few. These local searches successively compute policies and update
the best computed policy form each policy cost.
However, using our Markov decision process it already takes O(T ·D4

max ·R4)
time to compute the cost of an optimal policy. Indeed, we iterate over O(T ·
R) time steps, with O(D3

max · R3) state and O(Dmax) possible realizations
of the demand per time step. Consequently, meta-heuristics may not be
significantly faster than algorithms based on Markov decision processes.
Furthermore, classical approximation methods to evaluate the policy cost
such as state and demand aggregation or Monte-Carlo simulations can also
be applied to the algorithms covered in the previous chapter. Therefore,
we feel that most meta-heuristics are not a meaningful alternative to the
algorithms presented in Chapter 7.

197

Part III

Application and Conclusion

199

Chapter 9

A Real-Life Application

In this chapter, we apply the offline algorithms of this thesis to the closed-
loop supply chain which we described in Chapter 1. In Section 9.1, we
estimate every demand distribution from the project data with a regression
model. Section 9.2 presents our simulation environment. Finally, we present
and discuss the experiments results in Section 9.3.

9.1 Problem Data

The items are transported in KTL containers, and the containers are packed
in pallets of fifteen. We consider a time horizon of T = 36 weeks. One time
step represents a working day and one period is a week of R = 5 days.
Saturday and Sunday are not included. Empty containers are ordered every
Tuesday morning and arrive to the supplier on Thursdays morning. There-
fore, the first time step r = 0 corresponds to Tuesday and the ordering delay
is Lord = 2 days. The delivery delay is Ldel = 3 as the full containers sent
on Friday only arrive on Tuesday afternoon to the manufacturer. The part-
ners would be interested in having a new container purchasing plan every
year. Figure 9.1 presents the actual demands during the planning horizon.
Figure 9.1a and represents the daily demand and Figure 9.1b presents the
total demand between two arrival times. Even though a week is defined
between two Tuesdays, we display the demand between two Thursdays be-
cause the demand between order arrivals gives more information on how
many containers we need to order during the week.

A simple linear regression shows a clear increasing trend of the demand. Lin-
ear regression is a common statistical method to approximate a set of points
with a line (or a hyperplane in a higher dimensional space). A description of
linear regression can be found in [78]. We approximate the demand distri-
butions with discretized normal distributions. We estimate the parameters
of each distribution using a linear regression on the non-zero-demand val-
ues. Contrary to our container management problem with discrete demand,

200 CHAPTER 9. A REAL-LIFE APPLICATION

(a) Daily demand.

(b) Demand between two order arrivals.

Figure 9.1: Demand data in our application. The red lines show a least-
square linear regression of the non-zero-demands.

the linear regression approximation has an equation with real values, so we
make another approximation to discretize the real-valued distribution from
the linear regression.

We assume that the days with a zero-demand are known and that they
represent special days. For instance, the week 11 in our data corresponds to
week of Christmas. We have a set of m = 158 points (ti, di), with i ∈ [1,m],
where ti represents a day and di is the associated non-zero-demand value.
We suppose that the expected demand is linearly increasing in i, hence
is independent from the number of days with zero-demand between two
consecutive points ti and ti+1.

The least-squares method is the most simple linear regression model. It
assumes that the di are generated from a normal distribution N (a · i+b, σ2),
where a and b are the linear regression parameters. In the least-squares
method, the best values ãls.d and b̃ls.d of the parameters a and b minimizing
the variance of the distribution. This is done by minimizing the sum of
squared errors εi := (di − b− a · i)2:

ãls.d, b̃ls.d :=arg min
a,b∈R

m∑
i=1

ε2i (9.1)

9.1. PROBLEM DATA 201

∀i ∈ [1,m] : εi :=di − b− a · ti (9.2)

Figure 9.2 displays the residual squared errors di = ãls.d · i + b̃ls.d relative
to the least-squares linear approximation, sorted by decreasing value in Fig-
ure 9.2a and by increasing time index in Figure 9.2b. In Figure 9.2a, we
sort the errors by decreasing value and observe a hyperbole-like form. This
goes along with our hypothesis that the error distribution is close to a nor-
mal distribution. However, Figure 9.2b highlights that the expected error
increases over time. Therefore, the variance of the demand distribution
should increases over time.
Therefore, we perform another linear regression over the residuals ε2i . For
each i, we suppose that ε2i follows a normal distribution with mean σ2

i :=
b̃ls.v+i · ãls.v, where b̃ls.v and ãls.v are solution of the linear regression model:

ãls.v, b̃ls.v := arg min
a,b∈R

m∑
i=1

(ε2i − b− a · i)2 (9.3)

Since the variance is increasing, the error di − ãls.d · i + b̃ls.d of point with
a small variance should be more important than the error of a point with

(a) Sorted by decreasing value.

(b) Sorted by increasing time.

Figure 9.2: Residual Errors (di − b̃ls.d − ãls.d · i)2 induced by the regression
model di = ãls.d · i+ b̃ls.d.

202 CHAPTER 9. A REAL-LIFE APPLICATION

high variance. However, we do not expend on other linear regression models
associating weights to the points as it is not the central subject of this study.
Thus, we stop the regression after a simple linear regression on the demand
and on the variance of the demand. Using our linear regression results, we
approximate the distribution of the i-th positive demand value with a normal
distribution with mean μi := 167 + i · 0.44 and variance σ2

i := 5100 + i · 90.
Let FN ,i be the corresponding cumulative distribution function. We dis-
cretize every demand distribution N (μi, σ

2
i) using a simple approximation.

Fistly, we only consider positive integers in [μi − 2 · σi, μi + 2 · σi]. Sec-
ondly, every integral demand d in this interval is assigned to probability
Ω·(FN ,i(d+0.5)−FN ,i(d−0.5)

)
, where Ω :=

∑
d

(
FN ,i(d+0.5)−FN ,i(d−0.5)

)
is set so that the total probability equals 1. Therefore, the resulting func-
tion is a distribution and it is fully characterized by the mean μi and the
variance σ2

i of the initial normal distribution. We call it a discretized posi-
tive normal distribution. Given a normal distribution N (μ, σ2), the interval
[μ − 2 · σ, μ + 2 · σ] represents 95% of the distribution density. Therefore,
restricting the demand values to this interval is a good approximation.

In our simulations, we approximate the cumulative distribution function of
a normal distribution with the formula of Bell [8]:

∀x ∈ R, FN ,i(x) :=
1

2
· (1 + Sign(x) ·

√
1− exp[−2 · x2/π]) (9.4)

The formula is both simple and efficient, as its experimental maximum ab-
solute error is of 0.003:

9.2 Description of the Experiments

In this chapter, we restrict our study to offline policies because an offline
purchasing plan gives a better insight to the behavior of the system and the
consequences of the purchasing decisions. In order to decrease the running
time, we aggregate the demand in the simulations by packs of 30. This rep-
resents two pallets of fifteen containers. Nonetheless, the simulation results
in the figures display quantities in containers.

We consider two stochastic offline policies, namely Algorithms Mdp.F and
Sat.F . We refer to Algorithm Mdp.F as the non-saturated policy and to
Algorithm Sat.F as the saturated policy. Furthermore, we consider the
deterministic algorithm Flow.5.2.

We use the demand regression model from Section 9.1. The starting demand
distribution follows a discretized positive normal distribution with param-
eters μ0 := 167 and σ2

0 := 5100. For every following positive demand, we
increment the first parameter by 0.44 and the second one by 90.

We denote by Dt,r the random variable of the demand distribution and by
D(t, r) the actual demand from our initial data. We can thus approximate

9.2. DESCRIPTION OF THE EXPERIMENTS 203

the distribution of demand Dt,r by a discretized positive normal distribution
with parameters μi := 167 + 0.44 and σ2

i := 5100 + i · 90 if D(t, r) is the
i-th positive demand of the time horizon. A zero-demand follows the zero
distribution1. We refer to this demand model as the stochastic demand
model.

Nevertheless, this demand model is quite complex so it may be difficult to
understand the results. Thus, we first consider a simpler demand approx-
imation such that Dt,r follows a discretized positive normal distribution
with parameters μtr := 167 + tr · 0.44 and σ2

tr := 5100 + tr · 90, where
tr := t · R + r = 5 · t + r. We refer to this demand model as the stochas-
tic positive demand model. This second model enables us to quantify the
influence of the days off on the process.

In addition, we use the deterministic algorithm to compute the best a pos-
teriori purchasing plan using the actual demands. We call this model the
deterministic demand model.

We now present our key performance indicators and explain how to read our
figures. Figure 9.3 shows the expected evolution of the stocks and shipments
over time for the non-saturated policy with the stochastic demand model.
In both Figures 9.3a and 9.3b, the stock is represented in green and the
containers arriving in future periods are in yellow. The expected number of
disposables is in red. The x-axis is annotated with the week index and for
each week we can see five bars corresponding to the stock and the shipments
for each of the five working day of the week, namely Tuesday, Wednesday,
Thursday, Friday and Monday. We let each week start with Tuesday as it
corresponds to the ordering time. Note that the stock levels and shipment
sizes are taken after the departure of the demand and before the arrival of
the shipments. Therefore, the total supplier and manufacturer stock plus
the total order and demand shipments is equal to the container fleet size in
the system.

Firstly, we describe the process for the manufacturer, which can can be ob-
served in Figure 9.3a. The manufacturer stock is given after the purchasing
and ordering decision. The demand shipment at any time (t, r) is recorded
after the departure of the shipment relative to demand Dt,r. Since the de-
livery time is Ldel = 3, the demand shipments (in yellow) represent the total
number of full containers which left the supplier over the past two days plus
the shipment for the current day. At every day, a shipment arrives to the
manufacturer whereas another departs from the supplier. Consequently, the
total demand in shipments slowly increases over time, and this increase cor-
responds to the expected increase of demand over Ldel = 3 days. The order
size at week 11 is very small because it corresponds to the week of Christmas
(see Figure 9.1b).

Secondly, Figure 9.3b presents the expected supplier stock, order size, and

1i.e. the demand is zero with probability 1.

204 CHAPTER 9. A REAL-LIFE APPLICATION

(a) Manufacturer stock and total shipment of full containers.

(b) Supplier stock, order size, and number of disposables.

Figure 9.3: Expected evolution of the stock levels, shipments and number
of disposables over time. The x-axis shows the index of each week, and for
each week we can see the expected quantities for each of the five working
days.

9.3. EXPERIMENTS 205

number of disposables bought at every day. The supplier stock is recorded
after the demand departure of the day, so it corresponds to the stock at the
beginning of the next day minus the order arrival. The order size does not
change from Tuesday to Wednesday, so the ordering shipment has the same
value in the first two days of each week. The order of empty containers
arrives on Thursday, so the supplier stock increases every Thursday. At
the week 11, the supplier stock and the order size are very low. The use
of disposables can only be seen on Tuesdays and Wednesdays, i.e. between
the order departure and arrival. Note that the expected supplier stock is
always positive, even when the expected number of disposables is positive.
The reason is that we are not looking at a single scenario with a demand
realization, but rather at the expected stock and disposables over every
possible demand scenario. Consequently, even though the supplier stock
is empty whenever we buy disposables, the expected supplier stock is high
because most of the time we do not need to buy disposables. We point
out that the supplier stock on Wednesday is approximately equal one day
of demand. Thus, if a shipment had a delay or was canceled, the supply
chain would only have enough containers for one day. We would have to
use disposables afterward. This remark opens up to the topic of robust
optimization in a supply chain, which we have not studied in this thesis.

In our experiment results, we do not display the evolution of the process
day by day, but week by week. We summary the information of Figure 9.3
as in Figure 9.4. We only present three variables, which are the purchase
size, the expected number of idle containers and the expected number of
disposables. The purchasing sizes are halved so that we can see the other
quantities more clearly. We recall that the number of idle containers is equal
to the manufacturer stock after ordering. The number of disposables for
week t corresponds to the number of disposables bought from time (t, Lord)
to (t+ 1, Lord − 1), i.e. between two ordering arrivals.

The expected number of disposables shows how many containers in the
supply chain are unused. A good policy should make a compromise between
having as few idle containers as possible, and having enough containers in
the system to face a high demand. We explain the behavior of this result in
the next section.

9.3 Experiments

9.3.1 The Stochastic Positive Demand Model

Firstly, we run a simulation for the stochastic positive demand model, with
the saturated algorithm Sat.F and the non-saturated algorithm Mdp.F .
The simulation results are shown in Figure 9.5. The process starts without
container, so every policy purchases a lot of containers at week t = 0.

Due to the presence of late demands, the manufacturer initially needs to

206 CHAPTER 9. A REAL-LIFE APPLICATION

Figure 9.4: Expected number of disposables and idle containers for the
saturated policy. The purchase size is halved for better visibility.

distribute the containers between the first two weeks. After the first two
weeks, most containers used for a late demand at week t are ordered at
week t + 2 and the decrease of idle containers corresponds to the expected
demand increase. This explains why the number of idle containers is very
high during the first week of the time horizon.

Moreover, at the last week of the time horizon, every policy will have many
idle containers because we stop the demand on Monday, i.e. the last day be-
fore purchasing. Thus, the last week only represents the demand on Thurs-
day, Friday, and Monday. This end of horizon effect is not relevant in our
study but can be dealt with by adding two more days of demand.

This simulation highlights the usual behavior of both algorithms. On the one
hand, the saturated policy purchases enough containers so that the supplier
can always order the best order size. Because of that, very few disposables
are necessary in the process for the whole time horizon. In return, the
number of idle containers is very high and always exceed 20% of the whole
fleet size. From a week to the next one, we can follow the expected number of
idle containers decrease as a consequence of the increase of expected demand
and demand variance. The policy purchases new containers approximately
every three months.

On the other hand, the non-saturated policy induces a much lower cost by
balancing the use of disposables and the container fleet size. This policy
purchases less frequently containers and has a smaller fleet size. Further-

9.3. EXPERIMENTS 207

(a) Algorithm Sat.F , with cost 525 371.

(b) Algorithm Mdp.F , with cost 394 202.

Figure 9.5: Simulation results for the stochastic positive demand model.

208 CHAPTER 9. A REAL-LIFE APPLICATION

more, after every purchasing, the expected number of disposables gradu-
ally increases as the container fleet size becomes too small for the demand.
Thanks to these disposables, the number of idle containers is average less
than 50 containers per week for the saturated policy, whereas it is between
400 and 800 for the saturated policy. Therefore, the non-saturated policy is
wasting much fewer containers than the saturated policy.

9.3.2 The Stochastic Demand Model

We now look at the results for the stochastic demand model, i.e. using the
same days off and zero-demands as in the actual demand. The results for
the saturated and non-saturated policy are presented in Figure 9.6.

To better understand the behavior of the process, we show in Figure 9.7 the
number of zero-demands between two order arrivals. The number of zero-
demands relative to week t is equal to the number of zero-demands between
times (t, Lord) and (t+ 1, Lord − 1).

Firstly, both policies purchase less containers and have one less placement.
In particular, Algorithm Mdp.F only purchases containers at the beginning
of the time horizon. If we look at the distribution of the days off, it appears
that there is in average one zero-demand per week over the last third of the
time horizon. Since the demand is increasing, it follows that we do not need
many containers during the last weeks.

Furthermore, the number of idle containers and of disposables is fluctuating
over time during the first and the last third of the time horizon. These
fluctuations correspond to the number of zero-demands during the week.
Namely, when there are several days off, the number of idle containers is
higher and the number of bought disposables is lower. During the second
third of the time horizon, there is no zero-demand. As a consequence, the
process behavior in this time interval is similar to the stochastic positive
demand model.

9.3.3 The Deterministic Demand Model

Finally, we run a simulation on the actual demand using the deterministic
algorithm Flow.5.2. The results are presented in Figure 9.8.

A characteristic of deterministic experiments is that between every two
placements2 there is no idle container during at least one period.

Algorithm Flow.5.2 proposes a similar purchasing plan as the saturated
policy under the stochastic demand model. However, it purchases less con-
tainers at the first period because a deterministic algorithm does not need
to prepare for any worse case scenario. Under the stochastic demand model,
the non-saturated policy has a rather small container fleet size, and would
thus perform poorly under the actual demand scenario. Consequently, even

2and between the last placement and the last period of the time horizon

9.3. EXPERIMENTS 209

(a) Algorithm Sat.F , with cost 510 898.

(b) Algorithm Mdp.F , with cost 358 531.

Figure 9.6: Simulation results for the stochastic demand model.

210 CHAPTER 9. A REAL-LIFE APPLICATION

Figure 9.7: Number of zero-demands between two consecutive order arrivals.

Figure 9.8: Simulation results of Algorithm Flow.5.2 for the deterministic
demand model, with cost 322 770.

though the non-saturated algorithm provides a very good policy in average,
we should forecast the future demand as precisely as possible. Note that the
first demand of the time horizon has an mean of 167 and a standard devi-
ation of

√
5100 ≈ 71. Therefore, there is a huge variability in the possible

values of the demand, which is to be expected from the fluctuations of the
actual demands (see Figure 9.1a).

211

Chapter 10

Conclusion and Future
Research

The purpose of this thesis is to optimize container management in closed-
loop supply chains with increasing demand. The decisions to take are not
only the operational task of repositioning empty containers but also the
tactical choice of purchasing new containers. In this chapter we review our
findings and open up to future research directions.

10.1 Problem Statement and Contributions

In our logistic model, we assume that the supply chain partners have already
agreed to have the manufacturer send empty containers to its supplier on a
periodic basis.

We make three major assumptions. Firstly, the manufacturer pays a setup
cost whenever he purchases new containers. Secondly, there is an order-
ing delay and a delivery delay whenever containers are sent between the
two locations, which has a big impact on the optimal container fleet size.
Nonetheless, the total delay is assumed shorter than the ordering period.
Thirdly, the demands do not need to be entirely fulfilled with containers
as the supplier can buy expensive one-way disposables as substitute. This
situation corresponds to a lost-sales scenario.

These assumptions make the modeling more realistic but also much more
complex to solve. Removing the setup cost will likely make the manufacturer
purchase new containers at every period. This will hence significantly change
the structure of the solution. Moreover, as shown in Chapter 6, a policy
neglecting the lead times purchases much less containers than a policy taking
them into account. A policy neglecting the lead time generates performs
poorly when applied to the problem with positive lead times. Furthermore,
we experimentally showed in Chapters 6 and 7 that allowing disposables
greatly decreases the policy cost.

212 CHAPTER 10. CONCLUSION AND FUTURE RESEARCH

In the literature, very few papers consider a container management problem
with container purchasing. Our problem lies between two big streams of re-
search: lot-sizing problems and container management problems. Lot-sizing
problems consider the purchasing of items in a supply chain at a setup cost,
whereas container management problems usually study repositioning strate-
gies of empty containers between equally important locations. We consider
the purchasing and the repositioning of empty containers in a closed-loop
supply chain where the two actors, i.e. the manufacturer and its supplier,
have a different role. Our questionings are in a context of reverse logistics.
We assume that the partners of the supply chain have already agreed on the
structure of the reverse flow of empty containers.

Many researchers study a lot-sizing problem with remanufacturing where the
remanufacturing is very close to the return of containers. However, these
models neglect the clear relationship between the number of sold items and
the number of returning items. This thesis is one of the first attempts at
developing a lot-sizing model where the items are containers which always
return to the manufacturer after use.

10.2 Resolution Methodology

We study the deterministic and the stochastic versions of the problem. We
solve both versions by adapting the Wagner-Within algorithm. For every
pair of periods we compute a good purchase size and ordering policy between
these periods, assuming that they are consecutive placements. We build our
final policy from these partial policies using a dynamic program. In the
literature, the Wagner-Within framework has been successfully applied to
lot-sizing problems.

The deterministic problem (DCPP) is modeled as a minimum cost flow on a
network with fixed-plus-linear cost. Each of the partial policies is modeled as
a minimum linear-cost flow. Without either setup cost, disposables or lead
times, DCPP can be solved in polynomial time. However, under the three
problem assumptions, it is very complex to compute an optimal solution
and we conjecture the problem to be NP-hard.

We consider the special case where the demand is steadily increasing in
Chapter 4 and any demand pattern in Chapter 5. These algorithms are
experimentally shown to be fast and to produce near-optimal policies. In
Chapter 6, we improve our the computational speed of our algorithm by
making use of the network properties.

More precisely, we suppose in Chapter 4 that there is no need to buy dis-
posables shortly after a placement. We create partial policies which are
independent from each others and deduce an optimal solution in polynomial
time. In Chapter 5, we propose alternative algorithms and give an optimal-
ity certificate. The algorithm is proven to be optimal if there is exists an

10.3. FUTURE RESEARCH 213

optimal policy letting at least one container idle at each purchasing period.
Furthermore, we develop a more general framework to compute very good
policies but with a high time complexity.

Under stochastic demands, we model each partial policy as a Markov de-
cision process during a time window. Each partial policy is computed in
a backward sequence, starting from an approximation of the cost of every
state of the system at the end of the time window.

From a practitioner point of view, there is no clear way of defining what is
the best policy when the demand is stochastic, in contrast to the determin-
istic setting. We generalize four different strategies from the literature. All
of them take the ordering decision in an online manner, as late as possible.
The online strategy takes each purchasing decision as late as possible. Thus,
an optimal online policy minimizes the cost over every solution to the prob-
lem. On the opposite, the offline strategy takes the purchasing decision right
from the start. Compared to the online strategy, the offline strategy is not
using the demand realization and the state of the process at any purchasing
time besides the first one. We propose two compromises. The quasi-offline
strategy, which has been presented with the two above by Bookbinder and
Tan [11], decides on the purchasing times at the start whereas the actual
quantities are decided as late as possible. The quasi-online strategy gen-
eralizes in particular the rolling-horizon heuristic used by Silver and Meal
(see [106]). It decides at each placement on the purchasing size and the tim-
ing of the next placement. Our online and quasi-online algorithms compute
the optimal policy of their respective strategies. However, our offline and
quasi-offline algorithms make further approximations while using the same
framework as the quasi-online policy.

10.3 Future Research

This thesis focuses on a container purchasing problem in a simple 2-echelon
supply chain with a single supplier and a single manufacturer.

In the deterministic case, the extension to several suppliers is straightfor-
ward, as long as the total lead time between the manufacturer and each
supplier is shorter than one period length. An extension to longer lead
times follows with a higher complexity if the minimum distance between
two placement is shorter than the total ordering and delivery delays. How-
ever, many problems arise when we consider several manufacturer locations.
In particular, we must decide on either a joint or a separate setup cost over
every manufacturer locations, or else if only a single location allowed to
purchase new containers. Moreover, extending our algorithm appears chal-
lenging, because we need to find out a good repartition of the containers
between the manufacturer locations at purchasing time. Furthermore, the
NP-hardness of the deterministic problem is still an open question.

214 CHAPTER 10. CONCLUSION AND FUTURE RESEARCH

For the stochastic problem, we only solved the problem optimally for two
of the four strategies. While the quasi-offline heuristic seems nearly optimal
in every scenario, this is not the case for the offline heuristic. Our algo-
rithm performs very well when the distance between consecutive placements
is long enough so that the number of containers we should purchase does not
depend on the number of containers we need for the first period following
the placement. Otherwise, the reference state we used to approximate the
optimal purchase quantity underestimates the required fleet size because it
forgets the containers we need to have in stock and in transports at pur-
chasing. We proposed a second reference state using the optimal saturated
order policy to replace it. Nevertheless, it would be interesting to either find
a way to guess what is a good reference state for each cost structure. an
alternative to reference states keeping the same algorithmic structure
Moreover, a Markov decision process can be easily extended to several sup-
pliers and manufacturer, but this is at the cost of a huge increase in time
complexity. This makes our algorithms unpractical. The best way to solve
this curse of dimensionality would be to use approximate dynamic program-
ming, which we presented in chapter 8. As hinted in the literature [90], we
need a good knowledge on the solution structure if we want to use approxi-
mate dynamic programming to its full potential. In this thesis, we showed
the L�-convexity of the cost functions, which is a good start to analyze the
problem properties.
Another meaningful study would be to develop a container purchasing prob-
lem with demand forecasts. In particular, some companies consider a rolling
horizon using forecasts with different degrees of precision. For instance, we
may have an estimation of the daily demand for the coming two months,
then a estimation of the weekly demand for the following four months, and
an estimation of the monthly demand for the last six months of the one year
time-horizon.
Finally, further research is needed to find a simple formula approximating
the best ordering size, the best purchasing size and the best next period for
placement. In particular, a dual-balancing policy or a heuristic as presented
in Chapter 8 would greatly help practitioners.

215

Bibliography

[1] A. Aggarwal and J.K. Park. Improved algorithms for economic lot size
problems. Operations research, 41(3):549–571, 1993.

[2] RK. Ahuja, T.L. Magnanti, and J.B. Orlin. Network flows: theory,
algorithms, and applications. Prentice-Hall, Inc. Upper Saddle River,
New Jersey, 1993.

[3] D. Aksen, K. Altınkemer, and S. Chand. The single-item lot-sizing
problem with immediate lost sales. European Journal of Operational
Research, 147(3):558–566, 2003.

[4] M.A. Aloulou, A. Dolgui, and M.Y. Kovalyov. A bibliography of non-
deterministic lot-sizing models. International Journal of Production
Research, 52(8):2293–2310, 2014.

[5] Joachim Arts, Retsef Levi, Geert-Jan van Houtum, and Bert Zwart.
Base-stock policies for lost-sales models: Aggregation and asymp-
totics. 2015.

[6] R.G. Askin. A procedure for production lot sizing with probabilistic
dynamic demand. Aiie Transactions, 13(2):132–137, 1981.

[7] I. Barany, T. Van Roy, and L.A. Wolsey. Uncapacitated lot-sizing: The
convex hull of solutions. Springer, 1984.

[8] Jeff Bell. A simple and pragmatic approximation to the normal cu-
mulative probability distribution. Available at SSRN 2579686, 2015.

[9] Richard Bellman. The theory of dynamic programming. Technical
report, DTIC Document, 1954.

[10] Marco Bijvank and Iris FA Vis. Lost-sales inventory theory: A review.
European Journal of Operational Research, 215(1):1–13, 2011.

[11] J.H. Bookbinder and J-Y. Tan. Strategies for the probabilistic lot-
sizing problem with service-level constraints. Management Science,
34(9):1096–1108, 1988.

216 BIBLIOGRAPHY

[12] A. Chandoul, V-D. Cung, and F. Mangione. Reusable containers
within reverse logistic context. 2007.

[13] A. Chandoul, V-D. Cung, and F. Mangione. Optimal repositioning and
purchasing policies in returnable container management. In Industrial
Engineering and Engineering Management, 2009. IEEM 2009. IEEE
International Conference on, pages 1439–1443. IEEE, 2009.

[14] W. Chen, M. Dawande, and G. Janakiraman. Fixed-dimensional
stochastic dynamic programs: An approximation scheme and an in-
ventory application. Operations Research, 62(1):81–103, 2014.

[15] R.K. Cheung and C-Y. Chen. A two-stage stochastic network model
and solution methods for the dynamic empty container allocation
problem. Transportation science, 32(2):142–162, 1998.

[16] Chi Chiang. Optimal ordering policies for periodic-review systems
with replenishment cycles. European Journal of Operational Research,
170(1):44–56, 2006.

[17] A. Cimino, R. Diaz, F. Longo, and G. Mirabelli. Empty contain-
ers repositioning: A state of the art overview. In Proceedings of the
2010 Spring Simulation Multiconference, page 72. Society for Com-
puter Simulation International, 2010.

[18] T.G. Crainic, M. Gendreau, and P. Dejax. Dynamic and stochastic
models for the allocation of empty containers. Operations research,
41(1):102–126, 1993.

[19] P.J. Dejax and T.G. Crainic. Survey paper-a review of empty flows
and fleet management models in freight transportation. Transportation
Science, 21(4):227–248, 1987.

[20] M. Di Francesco. New optimization models for empty container man-
agement. 2007.

[21] W.A. Donaldson. Inventory replenishment policy for a linear trend in
demand–an analytical solution. Operational Research Quarterly, pages
663–670, 1977.

[22] J-X. Dong and D-P. Song. Container fleet sizing and empty reposi-
tioning in liner shipping systems. Transportation Research Part E:
Logistics and Transportation Review, 45(6):860–877, 2009.

[23] Jing-Xin Dong and Dong-Ping Song. Quantifying the impact of inland
transport times on container fleet sizing in liner shipping services with
uncertainties. OR spectrum, 34(1):155–180, 2012.

BIBLIOGRAPHY 217

[24] A.L. Erera, J.C. Morales, and M. Savelsbergh. Robust optimization
for empty repositioning problems. Operations Research, 57(2):468–
483, 2009.

[25] A.L. Erera, J.C. Morales, and Martin Savelsbergh. Global intermodal
tank container management for the chemical industry. Transportation
Research Part E: Logistics and Transportation Review, 41(6):551–566,
2005.

[26] R.E. Erickson, C.L. Monma, and A.F. Veinott Jr. Send-and-split
method for minimum-concave-cost network flows. Mathematics of Op-
erations Research, 12(4):634–664, 1987.

[27] A. Federgruen and M. Tzur. A simple forward algorithm to solve
general dynamic lot sizing models with n periods in 0 (n log n) or 0
(n) time. Management Science, 37(8):909–925, 1991.

[28] G. Gao. An operational approach for container control in liner ship-
ping. Logistics and Transportation Review, 30(3):267–282, 1994.

[29] M.R. Garey and D.S. Johnson. Computers and intractability: a guide
to the theory of np-completeness. 1979. San Francisco, LA: Freeman,
1979.

[30] C.H. Glock and T. Kim. Container management in a single-vendor-
multiple-buyer supply chain. Logistics Research, 7(1):1–16, 2014.

[31] B. Golany, J. Yang, and G. Yu. Economic lot-sizing with remanufac-
turing options. Iie Transactions, 33(11):995–1003, 2001.

[32] David A Goldberg, Dmitriy A Katz-Rogozhnikov, Yingdong Lu,
Mayank Sharma, and Mark S Squillante. Asymptotic optimality of
constant-order policies for lost sales inventory models with large lead
times. Mathematics of Operations Research, 2016.

[33] S.C. Graves and J.B. Orlin. A minimum concave-cost dynamic network
flow problem with an application to lot-sizing. Networks, 15(1):59–71,
1985.

[34] Tore Grünert and Stefan Irnich. Optimierung im Transport. Shaker
Verlag, 2005.

[35] Y-P. Guan, S. Ahmed, G.L. Nemhauser, and A.J. Miller. A branch-
and-cut algorithm for the stochastic uncapacitated lot-sizing problem.
Mathematical Programming, 105(1):55–84, 2006.

[36] Y-P. Guan and A.J. Miller. Polynomial-time algorithms for stochastic
uncapacitated lot-sizing problems. Operations Research, 56(5):1172–
1183, 2008.

218 BIBLIOGRAPHY

[37] G.M. Guisewite and P.M. Pardalos. Minimum concave-cost network
flow problems: Applications, complexity, and algorithms. Annals of
Operations Research, 25(1):75–99, 1990.

[38] G.M. Guisewite and P.M. Pardalos. A polynomial time solvable con-
cave network flow problem. Networks, 23(2):143–147, 1993.

[39] N. Halman, D. Klabjan, C-L. Li, J. Orlin, and D. Simchi-Levi. Fully
polynomial time approximation schemes for stochastic dynamic pro-
grams. SIAM Journal on Discrete Mathematics, 28(4):1725–1796,
2014.

[40] N. Halman, D. Klabjan, M. Mostagir, J. Orlin, and D. Simchi-Levi. A
fully polynomial-time approximation scheme for single-item stochastic
inventory control with discrete demand. Mathematics of Operations
Research, 34(3):674–685, 2009.

[41] F.W. Harris. How many parts to make at once. 1913.

[42] K.K. Haugen, A. Løkketangen, and D.L. Woodruff. Progressive hedg-
ing as a meta-heuristic applied to stochastic lot-sizing. European Jour-
nal of Operational Research, 132(1):116–122, 2001.

[43] Q. He. Topics in discrete optimization: models, complexity and algo-
rithms. 2013.

[44] Q. He, S. Ahmed, and G.L. Nemhauser. Minimum concave cost flow
over a grid network. Mathematical Programming, 150(1):79–98, 2012.

[45] David C Heath and Peter L Jackson. Modeling the evolution of
demand forecasts ith application to safety stock analysis in produc-
tion/distribution systems. IIE transactions, 26(3):17–30, 1994.

[46] M.J.R. Helmrich, R. Jans, W.J. van den Heuvel, and A.P.M. Wagel-
mans. Economic lot-sizing with remanufacturing: complexity and effi-
cient formulations. Technical report, Econometric Institute Research
Papers, 2010.

[47] W.J. Hopp. Ten most influential papers of management science’s first
fifty years. Management Science, 50(12 supplement):1763–1763, 2004.

[48] Woonghee Tim Huh and Ganesh Janakiraman. On the optimal pol-
icy structure in serial inventory systems with lost sales. Operations
Research, 58(2):486–491, 2010.

[49] Woonghee Tim Huh, Ganesh Janakiraman, John A Muckstadt, and
Paat Rusmevichientong. An adaptive algorithm for finding the op-
timal base-stock policy in lost sales inventory systems with censored
demand. Mathematics of Operations Research, 34(2):397–416, 2009.

BIBLIOGRAPHY 219

[50] Woonghee Tim Huh, Ganesh Janakiraman, John A Muckstadt, and
Paat Rusmevichientong. Asymptotic optimality of order-up-to policies
in lost sales inventory systems. Management Science, 55(3):404–420,
2009.

[51] G. Hurley, P. Jackson, R. Levi, R.O. Roundy, and D.B. Shmoys. New
policies for stochastic inventory control models–theoretical and com-
putational results. Technical report, Citeseer, 2007.

[52] A. Imai, K. Shintani, and S. Papadimitriou. Multi-port vs. hub-and-
spoke port calls by containerships. Transportation Research Part E:
Logistics and Transportation Review, 45(5):740–757, 2009.

[53] N. Jami and M. Schröder. Tactical and operational models for the
management of a warehouse. In Dynamics in Logistics, pages 655–
665. Springer, 2016.

[54] N. Jami, M. Schroeder, and K-H. Küfer. A model and polynomial
algorithm for purchasing and repositioning containers. Management
and Control of Production and Logistics, 7, 2016.

[55] N. Jami, M. Schroeder, and K-H. Küfer. Online and offline container
purchasing and repositioning problem. International Conference on
Computational Logistics, 7:159–174, 2016.

[56] G. Janakiraman and J.A. Muckstadt. Periodic review inventory con-
trol with lost sales and fractional lead times. School of Operations
Research and Industrial Engineering, Cornell University, 2004.

[57] Ganesh Janakiraman, Sridhar Seshadri, and J George Shanthikumar.
A comparison of the optimal costs of two canonical inventory systems.
Operations Research, 55(5):866–875, 2007.

[58] Søren Glud Johansen and Anders Thorstenson. Pure and restricted
base-stock policies for the lost-sales inventory system with periodic
review and constant lead times. In 15th International Symposium on
Inventories, 2008.

[59] David S Johnson. The np-completeness column: an ongoing guide.
Journal of algorithms, 13(3):502–524, 1992.

[60] H. Jula, M. Dessouky, P. Ioannou, and A. Chassiakos. Container move-
ment by trucks in metropolitan networks: modeling and optimization.
Transportation Research Part E: Logistics and Transportation Review,
41(3):235–259, 2005.

[61] IA. Karimi, M. Sharafali, and H. Mahalingam. Scheduling tank con-
tainer movements for chemical logistics. AIChE journal, 51(1):178–
197, 2005.

220 BIBLIOGRAPHY

[62] S. Karlin and H. Scarf. Inventory models of the arrow-harris-marschak
type with time lag. Studies in the mathematical theory of inventory
and production, (1):155, 1958.

[63] G.P. Kiesmüller and E.A. Van der Laan. An inventory model with
dependent product demands and returns. International journal of
production economics, 72(1):73–87, 2001.

[64] A.J. Kleywegt, A. Shapiro, and T. Homem-de Mello. The sample
average approximation method for stochastic discrete optimization.
SIAM Journal on Optimization, 12(2):479–502, 2002.

[65] L. Kroon and G. Vrijens. Returnable containers: an example of reverse
logistics. International Journal of Physical Distribution & Logistics
Management, 25(2):56–68, 1995.

[66] S-W. Lam, L-H. Lee, and L-C. Tang. An approximate dynamic
programming approach for the empty container allocation problem.
Transportation Research Part C: Emerging Technologies, 15(4):265–
277, 2007.

[67] C-Y. Lee, S. Çetinkaya, and W. Jaruphongsa. A dynamic model for
inventory lot sizing and outbound shipment scheduling at a third-party
warehouse. Operations Research, 51(5):735–747, 2003.

[68] L-H. Lee, E-P. Chew, and Y. Luo. Inventory-based empty container
repositioning in a multi-port system. In Proceedings of the First Inter-
national Conference on Advanced Communications and Computation
(INFOCOMP 2011), pages 23–29, 2011.

[69] R. Levi, G. Janakiraman, and M. Nagarajan. A 2-approximation al-
gorithm for stochastic inventory control models with lost sales. Math-
ematics of Operations Research, 33(2):351–374, 2008.

[70] R. Levi, M. Pál, R.O. Roundy, and D.B. Shmoys. Approximation
algorithms for stochastic inventory control models. Mathematics of
Operations Research, 32(2):284–302, 2007.

[71] R. Levi, R.O. Roundy, D.B. Shmoys, and V-A. Truong. Approxima-
tion algorithms for capacitated stochastic inventory control models.
Operations Research, 56(5):1184–1199, 2008.

[72] C-B. Li, F. Liu, H-J. Cao, and Q-L. Wang. A stochastic dynamic
programming based model for uncertain production planning of re-
manufacturing system. International Journal of Production Research,
47(13):3657–3668, 2009.

BIBLIOGRAPHY 221

[73] J-A. Li, S.C.H. Leung, Y. Wu, and K. Liu. Allocation of empty con-
tainers between multi-ports. European Journal of Operational Re-
search, 182(1):400–412, 2007.

[74] J-A. Li, K. Liu, S.C.H. Leung, and K.K. Lai. Empty container man-
agement in a port with long-run average criterion. Mathematical and
Computer Modelling, 40(1):85–100, 2004.

[75] S. Meisel. Anticipatory optimization for dynamic decision making,
volume 51. Springer Science & Business Media, 2011.

[76] R. A Melo and L.A. Wolsey. Uncapacitated two-level lot-sizing. Op-
erations Research Letters, 38(4):241–245, 2010.

[77] R.A. Melo and L.A. Wolsey. Mip formulations and heuristics for two-
level production-transportation problems. Computers & Operations
Research, 39(11):2776–2786, 2012.

[78] Douglas C Montgomery, Elizabeth A Peck, and G Geoffrey Vining.
Introduction to linear regression analysis. John Wiley & Sons, 2015.

[79] I-K. Moon, A-D. Do Ngoc, and Y-S. Hur. Positioning empty containers
among multiple ports with leasing and purchasing considerations. OR
spectrum, 32(3):765–786, 2010.

[80] T.E. Morton. Bounds on the solution of the lagged optimal inventory
equation with no demand backlogging and proportional costs. SIAM
review, 11(4):572–596, 1969.

[81] T.E. Morton. The near-myopic nature of the lagged-proportional-cost
inventory problem with lost sales. Operations Research, 19(7):1708–
1716, 1971.

[82] John A Muckstadt and Amar Sapra. Principles of inventory manage-
ment: When you are down to four, order more. Springer Science &
Business Media, 2010.

[83] K. Murota. Discrete convex analysis. SIAM, 2003.

[84] A. Olivo, P. Zuddas, M. Di Francesco, and A. Manca. An opera-
tional model for empty container management. Maritime Economics
& Logistics, 7(3):199–222, 2005.

[85] J.B. Orlin. A faster strongly polynomial minimum cost flow algorithm.
Operations research, 41(2):338–350, 1993.

[86] U. Özen, M.K. Doğru, and S.A. Tarim. Static-dynamic uncertainty
strategy for a single-item stochastic inventory control problem. Omega,
40(3):348–357, 2012.

222 BIBLIOGRAPHY

[87] G.S. Piperagkas, I. Konstantaras, K. Skouri, and K.E. Parsopoulos.
Solving the stochastic dynamic lot-sizing problem through nature-
inspired heuristics. Computers & Operations Research, 39(7):1555–
1565, 2012.

[88] Y. Pochet and L.A. Wolsey. Production planning by mixed integer
programming. Springer Science & Business Media, 2006.

[89] Warren B Powell. What you should know about approximate dynamic
programming. Naval Research Logistics (NRL), 56(3):239–249, 2009.

[90] Warren B Powell. Approximate Dynamic Programming: Solving the
Curses of Dimensionality, volume 842. John Wiley & Sons, 2011.

[91] Warren B Powell and Huseyin Topaloglu. Stochastic programming
in transportation and logistics. Handbooks in operations research and
management science, 10:555–635, 2003.

[92] I.N. Pujawan. The effect of lot sizing rules on order variability. Euro-
pean Journal of Operational Research, 159(3):617–635, 2004.

[93] I.N. Pujawan and E.A. Silver. Augmenting the lot sizing order quan-
tity when demand is probabilistic. European Journal of Operational
Research, 188(3):705–722, 2008.

[94] K. Richter and M. Sombrutzki. Remanufacturing planning for the
reverse wagner/whitin models. European Journal of Operational Re-
search, 121(2):304–315, 2000.

[95] K. Richter and J. Weber. The reverse wagner/whitin model with vari-
able manufacturing and remanufacturing cost. International Journal
of Production Economics, 71(1):447–456, 2001.

[96] R. Rossi, O.A. Kilic, and S.A. Tarim. A unified modeling approach for
the static-dynamic uncertainty strategy in stochastic lot-sizing. arXiv
preprint arXiv:1307.5942, 2013.

[97] R. Rossi, S.A. Tarim, B. Hnich, and S. Prestwich. Replenishment
planning for stochastic inventory systems with shortage cost. In In-
tegration of AI and OR Techniques in Constraint Programming for
Combinatorial Optimization Problems, pages 229–243. Springer, 2007.

[98] R. Rossi, S.A. Tarim, B. Hnich, and S. Prestwich. Computing re-
plenishment cycle policy under non-stationary stochastic lead time.
International Journal of Production Economics. v127 i1, pages 180–
189, 2008.

BIBLIOGRAPHY 223

[99] R. Rossi, S.A. Tarim, B. Hnich, and S. Prestwich. A state space
augmentation algorithm for the replenishment cycle inventory policy.
International Journal of Production Economics, 133(1):377–384, 2011.

[100] R. Rossi, S.A. Tarim, B. Hnich, and S. Prestwich. Constraint program-
ming for stochastic inventory systems under shortage cost. Annals of
Operations Research, 195(1):49–71, 2012.

[101] M. Schroeder, N. Jami, U. Beissert, and M. Motta. Konzeption-
ierung eines integrierten modellbasierten ansatzes zur prognose von
transportlogistischen und intralogistischen ereignissen in logistiknet-
zwerken. Simulation in Production and Logistics 2015, 16(157):147–
156, 2015.

[102] T. Schulz. A new silver–meal based heuristic for the single-item dy-
namic lot sizing problem with returns and remanufacturing. Interna-
tional Journal of Production Research, 49(9):2519–2533, 2011.

[103] WS. Shen and CM. Khoong. A dss for empty container distribution
planning. Decision Support Systems, 15(1):75–82, 1995.

[104] C. Shi. Approximation algorithms for stochastic optimization prob-
lems in operations management. Wiley Encyclopedia of Operations
Research and Management Science, 2014.

[105] C. Shi, H. Zhang, X. Chao, and R. Levi. Approximation algorithms
for capacitated stochastic inventory systems with setup costs. Naval
Research Logistics (NRL), 61(4):304–319, 2014.

[106] E. Silver. Inventory control under a probabilistic time-varying, de-
mand pattern. Aiie Transactions, 10(4):371–379, 1978.

[107] E.A. Silver and H.C. Meal. A heuristic for selecting lot size quantities
for the case of a deterministic time-varying demand rate and discrete
opportunities for replenishment. Production and inventory manage-
ment, 14(2):64–74, 1973.

[108] D. Simchi-Levi, X. Chen, and J. Bramel. The logic of logistics: the-
ory, algorithms, and applications for logistics management. Springer
Science & Business Media, 2013.

[109] D-P. Song. Optimal threshold control of empty vehicle redistribution
in two depot service systems. Automatic Control, IEEE Transactions
on, 50(1):87–90, 2005.

[110] D-P. Song. Characterizing optimal empty container reposition policy
in periodic-review shuttle service systems. Journal of the Operational
Research Society, 58(1):122–133, 2007.

224 BIBLIOGRAPHY

[111] D-P. Song and J-X. Dong. Empty container repositioning. In Hand-
book of Ocean Container Transport Logistics, pages 163–208. Springer,
2015.

[112] D-P. Song and C.F. Earl. Optimal empty vehicle repositioning and
fleet-sizing for two-depot service systems. European Journal of Oper-
ational Research, 185(2):760–777, 2008.

[113] D-P. Song and Q. Zhang. A fluid flow model for empty container
repositioning policy with a single port and stochastic demand. SIAM
Journal on Control and Optimization, 48(5):3623–3642, 2010.

[114] D-P. Song and Q. Zhang. 14 optimal inventory control for empty
containers in a port with random demands and repositioning delays1.
International Handbook of Maritime Economics, page 301, 2011.

[115] C.R. Sox. Dynamic lot sizing with random demand and non-stationary
costs. Operations Research Letters, 20(4):155–164, 1997.

[116] S.A. Tarim, B. Hnich, R. Rossi, and S. Prestwich. Cost-based fil-
tering techniques for stochastic inventory control under service level
constraints. Constraints, 14(2):137–176, 2009.

[117] S.A. Tarim and B.G. Kingsman. The stochastic dynamic produc-
tion/inventory lot-sizing problem with service-level constraints. Inter-
national Journal of Production Economics, 88(1):105–119, 2004.

[118] S.A. Tarim and B.G. Kingsman. Modelling and computing (r n, s n)
policies for inventory systems with non-stationary stochastic demand.
European Journal of Operational Research, 174(1):581–599, 2006.

[119] R.H. Teunter, Z.P. Bayindir, andW.V. Den Heuvel. Dynamic lot sizing
with product returns and remanufacturing. International Journal of
Production Research, 44(20):4377–4400, 2006.

[120] H. Tunc, O. A Kilic, S.A. Tarim, and B. Eksioglu. A reformulation for
the stochastic lot sizing problem with service-level constraints. Oper-
ations Research Letters, 42(2):161–165, 2014.

[121] W. Van den Heuvel. On the complexity of the economic lot-sizing
problem with remanufacturing options. Technical report, Econometric
Institute Research Papers, 2004.

[122] W. van den Heuvel. The economic lot-sizing problem: New results
and extensions. Erasmus Research Institute of Management (ERIM),
2006.

BIBLIOGRAPHY 225

[123] W. Van den Heuvel and A.P.M. Wagelmans. Worst-case analysis for
a general class of online lot-sizing heuristics. Operations research,
58(1):59–67, 2010.

[124] S. Van Hoesel, H.E. Romeijn, D.R. Morales, and A.P.M. Wagelmans.
Integrated lot sizing in serial supply chains with production capacities.
Management Science, 51(11):1706–1719, 2005.

[125] V. Vargas. An optimal solution for the stochastic version of the
wagner–whitin dynamic lot-size model. European Journal of Oper-
ational Research, 198(2):447–451, 2009.

[126] A.F. Veinott Jr. Minimum concave-cost solution of leontief substitu-
tion models of multi-facility inventory systems. Operations Research,
17(2):262–291, 1969.

[127] A. Wagelmans, S. Van Hoesel, and A. Kolen. Economic lot sizing: an
o (n log n) algorithm that runs in linear time in the wagner-whitin
case. Operations Research, 40(1-supplement-1):S145–S156, 1992.

[128] H.M. Wagner and T.M. Whitin. Dynamic version of the economic lot
size model. Management science, 5(1):89–96, 1958.

[129] M.R. Wagner. Online lot-sizing problems with ordering, holding and
shortage costs. Operations Research Letters, 39(2):144–149, 2011.

[130] N-M. Wang, Z-W. He, J-C. Sun, H-Y. Xie, and W. Shi. A single-item
uncapacitated lot-sizing problem with remanufacturing and outsourc-
ing. Procedia Engineering, 15:5170–5178, 2011.

[131] U. Wemmerlöv. The behavior of lot-sizing procedures in the presence
of forecast errors. Journal of Operations Management, 8(1):37–47,
1989.

[132] W.W. White. Dynamic transshipment networks: An algorithm and
its application to the distribution of empty containers. Networks,
2(3):211–236, 1972.

[133] Linwei Xin and David A Goldberg. Optimality gap of constant-order
policies decays exponentially in the lead time for lost sales models.
arXiv preprint arXiv:1409.1499, 2014.

[134] J. Yang, B. Golany, and G. Yu. A concave-cost production plan-
ning problem with remanufacturing options. Naval Research Logistics
(NRL), 52(5):443–458, 2005.

[135] L. Yi. Maritime empty container repositioning with inventory-based
control. PhD thesis, 2012.

226 BIBLIOGRAPHY

[136] L. Yin. Operational model for empty container repositioning. PhD
thesis, 2012.

[137] W.I. Zangwill. Minimum concave cost flows in certain networks. Man-
agement Science, 14(7):429–450, 1968.

[138] W.I. Zangwill. A backlogging model and a multi-echelon model of
a dynamic economic lot size production system-a network approach.
Management Science, 15(9):506–527, 1969.

[139] B. Zhang, C.T. Ng, and T.C.E. Cheng. Multi-period empty container
repositioning with stochastic demand and lost sales. Journal of the
Operational Research Society, 65(2):302–319, 2013.

[140] M-J. Zhang, S. Küçükyavuz, and H. Yaman. A polyhedral study of
multiechelon lot sizing with intermediate demands. Operations re-
search, 60(4):918–935, 2012.

[141] P. Zipkin. On the structure of lost-sales inventory models. Operations
Research, 56(4):937–944, 2008.

[142] Paul Zipkin. Old and new methods for lost-sales inventory systems.
Operations Research, 56(5):1256–1263, 2008.

[143] Paul Herbert Zipkin and Paul H Zipkin. Foundations of inventory
management. 2000.

227

Appendix A

Scientific Career

Jul 2013 - Sep 2016 PhD Candidate in Mathematics at the Technical
University of Kaiserslautern, Germany (funded by
a Scholarship of the Fraunhofer ITWM).

Jan 2013 - Jun 2013 Project Studies in Advanced Technology (ProSat) at
the Technical university of Kaiserslautern, Germany
(funded by a scholarship of the Fraunhofer Institute
for Industrial Mathematics (ITWM))

Jul 2012 - Nov 2012 Engineer in Optimization at Eurodecision, Versailles,
France.

Oct 2010 - Jun 2012 Diploma Study in Computer Science at the Univer-
sity of Karlsruhe (KIT), Germany.

Title of the Diploma thesis: Point Labeling with
Leaders for Convex Boundaries.

Sep 2008 - Sep 2010 Diploma Study in Computer Science and Applied
Mathematics at the engeneering graduate school
Grenoble INP - Ensimag of Grenoble, France.

Sep 2006 - Jun 2008 Higher School Preparatory Classes in mathematics
(MP*) at the Highschool La Martiniere Monplaisir,
Lyon, France.

229

Appendix B

Akademischer Werdegang

Jul. 2013 - Sep 2016 Doktorand in Mathematik an der Technischen
Universität Kaiserslautern, Deutschland (gefördert
durch ein Stipendium des Fraunhofer ITWM).

Jan 2013 - Jun 2013 Project Studies in Advanced Technology (ProSat)
an der Technischen Universität Kaiserslautern,
Deutschland (gefördert durch ein Stipendium des
Fraunhofer ITWM).

Jul 2012 - Nov 2012 Ingenieur in Optimierung bei Eurodecision, Ver-
sailles, Frankreich.

Okt 2010 - Jun 2012 Diplom Informatik am Karlsruher Institut für Tech-
nology (KIT), Deutschland.

Titel der Diplomarbeit: Point Labeling with Leaders
for Convex Boundaries.

Sep 2008 - Sep 2010 Diplom in Informatik und angewandter Mathematik
an Grenoble INP - Ensimag in Grenoble, Frankreich.

Sep 2006 - Jun 2008 Vordiplom “classes préparatoires” in Mathematik
(MP*) an La Martiniere Monplaisir, Lyon, Frank-
reich.

231

Appendix C

Publications

The following publications contain parts of this thesis or precursory work:

[53] N Jami, M Schröder. Tactical and Operational Models for the Man-
agement of a Warehouse. Dynamics in Logistics :655–665, 2016.

[101] M Schröder, N Jami, U Beissert, M Motta. Konzeptionierung eines
integrierten modellbasierten Ansatzes zur Prognose von transportl-
ogistischen und intralogistischen Ereignissen in Logistiknetzwerken.
Tagungsband der 16. ASIM Fachtagung Simulation in Produktion und
Logistik, 23.-25.09.2015, Dortmund, 2015.

[54] N Jami, M Schröder, KH Küfer. A Model and Polynomial Algorithm
for Purchasing and Repositioning Containers. 7th IFAC Conference
on Management and Control of Production and Logistics. Proceedings
of the MCPL 2016.

[55] N Jami, M Schröder, KH Küfer. Online and Offline Container Pur-
chasing and Repositioning Problem. 7th International Conference on
Computational Logistics, 2016.

The objective of this thesis is to develop models and algorithms to plan the purchasing
of reusable containers in a closed-loop supply chain where the demand is increasing.
We restrict our study to a periodic review process between a single manufacturer
and a single supplier. Each item is transported either in a reusable container or in a
single-use disposable. Furthermore, a setup cost is paid every time new containers
are purchased. Consequently, our model is similar to a lot-sizing problem with return

as well as a stochastic demand. In the deterministic setting, we use dynamic

algorithms. When the demand is stochastic, we use the Markov decision process
framework to develop pseudo-polynomial time heuristics for four different strategies.

up the computations. The thesis concludes with an application on a real-life supply
chain.

FRAUNHOFER VERLAG

9 783839 612101

ISBN 978-3-8396-1210-1

