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Abstract. A structural knowledge-based search method is utilized for the 

estimation of geometric transforms from airborne video sequences. Examples are 
projective planar homographies and constraints such as the fundamental matrix. These 
estimations are calculated from correspondences of interest points between two 
images. Different approaches are discussed to cope with the problem of outlier-
correspondences. To ensure any-time performance the search process is implemented 
in a data-driven production system. The pose estimation from planar homographies is 
compared to estimations from fundamental matrices. A fusion of both approaches is 
proposed. The image processing is performed by bottom-up structural analysis using 
an assessment-driven control. Examples are from the thermal spectral domain. 

1 Introduction 

Pose trajectory estimation from moving cameras is an important task for scene 
reconstruction as well as navigation.  Research in this field was stimulated by 
development of mobile autonomous robots. Particularly, methods using projective 
geometry were utilized [3][6][9]. Recently, unmanned aircraft equipped with video 
cameras are gaining increased attention for civil as well as military applications like 
traffic monitoring [16] or surveillance tasks.  The appearance of a scene viewed from 
an aircraft depends on the flight altitude and the height of the sensed objects. If this 
ratio is large, the scene will appear flat. This implies a different approach than a 
spatial scene.   

 Flat scenes are treated by planar homographies. These may be estimated by e.g.  
minimizing the sum of absolute errors [1]. Given a Gaussian distribution on the 
displacements of the corresponding image positions it can be shown that the 
minimization of the sum of the squared errors is the optimal solution [9]. Actually, the 
direct linear transform (DLT) methods proposed today minimize an “algebraic” 
squared error sum that is not identical with the squared displacement error in the 2-d 
image coordinates. However, it has been shown that this error minimization 
approximates the Gaussian minimization very closely provided that the coordinates 
are normalized in a proper way [6]. The main disadvantage of minimization of 
squared error sums is the sensitivity to the inclusion of outliers into the calculation. 
An outlier is a correspondence that has been erroneously constructed. It does not 



follow the distribution assumptions underlying the estimation. Because of its possibly 
large displacement and particularly because of squaring, it may have a large weight in 
the computation where it should be neglected. Outliers cannot be avoided if automatic 
estimation is the task. Therefore so-called “robust” methods are proposed.  

Section 2 presents and compares three robust estimation methods to solve the 
problem of planar homography estimation with DLT squared error sum minimization. 
The term “outlier” and its meaning in the context of homography estimation from 
airborne videos is further investigated in Section 3. Section 4 compares the pose 
estimation from planar homographies to estimations from fundamental matrices.  A 
fusion of both approaches is proposed in Section 5. The image processing is 
performed by data-driven structural analysis and an assessment-driven control. All 
example data are taken from the thermal spectral domain to ensure independence of 
the daylight. 

2. Robust Estimation of Planar Homographies  

Robust estimation methods may be classified into approaches that assume the 
existence of mutually exclusive sets of inliers and outliers (Section 2.2) and others 
that assign weights to the correspondences (Section 2.1).  

2.1 Iterative Re-weighting Least Squares (IRLS) 

An example of the assigning of weights to the correspondences is iterative re-
weighting least squares [7]. The inverse of the residual of the least squares solution of 
each correspondence of the complete sample is used to re-weight its influence. 
Correspondences yielding a large residual error will be punished and correspondences 
yielding a small error will gain more influence. If a large portion of the 
correspondences is expected to be wrong, a local minima problem may occur. The 
convergence of IRLS to the desired minimum is theoretically not guaranteed. It may 
end up with zero-error and thus infinite weight on an arbitrary minimal sample and 
random small weights on all other members. However, in our examples we found that 
it does converge slowly but robustly to a good solution. IRLS-estimation of 2D-
homographies is available in public code libraries [17]. Proposals are made for the 
handling of occlusion outliers and lighting changes within the IRLS-method [8].   

2.2 Random Sample Consensus 

The standard method for inliers-outliers discrimination is the random sample 
consensus approach (RANSAC) [4]. The calculation is performed on minimal 
samples which are randomly picked from the complete sample of correspondences. 
The result of the calculation is tested on all the other correspondences giving a 
residual error. If this error is smaller than a threshold ts, the correspondence will be 
termed to be in consensus with the actual sample. After repeating this procedure a 
sufficient number of times the search is terminated. The termination criterion bases on 



a minimum size of the current best consensus m and a maximal number of cycles nc. 
There is an elaborate theory for the choice of these parameters (ts, m, nc) from the 
expected portion of outliers, a standard deviation of the error of the position of inliers, 
and a significance level [6]. The sample with the highest consensus is chosen and the 
corresponding consensus set is used to determine the estimation by mean squared 
error minimization.  
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Fig 1: Image pair of a thermal video sequence and corresponding points. a,b) Best GSAC-
sample in black, other correspondences in white; c,d) RANSAC-sample with innlier (black) 
and outlier (white); g,h) incorrect correspondence excluded by both methods; e,f) incorrect 
correspondence found as RANSAC-inlier; i) greater section around that location showing that it 
results from partial occlusion 

 



2.3 Good Sample Consensus 

Some authors proposed to modify random sampling by taking also the quality of the 
samples into account [11], [13]. This obvious idea is not new and has already been 
touched in the original paper of RANSAC [4].  For such improvements a criterion 
always has to be defined that assesses the suitability of a sample for the intended 
calculation. For example the position of the corresponding points within the images 
will be important for estimating homographies. They should cover as much area of 
the images as possible. Moreover, more than two collinear points should be avoided. 
Fig. 1 shows images with large homogenous regions and the structure concentrated in 
few regions. Because RANSAC only counts the number of mutually consistent 
correspondences, it may concentrate too much on densely structured regions and tend 
to under-estimate the importance of good but rather isolated correspondences 
elsewhere, e.g. the correspondences in the lower left corner that are missing in the 
inliers set of RANSAC.  

In GSAC the assessment criterion is used to control the search for a good sample 
on which the solution is based. The correspondences in the lower left corner are now 
included. Section 5 explains how GSAC can be implemented by a structural method.      

3. Classification of Correspondences 

1) Correspondences consistent with the homography model: A correspondence 
between structures in two different images will be called correct if the location on the 
object in the scene that caused them is the same. Additionally they must fulfill the 
model constraint. For homography estimation only those objects that are located on 
the assumed plane can cause correct correspondences. In urban terrain this plane will 
be at the average height of the buildings. Of course, we will have to tolerate small 
deviations from this constraint. The residual error will mainly result from the 
localization error of the 2d-structures and may be modeled as normally distributed.  
 
2) Correspondences consistent with a more general geometric model: In an urban 
area there may be tall buildings that are jutting out of the plane. Corresponding 
structures resulting from the roofs of such tall buildings will violate the homography 
constraint. Still, they may be correct in the sense that they come from the same 
physical property. Their deviation from the homography follows a different rationale: 
They will be located close to the epipolar line which goes through the point 
determined by the homography and through the epipole. They should be excluded 
from the estimation of the scene plane, but they may be included into the estimation 
of the camera rotation and epipole.  
 
3) Correspondences from moving objects: Video sequences taken by a moving 
sensor yield image pairs that were obtained at different time instants. Moving objects 
in the scene may cause semantically correct correspondences that neither follow the 
planar homography nor the epipolar constraint. However, such correspondences from 
moving objects are required for applications like traffic monitoring. Fig 2 shows such 



a correspondence resulting from a moving vehicle. The correspondence is indicated as 
a white line, while other correspondences are drawn in black. 
  

a)   b)   

Fig 2: Nadir looking sequence taken from urban terrain; example of a correct correspondence 
that is an outlier to the epipolar constraint estimation (a moving car on the ground); a) larger 
sections with surroundings, b) corresponding structures 

4) False Correspondences: Using an automatic method to construct the 
correspondences we cannot avoid the handling of semantically false correspondences. 
Most often these will result from occlusion phenomena. Fig. 1e and Fig. 1f show an 
example, where the outlines of a warm flat building roof (white) are partially 
occluded by a tall building in front of it (grey) – compare Fig. 1i. There is a structure 
correspondence located on the T-junctions caused by this occlusion.  Such 
correspondences do not follow any predictable error function. They may accidentally 
be inside the error bounds of a homography estimation like the RANSAC-estimation 
displayed in Fig. 1a and Fig. 1b.   

4. Robust Estimation of Epipolar Constraints  

A central theorem of projective geometry states that from a pair of views of a scene 
the mutual orientation and translation of the cameras can be calculated from at least 
seven corresponding point-pairs (x, x’) and that the position of the corresponding 
points in the 3d scene also follows from this reconstruction [6]. This is a constructive 
argument that is based on the inference of the fundamental matrix F from the 
correspondence data. This matrix formulates the epipolar constraint by stating 
xTFx’=0. It can also be estimated from this simple linear equation using at least eight 
correspondences. Such estimation is depicted in Fig. 3e and Fig. 3f. Problems with 
instability of the solution will occur, if all the correct correspondences are located in 
one plane. This happens in flat terrain. For testing this automatically, samples that are 
inconsistent with the homography model (see Section 3 class 2) are searched. Fig. 3e 
shows a sample of correspondences that gives the epipolar constraint depicted in Fig. 
3f. But, this sample is smaller than the best GSAC-sample for the homography 
displayed in Fig. 3c. Moreover, in forward looking situations like the one presented in 
Fig. 3 the epipole (black/white cross) may be inside the frame, and scene 
reconstruction is impossible for the area around the epipole. 
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Fig 3: Example of estimations from a forward looking oblique sequence; a) all correspondences 
on one frame b) same on other frame c) GSAC consensus correspondence set for homography 
estimation d) homography displayed as vectors on a grid array e) consensus correspondence set 
for epipolar estimation f) epipolar constraint; for each point on the grid the epipolar line is 
indicated and connected to the point 

The effort for a random search for suitable minimal samples (containing seven or 
eight correspondences) is a rising polynomial with degree seven or eight with 
growing portion of outliers. Therefore, some authors introduced an intermediate part-
of hierarchy into the samples [2].  Others propose a “plane plus parallax” approach 
[14]. First, one estimates a homography H that maps those points located on a 
dominant plane from one image to the other Hx=x’ (Section 2). Then the homography 
can be decomposed in the form H=R-ntT. R is the camera rotation matrix and the outer 
product ntT results from the plane normal n and the camera translation t [3].   



If we use normalized camera coordinates the 3-d vector t can also be interpreted as 
epipole. Multiplying the skew-matrix constructed from this vector with the rotation 
matrix R will give the fundamental matrix F belonging to the image pair. This matrix 
estimation for the epipolar constraint may then be refined using additional 
correspondences of the type mentioned in Sect. 3 class 2). In Fig. 3d the estimated 
homography is presented as a white vector field and the calculated epipole. In spite of 
the considerably non-planar structure of the valley scene this turns out more stable 
than the direct epipolar constraint estimation. 
Particularly, the difference between the epipole 
estimations in Fig. 3d and Fig. 3f is considerable. A 
small rotation of the camera combined with such a 
displacement of the epipole give roughly the same 
point movements for forward looking geometries.  

5 Production Nets for GSAC-Estimation of 
Geometric Entities  

The pose estimation is partitioned into several steps 
and intermediate results. The overall structure of the 
process can be depicted by a so-called production net 
(Fig. 4). This bipartite graph contains productions and 
concepts (object types) as nodes. Arcs go from an 
object concept to a production whenever the objects are 
input to the production. Arcs go from a production to a 
concept whenever these concepts are constructed by 
the production. The productions contain constraints 
that incoming objects must fulfill to fit into the 
construction of the out-going objects of a higher 
concept. They also contain the functions that are 
necessary to construct these objects. The constructive 
part also contains an assessment part that evaluates the 
newly built object. Details of the control mechanism 
have been published in [15]. The assessment criteria 
used here are named in Fig. 4.  
 
The processing starts with the application of an interest 
operator on the images that marks locations where 
neither homogeneity nor an aperture problem is likely 
[5]. Pixels trespassing a threshold form the primitive 
objects P of the structural analysis. Production p1 
groups such primitive objects into interest objects I 
using vicinity as its constraint, center of gravity as its function and total mass for its 
assessment. The position of such an interesting location I is determined with sub-
pixel-precision. Given such an object production p2 will search the other image for 
corresponding partners. It will construct new objects correspondence C for all such 
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Fig. 4. Production-net with 
assessment criteria for bottom-
up data-driven control  



objects and assess them by means of correlation. Each such object may vote for a 
translation transform. Production p3 forms objects T of a pair of correspondence 
objects C. Since they may be used to vote for similarity transforms, these objects are 
assessed according to the distance between the two locations in the image. Large 
distances give more precision for such estimation.  Production p4 gathers two such 
objects T and forms a quadruple object Q from them. From these a cue to the 
homography can be calculated. It is not only important that all four correspondences 
in such an object Q must be inliers of the type discussed in Section 3 class 1). Also no 
three of the four points are allowed to be collinear. They should cover as much area as 
possible. Therefore the area of the smallest of the four triangles in the quad is chosen 
as the assessment criterion. Production p5 clusters the homography estimations from 
several consistent objects Q. The result is a new object H that is calculated via DLT 
squared error sum minimization from the sample of correspondences preceding the 
objects Q in the cluster. Thus Productions p4 and p5 implement the GSAC-rationale 
outlined in Section 2.3. An object H is assessed not only according to the number of 
correspondences in it, but also according to the assessment of the preceding objects 
Q. Production p6 searches well directed for the outliers of the cluster process 
implemented by Production p5. There may be correspondences in them that belong to 
the type described in Section 3 class 2). This results in spatial cue objects S. Such 
objects contain a fundamental matrix estimation. They are assessed according to the 
inconsistence of the homographies preceding them. Of course such cues need 
affirmation because it may result from correspondences of the types discussed in 
Section 3 classes 3) and 4). Production p7 clusters consistent objects S into a well 
founded fundamental matrix estimation object F where the calculation is based again 
on DLT with the sample of the preceding correspondences. 
The control scheme forms hypothesis of each newly constructed object and all the 
productions to which an arc goes from its type. These hypotheses get a priority 
according to the assessment of the object. All hypothesis compete for computational 
resources. In this manner homographies and fundamental matrices are already 
estimated from prominent and well positioned correspondences while other less 
important interest point objects still wait for an opportunity to search for 
correspondences in the other image. The process may be terminated at any time 
followed by choosing the best object H or F obtained up to this time instance 
according to the same assessment criteria. 

6 Conclusion 

Camera pose estimation using fundamental matrices as well as planar homographies 
can be obtained from the same images. The decision of which method should be 
preferred depends on the situation. Intermediate results give criteria for the choice. 
For a selected method the best sample of correspondences has to be searched. A 
structural knowledge-based approach combines both methods, uses well directed 
search and avoids early decisions. During the search run weights are assigned to 
entities like correspondences between structures in different images, pairs of such 
correspondences, quadruples and larger sub-sets. Each intermediate result is evaluated 



and the control of the whole system is based on these evaluations. Thus spurious 
calculations are avoided. Originally the production net approach has been invented for 
dealing with costly object recognition tasks in an accumulative way using affirmative 
intermediate results [10]. In pose estimation intermediate results may also be mutually 
competing. Thus, the assessments are a key issue in balancing such system. Tests 
comparing GSAC homography estimation performance to RANSAC and IRLS on a 
collection of example data are under way and will be published in [12]. 
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