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Epilepsy is a complex brain disorder characterized by repetitive seizure events.
Epilepsy patients often suffer from various and severe physical and psychological
comorbidities (e.g., anxiety, migraine, and stroke). While general comorbidity
prevalences and incidences can be estimated from epidemiological data, such an
approach does not take into account that actual patient-specific risks can depend on
various individual factors, including medication. This motivates to develop a machine
learning approach for predicting risks of future comorbidities for individual epilepsy
patients. In this work, we use inpatient and outpatient administrative health claims
data of around 19,500 U.S. epilepsy patients. We suggest a dedicated multimodal
neural network architecture (Deep personalized LOngitudinal convolutional RIsk
model—DeepLORI) to predict the time-dependent risk of six common
comorbidities of epilepsy patients. We demonstrate superior performance of
DeepLORI in a comparison with several existing methods. Moreover, we show
that DeepLORI-based predictions can be interpreted on the level of individual
patients. Using a game theoretic approach, we identify relevant features in
DeepLORI models and demonstrate that model predictions are explainable in light
of existing knowledge about the disease. Finally, we validate the model on
independent data from around 97,000 patients, showing good generalization and
stable prediction performance over time.
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INTRODUCTION

Epilepsy is a complex, life-threatening brain disorder
characterized by repetitive seizure events. Epilepsy patients
often suffer from various and severe physical and
psychological comorbidities, such as overweight and obesity,
anxiety, migraine, bipolar disorder, and cardiovascular diseases
(Seidenberg et al., 2009; Ottman et al., 2011; Keezer et al., 2016).
Some comorbidities confer a poor disease prognosis because they
complicate pharmacological treatment owing to possible
drug–drug interactions and adverse events (Verrotti and
Mazzocchetti, 2016). The actual development of comorbidities
is dependent on patient-specific factors and may be modulated by
antiepileptic drug (AED) treatment (Zaccara, 2009). Early
identification and treatment of comorbidities has thus been
identified as highly relevant to improve the quality of life of
epilepsy patients (Verrotti and Mazzocchetti, 2016). However,
there is a high subject-to-subject variability. Methods from the
field of artificial intelligence (AI), and more specifically machine
learning (ML), have the potential to predict comorbidity risks on
an individual subject basis, hence fulfilling one of the promises of
a more individualized patient care in the sense of precision
medicine. More specifically, ML-based approaches can be used
to aid disease prevention by predicting the time-dependent risk of
an individual epilepsy patient to develop several common
comorbidities in the future, such as 1) anxiety, 2) bipolar
disorder and schizophrenia, 3) diabetes type 2, 4) migraine, 5)
overweight and obesity, and 6) stroke and ischemic attacks.

Machine learning models to predict individualized
comorbidity risks of diseases different from epilepsy have
recently been published (e.g., Dworzynski et al. (2020) and
Noh et al. (2020)) using clinical routine data from the Danish
national registry and hospital electronic health records,
respectively. For epilepsy, Glauser et al. (2020) proposed an
ML model for psychiatric comorbidities based on survey data
from 122 patients. In our earlier work (Gerlach et al., 2017), we
proposed an ML model (random survival forests) using U.S.
administrative health claims data from ∼10,000 epilepsy patients
to predict several major comorbidities (anxiety, bipolar disorder
and schizophrenia, diabetes type 2, migraine, overweight and
obesity, and stroke and ischemic attacks) of epilepsy patients.

Administrative health claims data have generally been shown
useful for developing ML models in the epilepsy field. For
example, An et al. (2018) used claims data of more than 1.3
million epilepsy patients to predict antiepileptic drug resistance.
Examples from other disease areas include prediction of
Alzheimer’s disease (Park et al., 2020), osteoporotic hip
fractures (Engels et al., 2020), and heart failure (Desai et al.,
2020). The opportunities of healthcare claims data for ML-based
modeling have further been discussed in (Fröhlich et al., 2018;
Miotto et al., 2018; Xiao et al, 2018; Thesmar et al., 2019; Kwak
and Hui, 2020).

In our earlier work, we demonstrated the possibility to
augment claims data with biomedical background knowledge,
hence enabling the interpretation of machine learning models
down to the level of disease-associated biological processes
(Gerlach et al., 2017). The particular novelty of the present

work is a dedicated multimodal neural network architecture
for administrative claims data, which we call Deep
personalized LOngitudinal convolutional RIsk model
(DeepLORI). We show that DeepLORI more accurately
predicts the time-dependent risk for six common
comorbidities on the level of individual patients than several
competing methods, including our own previously proposed
model. Using a game theoretic approach based on Shapley
Additive Explanations (Lundberg and Lee, 2017), we show
that DeepLORI models are explainable, also on the level of
predictions for individual patients.

DATA

Claims-Based Electronic Health Records
U.S. commercial inpatient and outpatient data were obtained
from IBM® MarketScan® Truven Health databases. The
Commercial Claims and Encounters database within
MarketScan® is a nationally representative collection of de-
identified patient-specific inpatient, outpatient, and
pharmaceutical claims from more than 200 insurance carriers
and large, self-insuring companies. All dates and time stamps
were transformed from a daily to a monthly scale (1 month �
30 days) for a more robust representation. The data generally
comprise demographic (age, gender) and regional information
(major metropolitan area), days in hospital, health insurance
plan, and time-dependent diagnosis codes and prescriptions (plus
prescription duration and quantity).

We used two cohorts: 1) the original data covering years
2011–2015 for model training and evaluation within a nested
cross-validation scheme, and 2) the external validation data
covering years 2008–2018 to validate the models trained on
the “original data.” In agreement to our earlier publication
(Gerlach et al., 2017) and common practice at UCB, epilepsy
patients in the original data were identified matching at least one
of the following criteria:

(1) An occurrence of ≥ 2 ICD-9-CM codes of 345.xx
(i.e., epilepsy, except 345.3—grand mal status) among
separate medical encounters (separate dates in any care
venue)

(2) An occurrence of ≥1 ICD-9-CM code of 345.xx (except
for 345.3) AND ≥1 ICD-9-CM code of 780.39
(convulsions) among separate medical encounters

(3) An occurrence of 1 ICD-9-CM code of 345.xx (except for
345.3) and code(s) for AED prescription at least a day
after the 345.xx code

(4) An occurrence of ≥2 ICD codes of 780.39 among separate
medical encounters and code(s) for AED treatment. The
code(s) for the AED treatment should occur at least a day
after the second 780.39 irrespective of the presence or
absence of an AED code after the first 780.39 code

(5) Individuals with ICD-9-CM code 345.3 will be required
to have an occurrence of ≥2 ICD-9-CM codes of 345.3
separated by at least 30 days, or an occurrence of the
345.3 code and ≥1 ICD-9-CM code 780.39 separated by
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at least 30 days, or ≥1 ICD-9-CM code 345.3 and ≥1 ICD-
9-CM code 345.xx encounters on separate days

The index date for each patient was defined as the time point
of the first epilepsy diagnosis, and for definitions requiring at least
2 ICD-9-CM codes, the first diagnosis code was the index date.
The data were further filtered by requiring for each patient 1) at
least 365°days of medical history before, and 365-day follow-up
after the index date; 2) age between 18 and 65 years; 3) any AED
treatment during the observation period. Altogether this yielded
7,430,840 records from 19,510 patients. More details about the
filtering process can be found in the Supplementary Material of
this article. For part of these patients, diagnoses after the index
date were coded in ICD10, which we mapped to ICD-9-CM via
the Thomas ReutersTM public Web resource1 and manual
curation.

Note that in medical practice, confirmation of the final
diagnosis “epilepsy” can be complicated and often requires a
number of visits. Moreover, reporting of a dedicated diagnosis
within our data does not necessarily correspond to the actual time
point of the medical condition within the patient. To capture this
uncertainty, we defined a three-month time interval starting from
the index date as the “epilepsy diagnosis period”. That means the
actual medical history of each patient after application of the
abovementioned filter criteria was 365 + 91°days, that is, 456°days.

Diagnosis codes after 1st Oct 2015 were provided as ICD-10-
CM codes. Accordingly, the following modified inclusion criteria
were applied to select epilepsy patients in the external validation
data (covering 2008–2018):

(1) The presence of at least 1 ICD-9-CM of 345.xx or ICD-
10-CM of G40.xx (epilepsy)

(2) The presence of at least 2 ICD-9-CM of 780.39 or ICD-
10-CM of R56.9 (convulsions) within one year.

After applying the same filter criteria as for the original data,
this resulted in 112,755 patients. Within those patients, we pre-
filtered diagnosis codes and substances observed in ≤ 10 patients
or with a frequency ≤1%. One of the main issues with claims data
is that one and the same diagnosis may be coded with different
ICD codes. Moreover, observations related to one specific ICD9/
10 code could be rare. To address these issues, we mapped all
ICD-9-CM codes to PheWAS terms, which describe a higher level
aggregate of several ICD codes (Carroll et al., 2014). In addition, a
mapping to MeSH (Rogers, 1963) was performed to allow for
integration with other data sources (see Methods).

Definition of Focused Comorbidities and
Compilation of Training Data
Based on the medical literature and observed frequency in our
data, we focused on six common comorbidities of epilepsy
patients: 1) anxiety, 2) bipolar and schizophrenia, 3) diabetes
type 2, 4) migraine, 5) overweight and obesity, and 6) stroke and

ischemic attack. These comorbidities were defined according to a
set of PheWAS codes provided in the supplements
(Supplementary Table S1).

The number of patients with these comorbidities being
diagnosed at least 6 months after the epilepsy diagnosis period
differs widely across comorbidities (Table 1). We would like to
highlight that our data are in principle right-censored, that is, the
diagnosis of a specific comorbidity might happen after the end of
the period covered by our training data. Moreover, a significant
proportion of those individuals where a diagnosis of a specific
comorbidity is observed (i.e., incident cases) have already been
diagnosed with at least one of the other 5 comorbidities during
their medical history (Table 1). Note that for training a machine
learning model to predict a specific comorbidity, we should not
have an observation of the same comorbidity in the medical
history of any of the training samples. For this reason, the number
of patients in the training data is different per comorbidity, and
we developed separate machine learning models for each
comorbidity.

Each diagnosis and prescription in our data has an associated
time stamp. Due to the fact that the appearance of a record in our
data does not necessarily correspond to the observation of the
actual medical condition, each time stamp was mapped to a
monthly (� 30-day time interval) resolution.

METHODS

Proposed Model: DeepLORI
DeepLORI Architecture
As highlighted before, our aim was to develop separate machine
learning models for each of six typical comorbidities of epilepsy
patients. Each of these models aims for predicting the time-
dependent risk of an individual to be diagnosed with one specific
comorbidity.

We came up with a dedicated neural network model for
our purposes, which we call Deep personalized LOngitudinal
convolution RIsk model (DeepLORI). We start by explaining
the principle architecture of DeepLORI. In agreement to our
former work, one of the key ideas is that claims data have an
inherent hierarchical structure (Gerlach et al., 2017): The
data initially contain three major types of features: 1)
prescribed substance codes, 2) diagnoses codes (mapped to
PheWAS terms, see above), and 3) general demographic
information, such as age, gender, and major metropolitan
area information. Monthly reported prescriptions and
diagnoses can typically be represented via a one-hot vector
encoding. However, individual substance and diagnose codes
are typically, rather sparsely, observed over time, which can
potentially lead to challenges for a machine learning
algorithm to find regularities.

Based on this consideration, our idea was to use additional
background knowledge available in databases to impose further
hierarchical substructure: For example, each prescribed substance
may have one or several known targets, and it can have a number
of side effects reported in clinical studies. Diagnoses have
associated symptoms, and in some cases, biomarkers may1http://www.tdrdata.com/ipd/ipd ICD10ToICD9List
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exist. Based on this background information, each domain of
features (e.g., diagnosis) can be further associated to several
subdomains (e.g., biomarkers and impaired biological
pathways). Subdomain features can subsequently be
represented via a one-hot vector encoding. Figure 1;
Table 2 provide an overview about the domains and
corresponding subdomains we defined in our data. (More
details about our previously published approach to augment
claims data with biomedical knowledge can be found in the
supplements.)

In this work, we propose a multimodal neural network
architecture to reflect the specific structure of the augmented

claims data (see Figure 2). In this architecture, each of the
feature domains and subdomains are initially treated as
separate data modalities. Note that each feature derived
from diagnosis and substance codes has an additional time
stamp (30-day interval), that is, each subdomain is a three-
dimensional data cube. Each of these tensors is projected down
to a lower dimensional representation via bottleneck
feedforward architecture with 1–4 hidden layers, where the
exact number of hidden layers and units per layer are treated as
tunable hyperparameters in our framework (see details in
Supplementary Material). In conclusion, at the first layers
for each subdomain, specific latent features are extracted in a

TABLE 1 | Proportion of incident patients by comorbidity.

Comorbidity n total n incident % Incident Mean ± sd, no.
of other comorbidities

in medical history
per incident patient

Anxiety 15,274 4,037 26% 1.3 ± 0.6
Bipolar/Schizophrenia 16,908 1,279 8% 1.5 ± 0.8
Diabetes type 2 16,929 1,377 8% 1.5 ± 0.8
Migraine 16,036 2,063 13% 1.3 ± 0.7
Overweight/Obesity 17,273 3,307 19% 1.4 ± 0.7
Stroke/Ischemic Attack 17,208 1,157 7% 1.5 ± 0.8

FIGURE 1 | Hierarchical data model structures the data in 3 input domains (general, drug, and diagnosis) and according subdomains. Features retrieved from the
claims data are highlighted in red, and all others are augmented features (including those highlighted in blue).

Frontiers in Artificial Intelligence | www.frontiersin.org May 2021 | Volume 4 | Article 6101974

Linden et al. An Explainable Multimodal Neural Network

https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


nonlinear manner from the original data and subsequently
concatenated.

After latent feature extraction, DeepLORI models the time-
dependency in the data within each feature domain. For that
purpose, we apply a pooling function (max or mean) over the

entire time series simultaneously for all feature domains, but
individually for each component of our one-hot vector
representations. The exact choice of the pooling function is a
hyperparameter. In addition to pooling, we allow for the
application of different time convolutional kernels (with

TABLE 2 | Number of features by domain, subdomain, and feature origin (claims data or biomedical background knowledge).

Domain Subdomain Feature origin #Time-dependent features (per
30-day time interval)

#static features

Claims data Background knowledge

Diagnosis Biomarker X 699
Diagnosis GO term X 3,759
Diagnosis MeSH disease X 137
Diagnosis Pathway X 453
Diagnosis PheWAS x 1,196
Diagnosis Symptoms X 235
General Age, sex, insurance, hospital x 17
General Medical risk X 53
General Region x 403
Drug GO term X 1,240
Drug Pathway X 435
Drug PheWAS (known indications) X 986
Drug Side effects x frequency x 1,489
Drug Substance name x 453
Drug Target tissue x 32
Drug Therapeutic class x 104
Drug Therapeutic group x 19∑ � 11, 237 ∑ � 437

Bold values indicate that the “Feature origin” is “Claims Data”.

FIGURE 2 | DeepLORI model architecture: The input is organized as a multimodal data cube, which is subdivided into several feature domains. Medication and
diagnosis-related features are time-dependent, whereas features in the “general” domain are not. The three different colors at stage (3) symbolize the 3 different pooling/
convolution kernel sizes.
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multiple filters per kernel), similar to a sliding window. Whether
or not convolutional filters are applied and which sizes these
filters have are again determined within hyperparameter
optimization.

After modeling time-dependency, there is another
feedforward bottleneck structure (same tunable design as for
the initial latent feature extraction) in our network. Finally,
DeepLORI concatenates latent features extracted from each
feature domain and feeds them through the last feedforward
bottleneck structure into one output unit, representing a patient-
specific comorbidity risk score. That means we have one
DeepLORI model per comorbidity. (A more detailed view on
the DeepLORI architecture, including an overview of all tunable
hyperparameters can be found in Supplementary Material.)

Loss Function
Let the training data be denoted asD � {(xit , yi , δi)

∣∣∣∣ xit ∈ Rd×T , yi
∈ R, δi ∈ {0, 1}, i � 1, 2, . . . , n, t � 1, 2, . . . ,T}, where T is the
maximum number of time stamps in the data (in our case,
15 months) and yi is the observed time of the first diagnosis of a
comorbidity (in case data are not censored) after the index date
or the maximum observed event free time. Moreover, δi ∈ {0, 1}
is a binary variable indicating whether yi is right-censored
(δi � 0) or not (δi � 1). Following Katzman et al. (2018), we
here use the negative partial log-likelihood of a Cox
proportional hazards model (Cox, 1972) as a loss function
for training DeepLORI:

l(W , y) � ∑n
i�1

δi
⎡⎢⎢⎢⎢⎢⎣NW(xi·) − log⎛⎜⎝ ∑

j:yj ≥yi

expNW(xj·)⎞⎟⎠⎤⎥⎥⎥⎥⎥⎦
where NW(·) denotes the risk score learned by DeepLORI,
parameterized by weights W, and xi· the medical history of
patient i.

Given NW(·), the hazard of a patient with feature vector x at
time t is

h(t|x) � h0(t)expNW(x)

where h0(t) is the so-called baseline hazard, which can be
estimated according to (Breslow, 1972):

h0(t) � ∑n
i�1

I(yi ≤ t)δi∑j:yj≥yi
expNW(xj·)

The corresponding time-dependent conditional probability
for staying event-free (i.e., not suffering from the specified
comorbidity) is then

S(t|x) � exp{−∫t

0
expNW(x)dh0(u)}

To avoid over-fitting, we regularize DeepLORI during training
in multiple ways:

• We use dropout units in the input and hidden layers.
• We perform batch normalization (Ioffe and Szegedy, 2015)
before each activation function.

• We impose groupwise elastic net penalties for weights (Zou
and Hastie, 2005).

The elastic net is an extension of the classical lasso algorithm
(Tibshirani, 1996), which has originally been introduced in the
context of generalized linear models. It combines an ℓ1 penalty of
coefficients (like in lasso regression) with an ℓ2 penalty (like in
ridge regression) (Hoerl and Kennard, 1970). The elastic net
enforces a sparse regression model by jointly pushing coefficients
toward zero via the ℓ1 penalty, that is, there is a feature selection.
At the same time, the ℓ2 penalty promotes a joint selection of
correlated features (Zou and Hastie, 2005). The idea of the elastic
net can also be extended to neural networks. More specifically, by
adding groupwise elastic net penalties, we modify our training
objective as follows:

l(W , y) +⎛⎝∑
sϵS
λℓ1s ‖Ws‖1 + λℓ2s ‖Ws‖2⎞⎠ + λℓ1D ‖WD‖1 + λℓ2D ‖WD‖2

where S is the set of feature subdomains. Furthermore, λℓ1s , λ
ℓ2
s

denote tunable hyperparameters, Ws refers to the set of weights
connecting the input to the first hidden layer within feature
domain s, andWD are the weights of the connections feeding into
the output layer.

Hyperparameters Optimization
A comprehensive overview of hyperparameters of DeepLORI can
be found in the supplements (Supplementary Table S2). We
performed Bayesian hyperparameter optimization (Bergstra et al.,
2013) to tune DeepLORI on the training data. Each candidate
hyperparameter set was evaluated via a 5-fold cross-validation.
Hyperparameter optimization was run for 100 trials per fold, a
maximum number of 100 epochs per trial, or if the cross-
validated prediction performance did not increase within 10
sequential epochs. Prediction performance was measured via
Harrell’s C-index (Harrell et al., 1982), which is a
generalization of the area under the receiver operating
characteristic curve (AUC), frequently used for classification
models.

Shapley Additive Explanations
One of the main criticisms of neural network based approaches is
the difficulty to interpret them. Recently, Lundberg and Lee
(2017) proposed a model agnostic game theoretic framework
to address this issue. In brief, the idea behind Shapley Additive
Explanations (SHAP) is that the relevance Φi(x) of feature i on
the model output f (x) can be regarded as the average weighted
difference between outputs from all possible models trained on 1)
all subsets S of features including feature i, against 2) all subsets of
features excluding feature i:

Φi(x) � ∑
S4F/{i}

|S|!(|F| − |S| − 1)!
|F|! [fS∪{i}(xS∪{i}) − fS(xS)]

with F as the set of all features. The authors propose several local
approximation techniques, which can circumvent the exact
combinatorial calculation of Φi(x), one which is specifically
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tailored toward neural networks (Deep SHAP). Deep SHAP
effectively combines SHAP values calculated for smaller
components of a neural network into SHAP values for the
entire network. We refer to Lundberg and Lee (2017) for
details. In this work, we used SHAP to understand the impact
of individual feature domains, subdomains, and AEDs on the
comorbidity risk score that we learned via DeepLORI. SHAP
results in a patient-specific score that may be positive [feature i
increases f(x)] or negative [feature i decreases f(x)] compared to
the average patient. In agreement to Lundberg et al., we
considered the mean absolute values of the SHAP values per
feature to score the overall impact of a variable. Moreover, we
investigated the overall mean absolute SHAP values per feature
domain and subdomain, respectively. This is possible because
SHAP values are additive. That means the sum of two SHAP
values can indeed be interpreted as the overall impact of the
corresponding features.

In practice, we found Deep SHAP too computationally costly
when using our entire original dataset. We thus repeatedly
subsampled 5% of our data with replacement (30 times) and
recalculated SHAP values. We checked the robustness of the
approach via the variance of SHAP values.

Competing Methods
We compared DeepLORI against several competing approaches:

(1) Random survival forests (Ishwaran et al., 2008): In this
earlier published approach (Gerlach et al., 2017), we first
combined claims data with biomedical knowledge (akin
to this article) and then used a window of fixed length
(3°months) to summarize features via a max-pooling.
Features encoding prescriptions and diagnoses within
such a time window were concatenated, resulting in an
overall number of around 165,000 features per patient.
Subsequently, we used maximum relevance minimum
redundancy (mRMR) (Ding and Peng, 2005) to further
reduce the number of features to 500 prior to random

survival forest (RSF) model training. For RSF model
training, we relied on R-package “ranger” (Wright and
Ziegler, 2017). The number of decision trees was set to
5,000, and the log-rank statistic was used as a split rule
for nodes.

(2) Stacked denoising autoencoders (SDAs) followed by
training an RSF (Miotto et al., 2016): In this approach,
initially an SDA was trained to extract features from the
medical history of each patient (diagnosis and
prescription codes as well as demographic
information) in an unsupervised manner. The same
SDA architecture as described in Miotto et al. was
employed. After feature extraction for each of the 6
comorbidities, an RSF was trained.

(3) A Kaplan–Meier (KM) estimator as “null model.” This
approach does not use features of any individual. It only
estimates the overall risk curve for a given comorbidity
from the data and applies the same estimate to each
patient. The purpose of this “null model” was to
understand the added value of complex machine
learning models.

Evaluation Approach
DeepLORI was compared with competing methods within a 5-
fold cross-validation scheme using the exactly same data splits of
the original dataset. Hyperparameters were only tuned on the
respective training data, resulting in a nested cross-validation
scheme for DeepLORI. We used Uno’s C-index (Uno et al., 2011)
as a performance measure:

Ĉτ �
∑n

i�1∑n
j�1Δi{Ĝ(Xi}− 2I(Xi <Xj,Xi < τ)I(r̂iski > r̂iski)
∑n

i�1∑n
j�1Δi{Ĝ(Xi}−2I(Xi <Xj,Xi < τ)

Uno’s C-index is a consistent estimator of the concordance
index for a population that is independent of censoring. It satisfies
this requirement for censored populations using two “tricks,” first

FIGURE 3 | Five-fold (nested) cross-validation test sets performance benchmark of Deep LORI (green) vs. competing methods; mRMR: minimum redundancy
maximum relevance feature selection; SDAE: stacked denoising autoencoder; RSF: random survival forest; KM: Kaplan–Meier estimator.
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by applying an “inverse probability weighting” schema using the
censoring distribution estimated with Ĝ(·) (e.g., the
Kaplan–Meier estimator), second by evading instable tail parts
for times ≥ τ of the estimated survival function with a
prespecified time point τ as constraint. We refer to Uno et al.
(2011) for further details.

In addition, we evaluated DeepLORI on our external validation
data. This validation was done separately in two different ways:

(1) Follow-up of existing patients: We selected patients who
had already been in our original dataset, but for whom a
right censoring was observed.

FIGURE 4 | Prediction performance of Deep LORI on external validation data. Green: time-split validation, that is, follow-up of patients included in training data.
Blue: prediction performance on new patient data. Red: 5-fold cross-validated prediction performance on original data for comparison purposes.

FIGURE 5 | Time-dependent prediction performance (AUC(t)) of DeepLORI on external validation data.
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(2) New patients: We evaluated DeepLORI on patients who
had no records in the original dataset.

In both cases, we recorded Uno’s C-index over the entire time
series and as a function of time (named AUC(t) in the following)
to measure the prediction performance.

RESULTS

DeepLORI Outperforms Competing
Methods
Despite high censoring rates, all 6 comorbidities could be
predicted rather accurately by DeepLORI, and the 5-fold

cross-validated performance of Uno’s C-index ranged from
71% for overweight and obesity to 77% for stroke and
ischemic attacks (Figure 3; Supplementary Table S3). At the
same time, the Kaplan–Meier estimator (i.e., the “null”-model
without any features) was consistently at the chance level (50%
Uno’s C-index), indicating that all of our tested machine learning
models (DeepPatient, DeepLORI, and MRMR + RSF) extracted
relevant predictive signal from the data. At the same time,
DeepLORI showed significantly higher C-indices than all
competing methods.

DeepLORI Shows Stable Prediction
Performance on External Validation Data
Evaluation of DeepLORI on the external validation data showed
roughly comparable C-indices to those observed on the original
data when focusing on the follow-up of the ∼15,000 patients, who
had medical history in the original data (Figure 4). This
highlights that DeepLORI, despite high censoring rates in the
original data, was not over-fitted. C-indices for new/so far unseen
patients (n � ∼97,000) in the external validation data were around
6% lower (Supplementary Table S3).

When investigating the AUC(t), we found a rather stable
prediction performance for all comorbidities over time
(Figure 5). Remarkably, this held true for a time interval of
up to 6°years after initial diagnosis of epilepsy, and it was true for
the follow-up of existing patients as well as for new patients, again
highlighting the fact that DeepLORI generalizes rather well.

DeepLORI Models Are Explainable
We next investigated the relevance of feature domains via SHAP
in DeepLORI models trained on the entire original dataset. This
analysis highlighted for most comorbidities the relevance of
features derived via augmentation of the original data with
additional information (Figure 6): For example, in the model,

FIGURE 6 | Relative impact of original vs augmented features in
DeepLORI models for 6 different comorbidities

FIGURE 7 | SHAP values by feature subdomain. Subdomains with a cumulative relative importance ≤5% are not shown.
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predicting anxiety augmented features made up around 55% of
the total feature importance, and for migraine, we found 43%.
Notably, among augmented features, the “medical risk”
subdomain, covering various unspecific comorbidity indices
derived from ICD diagnosis codes (Charlson et al., 1987;
Romano et al., 1993; Lee et al., 1999; Schneeweiss et al., 2003;
Boersma et al., 2005; Quan et al., 2005; Sessler et al., 2010; Sigakis
et al., 2013) using the R-package “medicalrisk” (McCormick and

Joseph, 2020) in the medical history of epilepsy patients, had a
significant impact (Figure 7), suggesting that the risk of
developing any of our six comorbidities increases with a
generally worse medical condition upfront. Importantly, none
of the comorbidity indices are specific to any of the six
comorbidities focused by DeepLORI.

In the following, we discuss one of the six DeepLORImodels in
more detail, namely, the one for migraine (Figure 8). (Figures
related to DeepLORI models for the other five comorbidities can
be found in the Supplementary Material (Supplementary
Figures S1–S6)). According to SHAP analysis, the most
relevant features in the DeepLORI model for migraine relate
to the prior existence of headaches and the use of drugs for the
nervous system, which are typically used to treat headaches. In
addition, many drugs used for treating headaches are known to
affect the liver (Mathew and Klein, 2019; Valade, 2019). It is
known that females are more affected by migraine than males,
and that migraine is age-dependent (Victor et al., 2010). The
antiepileptic drug (AED) topiramate, known to be well-tolerated
by this group of patients (Spritzer et al., 2016; Silberstein, 2017),
ranks among the top 15 most relevant features. Figure 9 shows
the marginal dependency of DeepLORI model predictions on
AED prescription frequency, suggesting that patients treated with
topiramate are slightly more likely to be diagnosed with migraine
later than those without such treatment in the past. In fact,
topiramate is often used as a preventive treatment for migraine
(Spritzer et al., 2016), suggesting that patients treated with this
AED are often considered at risk of developing migraine by their
treating physician. Indeed, many of these patients eventually
receive this diagnosis.

Another interesting finding from the SHAP analysis of our
model is the influence of disorders of the lipoid metabolism on
migraine risk. Associations between lipid levels and migraine
have been reported in Rist et al. (2011) and Onderwater et al.
(2019). Moreover, the metabolic syndrome and migraine have

FIGURE 8 | SHAP values of top 15 most relevant features in the DeepLORI model for migraine, rank by mean absolute values. x-axis: SHAP values, higher values �
higher importance. y-axis: features ranked by importance, annotated with their domain and subdomain membership (domain > subdomain > feature).

FIGURE 9 | Plot shows the marginal dependency of the frequency of
topiramate prescription on the predicted risk on later migraine diagnosis. One
dot represents one patient; x-axis: prescription frequency (0% � never
observed, 100% � observed every month of a patient‘s medical history);
y-axis: change in SHAP value (�change in individual hazard rate). Marginal
dependency plots for each comorbidity for the top 5 features can be found in
the Supplemental Material (Supplementary Figures S7–S12).
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been associated with each other (Sachdev and Marmura, 2012). It
is important to highlight at this point that SHAP analysis does not
provide a causal explanation, though.

To further exemplify the possibility of interpreting our
DeepLORI models on the level of individual patients, we
depict in Figure 10 SHAP values for two randomly selected
patients with high and low risk for developing stroke or ischemic
attacks, respectively. As expected, the low-risk patient is young
and has no diagnosis of hypertension or disorder of the metabolic
system. In contrast, the high-risk patient is an older person with
hypertension who lives in Texas. In fact, significant regional
differences in the risk for strokes have been reported
throughout the United States (Howard et al., 2007), and
Eastern Texas belongs to the so-called “Stroke Belt” (Karp
David et al., 2016).

DISCUSSION AND CONCLUSION

Precision medicine has the vision to bring the right treatment to the
right patients. Precision medicine is strongly dependent on machine
learning. At present, precision medicine is only an emerging reality.
Several reasons can be identified (Fröhlich et al., 2018; Miotto et al.,
2018; Xiao et al., 2018; Kwak and Hui, 2020): 1) lack of the right data
in sufficient quantity, 2) insufficient validation, and 3) difficulties in
interpreting complex ML models, which is by itself a prerequisite for
generating the necessary confidence in using suchmodels. Realization
of precision medicine will only be possible, if all these aspects are
addressed jointly. In this context, it is essential thatMLmodels can be
used in a cost-effective and practical manner. Hence, clinical routine
data are of extreme relevance and are gaining more and more
attention (Weiss et al., 2012; Peissig et al., 2014; Choi et al., 2016;
Miotto et al., 2016; Rajkomar et al., 2018; Harutyunyan et al., 2019).

Administrative claims data constitute an important source of such
clinical routine data. They principally exist in large quantities and
allow for obtaining insights into the longitudinal medical history of
individual patients under real-world conditions. However, these data
have not been collected for research purposes. First of all, coding of
diagnoses into ICD codes is not unique and mostly done for
maximizing economic reasons, rather than for providing a precise
medical description. Different ICD codes can be used for similar
diagnoses, and the relationship among different medical conditions is
consequently not always uniquely resolvable from their distances in
the ICD ontology. Second, it should be noted that ICD only reflects
the medical symptom level, which should not be confused with the
biological relationship among disorders. Third, the time of diagnosis
encoding might not correspond to the actual appearance of the
medical condition. Fourth, it is unclear whether patients take the
prescribedmedication. Finally, the nature of irregular time series data,
different for each patient, imposes specific challenges for data analysis.

In this work, we tried to address these challenges by a) mapping
ICD codes to PheWAS codes that are at higher granularity, b)
augmenting the original data with further information from
biological databases, and c) proposing specific multimodal neural
network architecture (DeepLORI). We demonstrated that
DeepLORI can predict six common comorbidities of epilepsy
patients with higher C-index than several competing methods.
We performed a rigorous cross-validation plus an external
validation to assess our model, demonstrating that DeepLORI
allows for reliable predictions of comorbidity risks up to six years
in advance. We showed that with the help of SHAP and our data
augmentation approach, it is possible to make DeepLORI-based
predictions explainable, even on the level of individual patients.
From our perspective, this is of great importance for generating
confidence in ML-based solutions in medicine.

From amedical perspective, we see the value of our work in the
potential for much earlier identification of epilepsy patients at
risk of developing different comorbidities. For example, a patient
at high risk of developing diabetes type 2 should consider losing

FIGURE 10 | Examples of SHAP explanations for a patient predicted at low risk for stroke and ischemic attacks (left) and a high-risk patient (right). Red (green)
bars indicate higher (lower) risk than the average patient: The hazard ratio2 of the low-risk patient (left) is around 56% of that of an average patient
(exp(−17.29)/exp(−16.71) � 0.56). The hazard ratio of the high-risk patient (right) is around 2.94 times that of an average patient ( exp(−15.63)/exp(−16.71) � 2.94).

2Hazard ratios computed similar to Cox proportional hazard’s model (Cox, 1972).
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weight and regularly check insulin levels. A patient at high risk of
developing psychiatric disorders might consider early
consultation with a psychiatrist. Hence, risk models could be a
way to eventually move toward preventive medicine.

Further applications of our work could lie in addressing the
high subject-to-subject variability in epilepsy: Based on the
comorbidity risk profile learned by DeepLORI, one might be
able to identify subgroups of patients with more homogenous
disease progression, potentially opening up opportunities for
developing more personalized therapies in the future.
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