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Abstract—Simulation plays an important role in the develop-
ment, testing and evaluation of new robotic applications, reducing
implementation time, cost and risk. In this paper we show a digital
twin simulation model of an inspection ROV which is capable of
performing structural health monitoring by automated creation
of a map of an offshore wind monopile. The data is compared
to a known reference model. The digital twin simulation model
is extended by a physical sensor data input device to bridge the
gap between simulation and testing in water.

Index Terms—Structural health monitoring, monopile, offshore
wind, ROV, simulation, digital twin

I. INTRODUCTION

Today an ever increasing number of offshore wind turbines
poses a high demand for inspection tasks to ensure proper
functioning of the wind energy plant as well as satisfying
legislative requirements for safe operation. Scouring and
damages like fatigue fractures have to be detected in a very early
stage to plan an optimal maintenance schedule [1]. Employing
human divers for inspection tasks is time-consuming and often
hazardous, which is why the time slots where inspections can
be performed are rather scarce. Using ROVs for such tasks
has been done, but only in a fully human-operated way. We
propose to deploy ROVs which perform the task of mapping
autonomously. Mapping is not restricted to purely geometric
data but could also include, e. g., corrosion measurements (given
that a suitable payload like a stabber with probe is attached
to the vehicle) [2]. That paves the way for fully autonomous
inspection as soon as autonomous surface vehicles are available
to deploy such automated ROVs.

II. RELATED WORK
A. Marine Robotics Simulation

An overview of the current technology for marine robotics
simulation is provided by [3]. Most of these simulations build
upon the foundation of the Robot Operating System (ROS)
[4] and Gazebo [5] as the core simulation engine. Gazebo
is a general purpose robot simulator originally developed in
2002 at the University of Southern California and is currently
maintained by the Open Source Robotics Foundation. Since
then due to its highly modular approach Gazebo has become

This work is funded by the German Federal Ministry for Economic Affairs
and Energy

Philipp Woock
Systems of Measurement, Control and Diagnosis (MRD)
Fraunhofer IOSB
Karlsruhe, Germany
https://orcid.org/0000-0002-1212-302X

Fig. 1. ROS Gazebo simulation environment showing ROV and monopile.
Scanning area depicted in blue. Darker blue denotes hitting the target. Overview
(left) and close-up (right)



a mature open source project that is developed by the global
robotics community for a wide variety of applications. Gazebo
supports the use of multiple physics engines and has an
extensive library of common robot sensors, such as camera,
laser, sonar, GPS, and IMU, as well as standard noise models
that can be parameterized as needed. Interfaces allow the users
to interact programmatically with the simulation environment
and add custom plugins. In this paper, we make use of the
Unmanned Underwater Vehicle Simulator (UUVSim) [6], [7], a
set of Gazebo plugins and ROS nodes under development, that
are used for supporting and testing the simulation of unnamed
underwater vehicles (UUV).

B. Autonomous inspection of underwater structures

The literature on autonomous inspection of underwater
structures is scarce. A possible reason for this is that UUV
localization, navigation and control are still major research
issues due to the fact that a number of navigation aids, such
as GPS and similar, are not available underwater [8]. For an
extensive overview over the literature of UUV localization and
mapping approaches we refer the reader to [9]. Preliminary
work in the field of autonomous inspection was carried out in
the early 2000s in [10], but seems not to be widely applied.
More recent publications [11], [12] seem to focus on the
development of ROVs and automatic image acquisition, without
comparing the data to ground truth models.

III. SOLUTION

Our solution to the problem consists of a digital twin
simulation which employs the ROS, UUV Simulator and data
fusion technology. The digital twin can also be connected to
a physical sensor unit as a hybrid solution which shows the
flexible amount of simulation conducted. The physical sensor
unit provides real-world data within a dry lab environment.
This enables testing the algorithms on real data. Our solution
has the advantage of building upon open frameworks which
constitutes a very low entry threshold and allows a user to
flexibly adapt to its individual system configuration.

A. ROS and UUVSim

The ROS environment allows to define messages between
components and if the messages are defined identically and
have the same semantics, it doesn’t matter for the system
whether the algorithm interfaces to a real system or a simulator.
Therefore, the basis for the simulation is UUVSim running
in a ROS environment which allows for easy transfer to
a real robot. Additionally, ROS provides robot middleware
tasks like timestamping, message passing between components,
recording and replay. By using the record/replay functionality,
any algorithm can be examined thoroughly with different
parameterization while the input remains identical between
runs.

B. Simulation environment

The simulation environment consists of two parts: A pure
simulation and an external sensor. In the pure simulation, it

is simulated how a ROV scans an offshore monopile using a
multibeam echosounder (MBES). The external sensor for the
lab consists of an optical 2D-LiDAR and is optional, being the
middle ground before moving to a real ROV. This is due to
the similar type of measurement a MBES and a 2D-LiDAR
provide. This enables us to have a smooth transition between
pure simulation and real robotic inputs.

C. Sensors

After including the model of our ROV into UUVSim we
needed to establish the sensory inputs. As the final ROV sports
a BlueView MB2250-45, we added a multibeam sonar with
256 beams (range 1-10m, 90° FOV, 40Hz) as sensor. As a
basis we used the UUVSim multibeam sonar which essentially
is a laser scanner (2D-LiDAR) simulation. Due to the similar
measurement principle this is appropriate, however, we added
gaussian noise to the simulated measurements to account for
the much more noisy characteristic of a sonar compared to a
laser scanner. The sonar is mounted facing forward on a 45°
angle to the vertical in order to have a wide swath while going
both sideways and up and down. We don’t expect diagonal
motion in an inspection task except for short periods while
taking a turn. The virtual sensor is modeled such that the
specs of the virtual sensor match the real sonar as close as
possible. The range of the sonar is restricted to 10 meters,
approximately matching the range of the BlueView 2.25 MHz
system. Furthermore, a DVL sensor provides velocity values
relative to the seafloor. Most real-world systems are equipped
with a DVL so the presence of a DVL is a fair assumption to
make.

D. Mission

The mission plan for inspection is basically a vertical
lawn mower pattern covering a 120° sector each pass. In the
simulation we disturbed the path to be a bit wavy to account
for platform motion due to underwater currents. Using the
described inspection path should avoid to wrap the umbilical
around the monopile while at the same time being energy-
efficient.

E. External sensor

The system is extended by an external sensor unit comprising
an inertial measurement unit (IMU) and a 2D LiDAR. That
way, the inputs to the simulation can be redirected to stem from
the external sources rather than the software simulation. The
external sensor hardware is depicted in Fig. 3. Using this setup,
example scans can be performed quickly in the lab without
explicitly programming given trajectories. For instance, Fig. 4
shows how the sensor carrier is used to scan a pipe as a mock-up
for a monopile. This facilitates a quick development loopback
with dry runs in the lab instead of performing laborious wet
tests.

IV. MAPPING
A. Data fusion

In order to create a 3D point cloud of the sonar scans we
make use of an IMU to track the position and orientation of



Fig. 2. Synthetic sensor data acquisition. AUV is untextured, the DVL sensor
inside the ROV is colored red. Top row: Monopile ground truth and synthetic
sonar measurements. Bottom row: Mission path is additionally shown in
magenta and current measurement highlighted in red.

Fig. 3. External hand-held sensor setup with IMU and optical laser scanner.

Fig. 4. Physical scan of a pipe with our hand-held sensor carrier. Top: Hand-
held sensor carrier in front of the pipe. Bottom: Visualization of the scanned
pipe after fusing with the IMU data.



Fig. 5. Cylinder surface best approximating the data is depicted in green. The
angular shape of the green cylinder comes from the low vertex resolution of
the visualization tool rviz when visualizing parameterized cylinders.

the sonar sensor via dead reckoning. Inertial sensors offer good
signals with high rate during fast motions but are prone to
accumulated drift due to double integration during estimation
of position [13]. Therefore, we combine the accelerometer and
gyroscope signals with an additional DVL sensor providing
depth and velocity measurements. The sensor fusion is done
by employing an Extended Kalman Filter using an existing
ROS package based on the work described in [14].

B. Parameterized cylinder fitting

As a monopile resembles a cylinder, and cylindrical struc-
tures are also common as parts of jacket constructions, we
employed geometric cylinder fitting. This is a solution when
there is no CAD data of the structure available. We fit a
mathematical cylinder formula to the generated 3D point cloud
to obtain a cylinder representation of the monopile. We apply
MLESAC [15], a more robust variation of the RANSAC
algorithm, by estimating 6 cylinder coefficients, i.e., a point on
its axis and its axis direction. The cylinder radius is set to a
given value. If the axis direction is not within an expected angle
the estimation is rejected. The procedure is executed repeatedly
with a frequency of 0.5 Hz to obtain a continuously improving
estimation as more sonar data arrives at the processing unit.
To evaluate the performance of the algorithm we compare the
fitted model with the ground truth world model in RViz (see
Fig. 5).

C. CAD model fitting

As the cylinder is a quick but only partially accurate way
of modeling a monopile, we used a full 3D CAD model of
the actual monopile under inspection instead of fitting a purely
geometric cylinder to the data. That way, the model error
is reduced and a more accurate map is obtained. The CAD
model was created from a technical drawing of a monopile in
SolidWorks. Then, from a triangle mesh of the CAD drawing,
a dense point cloud was sampled resulting in a model (truth)
point cloud of approximately 182,000 points (see Fig. 6).

Fig. 6. Sampled CAD model of a monopile.

In order to obtain a transformation between the ground
truth point cloud and the measured points we employ an
iterative nonlinear optimizer based on the Levenberg-Marquardt
algorithm with is a more robust extension of the iterative closed
point (ICP) technique. The method is described in [16]. As
before, we repeat the procedure with a frequency of 0.5 Hz to
update the estimated transformation periodically.

Fig. 6 presents the result of the CAD fitting procedure. The
method is more flexible than the RANSAC procedure described
above. As we now fit a generic CAD model the procedure can
be applied to arbitrary underwater foundation structures when
3D CAD data is available.

V. RESULTS

Using that simulation environment, a very large part of the
development can be performed in the lab and the expensive
wet tests can be reduced to a minimum as the very same
software components are used, only the sensor input sources
are different.

VI. CONCLUSION AND OUTLOOK

In this paper, we developed a twin simulation model for
underwater inspection tasks based on the UUV Simulator.



Fig. 7. Point cloud sampled from the monopile CAD model (green) fitted to
the measured point cloud (red).

Moreover, we have created a hand-held data input device
integrating real physical sensor data into the simulation
framework. In the near future, we are planning to conduct field
experiments in order to validate the system and the models that
we use in a real-world inspection scenario. Future work will
concentrate on adding defects such as cracks or dents to the
simulation to test the robustness of our mapping approach. Also,
we plan to improve the visualization of deviations between
the the actual measured 3D point cloud and the ground truth
model by creating 2D difference maps. Using an imaging
sensor seems a natural extension to the concept. Given a
calibration between camera and sonar, camera intensity values
can be used to colorize the sonar measurements which may
give an operator greater insight than camera images alone.
Furthermore, we plan to make use of the UUVSim integrated
current modeling capabilities to more realistically mirror the
environmental conditions in the mission target area.
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