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Abstract. We consider a modified version of the top-k subgroup discov-
ery task, where subgroups dominated by other subgroups are discarded.
The advantage of this modified task, known as relevant subgroup discov-
ery, is that it avoids redundancy in the outcome. Although it has been
applied in many applications, so far no efficient exact algorithm for this
task has been proposed. Most existing solutions do not guarantee the
exact solution (as a result of the use of non-admissible heuristics), while
the only exact solution relies on the explicit storage of the whole search
space, which results in prohibitively large memory requirements.

In this paper, we present a new top-k relevant subgroup discovery
algorithm which overcomes these shortcomings. Our solution is based on
the fact that if an iterative deepening approach is applied, the relevance
check – which is the root of the problems of all other approaches – can
be realized based solely on the best k subgroups visited so far. The
approach also allows for the integration of admissible pruning techniques
like optimistic estimate pruning. The result is a fast, memory-efficient
algorithm which clearly outperforms existing top-k relevant subgroup
discovery approaches. Moreover, we analytically and empirically show
that it is competitive with simpler approaches which do not consider the
relevance criterion.

1 Introduction

In applications of local pattern discovery tasks, one is typically interested in
obtaining a small yet meaningful set of patterns. The reason is that resources
for post-processing of the patterns are typically limited, both if the patterns are
manually reviewed by human experts, or if they are used as input of a subsequent
data-mining step, following a multi-step approach like LeGo [11].

Reducing the number of raw patterns to a subset of manageable size can be
done using different approaches: one is to use a quality function to assess the
value of the patterns, and to discard all but the k highest-quality patterns. This
is known as the “top-k” approach. It can be further subdivided depending on
the pattern type and the quality function considered. In this paper, we consider
the case where the data has a binary label, the quality function accounts for
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the support in the different classes, and the patterns have the form of itemsets.
This setting is known as top-k supervised descriptive rule discovery, correlated
pattern mining or subgroup discovery [5]. In the following, we will stick with the
expression subgroup discovery and with the terminology used in this community.

Restricting to the top-k patterns (or subgroups, in our specific case) is not the
only approach to reduce the size of the output. A different line of research aims at
the identification and removal of patterns which are of little interest compared to
other patterns, (cf. [6,4]). This idea is formalized using constraints based on the
interrelation between patterns. A particularly appealing approach along this line
is the theory of relevance [14,7]. The idea of this approach, which applies only to
binary labeled data, is to remove all patterns that are dominated (or covered) by
another pattern. Here, a pattern is considered as dominating another pattern if
the dominating pattern covers at least all positives (i.e. target-class individuals)
covered by the dominated pattern, but no additional negative.

The theory of relevance not only allows to get rid of multiple equivalent de-
scriptions (as does the theory of closed sets), but also of trivial specializations
which provide no additional insight over their generalizations. Due to this advan-
tage, relevance has been used as a filtering criterion in several subgroup discovery
applications [14,12,2]. In many settings, however, the number of relevant sub-
groups is still far larger than desired. In this case, a nearby solution is to combine
it with the top-k approach.

Up to now, however, no satisfying solution has been developed for the task of
top-k relevant subgroup discovery. Most algorithms apply non-admissible prun-
ing heuristics, with the result that high-quality subgroups can be overlooked
(e.g. [14,16]). The source of these problems is that relevance is a property not
defined locally, but with respect to the set of all other subgroups. The only
non-trivial algorithm which provably finds the exact solution to this task is
that of Garriga et al. [7]. This approach is based on the insight that all relevant
subgroups must be closed on the positives ; moreover, the relevance of a closed-on-
the-positive can be determined based solely on the information about all closed-
on-the-positives. This gives rise to an algorithmic approach which exhaustively
traverses all closed-on-the-positives, stores them, and relies on this collection to
distinguish the relevant subgroups from the irrelevant closed-on-the-positives.
Obviously, this approach suffers from the drawback that a potentially very large
number of subgroups has to be stored in memory. For complex datasets, the high
memory requirements are a much more severe problem than the runtime. An-
other drawback of this approach is that it does not allow for admissible pruning
techniques based on a dynamically increasing threshold [22,17,8].

In this paper, we make the following contributions:

– We analyze existing top-k relevant subgroup discovery algorithms and show
how all except for the memory-demanding approach of [7] fail to guarantee
an exact solution;

– We present a simple solution to the relevance check which requires an amount
of memory only linear in k and the number of features. An additional ad-
vantage of this approach is that it can easily be combined with admissible
pruning techniques;
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– Thereupon we present a new, memory-efficient top-k relevant subgroup dis-
covery algorithm. We demonstrate that it is faster than the only existing
exact algorithm (Garriga et al. [7]), while avoiding the memory issues of
the latter. Moreover, we show that our approach is competitive with all ex-
isting exhaustive subgroup discovery approaches, in particular with simpler
algorithms which do not consider the relevance criterion.

The remainder of the paper is structured as follows: after reviewing basic def-
initions in Section 2, we illustrate the task of relevant subgroup discovery in
Section 3. Successively, we present our new approach and analyze its properties
in Section 4, before we present empirical results in Section 5.

2 Preliminaries

In this section, we will define the task of subgroup discovery, review the theory
of relevance and discuss its connection to closure operators.

2.1 Subgroup Discovery

Subgroup discovery [10] aims at discovering descriptions of interesting sub-
portions of a dataset. We assume all records d1, . . . , dm of the dataset to be
described by a set of n binary features (f1(di), . . . , fn(di)) ∈ {0, 1}n. A sub-
group description sd is a subset of the feature set, i.e. sd ⊆ {f1, . . . , fn}. In the
following, we will sometimes simply write subgroup to refer to a subgroup de-
scription. A data record d satisfies sd if f(d) = 1 for all f ∈ sd, that is, subgroup
descriptions are interpreted conjunctively. Thus, we sometimes use the notation
fi1&, . . .&fik

instead of {fi1 , . . . , fik
}. Finally, DB[sd] denotes the set of records

d ∈ DB of a database DB satisfying a subgroup description sd.
The interestingness of a subgroup description sd in the context of a database

DB is measured by a quality function q that assigns a real-valued quality q(sd,DB)
to sd. The quality functions usually combine the size of the subgroup and its un-
usualness with respect to a designated target variable, the class or label. In this
paper, we only consider the case of binary labels, that is, the label of a record
d is a special feature class(d) with range {+,−}. Some of the most common
quality functions for binary labeled data are of the form:

|DB[sd]|a ·
( |TP(DB, sd)|

|DB[sd]| − |TP(DB, ∅)|
|DB|

)
(1)

where TP(DB, sd) := {d ∈ DB[sd] | class(d) = +} denotes the true positives of
the subgroup sd, a is a constant such that 0 ≤ a ≤ 1, and TP(DB, ∅) simply
denotes all positives in the dataset. The family of quality functions characterized
by Equation 1 includes some of the most popular quality functions: for a = 1, it is
order equivalent to the Piatetsky-Shapiro quality function [10] and the weighted
relative accuracy WRACC [13], while for a = 0.5 it corresponds to the binomial
test quality function [10].



536 H. Grosskreutz and D. Paurat

2.2 Optimistic Estimate Pruning

A concept closely related to quality functions is that of an optimistic estimate
[22]. This is a function that provides a bound on the quality of a subgroup
description and of all its specializations. Formally, an optimistic estimator for
a quality function q is a function oe mapping a database DB and a subgroup
description sd to a real value such that for all DB, sd and specializations sd′ ⊇ sd,
it holds that oe(DB, sd) ≥ q(DB, sd′). Optimistic estimates allow to drastically
improve the performance of subgroup discovery by means of pruning [17,8].

2.3 The Theory of Relevance

The theory of relevance [15,14] is aimed at eliminating irrelevant patterns, resp.
subgroups. A subgroup sdirr is considered as irrelevant if it is dominated (or
covered) by another subgroup sd in the following sense:

Definition 1. The subgroup sdirr is dominated by the subgroup sd in database
DB iff. (i) TP(DB, sdirr) ⊆ TP(DB, sd) and (ii) FP(DB, sd) ⊆ FP(DB, sdirr).

Here, TP is defined as in 2.1, while FP(DB, sd) = {c ∈ DB[sd] | class(c) = −}
denotes the false positives.

2.4 Closure Operators and Their Connection to Relevance

As shown by Garriga et al. [7], the notion of relevance can be restated in terms
of the following mapping between subgroup descriptions:

Γ+(X) := {f | ∀d ∈ TP(DB, X) : f [d] = 1}. (2)

Γ+ is a closure operator, i.a. a function defined on the power-set of features
P({f1, . . . , fn}) such that for all X, Y ∈ P({f1, . . . , fn}), (i) X ⊆ Γ (X) (exten-
sivity), (ii) X ⊆ Y ⇒ Γ (X) ⊆ Γ (Y ) (monotonicity), and (iii) Γ (X) = Γ (Γ (X))
(idempotence) holds. The fixpoints of Γ+, i.e. the subgroup descriptions sdrel

such that sdrel = Γ+(sdrel), are precisely the closed-on-the-positives mentioned
earlier. The main result in [7] is that

Proposition 1. The space of relevant patterns consists of all patterns sdrel sat-
isfying the following: (i) sdrel is closed on the positives, and (ii) there is no gen-
eralization sd � sdrel closed on the positives such that |FP(sd)| = |FP(sdrel)|.

The connection between relevancy and closure operators is particularly inter-
esting because closure operators have extensively been studied in the area of
closed pattern mining (cf. [19]). However, unlike here in closed pattern mining
the closure operator is defined solely on the support, without accounting for la-
bels. The fixpoints of the closure operator based on the support are called closed
patterns. Many algorithms have been developed to traverse the fixpoints of some
arbitrary closure operator, e.g. LCM [21]. Making use of this fact, Garriga et al.
[7] have proposed a simple two-step approach to find the relevant patterns: first,
find and store all closed-on-the-positives; second, remove all dominated closed-
on-the-positives using Proposition 1. We will refer to this approach as CPosSd.
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3 Relevant Subgroup Discovery

As motivated in the introduction, we are interested in the following task:

Task 1. Top-k Relevant Subgroup Discovery Given a database DB, a qual-
ity function q, and an integer k > 0, find a set of subgroup descriptions R of
size k, such that

– all subgroup descriptions in R are relevant wrt. DB, and
– all subgroup descriptions not in R either have a quality no higher than

minsd∈R q(DB, sd), or are dominated by some subgroup description in R.

We will now illustrate this task using a simple example, before we show how
existing pruning approaches result in incorrect results.

3.1 An Illustrative Example

Our example database, shown in Table 1, describes opinion polls. There is one
record for every participating person. Beside the class, Approval, there are four
features that characterize the records: Children:yes and Children:no indicates
whether or not the participant has children; University indicates that the partici-
pant has a university degree, and finally High Income indicates an above-average
income. To keep the example simple, we have not included features describing
the negative counterparts of the last two features.

This simple example dataset induces a lattice of candidate subgroup descrip-
tions, containing a total of 16 nodes. These include several redundant descrip-
tions (like University and HighIncome & University), which are avoided if we
consider the sub-space of closed subgroups. Figure 1 visualizes this space, thereby
representing both the type and the WRACC quality:

– type: The visualization distinguishes between subgroup descriptions which
are closed, closed on the positives and relevant. Every node represents a
closed subgroup; those closed on the positives are rendered with a double
border; finally, relevant subgroups are rendered using a rectangular shape.

– quality: The color intensity of a node corresponds to the quality of the sub-
group: higher-qualities correspond to more intense gray shades.

Table 1. Example: An simple opinion poll dataset

Approval Children=yes Children=no University High Income

+ � � �
+ � � �
+ �
- � �
- �
- �
- �
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(empty)

Children=yes

Children=yes

HighIncome & University

University HighIncome

HighIncome

Children=no

Children=no

Children=yes & HighIncome & University

HighIncome University

Children=no & HighIncome & University

Children=noChildren=yes

University

Children=yes Children=no & HighIncome

Children=no

University

University

HighIncome

Fig. 1. Subgroup lattice for the example. Relevant subgroups are highlighted

The figure illustrates that high-quality subgroups need not be relevant: For ex-
ample, the two subgroups Children:yes & HighIncome & University and Chil-
dren:no & HighIncome & University have high quality but are irrelevant, as they
are merely a fragmentation of the relevant subgroup HighIncome & University.

3.2 Existing Approaches, Challenges and Pitfalls

The existing approaches can briefly be divided into two classes: extensions of
classical algorithms which apply some kind of pruning, and the closed-on-the-
positives approach of Garriga et al. [7].

Pruning-based Approaches. State-of-the-art top-k subgroup discovery algorithm
do not traverse the whole space of candidate patterns but apply pruning to re-
duce the number of patterns effectively visited (cf. [8,3,18]). The use of such
techniques results in a dramatic reduction of the execution time and is an indis-
pensable tool for fast exhaustive subgroup discovery [17,8,3].

To better understand the issues that can arise, we first briefly review the
concept of a dynamically increasing quality threshold used during optimistic es-
timate pruning. Recall that classical subgroup discovery algorithms traverse the
space of candidate subgroup descriptions, collecting the best subgroups. Once
at least k subgroups have been collected, only subgroups are of interest whose
quality exceeds that of the k-th best subgroup visited so far. The quality of the
k-th subgroup thus represents a threshold, which increases monotonically in a
dynamic fashion during traversal of the search space. Combined with an op-
timistic estimator (see Section 2.2), this dynamic threshold can allow pruning
large parts of the search space.

The use of a dynamic threshold is of key importance in optimistic estimate
pruning, as it is impossible to calculate a suitable threshold beforehand. Figure 1
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illustrates the efficiency of this approach: if top-1 subgroup discovery is per-
formed in this example, then the dynamic threshold allows pruning all but the
direct children of the root node. Unfortunately, storing only the k best subgroups
visited and using the quality of the k-best subgroup as dynamic threshold is
problematic in relevant subgroup discovery:

1. If a relevant subgroup is visited which dominates more than one subgroup
so far collected, then all dominated subgroups have to be removed. This can
have the effect that when the computation ends, the result queue erroneously
contains less than k subgroups.

2. If the quality threshold is increased to the quality of the k-th subgroup in
the result queue, but the queue contains non-relevant subgroups, then some
relevant subgroups can erroneously be pruned.

The two above problems can be observed in our example scenario. Issue 1 arises
if we search for the top-2 subgroups in Figure 1, and the nodes are visited in
the following order: Children=yes, Children:yes & HighIncome & University,
Children:no & HighIncome & University and High Income & University. When
the computation ends, the result will only contain High Income & University, but
miss the second relevant subgroup, Children=yes. Issue 2 arises if Children:yes
& HighIncome & University and Children:no & HighIncome & University are
added to the queue before Children=yes is visited: the effect is that the minimum
quality threshold is increased to a level that will incorrectly prune Children=yes.

The above issues are the reason why most existing algorithms, like BSD [16],
do not guarantee an exact solution for the task of top-k relevant subgroup dis-
covery. This is problematic both because the outcome will typically be of less
value, and because it is not uniquely determined; in fact, the outcome can differ
among implementations and possibly even among execution traces. This effect
is amplified if a beam search is applied (e.g. [14]), where the subgroups con-
sidered are not guaranteed not to be dominated by some subgroup outside the
beam.

Approaches based on the closed-on-the-positives. The paper of Garriga et. al. [7]
is the first that proposes a non-trivial approach to correctly solve the relevant
subgroup discovery task. The authors investigate the relation between closure
operators (cf. [19]) and relevance, and show that the relevant subgroups are
a subset of the subgroups closed on the positives. While the focus of the pa-
per is on structural properties and not on computational aspects, the authors
also propose the simple two-step algorithm CPosSd described in Section 2.4.
The search space considered by this algorithm — the closed-on-the-positives
— is a subset of the closed subgroups, thus it operates on a smaller candidate
space than all earlier approaches. The downside is that it does not account
for optimistic estimate pruning, and, probably more seriously, that it has very
high memory requirements, as the whole set of closed-on-the-positives has to be
stored.
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4 An Iterative Deepening Approach

We aim at a solution that:

1. Avoids the high memory requirements of CPosSd [7];
2. Considers a reduced search space, namely the closed on the positives;
3. Applies pruning based on a dynamically increasing quality threshold.

The last bullet implies that we need a way to efficiently determine whether a
subgroup is relevant or not the moment it is visited. Proposition 1 tells us that
this can be done if a pattern is guaranteed to be visited only once each of its gen-
eralizations have been visited. One straightforward solution is thus to traverse
the candidate space in a general-to-specific way. While this traversal strategy
slightly differs from a breadth-first-traversal, it has the same drawbacks, in par-
ticular that the memory requirements can be linear in the size of the candidate
space. In the worst case, this results in memory requirements exponential in the
number of features, which is clearly problematic.

To avoid the above memory issue, we build our solution upon an iterative
deepening depth-first traversal of the space of closed-on-the-positives. Iterative
deepening depth-first search is well known to have more convenient memory
requirements [20], and moreover it ensures that whenever a subgroup description
is visited, all its generalizations have been visited before.

4.1 A Relevance Check Based On The Top-k Subgroups Visited

One challenge remains, namely devising a memory-efficient way to test the rele-
vance of a newly visited pattern. Obviously, we cannot store all generalizations
of every subgroup in memory (and simply apply Proposition 1): as every pattern
can have exponentially many generalizations, this would again result in memory
issues. Instead, our solution is based on the following observation:

Proposition 2. Let DB be a dataset, q a quality function of the form of Equa-
tion 1 (with 0 ≤ a ≤ 1) and minQ some real value. Then, the relevance of any
closed-on-the-positive sd with quality ≥ minQ can be computed from the set

G∗ = {sdgen � sd | sdgen is relevant in DB and q(DB, sdgen) > minQ}
of all generalizations of sd with quality ≥ minQ. In particular, sd is irrelevant if
and only if there is a relevant subgroup sdgen in G∗ with same negative support,
where the negative support of a pattern sd is defined as |FP(DB, sd)|.
The above proposition tell us that we can perform the relevance check based
only on the top-k relevant subgroups visited so far: The iterative deepening
traversal ensures that a pattern sd is only visited once all generalizations have
been visited; so if the quality of the newly visited pattern sd exceeds that of
the k-best subgroup visited so far, then the set of the best k relevant subgroups
visited includes all generalizations of sd with higher quality – that is, a superset
of the set G∗ mentioned in Proposition 2; hence, we can check the relevance
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of sd. On the other hand, if the quality of sd is lower than that of the k-best
subgroup visited, then we don’t care about its relevance anyways.

To prove the correctness of Proposition 2, we first present two lemmas:

Lemma 3. If a closed-on-the-positive sdirr is irrelevant, i.e. if there is a gen-
eralization sd � sdirr closed on the positives with the same negative support as
sdirr, then there is also at least one relevant generalization sdrel � sdirr with
the same negative support.

Proof. Let N be the set of all closed-on-the-positives generalizations of sdirr with
the same negative support as sd. There must be at least one sdrel in N such that
none of the patterns in N is a generalization of sdrel. From Proposition 1, we
can conclude that sdrel must be relevant and dominates sdirr. �

Lemma 4. If a pattern sdrel dominates another pattern sdirr, then sdrel has
higher quality than sdirr.

Proof. We have that |DB[sdrel]| ≥ |DB[sdirr]|, because sdrel is a subset of sdirr

and support is antimonotonic. Thus, to show that sdrel has higher quality, it
is sufficient to show |TP(DB, sdrel)| /|DB[sdrel]| > |TP(DB, sdirr)| /|DB[sdirr]|.
From Proposition 1, we can conclude that sdrel and sdirr have the same num-
ber of false positives; let F denote this number. Using F , we can restate the
above inequality as |TP(DB, sdrel)| /(|TP(DB, sdrel)| + F ) > |TP(DB, sdirr)| /
(|TP(DB, sdirr)| + F ). All that remains to show is thus that |TP(DB, sdrel)| >
|TP(DB, sdirr)|. By definition of relevance, |TP(DB, sdrel)| ≥ |TP(DB, sdirr)|,
and because sdrel and sdirr are different and closed on the positives, the in-
equality must be strict, which completes the proof. �

Based upon these lemmas, it is straightforward to prove Proposition 2:

Proof. We first show that if sd is irrelevant, then there is a generalization in G∗

with the same negative support. From Lemma 3 we know that if sd is irrelevant,
then there is at least one relevant generalization of sd with same negative sup-
port dominating sd. Let sdgen be such a generalization. Lemma 4 implies that
q(DB, sdgen) ≥ q(DB, sd) ≥ minQ, hence sdgen is a member of the set G∗.

It remains to show that if sd is relevant, then there is no generalization in G∗

with same negative support. This follows directly from Proposition 1. �

4.2 The Algorithm

Algorithm 1 shows the pseudo-code for the approach outlined above. The main
program is responsible for the iterative deepening. The actual work is done in the
procedure findSubgroupsWithDepthLimit, which traverses the space of closed-
on-the-positives in a depth-first fashion using a stack (aka LIFO data structure).
Thereby, it ignores (closed-on-the-positive) subgroups longer than the length
limit, and it avoids multiple visits of the same node using some standard tech-
nique like the prefix-preserving property test [21]. Moreover, the function applies
standard optimistic estimate pruning and dynamic quality threshold adjustment.
The relevance check is done in line 6, relying on Proposition 2.
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Algorithm 1. Iterative Deepening Top-k RelevantSD (ID-Rsd)

Input : integer k and database DB over features {f1; ...; fn}
Output : the top-k relevant subgroups

main:

1: var result= queue with maximum capacity k (initially empty)
2: var minQ= 0
3: for limit= 1 to n do
4: findSubgroupsWithDepthLimit(result, limit)
5: return result

procedure findSubgroupsWithDepthLimit(result, limit):

1: var stack = new stack initialized with root node
2: while stack not empty do
3: var next= pop from stack
4: if next ’s optimistic estimate exceeds minQ and its length does not exceeds limit

then
5: add all successor patterns of next to stack (avoiding multiple visits)
6: if next has quality above minQ and is not dominated by any p′ ∈ result then
7: add next to result
8: update minQ if possible

4.3 Complexity

We will now turn to the complexity of our algorithm. Let n denote the number
of features in the dataset and m the number of records. The memory complexity
is O(n2 + kn), given that the maximum recursion depth is n, the maximum size
of the result queue is k, and every subgroup description has length O(n).

Let us now consider the runtime complexity. For every node visited we com-
pute the quality, test for relevance and consider at most n augmentations. The
quality computation can be done in O(nm), while the relevance check can be
done in O(kn). The computation of the successors in Line 5 involves the exe-
cution of n closure computations, which amounts to O(n2m). Altogether, the
cost-per-node is thus O(n2m + kn). Finally, the number of nodes considered is
obviously bounded by O(|Cp|n), where Cp is the set of closed-on-the-positives
and the factor n is caused by the iterative deepening approach.1

Table 2 compares the runtime and space complexity of our algorithm with
CPosSd. Moreover, we show the complexity of classical and closed subgroup
discovery algorithms. Although these algorithms solve a different, simpler task,
it is interesting to observe they do not have a lower complexity. The expression

1 In case the search space has the shape of a tree, the number of nodes visited by an
iterative deepening approach is well-known to be proportional to the size of the tree.
Here, however, a tree-shape is not guaranteed, which is why we use the more loose
bound involving the additional factor n.
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Table 2. Complexity of the different subgroup discovery approaches

Algorithm Memory Runtime Pruning

ID-Rsd O(n2 + kn) O(|Cp| [n3m + n2k]) yes

CPosSd Θ(n |Cp|) Θ(|Cp|n2m) no

Classical SD O(n2 + kn) O(|S|nm) yes

Closed SD O(n2 + kn) O(|C|n2m) yes

S used in the table denotes set of all subgroup descriptions, while C denote the
set of closed subgroups.

Let us consider the figures in more detail, starting with the memory com-
plexity: Except for CPosSd, all approach can apply depth-first-search (possibly
iterated) and thus have moderate memory requirements. In contrast, CPosSd has
to collect all closed-on-the-positives, each of which has a description of length
n. Please note that no pruning is applied, meaning that n |Cp| is not a loose up-
per bound for number of nodes stored in memory, but the precise indication —
which is why we use the Θ-notation in the table. As the number of closed-on-the-
positives can be exponential in n, this approach can quickly become unfeasible.

Let us now turn to the runtime complexity. First, let’s compare the runtime
complexity of our approach with classic resp. closed subgroup discovery algo-
rithms. Probably the most important difference is that they operate on different
spaces. While otherwise the complexity of our approach is higher by a linear
factor (resp. quadratic, compared to classic subgroup discovery), the space we
consider, i.e. the closed-on-the-positives Cp, can be exponentially smaller than
the one considered by the other approaches (i.e. C, respectively its superset S).
This is illustrated by the following family of datasets:

Proposition 5. For all n ∈ N+, there is a dataset DBn of size n + 1 over n
features such that the ratio of closed to closed-on-the-positives is O(2n).

Construction 1. We define the dataset DBn = d1, . . . , dn, dn+1 over the n + 1
features f1, . . . , fn, class as

fj(di) =

{
0, if i = j

1, otherwise
and class(di) = −

for i = 1, ..., n and dn+1 = (1, . . . , 1, +).
In these datasets, every non-empty subgroup description is closed and has

positive quality. The total number of closed subgroups is thus 2n − 1, while there
is only one closed-on-the-positives, namely {f1 . . . fn}. �

Finally, compared to CPosSd, we see that in worst-case our iterative deepen-
ing approach causes an additional factor of n (the second term involving k is
not much of a problem, as in practice k is relatively small). For large datasets,
this disadvantage is however clearly outweighed by the reduction of the memory



544 H. Grosskreutz and D. Paurat

footprint. Moreover, as we will show in the following section, in practice this
worst-case seldom happens: on real datasets, our approach is mostly not slower
than CPosSd, but instead much faster (due to it’s use of pruning).

5 Experimental Results

In this section we empirically compare our new relevant subgroup discovery
algorithm with existing algorithms. In particular, we considered the following
two questions:

– How does our algorithm perform compared to CPosSd?
– How does our algorithm perform compared to classical and closed subgroup

discovery algorithms?

We will not investigate and quantify the advantage of the relevant subgroups
over standard or closed subgroups, as the value of the relevance criterion on
similar datasets has been demonstrated elsewhere (cf. [7]).

5.1 Implementation and Setup

Dataset target class # rec. # feat.
credit-g bad 1000 58
lung-cancer 1 32 159
lymph mal lymph 148 50
mushroom poisonous 8124 117
nursery recommend 12960 27
optdigits 9 5620 64
sick sick 3772 66
soybean brown-spot 638 133
splice EI 3190 287
tic-tac-toe positive 958 27
vote republican 435 48
waveform 0 5000 40

Fig. 2. Datasets

We implemented our algorithm in
JAVA, using conditional datasets but
no sophisticated data structures like
fp-trees [9] or bitsets [16]. As minor op-
timization, during the iterative deep-
ening the length limit is increased in
a way that length limits for which
no patterns exist are skipped (this is
realized by keeping track, in every it-
eration, of the length of the shortest
pattern expanded exceeding the cur-
rent length limit).

In the following investigation, we
use a dozen datasets from the UCI Ma-
chine Learning Repository [1], which
are presented along with their most
important properties in Figure 2. All
numerical attributes where discretized
using minimal entropy discretization. We run the experiments using two quality
functions: the binomial test quality function and the WRACC quality. For prun-
ing, we used the tight optimistic estimate from [8] for the WRACC quality, while
for binomial test quality we used the function

√|TP(DB, sd)| · (1 − |TP(DB,∅)|
|DB| ),

which can be verified to be a tight optimistic estimate using some basic maths.
These optimistic estimates were used in all implementations to make sure that
the results are comparable. The experiments were run on a Core2Duo 2.4 GHz
PC with 4 GB of RAM.
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(a) Bin test quality, k=10 (b) Bin test quality, k=100

Fig. 3. Number of nodes considered during relevant subgroup discovery (brackets in-
dicate memory issues)

5.2 Comparison with CPosSd

In this paragraph, we compare our algorithm with Garriga et al.’s. In order
to abstract from the implementation, we compare the number of visited nodes,
rather than the runtime or the exact amount of memory used.

First, in Figure 3 we show the number of nodes considered by our algorithm
(“ID-Rsd”) and by the other approach (“CPosSd”). We used the binomial test
quality, and distinguished between two values for k (10 and 100); the results for
other quality function are comparable and omitted for space reasons. The figure
shows that for three datasets (’optdigits’, ’splice’ and ’waveform’), the number of
nodes considered by CPosSd was almost 100 millions. As the algorithm CPosSd
has to keep all visited nodes in memory, the computation failed: our machine
run out of memory for these three datasets. The number of nodes plotted in
Figure 3 was obtained by merely counting the number of nodes traversed (instead
of computing the top-k relevant subgroups). This illustrates that the memory
footprint of CPosSd is often prohibitive.

In our approach, on the other hand, there is no need to keep all visited pat-
terns in memory, and hence all computations succeeded. Moreover, in total our
approach considers way less nodes than CPosSd. The overall reduction in the
number of nodes visited amounts to roughly two orders of magnitude (please
note that we used a logarithmic scale in the figures).

5.3 Comparison with Other Subgroup Miners

Next, we compared our algorithm with subgroup miners that solve a differ-
ent but related task, namely classical subgroup discovery and closed subgroup
discovery. As representative algorithms, we used DpSubgroup [8] and the depth-
first closed subgroup miner from [4], which is essentially an adaptation of LCM
[21] to the task of subgroup discovery. We remark that these algorithms are also
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(a) q=bt (b) q=wracc

Fig. 4. Number of nodes considered by (non-relevant) SD algorithms (k=10)

Table 3. Total num. nodes visited, and percentage compared to StdSd (k=10)

q=bt q=wracc
StdSd CloSd Id-Rsd StdSd CloSd Id-Rsd

total # nodes 346 921 363 1 742 316 590 068 15 873 969 459 434 120 967
percentage (vs. StdSd) 100% 0.5% 0.17% 100% 2.9% 0.76%

total Runtime (sec) 2 717 286 118 147 100 45
percentage 100% 10.5% 4.4% 100% 68% 30%

representative for approaches like the algorithms SD and BSD discussed in Sec-
tion 3.2, which apply some ad-hoc and possibly incorrect relevance filtering, but
otherwise operate on the space of all subgroup descriptions.2

Figure 4 shows the number of nodes considered if k is set to 10 and the
binomial test, respectively the WRACC quality function is used. Again, we use
a logarithmic scale. The results for k = 100 are similar and omitted for space
reasons. Please note that for our algorithm (“ID-Rsd”), all nodes are closed-on-
the-positives, while for the closed subgroup discovery approach (“CloSd”) they
are closed and for the classic approach (“StdSd”) they are arbitrary subgroup
descriptions.

The results differ strongly depending on the characteristics of the data. For
several datasets, our approach results in a decrease of the number of nodes con-
sidered. The difference to the classical subgroup miner DpSubgroup is particularly
apparent, where it often amounts to several orders of magnitude.

There are, however, several datasets where our algorithm traverses more nodes
than the classical approaches. Again, the effect is particularly considerable when
compared with the classical subgroup miner. Beside the overhead caused by
the multiple iterations, one reason for this effect is that the quality of the k-th
pattern found differs for the different algorithms: For the relevant subgroup
algorithm, the k-best quality tends to be lower, because this approach suppresses

2 Note that BSD becomes faster if its relevance check is disabled [16].
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high-quality but irrelevant subgroups. One could argue that it would be more fair
to use a larger k-value for the non-relevant algorithms, as their output contains
more redundancy.

Overall, our algorithm is competitive (or, somewhat faster) than the other
approaches, as the aggregated figures in Table 3 show. Although the costs-per-
node are lower for classical subgroup discovery than for the other approaches,
overall this does not compensate for the much larger number of nodes traversed.

6 Conclusions

In this paper, we have presented a new algorithm for the task of top-k relevant
subgroup discovery. The algorithm is the first that finds the top-k relevant sub-
groups based on a traversal of the closed-on-the-positives, while avoiding the
high memory requirements of the approach of Garriga et al. [7]. Moreover, it
allows for the use of optimistic estimate pruning, which reduces the fraction of
closed-on-the-positives effectively considered.

The central idea of our algorithm is the memory-efficient relevance test, which
allows getting along with only the information about the k best patterns visited
so far. Please note that restricting the candidate space to (a subset of) the closed-
on-the-positives not only reduces the size of the search space: it also ensures the
correctness of our memory-efficient relevance check. The best k patterns can
only be used to determine the relevance of a new high-quality patterns if all
patterns visited are closed-on-the-positive subgroups – not if we were to consider
arbitrary subgroup descriptions. The restriction to closed-on-the-positives is thus
a prerequisite for the correctness of our approach.

The new algorithm performs quite well compared to existing approaches.
It not only avoids the high memory requirements of the approach of Garriga
et al. [7], but also clearly outperforms this approach. Moreover, it is competitive
with the existing non-relevant top-k subgroup discovery algorithms. This is par-
ticularly remarkable as it produces more valuable patterns than those simpler
approaches.
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